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Summary

Randomness and chaos are key ingredients in the description of nature and are there-
fore central elements in mathematics and physics. A conducting metal becomes an
insulator if there are enough random defects in its structure. This phase transition
generated by randomness (also called Anderson transition [And58]) is a central point
of study. It is an unproven conjecture that in dimension d > 3 there is such a phase
transition between diffusive and isolated states while in d = 1 there are proofs that only
localization occurs.

This doctoral thesis provides insights into supersymmetric methods relevant for the
study of two prominent random matrix models describing disordered materials: random
Schrodinger operators and random band matrices.

The main idea in the following is - using the supersymmetric approach - to establish
dual representations for the quantity of interest, which in turn can be studied via analytic
tools, inspired by statistical mechanics.

Chapter (1| provides an introduction to supersymmetry, summarizing main definitions
and results. We present basic properties of the two random matrix models mentioned
above. In particular, we introduce the density of states as the main object of study.

Chapter [2] concerns the averaged density of states for a two-dimensional random band
matrix ensemble with fixed but large band width W. We rigorously prove smoothness
and convergence to Wigner’s semicircle law with a precision W =2%9 in the infinite volume
limit. This extends the result of Disertori et al. [DPS02] from three to two dimensions.
The proof uses the supersymmetric approach and a cluster expansion. This part is
published in [DL17].

The supersymmetric representation introduced in Chapter [2| requires a certain reg-
ularity of the probability distribution. Chapter [3| gives a new supersymmetric dual
representation by introducing polar coordinates. This can be applied to a large class of
random matrix models, where only integrability of the random distribution is required.
As an application of this new representation, we consider the linear correlated Lloyd
model - a random Schrodinger model with Cauchy distributed random variables. In the
case of non-negative correlations, we recover the well-known exact formula for the den-
sity of states proved by Lloyd and Simon [L1069, [Sim83] in the first place. Moreover, we
examine a toy model with a single small negative correlation and show that the density
of states is well-approximated by the exact formula above. This part is published in

IDL20].

1l



Acknowledgements

First of all, I would like to express my deep gratitude to my advisor Margherita
Disertori for her constant support and guidance during the past years. I am thankful
to her for all the time she spent, sharing her great intuition as well as her remarkable
accuracy in technical details. Moreover, I thank her for encouraging me to visit various
conferences and summer schools to both present our results and get to know new research
fields as well as the large community in the field of mathematical physics.

Second, I want to thank Patrik Ferrari for agreeing to review this thesis, as well as
the other members of the thesis committee, Martin Rumpf and Bastian Kubis.

I would like to thank the Deutsche Forschungsgemeinschaft (DFG) for the funding
under the Collaborative Research Center 1060 ”The mathematics of emergent effects”
and the support by the Bonn International Graduate School for Mathematics (BIGS).

[ am very grateful to Susanne Hilger and Jonas Jansen for many stimulating discus-
sions and to Anna Kraut and Sarah Hertrampf for editorial feedback and proof reading
on parts of this thesis.

Last but not least, I thank my family for their continuous support and love; especially
Angelika, Hildegard and Wolfgang for taking care of Nora, Sebastian for motivation and
encouragement, and finally, Jan and Nora for their love.

v



Contents

1. Overview

[1.2. Supersymmetry]

(L.2.1.  Grassmann calculus|

[1.2.2. Supermathematics|

(L.3. Random Matrices|

3.1

General settingl . . . . . ..

(1.3.2.  Random Schrodinger operator| . . . . . . . ... ... ... ....

(L.3.3. Random band matrices|

T34,

Density of states . . . . . .

[1.4. Density of States for random band matrix in two dimensions| . . . . . . .

M42.

(4.3

Idea of the prooff . . . . ..
The difficulties of d=21 . . .

(1.4.4. Supersymmetric cluster expansion and integration by parts/ . . . .

(1.4.5.  Conclusion|

[L.5. Supersymmetric polar coordinates with applications to the Lloyd model| .

5.1

Motivation and Setting| . . .

[1.5.2. Supersymmetric change of variables| . . . . . . .. ... ... ...

[1.5.3.  Dual representation for random Schrodinger operators/. . . . . . .

[1.5.4.  Application to Lloyd modell

(1.5.5.  Conclusion|

(2. Density of States for Random Band Matrix in two dimensions

[2.2. Reformulating the problem|

[2.2.1. Duality transformation|
2.2.2. Contour deformation|

[2.2.3. Strategy of the proof: finite and infinite volume| . . . . . . . . ..

[2.3. Preliminary results|

P31

Properties of the covariance|

B O O i W W N /-

38



2.3.3. Finite volume estimates . . . . . . ... ... ... ... .. ... 55
2.4, Proof of Theorem 223 . . . . . . . . .. ... ..o 63
[2.4.1. Supersymmetric representation| . . . . . ... ... ... .. 63
[2.4.2. Cluster expansion| . . . . . . . . . . . .. ... ... .. ... .. 66
[2.4.3. Decay of Gg(s) and B(s)[. . . . . ... ........ ... ... . 70
2.4.4. Bounding the functional integrals . . . . . ... ... ... .. .. 71
[2.4.5. Summing up|. . . . . ... Lo 75
R.4.6. Derivatives . . . . . . . .. 79

[2.A. Supersymmetric Formalism| . . . ... .. ... .. 0000000 80
2.B. Prootof Lemmal2.2.1f. . . . . . . . . . ... 82
2.C. Estimates of the covariancel . . . . . . . . . ... ... L. 84
[3. Supersymmetric Polar Coordinates with applications to the Lloyd model 89
[3.1. Introductionl . . . . . . . . . . .. 89
3.2, Mamm resultsl . . . . . . .. 92
[3.2.1. Supersymmetric polar coordinates|. . . . . . . .. ... ... .. 92
[3.2.2.  Applications to the Lloyd model . . . . . . . ... ... ... ... 95

[3.3. Supersymmetric polar coordinates| . . . . . . . ... ... 96
[3.3.1. Proof of Theorem3.2.11. . . . . . ... .. ... ... ... .... 96
8.3.2. Proof of TheoremI3.2.2 . . . . . . ... .. ... ... ... ..., 98

[3.4. Applications to the Lloyd model . . . . . . .. ... ... ... ... ... 98
[3.4.1.  Proof of Proposition|3.2.3] . . . . ... ... ... ... .. .... 98
3.4.2. Proof of Theorem3.2.4 . . . . ... ... ... ... ... ..... 101
3.4.3. Proof of Theorem[3.25 . . . . ... ... ... ... ... ..... 101

[3.A. Super analysis| . . . . . ... 105
B.A. 1. Basic definitionsl. . . . . . . . ... oo o 105
A2, Differentiationl. . . . . . . . . ..o 106
[3.A.3. Integration| . . . . . . .. ... ... 106
[3.A.4. Grassmann algebra functions and change of variables| . . . . . .. 107

vi



1. Overview

1.1. Introduction

The purpose of physics is the accurate and yet easy description of observations in nature.
With increasing complexity of the problem, chaos and randomness come into play.

For example, it can be observed that a conducting metal becomes an insulator if the
defects in its atomic structure exceed a certain threshold [And58]. To model this phe-
nomenon, mathematical physicists introduced certain random matrix models: random
Schrodinger operators and random band matrices. The phase transition between con-
ductance and localization in dimension d = 3 is still an unproven conjecture for these
models (except in special lattice models [KIe98]). Localization in the whole spectrum
was proven in d = 1 and is conjectured to hold also in d = 2.

In this thesis, we use supersymmetric methods to study the random matrix models
mentioned above. The supersymmetric approach was introduced by Berezin [Ber66].
It combines ordinary and anticommuting variables to provide a dual representation for
spectral quantities such as the averaged Green’s function (or the average of products of
Green’s functions). This representation can be seen as a statistical mechanical model
(in a loose sense) with supermatrix-valued spins and is a convenient starting point to
study spectral properties of our models.

1.1.1. Quantum Mechanics

We start with a short introduction to quantum mechanics (cf. [RS72]). It describes the
physical properties at the scale of atoms and subatomic particles (e.g. electrons). Here
a particle-wave duality can be observed. A quantum mechanical particle in R? or Z? is
characterized by a wave function ¢ € H, where H = L*(R%) or [?(Z?) is a Hilbert space.
The Schrédinger operatorl] H : H — H is self adjoint and describes the time evolution
of the state ¢. It is defined by

H=Hy+V, (1.1.1)

where H, describes the kinetic energy and the external potential V' is a multiplication
operator. Solving the Schrodinger equation

0

!Note that H is generally unbounded. In this case H is only defined on a dense linear subset D(H) < H.



we obtain

U(t) = exp(—itH )i,

where 1) is the state at t = 0 and exp(—itH) is well-defined via the spectral theorem.
The dynamical properties of ¢ are closely related to the spectrum of H, e.g. eigenvalues
of H are energy levels of the system.

1.1.2. Random Matrices

To be able to study heavy nuclei, Wigner replaced rather complicated potentials by
random ones [Wigh5] and thus laid the foundation to random matrix models. Today
there are many fields in both, mathematics and physics, where random matrices come
into place (cf. [Meh04, [AW15]).

In this thesis we study two prominent examples modelling conducting properties of
disordered materials: random Schrédinger operators and Gaussian random band matri-
ces. We consider only discrete models on Z? or on finite sets A < Z<.

Random Schrodinger operators

Replacing the potential in the Schrodinger operator ([1.1.1]) by a random one, we obtain
a random Schrodinger operator H(w) : I*(A) — I2(A), w € Q, given by

Hw)=—-A+ \V(w),

where —A is now the discrete Laplacian on A, A > 0 is a parameter modelling the disorder
and V(w) = {V;(w)}ea is a multiplication operator with V; random variables. For V;
independent and identically distributed this is called the Anderson model (introduced by
Anderson [And58]) and is broadly studied. Nevertheless there are many open questions.
For example the phase transition in d = 3, mentioned above, is unproven in general.

Gaussian random band matrices

Another interesting model are Gaussian random band matrices. Again we have a her-
mitian random operator H(w) : [*(A) — I2(A), w € Q. This time each entry is random,
but entries far from the diagonal are negligible small. Precisely,

Hi ~ Nr(0, Jii), H;; ~ N¢(0, J;;)  fori < 7,

with J;; « 1 for |i — j| > W, where W is the fixed bandwidth.

Note that both models behave similarly with the relation A ~ W~!. For example in
d = 3, we expect localization for small W and large A, while for large W and small A
we expect extended states.



1.1.3. Localization and Delocalization

In both cases we study a random hermitian operator H(w) on [3(Z%), w € Q. Its spectral
properties are related to the physical behaviour of localization and diffusion. First of all
the spectrum of H is deterministic and so are the pure point, singular and absolutely
continuous parts if H is ergodic and (essentially) self-adjoint (cf. [Pas80l [KS80, [KM82]
for random Schrodinger and [PEF92, Chapter 2.B] for more general cases).

One distinguishes spectral and dynamical localization [Stolll Chapter 3]. Spectral
localization in I < R means that the spectrum in [ is only pure point, i.e. X(H) n [ =
Y,p(H) n I almost surely. On the other hand dynamical localization in I < R means
there exist constants C' < o0 and ¢ > 0 such that for all z,y <e Z¢

E [sup 6,1 e—itﬂwxf<Hw>az>|] < Cebil,
teR

i.e. solutions of time dependent Schrodinger equation are staying localized in space,
uniformly in time.

One can prove that dynamical localization implies spectral localization and indeed
dynamical localization is the more interesting notion since it implies also absence of
quantum transport. Precisely, assuming dynamical localization, one can prove that for
any v € [2(Z?) with compact support we have

sup [|X[7 " (Ho )¢ | < o0

for all p > 0 and for a.e. w € 2. This means all moments of the position operator are
finite in time. Hence, we have bounded states.

In the case of delocalization and unbounded states we would observe a presence of
quantum transport meaning

|| X P e e (Hy)¢| — oo for t — oo

1.1.4. Results and Conjectures

There are several results for localization, in particular for random Schrodinger operators.
Diffusion is an open problem, except in special cases like the Bethe lattice. In the
following we give a non-exhaustive overview of existing results.

Random Schrodinger operators

In d = 1 there is localization in the whole spectrum [GMPT77, [Car82). In d = 2 this is
conjectured to be the same. For d > 2 localization is proved only at large disorder or at
the edge oft the spectrum [AM93] [FS83]. It is an open problem to prove that there is a
phase transition for d > 3.

On tree graphs as the Bethe lattice there are proofs for both localization and delocal-
ization [AM93], [K1e98, [EHS07, [AW15].



Random band matrices

For random band matrices there are even less results [Boul§|. There are a few results on
the density of states [CFGKS7, [CCGI93, [DPS02, [DLS21) [YYY21], but no localization
results except in d = 1 [Shcldl [SS17]. Nevertheless one expects that the random band
matrix model behave similar to random Schrodinger with A ~ W1

1.1.5. Methods

There are various methods to study random matrices. For example models with rotation
invariant measures e™") dH | like the Gaussian ensembles, can be solved by orthogonal
polynomial tools [Meh04].

Random Schrédinger operators can be studied via fractional moment methods [AM93]
and multiscale analysis [F'S83].

Another approach is supersymmetry. This technique was pioneered by Berezin [Ber87]
and Efetov [Efe99]. For other introductions to the subject we recommend [Wegl6)
Var04]. The idea is to introduce anticommuting variables x;, i.e.

XiXk = —XkXj-

Note that this implies X? = 0. One can define integration over these variables. See
Section for details. This enables us to rewrite e.g. the Green’s function as a super-
symmetric integral, i.e. an integral over a supervector ® = (z, x), where we can evaluate
the average more easily. There are various applications of supersymmetry in random
matrix theory (cf. [Dis04, Mir00), [EM91), LSZ0S]).

1.1.6. Structure of this thesis

The remaining thesis is structured as follows. The present introduction proceeds with
four further sections. First, we give a basic introduction to the two fields ”supermath-
ematics” and "random matrix theory”. Then we devote one section each to summarize
and sketch the research results of the publications [DL17] and [DIL20].

The introduction is followed by two chapters giving the two publications in full detail.

In the following we start with defining Grassmann variables and the supersymmetric
formalism in Section [I.2] We also prove some important results for supersymmetric
change of variables and Gaussian integrals.

In Section we present in more detail two models for conductance in disordered
materials: the random Schrodinger operator and random band matrices. In particular,
we introduce the density of states for these operators, which is an important spectral
quantity.

Section [L4] deals with random band matrices on a two dimensional lattice and sum-
marizes results on the averaged density of states both in finite and infinite volume. This
is the topic of the first paper [DL17].

The second paper [DL20] is summarized in Section and deals with an alternative
supersymmetric representation, where validity extends to far less regular distributions,



such as the Cauchy distribution. It is based on a supersymmetric version of polar
coordinates. We also give some applications to the Lloyd model, a random Schrodinger
model.

1.2. Supersymmetry

In this section we introduce the concept of supersymmetry. We consider Grassmann

variables, i.e. objects which anti-commute. Precisely, two Grassmann variables v and w
fulfil

VAW=—WAU,
where A is the anticommutative wedge product. Note that
VP=vAv=—vArv=0.

These objects were introduced by Hermann Giinther Grassmann in 1844 [Grad4]. They
are well adapted to describe fermionic systems but proved also useful in a very different
context, e.g. two dimensional lattice models like Ising and dimer model.

Supermathematics or supersymmetry deals with combining Grassmann variables with
ordinary real or complex variables. In 1966 Felix A. Berezin developed the concept of
supermathematics by introducing a notion of integration for Grassmann variables and
the Berezinian, which generalizes the Jacobian [Ber87, Ber66]. Supermathematics also
apply in statistical physics by providing dual representations for partition functions and
correlations, where saddle point methods can be applied. A special case is the field of
random matrices which are studied in this thesis.

We give a short introduction to Grassmann variables and supermathematics. Detailed
descriptions on this formalism can be found in [Efe99 Var04, Weg16].

1.2.1. Grassmann calculus
Basic definition

We define the Grassmann algebra and related basic concepts. Moreover, we state basic
algebraic properties. For our purpose we consider only finite dimensional vector spaces
over real or complex numbers, i.e. K =R, C and V = KV,

Definition 1.2.1 (Grassmann algebra). Let V' be a finite dimensional vector space over
a field K and denote the antisymmetric tensor product by

AV XV = V@V,
(V,W) > VAW =VW=—WV = —W A .

The corresponding Grassmann algebra G is defined by
k=0

where V0 = K, V! =V and V¥ = VF1®,, V for k > 2.



Definition 1.2.2 (Even and odd elements). We distinguish the sets of even and odd
elements G = G°P G', where

gO _ @V2k gl _ @VQkJrl.

k=0 k=0

Elements in G° are called even or Bosonic variables, elements in G' odd, Grassmann or
Fermionic variables.

Proposition 1.2.3. The following properties hold.
1. Let V be N-dimensional, N e N. Then V¥ = & for k> N.
2. G s an associative algebra with unit.

3. GY is an associative algebra with unit. Allv € G commute with all elements w € G:
VW = WU.

4. GY is mot an algebra. All v,w € G' anticommute: vw = —wv. Moreover, v? = 0

for allv e G*.

Proposition 1.2.4. A Grassmann algebra is a Zo-graded algebra, i.e. each element
v € G can be written as

v =00 4 ¢M with v e QO, oM e Gt

Sums of elements in G7 belong to G° while products of elements in G° and G belong to
Goto' where 0,00 + o' € Zs.

Generators

To do hands-on calculations with Grassmann elements, it is useful to have a concrete
representation. Let (x1,...,xwn) be a basis of the vector space V. By definition each
element a € G can be written as

a = 2 arx’, (1.2.1)

IeP(N)

where P(N) is the power set of {1,..., N}, aj € K for all [ € P(N) and x! = [Lerx;is
the ordered product for I € P(N). Generalizing this representation we define the notion
of generators.

Definition 1.2.5 (Generators). A set (xi,...,xn) is called a family of generators of
G if all x; are odd and for each a € G there exists a unique representation of the form
(11.2.1)).

Remark. A priori, one can use generators which are not necessary odd. Since we want
to preserve parity (e.g. later in the supersymmetric applications), we postulate that
generators have to be odd.



Ezxample. Each basis of V' is a family of generators, but a family of generators is not
necessary a basis of V: For N = 3 and (ey, 9, e3) basis of V', the following is a family of
generators of G

X1 = €1, X2 = €2, X3= €3+ eieses.

Indeed we can represent the e;, and hence all a € G, by the yx; via

€1 = X1, €2 = X2, €3= X3~ X1X2X3-

In the following we use G = G[x] = G[x1,.-.,xn] and a = a(x) = a(x1,---,xn) tO
refer to a special set of generators. If we want to emphasize the underlying field K, we

write G = Gk = Gr[x].
Some more definitions

We give some more definitions.

Definition 1.2.6 (Parity). For homogenous elements (i.e. purely even or purely odd
variables), we define the parity operator m via

w(a) =0 ifaeG®, oe€{0,1}.

Definition 1.2.7 (Body and soul). Each element a € G can be decomposed in a unique
way into

a = ord (a) + nil (a)

with ord (a) € K and nil (a) € @®,_,V"*. The element ord (a) € K is called the ordinary
part, domain or body of a and nil (a) the nilpotent part or soul.

Note that the nilpotent part is indeed nilpotent: (nil (a))V*! = 0.

Differentiation

Although Grassmann variables, i.e. odd elements in the Grassmann algebra, have neither
a domain (indeed ord a = 0) nor a notion of distance, there are notions of differentiating
and integrating over Grassmann variables. To define differentiation we use the fact,
that elements a € G are always linear in a single Grassmann variable and take the
corresponding coefficient. Note that we have to distinguish between right- and left-
derivatives.

An element a(x) € G[x] of the form (1.2.1]) is linear in each generator y;

a(x;) = a(0) + xja = a(0) + a,x;, (1.2.2)



where

a(0) = Z ary!

IeP(N):jel

=Y ao(l {jHx"V

Ay
IeP(N):jel

D ao (L {GHx",
IeP(N):jel
with signs oy(1,I') and o,(1,I') for I’ = I defined by

X' = oL I "X X = (LT

Definition 1.2.8. The left resp. right derivative of a in x; is the coefficient right resp
left to x;, i.e. we define

—

0 0
a—){ja(x) =q a(X)a_Xj = Q.

Proposition 1.2.9. The following properties hold.

1. For odd elements, right and left derivative coincide and we can write

oa

2. In general, right and left derivative are different. Decomposing a = a® + a(V into
even and odd part, we have

i T w7
a — +aM—.
0X; 0Xi OXj

3. The product rule for homogeneous a,b with grade m(a),m(b) € Zs reads

—

0 0 0
—(ab) = | =—a | b+ (-1)"¥a | =—b|,

Note that the first line holds also for a homogeneous and b arbitrary and the second
for b homogeneous and a arbitrary.

4. For two families of generators x and n = n(x), the chain rule reads

2 0 G
a_Xj“(”(X)) Zk: (8_x3 k(X)) [a—nka(n)] (x),

> - — (1.2.3)
a<”(X))a_><j > [a(n)—] (x) (nk(x)%) :



5. Note that multiple derivatives anticommute

o 0 0 0 0 0 0 0

OX; OXk OXk 3_Xja Yoo ok
Proof. We proof the product and chain rule. The remaining properties follow directly.
3. We prove the first identity. The second one works analogously. Writing a =
ap + xja1 and b = by + x;b1, we obtain for the right-hand side
2 (ab) = 7 (ag + xjan) (bo + Xsbr) = arbo + (—1) @ aghy.
While the left-hand side gives
(LHS) = ay(bo + x;b1) + (—=1)"@(ag + x;ja1)bs

= aiby + (=1)™@agby + x;[(=1)™arby + (—=1)"@a;by],

which coincides with the right-hand side since 7(a) = m(ag) = 7(a1) + 1.

4. For the chain rule we prove again the first identity. Note that generators are
odd by definition. We fix the index j and N generators x and 7n(x) and write
me(x) = ax + x;bk, where a;, is odd, b is even and both depend on {x;}iz;. Since
a is a polynomial in 1 and the chain rule is clearly linear, it remains to prove it
for monomials a(n) = [ [;_, 7. We use induction. For n = 1 we have

— —

D00 = e+ = b = S = 5 () ] 0

Let our identity hold for n. Then by product rule

—> __)n+1
Za(n(x) = 5= [ [m(0)
- k=1 . L
= =m0 x| [0 —mG0z% ]_[ ()
k=2
n+1 N n+1
=b an(X) B Z X)am Hﬂk
i -
:bll_[nk(x)— Z H me(x
k=2 1=2 k=2 k£l
ntl n+1
- 2 bl<_1)l+1 H (%)
=1 k=1,kl
n+1
_ Z (axj 77k> T n me(x) = . (% 77k> a(n(x)).

k



Integration

To motivate the introduction of a notion of integration over a Grassmann variable, we
require three conditions for an integral { dy;:

1. Linearity: § dy;(a(x)+Xb(x)) = § dxja(x)+A§ dxjg for all A € K, a(x),b(x) € G.

2. The result is independent of the integration variable: g [§ dxja(x)] = 0 for all
a(x) € G.
3. Integrating the (left) derivative yields zero: { dxj[%a(x)] =0 for all a(x) € G.
Using the decomposition in Eq. (1.2.2), the last conditions reads

0
0= J dea_X'a(Xj) = J dy;a = U dy; 1] a,
J

hence { dx;1 = 0. By linearity and the fact that both a(0) and a; are independent of
X;j, We can write

f dx;a(x;) = U dXﬂ] a(0) + U deXj] ar =0+ U deXj] a,

It remains to define { dx; x; independent of x; as some arbitrary (non zero) constant.

We choose
f dx; x; = 1.
Note that sometimes it is set to \/%Tr Consequently, we have

0
J dx;ja(x;) = J dy;a(0) + J dxjxju = ap = 8_X-G<Xj)'

J

Hence, integration is equivalent to differentiation - sometimes up to a constant. We
define integration over multiple Grassmann variables as the ordered product of the left
derivatives.

Definition 1.2.10. Let a(x) € G[x]. The integration over a subset of generators x;, j € [
is defined by

defa(x) = (%) alx)= >, ayo(J1) ¥V,

JEP(N):IcJ

where dy! =] jer dx; 1s again an ordered product.

-
Since { dx; = 6in’ the dy; are anticommutative objects, too and e.g.

J dx; dx; xix; = —f dx; [J deXy} Xi = J dxi xi = —1.

10



Functions

If f:R — R is smooth, we can define an extension of f to G°, which we denote also by
f:G% — G° via its Taylor expansion

nil (a)?

f(@) = 3 f9(ord (a))

‘ b)
Jj=0 J:

where () is the j-th derivative of f : R — R. Note that the sum is finite since nil (a) is
nilpotent. In particular, we can extend the exponential function to exp : G° — G°. This
new exponential satisfies exp(a + b) = exp(a) exp(b) for a,b € G° as the ordinary one.

Gaussian integrals

We give the real and complex versions of Gaussian integrals and then the Fermionic
analogue.
Let A € RV*YN be symmetric and positive definite. Then (see e.g. [AS09])

J 1_[ dZEk e_%zijxiAijIj _ M
o Vet A

The Grassmann analogue gives the Pfaffian (see e.g. [Wegl6, Chapter 5.1]). More inter-
esting for us is the analogue of the following complex Gaussian integral. Let dzdz =
2d(Re z)d(Im z) and A € CN*¥ with positive definite Hermitian part (A + A*)/2. Then
(see e.g. [AS09)])

. 2m)N
dz.d *ZijZiAiij _ ( )
Ln IkI o€ det A

To find the analogue of this second identity, we consider a Grassmann algebra with 2N
generators (x1,...,Xn~,X1,---,Xn~)- Note that the bar notation has no deeper reason
than doubling the number of generators in order to mimic the complex case.

Proposition 1.2.11. Let A € CN*¥ be arbitrary (we need no positivity). Then
JH dxr dxs o~ 2ij XidijXi — et A,
k

where the exponential is defined by its Taylor expansion.
Proof. We expand the exponential
) 1 A !
o™ Zig XikiaXi — Z;) o <— Z Xz‘Ainj> = Z;] - (— Z XiAinj>
n> ij n= ij

and note that the sum is finite, precisely n < N. We integrate over exactly 2N variables.
Hence, only terms with 2N generators contribute to the integral, i.e. only the summand

11



for n = N. This follows since there are 2V integration variables and x;A;;x; has degree
2.

Let PB(NV) be the set of permutations of {1,..., N} and o(p) the sign of p. Then we
can reorganize this term as follows

. N
Nl <_ZXiAinj> =
: Y A TP in k=1

==Y > T [ Xt Aawrwen o

p,geP(N) k=1

N
(=N [ ] Xk Akp o)
peEP(N) k=1

=DM Texe D) o) [ ] Ak

PER(N) k=1

N
=(-1)N 1_[ XXk det A,
k=1

Ay X

where we used that only terms with disjoint ¢, and j; give a non-zero contribution and
hence both (iy,...,iy) and (ji,...,jn) are some permutations of {1,..., N}. Therefore,
we rewrite the sum over the i’s and j’s as sum over all permutations of N indices. The
sum over the i’s cancels 1/N!. Reordering the Grassmann variables give the sign of
the permutation and we end up with the determinant. The sign (—1)" vanishes by
integrating over the Grassmann variables

JH dxr dxe(— H Xexk = 1.

Corollary 1.2.12. Let A e CV*N. Then
JH d)Zk ka e_Zi]’ XiAz'ijXl)Zm — (_1)m+lA(ml) _ Al_nj,- det A,
k

where AU is the minor of A, i.e. the determinant of the matriz with line m and row

cancelled. The second identity holds if A is invertible.

Proof. Expanding the exponential, we note that

Xt Xm €xp(— 2 XiAijXj) = XiXm exp(— Z XiAijX;)-
ij ijitm, £l

12



Then
fH Ay dy e Zidisbaat ANy
k
- f dxm dxi le(mf H Ak s AN A, € Zidiems XX,
k#l,m
Now we bring the integration variables into the right order. Wlog | < m and

- f H dxr dxr dxi dxm
k#l,m

2(—1)mHJ dyi dxs - dxi-rdxi-r dxadxaer - dXm—1 dxm
dim-&-l de+1 T dXN dXN-
The result now follows from Proposition [1.2.11] The second identity comes from linear
algebra. [
Change of variables

Similar to the results for Gaussian formulas, the analogue of the Jacobian in a change
of variables is the inverse determinant of the derivatives.

