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Summary

Randomness and chaos are key ingredients in the description of nature and are there-
fore central elements in mathematics and physics. A conducting metal becomes an
insulator if there are enough random defects in its structure. This phase transition
generated by randomness (also called Anderson transition [And58]) is a central point
of study. It is an unproven conjecture that in dimension d ě 3 there is such a phase
transition between diffusive and isolated states while in d “ 1 there are proofs that only
localization occurs.

This doctoral thesis provides insights into supersymmetric methods relevant for the
study of two prominent random matrix models describing disordered materials: random
Schrödinger operators and random band matrices.

The main idea in the following is - using the supersymmetric approach - to establish
dual representations for the quantity of interest, which in turn can be studied via analytic
tools, inspired by statistical mechanics.

Chapter 1 provides an introduction to supersymmetry, summarizing main definitions
and results. We present basic properties of the two random matrix models mentioned
above. In particular, we introduce the density of states as the main object of study.

Chapter 2 concerns the averaged density of states for a two-dimensional random band
matrix ensemble with fixed but large band width W . We rigorously prove smoothness
and convergence to Wigner’s semicircle law with a precision W´2`δ in the infinite volume
limit. This extends the result of Disertori et al. [DPS02] from three to two dimensions.
The proof uses the supersymmetric approach and a cluster expansion. This part is
published in [DL17].

The supersymmetric representation introduced in Chapter 2 requires a certain reg-
ularity of the probability distribution. Chapter 3 gives a new supersymmetric dual
representation by introducing polar coordinates. This can be applied to a large class of
random matrix models, where only integrability of the random distribution is required.
As an application of this new representation, we consider the linear correlated Lloyd
model - a random Schrödinger model with Cauchy distributed random variables. In the
case of non-negative correlations, we recover the well-known exact formula for the den-
sity of states proved by Lloyd and Simon [Llo69, Sim83] in the first place. Moreover, we
examine a toy model with a single small negative correlation and show that the density
of states is well-approximated by the exact formula above. This part is published in
[DL20].
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1. Overview

1.1. Introduction

The purpose of physics is the accurate and yet easy description of observations in nature.
With increasing complexity of the problem, chaos and randomness come into play.

For example, it can be observed that a conducting metal becomes an insulator if the
defects in its atomic structure exceed a certain threshold [And58]. To model this phe-
nomenon, mathematical physicists introduced certain random matrix models: random
Schrödinger operators and random band matrices. The phase transition between con-
ductance and localization in dimension d “ 3 is still an unproven conjecture for these
models (except in special lattice models [Kle98]). Localization in the whole spectrum
was proven in d “ 1 and is conjectured to hold also in d “ 2.

In this thesis, we use supersymmetric methods to study the random matrix models
mentioned above. The supersymmetric approach was introduced by Berezin [Ber66].
It combines ordinary and anticommuting variables to provide a dual representation for
spectral quantities such as the averaged Green’s function (or the average of products of
Green’s functions). This representation can be seen as a statistical mechanical model
(in a loose sense) with supermatrix-valued spins and is a convenient starting point to
study spectral properties of our models.

1.1.1. Quantum Mechanics

We start with a short introduction to quantum mechanics (cf. [RS72]). It describes the
physical properties at the scale of atoms and subatomic particles (e.g. electrons). Here
a particle-wave duality can be observed. A quantum mechanical particle in Rd or Zd is
characterized by a wave function ψ P H, where H “ L2pRdq or l2pZdq is a Hilbert space.
The Schrödinger operator1 H : H Ñ H is self adjoint and describes the time evolution
of the state ψ. It is defined by

H “ H0 ` V, (1.1.1)

where H0 describes the kinetic energy and the external potential V is a multiplication
operator. Solving the Schrödinger equation

i
B

Bt
ψ “ Hψ

1Note thatH is generally unbounded. In this caseH is only defined on a dense linear subsetDpHq Ă H.
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we obtain

ψptq “ expp´itHqψ0,

where ψ0 is the state at t “ 0 and expp´itHq is well-defined via the spectral theorem.
The dynamical properties of ψ are closely related to the spectrum of H, e.g. eigenvalues
of H are energy levels of the system.

1.1.2. Random Matrices

To be able to study heavy nuclei, Wigner replaced rather complicated potentials by
random ones [Wig55] and thus laid the foundation to random matrix models. Today
there are many fields in both, mathematics and physics, where random matrices come
into place (cf. [Meh04, AW15]).

In this thesis we study two prominent examples modelling conducting properties of
disordered materials: random Schrödinger operators and Gaussian random band matri-
ces. We consider only discrete models on Zd or on finite sets Λ Ă Zd.

Random Schrödinger operators

Replacing the potential in the Schrödinger operator (1.1.1) by a random one, we obtain
a random Schrödinger operator Hpωq : l2pΛq Ñ l2pΛq, ω P Ω, given by

Hpωq “ ´∆` λV pωq,

where´∆ is now the discrete Laplacian on Λ, λ ą 0 is a parameter modelling the disorder
and V pωq “ tVjpωqujPΛ is a multiplication operator with Vj random variables. For Vj
independent and identically distributed this is called the Anderson model (introduced by
Anderson [And58]) and is broadly studied. Nevertheless there are many open questions.
For example the phase transition in d “ 3, mentioned above, is unproven in general.

Gaussian random band matrices

Another interesting model are Gaussian random band matrices. Again we have a her-
mitian random operator Hpωq : l2pΛq Ñ l2pΛq, ω P Ω. This time each entry is random,
but entries far from the diagonal are negligible small. Precisely,

Hii „ NRp0, Jiiq, Hij „ NCp0, Jijq for i ă j,

with Jij ! 1 for |i´ j| ą W , where W is the fixed bandwidth.
Note that both models behave similarly with the relation λ „ W´1. For example in

d “ 3, we expect localization for small W and large λ, while for large W and small λ
we expect extended states.

2



1.1.3. Localization and Delocalization

In both cases we study a random hermitian operator Hpωq on l2pZdq, ω P Ω. Its spectral
properties are related to the physical behaviour of localization and diffusion. First of all
the spectrum of H is deterministic and so are the pure point, singular and absolutely
continuous parts if H is ergodic and (essentially) self-adjoint (cf. [Pas80, KS80, KM82]
for random Schrödinger and [PF92, Chapter 2.B] for more general cases).

One distinguishes spectral and dynamical localization [Sto11, Chapter 3]. Spectral
localization in I Ă R means that the spectrum in I is only pure point, i.e. ΣpHq X I “
ΣpppHq X I almost surely. On the other hand dynamical localization in I Ă R means
there exist constants C ă 8 and c ą 0 such that for all x, y ăP Zd

E
„

sup
tPR
|xδy, e´itHωχIpHωqδxy|



ď C e´c|x´y|,

i.e. solutions of time dependent Schrödinger equation are staying localized in space,
uniformly in time.

One can prove that dynamical localization implies spectral localization and indeed
dynamical localization is the more interesting notion since it implies also absence of
quantum transport. Precisely, assuming dynamical localization, one can prove that for
any ψ P l2pZdq with compact support we have

sup
t

›

›|X|p eitHωχIpHωqψ
›

› ă 8

for all p ě 0 and for a.e. ω P Ω. This means all moments of the position operator are
finite in time. Hence, we have bounded states.

In the case of delocalization and unbounded states we would observe a presence of
quantum transport meaning

›

›|X|p eitHωχIpHωqψ
›

›Ñ 8 for tÑ 8.

1.1.4. Results and Conjectures

There are several results for localization, in particular for random Schrödinger operators.
Diffusion is an open problem, except in special cases like the Bethe lattice. In the
following we give a non-exhaustive overview of existing results.

Random Schrödinger operators

In d “ 1 there is localization in the whole spectrum [GMP77, Car82]. In d “ 2 this is
conjectured to be the same. For d ě 2 localization is proved only at large disorder or at
the edge oft the spectrum [AM93, FS83]. It is an open problem to prove that there is a
phase transition for d ě 3.

On tree graphs as the Bethe lattice there are proofs for both localization and delocal-
ization [AM93, Kle98, EHS07, AW15].

3



Random band matrices

For random band matrices there are even less results [Bou18]. There are a few results on
the density of states [CFGK87, CCGI93, DPS02, DLS21, YYY21], but no localization
results except in d “ 1 [Shc14, SS17]. Nevertheless one expects that the random band
matrix model behave similar to random Schrödinger with λ „ W´1.

1.1.5. Methods

There are various methods to study random matrices. For example models with rotation
invariant measures eTrV pHq dH, like the Gaussian ensembles, can be solved by orthogonal
polynomial tools [Meh04].

Random Schrödinger operators can be studied via fractional moment methods [AM93]
and multiscale analysis [FS83].

Another approach is supersymmetry. This technique was pioneered by Berezin [Ber87]
and Efetov [Efe99]. For other introductions to the subject we recommend [Weg16,
Var04]. The idea is to introduce anticommuting variables χj, i.e.

χjχk “ ´χkχj.

Note that this implies χ2
j “ 0. One can define integration over these variables. See

Section 1.2 for details. This enables us to rewrite e.g. the Green’s function as a super-
symmetric integral, i.e. an integral over a supervector Φ “ pz, χq, where we can evaluate
the average more easily. There are various applications of supersymmetry in random
matrix theory (cf. [Dis04, Mir00, FM91, LSZ08]).

1.1.6. Structure of this thesis

The remaining thesis is structured as follows. The present introduction proceeds with
four further sections. First, we give a basic introduction to the two fields ”supermath-
ematics” and ”random matrix theory”. Then we devote one section each to summarize
and sketch the research results of the publications [DL17] and [DL20].

The introduction is followed by two chapters giving the two publications in full detail.
In the following we start with defining Grassmann variables and the supersymmetric

formalism in Section 1.2. We also prove some important results for supersymmetric
change of variables and Gaussian integrals.

In Section 1.3 we present in more detail two models for conductance in disordered
materials: the random Schrödinger operator and random band matrices. In particular,
we introduce the density of states for these operators, which is an important spectral
quantity.

Section 1.4 deals with random band matrices on a two dimensional lattice and sum-
marizes results on the averaged density of states both in finite and infinite volume. This
is the topic of the first paper [DL17].

The second paper [DL20] is summarized in Section 1.5 and deals with an alternative
supersymmetric representation, where validity extends to far less regular distributions,

4



such as the Cauchy distribution. It is based on a supersymmetric version of polar
coordinates. We also give some applications to the Lloyd model, a random Schrödinger
model.

1.2. Supersymmetry

In this section we introduce the concept of supersymmetry. We consider Grassmann
variables, i.e. objects which anti-commute. Precisely, two Grassmann variables v and w
fulfil

v ^ w “ ´w ^ v,

where ^ is the anticommutative wedge product. Note that

v2
“ v ^ v “ ´v ^ v “ 0.

These objects were introduced by Hermann Günther Grassmann in 1844 [Gra44]. They
are well adapted to describe fermionic systems but proved also useful in a very different
context, e.g. two dimensional lattice models like Ising and dimer model.

Supermathematics or supersymmetry deals with combining Grassmann variables with
ordinary real or complex variables. In 1966 Felix A. Berezin developed the concept of
supermathematics by introducing a notion of integration for Grassmann variables and
the Berezinian, which generalizes the Jacobian [Ber87, Ber66]. Supermathematics also
apply in statistical physics by providing dual representations for partition functions and
correlations, where saddle point methods can be applied. A special case is the field of
random matrices which are studied in this thesis.

We give a short introduction to Grassmann variables and supermathematics. Detailed
descriptions on this formalism can be found in [Efe99, Var04, Weg16].

1.2.1. Grassmann calculus

Basic definition

We define the Grassmann algebra and related basic concepts. Moreover, we state basic
algebraic properties. For our purpose we consider only finite dimensional vector spaces
over real or complex numbers, i.e. K “ R,C and V “ KN .

Definition 1.2.1 (Grassmann algebra). Let V be a finite dimensional vector space over
a field K and denote the antisymmetric tensor product by

^ : V ˆ V Ñ V bas V,

pv, wq ÞÑ v ^ w “ vw “ ´wv “ ´w ^ v.

The corresponding Grassmann algebra G is defined by

G –
à

kě0

V k,

where V 0 “ K,V 1 “ V and V k “ V k´1 bas V for k ě 2.

5



Definition 1.2.2 (Even and odd elements). We distinguish the sets of even and odd
elements G “ G0

À

G1, where

G0
“
à

kě0

V 2k, G1
“
à

kě0

V 2k`1.

Elements in G0 are called even or Bosonic variables, elements in G1 odd, Grassmann or
Fermionic variables.

Proposition 1.2.3. The following properties hold.

1. Let V be N-dimensional, N P N. Then V k “ H for k ą N .

2. G is an associative algebra with unit.

3. G0 is an associative algebra with unit. All v P G0 commute with all elements w P G:
vw “ wv.

4. G1 is not an algebra. All v, w P G1 anticommute: vw “ ´wv. Moreover, v2 “ 0
for all v P G1.

Proposition 1.2.4. A Grassmann algebra is a Z2-graded algebra, i.e. each element
v P G can be written as

v “ vp0q ` vp1q with vp0q P G0, vp1q P G1.

Sums of elements in Gσ belong to Gσ while products of elements in Gσ and Gσ1 belong to
Gσ`σ1, where σ, σ1, σ ` σ1 P Z2.

Generators

To do hands-on calculations with Grassmann elements, it is useful to have a concrete
representation. Let pχ1, . . . , χNq be a basis of the vector space V . By definition each
element a P G can be written as

a “
ÿ

IPPpNq

aIχ
I , (1.2.1)

where PpNq is the power set of t1, . . . , Nu, aI P K for all I P PpNq and χI “
ś

jPI χj is
the ordered product for I P PpNq. Generalizing this representation we define the notion
of generators.

Definition 1.2.5 (Generators). A set pχ1, . . . , χNq is called a family of generators of
G if all χi are odd and for each a P G there exists a unique representation of the form
(1.2.1).

Remark. A priori, one can use generators which are not necessary odd. Since we want
to preserve parity (e.g. later in the supersymmetric applications), we postulate that
generators have to be odd.
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Example. Each basis of V is a family of generators, but a family of generators is not
necessary a basis of V : For N “ 3 and pe1, e2, e3q basis of V , the following is a family of
generators of G

χ1 “ e1, χ2 “ e2, χ3 “ e3 ` e1e2e3.