Theorem 1.2.13. Let (x1,...,xn) and (m,...,nn) be two sets of generators with n =
n(x). For all a € G[n] it holds that

f dn a(n) = J dx a(n(x))(det )™, J= (sz;)w

Note that n; = n;(x) are odd thus left and right derivatives coincide and % e g°
“XJ

such that det J is well-defined. Moreover det J # 0 since both sets (n1,...,ny) and
(X1,---,XN) are generators.

Proof. We prove the result for a linear transformation n; = >, Jjrxx. For the general
result cf. [Wegl6l, Chapter 5.2]. We start on the right-hand side and insert the definition

I= J dx a(n(x))(det J)~" = [H i] a(n(x))(det /)™

13



where we used the chain rule . Note that 677k /0x; is even, commutes and depends
only on x. Moreover, the k; are dlsJ01nt since (22 o )2 = 0. Then

I= 2 [H %] [H iiX] a(n(x))(det J)™*

k1,....kN

:ZH

peEP(N) J 77p ()

0 ONp(1)
) U 6_77] peg(:N) e 1_[ oxi () (det /)
11 5 of() = [ dn alo).

Note that ordering the derivates in n; gives the sign of the permutation p. Hence, we
obtain the Leibniz formula of the determinant. O

1.2.2. Supermathematics
Supervectors and supermatrices

We want to combine and mix even and odd variables in the following. The prefix "super”
stands always for objects containing even and odd elements. We start with vectors and
matrices.

Definition 1.2.14 (Supervectors and Supermatrices). Let G be a Grassmann algebra.
Let p,q € N. A supervector ® is a collection of p Bosonic variables z = (z;)!_; € (G°)P
and ¢ Fermionic variables x = (x;)7_, € (G')?

o = <§). (1.2.4)

A supermatriz M is a linear transformation between supervectors, i.e.

U = MO, M:(Z%) (1.2.5)

where a, b are p x p and ¢ x ¢ matrices in G° and «a, B are p x ¢ and ¢ x p matrices in G*.

Superdeterminant and supertrace

We want to introduce a superdeterminant and a supertrace having similar properties as
their ordinary counterparts. Therefore we postulate:

1. The supertrace Str M depends only on the diagonal blocks a and b.

14



0 b)  detd’
3. Sdet (M M') = (Sdet M )(Sdet M'),
4. InSdet M = Str In M, where

_ (Ina O (=)™ 0 ala\”
lnM'_<o 1nb>_nZT<b15 0 ) ’

=1

5 Sdet (a O) _deta

which is well-defined since the sum is finite.

The first postulate is expectable by the properties of the ordinary trace. The second one
is motivated from the fact that the superdeterminant should replace the Jacobian in a
change of variables formula. Remember that we found the inverse of the determinant
for the fermionic transformation (Theorem . The other two are basic properties.

Lemma 1.2.15. If 1.-4. hold, then

Str <a ?;) =Tra — Trb.

&
Moreover if additionally ord (a) and ord (b) are invertible,
-l
Sdet (¢ @) — det(a — ab™'p) _ deta .
B b det b det(b — Ba~ta)

Proof. For the supertrace, we use the properties 1., 2. and 4.

a o\ 1 a 0Y 4 a 0 e’ 0
Str <5 b)zStr (0 b)zlnSdet exp (0 b)zlnSdet(O eb)

9. . detexp(a)

= In Tetexp(h) = Indet exp(a) — Indet exp(b) = Tra — Trb.
For the superdeterminant we write M as
a 0 0 A 0 a'la
M = <0 b> (1+X), where X = (B 0) = (blﬁ 0 ), (1.2.6)

and compute with 4.

—1)*
InSdet (1 + X) = Str In(1 + X) = — Z %Str){k
k>1
R ol et b .
--> [Tr (AB)* — Tr (BA)*]
2k
k>1
_ ) Yio1 I (AB)F =Indet(1 — AB)
po1 11T (BA)F = Indet(1 — BA)
where we used that the sum is finite, Tr (Sa) = —Tr (af) for odd « and § and
X2k: _ (AB)k 0 X2k+1 _ 0 (AB)kA
0 (BA)k ) (BA)B 0 '
By multiplicity and 2. the formulas for Sdet follow. O
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Inverse of a supermatrix

The inverse of a supermatrix is similar to the inverse of a block matrix with some
modifications.

Proposition 1.2.16. A supermatriz M is invertible, if ord (a) and ord (b) are invertible
and is given by

ML (@ —ab™1p3)~! —(a—ab™'B) tab™!
S\ 1Bla—ab™iB)7t b+ b7 B(a — abTiB) tab !
(ot +atalb - Bata)  Bat —ata(b - fata) T
- ~(b—pa~ra) " Ba! (b—Ba~'a)!

Proof. We use the decomposition (1.2.6)) and compute (1+X)~! via the Taylor expansion
(1—z)'= PINEN

oS- S ) S )

n=0 n=0 n=0
[ (1-AB"'  —(1-AB)'A
“\—(1-BA)™'B (1-BA™ )

Multiplication with the inverse diagonal yields the result. O]

Grassmann valued functions

Another way to combine even and odd elements are G-valued functions on a domain
U < RP. These objects can be integrated by a "superintegral”.

Definition 1.2.17. Let U < R? open, G = G(x1,-..,X,) a Grassmann algebra. The
algebra of smooth G-valued functions on U is defined by

ApgU,x) =3 f=flz.x) = ), frl@)x": fre C*(U)

IeP(q)

We call y;(x, x), n;(z, x), fori =1,...p,5 = 1,...,q generators of A, ,(U, x) if m(y;) = 0,
m(n;) = 1 and

1. {(ord (y1(z,0)),...,ord (y,(x,0))),z € U} is a domain in R?,

2. we can write all fe A, (U, x)as f=>, fily)n’.

Note that (x, x) are generators for A, ,(U, x).

16



Change of variables and Berezinian

A change of variables in a superintegral is a parity preserving transformation between
systems of generators of A, ,(U,x). The generalized Jacobian for such a coordinate
transformation is called Berezinian. It is the superdeterminant of the partial derivatives.

Note that the following formula holds only for functions with compact support, i.e.
functions f € A, ,(U, x) such that f; € CP(U) for all I € P(q).

Theorem 1.2.18. Let U < R? open, x,x and y(x,x), n(x, x) two sets of generators of
A, (U, x). Denote the isomorphism between the generators by

¥ (@, x) = (Y, x), n(z, X))
and V = ord (¢ (U)) = {(ord (y1(x,0)),...,ord (y,(x,0))),x € U} < RP. Then for all
fe A, ,(V.n) with compact support, we have

f dydn £(y,m) =f dady fo(z,x) Sdet (Ji), (1.2.7)
\% U

where Sdet (Jv) is called the Berezinian defined by
LT a @
Ji = (; ygi") . Sdet (B b) = det(a — ab™'3) det b™".
@ O

Integration over even elements x and y means integration over the body ord (x) and
ord (y) in the corresponding regions U and V.

The above result holds also for U = R? and f € C(RP) with sufficient decay at co.

Proof. The following proof is based on [Dislll, Chapter 6.4.2]. We parametrize the
transformation of generators with a variable ¢ € [0,7] such that (z(¢),7(¢)) is a set of
generators for all ¢ € [0,7'] and

2(0) = 7(0) = x U(0)
2(T) = y(=, x) Y(T) = n(z, x) U(T)

V
U

Then we study

g(t) = L(t) dz dx Sdet J(t,0) f(z(t)(x, x),7(t)(z, X)),

where

o z(t2) aw?t1)>

_ 0z
J(t27 tl) - <872i;; Oy(t2)
0z(t1) oy(t1)



Note that ¢g(0) gives the left-hand side and ¢(7") the right-hand side of Eq. (1.2.7). To
show that ¢ is constant, we calculate the derivative

g'(t) =—

dsg(t +8)|s=0
=J da dy Sdet J(¢,0) ; [Sdet J(t + s,8) f(2(t + 5),7(t + 9))],_0
U

where we used
J(t+s,0) = J(t+s,t)J(t,0).

When the derivative falls on the domain, we obtain a boundary integral which vanishes
since f has compact support. Differentiating the superdeterminant, we note that the
same formula as in the ordinary case applies and

% [Sdet J(t + s,t)],_, =Sdet J(t,1) [Str (J(t+s,t)” %J(t + s,t))

s=0

—Str l%J(tJrs,t))]

s=0
_

—Z 24 )0 — 2Tt 9
ds&z] ° ds oy i (t) °

, 7
w0 mao
Then

[Sdet J(t+s,t) f(z(t+s),v(t+5))]._o
[SdetJ(HS t)]s F(2(8),7(t) + Sdet J(t,8) 5 [f(2(t+5), y(t+5))] g

Hd
CORI0)) e SRR

d
ds
d
ds
J
where we used that 7} is homogenous. Now set ¢ = 0

710 = || dra 3250 )] = 5150 )] =0

The first term vanishes since it is a boundary integral and f has compact support. In
the second term there are two derivatives in ;.
: o L
Now we remark that z(t), W(t) is a set of generators, hence we can write 2;(t), v;(t) in
terms of z(¢) and ~y(t) and notice that

g(t) = L(t) dz dx Sdet J(t,0)h(z(t)(x, x), 7 (1) (2, X))-

Hence, ¢'(t) has the same form as ¢(t) with f replaced by h. Repeating the argument
above, we find that ¢/(t) = 0 for all £ = 0 and hence g(0) = g(7T). O
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Supersymmetric Gaussian Integral

The supersymmetric version of the Gaussian integral formula yields indeed an inverse
superdeterminant.

Theorem 1.2.19. Let M be a supermatriz as in Eq. (1.2.5). We consider a Grassmann
algebra G X1, ..., Xq, X1s - - - Xq| with 2q generators, a supervector ® = <;) with p com-

plex variables z1,...,2, and q odd variables x1,...x, and its transposed ®* = (Z,X).
We define d®*d® = dzdzdydyx and ®*MP = (z,az) + (X, 82) + (Z, ax) + (X, bx) with
(2,az) = X;; Ziaizz;. Then

f dd* dd e~ **M® — (27)P(Sdet M)~

Proof. We apply the change of variables formula above. We transform even and odd
variables by

wzz—l—a_lax, W=z, 77=X+b_162, n=X.

Indeed
" «fa O 1 a o _ _
O*MP = P (0 b) (blﬂ ] )<I>=(w,aw)+(77,b77).

Note that ordw = ord w since the transformation adds only a nilpotent component to
z. We calculate the Berezinian

-1

1 0 alta 0
Sdet J~! = Sdet b_olﬁ (1) (1) 8 = det(1 — Cl_l@b_lﬁ)_1~
0 0 0 1

Applying the change of variables formula (Theorem [1.2.18)) and evaluating the Gaussian
integrals (Proposition [1.2.11]), we get
J dd* d® e " M® —det(1 —a tab™'p) 7! J dw dw dij dn e~ (@ew)= @00

=det(1 — a_lab_lﬁ)_lw detb = (2m)P(Sdet M)~
deta
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1.3. Random Matrices

A random matrix is a family of random variables A = (a;;); jer with given probability
laws for some index set I. One is interested in properties of eigenvalues and eigenvectors.
For I — N finite, A is an ordinary matrix. We are studying the case I = Z¢ which defines
a random operator on the Hilbert space [2(Z?) but for simplicity we also speak of random
matrices.

Wigner introduced random matrices to model resonance of heavy nuclei in the 1950s
[Wigh5]. Today random matrix models have various applications in mathematics and
physics. For surveys we recommend [Meh04], [Sto01), [AW15].

In this thesis, we focus on two models that characterize conductivity in disordered
materials: random Schrodinger operators, which are also known as the Anderson model,
and random band matrices. In both models, spectral properties of the random operators
describe the dynamical behaviour of free electrons in disordered materials such as met-
als, alloys or crystals with defects. With growing disorder the conductivity of certain
materials decreases and localization effects occur. This phase transition is still an open
conjecture in mathematics except in the case of a Bethe lattice [KIe98|. It should be
observed mathematically by a change in the nature of the spectrum of the underlying
random operator.

The Anderson model is well-studied although there are still open conjectures (cf.
[KKO08|, [AW15] [CL90]). In comparison, there are only few rigorous results on random
band matrices [Boul§].

In the following we define both models. To study spectral properties we introduce
the density of states that measures the number of eigenvalues per unit volume. This
quantity is one of the easiest to study, but also the starting point to more advanced
questions. In our papers the density of states is the central quantity we study.

1.3.1. General setting
Random operators on 12(Z9)

Let (ay;); jeze be a collection of complex-valued random variables on a probability space
Q such that a;; = aj; for all i, j € Z* and Y, 4 |ai;|* < oo for all j € Z% with probability
1. Since 4,j € Z%, a realisation (a;j(w));; with w €  is not an ordinary matrix (indexed
in I < N) but a multidimensional matrix operator. Consider the Hilbert space

H =102 ={p: 2" - C: )] |pif” < o0}
1€Z4
and the countable dense subset

D = {p € I*(Z%) : only finitely many ¢; # 0}. (1.3.1)
Let £(D,#) be all linear maps from D to H. Then H : Q — L(D,H)

(Hw)p)i = Y. ai(w)g;

jezd
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is a symmetric random operator not necessarily bounded (cf. [PF92] 1.4(c)]).
We will often need the finite volume version of H. Let A = [-L, L]¢ n Z% be a cube
in 7,

HL = l2(AL) = {90 : AL — C} = CAL

the finite volume Hilbert space and Hy, = H|s, the restriction of H to Ap.

Ergodicity

Ergodicity generalizes the concept of a family of independent, identically distributed
random variables (X;);e; to "almost independent” random variables if the ”distance”
between i and j is large. It becomes useful in the definition of the density of states. We
give the definition of an ergodic operator and state the ergodic theorem, which extends
the strong law of large numbers to ergodic processes. We restrict the definitions below
to the case relevant for our purpose, i.e. I = Z% and H = [2(Z%). This summary is taken
from [KKO8, Chapter 4].

Definition 1.3.1. Let (2, F,IP) be a probability space. A family {7; : Q — Q};cza
of measure preserving transformations (i.e. P(T7'A) = P(A) for all A € F) is called
ergodic, if any event A € F that is invariant under {7}},.z« has probability zero or one.

Definition 1.3.2. A stochastic process (X;);cza is called ergodic if there exists an ergodic
family of measure preserving transformations {7;};cz« such that X;(Tjw) = X;_;(w).

Proposition 1.3.3. Let {T}};cza be an ergodic family of measure preserving transforma-
tions. Let Y be a random variable invariant under T; (i.e. Y (Tiw) =Y (w) for all i,w).
Then'Y s almost surely constant, i.e. there exists C' € C such that P(Y = C) = 1.

Theorem 1.3.4 (Birkhoff). If (X;)eze is an ergodic process with E[| Xo|] < oo, then for
P-almost all w

Definition 1.3.5. A random operator H on [?(Z¢) is called ergodic if there exists a ho-
momorphism between an ergodic family of measure preserving transformations {7 };cza
and a group of unitary operators {U; : [2(Z%) — [?(Z%)};cz4 such that for all i € Z4

H(T,w) = U;H(w)U}.

1.3.2. Random Schrodinger operator

Random Schrodinger operators are a well-studied class of random matrices. The fol-
lowing definitions and properties are taken from [AWI5] and [KKO08, Chapter 3]. The
discrete random Schrodinger operator H : D — [2(Z4) (D as in Eq. (1.3.1])) is given by

H=—A+)\V,
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where —A is the discrete Laplace operator

(—Ap); = >, (p—w),

keZ4:)j—k|=1

A > 0 is the parameter of disorder and the potential (V);(w) = V;(w)yp; is a diagonal
multiplication operator. The V; are real random variables. If V; are independent and
identically distributed, the model is called Anderson model.

The discrete Laplacian

As a quadratic form, we can write
1 -
W-Agy=5d 2 Wi—v)lei—wy).
i€Zd jeZd:|i—j|=1

Now it is easy to see that —A : [?(Z4) — [2(Z%) is symmetric. Moreover, it is bounded
and hence self-adjoint. By Fourier transformation one obtains that the spectrum is
purely absolutely continuous and equals 3(—A) = [0,4d]. The kernel of the Laplacian
is

0 otherwise.

Hence, —A is a special case of the multidimensional matrix operators defined above.

Random potential

Let the V; be independent, identically distributed random variables with common dis-
tribution Py and denote by

supplPyp = {x e R: Py((x —e,2 +¢)) > 0 for all € > 0}

the support of Py. If Py is compact, the operator V(w) is bounded and hence also
H(w) = —A + AV (w). Therefore H(w) is defined on 1?(Z%) and selfadjoint. If supp Py
is not compact, we work with H : D — H. Then H is well-defined but not bounded.
Moreover, V' and therefore H are essentially selfadjoint on D.

Ergodicity

If the family V; is an ergodic process, e.g. V; independent and identically distributed,
then H is an ergodic operator. Indeed, assume there exists an ergodic family {7} ;czq
of measure preserving transformations such that

Vi(Tiw) = Viey ().

We define {U,};cz4, a family of translations on H by (U;p); = ¢;—; for ¢ € H. Note that
the Laplacian commutes with the U;. Hence, H = —A + AV is ergodic

H(Tw) = -A+ ANV (Tiw) = —A + \V-,(w) = U;H(w)U;".
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Finite volume and boundary conditions

We can define a random Schrodinger operator Hj in finite volume Ay by providing
certain boundary conditions for the discrete Laplacian —A. For the purpose of this
introduction we take free boundary conditions, i.e. H, = H|y,. One can also choose
e.g. periodic, Dirichlet or Neumann boundary conditions. For details we refer to the
literature [KKO08, Chapter 5.2].

1.3.3. Random band matrices

A random band matrix is a multidimensional matrix operator {a;;}; jez« With indepen-
dent (up to the symmetry condition a;; = aj;) not identically distributed entries. The
band structure is established by the condition that outside a band width W the entries
are zero or negligible (with large probability), i.e. |a;;| « 1 for |i — j| > W. There
are several options to model this band structure. Here we will consider the case of the
Gaussian ensemble with the following Gaussian entries

ai ~ Nr(0, Ji), ai; ~ Nc(0, J;;)  fori < j,

where < is an order relation on Z?. The covariance J;; decays to zero for |[i — j| » W.
A natural choice is J;; = %]lu_ﬂgw. We choose the smoother variant

J=(-W3A+1)71,

where —A is (the kernel of) the discrete Laplace operator on [?(Z%) (cf. (1.3.2)) and 1
is the unit matrix in RZ*%,
This fulfils the two conditions a;; = @j; and E[Y>, 4 |ai;|?] < oo for all j € Z?, hence

ez laij|* < oo almost surely for all j € Z?. Therefore, there is a symmetric random
operator H : Q — L£(D,H) defined by

(Hw)p)i = ), aij(w)g;.

jezd
In particular, H is essentially self-adjoint.
Ergodicity
Since the entries of the covariance J;; = f(|]7 — j|) depend only on the distance of

the indices, the a;; are ergodic with {7} }rcze the ergodic family of measure preserving
transformations defined via

Qi (Tkw) = ai_kyj_k(w).

We define as above {U; };cza the family of translations on H by (U;p); = ¢, for ¢ € H.
Hence, H is ergodic

H(T\w) = U;H(w)U}.
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Extreme cases and GUE

Varying the band width W, the band matrix model interpolates between two extreme
cases: For W = 0, the covariance gives the identity and we have only non zero entries
on the diagonal a; ~ Ng(0,1) and H becomes a multiplication operator (H(w)p); =
ai;(w);.

For W large, the entries in the band become (almost) identically distributed and
W — oo approximates the Gaussian unitary ensemble (GUE), where all entries (up to
symmetry) are independent and identically distributed Gaussian random variables.

1.3.4. Density of states

An important spectral quantity is the density of states. It gives the number of eigenvalues
per unit volume in an interval. There are several quantities that can easily be mixed
up. In the following, we introduce the different observables, we are interested in, both
in finite and infinite volume. In particular, we will consider the density of state measure
v, the integrated density of states N (the distribution function of v) and the density of
states p (the Radon-Nikodym derivative of v, if v is absolutely continuous with respect
to the Lebesgue measure).

Density of states in finite volume

Let A = [-L, L] n Z% be a finite cube and Hy, : Q — L(I*(Ar),l?(Ar)) a symmetric
random operator in [2(Ay). Note that (?(Ay) is finite dimensional and, if Hy, is symmet-
ric, it is selfadjoint and the spectrum 3 (H(w)) < R. For a fixed realisation H(w), the
empirical density of states measure in finite volume is the point measure

1
VLo = TRLT > o (1.3.3)

LI N es(H (W)

To obtain a non random quantity, we introduce the averaged density of states measure
in finite volume v, = E[v;] via Riesz representation theorem as

Jf ) doy, (« [ff )dvp(a ] (1.3.4)

for all f e Cy(R) = {f : R — R continuous and bounded}. Note that in infinite volume
the related quantities will coincide since they are non random by ergodicity (cf. the next
paragraph).

To do hands-on calculations, we want to write 7z, in terms of the resolvent G , also
called Green’s function

sz(x +ig) = ((z +ie)l — Hp(w)) ™,

where x € R and € > 0. We note that
1 €
m|AL — )% 4 ¢2

GrLw(T +ic) = —7T|AL|Im Tr G}, (x +ic) = (1.3.5)

A€ (H (w)) (A"
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approximates the point measure vy, for ¢ | 0. Hence, for all f € C,(R)

Jf )dop(x [Jf )dvp (2 ]: ll;fgff )grw(x +ic)dx| .

Lemma 1.3.6. Let f € C,(R). Assume there exists C > 0 such that E[g, .(x+1ic)] < C
for allz e R,e > 0. Then

[hmff VLo + ie) dx] Jf Jlim Bl + ie)] d.

Proof. Note that { gy .(z + ie)dx = IA\ Z/\ S 7z dz = K < 0 is bounded inde-

pendent of e. Hence, we can bound |{ f(z gL,w(x + ie)dz| < | f|L» K independent of
¢. Therefore, we can apply dominated convergence to interchange the average and the
limit € | 0

E [15?01 f F@) g (@ + i) dx] = limE [ J F(@) (@ + i) dx] |

By Fubini we can bring the average inside the integral and obtain

limElJf V9L (x + i€) dx} —hmjf Elgrw(z +ic)] da.

el0 el0

We can pull the e-limit back inside the integral by dominated convergence because
ElgLw(z + ic)] is bounded uniformly in € and a:

hmjf Elgrw(z +ic)]dx = Jf hmE[ng(x + ig)| dz.

[]

We will see that E[gr . (x + ic)| satisfies indeed the above bound for the models we
consider. Assuming the condition above we can define the finite volume averaged density
of states pr, : R — R as

1

= _ +
pr(x) = AL IEIE)I]E[IIHTI' G (x +ig)]. (1.3.6)

Note that, in general, we cannot bring the limit inside the integral without the average
since gr,,, converges pointwise to 0 a.e. as ¢ | 0:

ff(a:)dz/Lw —hmjf z)gL (T + ic) dx—Zf

# Jf(x) li%lgLyw(ac + ie) dz = 0.
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Density of states in infinite volume

The following construction is taken from [KKO08, Chapter 5.1] and [AW15, Chapter 3.4]
and can be applied to random Schrodinger models. For random band matrices, we refer
to the literature [PF92, Theorem 4.11].

Let H be the corresponding ergodic symmetric random operator and Hj, = H|s, the
restriction of H to the finite cube. We start from the functional vz, : L*(R) — R for
bounded measurable functions (see Eq. (1.3.3))

() = T T HL) = [ £ dvia(a). (1.3.7)

A
By ergodicity this converges for fixed f € L*(R) to E[{d, f(H)do)] for almost all w € Q
as L — oo. This defines a positive, non-random measure v again via Riesz representation

theorem (cf. Eq. (1.3.4)) by
| #te) dvte) = B o, (11150,

Indeed, v is a probability measure since we get v(R) = E({dy,dp)) = 1 by taking f =1
constant.

It remains to show that this is indeed the weak limit of the measure vy, ,, above almost
surely, i.e. there exists a set {2y of probability one such that

Llirn ff(x) dvp,(x) = Jf(:v) dv(z) (1.3.8)
—0

for all f € Cp(R) and all w € Q. We refer to [KK08, Theorem 5.5] and [AW15, Thereom
3.14].

Note that if we have other than free boundary conditions for the Laplacian in the
random Schrodinger case, we need to modify the procedure above since Hy, is no longer
just the restriction of H to the finite cube. If the difference between Hj and H|s,
remains "trace class”, we obtain the same result (cf. [AWI5, Theorem 3.15]).

Definition 1.3.7. Finally, we can define the density of states measure v as the proba-
bility measure

v(A) = E[{do, xa(H)do)],
the integrated density of states N(F) as the distribution function of v
N(E) = v((=x, E))

and the density of states p as the Radon-Nikodym derivative of the absolutely continuous
part v,

_ dvge(x)

p(x) = e (1.3.9)
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Connection to Green’s function

We want to build a connection to the Green’s function representation of the averaged
density of states in finite volume (Eq. (1.3.6)).

We give a short excursion on Herglotz-Pick functions. The following definitions and
statements are taken from [AWI15, Appendix B]. We consider the Borel-Stieltjes trans-
formation for any finite Borel measure p given by F': Ct — C*

F(z) - JR L duu). (1.3.10)

u—z

This is a Herglotz-Pick function. Its boundary value lim. o F'(x + ic) for € R exists
and is finite almost everywhere. Moreover, it determines the function uniquely and
gives information on the absolutely continuous and singular part of the corresponding
measure. We obtain e.g. the Radon-Nikodym derivative of the absolutely continuous
measure via the underlying theory by

dﬂaC(I) T 1 .
e lim ;Im F(x + ig) (1.3.11)

for a.e. x € R.

We consider again our density of states measure v which is non random. Hence,
{f(x)dv(z) =E [S f(z) du(x)]. We insert Eq. ((1.3.8) and apply dominated convergence
to change the average and the limit L — oo since |f(z)dvp(x)] < | f|e is bounded
independent of L and w:

[ @) =8| [ rwyave)| & | i [ 0 @m.0)]

= fm B Uf (2) de,w<x)] ~ lim f fla) di (). (13:12)

L—o0

Let F, be the Borel-Stieltjes transform of v. Then by Eq. ((1.3.10)) and (1.3.7))

Fy(2) — lim 7y (z) = lim ——E [Tr (H,(w) — )]

L—0 xrx—Zz L—o |AL|

In particular, lim, o F'(z + ic) exists and is almost surely finite by Herglotz-Pick theory.
Hence the density of states p is by ((1.3.11])

1
p(z) = lim —Im F, (x + ic) = lim lim E[g. . (z + ie)]for a.e. x, (1.3.13)
el0 T e|l0 L—

where gy, ,, is defined in Eq. (1.3.5)).

It depends on the region in the spectrum, whether this is the infinite volume limit of
the finite volume averaged density of states (i.e. whether we can interchange the limits
e —0and L — ).
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Proposition 1.3.8. Consider an interval [a,b] < R. Assume that there are Cy,Cy < o0
independent of w and L such that

sup |Elgrw(z +i€)]| < Ci, sup \li%l]E[ng(x +ig)]| < Cs.

z€la,b z€lab] €

Then v = V4 in [a,b] and

dVac(x) . . . . . .
(z) = = IQ%LIEIC}O]E[gL(x +ig)| = ngrolo IQ%E[gL(:E + ig)].

We remark that v = v, does not imply that the spectrum of H is absolutely contin-
uous since v is not the spectral measure of H.

Proof. Let f € Cy((a,b)). We insert Eq. (1.3.12)) and apply Lemma since E[gr, . (r+
i€)] is bounded independent of € in [a, b]:

[ rwravte) = i [ s@)asne) = pim [ 1) imBlgste + e as

To bring the limit of . — oo inside the integral we use the second bound and dominated
convergence:

lim L f(x) laiirgE[gL(x + ig)| dx = L f(x) lim liﬂ[)lE[gL(a: + ie)| dx (1.3.14)

L—o0 L—o0 €
and hence combining ([1.3.13)) and ({1.3.14])
d ac . . . . . .
plx) = Wacl) _ lim lim E[gy(z + i¢)] = lim im E[g(z + i¢)].

dz el0 L—0 Lo €0

1.4. Density of States for random band matrix in two
dimensions

In the following section we summarize the results and ideas of [DL17]. We start with
a finite volume version of the random band matrix operator introduced in Section [1.3.3]
on the two-dimensional lattice Z?. For the three-dimensional lattice, [DPS02] proved
that the density of states of this model equals Wigner’s semicircle law up to an error
depending on the band width W. The main result of [DL17] extents this result from the
three- to the two-dimensional case.