Indeed we can represent the ej, and hence all a P G, by the χj via

e1 “ χ1, e2 “ χ2, e3 “ χ3 ´ χ1χ2χ3.

In the following we use G “ Grχs “ Grχ1, . . . , χN s and a “ apχq “ apχ1, . . . , χNq to
refer to a special set of generators. If we want to emphasize the underlying field K, we
write G “ GK “ GKrχs.

Some more definitions

We give some more definitions.

Definition 1.2.6 (Parity). For homogenous elements (i.e. purely even or purely odd
variables), we define the parity operator π via

πpaq “ σ if a P Gσ, σ P t0, 1u.

Definition 1.2.7 (Body and soul). Each element a P G can be decomposed in a unique
way into

a “ ord paq ` nil paq

with ord paq P K and nil paq P
À

ką0 V
k. The element ord paq P K is called the ordinary

part, domain or body of a and nil paq the nilpotent part or soul.

Note that the nilpotent part is indeed nilpotent: pnil paqqN`1 “ 0.

Differentiation

Although Grassmann variables, i.e. odd elements in the Grassmann algebra, have neither
a domain (indeed ord a “ 0) nor a notion of distance, there are notions of differentiating
and integrating over Grassmann variables. To define differentiation we use the fact,
that elements a P G are always linear in a single Grassmann variable and take the
corresponding coefficient. Note that we have to distinguish between right- and left-
derivatives.

An element apχq P Grχs of the form (1.2.1) is linear in each generator χj

apχjq “ ap0q ` χjal “ ap0q ` arχj, (1.2.2)

7



where

ap0q “
ÿ

IPPpNq:jRI

aIχ
I

al “
ÿ

IPPpNq:jPI

aIσlpI, tjuqχ
Iztju ar “

ÿ

IPPpNq:jPI

aIσrpI, tjuqχ
Iztju,

with signs σlpI, I
1q and σrpI, I

1q for I 1 Ă I defined by

χI “ σlpI, I
1
qχI

1

χIzI
1

χI “ σrpI, I
1
qχIzI

1

χI
1

.

Definition 1.2.8. The left resp. right derivative of a in χj is the coefficient right resp.
left to χj, i.e. we define

ÝÝÑ
B

Bχj
apχq :“ al apχq

ÐÝÝ
B

Bχj
:“ ar.

Proposition 1.2.9. The following properties hold.

1. For odd elements, right and left derivative coincide and we can write

ÝÝÑ
B

Bχj
a “ a

ÐÝÝ
B

Bχj
“
Ba

Bχj
.

2. In general, right and left derivative are different. Decomposing a “ ap0q ` ap1q into
even and odd part, we have

ÝÝÑ
B

Bχj
a “ ´ap0q

ÐÝÝ
B

Bχj
` ap1q

ÐÝÝ
B

Bχj
.

3. The product rule for homogeneous a, b with grade πpaq, πpbq P Z2 reads

ÝÝÑ
B

Bχj
pabq “

˜

ÝÝÑ
B

Bχj
a

¸

b` p´1qπpaqa

˜

ÝÝÑ
B

Bχj
b

¸

,

pabq

ÐÝÝ
B

Bχj
“ a

˜

b

ÐÝÝ
B

Bχj

¸

` p´1qπpbq

˜

a

ÐÝÝ
B

Bχj

¸

b.

Note that the first line holds also for a homogeneous and b arbitrary and the second
for b homogeneous and a arbitrary.

4. For two families of generators χ and η “ ηpχq, the chain rule reads

ÝÝÑ
B

Bχj
apηpχqq “

ÿ

k

˜

ÝÝÑ
B

Bχj
ηkpχq

¸«

ÝÝÑ
B

Bηk
apηq

ff

pχq,

apηpχqq

ÐÝÝ
B

Bχj
“
ÿ

k

«

apηq

ÐÝÝ
B

Bηk

ff

pχq

˜

ηkpχq

ÐÝÝ
B

Bχj

¸

.

(1.2.3)
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5. Note that multiple derivatives anticommute

ÝÝÑ
B

Bχj

ÝÝÑ
B

Bχk
a “ ´

ÝÝÑ
B

Bχk

ÝÝÑ
B

Bχj
a a

ÐÝÝ
B

Bχj

ÐÝÝ
B

Bχk
“ ´a

ÐÝÝ
B

Bχk

ÐÝÝ
B

Bχj
.

Proof. We proof the product and chain rule. The remaining properties follow directly.

3. We prove the first identity. The second one works analogously. Writing a “
a0 ` χja1 and b “ b0 ` χjb1, we obtain for the right-hand side

ÝÑ
B

Bχj
pabq “

ÝÑ
B

Bχj
pa0 ` χja1qpb0 ` χjb1q “ a1b0 ` p´1qπpa0qa0b1.

While the left-hand side gives

pLHSq “ a1pb0 ` χjb1q ` p´1qπpaqpa0 ` χja1qb1

“ a1b0 ` p´1qπpaqa0b1 ` χjrp´1qπpa1qa1b1 ` p´1qπpaqa1b1s,

which coincides with the right-hand side since πpaq “ πpa0q “ πpa1q ` 1.

4. For the chain rule we prove again the first identity. Note that generators are
odd by definition. We fix the index j and N generators χ and ηpχq and write
ηkpχq “ ak ` χjbk, where ak is odd, bk is even and both depend on tχiui‰j. Since
a is a polynomial in η and the chain rule is clearly linear, it remains to prove it
for monomials apηq “

śn
k“1 ηk. We use induction. For n “ 1 we have

ÝÑ
B

Bχj
η1pχq “

ÝÑ
B

Bχj
pa1 ` χjb1q “ b1 “

ÿ

k

bkδk1 “
ÿ

k

´ÝÑ
B

Bχj
ηk

¯ ”ÝÑ
B

Bηk
η1

ı

pχq.

Let our identity hold for n. Then by product rule

ÝÑ
B

Bχj
apηpχqq “

ÝÑ
B

Bχj

n`1
ź

k“1

ηkpχq

“
ÝÑ
B

Bχj
η1pχq ˆ

n`1
ź

k“2

ηkpχq ´ η1pχq
ÝÑ
B

Bχj

n`1
ź

k“2

ηkpχq

“ b1

n`1
ź

k“2

ηkpχq ´ η1pχq
N
ÿ

l“1

ÝÑ
B

Bχj
ηlpχq

ÝÑ
B

Bηl

n`1
ź

k“2

ηkpχq

“ b1

n`1
ź

k“2

ηkpχq ´ η1pχq
n`1
ÿ

l“2

blp´1ql
n`1
ź

k“2,k‰l

ηkpχq

“

n`1
ÿ

l“1

blp´1ql`1
n`1
ź

k“1,k‰l

ηkpχq

“
ÿ

k

´ÝÑ
B

Bχj
ηk

¯ÝÑ
B

Bηk

n`1
ź

k“1

ηkpχq “
ÿ

k

´ÝÑ
B

Bχj
ηk

¯ÝÑ
B

Bηk
apηpχqq.
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Integration

To motivate the introduction of a notion of integration over a Grassmann variable, we
require three conditions for an integral

ş

dχi:

1. Linearity:
ş

dχjpapχq`λbpχqq “
ş

dχjapχq`λ
ş

dχjg for all λ P K, apχq, bpχq P G.

2. The result is independent of the integration variable:
ÝÑ
B

Bχj

“ş

dχjapχq
‰

“ 0 for all

apχq P G.

3. Integrating the (left) derivative yields zero:
ş

dχjr
ÝÑ
B

Bχj
apχqs “ 0 for all apχq P G.

Using the decomposition in Eq. (1.2.2), the last conditions reads

0 “

ż

dχj

ÝÝÑ
B

Bχj
apχjq “

ż

dχjal “

„
ż

dχj 1



al,

hence
ş

dχj1 “ 0. By linearity and the fact that both ap0q and al are independent of
χj, we can write

ż

dχjapχjq “

„
ż

dχj1



ap0q `

„
ż

dχjχj



al “ 0`

„
ż

dχjχj



al,

It remains to define
ş

dχi χi independent of χi as some arbitrary (non zero) constant.
We choose

ż

dχj χj “ 1.

Note that sometimes it is set to 1?
2π

. Consequently, we have

ż

dχjapχjq “

ż

dχjap0q `

ż

dχjχjal “ al “

ÝÝÑ
B

Bχj
apχjq.

Hence, integration is equivalent to differentiation - sometimes up to a constant. We
define integration over multiple Grassmann variables as the ordered product of the left
derivatives.

Definition 1.2.10. Let apχq P Grχs. The integration over a subset of generators χj, j P I
is defined by

ż

dχIapχq :“

˜

ÝÑ
B

Bχ

¸I

apχq “
ÿ

JPPpNq:IĂJ

aJ σlpJ, Iq χ
JzI ,

where dχI “
ś

jPI dχj is again an ordered product.

Since
ş

dχi “
ÝÑ
B

Bχi
, the dχi are anticommutative objects, too and e.g.

ż

dχi dχj χiχj “ ´

ż

dχi

„
ż

dχjχj



χi “

ż

dχi χi “ ´1.
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Functions

If f : RÑ R is smooth, we can define an extension of f to G0, which we denote also by
f : G0 Ñ G0 via its Taylor expansion

fpaq :“
ÿ

jě0

f pjqpord paqq
nil paqj

j!
,

where f pjq is the j-th derivative of f : RÑ R. Note that the sum is finite since nil paq is
nilpotent. In particular, we can extend the exponential function to exp : G0 Ñ G0. This
new exponential satisfies exppa` bq “ exppaq exppbq for a, b P G0 as the ordinary one.

Gaussian integrals

We give the real and complex versions of Gaussian integrals and then the Fermionic
analogue.

Let A P RNˆN be symmetric and positive definite. Then (see e.g. [AS09])

ż

RN

ź

k

dxk e´
1
2

ř

ij xiAijxj “
p2πqN{2
?

detA
.

The Grassmann analogue gives the Pfaffian (see e.g. [Weg16, Chapter 5.1]). More inter-
esting for us is the analogue of the following complex Gaussian integral. Let dz̄ dz “
2 dpRe zq dpIm zq and A P CNˆN with positive definite Hermitian part pA`A˚q{2. Then
(see e.g. [AS09])

ż

Cn

ź

k

dz̄k dzk e´
ř

ij z̄iAijzj “
p2πqN

detA
.

To find the analogue of this second identity, we consider a Grassmann algebra with 2N
generators pχ1, . . . , χN , χ̄1, . . . , χ̄Nq. Note that the bar notation has no deeper reason
than doubling the number of generators in order to mimic the complex case.

Proposition 1.2.11. Let A P CNˆN be arbitrary (we need no positivity). Then
ż

ź

k

dχ̄k dχk e´
ř

ij χ̄iAijχj “ detA,

where the exponential is defined by its Taylor expansion.

Proof. We expand the exponential

e´
ř

ij χ̄iAijχj “
ÿ

ně0

1

n!

˜

´
ÿ

ij

χ̄iAijχj

¸n

“

N
ÿ

n“0

1

n!

˜

´
ÿ

ij

χ̄iAijχj

¸n

and note that the sum is finite, precisely n ď N . We integrate over exactly 2N variables.
Hence, only terms with 2N generators contribute to the integral, i.e. only the summand
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for n “ N . This follows since there are 2N integration variables and χiAijχj has degree
2.

Let PpNq be the set of permutations of t1, . . . , Nu and σppq the sign of p. Then we
can reorganize this term as follows

1

N !

˜

´
ÿ

ij

χ̄iAijχj

¸N

“
p´1qN

N !

ÿ

i1,...,iN
j1,...,jN

N
ź

k“1

χ̄ikAikjkχjk

“p´1qN
ÿ

p,qPPpNq

N
ź

k“1

χ̄qpkqAqpkqpppkqqχppkq

“p´1qN
ÿ

pPPpNq

N
ź

k“1

χ̄kAkppkqχppkq

“p´1qN
N
ź

k“1

χ̄kχk
ÿ

pPPpNq

σppq
N
ź

k“1

Akppkq

“p´1qN
N
ź

k“1

χ̄kχk detA,

where we used that only terms with disjoint ik and jk give a non-zero contribution and
hence both pi1, . . . , iNq and pj1, . . . , jNq are some permutations of t1, . . . , Nu. Therefore,
we rewrite the sum over the i’s and j’s as sum over all permutations of N indices. The
sum over the i’s cancels 1{N !. Reordering the Grassmann variables give the sign of
the permutation and we end up with the determinant. The sign p´1qN vanishes by
integrating over the Grassmann variables

ż

ź

k

dχ̄k dχkp´1qN
ź

j

χ̄kχk “ 1.

Corollary 1.2.12. Let A P CNˆN . Then

ż

ź

k

dχ̄k dχk e´
ř

ij χ̄iAijχjχlχ̄m “ p´1qm`lApmlq “ A´1
lm detA,

where Apmlq is the minor of A, i.e. the determinant of the matrix with line m and row l
cancelled. The second identity holds if A is invertible.

Proof. Expanding the exponential, we note that

χlχ̄m expp´
ÿ

ij

χ̄iAijχjq “ χlχ̄m expp´
ÿ

ij,i‰m,j‰l

χ̄iAijχjq.
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Then
ż

ź

k

dχ̄k dχk e´
ř

ij,i‰k,j‰l χ̄iAijχjχlχ̄m

“´

ż

dχ̄m dχl χlχ̄m

ż

ź

k‰l,m

dχ̄k dχk dχ̄l dχm e´
ř

ij,i‰m,j‰l χ̄iAijχj .

Now we bring the integration variables into the right order. Wlog l ă m and

´

ż

ź

k‰l,m

dχ̄k dχk dχ̄l dχm

“p´1qm`l
ż

dχ̄1 dχ1 ¨ ¨ ¨ dχ̄l´1 dχl´1 dχ̄l dχl`1 ¨ ¨ ¨ dχ̄m´1 dχm

dχ̄m`1 dχm`1 ¨ ¨ ¨ dχ̄N dχN .

The result now follows from Proposition 1.2.11. The second identity comes from linear
algebra.

Change of variables

Similar to the results for Gaussian formulas, the analogue of the Jacobian in a change
of variables is the inverse determinant of the derivatives.