We remind here the model and the density of states and give the main result and
the idea of the proof. Moreover, we compare our result and techniques with the ones of
[DPS02]. There are two main differences: on the one hand, d = 2 is a limit case and
makes the estimates more involved. The main idea is to extend the volume of the cubes
used in the cluster expansion. On the other hand, we organize the cluster expansion in
a simpler way. In contrast to [DPS02], we also perform a preliminary step of integration
by parts, which leads to more reduced formulas.
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1.4.1. Model and result
Model

In the following we set d = 2 and consider a finite cube A < Z2. Let H € C**A be a
hermitian random matrix with independent entries distributed as

Hi; ~ Nr(0, Ji), H;j ~ Nc(0, Jy;), fori < j,
where < is the order relation on Z2. The covariance J is defined by
Jij = (WA + )7 < e W for i — j| > W,

where —A € R™4 is the discrete Laplacian on A with periodic boundary conditions and
W » 1 is the band width. Periodic boundary conditions in this context mean that we
identify opposite sites of the cube A as nearest neighbours:
2 1=,
—A;; = 2 —1 4, j nearest neighbours in the torus,

0 otherwise.

The difference to the free Laplacian is trace like and hence the infinite volume limit is
the same [AW15, Theorem 3.15].

Density of States

In Section we have seen that it is useful to study the finite volume averaged density
of states given by

pA(E) = |A| [Zc&

where E € R, \; are the random eigenvalues of H and G is the resolvent

_ +
= 7T|A| lsl%l]E[ImTI‘G (E + ig)], (1.4.1)

GY(E +ie) = (E+ie)-1— H)™!
Note that the second equality in Eq. (1.4.1]) is meant in distributional sense. Neverthe-
less, we show that the limit € | 0 exists pointwise.

Result

In the following we bound E +— pa(FE) uniformly in A in some region E € Z. We expect
the spectrum to be ¥ = [—2,2]. We consider the interval Z = {E : n < |E| < 1.8, > 0}
to be well inside the spectrum and to avoid 0 for technical reasons.

We give our theorem in d = 2 and the one in d = 3 of [DPS02].
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Theorem 1.4.1 (Disertori, Lager 2017). Ford = 2 and each fized o € (0,1), there ezists
a value Wo(a) such that for all W = Wy(a) and E€Z

PA(E) = psc(E)| < W2,
| < C W= (h’l W)n(a+1) K(InW)« Vn > O,

|0EPA(E)
where psc is Wigner’s semicircle law defined as
1 B2
2 — = 4f|E| <2,
psc(E) = 4 4 f| | (142)
0 if |E| > 2.

The constants C,, and K are independent of A and W. Both estimates hold uniformly in
A and hence also in the infinite volume limit A — Z2.

Theorem 1.4.2 (Disertori, Pinson, Spencer 2002). For d = 3, there exists a value W)
such that for allW = Wy and F €T

1pA(E) — psc(E)| < W2,
105oa(E)| < Cy Vn >0,

where pgsc is Wigner’s semicircle law defined in (1.4.2). The constants C,, are inde-
pendent of A and W. Both estimates hold uniformly in A and hence also in the infinite
volume limit A — 7Z3.

Note that we insert an « dependence to deal with the problems arising in d =
Moreover, our bounds are slightly weaker than the ones in d = 3. We specify this in
Section First we give the idea of the proof.

1.4.2. Idea of the proof

The proof follows the ideas of [DPS02]. Starting from a supersymmetric representation
of G, we perform a saddle point analysis and prove estimates in a finite cube of volume
W?2In W<, This differs from the natural choice of W¢, which works in d = 3. We need a
larger volume to suppress contributions from the non-dominant saddle point. Then we
perform a cluster expansion to extend the estimates to infinite volume.

Dual representation

We start from the trace of G* and represent each entry G, as a complex Gaussian
integral. Then we replace the normalization factor by a fermionic Gaussian integral and
end up with

o Z GL(E +ieg) = |7xl| det[ E*;;H] J dz dz e (E+ie=H)z2) Z 252k
ke keA

= |A| J dd* dd ezZ”E/\cb (055 (E+ie)—H;;)®; Z 21 Zk,
kel
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where d®*d® = dzdzdydy and ® is a supervector cf. Eq. . We drop the
argument F + ic = E. of G in the following. Note that we use here the normalization
of the fermionic integral § dy x = \/%7 to eliminate the 27 factor arising from the complex
Gaussian integral and hence by Proposition [1.2.11

f dy dy e M) = det %

The probability measure is Gaussian, hence all moments are bounded. Therefore, we
can shift the average inside the integral and evaluate it explicitly:

]E [e_izi,jeA CI’ZkHich’j] = efézi,jeA Jij(q’f‘bj)(‘b?q’i)‘

Then we apply the so-called Hubbard-Stratonovich transformation to introduce a new
superintegral. We write
e_% Zi,je/\ Jij(‘l’fq’j)(q’fq’i) = J H de e_% Zi,jeA Jl-}lStr [M:M;] e_izjeA ‘PfMj‘I’j’
JeA

where M is a collection of |A| many 2 x 2 supermatrices

a; pj
M= (Y Pi),
’ <Pj @bj)
where a;,0; € R and p;, p; are Grassmann variables. By Fubini we can exchange the
integrals over dM and d®*d®.

E[TrGF] = f AM 2 Zigen Ty Str [MiM;] J dQ* d ef Hiea WM N 2 (1.4.3)
k

By a preliminary step of integration by parts, we eliminate the factor >, |z¢|* as follows:

. —latj-lq —i. 22 _l,tg-1 iy .12
—zfdae 207 =1 X en 0412 Z|zk|2=fdae 20 “Z&ak[e ZzyeA%lzj\]

keA ke

1.t -1 iy ]2 _ 1, tg7-1 i3 a2
:_JdaZaak[e satJ e 125en 2] Zjdae atJ " a (=i Ycp a4l Zak,

keA kel

where we used (1, /7 'a) = (1, (=W?A+1)a) = >, a;. Note that there are no boundary
terms. Because of periodic boundary conditions on A, the integral is translation invariant
and we can replace ﬁ D @i with ag. Using Theorem [1.2.19, we can integrate over the

variables ®* and ® in Eq.(|1.4.3) where the observable is now ag. We end up with

HE[Mr 6] :J dM ez Zigen Sy STIMAMTT T Sdet [E. — M;] ™ ag

jeA

:f da db e_%((av‘]ila)""(b#]ilb)) Ee—ib; det [J7

1_
EE —aj 27

F] dao, (1.4.4)

JeEA
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where

_ 1
F(a, b)w = dmm (145)
Because of the integration by parts, we have the simple observable ay in contrast to

Eelao x (contribution in the determinant) ([DPS02, Eq. (3.1)]).

Saddle point analysis

The leading term in Eq. (1.4.4) is

o= 3((@J " a)+ (b, 7)) E.—ib,
Eg—aj :
JeEA
(a; — a;)? is small only if the a; ~ a are

Observing that (a, J 'a) = 2. a? + W? Ding
approximately constant, we obtain critical points if we set

\ ; — a? n(E— 0 _n(E—i
1M (2 g2y (%_Z,)|A| _ Mg B0 i)

e

Then the critical points are af = &, i€ and bF = —i&, &+ &;, where

E=&—i&=LC—i\1- £ (1.4.6)

We want to apply a complex contour deformation to integrate through the saddle points.
To avoid crossing the singularity F + ie, we choose af and we will see later that b} is
the dominant saddle (cf. Figure [1.1]).

Figure 1.1.: Complex saddle points af and bF in the complex plane.

Ima Imb
&
] . EE ‘
Rea L Reb
s s PO R, R
—i& i€

Finding the semicircle law

Applying the complex contour deformation mentioned above, we can take the limit
lim._,y and obtain the semicircle law plus an error term. It remains to show that the
error term is small. Precisely we obtain the following result:

Lemma 1.4.3. After performing the complex deformation a; — a;+a; and b; — b;+b;
we obtain

1
liII(l) WE[TI G =al + Lem with ey = f dpg(a, b)R(a,b)ay, (1.4.7)
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e dug(a,b) is the Gaussian measure with complex covariance B given by B =
(=W2A + (1 —&2))~! and &€ defined in Eq. (1.4.6)),
e R(a,b) = det[1 + DB] eV@"  with
— D;j = D;;(a,b) = 6;;Dj(a,b) is diagonal,
— Dj(a,b) = E*— F(a+af,b+b);; with F defined in Eq. (1.4.5)),
— V(a,b) = Yy Vag) — V(iby), with V(x) = §, %70 dt.

—Jo (E—tx)3

Note that —iIma} = pgc(E). The difficult part now is to show that

1.1 . 1 1 »
—%Im ll_I)I(l) WE[TI'G ] — psc| = ;|Im[mml < ;|Ifrem| < O(W )

for some 6 > 0.

Up to this point, the procedure is independent of the dimension. From now on it
becomes crucial since the dimension has an impact on the decay of the covariance B and
hence on the estimates of the remaining integral I,.,, in . We discuss this in the

next section.

1.4.3. The difficulties of d=2

To estimate I,.,,, we partition the domain of integration into five sets: two small field
regions, in which all a,b are near the saddle points and three large field regions, where
at least one variable is far from the saddle point (cf. Eq. (2.3.7)).

The large field regions work similar in d = 2 and d = 3 and give exponentially small
contribution in W. This decay is used to control various W factors arising from the
cluster expansion later.

In the two small field region I; and I5, all variables a, b are centred around one saddle
point, respectively. To estimate these contributions we use the decay of the covariance
|B;;j|. Here the dimension comes into place. In d = 3 we obtain

K omeli=gl/W
W21+ i —jl)

|Byj| <

while in d = 2 we have

< [T e i
g . .
#ln 1+‘£/_j| |Z_J| < mmry

where m, = Re (1 —&).
This weaker decay for small distances is the main problem in d = 2. Indeed estimating
the integral in the small field regions in d = 3 we get the following estimates (cf. [DPS02,
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Eq. (5.32) and (5.44)]) which allow the natural choice |A] = W9 = W3.

‘f d'U’B(aab>X11R(a,b)a0 < KeK|A‘W73 ~ K

-2 _ —2% _
< KeK|A\W e c|A|W cW

U Ay (a, by, R (a, b)as

where we denote by K < oo different constants independent of W and A and ¢ > 0 is
fixed. On the contrary in d = 2 the same estimates are (cf. Lemma [2.3.6))

(] 12 - .
U dps(a,b)xn,R(a,b)ag| < K MW (%) KIAW 2 w)2. (1.4.8)
‘ f dps(a,b)xnR(a, b)ag| < K AW o= AW =2 In W (1.4.9)

Taking the natural choice |A| = W? = W2, the second saddle gives a contribution ~ W ¢
which is not enough to suppress the various W factors that will arise from the cluster
expansion. This weak bound comes from the In-behaviour of B;; for small distances.
The solution is to extend the volume slightly to |A| = W?(In W)* for some a € (0, 1).
Then the second saddle is suppressed nearly exponentially in W by eXnW)?—cnw)ie _
e e Wl W)* =1 « 1 for W large enough.

The price to pay is that we get a prefactor of order e
dominant saddle instead of e® in the case d = 3. It can be compensated by the
observable which is of order W~=2. This equilibrium between conflicting effects is possible
because d = 2 is a limit case.

KAW=2 _ (KInW)® ot the

1.4.4. Supersymmetric cluster expansion and integration by parts
Cluster expansion

Both [DPS02] and [DL17] use an inductive cluster expansion (cf. [Riv91l, Chapter II1.1]).
More modern versions as the Brydges-Kennedy-Taylor forest formula [AR95] or the
Erice-cluster expansion [Bry86] may be used as well but would complicate the procedure.

Let us start with an easy example. Consider a normalized Gaussian integral with
positive definite covariance C' € RA*A and some diagonal observable O(z) = [ ;1 O0j(z):

F = J dpc(x)O(x).

We divide A into equally sized, disjoint cubes A = ; Oy Let Ag be some given cube.
Then we manipulate C' with an interpolation parameter s € [0, 1] as follows

sCy; if1e Ny, j ¢ [\ or vice versa,
C(s)ij = { ’

C;;  otherwise,
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to decouple A\ from the remaining volume. Note that this is equivalent to
C(S) = SO + (]_ — S)[CAOAO =+ CASA(C)]

(where Can is C restricted to A). In particular, C(0) = Ca,a,+Cagag is block-diagonal
and C/(s) is positive deﬁnite since it is a convex combination of positive definite matrices.
Setting F(s) = { duc(s) (2)O(x) we obtain by the fundamental theorem of calculus

1

F =[F(s)]s=1 = [F(8)]s=0 + f ds 0,F (s),

0
where F(0) = {, duc,, s, (2)O0n, X SAS dfic g a5 (€)Ong partitions the domain of in-

tegration into Ay and its complement. Using integration by parts, one can move the
derivative of the covariance to the observable and get, using d;C(s) = Cagne + Caoag

o= Y f o) (@), O) = CyFy(s).

1€No,j¢No 1€o,j¢ D0

We have extracted a new cube A; containing j. This procedure can be continued
inductively. In the second step one fixes the points i and j and extracts a new cube A,
containing neither of them. This produces a tree structure on the extracted cubes and
one ends up with a sum over polymers P (i.e. unions of disjoint cubes)

re SIS 8 [, Tl o).

=(P1,... leT
polymers tree on Py Vertex of Ty

where we sum over all disjoint polymers P = (P, ... FP,). On each polymer we sum over
all possible tree structures and then, for each tree edge connecting A and A’, we sum
over the endpoints V' = {i, j} of the covariance C;; for i € A and j € A'. Finally Mp(s)
is a product of s factors. This expansion should allow easier estimates than the whole
integral before.

To perform the cluster expansion in our case, we start from the supersymmetric inte-
gral

Irem = J d,uB<M) eV(M)a07
where V(M) = >, V(M;), V(M;) = Vj(a,b) + pjp;D; and dup(M) is the Gaussian

b
similar to the sketch above with two main differences.
First of all, we have a complex covariance B = (C~! + im?)~! but we manipulate
the real covariance C' instead of B and set B(s) = (C(s)™' + 4m?)~'. This extracts a
multilink consisting of one, two or three cubes at a time and leads to a more complicate

measure for M = (Z p), ie. dug(M) = dM e~ 280 (MB™IM) - The procedure is very
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propagator G(s)CG(s) instead of C' (cf. Lemma [2.4.4). Note that this propagator
depends on the coupling parameters s. This is why we use this (a bit old fashioned)
inductive cluster expansion instead of other versions. Nevertheless interpolating instead
B directly would lead to expressions like(Re B(s)~!)~! which are very difficult to control.

Secondly, we have a supersymmetric integral. This improves the procedure since we
have no normalization factor and the integral outside the polymer containing 0 yields 1
(cf. Lemma [2.4.3)).

We obtain the following

Lem= Y > Z f ‘T‘Hdsq (5)CG(s)]v, Mr(s) Fy(s),

P polymer: T tree q
p(]e}}:' on P multlhnk

where
Fy(s) = J dpp (M) | [ Str (Ou,, 0u,, ) [a0e”™] .
q

To bound I,.,, we first integrate the fermionic part of Fy (s) and estimate the remaining
part. Therefore, we partition the region of integration in each cube again in small and
large field regions and use the finite volume estimates (cf. Eq. (1.4.8) and (1.4.9)). At
the dominant saddle we gain from each derivative a factor W~'y/InTW. This can be
extracted in the other regions as well since we have proven (almost) exponential decay
in W.

The decay of G(s)CG(s) enables us to sum over both: the vertex position inside each
cube and the cube position. To sum also over the tree structure, we demand that the
remaining factor g = K"W)* W =13+ « 1 for W large enough. Then

Z Z ¢! <.

r=1T tree with r vertices

For details we refer to Chapter [2l As a result, we obtain

1 o
1PA(E) — psc(E)| < We(lnw) :

To improve the bound to W2, we need some additional step of integration by parts.

Remark. [DPS02] use the same approach as we do, but without the supersymmetric
matrix M which simplifies and clarifies the formulas. Moreover, in [DPS02] the observ-
able has a more involved expression. Finally our bounds are more tricky because the
covariance has a weaker decay in d = 2 than in d = 3.
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Integration by parts

Before applying the cluster expansion we again use integration by parts (cf. Eq. (2.4.5]))
and write

I, — f dpgs(M) eV(M)ao — _ZB% J dM(?% [e*%Str (M,B—lM)] V(M)

lo

= 2 B(]lo f d,uB(M)ﬁalO eV(M).

lo

Hence, we transform the observable ay into a partial derivative of the potential. This
simplifies the procedure since now there is only one term in the integral Fy,, namely
VM) which collects derivatives - from the observable and from the cluster expansion.
The additional derivative gives a factor W =2 which improves the estimates at the dom-
inant saddle and we end up with the stated correction

A (B) = psc(E)| < W2 R,

The decay of B enables the summation over [y € A. Note that this step also simplifies
the analysis of the derivatives of G a lot.

1.4.5. Conclusion

We have seen that d = 2 is a limit case because of weaker estimates for the covariance.
Therefore, we expect the correction to the semicircle law to be larger than in d = 3. By
extending the underlying volume from the natural choice W? to W?2(In W)* for some
a € (0,1) we obtain control over the non-dominant saddle and can apply a cluster
expansion.

To optimize o one would need to track the constants ¢ and K more carefully. To
sum over the cluster expansion in the end, we choose Wy(«) such that a certain term
g = KWW Ww=13+¢ « 1 for W = Wy(a) large enough. Another constraint for Wy(e)
and therefore also for « is that the decay at the second saddle e—¢I® W) needs to
bound factors W" as described above. Note that we collect not too many W factors,
precisely not more than three per extracted tree line.

In addition we obtain more reduced and simplified formulas by a more compact no-
tation for the supersymmetric approach and some apriori steps of integration by parts.
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1.5. Supersymmetric polar coordinates with applications
to the Lloyd model

We have seen that spectral properties of random operators are encoded in the average
of the Green’s function. For probability distributions with enough finite moments, the
standard supersymmetric approach offers a useful dual representation as we have seen in
the case of Gaussian band matrices. In this section we summarize the results of [DL20)],
where we enlarge the applicability of the supersymmetric approach. We introduce an
alternative dual representation that remains valid for a very large class of probability
distributions, precisely for all these that have an integrable random distribution. In
particular, the moments can be infinite. This representation is based on supersymmetric
polar coordinates.

As an application, we study the density of states for the Lloyd model, which is a
random Schrédinger model with Cauchy distributed random variables. We study three
cases: the classical Lloyd model with independent random variables, the case with posi-
tive linearly correlated random variables and a third model with some localized negative
perturbations to the classical case. For the first two cases we recover known results of
[LIo69, [Sim&83]. The third case provides a new application as far as we know.

1.5.1. Motivation and Setting

Consider a random Schrodinger operator H : [2(A) — [?(A) on a finite volume A < Z¢
given by

H=—A+)V, (1.5.1)

where —A is the discrete Laplacian on A with certain boundary conditions and V' a
multiplication operator (V); = Vjp;, where {V;};ea are random variables with joint
distribution .

Let us assume first the V; to be i.i.d. We have seen in Section[1.3.4]that E[Tr (z—H )]
leads to the density of states. The supersymmetric approach enables to rewrite this
expression as a supersymmetric integral:

(Z o H)]—jl _ J[dq)* dq)] ei<I>"‘(z—&-A—AV)@|Zj|27
where @ = (z,x) is a supervector consisting of |A| complex variables z; and |A| Grass-
mann variables x; (cf. Section . Here we use the convention { dxy x = 1 and set
[dD*dd] := (2m)~ N H;VZI dz; dz; dy; dx; with a now included factor (2m)". If we are
able to move the average inside the integral, we have to evaluate only

E —z)\CI>*V<I> HE —iIADF D, V HE —iAzZ;2;V; 1 _ Z)\X]X]Vj)]

instead of E[Tr (z — H)™!'], where we used that (y;x;)* = 0.
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Interchanging average and integral by Fubini is only possible if we have integrable
functions. Let now py be the probability density of a single V; and assume E[|V}|] < c.
Then

E[e_i,\cbjcijj] _ J o AT dpo(z) = ,&o()\q);q)j);

i.e. we can represent the average as a product of Fourier transformations of pg at @@y,
an even element in the Grassmann algebra. The function fio(A®;®;) is well-defined if
o € C. If we consider a general joint density, we obtain

Efexp(—iA®* V)] — J PP 40 (D D).

This formula holds if /i admits enough derivatives.

For Cauchy distributed variables we have no finite moment. If dy = %1 Jrlw2 dz then
E[|V]] = 0 for V ~ p. Random Schrédinger operators with Cauchy distributed V' (also
called Lloyd model) have been studied with other tools by Lloyd [Llo69] and Simon

[Sim83]. One obtains an explicit representation for the density of states:

I(E) = lim E[ Tr GV(E +ie)]
= Tr ((E + N1y — Hy) ™" = e GP(E + i),

where Hy = —/\ is the free Laplacian and A is the parameter of disorder.

Our goal is to construct a new supersymmetric representation that can be applied
also to less regular distributions such as the Cauchy distribution and more generally for
integrable V. With this we can reprove the above results [LIo69, [Sim83]. Moreover, we
study a toy model with single negative correlations.

We expect that our formula can also help in other cases as a starting point for standard
methods such as saddle point analysis, cluster expansions or renormalization (cf. [Fre20]).

1.5.2. Supersymmetric change of variables

A supersymmetric change of variables is a priori only known for functions with compact
support (cf. [Efe99, Chapter 2.5] and [Wegl6, Chapter 10.3] or Theorem [1.2.18). If we
consider functions with non-compact support, we obtain additional boundary terms that
become very complicated for an arbitrary transformation.

In the following we consider supersymmetric polar coordinates mapping U = C\{0}
to R* x (0,27). Hence, 0 is a boundary term of U and a compact supported function f
needs to fulfil f(0) = 0. For a general f we have derived a compact formula with simple
explicit expressions for boundary terms.

In the following we use the notation from Section above. Consider first a Grass-
mann algebra with two generators G|y, x]. The idea of supersymmetric polar coordinates
is to transform between (z, z, \, x) with z € C and (r, 0, p, p) with r € R* and 6 € (0, 27)
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such that zz + yx = r%. If we take

z=e"(r — 3pp) z=e"(r—3pp)

X =\rp X =+rp

we have indeed zz + xx = (r — 3pp)? + rpp = 1%

Note that 0 is a boundary point for this transformation since U = C\{0} is mapped
to R* x (0,27). If f has compact support in U (i.e. especially f(0) = 0) we can
apply Theorem [I.2.T8] the standard version of the supersymmetric change of coordinates
formula, where the Jacobian is replaced by the Berezinian. On the contrary, for functions
with f(0) # 0, we get additional boundary terms.

In the following we prove a one-dimensional version of our result. In that case we
obtain the desired integral in polar coordinates with a constant Berezinian and a single
boundary term at 0.

Theorem 1.5.1. Let f € Go5(C) be integrable, i.e. all fi : C — C are integrable, we
have

I(f) = L dzdzdydx f(z,2,%,x)

—ZJ drdfdpdp foW(r,6,p,p)+2r foW(0),
R+ x(

0,27)

where \I[(T7 07 Ps p) - (ein(r - %ﬁp>7 ew(T - %ﬁp)u \/;ﬂﬁu \/;p)
Proof. We split our transformation ¥ into three steps. The first one is the change to
standard complex polar coordinates, the second a rescaling of the Grassmann variables
and the third a translation of |z| in the ”Grassmann plane”:

v ; v ; v N
2 — ret? -3 ret? =3 (r—1pp) €e”,

v v \E _
X - X = Vrp = AT —30p p =P

The first transformation W,(r,0,x,x) = (re?,re XX) is an ordinary transformation
with Jacobian 2r. The second one Wq(r, 0, p, p) = (r,0,\/Tp,/TP) ia a linear transfor-
mation in the purely fermionic variables, where we can apply Theorem [1.2.13] Here, we
obtain a factor r—! which cancels the Jacobian from above up to a constant. The third
transformation Ws(r, 6, p, p) = (r— 3pp, 0, pp) mixes bosonic and fermionic variables and
produces the boundary term. We calculate

I(f) = L dzdzdydx f(z, 2, X, x)
:J drdfdydy 2r fo W, (r0,7,y)
R+ x(0,27)

_ 2f drdodadp f oWy o0 Us(r,0, 5, p).
R+ x(0,27)
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For the third step, we expand f = f o U; o Uy 0 U5 as follows

fo\IJl o\Ifg(r,Q,ﬁ,p) = fN(T + %aeaﬁap) = f(r>9>ﬁ>p) + %ar.}?(ne?ﬁ?p)‘

Inserting this we have

1) =2

R+ x(0,27)

drd@dpdp f(r,0,p,p) —f drdé o,f(r,0,0,0),
R+ x(0,27)

where we integrated over the Grassmann variables in the second term. By integration
by parts

J drde é,f(r,0,0,0) = —f do £(0,6,0,0) = —27£(0),
R+ x(0,2m) (0,27)
where we used that lim,_., f(r,6,0,0) = 0 since f (and hence f) is integrable and

£(0,6,0,0) is independent of 6. ]

If we consider now f € Ganan(CY), we obtain for each index two contributions, a
boundary term and the full integral, hence we get in total 2V terms. Note that in our
notation [d®* d®]| a factor (27)Y is included.

Theorem 1.5.2. Let f € Gonan(CV) be integrable, i.e. all fr : C¥ — C are integrable,
we have

1) - | (a0t ae] p@t @)= % L)

ae{0,1}V

with multiinder o and
L) =l | (drd0dpdp)=® f o Wa(r,0,5,p),
(R+ % (0,27))

where (dr)l=® = Hj:aj:(] dr; (and the same for 0,p and p) and ¥, is given by ¥,
(Tveaﬁu p) — <Z727X7>_<) with

2j(r5, 05,05, p;) = daj0 e’ (r; — 2/33‘/)7')7
315055055 p5) = Gaj0 €% (15 = 5Pp)),
X; (15,05, 0j» ps) :5aj0\/7’7jpj7

J(Tyv ]7p]’p]> = 504]-0\/7"753"

Proof. Generalize Theorem to N sets of variables. For details see Section m
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1.5.3. Dual representation for random Schrodinger operators

The above formula provides an alternative supersymmetric dual representation. We ap-
ply it in the following to the averaged density of states for random Schrodinger operators.

We consider a random Schrodinger operator H = —A+ AV on A defined in Eq. ,
where {V}};ep are real random variables with integrable joint density p.

Theorem 1.5.3. The supersymmetric polar coordinate representation for the average of
the trace of the Green’s function G*(E +ig) = (E +ic— H)™! for a random Schrédinger
operator H reads:

BTG (E+ ) =Y, | (099 () o
ae{0,1}A ¥ (BT x(0,2m)) 1~
xgoWs(r,0,p,p) Z (r} —ripip;),
JeA:
;=0
where g(®*, ®) = F(EHEEA® g [({Ar3}jen) is the |A|-dimensional, joint Fourier

transform of . If in addition the V;’s are independent and identically p-distributed
then

A ea)lemo = [T fo(ory).

jeA:a;=0

Proof. We start from the classical supersymmetric approach also used in Section [1.4.2]
The entry of an inverse matrix has a complex Gaussian integral representation. The
corresponding normalization factor can be replaced by a fermionic Gaussian integral.
We obtain

Tr (E +ie — H)™' = —idet [—iZHE= ] J dzdze®EHED N2 2,
keA
= 4 J[dq)* d®] ot Zi jen PF (01 (E+is+AV;)+A4;)P; Z 217k
keA

Note that we stick to the normalization of the fermionic integral { dx x = 1 as introduced
in Section[1.2] The factor 27 from the complex Gaussian integral is hidden in [ d®* d®] =
(2m)™™ dzdz dy dy. Now we apply Theorem . As a result, randomness appears only
in exp(iA 2., r3V;) which is a bounded function. Hence, we can insert the average
inside the integral and obtain the above formula since

= [1(Ar)] e 0.

E[exp(i)\ 2 r3V;)

Jiaj=0
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Remark. We can apply Theorem to other important quantities in this context, e.g.
to the generating function G given by

G.(E, E) = E[

det((E + i€)]1A — HA):|
det((E + )1y — Hp)

and the Green’s function squared E[|Gx(E + i¢);x|*]. In this last case we need two sets
of Grassmann variables (see Theorem [3.2.2]).

1.5.4. Application to Lloyd model

We apply the above representation to derive the density of states for the Lloyd model,
a random Schrodinger model with Cauchy distributed random variables V;. More
precisely we consider linear correlated random potentials, i.e. V; = >, T;xWj, where
Wy, ~ Cauchy(0, 1) are i.i.d. random variables, T}, = T}; € R and Zj T > 0.

In the following we discuss two cases: first we study the (positive) correlated Lloyd
model with T, > 0 and Zj Tj, > 0. Note that the classical Lloyd model is a special
case of this with Tj; = d;;,. Our representation provides a new proof for the results of
[L1o69] and [Sim8&3].

As a new application we consider in a second case a toy model with a single negative
correlation, i.e. Tj; = 1 and Ty = Ty = —6? with0 < 6 < 1 and T}, = 0 otherwise. The
indices 1 and 2 denote two fixed, nearest neighbour points iy, i € A with |i; — i = 1.

Theorem 1.5.4 (Positive correlated Lloyd model). Let Ty > 0 and 3}, Tj, > 0. Then
we have

lim E[Tx GA(E + )] = Tr (Bl + iNT — Hp) ™Y,

where Hy = —A and \T is a diagonal matriz with le = 0i 20 Tik-

In particular both, the classical and the (positive) correlated Lloyd model, have the
same (averaged) density of states as the free Laplacian Hy = —A with constant imaginary
mass A and variable mass AT, respectively.

Idea of the proof. Apply Theorem [1.5.3| and evaluate fig. Then we transform back from
polar coordinates to the classical supersymmetric representation. For details see Section

B.4 O

In the case of a single negative correlation (the toymodel described above) we obtain
the following result.

Theorem 1.5.5 (Toy model). Let Tj; =1, Toy = Tha = —6* with0 < 6 < 1 and Tj; = 0
otherwise, A >0 and 0 < § < (1 + X71)7L. Then

lim B[Tr G (E + ic)] =
Te (ELy + N — Ho) ™ [1+ 061+ A7)%) + 0(A] ™).

Idea of the proof. Follows from Theorem by integrating first over the uncorrelated
variables in A and estimating the remaining integral. For details see Section |3.4l O]
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1.5.5. Conclusion

We have introduced a new supersymmetric dual representation which can be applied to
a broader set of models, more precisely to those with integrable distributions. As an
application we reproved results of [L1o69] and [Sim&83] for the Lloyd model with positive
correlated potential and enlarged these to a toy model with a single negative correlation.
In general this new dual representation can serve as a starting point to standard tools
as saddle point analysis, cluster expansions or renormalization.
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2. Density of States for Random Band
Matrix in two dimensions

2.1. Introduction and main result

General setting. It is a well known fact that conducting properties of disordered mate-
rials can be related, in the context of quantum mechanics, to the statistics of eigenvalues
and eigenvectors of certain random matrix ensembles [And58]. The most famous example
are random Schrodinger operators, whose lattice version is characterized by the random
matrix Hy : A x A — R, on a subset A of Z%, defined by Hy = —A + AV, where —A is
the discrete Laplacian, V' is a diagonal matrix with random diagonal entries and A > 0 is
a parameter encoding the strength of the disorder. The entries V; are generally assumed
to be independent identically distributed (for instance Gaussian). As A 1 Z<, this model
exhibits a localized phase for all A in d = 1 and at large disorder A » 1 in d > 2. The
localized phase is conjectured to hold also at weak disorder A « 1 in d = 2, while a
phase transition is conjectured in d > 3. Though the localized phase is well understood,
the weak disorder regime in d > 2 remains an open problem. For a review of definitions
and results see for instance [KKO0S].

Another relevant model in this context is the random band matrix (RBM) ensemble,
characterized by a self-adjoint matrix Hy : A x A - K, K = R, C, whose entries are all
independent (up to self-adjointness) random variables not identically distributed with
negligible entries outside a band of width W > 0, i.e. |H;;| « 1, with large probability,
when |i — j| > W. As in the case of random Schrodinger, when A 1 Z4, band matrices
are believed to exhibit a phase transition in d > 3 between a localized phase at small W
and an extended phase at large W, while the localized phase is conjectured to hold for
all Wind=1,2.

Two important examples of RBM are the 'smooth Gaussian’ and the N-orbital model.
In the first case, the matrix elements are Gaussian:

Hii ~ Nx(0, Jii), H;; ~ Nc(0, Ji;), for i < j,

where < denotes an order relation on Z? and the band structure is encoded in the
covariance J;; = Jj; = f(|i — j|) decaying to zero when |i — j| » W. In the second
case the covariance J;; is short range, for instance J = Id +aA for some a > 0, but
cach matrix element H;; is itself a N x N matrix with i.i.d. entries (H;j)as ~ /\/'C(%Jij)
Vi < j,ori=jand a < f and (Hy)aa ~ Nr(%Jiz). The band width in this case is
W = 2N. These models are difficult to analyse with standard random matrix tools, since
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the probability distribution is not invariant under unitary rotations. At the moment,
most results available deal with the one dimensional case (cf. [CMI90, [CCGI93, [Sch09,
Sod10, BGP14, [Shcl4, BE16, [Pchl5]). Recently localization at strong disorder (i.e.
small band width) in any dimension was proved for a large class of N—orbital models
by Peled, Schenker, Shamis and Sodin [PSSS17].

In this paper we consider the density of states py(F) := \T1| 2.0 (E), where E'e R is
the energy and \; are the (random) eigenvalues of H. Since the probability distribution
is translation invariant and the bandwidth W is fixed, by standard ergodicity arguments
(see [PE92]) this measure is non random in the thermodynamic limit. Similar results
hold in d = 1 also for the (non ergodic) case when W diverges together with the matrix
size [MPK92]. We will therefore concentrate on the averaged density of states (DOS)
defined by

A(E) = E[pa(E)] = ﬁE [Z ME)] _ —ﬁli_r%E[ImTr GHE)],  (211)

where E. := F + ie, with € > 0, [E denotes the average with respect to the probability
distribution of H and, for any z € C, the Green’s function (or resolvent) is defined by

Gi(z)=(z-1-H)'=(z—H)™

By standard analyticity arguments, the limit ¢ — 0 in above exists and is finite
for Lebesgue a.e. F € R (see for ex. [AW15, App. BJ).

In dimension larger than one rigorous results on the density of states for RBM were
obtained by [DPS02, [CFGKST], and more recently by [PSSS17], based on seminal work
by Wegner [Weg79]. In the case of the classical GUE ensemble, corresponding to d = 1,
A=1,...,N and J;; = 1/N Vi,j, the density of states, in the limit N 1 oo is given a.s.
by Wigner’s famous semicircle law

psc(E) = (2.1.2)

1= if Bl <2,
0 if |[E| > 2.
The model. We consider a Gaussian complex RBM ensemble defined on a two dimen-
sional discrete cube A < Z2, centered at the origin, with covariance
Jij = (WA + 1) (2.1.3)
where —A € R4 is the discrete Laplace operator on A with periodic boundary con-
ditions, ie. (z,—Az) = Y, (z; — ;) for any x € R and we write i ~ j when i
and j are nearest neighbors in the torus Z?/(AZ?). The parameter W € R is large but
fixed. Note that J;; is exponentially small for distances |i — j| = W. Hence all matrix
elements outside a (two-dimensional) band of width W centered around the diagonal
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are small with high probability and this model describes a “smoothed-out” version of a
band matrix ensemble with band width W.

For this model, the averaged density of states exists and takes a finite value for
all E € R. In the three dimensional case, Disertori, Pinson and Spencer [DPS02] derived
an explicit representation of the function ps(FE), in the bulk of the spectrum, in terms of
a convergent sum of certain integrals. Using this representation they obtained detailed
information on the function F — p,(F) and its derivatives, in the limit A — Z3 for fixed
but large band width W (weak disorder regime). In particular they proved that the
limit expression coincides with Wigner’s semicircle law with a precision 1/W?2. Similar
results were obtained for the N—orbital model in [CFGKS87] in the case of dominant
diagonal disorder. In this paper we construct an extension of the representation derived
in [DPS02] to the two dimensional case, and use it to derive precise information (such
as smoothness) on the function E — py(F) for energies in the bulk of the spectrum, in
the limit A — Z2.

The proof in [DPS02] used the so-called supersymmetric approach (SUSY), pioneered
by K. Efetov [Efe83] based on seminal work by Schéfer and Wegner [SW80, Weg79]
and further developed (among others) by Y. Fyodorov, A. Mirlin and M. Zirnbauer
[Mir00, FM9T), [ILSZ08]. A good introduction to random matrix theory and SUSY can
be found in [HGI19]. This is a duality transformation that allows one to write aver-
ages in H as new integrals where a saddle approximation may be justified: E[f(H)] =
Sf(M) e~ F(M) ]_[jeA dM;, where M; is a small matrix containing both complex and
Grassmann (odd) elements, F' can be seen as the free energy functional in some statis-
tical mechanical model, and f is the new observable. The Grassmann variables can be
always integrated out exactly (though the combinatorics involved may be quite difficult)
and the resulting measure is complex but normalized. The measure exp(—F (M))dM de-
pends on the probability measure P but also on the observable f, and has internal (odd)
symmetries, inherited by the observable only. Different rigorous versions of the SUSY
approach have been tested on the standard matrix ensembles GUE and GOE (where
other techniques also apply) [Dis04, [Shal3]. When A 1 Z?, the integral is expected to
concentrate near the saddle manifold determined by dp F'(M) = 0. This reduces to
1solated points in the case of the DOS, and the main difficulty is to obtain estimates on
the fluctuations that are uniform in the volume. In [DPS02] the dual representation is
studied via a complex translation coupled with a cluster expansion, which effectively fac-
torizes the integral over regions of volume W3. A key feature of the dual representation,
in three dimensions, is the presence of a double well structure, with one well suppressed
by an exponential factor exp(—W), inside each region. In the two dimensional case, the
second well is only weakly suppressed, and the arguments used in [DPS02] do not apply.

Main result. This article is devoted to prove the following result which extends [DPS02,
Theorem 1] to the two dimensional case.

Remember that in the case of GUE the spectrum of H, in the thermodynamic limit,
is concentrated on {|E| < 2} (see (2.1.2))). In the case of a band matrix, non rigorous
arguments suggest that most of the spectrum remains in the same interval. Here, we
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restrict to energies E in the bulk and avoid E = 0 for technical reasons. Precisely, for
1 > 0 small but fixed, we consider the interval

I={E:n<|E|<18}. (2.1.4)

Theorem 2.1.1. For d = 2 and each fivred o € (0,1), there exists a value Wy(a) such
that for all W = Wy(«) and E € T

PA(E) — psc(E))]
|0Eoa(E)|
where psc s Wigner’s semicircle law defined in (2.1.2)). The constants C,, and K are

independent of A and W. Both estimates hold uniformly in A and hence also in the
infinite volume limit A — 72.

W2 KW (2.1.5)
C

<
< C, W (In W)nlet) KWmW® gy > (2.1.6)

Remark. Note that we obtain the semicircle law with a precision
pa(E) = psc(E) + O (W2%9)

for small 6 > 0 depending on Wy(«), while in d = 3 one obtains O (W~2) [DPS02, eq.
(2.7)]. Moreover, (2.1.6) implies a W-independent estimate on the derivatives up to a
certain order ngy (1)

|05oa(E)] < Co Y < mo(W),

with limyy o no(W) = 0.

Strategy. The strategy is similar to the one in [DPS02]. We establish a dual repre-
sentation for the averaged DOS via the supersymmetric approach and apply a complex
translation into the saddle points. To overcome the second well problem, we modify the
factorization procedure, using slightly larger blocks (of size W2(In W)® instead of the
natural W?) for our cluster expansion. This yields better estimates for configurations
near the second saddle, but creates new problems for the 'good’ configurations, near the
main saddle. An equilibrium between these two conflicting effects is possible because
d = 2 is a ’limit’ case. Finally, as in [DPS02], we apply a non standard cluster expan-
sion, extracting at each step a 'multi-link’ consisting of three instead of one connection.
Here, in contrast to [DPS02], we use the (super-) symmetric structure of the dual repre-
sentation to reformulate the cluster expansion in a more compact and transparent way.
We also use the symmetry to simplify the dual representation and a number of other
equalities.

Remark. Note that Wegner-type estimates on the integrated density of states can be
obtained, in any dimension, by softer methods (see [PSSS17]). Here, the dual represen-
tation plus cluster expansion give an explicit representation of the function ﬁE[Tr (z —
H)7'] where the limit Imz — 0 can be taken explicitely. This representation re-
mains valid in the thermodynamic limit and allows to study detailed properties (such

as smoothness and main contributions) of the limit function.

48



Organization of the paper. In Section [2.2] the dual representation and the complex
contour deformation are introduced. This allows to reformulate the problem as Theorem
2.2.3l Finally a sketch of the proof’s strategy is given. In Section [2.3] we summarize
some properties and preliminary estimates that will be needed in the proof. We also
prove the main result in a finite volume. These results build a foundation for the infinite
volume case. In Section , the cluster expansion is introduced and the limit A 1 Z? is
analyzed. A short introduction to the supersymmetric formalism is given in App. [2.A]
and a proof of the dual representation is given in App. [2.B] Finally, App. collects
some results on the discrete Laplace operator in d = 2 and some matrix inequalities,
together with their proof. A list of symbols can be found at the end.

Notation. Since we apply many estimates in the paper, we denote by K any large positive
constant independent of W and A.
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insights on the model and inspiring discussions on cluster expansions. Finally, we ac-
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Mathematics of Emergent Effects” and the Hausdorff Center for Mathematics.

2.2. Reformulating the problem

We perform a duality transformation and a complex contour deformation to rewrite
the average of the Green’s function as a Gaussian integral with some remainder (cf.
Lemmal[2.2.2)). This reduces the proof of Theorem [2.1.1]to bound this functional integral
appropriately (cf. Theorem [2.2.3). In the end we give ideas for the proof.

2.2.1. Duality transformation

The first step in the proof is to represent, via the supersymmetric formalism (cf. App.
2.A]), the trace in (2.1.1)) as a functional integral where a saddle point analysis can be
justified. Recall the definition of J given by (2.1.3). A normalized Gaussian measure

with covariance J is defined by

dps(a,b) == det [g—j] omz(@ T+ I T da; db;, (2.2.1)

JEA

with a,b € RA, [[;cp da;db; is the product measure and (a,J 'a) = 3} .\ a;J; ;.
With this definition we can state the following lemma which is a variant of [DPS02,
Lemma 1].
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Lemma 2.2.1. For any space dimension d = 1, the following identities hold:

1 —ab.
WE[Tr GA(E)] = J dpis(a,0) [ [ 5= det [1 = FJ] ay, (2.2.2)
JEA
1 . n
ai‘EWE[TrGX(Ea)] = f duJ(a,b)ﬂ—’gi_f; det[1 — FJ] aq [Z aj_ibj] . (223)
jEA jEA

where dpy(a,b) is the normalized Gaussian measure defined above and F = F(a,b) is a
diagonal matriz with entries
. = .. —1
Fa,b)ij = 0ijtm—aym—m;)-
Proof. The idea of the proof is to write (E. — H);;* as a complex Gaussian integral and
represent the normalization as a Fermionic Gaussian integral. Then the average over
H can be computed easily and one can integrate the Fermionic variables again. This is
analog to the procedure in [DPS02], but we apply an additional step of integration by

parts to simplify our result. The second identity is proven similarly. For convenience of
the reader, a sketch of the proof is given in App. 2.B] ]

The integrals above are well-defined only for ¢ > 0 since for each a; there is a pole at
a; = E.. Note that there are no singularities in b;.

Remark. In this dual representation, the only contribution from the observable is the
term ag. By the same techniques, we obtain

| —E[1] - J dpis(a,b) [ =2 det[1 - JF(a,b)]. (2.2.4)

jJeA

2.2.2. Contour deformation

By the same saddle analysis performed in [DPS02, Section 4], we expect the complex
normalized measure

dps(a,0) [ [ 552 det [1 = F(a,b)J] (2.2.5)

E
jJEA

to be concentrated near the constant configurations given by a; = aF, b; = bF for all

j € A, where af,bF are the saddle points af = &, Fi&;, bf = —i&, F &;, and

s77s

E=¢&—i&=L-in1-E&

has the useful properties £ — & = € and € = 1 for all |E| < 2.

We perform a translation of the real axis in the complex plane in order to pass through
a saddle point. For the variables a, we translate to the saddle af = £ to avoid crossing
the pole in a = E.. The variables b have no pole and both saddle points have the same
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imaginary part. Hence a complex translation allows to pass through both saddles. We
will prove later that b = —i€ is the dominant one. In the next lemma we show that,
after the deformation, we can take the limit ¢ — 0, and the translated measure can be
reorganized as

dps(a+ E,b—i€) % det [1 — F(a+&,b—i€)J] = dug(a,b)R(a,b),

JEA
where the Gaussian measure dug(a,b) has now a complex covariance.

Lemma 2.2.2. By a complex deformation the functional integrals (2.2.2) and -
i the limit € — 0, can be written as

1 + _ ¥
}:ILII WE[TIG A(ED)] =a) + J dug(a, b)R(a,b)ay, (2.2.6)
lim 2 [T G ()] = J dpes(a, bR (a, b)ag (2 aj—ibj> (2.2.7)

n

= Z J dMB(aa b)R(CL, b)ao 1_[ (ajk - Zb]k) ) (228)

jl 7777 ]n k=1

where a,b e R*, and dug(a,b) is the normalized Gaussian measure as defined in (2.2.1])

with complex covariance
B:i=(-W?A+(1-&%)"". (2.2.9)
The remainder R(a,b) is defined by
R(a,b) == det[1 + DB] e’(@?) (2.2.10)
where D;; = D;j(a,b) = 6;;D;(a,b) is a diagonal matriz, and we defined

1
(€ — a;)(E —iby)

Dj(a,b) =E* = Fla+al,b+bl);; =& —
(2.2.11)

! aj ij
- _Jo ((5 — ta;)(€ — itby) TE- ta;)(€ — itbj)2> A

‘ 1(173(1—t)2
V(a,b) = » Vi(a,b) = > V(a;) —V(ib;), V(z)= _—3dt. 2.2.12
”%”;A””“L(s—m) (2212)

Proof. By Cauchy’s theorem, we can perform the translations a; — a; + af and b; —
b; + b} for all j € A and take the limit ¢ — 0 inside the functional integral . Note
that translating to a} ensures that there is no additional contribution from the pole
E +ie. Using , the integral with constant a} gives 1. The measure after
the translation is reorganized as follows. Expanding around a = b = 0 we can write

. Ee—i(b;—i& e a
dps(a+ &b —i€) [ [ 5255 = dus(a, b)fale).

FISN
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where V(a,b) = O(|al® +|b?|) since linear contributions vanish (we are expanding around
the saddle) and constant terms cancel. Finally

det[1 — F(a+ &,b—i€)J]9%E

= det[1 + DB].

To obtain the second identity, note that (a;+a})—i(b;+b}) = a;—ib;, and the integral
with constant a vanishes since it corresponds to the derivative of a constant. ]

Remark. Note that now there is no pole in a; if |E| < 2 since |€ — a;| = |&] > 0 for all
a; € R. For b;, a singularity appears from the determinant for the special case &/ = 0.
As the same factor appears outside the determinant, this is a removable singularity.
Nevertheless we avoid £ = 0 in the definition of the interval Z ([2.1.4).

With these representations the proof of Theorem [2.1.1]is redueed to prove the follow-

ing theorem since Im (a}) = 4/1 — E?/4 yields the semicircle law

Theorem 2.2.3. Under the same assumptions as in Theorem |2.1.1|, we have

‘JﬁduBQLbﬂzuubﬁm < W2RWmwW)e (2.2.13)

Z Jd'uBab ab) H(ajk_bjk)

‘1 ----- ]neA k=1

< C, W (In W)nleth) KW =9 9 14)

2.2.3. Strategy of the proof: finite and infinite volume

To prove the results above, we will need to estimate integrals of the following form
J dpg(a,b)R(a,b)O(a,b), (2.2.15)

where O(a,b) == [ [, ax [ [; b is a local observable, i.e. a product of finitely many field
factors a; and b;. We will show that, inserting absolute values inside (2.2.15)) leads to
the following estimate

\ [ aunta. RO < 5 [ dpotan |77 [0 100,

where C' is a real covariance (defined in below), and D, B and V were defined
in Lemma Guided by the saddle point approach, we will partition the domain of
integration into different regions, respectively near to and far from the saddle points,
and estimate the integral in each region separately (cf. Lemma . To obtain the
finite volume estimate of , an additional preliminary step of integration by parts
is needed to improve the error estimates. All this is done in Section [2.3]

These arguments work only in finite volume, since the factor exp(K|A|W~2) diverges
as |A| — oo. To deal with this problem, we will partition A into cubes (of finite, but
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large volume). Applying a suitable cluster expansion, we can write (2.2.15)) as a sum of
the form

ZCYFY7
Y

where Y are polymers, i.e. unions of cubes, and the constant cy is an exponentially
small factor controlling the sum. Finally, Fy is a functional integral depending only on
the fields inside Y, and can be estimated by the same tools as in the finite volume case.
The precise definitions and details are given in Section [2.4]

2.3. Preliminary results

In this section, we start by collecting in Section [2.3.1 and [2.3.2 some results and bounds
we will need later. Finally in Section [2.3.3| we prove an estimate for the absolute value
of the integral in a large but finite volume. The proof uses a partition of the
integration domain into regions, selecting values of (a, b) in the vicinity or far from the

saddles.

2.3.1. Properties of the covariance

The Hessian B~! = —W?2A + (1 — £?) has a complex mass term

For |E| < 2, m? > 0, hence the integrals (2.2.6) and (2.2.7)) are finite. We introduce the
real covariance C' defined by

C:=[Re(B™H]™ = (-W?A+m?)~". (2.3.1)

Note that B~!' = C~! +iogm? and C' > 0 both as a quadratic form and pointwise. The
decay of Cj; depends on the space dimension d. For d = 2, we have

K W . . . W
0<Cy < we I (mr(lﬂjll))‘ il =gl < (2.3.2)
e Wi 1

Morover |B;;| has the same decay as C;;. A proof is given in App. .

Remark. For d = 3, the decay is easier:

Cij < g © 7 0 Vi je A (2.3.3)

Because of the log-behavior for small distances, estimating the error terms ([2.1.5))-(12.1.6))
in d = 2 is more difficult than in d = 3 (cf. [DPS02, eq. (2.6)-(2.7)]).
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2.3.2. Some useful estimates

We frequently use the following statement to estimate determinants.

Lemma 2.3.1. For any complex matriz A with Tr A*A < o0, we have
det[1 + A]| < |Tr4] e3T4™4, (2.3.4)

Proof. Consider the matrix M = A+ A* + A* A, which is self-adjoint and diagonalizable
with real eigenvalues \;. Then

| det[1 + A]|* = det[1 + M] = H(1 +A) < eZid = T | Q2T 4| (Tra%A

where we apply 1 4+ \; < e for all \; € R. n

In the finite volume estimates, we will insert quadratic terms in a and b into the
measure and change the covariance from C to C; == (C~' — fm?2)~!. We estimate the
change of the normalization factor det[C~!/ C’f_l] as follows.

Lemma 2.3.2. Ford=2,W » 1 and 0 < f < 1/2, there exist some constants K > 0
(independent of W and f) such that

R e KAl (W2
e 0;1 \1_fexp 2 n 7|

Proof. We use the explicite eigenvalues of C~! and CJZl to write

Cfl

det —
Cf

B 1—[ 23 (1= cosk)W? + m?
S23 (1 = cosk)W2 +m2(1 — f)

J -1
< exp | m2f Z (2 (1 —cosk)W? +m?2(1 — f)) :
1—f k20 \ I=1

where we extract the zero’s mode and apply 1 + \; < V. Approximating the sum in
the exponential yields the above result. O

Finally, we give the Brascamp-Lieb inequality [BL76], which is used in the estimates
near the dominant saddle point.

Theorem 2.3.3 (Brascamp-Lieb inequality). Let H(z) be a positive Hamiltonian, sym-
metric under x — —x and let duy(z) be a Gibbs measure given by

1
dpy(z) = dzy -+ dey =+ e 2 ),

Z(H)

o4



where Z(M) = § daq -+ den exp (—H(x)/2) is the partition function. If H" = C~ >0,
the following inequalities hold:

J dpg(z)|x;|™ < J dpc(x)|z;|",  Vn >0 and (2.3.5)
J dpig () ) < J dpe(z) e,

where duc(x) is the free Gaussian measure and v e RN and (v,z) = Y | v,

Remark. A direct consequence of Brascamp-Lieb inequality is the following estimate,
which holds under the same assumptions as above:

J dpin(2) H ;] ) = f dpe, (@) H EA f dpigy(z) %)
< H [J dpzy, (z) H ‘le’n] f dpy () e(v:2) (2.3.6)

i

</ (@n— DN JCi?ex ) yn, >0,

where n = Y. n; and we changed in the first line the measure to H, = H — (v, -) with
H! = H". In the second line we applied a generalized Holder estimate. In the last line,
the Gaussian integrals are computed exactly after applying Brascamp Lieb and Cauchy
Schwarz.

2.3.3. Finite volume estimates

In the following we prove Theorem in finite volume by partitioning the domain of
integration and estimating the functional integrals in each region separately.

Inserting absolute values

To control the infinite volume limit, we will need to estimate integrals of the form
(2.2.15) with O(a,b) = Opnl(a,b) = [Th_; laj ™ 1T, 0™, with p,q € N, my,n; € N
and ji,j; € A for all k < p,l < gand m = Y}_,my and n = Y  n. Following
[DPS02], we put the absolute values inside the integral and replace the complex
covariance B by the real one C' . The next two lemmas are the analogs in
d = 2 of [DPS02, Lemma 3 and 4].

Lemma 2.3.4. The absolute value of the complex measure dug is bounded by
1AL
|d:U’B(a’7b>| s e w? d/ﬁc(CL, b)
Proof. The measure dug(a,b) can be written as

det B~

aetB | duc(a,b) = |det[1 + iopm;C]|duc(a,b).

| dps(a, b)| =

95



Applying (2.3.4) with A = icpm?C, Tr A is purely imaginary and, using (2.3.2)),

4 K _mr 4 K 2
Tr A*A =m;TrC*C < 2 Wa[i—j] © w4 2 w In <mr (I+i— ]|> ZW2

i,JEN ‘i_ﬂgmﬂr FISIN

Lemma 2.3.5. The determinant in the remainder (2.2.10) can be bounded by
| det[1 + DB]| < e*ws | D5,

Proof. Applying again (2.3.4), we need to bound Tr(DB)*(DB) = 33, ..\ |D;I?Bi;|*.
We estimate D by its supremum norm, supjc, sup,, ;g |Dj(a;, ;)| < K. Finally we
bound Tr B*B by K|A|W =2 as we did above for C. O

Applying the two lemmas in (2.2.15)), we have

‘ J s (a, bYR(a, b)Opn(a,b)| < s fron,

where F™" := { duc(a,b) | e™PB| | @] |O,, . (a,b)|.

Partition of the integration domain

Guided by the saddle point picture, we partition, as in [DPS02], the domain of integration
into regions near and far from the saddle points: 1 = Y,_, x[I*] with

I' = {a,b: |aj|,|b; — by| < 5Vj,j € A and |by| < 20},

I? :={a,b: |aj|,|b; — by| < 5Vj,j e A and |by — 2&;| < 26},

IP:={a,b:bje RVje A and 3jo € A : |a;,| > 0}, (2.3.7)
It = {a,b: |a;| <dVjeA and Jjo, jo € A |bj, — bj()’ > 4},

I° = {a,b: |aj|,|b; — by| < 5Vj, 5 e A and |bo|, [by — 2&;| > 26},

for § = §(W) > 0 small to be fixed later. Hence, we can write F™" = 37°_ F™" where

Fr J duc(a,b) y[I7] DB (@] 0, (a.b)].
In the “small field” regions I' and I?, all a variables are near the saddle, and the b
variables are all near the first saddle at 0 in I', or near the second one at 2&; in I2.
The main contribution to F™" comes from the region I', while I? is suppressed by a
small factor from the determinant. In the “large field” regions I°, s = 3,4,5, at least
one variable is far away from the saddle points. Their contribution is exponentially
suppressed by the corresponding probabilities | duc x[I°].