Theorem 1.2.13. Let pχ1, . . . , χNq and pη1, . . . , ηNq be two sets of generators with η “
ηpχq. For all a P Grηs it holds that

ż

dη apηq “

ż

dχ apηpχqqpdet Jq´1, J “

ˆ

Bηi
Bχj

˙

ij

.

Note that ηj “ ηjpχq are odd thus left and right derivatives coincide and Bηi
Bχj

P G0

such that det J is well-defined. Moreover det J ‰ 0 since both sets pη1, . . . , ηNq and
pχ1, . . . , χNq are generators.

Proof. We prove the result for a linear transformation ηj “
ř

k Jjkχk. For the general
result cf. [Weg16, Chapter 5.2]. We start on the right-hand side and insert the definition

I “

ż

dχ apηpχqqpdet Jq´1
“

«

ź

j

ÝÝÑ
B

Bχj

ff

apηpχqqpdet Jq´1

“
ÿ

k1,...,kN

«

ź

j

Bηkj
Bχj

ÝÝÑ
B

Bηkj

ff

apηpχqqpdet Jq´1,
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where we used the chain rule (1.2.3). Note that Bηk{Bχj is even, commutes and depends

only on χ. Moreover, the kj are disjoint since p
ÝÑ
B

Bηk
q2 “ 0. Then

I “
ÿ

k1,...,kN

«

ź

j

ÝÝÑ
B

Bηkj

ff«

ź

l

Bηkl
Bχl

ff

apηpχqqpdet Jq´1

“
ÿ

pPPpNq

ź

j

ÝÝÝÑ
B

Bηppjq

«

ź

l

Bηpplq
Bχl

ff

apηpχqqpdet Jq´1

“
ź

j

ÝÝÑ
B

Bηj

»

–

ÿ

pPPpNq

sgn ppq
ź

l

Bηpplq
Bχl

fi

fl apηpχqqpdet Jq´1

“
ź

j

ÝÝÑ
B

Bηj
apηpχqq “

ż

dη apηq.

Note that ordering the derivates in ηj gives the sign of the permutation p. Hence, we
obtain the Leibniz formula of the determinant.

1.2.2. Supermathematics

Supervectors and supermatrices

We want to combine and mix even and odd variables in the following. The prefix ”super”
stands always for objects containing even and odd elements. We start with vectors and
matrices.

Definition 1.2.14 (Supervectors and Supermatrices). Let G be a Grassmann algebra.
Let p, q P N. A supervector Φ is a collection of p Bosonic variables x “ pxiq

p
i“1 P pG0qp

and q Fermionic variables χ “ pχjq
q
j“1 P pG1qq

Φ “

ˆ

x
χ

˙

. (1.2.4)

A supermatrix M is a linear transformation between supervectors, i.e.

Ψ “MΦ, M “

ˆ

a α
β b

˙

, (1.2.5)

where a, b are pˆ p and qˆ q matrices in G0 and α, β are pˆ q and qˆ p matrices in G1.

Superdeterminant and supertrace

We want to introduce a superdeterminant and a supertrace having similar properties as
their ordinary counterparts. Therefore we postulate:

1. The supertrace StrM depends only on the diagonal blocks a and b.
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2. Sdet

ˆ

a 0
0 b

˙

“
det a

det b
,

3. Sdet pMM 1q “ pSdetMqpSdetM 1q,

4. ln SdetM “ Str lnM , where

lnM :“

ˆ

ln a 0
0 ln b

˙

´
ÿ

ně1

p´1qn

n

ˆ

0 a´1α
b´1β 0

˙n

,

which is well-defined since the sum is finite.

The first postulate is expectable by the properties of the ordinary trace. The second one
is motivated from the fact that the superdeterminant should replace the Jacobian in a
change of variables formula. Remember that we found the inverse of the determinant
for the fermionic transformation (Theorem 1.2.13). The other two are basic properties.

Lemma 1.2.15. If 1.-4. hold, then

Str

ˆ

a α
β b

˙

“ Tr a´ Tr b.

Moreover if additionally ord paq and ord pbq are invertible,

Sdet

ˆ

a α
β b

˙

“
detpa´ αb´1βq

det b
“

det a

detpb´ βa´1αq
.

Proof. For the supertrace, we use the properties 1., 2. and 4.

Str

ˆ

a α
β b

˙

1.
“ Str

ˆ

a 0
0 b

˙

4.
“ ln Sdet exp

ˆ

a 0
0 b

˙

“ ln Sdet

ˆ

ea 0
0 eb

˙

2.
“ ln

det exppaq

det exppbq
“ ln det exppaq ´ ln det exppbq “ Tr a´ Tr b.

For the superdeterminant we write M as

M “

ˆ

a 0
0 b

˙

p1`Xq, where X “

ˆ

0 A
B 0

˙

“

ˆ

0 a´1α
b´1β 0

˙

, (1.2.6)

and compute with 4.

ln Sdet p1`Xq “ Str lnp1`Xq “ ´
ÿ

kě1

p´1qk

k
StrXk

“ ´
ÿ

kě1

p´1q2k

2k
rTr pABqk ´ Tr pBAqks

“

#

´
ř

kě1
1
k
Tr pABqk “ ln detp1´ ABq

ř

kě1
1
k
Tr pBAqk “ ln detp1´BAq

where we used that the sum is finite, Tr pβαq “ ´Tr pαβq for odd α and β and

X2k
“

ˆ

pABqk 0
0 pBAqk

˙

, X2k`1
“

ˆ

0 pABqkA
pBAqkB 0

˙

.

By multiplicity and 2. the formulas for Sdet follow.
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Inverse of a supermatrix

The inverse of a supermatrix is similar to the inverse of a block matrix with some
modifications.

Proposition 1.2.16. A supermatrix M is invertible, if ord paq and ord pbq are invertible
and is given by

M´1
“

ˆ

pa´ αb´1βq´1 ´pa´ αb´1βq´1αb´1

´b´1βpa´ αb´1βq´1 b´1 ` b´1βpa´ αb´1βq´1αb´1

˙

“

ˆ

a´1 ` a´1αpb´ βa´1αq´1βa´1 ´a´1αpb´ βa´1αq´1

´pb´ βa´1αq´1βa´1 pb´ βa´1αq´1

˙

Proof. We use the decomposition (1.2.6) and compute p1`Xq´1 via the Taylor expansion
p1´ xq´1 “

ř

ně0 x
n:

p1`Xq´1
“

ÿ

ně0

p´Xqn “
ÿ

ně0

ˆ

pABqn 0
0 pBAqn

˙

´
ÿ

ně0

ˆ

0 pABqnA
pBAqnB 0

˙

“

ˆ

p1´ ABq´1 ´p1´ ABq´1A
´p1´BAq´1B p1´BAq´1

˙

.

Multiplication with the inverse diagonal yields the result.

Grassmann valued functions

Another way to combine even and odd elements are G-valued functions on a domain
U Ă Rp. These objects can be integrated by a ”superintegral”.

Definition 1.2.17. Let U Ă Rp open, G “ Gpχ1, . . . , χqq a Grassmann algebra. The
algebra of smooth G-valued functions on U is defined by

Ap,qpU, χq :“

$

&

%

f “ fpx, χq “
ÿ

IPPpqq

fIpxqχ
I : fI P C

8
pUq

,

.

-

.

We call yipx, χq, ηjpx, χq, for i “ 1, . . . p, j “ 1, . . . , q generators of Ap,qpU, χq if πpyiq “ 0,
πpηjq “ 1 and

1. tpord py1px, 0qq, . . . , ord pyppx, 0qqq, x P Uu is a domain in Rp,

2. we can write all f P Ap,qpU, χq as f “
ř

I fIpyqη
I .

Note that px, χq are generators for Ap,qpU, χq.
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Change of variables and Berezinian

A change of variables in a superintegral is a parity preserving transformation between
systems of generators of Ap,qpU, χq. The generalized Jacobian for such a coordinate
transformation is called Berezinian. It is the superdeterminant of the partial derivatives.
Note that the following formula holds only for functions with compact support, i.e.
functions f P Ap,qpU, χq such that fI P C

8
c pUq for all I P Ppqq.

Theorem 1.2.18. Let U Ă Rp open, x, χ and ypx, χq, ηpx, χq two sets of generators of
Ap,qpU, χq. Denote the isomorphism between the generators by

ψ : px, χq ÞÑ pypx, χq, ηpx, χqq

and V “ ord pψpUqq “ tpord py1px, 0qq, . . . , ord pyppx, 0qqq, x P Uu Ă Rp. Then for all
f P Ap,qpV, ηq with compact support, we have

ż

V

dy dη fpy, ηq “

ż

U

dx dχ f ˝ ψpx, χq Sdet pJψq, (1.2.7)

where Sdet pJψq is called the Berezinian defined by

Jψ “

˜

By
Bx

y
ÐÝ
B

Bχ
Bη
Bx

Bη
Bχ

¸

, Sdet

ˆ

a α
β b

˙

“ detpa´ αb´1βq det b´1.

Integration over even elements x and y means integration over the body ord pxq and
ord pyq in the corresponding regions U and V .

The above result holds also for U “ Rp and f P CpRpq with sufficient decay at 8.

Proof. The following proof is based on [Dis11, Chapter 6.4.2]. We parametrize the
transformation of generators with a variable t P r0, T s such that pzptq, γptqq is a set of
generators for all t P r0, T s and

zp0q “ x γp0q “ χ Up0q “ V

zpT q “ ypx, χq γpT q “ ηpx, χq UpT q “ U.

Then we study

gptq “

ż

Uptq

dx dχ Sdet Jpt, 0q fpzptqpx, χq, γptqpx, χqq,

where

Jpt2, t1q “

˜

Bzpt2q
Bzpt1q

zpt2q
ÐÝÝÝ
B

Bγpt1q
Bγpt2q
Bzpt1q

Bγpt2q
Bγpt1q

¸

.
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Note that gp0q gives the left-hand side and gpT q the right-hand side of Eq. (1.2.7). To
show that g is constant, we calculate the derivative

g1ptq “
d

ds
gpt` sq|s“0

“

ż

Uptq

dx dχ Sdet Jpt, 0q
d

ds
rSdet Jpt` s, tqfpzpt` sq, γpt` sqqss“0 ,

where we used

Jpt` s, 0q “ Jpt` s, tqJpt, 0q.

When the derivative falls on the domain, we obtain a boundary integral which vanishes
since f has compact support. Differentiating the superdeterminant, we note that the
same formula as in the ordinary case applies and

d

ds
rSdet Jpt` s, tqss“0 “Sdet Jpt, tq

„

Str pJpt` s, tq´1 d

ds
Jpt` s, tqq



s“0

“Str

„

d

ds
Jpt` s, tqq



s“0

“
ÿ

j

d

ds

B

Bzjptq
zjpt` sq|s“0 ´

d

ds

ÝÝÝÝÑ
B

Bγjptq
γjpt` sq|s“0

“
ÿ

j

B

Bzjptq
z1jptq ´

ÝÝÝÝÑ
B

Bγjptq
γ1jptq.

Then

d
ds
rSdet Jpt`s, tqfpzpt`sq, γpt`sqqss“0

“ d
ds
rSdet Jpt`s, tqss“0 fpzptq, γptqq ` Sdet Jpt, tq d

ds
rfpzpt`sq, γpt`sqqss“0

“
ÿ

j

B

Bzjptq
rz1jptqfpzptq, γptqqs ´

ÝÝÝÑ
B

Bγjptq
rγ1jptqfpzptq, γptqqs,

where we used that γ1j is homogenous. Now set t “ 0

g1p0q “

ż

V

dx dχ
ÿ

j

B

Bxj
rz1jp0qfpx, χqs ´

ÝÝÑ
B

Bχj
rγ1jp0qfpx, χqs “ 0.

The first term vanishes since it is a boundary integral and f has compact support. In
the second term there are two derivatives in χj.

Now we remark that zptq, γptq is a set of generators, hence we can write z1jptq, γ
1
jptq in

terms of zptq and γptq and notice that

g1ptq “

ż

Uptq

dx dχ Sdet Jpt, 0qhpzptqpx, χq, γptqpx, χqq.

Hence, g1ptq has the same form as gptq with f replaced by h. Repeating the argument
above, we find that g1ptq “ 0 for all t ě 0 and hence gp0q “ gpT q.
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Supersymmetric Gaussian Integral

The supersymmetric version of the Gaussian integral formula yields indeed an inverse
superdeterminant.

Theorem 1.2.19. Let M be a supermatrix as in Eq. (1.2.5). We consider a Grassmann

algebra Grχ1, . . . , χq, χ̄1, . . . χ̄qs with 2q generators, a supervector Φ “

ˆ

z
χ

˙

with p com-

plex variables z1, . . . , zp and q odd variables χ1, . . . χq and its transposed Φ˚ “ pz̄, χ̄q.
We define dΦ˚ dΦ “ dz̄ dz dχ̄ dχ and Φ˚MΦ “ pz̄, azq` pχ̄, βzq` pz̄, αχq` pχ̄, bχq with
pz̄, azq “

ř

ij z̄iaijzj. Then

ż

dΦ˚ dΦ e´Φ˚MΦ
“ p2πqppSdetMq´1.

Proof. We apply the change of variables formula above. We transform even and odd
variables by

w “ z ` a´1αχ, w̄ “ z̄, η “ χ` b´1βz, η̄ “ χ̄.

Indeed

Φ˚MΦ “ Φ˚
ˆ

a 0
0 b

˙ˆ

1 a´1α
b´1β 1

˙

Φ “ pw̄, awq ` pη̄, bηq.

Note that ord w̄ “ ordw since the transformation adds only a nilpotent component to
z. We calculate the Berezinian

Sdet J´1
“ Sdet

¨

˚

˚

˝

1 0 a´1α 0
0 1 0 0

b´1β 0 1 0
0 0 0 1

˛

‹

‹

‚

´1

“ detp1´ a´1αb´1βq´1.

Applying the change of variables formula (Theorem 1.2.18) and evaluating the Gaussian
integrals (Proposition 1.2.11), we get

ż

dΦ˚ dΦ e´Φ˚MΦ
“ detp1´ a´1αb´1βq´1

ż

dw̄ dw dη̄ dη e´pw̄,awq´pη̄,bηq

“ detp1´ a´1αb´1βq´1 p2πq
p

det a
det b “ p2πqppSdetMq´1.
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1.3. Random Matrices

A random matrix is a family of random variables A “ paijqi,jPI with given probability
laws for some index set I. One is interested in properties of eigenvalues and eigenvectors.
For I Ă N finite, A is an ordinary matrix. We are studying the case I “ Zd which defines
a random operator on the Hilbert space l2pZdq but for simplicity we also speak of random
matrices.