The following lemma gives the precise estimates on F!™". Since we proceed analog to
[DPS02, Section 5], only the main ideas and the crucial steps are given in the proof.
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Lemma 2.3.6. Let 6 = W=7, for some 0 < v <1 and W » 1. Then for any |A| we
have

Flmm < Kmntl (1{1/1‘/_V2V)(m+")/2 (2m)”(2n)” eK|A\W*3(an)3/2’

F2m,n < K tmtl e—c|A|W’21nW’ (238)

where in the second line ¢ > 0 is independent of W and |A|. Moreover, there exists
Wo(v) » 1 such that for any W = Wy(v) and W3 < [A] < (Cy;) 726 < KW 2 (In W) 2,
we have

P q
e s21172 1
Fmn g grmlyym H\/mk! H«/nl! e KW (In W) for s = 3,4,
k=1 =1
P q
 pes2
F'"" < K"er“W"H\/mk! H nyl e KO
k=1 =1

Remark. In the following, we want to fix the volume of our cube A to an appropriate
finite size. The natural choice would be W?2. This would ensure the global prefactor
eKIMW™* from Lemma is bounded by a constant independent of W. On the other
hand the contribution of the second saddle would be suppressed only by some W™¢
(cf. (2.3.8)) which is not enough to compensate various W factors arising in the cluster
expansion. Extending the volume to W?(In W) for fixed a € (0, 1) reinforces the decay
to e ™)™ which bounds an arbitrary factor W for o > 0. The price to pay is
a worse estimate on the global prefactor eKINW™2 <oKW) For o < 1 this can be
compensated by the observable, which is of order O(W ~2) after extracting the leading

contribution (cf. (2.1.6)).

Proof. Following [DPS02], we first perform some (region dependent) estimates on the
exponential terms Re Tr DB + Re V(a,b) and insert the results in the measure. In re-
gion I! the resulting measure is no longer Gaussian, hence we apply a Brascamp-Lieb
inequality. In the other regions the measure remains Gaussian. The decay comes from
ReTr DB in I? and from a small probability argument in the large field regions. New
features of d = 2 appear in the choice of the volume of the cube |A| and in the bounds
of B and C, for example we have |Bj;| < KW 2InW.

Region I' In the first region, all variables a; and b; are small and we bound
ReV(z) < K|z* and |D;(a,b)| < K(|a;| + |bj]) for |z|,]a;l, |b;] < 6. (2.3.9)

Then Re Tr DB < 35 |D;|Bjj| < 50 K(laj| + [0, )W 2 In W and

jEA
p q

F™m < J dpc(a, b)x[ll] eszeA(\ajmbjnw—Q1nW+|aj|3+|bj\3H|ajk|mkn|bjl|m_
k=1 =1

We define the Hamiltonian of the Gibbs measure by
H(z) = 2'C 2 - KZ |z W2 In W + | ?

jJeEA
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and Z(H) = §[ [,cp dajexp(—=H(z)/2)x[I']. Then we can write

2 P ‘
< (49" [ dtan) T Tlasl™ T ol
k=1 =1

where Zy = det[C~!/27]/2. Repeating the proof of [DPS02, Lemma 5] in d = 2,

3/2 1/2

Z(H) < eXi(ODiy +Crg W2 70 < (KINW T I W)22 7 (2.3.10)

where C'f_1 =C'— fm2 <H" for f = O(6), and we used § < 1. When m > 0,

p 1 p
H |ajk‘mk < E Z mk’ajk|m'
k=1 k=1

The same holds for b. Applying the Brascamp-Lieb inequality (2.3.5) and a Cauchy-
Schwarz estimate, we obtain a factor «/(2m)!!(Cf);Z§i < A/Cm)N(KW=2In W)™? for
each |a;,|™ and an analog factor for |b;, |".

Region I? As in [DPS02], we can bound the factors a;nj and b?j by constants and the
potential by

ReV(a;) < ™ foa2 Re V (ib;) < %fbbf. + (1= f)2Em2(b; — &), (2.3.11)

PRLE
with f, = f,, = O(6). Analog to [DPS02, Lemma 6] the trace can be estimated as
Re D;Bj; < —2cW ?In W, (2.3.12)

where ¢ > 0 is independent of W and A. Combining these estimates and using Lemma
2.3.2|in the second step, we obtain

2
Fr g K o2 AW T W f dpc(a,b) e Ziea(faai 1) o(1=fo)26mi(b;—E)

< KM e—2(c—K(fa+fb))|A|W*2 In W 1—fp)2E;m2(b;—E;)

I S (
NEAE J ducy, (b) e

_ _ -2 _ —2
< Km-i—n-i—le 2(c—K§) AW =2 1InW < Km+n+1e c|A|W an’

where the remaining integral in the second line is 1 and we used § < ¢/2K for W large
enough.

Regions I® and I* As in [DPS02], for arbitrary a; and b; in R we can bound

ReV(aj) < ™ f,a?, ReV(ib,) < ™ f,b> + O(1— f,), ReD;Bj; < &5 W,
(2.3.13)
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where f,, fp € (1/2,1). Inserting the quadratic terms into the measure, and using a small
fraction of the remaining mass, we bound

m;
™ < K 1 ezemi(1-fa)a3
la;|™ < ( a(l_fa)) \Vmjl e j

and the same for b;, where 0 < ¢ « 1 is small but fixed and independent of W. Using
Lemma and nW?2(1— f)™' < K,,,InW for all f€[0,1—W~],m e N, we obtain

m2 ~ -
R N TR SRUE RN

< ICm,nKm+an+1 eK|A|W72 W J d,ucfa ((I) du’cfb (b) X[I$]7

where KCppe = [0 V! TTL, Vru!, and fa = fo+e(1 — f,) (same for fb) In the
second line we take f, € (1/2,3/4) and f, = 1 — W2, to ensure that all error terms
in the exponent are not larger than the first one, i.e. |A|W2InW. Applying [DPS02,
Lemma 8], we bound the remaining integral by:

J dpc;, (@)x[I°] < e ) 027 ()i < |\ e KW W)~

jeA

?

[ dhe, OXI1Y < 728 3, SR i)
b Jg'eh
where we set x = KW 2InW and in the first line we used (Cr i =W~ 2InW. In the

second line, (C})j; ~ W=2In W + W?|A[~!, since (1 — f») = O(W~2). The additional
term is canceled by the sum (Cy,);; + (Cf,)» — 2(Cj,)j;. Now, inserting the constraints
we assumed on |A| and § we obtain the result.

Region I® The proof in region I° is similar to the one in the other large field region,
with the difference that the exponential decay comes from the bound of the potential in
b that can be improved to

ReV(ib;) < = fyb? + O(1 — fy) —c6?  with fy=1— W2 (2.3.14)

By the same arguments as above, we obtain a factor exp(—c|A|6?) from the last term
which gives the main behaviour of the integral since § > W~'(InW)"? for W large
enough. O

Improved estimates

Let us now fix |A| = W2(In W)*, with a € (0,1) as discussed is the remark below Lemma

[2.3.6f We want to apply Lemma [2.3.6]to (2. 2 6|) and (2.2.8) to prove (2.1.5) and (2.1.6).

For the correction to the semicircle law in we obtain

J dup(a,b)R(a,b)ag

< oKInW)? [(anIm//)l/2 4 e—clmw)ire efK62W2((an)_1+(1nW)a)]

o (In W)1/2
<eK(an) (nW)
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which is not the desired estimate. To estimate the derivatives in (2.2.8)), we need to
extract enough W factors to control the sum over the indices j,.. If we apply Lemma
2.3.6| naively, we obtain

n+1 n
(223 <K, Z K (2T e RO R (1 ()1 2)

,,,,,

which grows in W algebraically for n > 0. To improve these bounds similar to [DPS02],
we apply a few preliminary steps of integration by parts. This is done in the next lemma.

Lemma 2.3.7. For general A = 74, the integrals (2.2.6) and (2.2.8) can be written as

lim A E[Tr G} (E = . B, J dpip(a,b)da, R(a,b),
o ’ | loeEA
. 1
h_r)I(l) &E|A| [TI' C}+ Z 2 BOIO j1l1 J duB(a,b)(?xll &%R(a,b) + 6j1711
© ]1eA lo lleA
hm aE|A| [Tr G} (E.)] = 2 B, H Bj i, f dpp(a,b) 1_[ Oy, Oy R, b),
Jll ..... gnelf\\ m=1 m=1
Oyeensy n€

with am = dll + i&bl.

Proof. We use integration by parts. For the first equation we only need to apply one
step of integration by parts. For the derivatives, the case n = 1 is special. We calculate

ZJduBab (a,b)ag(a; — ib;)

jJeEA

= f dpi(a,8) 3" Buy ((a; — b)), Ra,b) — 63,R(ab) )
jeA loeA

= Z Z Boy, Bji, J dMB<a? b)arzl alllOR(a’? b) - 5j107
jEA lo,lleA

where we used in the last step that § dug(a,b)R(a,b) = 1.
For n > 2, we apply several steps of integration by parts. Writing z; = a; — i

79
Z Jd,uBab abagnxjm

J1yeesJn€A
Z JduB a,b) Z By, <H j,, 0y, R(a,b) + R(a,b)0, H x]m>
J1y-eerin€A loeA

-y ¥ BOloanlmfduBab Haxl oo R(a,1)

j1 ..... ]nEA loye--s IneA

where the last term in the second line corresponds to the derivative of a constant, hence
equals zero. In the third line we used J,,z; = 0 for all 7, j. O
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These representations give the stated decay in finite volume |A| = W?(In W)*:

Lemma 2.3.8. For fized |A| = W?(In W) we have

1
\llmWE[TrG+( O] = af| < KWW w21 W,

1
\hm g W]E[Tr Gi(E.)]| < C,.

Proof. We apply Lemma [2.3.6| on the representations of the previous lemma. Deriving
the remainder R(a,b), we obtain

0w (R(a,b)) = (det[1 + DB,V (a;) + det Bdetyy gy [B™ + D] 05, D) eV,

In the first summand, we can bound |3,V (a;)| < K|a|*>. In the second one, we bound
|00, D] < K. In region I' the matrix B~! + D is invertible and

|det B dety 3 [B™* + D]| = |det[1 + DB](B™ + D);;| < | det[1 + DB]|=Y.

In the other regions, it suffices to write the expression above as | det(14 M)| (for a certain
matrix M) and bound it similar to Lemma [2.3.5| Using Lemma the integral is
bounded by

DBl W In W < KW 2 I W

leA

since Y. |Bo| < K. This proves the first part.

For n = 1 the first integral yields a factor (W~'(InW)"2)? which controls the sum
over j easily. In the second term, the sum over j disappears. In both cases the sum over
[ is performed by By, and is bounded by a constant.

For n > 2, note that each factor B;; controls a sum over ¢ € A or j € A. The
largest contribution appears when all [,, are different. In this case the expression above
is bounded by W=2(In W)t « 1 for all n < ng(W). When [, = I, the factor

W=2InW comes from B; 1, since no sum over l,, is needed. O

Remark. Note that the representation for the first derivative is special, but the additional
term is easy to handle, since it directly give control over the sums over A, hence we neglect
it in the following.

Large volume

We can easily extend the above result from one cube of volume W?2(InTW)* to a finite
union of cubes of this volume. The procedure is independent of the space dimension
and follows [DPS02, Corollary 1]. The idea is to decouple the cubes by replacing the
periodic Laplacian in the covariance by one with Neumann boundary conditions.
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Theorem 2.3.9. For d = 2 and each fizred o € (0,1), there exists a value Wy(ar) such
that for W = Wy(a) and A a union of N cubes of volume W?(In W) we have for all
EeTl

PA(E) — psc(E)| < W2 NE(n W)
1025 (E)| < CN™ N EInW)®
where psc is Wigner’s semicircle law (2.1.2) and C,, depends only on n.

Remark. Note that here n can take any value independent of W.

Proof. We consider again the dual representations and , apply the steps
of integration by parts described above and pull the sums in front of the integral. The
measure is again bounded by Lemma [2.3.4] and the determinant det 1+ DB by Lemma
2.3.5l When derivatives fall on the determinant, this is replaced by terms of the form
det Bdets7(B~! + D) for an index set J, which can be bounded in the same way.
Collecting a factor exp(K|A|W=2) = exp(NK (InW)?), we need to estimate an integral
of the form . Note that all terms in the integral factorize over the cubes except the
measure duc. Before applying Lemma [2.3.6, we insert the partition of the integration
domain in each cube separately: 1 =[], ZSA L X[IX2]. We estimate the terms Re Tr DB
and ReV in each cube depending on the region (as in (2.3.9), (2.3.11)), (2.3.12)), (2.3.13)),
(2.3.14))). Inserting the quadratic contributions into the measure and extracting the
normalizing factor, we obtain

> \/detc det gf_b fducf (a) dpcy, (0)|O(a, b)] e "o @O T Tx[120],
A

{sataea

where we collect all non-quadratic (cubic, linear and constant) terms in hs, (a,b), and
c;t=ct —fm?2, and f = Yirsno1 fola is ablock diagonal matrix. Note that, for the
moment, only the mass in regions with so > 1 has been modified. Now we can bound
the normalization factor in each cube as usual since

gzzg; = det[1 + fm2Cy] < det[1 + meCf H det[1a + fAmQCA M (2.3.15)

JAY: sa>1

where CY = (=W?Ap(1 - f)m2)~1, —Ay is the Laplacian with Neumann boundary

r

conditions on the cube boundaries, and C'fi’N is this covariance restricted to A. To

prove the inequality above, we use C; < C}V and f > 0 as quadratic forms, and the
minmax-principle to compare the corresponding eigenvalues.

As in [DPS02, Lemma 8], we estimate the characteristic function x[I3] by K e* 2jea ©%
A similar bound holds for x[I4]. Now, apart from the cubic contributions in the first
region, all terms depending on a or b in the integral are of the form |a|™ or exp((a,v)),
for some vector v. The same holds for b. We are then reduced to estimate an integral of
the following form

fducfa(a)dﬂcfb(b) [T eFe@2eO T lamsjpys T elewartwa),

Nispa=1 JEA Nispa>1
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where Fa(a) = K3 a la;* + |a/W™2 K > 0 is some constant, n;,m; = 0, va, wa
are some vectors. Defining H(a) = (a, Cjiala)/Q — Yinisnae1 Fala) (same for b), we can
apply Brascamp-Lieb ([2.3.6)) and (2.3.10). As a result the integral above is bounded by

KN 030:Crav)+5(w,Cp,w) H H\/(gnj_m\/@mj—l)!! (Cfa)gj/2(0fb)?j/2 (2.3.16)
Nisp=1je

where now f = YA fala, and fa > 0 for all cubes. Note that, to avoid heavy notations,
we write C; in this case, too. Now we replace Cy by C’}V in the exponent and hence
obtain factorized estimates over each cube. Since C’}V decays in the same way as C'y, the
bounds now work as before.

Finally, when estimating n derivatives in E, we collect a factor N™ from the sums over
the jp’s. O]

This result is not sufficient to deal with the case of very large (or infinite) volume. To
handle this case, we introduce in the next section a cluster expansion.

2.4. Proof of Theorem 2.2.3

Following [DPS02] we will apply a cluster expansion which is a variation of the rooted
Brydges-Kennedy Taylor forest formula (cf. [Bry86],|JAR95]) to decouple an appropri-
ate finite region containing the observable from the remaining volume. In contrast to
[DPS02], we perform first the steps of integration by parts described in Section m
This preliminary procedure simplifies the extraction of the correct decay later. The
cluster expansion and the preliminary steps of integrations by parts are more easily im-
plemented by going back to the original representation of the integrals (2.2.2),(2.2.3) in
terms of Bosonic and Fermionic variables, as in App. This is done in Section [2.4.1
below. In Section [2.4.2] a cluster expansion is applied to the supersymmetric represen-
tation obtained in Section The following Sections bound the different
terms in the cluster expansion. More precisely, in Section [2.4.3| we give an estimate on
the propagators and in Section we bound the functional integral on a finite set of
cubes. Section [2.4.5] is devoted to combining all bounds and performing the sum over
vertex and cube positions as well as the tree structure. Finally in Section [2.4.6, we
sketch the procedure for the derivatives.

2.4.1. Supersymmetric representation

To modify the dual representation introduced in Lemma [2.2.1] we introduce a family

(Pj, pj)jen of Grassmann variables (cf. App. [2.A]). For each j € A we denote by M; the

supermatrix M; = <Zj zpb]) . Note that the trace is replaced by Str M; = a; — ib; (cf.
J J

(2.A.5)). With these notations we can state the new representaion.
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Lemma 2.4.1. The integrals in (2.2.6) and (2.2.8]) can be reorganized to yield

lim WE[Tr GHE)] —at — J dpe (M) Mgy (2.4.1)

NP
ll_r)r(l) 5EW]E[Tr Gi(E.)] = f dpp (M) e¥™Mg, H Str M;, , (2.4.2)

where the supersymmetric gaussian measure is defined by

dpp(M) == dM e 2SI (METIM) dus(a,b) dus(p; p) (2.4.3)
with product measure dM =[],y dM; = [],c5 da;db;dp;dp;,
dps(p,p) = | | dp; dp; det [ 2] e #577),
jeA

and Str (M, B™M) = Dijen 1Str(M]\/[) Finally, all non Gaussian terms in the
integral are collected in the exponent V(M) = X0 V(M;), defined by
V(M;) == —InSdet [€ — M;] — EStr M; — & Str M?
! M3 (2.4.4)
_ 2 _ _
= J;) (1—t) Strmdt —V]’(G,b) +pjijj7

where Vj(a,b) is the potential introduced in (2.2.12). Here we abuse notation by using
the same letter for the potential V(M;) and V(a,b), since the two expressions are closely
related.

Remark. This representation simplifies the cluster expansion since the covariance appears
only in the Gaussian measure. Note that the normalization constants for the real and
Fermionic variables above cancel each other.

Proof. We replace the determinant in R(a, b) by a Fermionic integral using (2.A.2) and
collect all remaining terms into the exponent V(M). O

The following result is the analog of Lemma in this new formalism.

Lemma 2.4.2. The expressions (2.4.1) and (2.4.2) can be reorganized as follows

1
lim - E[Tr G (E.)] - af = > B, f dpg(M = Y By, Fy”,  (24.5)
e—0 ‘ | loeA loeA

1 n
hm é‘EmE[Tr Gi(E.)] = Z B, H Bj i, f dpg(M) H Str O, Oay, eV(M)
..... m=1

= > B, [ [ B, F, (2.4.6)

where Oy, is defined in (2.B.5)).
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Proof. We apply integration by parts as in Lemma [2.3.7] and use the following relations:
(Str dag,)Str MI" = ndy;Str M~ and [Str Oy, Str dpy,] = 0. O

Note that J,,, moves the local observable ag in 0 to the local observable d,, V(M) at
position ly. Moreover, the B-factors enable summation over jy, ..., 7, and lj.

Remark. In the remaining we will show that applying a cluster expansion to F /SZO) and

(2.2.13]), but not for the derivatives ([2.2.14)), since in this last case one may not be able
to extract enough fine structure to sum over the indices [y, ...,l,. This happens when

two or more of the [; coincide and we obtain linear terms in M from the derivatives
[ [=1 Str O, Oay, exp(V(M)). In this case, we need to apply again integration by parts
on the resulting field factors before performing the cluster expansion. Nevertheless, for
clarity, we first prove the cluster expansion only for . It is easy to see that the
same approach works for the (more involved) expression we obtain after some steps of
integration by parts. A detailed description of the procedure can be found in Section

[2.4.6] below.

The following lemma will simplify the cluster expansion, since the integrals over regions
without observable contributions turn out to be trivial.

Lemma 2.4.3. If we restrict the functional integrals F/(\IO) and F,(\lo""’l") defined in (2.4.5)
and (2.4.6) to a set Y¢ = A\Y not containing ly, we have for m > 0 and indices l; € Y°
forj=1,...,m that

Fyc = J dHBYc (M) ejeyC V(M) _ 1,
Fgé7h.7lm) — J dMBYC (M) nstr aMlj ereyC V(M]) _ 0,
j=1
where Byc is the covariance restricted to the volume Y.

Proof. Using the definition of V(M), we can write
Fye :J dM e—%Str (M,J~1M) o(€:Str M) J d® dd ez‘(<I>,($lM)<I>)7

F(h,...,lm) — f dM e—%Str (M,J=1M) e(6’,StrM)

Y<C
X (Z [](-&stens,) [ ] ste an2> J 4D 4 i(®(E-I2)

Py,Ps j1€PL J2EP>

where J1 = B;é + &2 and we insert for the superdeterminant a superintegral with
measure d®dd = HjeA dz;dz;dy; dy;. In the second line we sum over all partitions
PLu P, ={1,...,m} with P, n P, = (J. Note that we can rewrite both Strdy; and
Str M; using integration by parts (in ® for the first, in M and then in @ for the second)
as Og and Y, £2.J;,'0¢. For a general A’ ¢ A, the restriction of B~! to A’ does not have
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the form —W?2A + (1 — £2), but Re J~' > 1 still holds (c¢f. Lemma [2.C.2). Hence we
can interchange the measures and perform integration over M by completing the square.

Inserting (2.B.2), we obtain

Fye =E; U dd do ei<<bv<5+AH><b>] =E;[1] =1,

e = (S [T Sevdih, |ewmsng = o

P1,Py 1€Py kj,

where A is a diagonal matrix with A; = €37, Jir. Note that Im (€ + A — H) > 0, since
Re & and Im J have the same sign. Hence the integrals above are well-defined. O]

2.4.2. Cluster expansion

In the following, we prove a cluster expansion for the integrals F /(\10) and F' jilo""’l”) defined
in and (2.4.6). We partition a large but finite volume A into disjoint cubes A of
fixed volume W?(In W)“. By interpolating the covariance, the functional integral over A
can be rewritten as a sum of local integrals over unions of these cubes called polymers.
Here, we use a non-standard cluster expansion interpolating in the real covariance C'
instead of B and setting B(s) = (C(s)™! +iogm?)~" (cf. also the remark below). This
is done in an inductive procedure. Because of the interpolation in C', we extract a
“multi-link” consisting of three edges instead of a single edge in each step.

Before stating the result, we give a few notations: The volume A is divided into cubes
A of size W?(InW)*. Denote by Ay the root cube containing ly. In each step we
extract a generalized cube A = (A, ', A") connected via a multi-link (i, k, &/, j), where
kKeie A je A" andkisin the volume already extracted. The links (4, k) and (£’, j)
are “weak” while (k,k’) is “strong” in the sense that it prescribes the tree structure.
The collection of Ay and the extracted generalized cube is called the generalized polymer

Y = (Do, Ay, A).

k1 J1 k/l ’
[\\4 Ao . </} AO k{ Al k‘l
Do = A Ay = A7 N =N \
\Oil
A%}
k1
/ //\-O o \ekll /A
Al = Al i1 J1 Al AI J1

Figure 2.1.: Some examples for the first generalized cube Ay = (Ay, A}, AY) extracted
by the first link ll = (2'171{31,]{31,]'1) with 1{31 € Ao, ki S Al, 11 € All and
j1 € A, The cubes may coincide with the unique constraint Ay # A;.
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Lemma 2.4.4. For (=) equals to the set of fized indices (ly) and (lo, .. .,l,), respectively,
we can write F/(\ZO) and F/(\lo""’l”) defined in (2.4.5) and (2.4.6) as

Z Z f S+ dsy Mrp(s)

Y: TonY
(¥)eY |T|=r

3 T 1Gu5)its Cr Galigsy FETsM il

(iq:dq) 9=1
(kq,kq)

where Y = (Do, Ai,.. ., AT) is a generalized polymer consisting of the root cube ANy (con-
taining lo) and v ordered generalized cubes Ny, q = 1,...,r. Each Ay = (/\,, Ny, ANy) s
a collection of three cubes not necessarily disjoint wzth the unique constmmt Agn (Ao U

i TA) = @ For (») = (lo,..., 1), the generalized polymer Y needs to contam all
the indices ly, ..., l,,. We sum over all ordered trees T on the generalized polymer, such
that the q-th tree link connects Aq with Ng U Uq_l A

FEach tree link consists of three lines (iq, ky), (k:q,k:q) and (k’,jq) where the k, — ky,
connection forms the tree structure. Precisely, k, € Do U Uq A, is in the generalized
polymer up to inder q — 1, k; € Ay, iqg € A and Jq € O Note that the position of /\'
and A" is arbitrary and they can coincide with each Other or an already extracted cube.
For each link, we have an interpolation parameter 0 < sq < 1. The functional integrals

F}ZO) and F}lo’”"l”) are defined by

FO 18Ity da) = | dnao (1) [ TSt @ar, 2o, ) [ 20, 700, 24D

Fi(“l07.'.7ln)[8]({iQ7jq}) = f d:uB(s)<M) H Str (8Miq anq) [H Str aMlm aalo eV(M)] )
m=1

qg=1

where B(s) = (C(s)™" +icpm?)~" and C(s);; = $;;Cy; with

1 z'fEIq:i,jeAq,~ i
Sij = Z;}], s, ifiq <q:iel,andje Ny or vice versa,
0 otherwise,

T(s) is a product of s factors extracted by the derivative 0s,B(s). The propagator
G,(s ) = (1+iogmiC(s))(s,—1vp>q depends only on the first q mterpolatz’on parameters

Remark. The most standard way to do a cluster expansion would be to interpolate
directly in the total complex covariance B. The propagator G(s)CG(s) would then be
replaced by B. Nevertheless, in order to bound our expressions, we need (Re B(s)™')™*
to behave similar to C, and it is not easy to compare these two operators.
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&= f A= oy Lo
Ay /]; Ly = A] ,k._é
M K’ /
/.\ | O 1
k L \\/Ic’ k// o—d "
QTN o2 N - S
' 0= L = Ly ‘ 0= £33
N |
A Vv S Do T 1 |Ad

Figure 2.2.: Two examples of links and underlying generalized polymere for a fixed tree

structure on Y. Note that cubes and even the notes can coincide as long as
the conditions k, € Ug: Ay 0 A and K € Ay are fulfilled.

One may also use a standard cluster expansion (e.g. a Brydges-Kennedy Taylor forest
formula or Erice type cluster expansion [AR95] [Bry86]) in the real covariance C. Since
the propagator G(s)CG(s) has an s-dependence, derivatives in s could also fall on it,
which complicates the algebra involved in factorizing the contributions from different
connected components.

Therefore, we use the same “inductive” interpolation scheme as in [DPS02] (analog
to older versions of cluster expansions, cf. [RivOll Chapter III.1]).

Proof. We construct the cluster expansion by an inductive argument. The large volume
is divided into cubes of size W2(InTW)*. In the following, we want to extract the set
of cubes interacting with the observable. Therefore, we test if there exists a connection
between the root cube Ay and some other cube A < A.

We introduce an interpolating covariance B(s;) with 0 < s; < 1, which satisfies
B(1) = B while B(0) decouples the root cube Ay from the rest of the volume. We
define B(s;)™! = C(s1)™! + icgm?, where

C(s1)ij == 510y ifie Agand je A # A or vice versa,
V= C,;  otherwise.

This is equivalent to C'(s1) = 310+(1—31)(CA0A0+CA3A00)> where Cax is the covariance
C restricted to the set A. By this definition, C(s;) is still a positive operator because
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it is a convex combination of positive operators. Define
l
F\"[s1] = J dpep(sy) (M)0g, ¥

and F/(\lo""’l”)[sl] similarly. Note that for s; = 1 we have Flg*)[slhslzl = Flg*). By the
fundamental theorem of calculus

1
Fjg*) [51]|51:1 = F[S*) [81]‘51:0 + JO d81 alejg*) [81].

F [g*) [51]}s,—0 corresponds to decoupling Ay from the remaining volume. By Lemma|2.4.3]
the integral over AS yields one in the case » = [y or if all indices Iy, ...,l, are in Ay,
and zero otherwise. The derivative is written by integration by parts as

fasq dMB(S1)(M) [] = J d:uB(Sl)<M) Z aS1B<51)i1j1%slﬁr aMilan1 []7

1171

Moreover, the propagator ds, B(s1);,;, gives three connections

0 B(sD)ijn = D5 Dy G50k Cray G50y + G(51)ik Crin G (51 ki
N1#Ng k1€
k’leAl
where G(s1) = (14 icgm?C(s1))~!. Since the matrices C and G(s;) are symmetric, one
can rewrite the second summand as G(81);,x, Cr,x; G(51)r5,- To sum the two terms, note
that the supertrace is invariant under changing ¢; and j;. Therefore we obtain

0, Y [51] = Z (G(Sl)ilklcklk;G(Sl)kgjl)F/(\*)[Sl]((il,jl)%
k)

where
P 1) (i1, 30) = [ o (M)t s, g, 2, o

and FXO’””I")[31]((i1,j1)) is defined similarly.