Wigner introduced random matrices to model resonance of heavy nuclei in the 1950s
[Wig55]. Today random matrix models have various applications in mathematics and
physics. For surveys we recommend [Meh04, Sto01, AW15].

In this thesis, we focus on two models that characterize conductivity in disordered
materials: random Schrödinger operators, which are also known as the Anderson model,
and random band matrices. In both models, spectral properties of the random operators
describe the dynamical behaviour of free electrons in disordered materials such as met-
als, alloys or crystals with defects. With growing disorder the conductivity of certain
materials decreases and localization effects occur. This phase transition is still an open
conjecture in mathematics except in the case of a Bethe lattice [Kle98]. It should be
observed mathematically by a change in the nature of the spectrum of the underlying
random operator.

The Anderson model is well-studied although there are still open conjectures (cf.
[KK08, AW15, CL90]). In comparison, there are only few rigorous results on random
band matrices [Bou18].

In the following we define both models. To study spectral properties we introduce
the density of states that measures the number of eigenvalues per unit volume. This
quantity is one of the easiest to study, but also the starting point to more advanced
questions. In our papers the density of states is the central quantity we study.

1.3.1. General setting

Random operators on l2pZdq

Let paijqi,jPZd be a collection of complex-valued random variables on a probability space
Ω such that aij “ āji for all i, j P Zd and

ř

iPZd |aij|
2 ă 8 for all j P Zd with probability

1. Since i, j P Zd, a realisation (aijpωqqij with ω P Ω is not an ordinary matrix (indexed
in I Ă N) but a multidimensional matrix operator. Consider the Hilbert space

H “ l2pZdq “ tϕ : Zd Ñ C :
ÿ

iPZd
|ϕi|

2
ă 8u

and the countable dense subset

D “ tϕ P l2pZdq : only finitely many ϕi ‰ 0u. (1.3.1)

Let LpD,Hq be all linear maps from D to H. Then H : Ω Ñ LpD,Hq

pHpωqϕqi “
ÿ

jPZd
aijpωqϕj
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is a symmetric random operator not necessarily bounded (cf. [PF92, 1.4(c)]).
We will often need the finite volume version of H. Let ΛL “ r´L,Ls

d X Zd be a cube
in Zd,

HL “ l2pΛLq “ tϕ : ΛL Ñ Cu “ CΛL

the finite volume Hilbert space and HL “ H|ΛL the restriction of H to ΛL.

Ergodicity

Ergodicity generalizes the concept of a family of independent, identically distributed
random variables pXiqiPI to ”almost independent” random variables if the ”distance”
between i and j is large. It becomes useful in the definition of the density of states. We
give the definition of an ergodic operator and state the ergodic theorem, which extends
the strong law of large numbers to ergodic processes. We restrict the definitions below
to the case relevant for our purpose, i.e. I “ Zd and H “ l2pZdq. This summary is taken
from [KK08, Chapter 4].

Definition 1.3.1. Let pΩ,F ,Pq be a probability space. A family tTi : Ω Ñ ΩuiPZd
of measure preserving transformations (i.e. PpT´1Aq “ PpAq for all A P F) is called
ergodic, if any event A P F that is invariant under tTiuiPZd has probability zero or one.

Definition 1.3.2. A stochastic process pXiqiPZd is called ergodic if there exists an ergodic
family of measure preserving transformations tTiuiPZd such that XipTjωq “ Xi´jpωq.

Proposition 1.3.3. Let tTiuiPZd be an ergodic family of measure preserving transforma-
tions. Let Y be a random variable invariant under Ti (i.e. Y pTiωq “ Y pωq for all i, ω).
Then Y is almost surely constant, i.e. there exists C P C such that PpY “ Cq “ 1.

Theorem 1.3.4 (Birkhoff). If pXiqiPZd is an ergodic process with Er|X0|s ă 8, then for
P-almost all ω

lim
LÑ8

1

|ΛL|

ÿ

iPΛL

Xi “ ErX0s.

Definition 1.3.5. A random operator H on l2pZdq is called ergodic if there exists a ho-
momorphism between an ergodic family of measure preserving transformations tTiuiPZd
and a group of unitary operators tUi : l2pZdq Ñ l2pZdquiPZd such that for all i P Zd

HpTiωq “ UiHpωqU
˚
i .

1.3.2. Random Schrödinger operator

Random Schrödinger operators are a well-studied class of random matrices. The fol-
lowing definitions and properties are taken from [AW15] and [KK08, Chapter 3]. The
discrete random Schrödinger operator H : D Ñ l2pZdq (D as in Eq. (1.3.1)) is given by

H “ ´∆` λV,
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where ´∆ is the discrete Laplace operator

p´∆ϕqj “
ÿ

kPZd:|j´k|“1

pϕj ´ ϕkq,

λ ą 0 is the parameter of disorder and the potential pV ϕqjpωq “ Vjpωqϕj is a diagonal
multiplication operator. The Vj are real random variables. If Vj are independent and
identically distributed, the model is called Anderson model.

The discrete Laplacian

As a quadratic form, we can write

xψ,´∆ϕy “
1

2

ÿ

iPZd

ÿ

jPZd:|i´j|“1

pψi ´ ψjqpϕi ´ ϕjq.

Now it is easy to see that ´∆ : l2pZdq Ñ l2pZdq is symmetric. Moreover, it is bounded
and hence self-adjoint. By Fourier transformation one obtains that the spectrum is
purely absolutely continuous and equals Σp´∆q “ r0, 4ds. The kernel of the Laplacian
is

aij “

$

’

&

’

%

´1 |i´ j| “ 1,

2d i “ j,

0 otherwise.

(1.3.2)

Hence, ´∆ is a special case of the multidimensional matrix operators defined above.

Random potential

Let the Vj be independent, identically distributed random variables with common dis-
tribution P0 and denote by

suppP0 “ tx P R : P0ppx´ ε, x` εqq ą 0 for all ε ą 0u

the support of P0. If P0 is compact, the operator V pωq is bounded and hence also
Hpωq “ ´∆ ` λV pωq. Therefore Hpωq is defined on l2pZdq and selfadjoint. If suppP0

is not compact, we work with H : D Ñ H. Then H is well-defined but not bounded.
Moreover, V and therefore H are essentially selfadjoint on D.

Ergodicity

If the family Vj is an ergodic process, e.g. Vj independent and identically distributed,
then H is an ergodic operator. Indeed, assume there exists an ergodic family tTjujPZd
of measure preserving transformations such that

VipTjωq “ Vi´jpωq.

We define tUiuiPZd , a family of translations on H by pUiϕqj “ ϕj´i for ϕ P H. Note that
the Laplacian commutes with the Ui. Hence, H “ ´∆` λV is ergodic

HpTiωq “ ´∆` λV pTiωq “ ´∆` λV 9́ ipωq “ UiHpωqU
˚
i .
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Finite volume and boundary conditions

We can define a random Schrödinger operator HL in finite volume ΛL by providing
certain boundary conditions for the discrete Laplacian ´∆. For the purpose of this
introduction we take free boundary conditions, i.e. HL “ H|ΛL . One can also choose
e.g. periodic, Dirichlet or Neumann boundary conditions. For details we refer to the
literature [KK08, Chapter 5.2].

1.3.3. Random band matrices

A random band matrix is a multidimensional matrix operator taijui,jPZd with indepen-
dent (up to the symmetry condition aij “ āji) not identically distributed entries. The
band structure is established by the condition that outside a band width W the entries
are zero or negligible (with large probability), i.e. |aij| ! 1 for |i ´ j| ą W . There
are several options to model this band structure. Here we will consider the case of the
Gaussian ensemble with the following Gaussian entries

aii „ NRp0, Jiiq, aij „ NCp0, Jijq for i ă j,

where ă is an order relation on Zd. The covariance Jij decays to zero for |i ´ j| " W .
A natural choice is Jij “

1
W
1|i´j|ďW . We choose the smoother variant

J “ p´W 2∆` 1q´1,

where ´∆ is (the kernel of) the discrete Laplace operator on l2pZdq (cf. (1.3.2)) and 1

is the unit matrix in RZdˆZd .
This fulfils the two conditions aij “ āji and Er

ř

iPZd |aij|
2s ă 8 for all j P Zd, hence

ř

iPZd |aij|
2 ă 8 almost surely for all j P Zd. Therefore, there is a symmetric random

operator H : Ω Ñ LpD,Hq defined by

pHpωqϕqi “
ÿ

jPZd
aijpωqϕj.

In particular, H is essentially self-adjoint.

Ergodicity

Since the entries of the covariance Jij “ fp|i ´ j|q depend only on the distance of
the indices, the aij are ergodic with tTkukPZd the ergodic family of measure preserving
transformations defined via

aijpTkωq “ ai´k,j´kpωq.

We define as above tUiuiPZd the family of translations on H by pUiϕqj “ ϕj´i for ϕ P H.
Hence, H is ergodic

HpTiωq “ UiHpωqU
˚
i .
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Extreme cases and GUE

Varying the band width W , the band matrix model interpolates between two extreme
cases: For W “ 0, the covariance gives the identity and we have only non zero entries
on the diagonal aii „ NRp0, 1q and H becomes a multiplication operator pHpωqϕqi “
aiipωqϕi.

For W large, the entries in the band become (almost) identically distributed and
W Ñ 8 approximates the Gaussian unitary ensemble (GUE), where all entries (up to
symmetry) are independent and identically distributed Gaussian random variables.

1.3.4. Density of states

An important spectral quantity is the density of states. It gives the number of eigenvalues
per unit volume in an interval. There are several quantities that can easily be mixed
up. In the following, we introduce the different observables, we are interested in, both
in finite and infinite volume. In particular, we will consider the density of state measure
ν, the integrated density of states N (the distribution function of ν) and the density of
states ρ (the Radon-Nikodym derivative of ν, if ν is absolutely continuous with respect
to the Lebesgue measure).

Density of states in finite volume

Let ΛL “ r´L,Ls
d X Zd be a finite cube and HL : Ω Ñ Lpl2pΛLq, l

2pΛLqq a symmetric
random operator in l2pΛLq. Note that l2pΛLq is finite dimensional and, if HL is symmet-
ric, it is selfadjoint and the spectrum ΣpHLpωqq Ă R. For a fixed realisation Hpωq, the
empirical density of states measure in finite volume is the point measure

νL,ω “
1

|ΛL|

ÿ

λnPΣpHLpωqq

δλn . (1.3.3)

To obtain a non random quantity, we introduce the averaged density of states measure
in finite volume ν̄L “ ErνLs via Riesz representation theorem as

ż

fpxq dν̄Lpxq “ E
„
ż

fpxq dνL,ωpxq



(1.3.4)

for all f P CbpRq “ tf : RÑ R continuous and boundedu. Note that in infinite volume
the related quantities will coincide since they are non random by ergodicity (cf. the next
paragraph).

To do hands-on calculations, we want to write ν̄L in terms of the resolvent G`L,ω, also
called Green’s function

G`L,ωpx` iεq “ ppx` iεq1´HLpωqq
´1,

where x P R and ε ą 0. We note that

gL,ωpx` iεq :“ ´
1

π|ΛL|
Im TrG`L,ωpx` iεq “

1

π|ΛL|

ÿ

λnPΣpHLpωqq

ε

pλn ´ xq2 ` ε2
(1.3.5)
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approximates the point measure νL,ω for ε Ó 0. Hence, for all f P CbpRq
ż

fpxq dν̄Lpxq “ E
„
ż

fpxq dνL,ωpxq



“ E
„

lim
εÓ0

ż

fpxqgL,ωpx` iεq dx



.

Lemma 1.3.6. Let f P CbpRq. Assume there exists C ą 0 such that ErgL,ωpx` iεqs ď C
for all x P R, ε ą 0. Then

E
„

lim
εÓ0

ż

fpxqgL,ωpx` iεq dx



“

ż

fpxq lim
εÓ0

ErgL,ωpx` iεqs dx.

Proof. Note that
ş

gL,ωpx ` iεq dx “ 1
|Λ|

ř

λj

ş

ε
px´λjq2`ε2

dx “ K ă 8 is bounded inde-

pendent of ε. Hence, we can bound |
ş

fpxqgL,ωpx ` iεq dx| ď }f}L8K independent of
ε. Therefore, we can apply dominated convergence to interchange the average and the
limit ε Ó 0

E
„

lim
εÓ0

ż

fpxqgL,ωpx` iεq dx



“ lim
εÓ0

E
„
ż

fpxqgL,ωpx` iεq dx



.

By Fubini we can bring the average inside the integral and obtain

lim
εÓ0

E
„
ż

fpxqgL,ωpx` iεq dx



“ lim
εÓ0

ż

fpxqErgL,ωpx` iεqs dx.

We can pull the ε-limit back inside the integral by dominated convergence because
ErgL,ωpx` iεqs is bounded uniformly in ε and x:

lim
εÓ0

ż

fpxqErgL,ωpx` iεqs dx “
ż

fpxq lim
εÓ0

ErgL,ωpx` iεqs dx.

We will see that ErgL,ωpx ` iεqs satisfies indeed the above bound for the models we
consider. Assuming the condition above we can define the finite volume averaged density
of states ρ̄L : RÑ R as

ρ̄Lpxq “ ´
1

π|ΛL|
lim
εÓ0

ErIm TrG`L,ωpx` iεqs. (1.3.6)

Note that, in general, we cannot bring the limit inside the integral without the average
since gL,ω converges pointwise to 0 a.e. as ε Ó 0:

ż

fpxq dνL,ωpxq “ lim
εÓ0

ż

fpxqgL,ωpx` iεq dx “
ÿ

λn

fpλnq

‰

ż

fpxq lim
εÓ0

gL,ωpx` iεq dx “ 0.
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Density of states in infinite volume

The following construction is taken from [KK08, Chapter 5.1] and [AW15, Chapter 3.4]
and can be applied to random Schrödinger models. For random band matrices, we refer
to the literature [PF92, Theorem 4.11].

Let H be the corresponding ergodic symmetric random operator and HL “ H|ΛL the
restriction of H to the finite cube. We start from the functional νL,ω : L8pRq Ñ R for
bounded measurable functions (see Eq. (1.3.3))

νL,ωpfq “
1

|ΛL|
Tr fpHLpωqq “

ż

fpxq dνL,ωpxq. (1.3.7)

By ergodicity this converges for fixed f P L8pRq to Erxδ0, fpHqδ0ys for almost all ω P Ω
as LÑ 8. This defines a positive, non-random measure ν again via Riesz representation
theorem (cf. Eq. (1.3.4)) by

ż

fpxq dνpxq :“ E rxδ0, fpHqδ0ys .

Indeed, ν is a probability measure since we get νpRq “ Epxδ0, δ0yq “ 1 by taking f “ 1
constant.

It remains to show that this is indeed the weak limit of the measure νL,ω above almost
surely, i.e. there exists a set Ω0 of probability one such that

lim
LÑ8

ż

fpxq dνL,ωpxq “

ż

fpxq dνpxq (1.3.8)

for all f P CbpRq and all ω P Ω0. We refer to [KK08, Theorem 5.5] and [AW15, Thereom
3.14].

Note that if we have other than free boundary conditions for the Laplacian in the
random Schrödinger case, we need to modify the procedure above since HL is no longer
just the restriction of H to the finite cube. If the difference between HL and H|ΛL
remains ”trace class”, we obtain the same result (cf. [AW15, Theorem 3.15]).

Definition 1.3.7. Finally, we can define the density of states measure ν as the proba-
bility measure

νpAq “ Erxδ0, χApHqδ0ys,

the integrated density of states NpEq as the distribution function of ν

NpEq “ νpp´8, Eqq

and the density of states ρ as the Radon-Nikodym derivative of the absolutely continuous
part νac

ρpxq “
dνacpxq

dx
. (1.3.9)
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Connection to Green’s function

We want to build a connection to the Green’s function representation of the averaged
density of states in finite volume (Eq. (1.3.6)).

We give a short excursion on Herglotz-Pick functions. The following definitions and
statements are taken from [AW15, Appendix B]. We consider the Borel-Stieltjes trans-
formation for any finite Borel measure µ given by F : C` Ñ C`

F pzq “

ż

R

1

u´ z
dµpuq. (1.3.10)

This is a Herglotz-Pick function. Its boundary value limεÓ0 F px ` iεq for x P R exists
and is finite almost everywhere. Moreover, it determines the function uniquely and
gives information on the absolutely continuous and singular part of the corresponding
measure. We obtain e.g. the Radon-Nikodym derivative of the absolutely continuous
measure via the underlying theory by

dµacpxq

dx
“ lim

εÑ0

1

π
ImF px` iεq (1.3.11)

for a.e. x P R.
We consider again our density of states measure ν which is non random. Hence,

ş

fpxq dνpxq “ E
“ş

fpxq dνpxq
‰

. We insert Eq. (1.3.8) and apply dominated convergence
to change the average and the limit L Ñ 8 since |fpxq dνL,ωpxq| ď }f}8 is bounded
independent of L and ω:

ż

fpxq dνpxq “ E
„
ż

fpxq dνpxq



“ E
„

lim
LÑ8

ż

fpxq dνL,ωpxq



“ lim
LÑ8

E
„
ż

fpxq dνL,ωpxq



“ lim
LÑ8

ż

fpxq dν̄Lpxq.

(1.3.12)

Let Fν be the Borel-Stieltjes transform of ν. Then by Eq. (1.3.10) and (1.3.7)

Fνpzq “ lim
LÑ8

ż

1

x´ z
dν̄Lpxq “ lim

LÑ8

1

|ΛL|
E
“

Tr pHLpωq ´ zq
´1
‰

.

In particular, limεÓ0 F px` iεq exists and is almost surely finite by Herglotz-Pick theory.
Hence the density of states ρ is by (1.3.11)

ρpxq “ lim
εÓ0

1

π
ImFνpx` iεq “ lim

εÓ0
lim
LÑ8

ErgL,ωpx` iεqsfor a.e. x, (1.3.13)

where gL,ω is defined in Eq. (1.3.5).
It depends on the region in the spectrum, whether this is the infinite volume limit of

the finite volume averaged density of states (i.e. whether we can interchange the limits
εÑ 0 and LÑ 8).
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Proposition 1.3.8. Consider an interval ra, bs Ă R. Assume that there are C1, C2 ă 8

independent of ω and L such that

sup
xPra,bs

|ErgL,ωpx` iεqs| ă C1, sup
xPra,bs

| lim
εÓ0

ErgL,ωpx` iεqs| ă C2.

Then ν “ νac in ra, bs and

ρpxq “
dνacpxq

dx
“ lim

εÓ0
lim
LÑ8

ErgLpx` iεqs “ lim
LÑ8

lim
εÓ0

ErgLpx` iεqs.

We remark that ν “ νac does not imply that the spectrum of H is absolutely contin-
uous since ν is not the spectral measure of H.

Proof. Let f P Cbppa, bqq. We insert Eq. (1.3.12) and apply Lemma 1.3.6 since ErgL,ωpx`
iεqs is bounded independent of ε in ra, bs:

ż b

a

fpxq dνpxq “ lim
LÑ8

ż b

a

fpxq dν̄Lpxq “ lim
LÑ8

ż b

a

fpxq lim
εÓ0

ErgLpx` iεqs dx

To bring the limit of LÑ 8 inside the integral we use the second bound and dominated
convergence:

lim
LÑ8

ż b

a

fpxq lim
εÓ0

ErgLpx` iεqs dx “
ż b

a

fpxq lim
LÑ8

lim
εÓ0

ErgLpx` iεqs dx (1.3.14)

and hence combining (1.3.13) and (1.3.14)

ρpxq “
dνacpxq

dx
“ lim

εÓ0
lim
LÑ8

ErgLpx` iεqs “ lim
LÑ8

lim
εÓ0

ErgLpx` iεqs.

1.4. Density of States for random band matrix in two
dimensions

In the following section we summarize the results and ideas of [DL17]. We start with
a finite volume version of the random band matrix operator introduced in Section 1.3.3
on the two-dimensional lattice Z2. For the three-dimensional lattice, [DPS02] proved
that the density of states of this model equals Wigner’s semicircle law up to an error
depending on the band width W . The main result of [DL17] extents this result from the
three- to the two-dimensional case.

We remind here the model and the density of states and give the main result and
the idea of the proof. Moreover, we compare our result and techniques with the ones of
[DPS02]. There are two main differences: on the one hand, d “ 2 is a limit case and
makes the estimates more involved. The main idea is to extend the volume of the cubes
used in the cluster expansion. On the other hand, we organize the cluster expansion in
a simpler way. In contrast to [DPS02], we also perform a preliminary step of integration
by parts, which leads to more reduced formulas.
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1.4.1. Model and result

Model

In the following we set d “ 2 and consider a finite cube Λ Ă Z2. Let H P CΛˆΛ be a
hermitian random matrix with independent entries distributed as

Hii „ NRp0, Jiiq, Hij „ NCp0, Jijq, for i ă j,

where ă is the order relation on Z2. The covariance J is defined by

Jij :“ p´W 2∆` 1q´1
ij À e´|i´j|{W for |i´ j| ą W,

where ´∆ P RΛˆΛ is the discrete Laplacian on Λ with periodic boundary conditions and
W " 1 is the band width. Periodic boundary conditions in this context mean that we
identify opposite sites of the cube Λ as nearest neighbours:

´∆ij “

$

’

&

’

%

2 i “ j,

´1 i, j nearest neighbours in the torus,

0 otherwise.

The difference to the free Laplacian is trace like and hence the infinite volume limit is
the same [AW15, Theorem 3.15].

Density of States

In Section 1.3.4 we have seen that it is useful to study the finite volume averaged density
of states given by

ρ̄ΛpEq “
1

|Λ|
E

«

ÿ

j

δλjpEq

ff

“ ´
1

π|Λ|
lim
εÓ0

ErIm TrG`pE ` iεqs, (1.4.1)

where E P R, λj are the random eigenvalues of H and G` is the resolvent

G`pE ` iεq :“ ppE ` iεq ¨ 1´Hq´1.

Note that the second equality in Eq. (1.4.1) is meant in distributional sense. Neverthe-
less, we show that the limit ε Ó 0 exists pointwise.

Result

In the following we bound E ÞÑ ρ̄ΛpEq uniformly in Λ in some region E P I. We expect
the spectrum to be Σ “ r´2, 2s. We consider the interval I “ tE : η ă |E| ď 1.8, η ą 0u
to be well inside the spectrum and to avoid 0 for technical reasons.

We give our theorem in d “ 2 and the one in d “ 3 of [DPS02].
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Theorem 1.4.1 (Disertori, Lager 2017). For d “ 2 and each fixed α P p0, 1q, there exists
a value W0pαq such that for all W ě W0pαq and E P I

|ρ̄ΛpEq ´ ρSCpEq| ď W´2 eKplnW q
α

,

|B
n
E ρ̄ΛpEq| ď CnW

´1
plnW qnpα`1q eKplnW q

α

@n ě 0,

where ρSC is Wigner’s semicircle law defined as

ρSCpEq “

#

1
π

b

1´ E2

4
if |E| ď 2,

0 if |E| ą 2.
(1.4.2)

The constants Cn and K are independent of Λ and W. Both estimates hold uniformly in
Λ and hence also in the infinite volume limit Λ Ñ Z2.

Theorem 1.4.2 (Disertori, Pinson, Spencer 2002). For d “ 3, there exists a value W0

such that for all W ě W0 and E P I

|ρ̄ΛpEq ´ ρSCpEq| ď W´2,

|B
n
E ρ̄ΛpEq| ď Cn @n ě 0,

where ρSC is Wigner’s semicircle law defined in (1.4.2). The constants Cn are inde-
pendent of Λ and W. Both estimates hold uniformly in Λ and hence also in the infinite
volume limit Λ Ñ Z3.

Note that we insert an α dependence to deal with the problems arising in d “ 2.
Moreover, our bounds are slightly weaker than the ones in d “ 3. We specify this in
Section 1.4.3. First we give the idea of the proof.

1.4.2. Idea of the proof

The proof follows the ideas of [DPS02]. Starting from a supersymmetric representation
of G`, we perform a saddle point analysis and prove estimates in a finite cube of volume
W 2 lnWα. This differs from the natural choice of W d, which works in d “ 3. We need a
larger volume to suppress contributions from the non-dominant saddle point. Then we
perform a cluster expansion to extend the estimates to infinite volume.

Dual representation

We start from the trace of G` and represent each entry G`kk as a complex Gaussian
integral. Then we replace the normalization factor by a fermionic Gaussian integral and
end up with

1
|Λ|

ÿ

kPΛ

G`kkpE ` iεq “
´i
|Λ|

det
“

´iE`iε´H
2π

‰

ż

dz̄ dz eipz̄,pE`iε´Hqzq
ÿ

kPΛ

zkz̄k

“ ´i
|Λ|

ż

dΦ˚ dΦ ei
ř

i,jPΛ Φ˚i pδijpE`iεq´HijqΦj
ÿ

kPΛ

zkz̄k,
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where dΦ˚ dΦ “ dz̄ dz dχ̄ dχ and Φ is a supervector cf. Eq. (1.2.4). We drop the
argument E ` iε “ Eε of G` in the following. Note that we use here the normalization
of the fermionic integral

ş

dχ χ “ 1?
2π

to eliminate the 2π factor arising from the complex
Gaussian integral and hence by Proposition 1.2.11

ż

dχ̄ dχ e´pχ̄,Mχq
“ det M

2π
.

The probability measure is Gaussian, hence all moments are bounded. Therefore, we
can shift the average inside the integral and evaluate it explicitly:

E
”

e´i
ř

i,jPΛ Φ˚i HijΦj
ı

“ e´
1
2

ř

i,jPΛ JijpΦ
˚
i ΦjqpΦ

˚
j Φiq.

Then we apply the so-called Hubbard-Stratonovich transformation to introduce a new
superintegral. We write

e´
1
2

ř

i,jPΛ JijpΦ
˚
i ΦjqpΦ

˚
j Φiq “

ż

ź

jPΛ

dMj e´
1
2

ř

i,jPΛ J
´1
ij Str rMiMjs e´i

ř

jPΛ Φ˚jMjΦj ,

where M is a collection of |Λ| many 2ˆ 2 supermatrices

Mj “

ˆ

aj ρ̄j
ρj ibj

˙

,

where aj, bj P R and ρ̄j, ρj are Grassmann variables. By Fubini we can exchange the
integrals over dM and dΦ˚ dΦ.

ErTrG`s “

ż

dM e´
1
2

ř

i,jPΛ J
´1
ij Str rMiMjs

ż

dΦ˚ dΦ ei
ř

jPΛ Φ˚j pEε´MjqΦj
ÿ

k

|zk|
2 (1.4.3)

By a preliminary step of integration by parts, we eliminate the factor
ř

k |zk|
2 as follows:

´i

ż

da e´
1
2
atJ´1a e´i

ř

jPΛ aj |zj |
2
ÿ

kPΛ

|zk|
2
“

ż

da e´
1
2
atJ´1a

ÿ

kPΛ

Bakr e
´i

ř

jPΛ aj |zj |
2

s

“ ´

ż

da
ÿ

kPΛ

Bakr e
´ 1

2
atJ´1a

s e´i
ř

jPΛ aj |zj |
2

“

ż

da e´
1
2
atJ´1a e´i

ř

jPΛ aj |zj |
2
ÿ

kPΛ

ak,

where we used p1, J´1aq “ p1, p´W 2∆`1qaq “
ř

k ak. Note that there are no boundary
terms. Because of periodic boundary conditions on Λ, the integral is translation invariant
and we can replace 1

|Λ|

ř

k ak with a0. Using Theorem 1.2.19, we can integrate over the

variables Φ˚ and Φ in Eq.(1.4.3) where the observable is now a0. We end up with

1
|Λ|
ErTrG`s “

ż

dM e´
1
2

ř

i,jPΛ J
´1
ij Str rMiMjs

ź

jPΛ

Sdet rEε ´Mjs
´1a0

“

ż

da db e´
1
2
ppa,J´1aq`pb,J´1bqq

ź

jPΛ

Eε´ibj
Eε´aj

det
”

J´1´F
2π

ı

a0, (1.4.4)
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where

F pa, bqij “ δij
1

pEε´ajqpEε´ibjq
. (1.4.5)

Because of the integration by parts, we have the simple observable a0 in contrast to
1

Eε´a0
ˆ (contribution in the determinant) ([DPS02, Eq. (3.1)]).