For each pair (ki, k}) with ky € Ag and k] € Ay, there is a strong connection between
Ay and Ay, but there is no corresponding derivative in the functional integral as for
iy and j;. If 44 or j; belong to some cube A & Ay u Ay, they give some additional
connections. Therefore, the first step of induction extracts a link consisting of three
connection between the four points i1, j1, k1 and k]. This link connects /¢ to a set of
one, two or three new cubes, which we call the generalized cube A (cf. Figure .

Now, we fix (i1, 1), (k1, k}) corresponding to a connection between Ay and A;. We
test if there is a connection between Ao,1 = Ngu A; and any other cube /\’. For this,
we define for 0 < sy < 1 the real interpolating covariance as

C(s1,89)i = $2C(s1);; if i€ Aoy and j ¢ Ao or vice versa,
b C(s1)i5 otherwise.
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We can write C'(s1, $2) again as a convex combination of positive operators
Cls1,82) = 82C(s1) + (1 = 52)(Cz,, 4, (51) + Cre ae, (51)),

thus C'(s1, $2) is still positive. Now, F/(\*)[sl]((il,jl)) = F,(\*)[sl, 52]((i1, J1))|sa=1- By the
fundamental theorem of calculus

1
F s, 85) (i1, 1)) 1saet = F 51, 2] (i1, 1)) 1s—0 + j dsy 00y F\ [s1, 0] (i1, 51)).
0

As before F /(\*)[31,32]((2'1, J1))|sa=0 corresponds to the functional integral restricted to
Ny (if all indices ly, ..., [, are in Ay, otherwise it is zero). The derivative in so of

F{P[s1, 8] ((i1, j1)) gives

S G5t 52)iak C(51)kat, G, 52| FA™ 51, 2)((in, 1), (iz, o).

(iQJjQ)v(kQ’kj_/Q)
kaelNo,1,kb¢ o 1

Note that iy and j, are arbitrary but ks needs to be in Ao,1 and kY in a new cube.

We repeat this argument until we construct all possible connected components con-
taining the root cube. Note that in the second case, only generalized polymers containing
all indices [y, ..., 1, give a non-zero contribution. This is a finite sum for A fixed. The
k, — k! connections build a tree structure on the generalized cubes, while the positions
of i, and j, are arbitrary (cf. Figure[2.2). O

2.4.3. Decay of G4(s) and B(s)

First we determine the decay of the propagator G,(s) and the interpolated complex
covariance B(s). Note that, for C(s), we can simply use that C(s);; < Cj;.

Lemma 2.4.5. The decays of B(s) and Gy(s), respectively, are given by
|1 B(s)i]
Gp(5)ij1

where f = inf[1/2, g] with a constant g < 1 independent of W.

<
K pmrp s
<5,~j+|C’ij|+me Fa li—dl

Remark. Note that the decay of B(s) and G(s) is bounded by
C5] + %e—f%li—jl < we In <ﬁr§1f|i—j)> if [i — j| < prr)
e MWL =gl > g

Proof. The proof works exactly like the one in [DPS02, Lemma 15], replacing the three
dimensional decay ([2.3.3)) with the two dimensional decay given in ([2.3.2)), the key rela-
tion being >, _\ (C'(s);x exp(plk — j]))* < KW= for u < m,/(2W). O
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2.4.4. Bounding the functional integrals

To estimate (2.4.7)), we fix a generalized polymer Y and indices {i,, j,}, and we define
J ={ig,jg:q=1,...,7} €Y as the set of all derived indices. Then the corresponding
integrand can be written as

ﬁ Str Or,, O, [a% eV(M)] = du, [ 0 ST e

p=1 jey )T deD jeJ

where 0% J] = &[f] (a)ﬁ 6dj i@ )(? ,and D = {d = {d;}jes} is a set of multi-indices with
dj = (d; (a)adj(b)udj(ﬁ)vd (n))- Note that d;(p). d;(p) € {0,1} and [d;| == d;(a) + d;(b) +
dj (p) +d;(p) equals the multiplicity of j in J. For the case j = ly, we have an additional
derivative in a;, which needs to be treated separately. Computing the derivatives for
each j € J u {lo} and each multi-index d;,

ag;loa oV(M;)) _2 MGy, p.(aj,b;) € Vi(ab) o=ipiDs(ab)1-d; (2)d;(p)]
0 T )

Tj

where M 7= ; (a)br’(b)ﬁ? (p)p?( 2 = (r;(a),r;(b),;(p),r;(p)) are the remaining pow-
ers of the variables in M, and Cy;, ,, (a], b;) is a bounded function remaining after deriva-
tives have been taken. Note that we use the notation d; = 0 for j ¢ J, and the same
for r; for j ¢ J U {lo}. Using the definitions (2.4.4), (2.2.11)), (2.2.12)), and the relation

4 exp(V(a)) = 2221 (Z) 0k [(0,V (a))*] exp(V (a)), one can see that

|Ca,ry (@, b)) < KOO g, (a)1d; (b)!

independent of r; for all (a;,b;) configurations. Note that n; = |r;| + |d;| = 3 and
7;| < 3ld;| for all j € T\{lo}. If Iy ¢ J, we have |r;,| =2 and if [y € J, we have at least
’17,[0 = 2.

Lemma 2.4.6. The functional integral (2.4.7)) is bounded by

[EL ] ({ig, g )| < KVETTHN H[

deD {Tj }jE.] NeY

2] o (2.4.8)

JETNA
where Ky and Ky are constants, and |Y'| denotes the number of cubes in'Y .

Proof. We first compute the Fermionic integral and estimate the resulting determinant
(see the two lemmas below). We obtain

U dpp(s)(p, p) e Ziesa PifsD (H pypg> (H pj) (H m)‘ (2.4.9)

JjeJ1 jeJ2 Jj€Js
<[] ral>@ra(p)y=® (_ﬂnW)M(p)”A( P ReTr (B($)D) 130054, 53004 KV 4|7))

w
NeY
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where Y = U?:l J; is a partition given by

Ji={jeY :ri(p)
Jo={jeY :ri(p) =1
Js={jeY :ri(p)=0,r
Jy={jeY:rip) =r
Js={jeY :r;(p)

The remaining Bosonic functional integral is bounded by generalizing the results of the
finite volume case. We first insert the partition into the different domains of integration
for each cube separately. In I' we need the factors |a;["|b;|"1®) of M7 since they give

additional small factors of order W~'(InW)¥2. In the other regions these factors can
be bounded by exp(V;(a, b)) and we include them into C(a;)C(b;).

Summarizing the above procedure, we estimate |F§l°)[s]({z’q, Jq})| by

eK(Y|(1nW)a+|J|)f|d“B(s)(a’ )| e T (BE)D) s +Re Tr (BE)D)sys, n|evj(a,b)|

JjeY
a(p) WNVZ
Yy el

deD {r;}jeg DY

< T OeZATla "5 "5® + x[(TA)C]) K450 d;(a)\d; (b)!
JETNA

We first apply Lemma which also holds for B(s) and C(s). Proceeding as in the
proof of Theorem [2.3.9) we insert the bounds of Lemma [2.3.6l As a result we obtain
and with C replaced by C(s) and C; replaced by Cy(s) = (C(s)™! —
fm2)™' > 0. Now we have C(s) < Oy = (-W?2Ax+m?)~! since C(s) can be represented
as a quadratic form of block diagonal pieces of C' and each of these is smaller (as a
quadratic form) than Cy by the arguments of Lemma[2.C.2| This decouples the different
cubes. In I' we obtain for each j € J a factor

w

K(nW)L/2 ’I‘j(d)-‘r?“j (b)
r5(a)lr;(b)! (g) .

In the other regions we extract this factor from the exponential decay. The factorials
in d;(a) and d;(b) are bounded by d;! and the factors in ra are bounded by K"2ral.
Finally, we end up with . Note that we obtain an additional factor W=2In W in
the case, where [y ¢ J. In the other case, we extract the precision later. O

Lemma 2.4.7. The Fermionic integral can be written as

o (o \ Tae)+ralp)
H ra(p) 2O (p)raP) (%) ST 5 det M, (2.4.10)
AeY
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where o 1s a sign and the matriz M s given by M = (MJiJj),ij:l with blocks

( pa)?“A p8) 1nWB(8)aB>aeJi,,8€Jj/ fOT' 7’7] € {17 2}7
(Mas)os = (oo (DB ODas) . forie (1,2} andje (3,4},
(My,;)ap = ( )a5>aeJi,6eJ./ forie{3,4,5} and j € {1,2},
(MJZJJ>0¢5 = (( + DB( ))aﬁ)aeJ BeJ; fO?" L€ {37475}7j € {374}7
(MJz ])a,BZO fOTiE{1,2,3,4},j:5,
( zj)aﬁzéaﬂ fori=j =25,

where 7' =1 for j =1 and j' = 3 for j = 2.

Proof. Note that the integral is zero unless |J2| = |.J3| because of the symmetry of the
Fermionic Gaussian integral. Computing the Fermionic integral (2.4.9)) by (2.A.3)), it is
equal to

o det B(S)detJ1UJB7J1UJ2(B(S)_l + D),

where o is a sign, D is a diagonal matrix with D; = D,[1 — d;(p)d;(p)] and det;; A is
the determinant of the minor of A, where the rows with indices in I and the columns
with indices in J are crossed out. Since we estimate the absolute value in the next step,
we do not need the precise sign. We assume without loss of generality that the indices
j € A are ordered such that B(s) is a block matrix of the form B(s) = (B(s),,4,)5 ;-
and B(s),; = (B(8)ap)acs; pes;-

To simplify this expression the minor is extended to a |A|x |A| matrix without changing
the determinant up to a sign in the following way:

A

0 0 (B(S)il)hJ:s (B(S)il)‘]zh (B(S)il>J2J5
Ml == 0 A, * * * ,

0 0 (B(S)_l)hJs (B(S)_l + D>J4J4 (B(S)_1>J4J5

0 0 (B(S)_l)Jz’)Js (B(S)_1>J5J4 (B(S)_1>J5J5

where the blocks A and A’ have determinant one. The blocks = can be chosen arbitrarily.
We choose A and A’ as the identity, (M;),,7, = 0 and the other freely selectable blocks
(M), as (B(s)™' + D)., By multiplying with B(s) from the left, we obtain

B(s)pa B(s)ns — (B(s)D) (B(s)D).,1, 0
- B(5>J2J1 B(S)Jst (B( )D)Jst (B(S>D)J2J4 0
M = B(S)Ml = B(S)Jle B<S>J3J3 (1 + (3> )Jst (B(S)D)J3J4 0
B(S)J4J1 B<S)J4J3 (B<5)D)J4J3 (1 + B<S)D>J4J4 0
B(s)ssa B(8)sss  (B(S)D) sy (B(s)D)ssay (1)
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Extracting a factor r4,(p)vVInW/W for each j € J; U J, from lines J; and J, and a
factor ra,; (p)vIn W /W for each j € J; U J3 from columns J; and J», we obtain ({2.4.10)).

Note that columns of B(s) with indices in J3 become columns with indices in J, in M
such that we need to extract the factors from column Js. O

Lemma 2.4.8. The determinant of the matriz M can be bounded by

| det M| < K eReT (BED)syos, 01, oK (VInW)?4|7)),

Proof. We use the usual bound for determinants (2.3.4) with A = M — 1. Since

5
Tr A*A = 2 Tr (AJiJj)*AJiJj and Tr (AJiJj>*AJiJj = Z AagAag,
4,j=1 OAGJi,ﬁEJj
each block can be bounded separately. For 7 = 5 and all 7 the trace above is zero. For
i=3,4,5and j = 3,4, we have Aj,;, = (DB(s)),,s; and we estimate

Tr (A Asgy = )5 IB(8)asl’IDsl® < Z < KY|(InW)*%,

aeJ;,BeT; aeY
where we used |Dg| < K and the decay of B(s) (Lemmal2.4.5). Fori = 1,2 and j = 3,4,
. _ W .
we only have off-diagonal terms and Aj,;, = <—m(p)\/WB(S)D> ) Using rA > 1 and
|Djs| < K, we estimate
TI'(AJZ.J)AJJ \KW2 Z aﬁ‘2 KWZ

In W InW VV2 < ln W )
aeJ;,Bed; aeld;

where the sum over 3 € J; is extended to 8 € A. We bound the trace similarly for the

case 1 = 3,4,5 and j = 1,2, where A;,;, = (#WB(SD . Extending the sum
r n JiJ!
J

1
ZW < an’
BJ;

For i,j = 1,2, we have A;,;, = (WB(S) - 1) . Summing the trace of the

over a € J; to a« € A, we end up with

Tr (A A, < 220 3 [ B(s)asl? <

aeJ;,BeT;

quadratic term and the corresponding block of ReTr A, terms linear in M cancel and
we end up with

%Tr((MJiJj>* — 1)(MJiJj - 1) + Re'Ir (MJiJj - 1) < %TI‘ (MJiJj>*MJiJj.

Now, the term Tr (M, ;,)*Mj,;, is bounded by using the factor 7 explicitly. Rewriting
the sum over o € J; and 8 € J; into a sum over cubes, we obtain

W4
Tr (My,5,)" My, < _ Bs)os
aeJ,Z,ﬁ:er 0 (P)?r 0, (p)?(InW)? 8

e ,
< > 2 G B e)esl”

AN:ANT#D aeANJ; TA/
NN NTj#£G BeN T

74



The number of summands in the second sum is bounded by 74 (p)ra(p). Applying the
estimate |a — 8| = W(dist (A, Ag) — 1) and the decay of B(s), we end up with

K w 1
T (My,g,)* My, < Z A (P)7 s () (I W)2 (5dist(A,A’)f o’ [ W (dist (A, A7) — )+1]

VANVANSW FE730)1
AN AT AD
—m,(dist (A,A")—1)
+ Ogist, (&,40-1> 1 € )

where the factor W* cancels. The sum over A’ is bounded by a constant independent
of W because of the exponential decay. Therefore,

1
Tr (M) My, <K )] < K|J).
YANYANQW FE10)] rA(p)

Combining these estimates, we end up with the result. O

2.4.5. Summing up

In this section we will put together the estimates above to complete the proof. The large
factorials and combinatoric factors arising from the bound of the functional integral and
the sum over the cube positions will be controlled by fractions of the exponential decay of
G,4(5)CGy(s), while the non-exponential part will allow to sum over the vertex positions
1,7, k, k" inside each fixed cube. Finally the sum over the tree structure will be achieved
by a standard argument.

Reorganizing W factors. Before performing the estimates, we extract additional W
factors from G as follows:

1_[|Gq( quq| |quk’| |G ]q| 1_[ < 1/2>TA (2.4.11)

NeY

(InWw)1/2\"™
W (S)k&jq‘ H < W ) g
where we remember that d;, = 0 and r;, = 2 if [y ¢ J.

In
[ Ot | [

ln W lqkq

jeguilo}

Factorials. We extract a small fraction of the exponential to control finite powers of
factorials da!P. The number da counts the number of multi-link starting points ¢, and
endpoints j, inside A. Denoting by ¢o the first (smallest) index in this family, one can
see that for all ¢ > qo, the cubes containing the vertex k; are pairwise disjoint and
different from A. For d, large, more than half of these cubes have distance of order

W (In W)e/ leA/Q from A since we are in a finite dimensional space. Therefore we gain a
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factor of order exp(—(In W)/ 2dip) from the exponential decay of GC'G. A small fraction
from this beats finite powers of factorials in da and na:

T

1_[ e_5|iq_kq|/W e_s‘kq_k«“/W e—5|k;—jq|/W < H dAL'P < KA (2412)

nA!P/‘“
q=1 A AN

where we used na < 4da in the last step.

Applying Lemma [2.4.6, the bound of the factorials (2.4.12)) and the reorganization of
the W factors in ([2.4.11]), we have

[ [ (Ga()isk, 1Ok |G (8)iy3,1) [Erls] (g o)) (2.4.13)

Fmw)e [H o FADLDY W (A, aq)/W e—f’d(AA<q>,Ag>/W]

q=1

1
<Tm

W W) (1 7272 \ ™Mo 2 1 W)* (1 177)1/2
DI e R [ | R

deD {rj}jes jeg\{lo}

where f' = fm, — ¢ is the remaining mass, d(A, A’) is the distance between the centers
of the cubes A and A, and G and C are the prefactors of the exponential decay of G
and C' given by

Ci; =6 y KW 1n< L ) +0 Kln W

i—jl<— W* my |i—j]+1 li—j|> 2L WTT2[i—5[1/2
moy my

a w? w1 1
G 5ZJ1HW+5|-_ i< Wlnwln (mr |i—j\+1> +O. Wy
my

Sum over the vertex position inside each cube. Remember that Aq = (Ag, A, AY),
q=0,...r. Foreach Aq we call AA(q) the ancestor of Aq in the tree, and A 4., the cube

in A A(g) containing k4. Let us now fix the tree structure 7', the position of the above
cubes, and the multiplicities d € D.

Lemma 2.4.9. The sum over the vertex positions iq, jg, kg, ki, compatible with the above
constraints is bounded by

(Td)
D Gk CroryGrrjy < K*o(nW)™ [ KYW?(InW)™/2  (2.4.14)
g€l jeeN)  q=1 jeI\{lo}

quAq ,kgEAA(q)

Proof. Each multi-link consists of four vertices i, jg, kg, kq, where k, and k;, must belong

to different cubes while 7, and j, are arbitrary. For j = i, or j = j,, we say

e j is new in step ¢ if the ¢th multi-link extracts 7 and j was never extracted before.
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e j is old in step ¢ if the ¢th multi-link extracts 57 and j was already extracted.

Since the multi-indices d and the tree structure are fixed, the fact that j is old or new
is preserved when summing over its position inside the cubes. We consider the different
cases. Note that we only sum over i, and j, if they are new. If both ¢, and j, are of the
same type (old or new), we distribute the resulting factor to both indices. If one is old
and one is new, the resulting factor counts only for the new index.

a) iy # jq and both i, and j, are new. We sum over i, and jg:

Z Z é’iqkq Z é’qué 2 ékgjqészl(an)ga/Q*l

LPVAVIE PISTAVE kfleA% Ja€Djg

Therefore, we pay a factor W?2(In W)?/4=2 for 4, and the same factor for j,.
b) iy # j, and i, is new and j, is old. The same estimate holds for i, old and j, new.
Then we sum only over 4.

Z sz]q Z quk’ Z qukq KWQ(IHW)7Q/2_1.

k! eAk, kq€lk, 1g€DG

Hence, we need to bound a factor W2(In W)7/2=! for i, and no factor for j,,.
c) iy # jq and i, and j, are old. Then, i, and j, are both fixed and

D G W W D Gy, < K(InW)™

kg€, Ryl

where we bound équg < W=*In®> W. For both 4, and j, we collect a factor K (In W)".
d) i, = jq and iy is new. Then, we sum over i,

Z 2 C’qu; Z éiqkqékgiquWQ(an)Ba/Q

kqukq kl/ZEAk{] Z’qGAiq

and obtain a factor W2(In W)>*2 for i, and no factor for j,.
e) ig = jq and i, is old. Then, i, is fixed and

Z ququ 4ln W Z Gk/ < (IHW)

ke, k! eAk,
We gain a factor (In W)* for i, and j,. Note that for [y € 7, Iy is always old. m
Combining the products over j € J in - and m we obtain
I1 (—K““W) VS“W)”Q) CKYWA (I W) < T (—KODWI},U%“W)?’) L (24.15)
jeT\{lo} jeT\{lo}

77



where we used n; > 3 for all j € J,7 # lp. The point j = [y is special since n;, > 2. But
since the position [y is fixed, [y is always “old” and we obtain

ny,—2
(K(mW)a (_IHVVVV)W) © K (In W)y, (2.4.16)

Finally, we perform the sum over the multi-indices d and r, compatibles with the fixed
tree structure. The sum over r; = (rj(a),r;(b),r;(p),7;(p)) gives a factor K" since
;] < 3|d;| and X 7 |d;| = 2r. The sum over d; = (d;(a),d;(b),d;(p),d;(p)) can be
estimated by an integral over a simplex of length r, giving an additional factor K.

Combining these factors with ([2.4.15)) and (2.4.16) we obtain the bound ¢"~!, where
g = KWW W=1/3%¢ with 0 < € « 1/3, hence g « 1 for W large.

Sum over the cube position and the tree structure. For a fixed tree structure we
use the remaining exponential decay of GC'G to sum over the positions of the all cubes
inside A, for all 1 < ¢ < r, starting from the leafs (i.e. vertices with degree 1) and
going towards the root A\y. For each multi-link connecting a generalized cube Aq to
its ancestor A A(q) the position of A, A; and A;’ is summed over using the exponential
decay of GCG. This costs only a constant factor for each cube. Finally we pay a factor
3 to choose the position of the ancestor in A A(g)- We end up with

)| = Y K(nwW)® [1+2 > Zf Hdsq|MT

r=1T unordered orders

i

Integrating over the interpolating factors s cancels the last sum over the orders of the
trees (cf. [RivOl, Lemma ITLL]): X e §opr I [i=1 d8q[M7(s)| = 1. The remaining
sum is written as

degA0 degAiO -1
DIDIARESEDIDIVED SN B V2 N SE N BN SO
r=1 T r=2 T degA0>1 i0=1 degAi())l i1=1

where degx denotes the degree of the generalized cube A in the tree T. Since g « 1,
we can sum from the leaves towards the root using a standard procedure (cf. [DPS02,
Section 6.3.4]) and bound the sum above by a constant. It suffices to assume /g <
1/4 to make this procedure work. Hence Wy(«r) need to be chosen large enough that
KWW p=1/3+ < 1/16 for all W > Wy(a). Finally we estimate the sum over [, using
the exponential decay of |By,|. As a result

[ dnaa) 00| < 3 15

loEA
This proves the first part of Theorem [2.2.3]

K (mmw)e

(lo) In W
Fy71 < nW2
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2.4.6. Derivatives

Bounding the derivative is similar to the procedure above. Our starting point is

2, 2, B HBszm e

J1yesdn Lo,

Since the B factors control the sums over [y and over the j,,’s, we have only n remamm%
sums of l,...,1l, over the volume A. We observe that a cluster expansion of F (fay--ob
extracts only trees such that all indices [y, ...,l, are in the connected cluster. We can
extract a fraction of the exponential decay of GC'G to sum over the ’coarse’ position of
the ly, ..., l,, i.e. the position of the cubes containing the indices. Finally, to sum over
the index position inside each cube, we need to extract at least a factor (W?(In W)®)~*
for each ly,...,1,.

As mentioned above, applying the cluster expansion directly to F’ /(\lo""’l") is not enough
to extract this fine structure. Problems arise when two or more of the [;’s coincide and we
have contributions from [}, _, Str Oy, 0o, exp(V(M)) of the form (Str Opy,)"V(M;) with
n = 2. Since the lowest order contribution of V(M) is cubic, we obtain linear or constant
terms in M. Note that constant terms vanish, since (Str dy,)"Str M}' = §yn!Str1 = 0.
Linear terms may display a problem if a derivative of the cluster expansion falls on them.
In this case, we have no field factor left and we gain only only W~ (In W)'2 from the
derivative (cf. eq. ) of the cluster expansion, which is not enough for the fine
structure estimates.

In the special case ly, problems arise for terms of the form (Str dar, )" 0o, V(M;,), with
n = 1, since we obtain again linear or constant terms in a;,. For linear terms we have
the same problem as above. Note that also in this case the constant term vanishes since
the whole integral corresponds to the derivative of a constant (cf. proof of Lemma-
and Lemma 3)) except in the spe(nal case when n > 2 and all [ coincide. Indeed, in
this case the 1ntegra1 coincides with and hence yields one, but this is no problem
since we can sum over the remaining indices using the B factors.

To solve these problems, we apply integration by parts on the linear contributions of
the form Str M;, with [; # [y as in before performing the cluster expansion. Each
new B factor that we obtain ensures summation over at least one old index, while a
new index to be summed, coupled with an Strdy;, appears. Again, the derivative may
fall on the exponential exp(V(M)) (extracting a new term Str M? at lowest order) or a
prefactor Str M™ for n > 1. If n = 1 the integral vanishes by the same arguments as
above. For n = 2 we obtain a new linear term, where we need to perform integration by
parts. In all other cases we obtain enough fine structure. Note that the procedure ends
after at most 2n steps.

Again a derivative falling on another linear contribution vanishes since by the same
arguments as above. Therefore we end up with functional integrals of the form

Z J dpp(M Zko HStr M YD

keAVke kekC

79



where myg, = 1, my = 2 and |[K| < n. Note that again the index kg is special and
a constant term i.e. my, = 0 means the integral corresponds to the derivative of a
constant.

Applying here the cluster expansion yields a connected tree containing all indices
ko, ..., k,. We obtain a functional integral of the form

FE s i o)) = | im0 [ ]St 9ur, 0a,) | [Tt 2207

q=1 kel

and bound it similar to Lemma[2.4.6] Note that the indices ko, .. ., k, need to be treated
separately as [y before. We obtain ng, > 1 and n; > 2 for k£ € K. Since we sum later over
these indices, they are ’old’ and hence we obtain at least a total factor W~2+1) (In W)
Collecting all W contributions we get

Wzn(ln W)naW—(2n+1)(ln W)n eK(ln wHye _ W_l(ln W)n(a+1) eK(ln w)e <1

for W large enough (depending on n). Note that the first factor comes from the sum
over the index position inside each cube, and the last from the contribution of the root

cube (see end of Section [2.4.5)).

2.A. Supersymmetric Formalism

We will summarize the main ideas of the supersymmetric formalism (see [Efe99] for an
easy-to-read introduction and [Ber87] for a detailed description).

Definition 2.A.1 (Grassmann algebra). Let N € N and let V' be a vector space over a
field K with basis (ay, ..., ay) and denote the antisymmetric tensor product by

AV XV S VRV,

(v,w) = VAW =vW=—WV.

The corresponding Grassmann algebra is defined by

A:=PVF,

k>0

where V0 = K, V! = V and V¥ = V¥ 1 ®,, V for k > 2. This is an associative algebra
with unit. We distinguish between the subsets of even elements A = @, ., V2F and
odd elements A! := Do V2k+1 While the even elements form an algebra again, this
is not true for A'. Even elements commute with all elements in the Grassmann algebra
and are called Bosonic variables. On the other hand, two odd elements anticommute
and are called Fermionic (or Grassmann) variables.

The generators (ay, ..., ay) of A are Grassmann variables, and are provided with the
anticommutation property o;o; = —aja; for all ¢,5 = 1,..., N. Note that this directly
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implies a? = 0. Hence, any element in A is a finite polynomial of the form

N
floa,...,an) = fo+ Z 2 Jino i iy = QG

k=1 i1<...<ik
where fo, fi, . € Kand fy is called spectrum of f(ay,...,an).

Definition 2.A.2 (Grassmann integration). As a formal symbol we define the integral
over a Grassmann variable as S da; 1 =0 and S da; a; = —2 To define integration of
multiple variables, we assume Fubini’s theorem applies, but the differentials anticom-
mute.

Notation. To keep the notation as short as possible, we write for any two families (;)ier
and (&;)ser of Bosonic and/or Fermionic variables, the sum over the corresponding index

set I as ((,€) = Dics Gi&i-

Gaussian integral. We will often use the following Gaussian integral formulas. Let
x € R" and z € C". For M € C™*™ with positive definite Hermitian part,

J dxe” 3 (@, Mz) el®y) — —E/QLW e%(y,M_ly)
f dz dz e~ (BM2) o(0.2)+(Zw) _ 21" (5,M w)

where y,v,w € C" and the measures are usual Lebesgue product measures, i.e. dr =
[T, doy, dzdz =[], dz;dz and dZz;dz; = 2dRez; dlm 2. Note that the formulas
remain valid if we replace y;, v; and w; by even elements of A. A direct consequence of
the latter are the following identities

szdz e®M2) — B g szdz 2 7 e BM2) = o1 (2.A.1)

det M kl det M

Using Definition above, we obtain similar Fermionic formulas. Let (y;)I, and
(Xi)_, < A; be two families of the Grassmann variables, where the Y;’s are independent
of the x;’s. For an arbitrary M € C™*", we have

J dy dy e~ (GMx) _ (27) "™ det M, (2.A.9)
f dydy o~ (GMX) o(PX)+(XP) — (27) ™" det M e(,;nylp%

J d)z dX e_(X’MX) H Xi 1_[ )Zj = O—[L]5|]‘:|J| (QW)_ndetJ[M, (2A3)
el jed
where dydyx =[], dx; dx; and (p;)?; and (p;)!; < Ay are two families of Grassmann
variables. Moreover, oy is a sign, I,J < {1,...,n} are two index sets and det;; M is
the determinant of the minor of M where the rows with indices in J and the columns
with indices of I are crossed out.
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Supervectors and Supermatrices To combine real or complex variables with Grass-
mann ones, we introduce the notation of a supervector ® consisting of p Bosonic variable
X = (Xi)}_, € (A% and ¢ Fermionic variable o = (;;)_, € (A")? by

o (%)

A supermatriz is a linear transformation between supervectors, i.e.