Saddle point analysis

The leading term in Eq. (1.4.4) is

e´
1
2
ppa,J´1aq`pb,J´1bqq

ź

jPΛ

Eε´ibj
Eε´aj

.

Observing that pa, J´1aq “
ř

j a
2
j `W 2

ř

i„jpai ´ ajq
2 is small only if the aj « a are

approximately constant, we obtain critical points if we set

e´
|Λ|
2
pa2`b2q

`

E´ib
E´a

˘|Λ|
“ e

´|Λ|
´

a2

2
`lnpE´aq` b2

2
´lnpE´ibq

¯

„ 1.

Then the critical points are a˘s “ Er ˘ iEi and b˘s “ ´iEr ˘ Ei, where

E “ Er ´ iEi “ E
2
´ i

b

1´ E2

4
. (1.4.6)

We want to apply a complex contour deformation to integrate through the saddle points.
To avoid crossing the singularity E ` iε, we choose a`s and we will see later that b`s is
the dominant saddle (cf. Figure 1.1).

Figure 1.1.: Complex saddle points a˘s and b˘s in the complex plane.
Im a

Re a

•

Ē

•

E

•

Eε

Im b

Re b

•

´iĒ
•

´iE

Finding the semicircle law

Applying the complex contour deformation mentioned above, we can take the limit
limεÑ0 and obtain the semicircle law plus an error term. It remains to show that the
error term is small. Precisely we obtain the following result:

Lemma 1.4.3. After performing the complex deformation aj ÞÑ aj`a
`
s and bj ÞÑ bj`b

`
s

we obtain

lim
εÑ0

1

|Λ|
ErTrG`s “a`s ` Irem with Irem “

ż

dµBpa, bqRpa, bqa0, (1.4.7)

where
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• dµBpa, bq is the Gaussian measure with complex covariance B given by B :“
p´W 2∆` p1´ E2qq´1 and E defined in Eq. (1.4.6),

• Rpa, bq :“ detr1`DBs eVpa,bq, with

– Dij “ Dijpa, bq “ δijDjpa, bq is diagonal,

– Djpa, bq “ E2 ´ F pa` a`s , b` b
`
s qjj with F defined in Eq. (1.4.5),

– Vpa, bq “
ř

jPΛ V pajq ´ V pibjq, with V pxq “
ş1

0
x3p1´tq2

pĒ´txq3 dt.

Note that ´ 1
π
Im a`s “ ρSCpEq. The difficult part now is to show that

ˇ

ˇ

ˇ

ˇ

´
1

π
Im lim

εÑ0

1

|Λ|
ErTrG`s ´ ρSC

ˇ

ˇ

ˇ

ˇ

“
1

π
|Im Irem| ď

1

π
|Irem| ď OpW´δ

q

for some δ ą 0.
Up to this point, the procedure is independent of the dimension. From now on it

becomes crucial since the dimension has an impact on the decay of the covariance B and
hence on the estimates of the remaining integral Irem in (1.4.7). We discuss this in the
next section.

1.4.3. The difficulties of d=2

To estimate Irem, we partition the domain of integration into five sets: two small field
regions, in which all a, b are near the saddle points and three large field regions, where
at least one variable is far from the saddle point (cf. Eq. (2.3.7)).

The large field regions work similar in d “ 2 and d “ 3 and give exponentially small
contribution in W . This decay is used to control various W factors arising from the
cluster expansion later.

In the two small field region I1 and I2, all variables a, b are centred around one saddle
point, respectively. To estimate these contributions we use the decay of the covariance
|Bij|. Here the dimension comes into place. In d “ 3 we obtain

|Bij| ď
K

W 2p1` |i´ j|q
e´mr|i´j|{W

while in d “ 2 we have

|Bij| ď

#

1
W 3{2|i´j|1{2

e´mr|i´j|{W |i´ j| ą W
mr
,

1
W 2 ln W

1`|i´j|
|i´ j| ď W

mr
,

where mr “ Re p1´ Eq.
This weaker decay for small distances is the main problem in d “ 2. Indeed estimating

the integral in the small field regions in d “ 3 we get the following estimates (cf. [DPS02,
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Eq. (5.32) and (5.44)]) which allow the natural choice |Λ| “ W d “ W 3.

ˇ

ˇ

ˇ

ˇ

ż

dµBpa, bqχI1Rpa, bqa0

ˇ

ˇ

ˇ

ˇ

ď K eK|Λ|W
´3

„ K,

ˇ

ˇ

ˇ

ˇ

ż

dµBpa, bqχI2Rpa, bqa0

ˇ

ˇ

ˇ

ˇ

ď K eK|Λ|W
´2

e´c|Λ|W
´2 1

8
„ e´cW ,

where we denote by K ă 8 different constants independent of W and Λ and c ą 0 is
fixed. On the contrary in d “ 2 the same estimates are (cf. Lemma 2.3.6)

ˇ

ˇ

ˇ

ˇ

ż

dµBpa, bqχI1Rpa, bqa0

ˇ

ˇ

ˇ

ˇ

ď K eK|Λ|W
´2

ˆ

lnW

W 2

˙1{2

eK|Λ|W
´3plnW q3{2 , (1.4.8)

ˇ

ˇ

ˇ

ˇ

ż

dµBpa, bqχI2Rpa, bqa0

ˇ

ˇ

ˇ

ˇ

ď K eK|Λ|W
´2

e´c|Λ|W
´2 lnW . (1.4.9)

Taking the natural choice |Λ| “ W d “ W 2, the second saddle gives a contribution „ W´c

which is not enough to suppress the various W factors that will arise from the cluster
expansion. This weak bound comes from the ln-behaviour of Bij for small distances.
The solution is to extend the volume slightly to |Λ| “ W 2plnW qα for some α P p0, 1q.
Then the second saddle is suppressed nearly exponentially in W by eKplnW q

α´cplnW q1`α “

e´c lnW rplnW qα´K
c
s ! 1 for W large enough.

The price to pay is that we get a prefactor of order eK|Λ|W
´2
„ eKplnW q

α
at the

dominant saddle instead of eK in the case d “ 3. It can be compensated by the
observable which is of order W´2. This equilibrium between conflicting effects is possible
because d “ 2 is a limit case.

1.4.4. Supersymmetric cluster expansion and integration by parts

Cluster expansion

Both [DPS02] and [DL17] use an inductive cluster expansion (cf. [Riv91, Chapter III.1]).
More modern versions as the Brydges-Kennedy-Taylor forest formula [AR95] or the
Erice-cluster expansion [Bry86] may be used as well but would complicate the procedure.

Let us start with an easy example. Consider a normalized Gaussian integral with
positive definite covariance C P RΛˆΛ and some diagonal observable Opxq “

ś

j Ojpxjq:

F “

ż

dµCpxqOpxq.

We divide Λ into equally sized, disjoint cubes Λ “
Ť

j4j. Let 40 be some given cube.
Then we manipulate C with an interpolation parameter s P r0, 1s as follows

Cpsqij “

#

sCij if i P 40, j R 40 or vice versa,

Cij otherwise,
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to decouple 40 from the remaining volume. Note that this is equivalent to

Cpsq “ sC ` p1´ sqrC4040 ` C4c
04c

0
s

(where C44 is C restricted to4). In particular, Cp0q “ C4040`C4c
04c

0
is block-diagonal

and Cpsq is positive definite since it is a convex combination of positive definite matrices.
Setting F psq “

ş

dµCpsqpxqOpxq we obtain by the fundamental theorem of calculus

F “ rF psqss“1 “ rF psqss“0 `

ż 1

0

ds BsF psq,

where F p0q “
ş

40
dµC4040

pxqO40 ˆ
ş

4c
0

dµC4c04c0
pxqO4c

0
partitions the domain of in-

tegration into 40 and its complement. Using integration by parts, one can move the
derivative of the covariance to the observable and get, using BsCpsq “ C∆c

0∆0 ` C∆0∆c
0

BsF psq “
ÿ

iP40,jR40

Cij

ż

dµCpsqpxqBxiBxjOpxq “
ÿ

iP40,jR40

CijFpi,jqpsq.

We have extracted a new cube 41 containing j. This procedure can be continued
inductively. In the second step one fixes the points i and j and extracts a new cube 42

containing neither of them. This produces a tree structure on the extracted cubes and
one ends up with a sum over polymers P (i.e. unions of disjoint cubes)

F “
ÿ

P“pP1,...Pnq
polymers

n
ź

k“1

»

—

–

ÿ

Tk
tree on Pk

ÿ

V
vertex of Tk

ź

lPT

CVl

ż

r0,1s|T |

ź

l

dsl MT psq FV psq

fi

ffi

fl

,

where we sum over all disjoint polymers P “ pP1, . . . Pnq. On each polymer we sum over
all possible tree structures and then, for each tree edge connecting 4 and 41, we sum
over the endpoints V “ ti, ju of the covariance Cij for i P 4 and j P 41. Finally MT psq
is a product of s factors. This expansion should allow easier estimates than the whole
integral before.

To perform the cluster expansion in our case, we start from the supersymmetric inte-
gral

Irem “

ż

dµBpMq eVpMqa0,

where VpMq “
ř

j VpMjq, VpMjq “ Vjpa, bq ` ρ̄jρjDj and dµBpMq is the Gaussian

measure for M “

ˆ

a ρ̄
ρ ib

˙

, i.e. dµBpMq “ dM e´
1
2

Str pM,B´1Mq. The procedure is very

similar to the sketch above with two main differences.
First of all, we have a complex covariance B “ pC´1 ` im2

i q
´1 but we manipulate

the real covariance C instead of B and set Bpsq “ pCpsq´1 ` im2
i q
´1. This extracts a

multilink consisting of one, two or three cubes at a time and leads to a more complicate
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propagator GpsqCGpsq instead of C (cf. Lemma 2.4.4). Note that this propagator
depends on the coupling parameters s. This is why we use this (a bit old fashioned)
inductive cluster expansion instead of other versions. Nevertheless interpolating instead
B directly would lead to expressions likepReBpsq´1q´1 which are very difficult to control.

Secondly, we have a supersymmetric integral. This improves the procedure since we
have no normalization factor and the integral outside the polymer containing 0 yields 1
(cf. Lemma 2.4.3).

We obtain the following

Irem “
ÿ

P polymer:
0PP

ÿ

T tree
on P

ÿ

V
multilink

ż

r0,1s|T |

ź

q

dsq
ź

q

rGpsqCGpsqsVqMT psq FV psq,

where

FV psq “

ż

dµBpsqpMq
ź

q

Str pBMiq
BMjq

q
“

a0 eVpMq
‰

.

To bound Irem we first integrate the fermionic part of FV psq and estimate the remaining
part. Therefore, we partition the region of integration in each cube again in small and
large field regions and use the finite volume estimates (cf. Eq. (1.4.8) and (1.4.9)). At
the dominant saddle we gain from each derivative a factor W´1

?
lnW . This can be

extracted in the other regions as well since we have proven (almost) exponential decay
in W .

The decay of GpsqCGpsq enables us to sum over both: the vertex position inside each
cube and the cube position. To sum also over the tree structure, we demand that the
remaining factor g “ KplnW qαW´1{3`ε ! 1 for W large enough. Then

ÿ

rě1

ÿ

T tree with r vertices

gr´1
ă 8.

For details we refer to Chapter 2. As a result, we obtain

|ρ̄ΛpEq ´ ρSCpEq| ď
1

W
eplnW q

α

.

To improve the bound to W´2, we need some additional step of integration by parts.

Remark. [DPS02] use the same approach as we do, but without the supersymmetric
matrix M which simplifies and clarifies the formulas. Moreover, in [DPS02] the observ-
able has a more involved expression. Finally our bounds are more tricky because the
covariance has a weaker decay in d “ 2 than in d “ 3.
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Integration by parts

Before applying the cluster expansion we again use integration by parts (cf. Eq. (2.4.5))
and write

Irem “

ż

dµBpMq eVpMqa0 “ ´
ÿ

l0

B0l0

ż

dMBal0

”

e´
1
2

Str pM,B´1Mq
ı

eVpMq

“
ÿ

l0

B0l0

ż

dµBpMqBal0 eVpMq.

Hence, we transform the observable a0 into a partial derivative of the potential. This
simplifies the procedure since now there is only one term in the integral FV , namely
eVpMq, which collects derivatives - from the observable and from the cluster expansion.
The additional derivative gives a factor W´2 which improves the estimates at the dom-
inant saddle and we end up with the stated correction

|ρ̄ΛpEq ´ ρSCpEq| ď W´2 eKplnW q
α

.

The decay of B enables the summation over l0 P Λ. Note that this step also simplifies
the analysis of the derivatives of G` a lot.

1.4.5. Conclusion

We have seen that d “ 2 is a limit case because of weaker estimates for the covariance.
Therefore, we expect the correction to the semicircle law to be larger than in d “ 3. By
extending the underlying volume from the natural choice W 2 to W 2plnW qα for some
α P p0, 1q we obtain control over the non-dominant saddle and can apply a cluster
expansion.

To optimize α one would need to track the constants c and K more carefully. To
sum over the cluster expansion in the end, we choose W0pαq such that a certain term
g “ KplnW qαW´1{3`ε ! 1 for W ě W0pαq large enough. Another constraint for W0pαq
and therefore also for α is that the decay at the second saddle e´cplnW q

1`α
needs to

bound factors W n as described above. Note that we collect not too many W factors,
precisely not more than three per extracted tree line.

In addition we obtain more reduced and simplified formulas by a more compact no-
tation for the supersymmetric approach and some apriori steps of integration by parts.
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1.5. Supersymmetric polar coordinates with applications
to the Lloyd model

We have seen that spectral properties of random operators are encoded in the average
of the Green’s function. For probability distributions with enough finite moments, the
standard supersymmetric approach offers a useful dual representation as we have seen in
the case of Gaussian band matrices. In this section we summarize the results of [DL20],
where we enlarge the applicability of the supersymmetric approach. We introduce an
alternative dual representation that remains valid for a very large class of probability
distributions, precisely for all these that have an integrable random distribution. In
particular, the moments can be infinite. This representation is based on supersymmetric
polar coordinates.

As an application, we study the density of states for the Lloyd model, which is a
random Schrödinger model with Cauchy distributed random variables. We study three
cases: the classical Lloyd model with independent random variables, the case with posi-
tive linearly correlated random variables and a third model with some localized negative
perturbations to the classical case. For the first two cases we recover known results of
[Llo69, Sim83]. The third case provides a new application as far as we know.

1.5.1. Motivation and Setting

Consider a random Schrödinger operator H : l2pΛq Ñ l2pΛq on a finite volume Λ Ă Zd
given by

H “ ´∆` λV, (1.5.1)

where ´∆ is the discrete Laplacian on Λ with certain boundary conditions and V a
multiplication operator pV ϕqj “ Vjϕj, where tVjujPΛ are random variables with joint
distribution µ.

Let us assume first the Vj to be i.i.d. We have seen in Section 1.3.4 that ErTr pz´Hq´1s

leads to the density of states. The supersymmetric approach enables to rewrite this
expression as a supersymmetric integral:

pz ´Hq´1
jj “

ż

r dΦ˚ dΦs eiΦ
˚pz`∆´λV qΦ

|zj|
2,

where Φ “ pz, χq is a supervector consisting of |Λ| complex variables zj and |Λ| Grass-
mann variables χj (cf. Section 1.2). Here we use the convention

ş

dχ χ “ 1 and set

r dΦ˚ dΦs :“ p2πq´N
śN

j“1 dz̄j dzj dχ̄j dχj with a now included factor p2πqN . If we are
able to move the average inside the integral, we have to evaluate only

Er e´iλΦ˚V Φ
s “

ź

j

Er e´iλΦ˚j ΦjVj s “
ź

j

Er e´iλz̄jzjVjp1´ iλχ̄jχjVjqs

instead of ErTr pz ´Hq´1s, where we used that pχ̄jχjq
2 “ 0.
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Interchanging average and integral by Fubini is only possible if we have integrable
functions. Let now µ0 be the probability density of a single Vj and assume Er|Vj|s ă 8.
Then

Er e´iλΦ˚j ΦjVj s “

ż

e´iλΦ˚j Φjx dµ0pxq “ µ̂0pλΦ˚jΦjq,

i.e. we can represent the average as a product of Fourier transformations of µ0 at Φ˚jΦj,
an even element in the Grassmann algebra. The function µ̂0pλΦ˚jΦjq is well-defined if
µ0 P C

1. If we consider a general joint density, we obtain

Erexpp´iλΦ˚V Φqs “

ż

e´iλΦ˚Φx dµpxq “ µ̂pλΦ˚Φq.

This formula holds if µ̂ admits enough derivatives.
For Cauchy distributed variables we have no finite moment. If dµ “ 1

π
1

1`x2 dx then
Er|V |s “ 8 for V „ µ. Random Schrödinger operators with Cauchy distributed V (also
called Lloyd model) have been studied with other tools by Lloyd [Llo69] and Simon
[Sim83]. One obtains an explicit representation for the density of states:

ρ̄
pHq
Λ pEq “ lim

εÑ0
ErTrG

pHq
Λ pE ` iεqs

“ Tr ppE ` iλq1Λ ´H0q
´1
“ TrG

pH0q

Λ pE ` iλq,

where H0 “ ´∆0 is the free Laplacian and λ is the parameter of disorder.
Our goal is to construct a new supersymmetric representation that can be applied

also to less regular distributions such as the Cauchy distribution and more generally for
integrable V . With this we can reprove the above results [Llo69, Sim83]. Moreover, we
study a toy model with single negative correlations.

We expect that our formula can also help in other cases as a starting point for standard
methods such as saddle point analysis, cluster expansions or renormalization (cf. [Fre20]).

1.5.2. Supersymmetric change of variables

A supersymmetric change of variables is a priori only known for functions with compact
support (cf. [Efe99, Chapter 2.5] and [Weg16, Chapter 10.3] or Theorem 1.2.18). If we
consider functions with non-compact support, we obtain additional boundary terms that
become very complicated for an arbitrary transformation.

In the following we consider supersymmetric polar coordinates mapping U “ Czt0u
to R` ˆ p0, 2πq. Hence, 0 is a boundary term of U and a compact supported function f
needs to fulfil fp0q “ 0. For a general f we have derived a compact formula with simple
explicit expressions for boundary terms.

In the following we use the notation from Section 1.2 above. Consider first a Grass-
mann algebra with two generators Grχ̄, χs. The idea of supersymmetric polar coordinates
is to transform between pz̄, z, χ̄, χq with z P C and pr, θ, ρ̄, ρq with r P R` and θ P p0, 2πq
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such that z̄z ` χ̄χ “ r2. If we take

z “ eiθpr ´ 1
2
ρ̄ρq z̄ “ e´iθpr ´ 1

2
ρ̄ρq

χ “
?
rρ χ̄ “

?
rρ̄

we have indeed z̄z ` χ̄χ “ pr ´ 1
2
ρ̄ρq2 ` rρ̄ρ “ r2.

Note that 0 is a boundary point for this transformation since U “ Czt0u is mapped
to R` ˆ p0, 2πq. If f has compact support in U (i.e. especially fp0q “ 0) we can
apply Theorem 1.2.18, the standard version of the supersymmetric change of coordinates
formula, where the Jacobian is replaced by the Berezinian. On the contrary, for functions
with fp0q ‰ 0, we get additional boundary terms.

In the following we prove a one-dimensional version of our result. In that case we
obtain the desired integral in polar coordinates with a constant Berezinian and a single
boundary term at 0.

Theorem 1.5.1. Let f P G2,2pCq be integrable, i.e. all fI : C Ñ C are integrable, we
have

Ipfq :“

ż

C
dz̄ dz dχ̄ dχ fpz̄, z, χ̄, χq

“ 2

ż

R`ˆp0,2πq
dr dθ dρ̄ dρ f ˝Ψpr, θ, ρ̄, ρq ` 2π f ˝Ψp0q,

where Ψpr, θ, ρ̄, ρq “ p e´iθpr ´ 1
2
ρ̄ρq, eiθpr ´ 1

2
ρ̄ρq,

?
rρ̄,
?
rρq.

Proof. We split our transformation Ψ into three steps. The first one is the change to
standard complex polar coordinates, the second a rescaling of the Grassmann variables
and the third a translation of |z| in the ”Grassmann plane”:

z
Ψ1
Ñ reiθ

Ψ2
Ñ reiθ

Ψ3
Ñ

`

r ´ 1
2
ρ̄ρ
˘

eiθ,

χ
Ψ1
Ñ χ

Ψ2
Ñ

?
rρ

Ψ3
Ñ

b

r ´ 1
2
ρ̄ρ ρ “

?
rρ.

The first transformation Ψ1pr, θ, χ, χ̄q “ pr eiθ, r e´iθ,χ,χ̄q is an ordinary transformation
with Jacobian 2r. The second one Ψ2pr, θ, ρ, ρ̄q “ pr, θ,

?
rρ,
?
rρ̄q ia a linear transfor-

mation in the purely fermionic variables, where we can apply Theorem 1.2.13. Here, we
obtain a factor r´1 which cancels the Jacobian from above up to a constant. The third
transformation Ψ3pr, θ, ρ, ρ̄q “ pr´

1
2
ρ̄ρ, θ, ρρ̄q mixes bosonic and fermionic variables and

produces the boundary term. We calculate

Ipfq “

ż

C
dz̄ dz dχ̄ dχ fpz̄, z, χ̄, χq

“

ż

R`ˆp0,2πq
dr dθ dχ̄ dχ 2r f ˝Ψ1pr, θ, χ̄, χq

“ 2

ż

R`ˆp0,2πq
dr dθ dρ̄ dρ f ˝Ψ1 ˝Ψ2pr, θ, ρ̄, ρq.
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For the third step, we expand f̃ “ f ˝Ψ1 ˝Ψ2 ˝Ψ3 as follows

f ˝Ψ1 ˝Ψ2pr, θ, ρ̄, ρq “ f̃pr ` ρ̄ρ
2
, θ, ρ̄, ρq “ f̃pr, θ, ρ̄, ρq ` ρ̄ρ

2
Brf̃pr, θ, ρ̄, ρq.

Inserting this we have

Ipfq “2

ż

R`ˆp0,2πq
dr dθ dρ̄ dρ f̃pr, θ, ρ̄, ρq ´

ż

R`ˆp0,2πq
dr dθ Brf̃pr, θ, 0, 0q,

where we integrated over the Grassmann variables in the second term. By integration
by parts

ż

R`ˆp0,2πq
dr dθ Brf̃pr, θ, 0, 0q “ ´

ż

p0,2πq

dθ f̃p0, θ, 0, 0q “ ´2πf̃p0q,

where we used that limrÑ8 f̃pr, θ, 0, 0q “ 0 since f (and hence f̃) is integrable and
f̃p0, θ, 0, 0q is independent of θ.

If we consider now f P G2N,2NpCNq, we obtain for each index two contributions, a
boundary term and the full integral, hence we get in total 2N terms. Note that in our
notation r dΦ˚ dΦs a factor p2πqN is included.

Theorem 1.5.2. Let f P G2N,2NpCNq be integrable, i.e. all fI : CN Ñ C are integrable,
we have

Ipfq “

ż

CN
r dΦ˚ dΦs fpΦ˚,Φq “

ÿ

αPt0,1uN

Iαpfq

with multiindex α and

Iαpfq “ π´|1´α|
ż

pR`ˆp0,2πqq1´α
p dr dθ dρ̄ dρq1´α f ˝Ψαpr, θ, ρ̄, ρq,

where p drq1´α “
ś

j:αj“0 drj (and the same for θ, ρ̄ and ρ) and Ψα is given by Ψα :

pr, θ, ρ̄, ρq ÞÑ pz, z̄, χ, χ̄q with

$

’

’

’

&

’

’

’

%

zjprj, θj, ρ̄j, ρjq “ δαj0 eiθjprj ´
1
2
ρ̄jρjq,

z̄jprj, θj, ρ̄j, ρjq “ δαj0 e´iθjprj ´
1
2
ρ̄jρjq,

χjprj, θj, ρ̄j, ρjq “ δαj0
?
rjρj,

χ̄jprj, θj, ρ̄j, ρjq “ δαj0
?
rj ρ̄j.

Proof. Generalize Theorem 1.5.1 to N sets of variables. For details see Section 3.3.
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1.5.3. Dual representation for random Schrödinger operators

The above formula provides an alternative supersymmetric dual representation. We ap-
ply it in the following to the averaged density of states for random Schrödinger operators.

We consider a random Schrödinger operator H “ ´∆`λV on Λ defined in Eq. (1.5.1),
where tVjujPΛ are real random variables with integrable joint density µ.

Theorem 1.5.3. The supersymmetric polar coordinate representation for the average of
the trace of the Green’s function G`pE` iεq “ pE` iε´Hq´1 for a random Schrödinger
operator H reads:

ErTrG`pE ` iεqs “
ÿ

αPt0,1uΛ

ż

pR`ˆp0,2πqq1´α

`

dr dθ dρ̄ dρ
π

˘1´α
µ̂ptλr2

j ujPΛq|rα“0

ˆg ˝Ψαpr, θ, ρ̄, ρq
ÿ

jPΛ:
αj“0

pr2
j ´ rj ρ̄jρjq,

where gpΦ˚,Φq “ eiΦ
˚pE`iε`∆qΦ and µ̂ptλr2

j ujPΛq is the |Λ|-dimensional, joint Fourier
transform of µ. If in addition the Vj’s are independent and identically µ0-distributed
then

µ̂ptλr2
j ujPΛq|rα“0 “

ź

jPΛ:αj“0

µ̂0pλrjq.

Proof. We start from the classical supersymmetric approach also used in Section 1.4.2.
The entry of an inverse matrix has a complex Gaussian integral representation. The
corresponding normalization factor can be replaced by a fermionic Gaussian integral.
We obtain

Tr pE ` iε´Hq´1
“ ´i det

“

´iE`iε´H
2π

‰

ż

dz̄ dz eipz̄,pE`iε´Hqzq
ÿ

kPΛ

zkz̄k

“ ´i

ż

r dΦ˚ dΦs ei
ř

i,jPΛ Φ˚i pδijpE`iε`λVjq`∆ijqΦj
ÿ

kPΛ

zkz̄k.

Note that we stick to the normalization of the fermionic integral
ş

dχ χ “ 1 as introduced
in Section 1.2. The factor 2π from the complex Gaussian integral is hidden in r dΦ˚ dΦs “
p2πq´N dz̄ dz dχ̄ dχ. Now we apply Theorem 1.5.2. As a result, randomness appears only
in exppiλ

ř

j:αj“0 r
2
jVjq which is a bounded function. Hence, we can insert the average

inside the integral and obtain the above formula since

E

«

exppiλ
ÿ

j:αj“0

r2
jVjq

ff

“ µ̂pλr2
q|rα“0.
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Remark. We can apply Theorem 1.5.2 to other important quantities in this context, e.g.
to the generating function G given by

GεpE, Ẽq “ E
„

detppE ` iεq1Λ ´HΛq

detppẼ ` iεq1Λ ´HΛq



.

and the Green’s function squared Er|GΛpE ` iεqjk|
2s. In this last case we need two sets

of Grassmann variables (see Theorem 3.2.2).

1.5.4. Application to Lloyd model

We apply the above representation to derive the density of states for the Lloyd model,
a random Schrödinger model with Cauchy distributed random variables Vj. More
precisely we consider linear correlated random potentials, i.e. Vj “

ř

k TjkWk, where
Wk „ Cauchyp0, 1q are i.i.d. random variables, Tjk “ Tkj P R and

ř

j Tjk ą 0.
In the following we discuss two cases: first we study the (positive) correlated Lloyd

model with Tjk ě 0 and
ř

j Tjk ą 0. Note that the classical Lloyd model is a special
case of this with Tjk “ δjk. Our representation provides a new proof for the results of
[Llo69] and [Sim83].

As a new application we consider in a second case a toy model with a single negative
correlation, i.e. Tjj “ 1 and T21 “ T12 “ ´δ

2 with 0 ă δ ă 1 and Tjk “ 0 otherwise. The
indices 1 and 2 denote two fixed, nearest neighbour points i1, i2 P Λ with |i1 ´ i2| “ 1.