. . a o
P =MP, M= <p b), (2.A.4)

where a,b are p x p and ¢ x ¢ matrices in Ay and o, p are p x ¢ and ¢ x p matrices in
A;. We denote supermatrices by bold face capital letters. For the supermatrix M, we
define the notation of a supertrace and a superdeterminant as

StrM :=Tra —Trb and Sdet M := det[a — ob 'p] det[b!]. (2.A.5)
Finally, the inverse of the supermatrix M is given by

M-! — (a—ob~tp)~t —(a—ob™tp)~tob™?
S\ =0 lpla—abTlp)Tt b+ 07 p(a —obip)Tlobt )

Let M be a supermatrix of the form (2.A.4)) and ® a supervector and ®* its adjoint

® = (;) and  ®* = (2, Y), (2.A.6)

where z € CP, x = (x;)j-; and X = (X;)j—, are again independent families of Grassmann
variables. We can write the superdeterminant as a Gaussian integral

f d®* d® e~ (®M®) — §det M, (2.A.7)

where d®*d® = dydydzdz. Below, we consider only the special case p = ¢ = 1.

2.B. Proof of Lemma 2.2.1]

We combine and to rewrite the Green’s function as a Gaussian integral.
Let X = (Xi)iea and X = ({;)iea be two families of Grassmann variables, z = (2;);en € C*
and ® = (@) er and * = (®F);ca two sets of supervectors defined as in (2.A.6). Using
the fact that (—i(E. — H))™! has positive definite Hermitian part, we write

S G (B = —i(2m) M det[—i(E. — H)] J Az dz 6CE—) Y 1 5
ke ke

= _Z‘J dP* dd e Zijen(Pis(3iBEe—Hij)®;) Z 262k, (2.B.1)
keA
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where the product measure is defined as in . Note that the bold face printed
E. and H;; are 2 x 2 supermatrices with diagonal entries F. and H,;, respectively, and
vanishing off-diagonal entries. Since the contribution of the random matrix H appears
only in the exponential, using a Hubbard-Stratonovitch transformation as in [DPS02,
Lemma 1], we can rewrite the average over H as

E [e_izi,jeA(&)i’Hithj)] — o3 Dijen Jis (PFO)(®FR) _ (=5 %, jep JisStr (@,0F)(2;0F) (2.B.2)

= J H dM; e_% S jen i Str [MiMy] e*iZjeA(‘i’jvl\/Ij‘I’j)7 (2.B.3)

jeA

where
M, = <aj ﬁj) and dM., = da;db;dp; dp;
i=\, j -= da; do; dp; dpyj,

(a;)jen and (bj)jen are families of real variables and (p;) e and (p;);jea are two families
of Grassmann variables.

The expression for the observable —i0 D pen 262k can be written as a derivative Y, 0,
of the second exponential in . Hence, applylng 1ntegrat10n by parts in the variables
aj, the derivative falls on the ﬁrst exponentlal in which yields >, .\ Scn o' @ =
Den @- Since the integral expression is still translatlon invariant in A, by relabeling
the indices we can now substitute the sum |A|™' >, _, a; by ao. This step simplifies the
integral compared to [DPS02, eq.(3.1)].

By , the integral over the supervector yields

|A|Z]EGA JHdMe Zisen L SU MM TT S et [E, — M;] !

keA JEA JEA

Finally, we insert the expressions for the supermatrix M and perform the integration

over the Grassmann variables applying (2.A.2). This proves (2.2.2)).
For (2.2.3), note that each E-derivative of (2.B.1)) results into i Y, _, Zk2k+ Xk Xk, Which

can be replaced by >}, Str M. Now, using the definition (2.4.3) with B replaced by
J, integration by parts in Str M, yields

f dpes (M)Str MF(M) = Y J; f dpy(M)Str ong, F(M), (2.B.4)
k
where
_ (G0 =0
o, = (G500 25

and F(M) is any smooth function such that the integral above exists.
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2.C. Estimates of the covariance

Let d = 2, A = Z? a finite cube, —A¥ the discrete Laplacian on A with periodic boundary

conditions and —A the discrete Laplacian on Z2. We consider the two covariances
CA = (=AL +m?)~! for the finite cube A and C* = (—A +m?)~! for Z2%, with m > 0.
We will prove the following result.

Lemma 2.C.1. The finite volume covariance C satisfies

K (srtey) #li-il<2
0<(Cp)iy < K m(lﬂlmfll)ﬂ .f’. j.| T (2.C.1)
Tz © if li—jl >+,
provided the mass is small 0 < m < 1 and m|A|Y? > 1. Moreover for all m < 1 the

diagonal part satisfies
(Cr)js = (Cin)js = Kiln(m™) + K
for some constants Ky, Ko > 0 uniformly in A.

Remark. The decay for J and C' in (2.3.2)) follow directly from this result. The same
holds for the complex covariance B since |B;;| < Cj; (see (2.C.6) below).

Proof. First we establish a series expansion and write CA as a series in C%. Using the
ideas of Salmhofer [Sal99] in the continuous case, we prove the desired decay for C°.
Finally we conclude that C2 has the same decay.

Step 1: Series expansion To compare C2 and C°, we can write the two Laplacians
as =AY =41, — N, and —A = 4132 — Ng2, where 1 is the identity matrix on A and
72, respectively, and N is the matrix with entries N;; = 1if |[i — j| = 1 and N;; = 0
otherwise. Note that one uses the periodic distance | - |p in the torus A in the case of

periodic boundary conditions. The covariances can then be written as a series

CA = (D - NP)~ 2 NEDTYE, G =) Dy (Ng DY (2.C.2)

k=0 k=0

where D = (4+m?)1, and Dz = (4+m?)1 2 are diagonal matrices. This representation
is obtained by iterating the identity

(A+B)'—A1'=-A"'B(A+B)"!

for matrices A and B with A and A + B invertible. To prove convergence, we use the
structure of NI and rewrite the sum as a sum over paths

- P k+1 - kyk+1 A 1
Y (DH(NFD™ Z IR EE P O} =T = <P

k=0 k=0 €&, [7|=k k=0
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where A = (4 +m?)~! and '} is the set of all paths from i to j in the torus A. In the
second step, we bound the number of paths from ¢ to j of length k by the number of all
paths of length & starting in i, i.e. 4¥. Therefore, the sum converges and is well-defined.
By the same arguments, we can write

C®).. = Z AL o
( m)ZJ ’YEFiZ]? ’

where FZ»Z; is the set of all paths from i to j in Z2. The formulas above imply directly that
(C2),(C%);; > 0. Now, we can identify each point x € Z? with a point & = x + n|A[Y/?
in A, where n € Z?. By identifying each path v € FZZ; in Z? with the corresponding
path in 5 € I‘é\j in the torus, we easily obtain (C%);; < (CA);;, hence the first part of
Lemma In order to get the inverse relation we need to characterize the paths in
Fg}, which cannot be identified with paths in FiZjQ. These are exactly the paths in Ff}
such that their corresponding paths in Z? do not end in j but rather in j, = j + n|A|2,
with n € Z*\{0}. These paths cross the boundary of the cube A in such a way that for
at least one of the 2 space dimensions the differences ny; and/or ny of the number of
crossings in positive and negative direction, respectively, is non-vanishing. We write

cu_zgm»wzzm%, (2.C.3)
nez? nez?

1/2

where j, = j + n|A|'/* as before.

Step 2: Decay of C;, We prove that C'° has the desired decay (2.C.1)) The proof is
similar to the proof in the continuous case in [Sal99, Lemma 1.10], but the expressions
become more complicated in the discrete case. We give a sketch of the main steps. By
its Fourier representations, the covariance for Z? can be written as
oilk,i—3) )
wmﬁzf : &, (2.C.4)
[—rm)2 2254 (1 —cosky) +m?

where k = (27)/|A|"?n. First, by rescaling k — mk, we obtain

im(k,i—j)
(ng)ij = f 9 2 °
[—n/ma/m]? 2m~2 3 (1 — cos(mk;)) + 1

We can assume that i; — j; = |is — j2| > 0. Considering the integrand as a function in
k1, there are two poles

2

ki = +il arcosh (— + 2 — cos (m/@)) = tir(kq)

of order one in the complex plain. Closing the integration contour for k; to the rectangle
with vertices —m™tm, m~'r, m~r +iy and —m 7 +iy such that the sign sgny(i; —7j;) =
1 and send |y| — o0, we can apply the residue theorem and the following integral in k
remains
T/m eimkz(iz—h) e—m(il —j1)r(k2)
(C;;?)Zj = 2WJ 5 . ) dkg <2C5)
—n/m — sinh arcosh (mT +2— Cos(mk:g))
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Using sinharcoshz = 4/22 —1 for z > 1, the absolute value of the integral can be
bounded by

m/ e—?“(k:g)t

M%Ms%[ s,

0 %\/(%2 —I—2—cos(7’nk'2))2 -1
where t = m|i — j|/2. Note that we showed above that (Cy);; = 0. Let us assume t > 1
first. The residual r(ky) is monotone increasing for ky € [0, m~'7| and bounded by

r(ky) > r(0) + ck2 =1+ O(m) +ck? if ky <1,
7 r0) + chy =1+ 0(m) + cky ifky > 1,

where c is independent of m and k;. One can bound the square root in the denominator
for all ky € [0, m™ 7] by

\/(’”72 +2—cos(mk2))2 —1>m.

Therefore, the integral is bounded by

1 T /m
(C;‘,?)U <Lret (J e—tck% dks, +J o tcks dk2>

0 1

—t 1 vt —ck2 1 e/ —ck
<2me 7% e 2dk2+¥ e "2 dks
0 t

2 * “ K
<l ot <J e~ dky + f e ck2 dk2> < —e
Vi 0 1 Vi
where in the last line we used ¢ > 1. This proves the second part of (2.C.1)). In the case
0 <t < 1, we perform first in (2.C.5) the change of variables

s=r(ky)t = ky(s) = - arccos (2 + mTQ — cosh (%)) :

Inserting the Jacobian

& _ sinh(%)

ds t\/l—(2+m72—cosh(%))2’
and repeating the arguments after (2.C.5)), we obtain

—S8

S1 e o] e—s
(Cﬁ'ﬁ)ijéf(f ds~Kf -
o /1 - (24 % — cosh ()’ ¢ VT2

ds ~ Klnt™,

where sg = 7(0)t and s; = r(7/m)t, and we used again m « 1. It remains to consider the
case i = j. Using the Fourier integral representation one can see that (C0);; < Klnm™,
hence we can change the bound for small distances to

(C2);; < KIn (%) if |i — j| <

1
(1+[i—=31) m
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Step 3: Conclusion In order to estimate , we divide the sum into two pieces:

(Ch)ig = X, (C)ij, = 2 Cise + Y, (CR)iju-

nez? neZ?:|n|<2 neZ?:n|>=2

For the first sum, note that (CA);; depends only on the distance |i — j|p and we can
assume that the periodic distance is reached inside the cube, i.e. |i —j|p = |i — j|. Then
we can estimate |i — j,| = |i — j| and therefore each covariance (C.);;, < (C);;. Since
the sum contains finitely terms, the first sum decays as C}° with a modified constant /K
in front. To control the second sum note that |i—j,| = maxy(n,—1)|A|"2 = |A|Y2 = m™!
for [n| = 2. Extracting the desired decay from each (C}7);;,, a fraction of the exponential
decay - remains in the sum that allows to perform the sum and yields a constant.

Finally, to prove the second part of Lemma [2.C.1} we partition the integration region
of into |k| < 1, and k|| > 1. The integral over the second region is bounded
below by a constant, while the the integral over the first region generates the Inm™!
contribution. O]

Remark. For the case of a complex mass as in B, note that we can apply the same series
expansion as in and estimate the absolute value by

18

e}
Byl < W2 ) [(DTH(NFD™H))y] < Z YNED YWY, = Cy, (2.C.6)

=
Il

0
where D is a diagonal matrix with entries 4 + (m? + im?)/W? and Re D = D.

Lemma 2.C.2. Let C € RV*N be a real symmetric matriz such that C~' > cld as
a quadratic form, for some ¢ > 0. Let B = (C~' +im1d)~!, with m € R. Then, the
restriction of B to any subset Y < {1,..., N}, satisfies Re (By)™! = cIdy for any choice
of m.

Proof. Using Schur’s complement, we can write
ReBy! = Cy — O Lo Ot o (Colye)? +m?)TIO5E, .
By assumption we have for all v € RY and w e RY"
(v, Cyyv) + (v, Cyyow) + (w, Cyé ) + (w, Cybyew) = c((v,v) + (w, w)).

Choosing w = Cycyc(( ;éyc)2 m?) 71O d voy U, We obtain an even better bound than

the desired result for Re (By)™!. O
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List of symbols

> ===

R

S >C)
Q +
—
mE 2
N—

E

QNkmtij

dpp (M)

QI Q

> DD =

i? k? k’"?j

c 72, discrete cube.

: A x A — C random band matrix.

band width.

averaged density of states in finite volume A.
Green’s function, z € C.

Wigner’s semicircle law.

= I/ + i€ energy with imaginary part.

initial covariance.

energy interval.

€ (0,1), parameter entering in the definition of the reference volume
in the cluster expansion.

e R" integration variables.

saddle points.

=& —i& = % —ir/1 — %2, value of saddle point a/.
new complex covariance, obtained after contour deformation.
new real covariance.

Gaussian measure with covariance J.

remainder in the functional integral after contour deformation.
diagonal matrix depending on a, b.

effective potential after contour deformation.

cubic Taylor remainder.

local observable, later O,, ,(a,b).

real and imaginary part of complex mass term 1 — £2 of C.

c RA x R?, partition of integration domain, s = 1,...5.
functional integral with local observable O,, ., restricted to I°.
= (M) jen set of 2 x 2 supermatrices.

set of Grassmann variables.

Gaussian measure in both complex and Grassmann variables.
effective potential depending on the supermatrix M.
inductively introduced interpolation parameters.

interpolated real covariance C(s);; = 5;;Cj-.

interpolated complex covariance (C'(s)™! + icpm?)~!.
propagator depending only on sy, ..., s,.

(Do, A, AT) generalized polymer.

ordered tree on generalized polymer Y.

cube in Z? of size W2(In ).

root cube containing 0.

= (A, A, A") generalized cube.

€ 72 indices summed over i € /', j e A" k' € A\, k € “old” cubes.

88



3. Supersymmetric Polar Coordinates
with applications to the Lloyd model

3.1. Introduction

A major open problem in mathematical physics is the existence of an Anderson transi-
tion in dimension three and higher for random Schrodinger operators. These operators
model transport in disordered media, a classical example being electrical conductivity in
metals with impurities. In this paper, we consider the quantum mechanical problem of
an electron moving on a lattice Z¢ and interacting with a random potential. The corre-
sponding mathematical model is the so-called discrete Random Schrodinger operator, or
Anderson’s tight binding model [And58], acting on the Hilbert space 12(Z%) and defined
by

H = —Azd + )\‘/,

where Agza is the lattice Laplacian (Av)(j) = 2. =1 (¥ () —¥(k)), and V' is a multi-
plication operator (V4)(j) = Vi1 (j). Here, {V}},cza is a collection of random variables
(independent or correlated) and A > 0 is a parameter expressing the strength of disor-
der. Physical information are encoded in the spectral properties of H. For a large class
of random potentials V' localization of the eigenfunctions has been proved in d = 1 for
arbitrary disorder and in d > 2 for large disorder or at the band edge. A localization -
delocalization transition has been proved on tree graphs, and is conjectured to hold on
74, for d = 3. A detailed up-to-date review on the model, known results and tools can
be found in the book by Aizenman and Warzel [AW15].

Finite volume criteria allow to reconstruct properties of H from the Green’s function
(or resolvent) of a finite volume approximation Hy, by taking the thermodynamic limit
A 1 Z%. More precisely, let A = Z? be a finite cube centered around the origin with
volume |A| = N. We define the Random Schrodinger operator Hy € I2(A) on A as

Hy = —A+ )V, (3.1.1)

where A = A, is the discrete Laplacian on A

(AY)(5) = Z (¥(k) —(j)) + eventual boundary terms.

keA:|j—k|=1

The relevant quantities are expressions of the form

E[GA(Zl)jl,k1 Ce GA<zn)jn,kn]7 (312)

89



where G (z) == (215 — Hy)™', 2 € C\o(H), and E denotes the average with respect to
the random vector V.
In particular the (averaged) density of states py(F) satisfies the relation,

JR : ! = (E)dE = L E[TrGa(2)]

hence (see for example [AW15] Section 4 and Appendix B])
_ N T :
pA(E) = = 51_1,%1+ E[Im Tr GA(FE + i€)],

where E € R. Regularity properties of px(FE) and its derivatives can be inferred from
the generating function

G.(BE,E)=E [det(@ i)ty = Hy | (3.1.3)
det((E + 28)]11\ — HA)
For example
Tr GA(E +i€) = —05G.(E, E)|s_p = 05G-(E, E)| 5_p. (3.1.4)

Information on the nature of the spectrum can be deduced from the thermodynamic
limit of

E[|GA(E +ie)ul’],  or  pao(E, E+w) =E[pa(E)pa(E + w)]

where the spectral parameter € and the energy difference w must be taken of order |A|™!.

A possible tool to analyse these objects is the so-called supersymmetric (SUSY) ap-
proach. It allows to rewrite averages of the form as an integral involving only the
Fourier transform of the probability distribution, at the cost of introducing Grassmann
variables in the intermediate steps. A short introduction on Grassmann variables and
their application in our context is given in Appendix [3.A] For more details see for exam-
ple the following monographs: [Var04l Ber87, [Weg16,[DeW92]. This formalism proved to
be especially useful in the case of random operators arising from quantum diffusion prob-
lems [Efe99]. The supersymmetric approach was applied with success to study Anderson
localization as well as phase transitions on tree-graphs [Wan01l, Bov90, [CK86, KMPS6].
All these applications are based on variations of the following key fact.

Theorem 3.1.1. Let Hy be as in Eq. and assume the V; are independent random
variables with probability measure p; such that Sv?duj(vj) < o V7, i.e., its Fourier
transform fi;(t) = (e ™idu;(v;) is twice differentiable with bounded first and second
derivatives.

Let A = A[{x;, X;i}jer}] be a Grassmann algebra, z € C* a family of complex variables
and set @ = (2, x;)", 5 = (;,X;) such that P10y = Zjz, + XXk is an even element
in A for all j, ke A. For any matriz A € CM*, we define

*AD == OUE (A, A)D = > Ay didy,

7,keA
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where diag (A, A) is a 2|A[ x 2|A] block diagonal matriz. In particular ®*® = >\ ®3P;.
Finally, for any even element a = by + ng in A° with n3 = 0 we define (cf. Eq. (3.A.2)))

fij(a) = E[eV] := fi5(ba) + ﬂ;(ba)na + %ﬂ;’(ba)ng (3.1.5)

Then the generating function (3.1.3) can be written as

G.(E,E) = f [dD* dP] e EHrA T 1, (AD3D;), (3.1.6)
JEA
wher6~we defined [d®* d®] = [, (2m) 7" dz;dz;dx;dy;, P*e® = e@*® and E =
diag (E1 x|, E1}y)) is a diagonal matriz. Moreover

EUGA(E + ZE)jk|2] _ J[dq)* dq)] [dci)* d(i)] ei@*(E“riE‘i’A)@*i‘i’*(E*’L’E“rA)‘i)

X 2iZ12k%, n/lj()\(q);q)j - i)}‘(f)]))

JEA

(3.1.7)

A similar representation holds for the two-point function ps(E, E)

Remark. In the formulas above both fi;(A(®*®;)) and ji;(A(®*®; — d*d;)) are well
defined. Indeed, the even elements a; := ®7®; and ap = ®7P; — é;@j, have nilpotent
part ng, = X;X; and n., = X;X; — X;jX;, respectively. The result then follows from

n2 =0=n} , together with Eq. (3.1.5).

Note that we have taken independent variables above only to simplify notations. In
the general case, the product of one-dimensional Fourier transforms is replaced by a joint
Fourier transform. The generalized formula will hold as long as the Fourier transform
admits enough derivatives.

Proof. We write G.(F, E) and E[|Ga(F + i) x|?] as a supersymmetric integral (cf. The-
orem [3.A.1))
g(E7 Ev) =K lj[d®* d(I)] ei@*(E‘i’iE‘i’A*)\V)‘I’
E[|GA(E +ig)ul*] =
E [Jv[dq)* d(I):I [d(i)* d(i)] ei(I)*(E+iE+A)\V)<I>i(f*(EiEJrA/\V)Ci)ijkzkzj]
This step holds for any choice of VV € R*. Note that we need two copies of SUSY variables

to represent E[|G(E + i€);,|?]. When du; admits two finite moments, we can move the
average inside. The result follows. O

The aim of this paper is to extend this representation to probability distributions
with less regularity. To this purpose we introduce a supersymmetric version of polar
coordinates which allows to reexpress V7% ®i ag ¢Vi%i where x; € R is a real variable.
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As a result, the formula can be extended to any probability distribution on N = |A| real
variables. In contrast to the ordinary ones, supersymmetric polar coordinates introduce
correction terms due to the boundary of the integration domain. The simple formula
above will then be replaced by a sum of integrals.

As a concrete example, we consider the so-called Lloyd model, with V' defined as
Vi = Yer TixWi, where {Wj}lren is a family of i.i.d. random variables with Cauchy
distribution du(z) = 771(1 + 2?)~'dx. The standard (uncorrelated) Lloyd model cor-
responds to Tj, = dj;. In this case the variables {V}}ca are independent and Cauchy
distributed. Note that dp(z) has no finite moments. For this model, the averaged
Green’s function (and hence the density of states) can be computed exactly whenever
Tjr = 0 Vj, k (non-negative correlation) [LIo69, [Sim83].

Using supersymmetric polar coordinates, we show here that for the non-negative lin-
early correlated Lloyd model Eq. and remain valid, with an appropriate
redefinition of (b, + n,). In this case, one can easily recover the exact formula for the
averaged Green’s function. The formula remains valid also in the case of linear negative
correlation, at the price of adding additional correction terms, due to boundary effects.

We expect the supersymmetric representation will help to study problems not yet
accessible via other tools, such as negative correlations or the two point function at weak
disorder. As a first test, we considered a simplified model with small negative correlations
localized on one site. For this toymodel we used the supersymmetric representation to
prove that the density of states remains in the vicinity of the exact formula. Our result
holds in any dimension and arbitrary volume.

Overview of this article. In Section[3.2] we state the main results of the paper, and give
some ideas about the proofs. More precisely, Section introduces supersymmetric
polar coordinates (Theorem [3.2.1)), with a general integrated function f, not necessarily
compactly supported. Applications to G.(E, E) and E[|Ga(E + ic);,|?] are given in
Theorem [3.2.2l The detailed proofs of both theorems can be found in Section [3.3] In
Subsection we consider the Lloyd model and give an application of the formula for
a simple toymodel. The corresponding proofs are in Section |3.4]

3.2. Main results

3.2.1. Supersymmetric polar coordinates

For an introduction to the supersymmetric formalism see Appendix
Consider first A[x, x] a Grassmann algebra with two generators. The idea of super-
symmetric polar coordinates is to transform between generators (Z, z, X, x) of Az 2(C)
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and (1,0, p, p) of Asa(R* x (0,27)) [ such that zz + Yy = r%. A reasonable change is

2(r,0, p, p) e”fg(?“ - %lﬁp)
= _ 2(T797157 IO) . e’ (7’— Eﬁp)
V(r,6,p.p) = x(r,0,p,p) | \Tp (82.1)
x(r,0,p,p) TP

Indeed, we have zz + xx = (r — 3pp)? + rpp = r°.

Note that 0 is a boundary point for polar coordinates since it maps R* x (0, 27) to
C\{0}. For functions with compact support in U = C\{0} a SUSY version of the standard
coordinate change formula applies, where the Jacobian is replaced by a Berezinian, c.f.
Theorem On the contrary, functions with f(0) # 0 have no compact support
in the domain U = C\{0} and we collect additional boundary terms as the following
theorem shows.

Theorem 3.2.1 (Supersymmetric polar coordinates). Let N € N, Ayy the complex
Grassmann algebra generated by {X;, X]}N L and {®7, @, }§V=1 a set of supervectors defined
as in Theoremm Let [ € .AQNQN( N be zntegmble, ie., all f; : CN — C are
integrable. Then

1) = | (a0t ae] p@r @)= 3 L) (3:22)
aef{0,1}V

with multiindex o and
I(f) = w—ll—alf (drdfdpdp)'= foW,(r6,p,p), (3.2.3)
(R+ x(0,27))
where (dr)l=® = Hj:aj=0 dr; and U, is given by YV, : (r,0,p,p) — (2,2, X, X) with

zj(r;,05, pj,pj) = 5ocj0 e’ i(rj — gﬁjpj)v

](T] s Pjs P ]) = 504]'0 e ( ry — %ﬁjﬁ)a

Xj (15,05, 05, p5) = dajo Vil

j(T]7 j7p]7p]) :5aj0\/77jﬁj~

Proof. See Section [3.3] O

Remark. For f compactly supported on C\{0} (this means in particular f(0) = 0), we
recover the result of Theorem [3.A.3] Namely for @ = 0, we obtain the right-hand side
of Theorem while all contributions from « # 0 vanish.

Example. To illustrate the idea behind the above result, consider the following simple
example. Let ¢ be the smooth compactly supported function ¢ : R — R, given by

—A=22P) i g < L

e if |z| <

p(x) = V2
0 otherwise.

Lef. Definition Note that p, p € A[¥, x].
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Note that ¢(0) = e~ # 0, hence f(z, 2, X, X) = ¢(Zz+ XX) is a smooth function without
compact support in C\{0}. By a straightforward computation, we have

I(f) - J [dd* dd] e~0-297 (1 — 2(1 — 252) 2y
2<%
1 % 21
= — er do 4r e’(1’2r2)_1(1 —2r?) 2 =e"h
27 J 0
where we expand the expression in the Grassmann variables and change to ordinary
polar coordinates after integrating over the Grassmann variables. Applying formulas

(3.2.2) and (3.2.3), we obtain directly

10 =7 | drdodpdp fou(0.p) 4 Fou(0) =
R+ x(

0,27)

where the first integral vanishes, since f o W is independent of p and p.

Now consider the generating function (3.1.3)). In the case of an integrable density
without other regularity conditions, we obtain the following result.

Theorem 3.2.2. Let A = Z% be a finite volume and Hy = —A + \V be the Schrédinger
operator introduced in Eq. (3.1.1), where {V;}jea is a family of real random variables

with integrable joint density p. Then the generating function (3.1.3) can be written as

G-(E,E) =) f (LY (A  jen ) om0 g © Wal(r,0,p,p)  (3.24)

ae{0,1}A Y (R x(0,2m)) 1=

where g(®*, @) = " EHE N — diag (B, Elps)) and [({\r?}jen) is the |Al-
dimensional, joint Fourier transform of . Similarly

E[|GA(E + i€)x|*]
= 2 T e (drd8dpdp) e (dFdfdpdp)

C}E%BK X (R* % (0,27))1—&
ael{0,

ﬂ({)\(?”? - 7’:]2')}]‘6/\)7’“:0:?5‘ g+ © \Ijoz(r7 07 Ps p) g o \P&(T7 97 P, P)»
where g-&-(q)*’ (I)) = %z ei®* (B+ic+A)® (0 7 g—(é*’ Ci)) _ g_jgk e—ii)*(E—ia—&-A)fB.

Idea of the proof. Again we write G.(E, E) and |GA(F + ie);x[* as a supersymmetric
integral (Theorem . Note that we need two copies of SUSY variables to represent
|GA(E + i€)jx|*. Taking the average inside at this point would cause problems. Hence
we apply first our polar-coordinate formula Theorem Since r is now real, the
expression E[e*2iY3"7] is the standard Fourier transform 1({Ar3}jen). Details can be
found in Section [3.3] O

94



3.2.2. Applications to the Lloyd model

As a concrete example, we consider the Lloyd model with linear correlated random
potentials, i.e. V; = >, Tj Wi, where W), ~ Cauchy(0, 1) are i.i.d. random variables,
,I‘jk :Tkj € R and Z]T}k > 0.

We discuss three cases:

1. the classical Lloyd model, where Tj; = ¢, hence V; ~ Cauchy(0, 1) are i.i.d.
2. the (positive) correlated Lloyd model, where Ty, > 0 with >}, Tj > 0.

3. a toymodel with single negative correlation, i.e. T}; = 1 and T5; = Tip = —62 with
0 <4 <1 and T}, = 0 otherwise. The indices 1 and 2 denote two fixed, nearest
neighbour points iy, € A with |iy —iy| = 1.

Proposition 3.2.3. When T}, = 0 for all j,k (Case 1. and 2. above) we have

where g(®*, ®) = ! E—e+X)® Lo the toymodel (Case 3. above) a similar formula
holds with additional correction terms. Precisely

G.(E.B)= Y L [dD* dD] h(0F, B) e S T/ L p(p)
B

pe{++,+—,—+}

where h(®*, @) = g(d*, D) e AU 2% e defined T™+ = (1 —6%)(1,1), Tt~ = (1 +
62)(1,—1) and T~ = (1 + 6*)(—1,1) and

Tip ={zeCV 8|z < |z <|zl|/d),
T, ={zeC":|z| > ||/}, (3.2.5)
T ={2eCV:|z| < d|zl}

Moreover, the additional boundary term is given by
R(h) = — = dry d6; dbs[ AD* dD] h o Uyy(ry, Oy, 0o, D*, D)

T2 JRet x(0,2m)2 (3.2.6)
« Ared? [e—x(1—54)T§ > e—)\(1—54)62r§] 7

where ® = (®;)jeag1,2y and
ewl 5T2 6102 7”2)

‘1112(7“2,91,92) = ((I)l,%) = < 0 0

The same formulas hold for B[ Tr G (E+ic)] with g replaced by g1 (®*, @) = 3, |2 I H(Biet M)
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Idea of the proof. We use the representation from Theorem and insert the Fourier
transform of the given density. For non-negative correlations we can then undo the
coordinate change. When negative correlations are present this operation generates
additional correction terms. For details see Section 3.4l O

In the case of non-negative correlations we recover exact formulas, as follows.

Theorem 3.2.4. Let Tj, = ;i (classical Lloyd model). We have

det((E + iN)1y — H)

limG.(E, E) = - , 3.2.7
e—0 ( ) det((E + i\)1y — Hp) ( )

where Hy = —A. In particular
lim B[Tr GA(E + i€)] = Tr ((E + i\l — Hy)™t. (3.2.8)

For Ty, = 0 (non-negative correlation) Eq. and still hold, with A,
replaced by the diagonal matriz AT, where Tij = 0i5 2. Tik-

In particular both, the classical and the (positive) correlated Lloyd model have the same
(averaged) density of states as the free Laplacian Hy = —A with imaginary mass \ and
)\T, respectively.

Idea of the proof. Follows from Proposition [3.2.3] For details see Section [3.4] [

Note that the results on the density of states above can be derived also by other
methods (cf. [LIo69] and [Sim8&3]).

In the case of localized negative correlation (the toymodel in Case 3. above) we obtain
the following result.

Theorem 3.2.5 (Toymodel). Consider T, be as in Case 3. above, A >0 and 0 < § <
(1+A"Y)~L. Then

i E[Tr Ga (E + ie)] =
Tr (E1y + NI — Ho)™! [1 + 0((5(1 + xl)f) + o<|A|—1)] .

Idea of the proof. Follows from Proposition by integrating first over the uncor-
related variables in A and estimating the remaining integral. For details see Section

3.4 O

3.3. Supersymmetric polar coordinates

3.3.1. Proof of Theorem [3.2.1]

Proof of Theorem[3.2.1. The idea is to apply the coordinate change ¥ from Eq. (3.2.1)
for each j € {0,..., N}. To simplify the procedure, we divide it into W; o Wy 0 U3, where
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U, is a change from ordinary polar coordinates into complex variables, ¥, rescales the
odd variables and W3 translates the radii into super space. Note that only the last step
mixes ordinary and Grassmann variables and produces boundary terms.

We first change the complex variables z;, z; for all j into polar coordinates

Yy 2 (0,00) x [0,27) — C\{0}
(r,0) — 2(r,0), z;(r;,0;) =r;e% Vi

The Jacobian is ]_[;V:I 2r; and by an ordinary change of variables

1 N
I(f) = —= drdfdyd 2r; Wy (r,0,x
() (2m)N f(wx(o,zw))zv g X XH ri J o 8,% X);

j=1

where WU, = 11 x 1. Note that no boundary terms arise. Now we rescale the odd variables
by

_ i _ Xi(Pjs pj) = \/TiP; :
Ualp.p) = (X ) xpop)) PPNy
Xi(Pj: p3) = \/Tip;
There are again no boundary terms since we have a purely odd transformation. The
Berezinian is given by Hj\;l rj’l. Since 15 is a linear transformation, this can also be
computed directly. This cancels with the Jacobian from Wy up to a constant. Hence

1
I(f):_ drdedﬁdpfoqjlo\IIQ(r707157p)7

N (R+ x(0,2m))N¥
where Wy = 1 x 9. After these transformations, we have Z;z; + X;X; = 75 + 750;p; =
(rj + 3pjp;)%. We set Ws(r,0, p, p) = (r — $pp, 0, p,p). Hence U = Uy 0 Uy 0 Uy is the ¥
from Eq. (3.2.1)):

zj I " rie’’ = (r; — 1pjp;) €,
oo I NGO rj = 3PiPi P = \/TiPi-
We expand f = f oW 0 Uy 0 Uy as follows
foW oWy(r,0,p.p) = f(r +%,0.0,p) = >, (%) 02 f(r,0,p.p). (3.3.1)
ae{0,1}N

Note that we can set p; = 0 and p; = 0 for a; = 1 in 67?‘];. We use the short-hand notation
0% f(r,0,p, p)|se=po—o. Inserting this into the integral I and applying integration by parts
in r%, we obtain

1) = | drdgdpdp S 2719 (5p)° 30 f(r, 6,5, ) (3:32)
(R+ x (0,27))N

ae{0,1}V

- Z ﬁj‘ (dr)lia d&(dpdp)lf"‘f(r,e,ﬁ, p)’r‘l:ﬁa:pa:()a
(RF) =

N
ae{0,1}¥ 0,2m)
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where we applied Sw)a (dr)*02 f = (—1) flyazo and §(dpdp)*(pp)® = (—1)*. Note that

f(r,0,p, p)|re—pa—pe_g = f oW, is independent of §; for a; = 1 and we can integrate
§(d@) = (2m)l°l. This proves the theorem. O

3.3.2. Proof of Theorem [3.2.2
Proof of Theorem[3.2.3. Applying Theorem 1|to G.(E, E) yields

g-(E, E) =E[ J [dD* dD] i (Brie-AV+A)0 }

Note that we cannot interchange the average with the integral, since the average of the
supersymmetric expression e*®*V® may be ill-defined if infinite moments are present.
But after applying Theorem we get

E)=> n g U(Wx(drdegﬁdp) e Vg0 W, (T,H,ﬁ,p)1,

ae{0,1}A (0,2m))1=
where g(®*, @) = '®*(E+E+A)®  Now we can take the average inside the integral. The

same arguments hold for E[|Gx(E + i) jx|*]. O

3.4. Applications to the Lloyd model
3.4.1. Proof of Proposition [3.2.3]

We will need the following well-known result for the proof of the proposition.

Lemma 3.4.1. Let A ~ Cauchy(0,1) and t € R. Then E[e4] = eIt

itx

Proof. Let t = 0. We take the principal value and apply the residue theorem.
e

itx eitm dx
lim ——— v do = lim |27iRes; 5 —f | = et
R—w Ji_p g (1 + 2?) R— m(1+2%) ), m(1+2?)

where (s) = Re' for s € [0,7]. The case t < 0 follows analogously by closing the
contour from below. O]

Proof of Proposition[3.2.3 Starting from the representation (3.2.4) of Theorem [3.2.2]
we use Lemma [3.4.7] to determine the Fourier transform

ﬂ({Ar?}]EA) = E[ei)‘Zj,ijkar?] — e*Zk A'Zj Tjkr‘?"

As long as r; € R, this is well-defined and the integral remains finite for arbitrary
correlation 7. When T}, > 0 for all j, k, we can drop the absolute value and obtain

ﬂ<{/\rj2'}jeA) = e X AN T} = froVy,
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where fi(®*, @) = exp[— 3, A 2, Tj®3®;] is a smooth, integrable function in Azy on (CV),
which can be transformed back to ordinary supersymmetric coordinates by Theorem
B21

In the case of the toymodel, our function is continuous but only piecewise smooth. We
partition the integration domain into regions, where our function is smooth. In polar
coordinates the regions become

Ty ={0<dry <r < 2} x (0, 00) M2 ={re (0,00)": 0ry <1 < 21,
T ={0< % <r}x (0,00)"0 ={re 0.0 n >},
T, ={0 <7 <dry} x (0,00)M12 ={r e (0,00)" : r; < ory}.

Hence (0,0)" can be written as the disjoint union Z,, U Z,_ U Z_, U N, where N is
a set of measure 0. Using 7% defined above, we can write

Z 7T1°‘|J (d’r’dé’dpdp)1 *w({ A3} jen) [ramo g 0 Wal(r, 0, p, p)

ae{0,1}2 (RFx(0,2m)) 1~
XN e[ (drdsdpde (@l
B ae{0,1}A R+ x(0,2m))1—

“A(bay0r2TP +60,0r2TS -
X e (GayoriTy 2072 2)ho\Ija<T;0:p7p)u

where 3 € {++,+—, —+} and h(®*, @) = g(D*, ®)e *ir12 ®7% is independent of 3.
Finally, x(Z3) is the characteristic function of Zg and r® = 0 means r; = 0 for a; = 1.

To transform back we need to repeat the proof of Theorem on the different
domains. Consider the integral

I :ZL [dD* dD] h(D*, D) e A 21 T 2%
B

where T are the corresponding subsets of C* (cf. Eq. ) We will show that
inserting polar coordinates in I5, we recover [; plus some correction terms. In each
region, the integrated function is smooth and we can apply the first two transformations
W, and W, from the proof of Theorem and obtain

= Al ZJ drdfdpdp e A T o Uy 0 Uy(r, 6, p, p).

Zgx(0,2m)IAl

Replacing as in Eq. (3.3.1)) the integrand by the Taylor-expansion of fs = e A i1 (T)ir] h,
with h = ho W o ¥y 0 U3, we obtain

I, = Z 1., where

ae{0,1}7

1 _ — N Ao f =
Lo = 7 2, g 00 G0 25t
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Applying now integration by parts as in Eq. (3.3.2) generates additional boundary
terms. More precisely, when oy = ap = 0, no derivatives in r; and 7, appear and
Ts = Iz x (0,00)"\ {12 Hence no additional terms arise and

I = n -l ZJ (drdfdpdp)' = e Zi=1Tolmix(Ts) ho Wu(r,0, 5, p).
3 J(R¥x(0,2m))t—

For a; = 1 and ay = 0 (or vice versa), additional boundary terms do appear but cancel
since the function is continuous:

—1 2 B,.2
I, = drdfdadp (5p)* 0, [hm) 0.5, _Azjle.rj]
mih2e ;Lmo,zﬂf pdp (pp)" . (r.0,p,p)e ’

r1=07T2

1 .
J drdfdpdp (pp)* [h(“) e T *T?]
(RH)IAI=1x(

7T|A|2‘O‘| 0,271')‘[\'

+ [hw e—AZ?leﬁrf]

r1=0

nenl [h(a) e—AZiqT;*r?]n:w

r1=0r2 r1=rg/d

1 —
- —f d7 0 dpdp (pp)*h|,, g e 7,
(RH)IAI=1 5 (

— rlAlel 0.2m) 1A
where dt = [T, drj and A® = @%h and &; = a; for all j # 1,2, & = dy = 0.
Note that in the second step all terms except the first one cancel because of continuity:
2 — 2 2 2 _

Zj:lTj +T?|r1=5rz = Zj:l 7}*+r]2‘|r1=5r2 and Zj:l 7—‘]*+T]2‘|r1:r2/6 = Zj:l Tj+ T32‘|r1=r2/6-
We can apply now integration by parts for r® as before. Note that for r; = 0 the sets
Z., =7, = ¢ and we obtain only contributions from the set Z_, = {ry € R*} which
is the same as writing .5 X(Z3)|r =o-

When oy = as = 1, we obtain additional boundary terms which do not cancel. Applying
integration by parts in ry, we need to evaluate

Ory [ e—AZle(Tﬂ)ﬂ?] = (00, h( ) — AT ryh (@) oA i=1(Ts);73

on the different boundaries. The contributions of &,,h(® e Zi=1(T)i7] cancel as above
by continuity except for the term at r; = 0. The contributions from the second summand
remain:

1 2 = ~ o a) —AY? ir?
Lo = a0 Jz (0,2 1A drdfdpdp (pp)"r v, [h( R ?]
ﬁ B X (U,2m

1 - 2
f drdf dpdp (pp)*ér, [_ 1(0) o= AT %]
(R+) 1AL x(

7T|A‘2|a| 0,271')|A‘

where R, (h) is the remaining part defined below in Eq. (3.4.1)). In the first integral, we
can apply integration by parts in 75 and r® as before and the result is independent of 3.
It remains to consider

1
Ra(h) = — f did9 dpdp (pp)* 2\rs (3.4.1)
7T|A‘2|01| (R+)‘A|_1X(O,27T)‘A‘

Ra(h),
4 Ra(h)

r1=

[ (7 Ty ) N0y O (1 Ty ) 007
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Here, we can integrate over r“, but the integral over r, remains:

R (h) = —w—l—dlf (drd6)*=%(dpdp)t= dry db; dfy Ars

(Rt x(0,2m))1—& xR+ x (0,27)2

(1-5%)

r2 7 —A(1—6%)6—2r2
2 + h|7«d:ﬁa:pa:0ﬂ«1:r2/5e ( ) 2] .

7 2 -\
X |:h|7“d:ﬁ°‘:pa:0,7“1:5’r‘25 €
By rescaling the second term 7y — §%75, we obtain

L—I ==Y a1 J (drdf)'=%(dpdp)t=dry dé; dés,
& (Rt x(0,27))

1-a xR+ x(0,2m)2

X Ar90° iL| [e_’\(l_54)r§ + 62 e_A(l_‘sLl)‘sQT%] )

r&=pr=p*=0,r1 =07y

Note that we can transform the variables of A\{1, 2} back to flat coordinates by Theorem
and obtain Iy — I; = R(h) that finishes the proof. O

3.4.2. Proof of Theorem 3.2.4
Proof of Theorem[3.2.4] We start from the result of Propostion [3.2.3]

In both models, the classical and the positive correlated one, we have Tj, > 0 and
> Tk > 0, hence the body of A )] ; Tji®; @ is strictly positive except on a set of measure
0. We end up with

G.(E,F) = J[d@* do| ei¢*(E+ia+i)\T+A)<I>’

where we can take the average ¢ — 0 and go back to the original representation. ]

3.4.3. Proof of Theorem [3.2.5
Proof of Theorem[3.2.5. Using Eq. (3.1.4)) and the result of Proposition [3.2.3] we get

]E[TI‘ GA(E + 28)] _ E[ J‘[d(p* dq)] ei<1>*(E+isf/\V+A)‘1> Z ’Zj|2]
JEA
- I++ + [+7 + [7+ + R(h)
where for § = (++), (+—) or (—+) we have
Iy = J [dD* dD] i®* (Etie+A)® Z \zj|2 NS IR S 5oL SRS AU ‘1’:@’“),
Ig JeEA

and for h(®*, @) = 3. |2|? e M Lir12 7P @i®* (E-ist M) tho remainder R(h) is defined in
Eq. (3.2.6).
We will show that the main contribution comes from Z,, and indeed

body (T ®*®, + Tp T ®idy) = (1 — 6%)[|21]* + [22*] > 0 V(z1, 22) # (0,0).

In the following we show that I, and I_,, as well as R(h) are small in terms of 4.
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Analysis of the Iz terms. Integrating out the Grassmann variables, we obtain for all

B

Iz = f dz dzZ |2,]? det [%] e~ #(Cate)z.
Ip

jeA

where C has the block structure

—DT B
B = (/\ — Z(E + A))\A\{I,Z}a DT = (dl, dg), (342)

Cy = < A _@D) , Ag = Ag+ Miag T’ Ay = —i(E + A)|jg

and we defined the vectors di,dy € RMY2 as di () = 8,11, do(j) = 6jiy—ji1, Where
11,1 are the positions of 1,2. Note that the blocks B and D are independent of 5 and
Re B > 0. On the contrary Re Cs > 0 holds only for 5 = (+,+). We set then € = 0 in
our formulas and reorganize I, , + I, + I_, as follows

Uop + 14+ 1 )0 = J dz dzz ’Zj‘z det [%] e 7C0++2

jeh
+ L - dzdzj;\|zj|2 (det| G| o720 — det | Gz | o720
+ L_+ dz dzj%:X |2 (det [%] e 70=+% _ det [%] e_‘zc**Z)
=TrC’+i+J (---)+J () =TrC (146 +E.)
T, an

To estimate £,_ and £_,, we integrate over the variables w = (2;);jea j-12 exactly. We
define z = (2, w), 2 = (21, 22). Then

2052 = WBw — iwD's — iZDw + 2As2,

MlglP =22+ > |wl

jJeEA leA\{1,2}

Integrating over w we get
f dw dw det [ 2] e7*P* oD EEDY (i, 4 3 2)
— ¢ PBTDH Ty BT _ZDBTAD: 4 38) = e FPB TP (e BTN 4 ZM2),
where we defined M := 1—DB™2DT. Then for 8 = (+-),(—+) and 8/ = for 8’ = (++)

we have
_ ol —zc.,
L dz dz det [%] e s zZ |2
5

jJeA

- J dZdzdet [ 32| o552 (T B!+ 2M5)
Is
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where Sy = Ag + DB™'D” is the Schur complement of the 2 x 2 block of Cz corre-
sponding to 1,2. We also used det C's = det B det Sg. We consider now the error term
E_,. The error term &£, _ works analogously. From the results above we get

1 ) o1 . ol so
E = —1J dzdz ) |z (det [;;] e *0-+% _ det [%] e ” ++Z>
Tr C++ T_. ];\ 2 2
- f A2 d2 det | S | oo #5e0s AN (05X qog(1 4+ S11X) — 1),
|z1]<6]22] T

where we used S7} invertible and we defined

-1 0

X::A_+—A++:2>\(O 52

> , hence 2X2% = 2\(6%|2)? — |21]?) > 0.
Now we change the coordinate z; to v = 2125 1§=1. As a short-hand notation write
S =S5,4. We have
282 = |2)*(v*Sv), EM2 = |’V My, (X2 = |nA(vXV),
where v = (0v,1)" and v* = (61, 1). Note that Re S > 0 and
(V*Xv) = 206%(1 — [v]?) = 0, (3.4.3)

therefore we can perform the integral over z5 exactly

= - —|22|2v*Sv Tr B~} 2vEM
E_, =det [_QS]J Az, dzy AT dv 6%|2y|? e l2ViSVEE +lzal vEMY
s Tr C
lv]<1 T

X (e"”'QV*XV det(1+ S7'X) — 1)

:5QJ do dv [TIBI< det(S+X)  detS )
wet 20 [Tr O \(v¥(S+ X)v)2  (v¥Sv)?
2v*]\{v ( det(S+X)  detS )]

TrCt \(v¥(S+X)v)3  (v*Sv)3

:52J dodv <( det(S + X) det S

v <1

_ AL
27 vi(S + X)v)? (V*SV)2> + O(IAI™),
where we applied Lemma below and

Tr B! B TrSTAM

— =1 — — 1+ 0(A™Y. 3.4.4
Trot Tt (1A (3.4.4)
Applying Lemma again, together with Eq. (3.4.3) we get

det(S+X)  detS (v*Xv)det S lQ N (V*Xv)]
(v¥(S+ X)v)2  (vSv)2  (v¥(S + X)v)2(v*Sv) (v*Sv)

X119 + X251 + X11Xog 1 2 1
T gt _(9((1+A2)[1+5(1+A2)]).
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Analysis of R(h). Note that we can set e = 0 in R(h). By the notations in Eq. (3.4.2),
we can write

R(h)=— % dry df db,[ dd* d<I>])\r252[ MI-6r3 | 52 (~A(1-54)%r ]

R+ x(0,2m)2

_d¥Bd 4 “DT = 25
% ((1 _'_52)7,,% +Z’w]‘2> e d*Bd ezrg(wD vg+ngw)e 7"2119A0v9’

where v§ = (€15, ¥2). Integrating over the Grassmann variables, we obtain

R(h) =— dry A6, dby did dwrryd? [e_)‘(l_54)"§ + 02 e—A<1—64>62r§]

R+ x (0,2m)2
J

Define Sy = Ay + DB~'D”. Integrating over w and ry, we obtain

R(h) __ 1 _1 f d?”g d@l d¢92/\7"252 [ —A(1-8%)r2 + 52 —A(1-6%)62%r3 2:|
R+ x(

1 2 Tr o
TrC L o, 0,27)2

_ 25
x (UgMugrs + Tr B™1) e 727050

_ 1 TwB™?t 62 1 52
o w2 Tr C_ J(O 9 ?91 d62 I:)\(l—54)+’l7950vg + )\62(1—64)+179$0v9:|
us

- L 262 BgMug 1 62
foz d6y A6 %5~ TeC, L | (\1=8%)+09S0vs)? t Be2(1=0%)+7e500)” | -
Tl'

Similar to the estimates above, we insert absolute values and use Lemma and Eq.
(3.4.4) to bound the first term by 6(1+ O(|A|™!)) and the second one by §2O(A7HA|™1).
O

Lemma 3.4.2. Let n > 0 and py = Let B,M,C,, and S, . be the matrices in

the proof above. Set 0 < § < % Then

>\+4d n -

|B 1| < )\ e~ =il gnd Re (f* 1f) > o 2HfH2 Vfe CA1.2}

Al
|T1“C++’ = ﬁ

3. Re (f*Ssf) = 3| f|* Vf e CME2 Moreover
|(S41)jkl < KA+ %) forall j,k =1,2.

Proof. (i) We have B = i(=Aja\q1,2; — (E 4+ 4))). The upper bound follows by Combes-
Thomas [AW15][Sect 10.3]. For the lower bound note that

[*ReB~'f = X| B~ f|?
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Moreover |Bg|? = N|g|]> + ¢*(E + Ani21)g < (A* + (4d)?)||lg|?. The result follows
setting g = B71f.

(43) As in (i) above f*Re C71 f = A(1—62)||CLL f|?. We can write C = A — 6?15 —
i(E + A), where 1, 5 is the diagonal matrix (112);; = 0;;[dj;, + 0;i,]. Hence

C*,Chp = (A= A%112) + (B + A)? +iX6* [0, A

The result follows by inserting this decomposition in ||C g|? for g = C1 f.
(77i) Using (i) we have

Re f*Sf = A1 = 82)|£|2 + Re F*DBD'f > A(1 — 82| 1.

The upper bound follows from (i) too. O

3.A. Super analysis

We collect here only a minimal set of definitions for our purpose. For details, see
[Ber87, Var04l, [Weg16], DeW92].

3.A.1. Basic definitions

Let ¢ e N. Let A=A, = A[x1, ..., Xq] be the Grassmann algebra over C generated by
X1, -5 Xqgs 1.€.

A=,V

where V is the complex vector space with basis (x1,...,X,), V? =Cand VJ = V7t AV
for j > 2 with the anticommutative product A

Xi N X5 = —X5 N Xi

As a short hand notation, we write in the following x;x; = x; A x; and for I < {1,..., ¢}
denote ! = de X; the ordered product of the y; with j € I. Then each a € A has the
form

a= Z arx’, (3.A.1)
IeP(q)

where P(q) is the power set of {1,...,q} and a; € C for all I € P(q). We distinguish
even and odd elements A = A° @ A!, where

AO _ @llq:/gjv%’ Al _ @llq:/gJVQH_l

The parity operator p for homogeneous (i.e. purely even, resp. purely odd) elements is

defined by
(@) 0 ifae A°
a) =
b 1 ifae Al
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Note that even elements commute with all elements in A and two odd elements anti-
commute. For an even element a € A°, we write a = b, + n,, where n, is the nilpotent
part and b, = ag € C is called the body of a.

Let U < R open. For any function f e C*(U), we define

f: A A
a— f(a) = f(by +ng) :Ekl a)n” (3:4.2)

via its Taylor expansion. Note that the sum above is always finite.

3.A.2. Differentiation
Let I’ ¢ I. We define the signs o;(I,I’) and o,.(I,I’) via

!

X' =a(L "X X' =0 (I, )X

Then the left- resp. right-derivative of an element a of the form (3.A.1)) is defined as

0 . -
Za= N a4,
Xj IeP(q):jel
i ‘ A
vl > ar oI {5}) X"
Xj IeP(q):jel

3.A.3. Integration
The integration over a subset of (odd) generators x;, j € I is defined by

s\ I
0
J - (a) o= S

JeP(q):IcJ

where a has the form (3.A.1)) and dy! =[] jer dx; 1s again a ordered product. Note that
the one forms dy; are anticommutative objects and e.g. | dx; dx;xix; = — § dxa dxsxxi =
—1.

Gaussian integral. There is a useful Gaussian integral formula for Grassmann vari-
ables. We rename our basis as (x1,- ., Xqg, X1 - - - Xq)- Lhen for M e C?*¢

f dy dy e 2 XiMiaXs = det M, (3.A.3)

where dydy = ]_[3:1 dy; dx;. Combining this with complex Gaussian integral formulas,
we obtain the following result.
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Theorem 3.A.1 (Supersymmetric integral representation). Let Ay, Ay € C™™™ with

ReA; > 0. Let ® = (z,x)" € C*" x V™ be a supervector and ®* = (z,y) € C" x

V™ its transpose. With the notations [d®*d®] = (2r) " dzdzdydyx and P*Ad =

Dike Zi (A1) jrz + X (A2)jkxs for a block matriz A = (%1 12 ) (a supermatriz with
’ 2

odd parts 0) we can write

det AQ
det Al

— J [dD* dP] e~ ® A%
and

(Al_l)jk = f[d¢* d(I)] ZkZ] <1>*A1q>,

where 1211 = <fé1 j )
1

Proof. Combine Eq. (3.A.3) with the complex Gaussian integral formulas

det Al
(2m)"

1 _
det A, = WJ dzdz e—zA1z’ (A1_1>]k =

J dzdz zz; e 7,

Note that while Eq. (3.A.3)) holds for all matrices A € C™*™, we need the additional
condition Re A > 0 for the complex ones to ensure that the complex integral is finite. [

3.A.4. Grassmann algebra functions and change of variables
In this section, we denote the body of an even element a by b(a) instead of b,.

Definition 3.A.2. Let U < R? open. The algebra of smooth A[x1, ..., Xq]-valued func-
tions on a domain U is defined by

Apg(U) =1 = flz,X) Z fri@)x": fre C*(U)

IeP(q)

We call y;(x, x), n;(z,x), fori =1,...p,j =1,...,q generators of A,,(U) if p(y;) = 0,
p(n;) = 1 and

L. {(b(y1(x,0)),...,b(yy(z,0))),z € U} is a domain in R?,
2. we can write all f e A, ,(U) as f =3, fry)n’

Note that (z,x) are generators for A, ,(U).

A change of variables is then a parity preserving transformation between systems
of generators of A, ,(U). A practical change of variable formula for super integrals is
currently only known for functions with compact support, i.e. functions f € A, ,(U)
such that f; € C*(U) for all I € P(q).
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Theorem 3.A.3. Let U < R? open, x,x and y(x,x), n(z,x) two sets of generators of
A, ,(U). Denote the isomorphism between the generators by

¥ (@, x) = (@, ), n(z, X))
and V = b((U)) = {(b(y1(z,0)),...,b(yp(x,0))),x € U}. Then for all f e A, (V) with

compact support, we have

f dydnf(y,n) = f dzdxf o (z, x)Sdet (J),
1% U

where Sdet (Jv) is called the Berezinian defined by

Jy 0
_,1' y_ a o _ _
J = <gn <—‘9$<> , Sdet (p b) = det(a —ob 'p)det bt

Moy
Integration over even elements x and y means integration over the body b(x) and b(y) in
the corresponding regions U and V.

Proof. See [Ber87, Theorem 2.1] or [Var04, Theorem 4.6.1]. O]

Remark. Applying an isomorphism v that changes only the odd elements, Theorem
holds also for smooth, integrable functions that are not necessarily compactly
supported. Changing also the even elements for a non compactly supported function,
boundary integrals can occur.
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