Theorem 1.5.4 (Positive correlated Lloyd model). Let Tjk ě 0 and
ř

j Tjk ą 0. Then
we have

lim
εÑ0

ErTrGΛpE ` iεqs “ Tr pE1Λ ` iλT̂ ´H0q
´1,

where H0 “ ´∆ and λT̂ is a diagonal matrix with T̂ij “ δij
ř

k Tjk.
In particular both, the classical and the (positive) correlated Lloyd model, have the

same (averaged) density of states as the free Laplacian H0 “ ´∆ with constant imaginary
mass λ and variable mass λT̂ , respectively.

Idea of the proof. Apply Theorem 1.5.3 and evaluate µ̂0. Then we transform back from
polar coordinates to the classical supersymmetric representation. For details see Section
3.4.

In the case of a single negative correlation (the toymodel described above) we obtain
the following result.

Theorem 1.5.5 (Toy model). Let Tjj “ 1, T21 “ T12 “ ´δ
2 with 0 ă δ ă 1 and Tjk “ 0

otherwise, λ ą 0 and 0 ă δ ! p1` λ´1q´1. Then

lim
εÑ0

ErTrGΛpE ` iεqs “

Tr pE1Λ ` iλT̂ ´H0q
´1

”

1`O
´

pδp1` λ´1
qq

2
¯

`Op|Λ|´1
q

ı

.

Idea of the proof. Follows from Theorem 1.5.3 by integrating first over the uncorrelated
variables in Λ and estimating the remaining integral. For details see Section 3.4.
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1.5.5. Conclusion

We have introduced a new supersymmetric dual representation which can be applied to
a broader set of models, more precisely to those with integrable distributions. As an
application we reproved results of [Llo69] and [Sim83] for the Lloyd model with positive
correlated potential and enlarged these to a toy model with a single negative correlation.
In general this new dual representation can serve as a starting point to standard tools
as saddle point analysis, cluster expansions or renormalization.
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2. Density of States for Random Band
Matrix in two dimensions

2.1. Introduction and main result

General setting. It is a well known fact that conducting properties of disordered mate-
rials can be related, in the context of quantum mechanics, to the statistics of eigenvalues
and eigenvectors of certain random matrix ensembles [And58]. The most famous example
are random Schrödinger operators, whose lattice version is characterized by the random
matrix HΛ : Λ ˆ Λ Ñ R, on a subset Λ of Zd, defined by HΛ “ ´∆` λV, where ´∆ is
the discrete Laplacian, V is a diagonal matrix with random diagonal entries and λ ą 0 is
a parameter encoding the strength of the disorder. The entries Vj are generally assumed
to be independent identically distributed (for instance Gaussian). As Λ Ò Zd, this model
exhibits a localized phase for all λ in d “ 1 and at large disorder λ " 1 in d ě 2. The
localized phase is conjectured to hold also at weak disorder λ ! 1 in d “ 2, while a
phase transition is conjectured in d ě 3. Though the localized phase is well understood,
the weak disorder regime in d ě 2 remains an open problem. For a review of definitions
and results see for instance [KK08].

Another relevant model in this context is the random band matrix (RBM) ensemble,
characterized by a self-adjoint matrix HΛ : Λˆ Λ Ñ K, K “ R,C, whose entries are all
independent (up to self-adjointness) random variables not identically distributed with
negligible entries outside a band of width W ě 0, i.e. |Hij| ! 1, with large probability,
when |i ´ j| ą W . As in the case of random Schrödinger, when Λ Ò Zd, band matrices
are believed to exhibit a phase transition in d ě 3 between a localized phase at small W
and an extended phase at large W , while the localized phase is conjectured to hold for
all W in d “ 1, 2.

Two important examples of RBM are the ’smooth Gaussian’ and the N -orbital model.
In the first case, the matrix elements are Gaussian:

Hii „ NRp0, Jiiq, Hij „ NCp0, Jijq, for i ă j,

where ă denotes an order relation on Zd, and the band structure is encoded in the
covariance Jij “ Jji “ fp|i ´ j|q decaying to zero when |i ´ j| " W . In the second
case the covariance Jij is short range, for instance J “ Id`a∆ for some a ą 0, but
each matrix element Hij is itself a N ˆN matrix with i.i.d. entries pHijqαβ „ NCp

1
N
Jijq

@i ă j, or i “ j and α ă β and pHiiqαα „ NRp
1
N
Jiiq. The band width in this case is

W “ 2N . These models are difficult to analyse with standard random matrix tools, since
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the probability distribution is not invariant under unitary rotations. At the moment,
most results available deal with the one dimensional case (cf. [CMI90, CCGI93, Sch09,
Sod10, BGP14, Shc14, BE16, Pch15]). Recently localization at strong disorder (i.e.
small band width) in any dimension was proved for a large class of N´orbital models
by Peled, Schenker, Shamis and Sodin [PSSS17].

In this paper we consider the density of states ρΛpEq :“ 1
|Λ|

ř

j δλjpEq, where E P R is

the energy and λj are the (random) eigenvalues of H. Since the probability distribution
is translation invariant and the bandwidth W is fixed, by standard ergodicity arguments
(see [PF92]) this measure is non random in the thermodynamic limit. Similar results
hold in d “ 1 also for the (non ergodic) case when W diverges together with the matrix
size [MPK92]. We will therefore concentrate on the averaged density of states (DOS)
defined by

ρ̄ΛpEq :“ ErρΛpEqs :“
1

|Λ|
E

«

ÿ

j

δλjpEq

ff

“ ´
1

π|Λ|
lim
εÑ0

ErIm TrG`ΛpEεqs, (2.1.1)

where Eε :“ E ` iε, with ε ą 0, E denotes the average with respect to the probability
distribution of H and, for any z P C, the Green’s function (or resolvent) is defined by

G`Λpzq :“ pz ¨ 1´Hq´1
“ pz ´Hq´1.

By standard analyticity arguments, the limit ε Ñ 0 in (2.1.1) above exists and is finite
for Lebesgue a.e. E P R (see for ex. [AW15, App. B]).

In dimension larger than one rigorous results on the density of states for RBM were
obtained by [DPS02, CFGK87], and more recently by [PSSS17], based on seminal work
by Wegner [Weg79]. In the case of the classical GUE ensemble, corresponding to d “ 1,
Λ “ 1, . . . , N and Jij “ 1{N @i, j, the density of states, in the limit N Ò 8 is given a.s.
by Wigner’s famous semicircle law

ρSCpEq “

#

1
π

b

1´ E2

4
if |E| ď 2,

0 if |E| ą 2.
(2.1.2)

The model. We consider a Gaussian complex RBM ensemble defined on a two dimen-
sional discrete cube Λ Ă Z2, centered at the origin, with covariance

Jij :“ p´W 2∆` 1q´1
ij , (2.1.3)

where ´∆ P RΛˆΛ is the discrete Laplace operator on Λ with periodic boundary con-
ditions, i.e. px,´∆xq “

ř

i„jpxi ´ xjq
2 for any x P RΛ and we write i „ j when i

and j are nearest neighbors in the torus Z2{pΛZ2q. The parameter W P R is large but
fixed. Note that Jij is exponentially small for distances |i ´ j| ě W. Hence all matrix
elements outside a (two-dimensional) band of width W centered around the diagonal
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are small with high probability and this model describes a “smoothed-out” version of a
band matrix ensemble with band width W .

For this model, the averaged density of states (2.1.1) exists and takes a finite value for
all E P R. In the three dimensional case, Disertori, Pinson and Spencer [DPS02] derived
an explicit representation of the function ρ̄ΛpEq, in the bulk of the spectrum, in terms of
a convergent sum of certain integrals. Using this representation they obtained detailed
information on the function E ÞÑ ρ̄ΛpEq and its derivatives, in the limit Λ Ñ Z3 for fixed
but large band width W (weak disorder regime). In particular they proved that the
limit expression coincides with Wigner’s semicircle law with a precision 1{W 2. Similar
results were obtained for the N´orbital model in [CFGK87] in the case of dominant
diagonal disorder. In this paper we construct an extension of the representation derived
in [DPS02] to the two dimensional case, and use it to derive precise information (such
as smoothness) on the function E ÞÑ ρ̄ΛpEq for energies in the bulk of the spectrum, in
the limit Λ Ñ Z2.

The proof in [DPS02] used the so-called supersymmetric approach (SUSY), pioneered
by K. Efetov [Efe83] based on seminal work by Schäfer and Wegner [SW80, Weg79]
and further developed (among others) by Y. Fyodorov, A. Mirlin and M. Zirnbauer
[Mir00, FM91, LSZ08]. A good introduction to random matrix theory and SUSY can
be found in [HG19]. This is a duality transformation that allows one to write aver-
ages in H as new integrals where a saddle approximation may be justified: ErfpHqs “
ş

f̃pMq e´F pMq
ś

jPΛ dMj, where Mj is a small matrix containing both complex and
Grassmann (odd) elements, F can be seen as the free energy functional in some statis-
tical mechanical model, and f̃ is the new observable. The Grassmann variables can be
always integrated out exactly (though the combinatorics involved may be quite difficult)
and the resulting measure is complex but normalized. The measure expp´F pMqq dM de-
pends on the probability measure P but also on the observable f , and has internal (odd)
symmetries, inherited by the observable only. Different rigorous versions of the SUSY
approach have been tested on the standard matrix ensembles GUE and GOE (where
other techniques also apply) [Dis04, Sha13]. When Λ Ò Zd, the integral is expected to
concentrate near the saddle manifold determined by BMF pMq “ 0. This reduces to
isolated points in the case of the DOS, and the main difficulty is to obtain estimates on
the fluctuations that are uniform in the volume. In [DPS02] the dual representation is
studied via a complex translation coupled with a cluster expansion, which effectively fac-
torizes the integral over regions of volume W 3. A key feature of the dual representation,
in three dimensions, is the presence of a double well structure, with one well suppressed
by an exponential factor expp´W q, inside each region. In the two dimensional case, the
second well is only weakly suppressed, and the arguments used in [DPS02] do not apply.

Main result. This article is devoted to prove the following result which extends [DPS02,
Theorem 1] to the two dimensional case.

Remember that in the case of GUE the spectrum of H, in the thermodynamic limit,
is concentrated on t|E| ď 2u (see (2.1.2)). In the case of a band matrix, non rigorous
arguments suggest that most of the spectrum remains in the same interval. Here, we
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restrict to energies E in the bulk and avoid E “ 0 for technical reasons. Precisely, for
η ą 0 small but fixed, we consider the interval

I “ tE : η ă |E| ď 1.8u. (2.1.4)

Theorem 2.1.1. For d “ 2 and each fixed α P p0, 1q, there exists a value W0pαq such
that for all W ě W0pαq and E P I

|ρ̄ΛpEq ´ ρSCpEq| ď W´2 eKplnW q
α

, (2.1.5)

|B
n
E ρ̄ΛpEq| ď CnW

´1
plnW qnpα`1q eKplnW q

α

@n ě 0, (2.1.6)

where ρSC is Wigner’s semicircle law defined in (2.1.2). The constants Cn and K are
independent of Λ and W. Both estimates hold uniformly in Λ and hence also in the
infinite volume limit Λ Ñ Z2.

Remark. Note that we obtain the semicircle law with a precision

ρ̄ΛpEq “ ρSCpEq `O
`

W´2`δ
˘

for small δ ą 0 depending on W0pαq, while in d “ 3 one obtains O pW´2q [DPS02, eq.
(2.7)]. Moreover, (2.1.6) implies a W -independent estimate on the derivatives up to a
certain order n0pW q

|B
n
E ρ̄ΛpEq| ď Cn @n ď n0pW q,

with limWÑ8 n0pW q “ 8.

Strategy. The strategy is similar to the one in [DPS02]. We establish a dual repre-
sentation for the averaged DOS via the supersymmetric approach and apply a complex
translation into the saddle points. To overcome the second well problem, we modify the
factorization procedure, using slightly larger blocks (of size W 2plnW qα instead of the
natural W 2) for our cluster expansion. This yields better estimates for configurations
near the second saddle, but creates new problems for the ’good’ configurations, near the
main saddle. An equilibrium between these two conflicting effects is possible because
d “ 2 is a ’limit’ case. Finally, as in [DPS02], we apply a non standard cluster expan-
sion, extracting at each step a ’multi-link’ consisting of three instead of one connection.
Here, in contrast to [DPS02], we use the (super-) symmetric structure of the dual repre-
sentation to reformulate the cluster expansion in a more compact and transparent way.
We also use the symmetry to simplify the dual representation and a number of other
equalities.

Remark. Note that Wegner-type estimates on the integrated density of states can be
obtained, in any dimension, by softer methods (see [PSSS17]). Here, the dual represen-
tation plus cluster expansion give an explicit representation of the function 1

|Λ|
ErTr pz´

Hq´1s where the limit Im z Ñ 0 can be taken explicitely. This representation re-
mains valid in the thermodynamic limit and allows to study detailed properties (such
as smoothness and main contributions) of the limit function.
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Organization of the paper. In Section 2.2, the dual representation and the complex
contour deformation are introduced. This allows to reformulate the problem as Theorem
2.2.3. Finally a sketch of the proof’s strategy is given. In Section 2.3, we summarize
some properties and preliminary estimates that will be needed in the proof. We also
prove the main result in a finite volume. These results build a foundation for the infinite
volume case. In Section 2.4, the cluster expansion is introduced and the limit Λ Ò Z2 is
analyzed. A short introduction to the supersymmetric formalism is given in App. 2.A,
and a proof of the dual representation is given in App. 2.B. Finally, App. 2.C collects
some results on the discrete Laplace operator in d “ 2 and some matrix inequalities,
together with their proof. A list of symbols can be found at the end.

Notation. Since we apply many estimates in the paper, we denote by K any large positive
constant independent of W and Λ.

Acknowledgements We are grateful to Tom Spencer for encouraging us to pursue the
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on representations of the discrete Laplacian. We are also grateful to Martin Lohmann,
Susanne Hilger, Richard Höfer and Anna Kraut for helpful discussions and suggestions
related to this paper. Very special thanks go to David Brydges for sharing his many
insights on the model and inspiring discussions on cluster expansions. Finally, we ac-
knowledge the Deutsche Forschungsgemeinschaft for support through CRC 1060 “The
Mathematics of Emergent Effects” and the Hausdorff Center for Mathematics.

2.2. Reformulating the problem

We perform a duality transformation and a complex contour deformation to rewrite
the average of the Green’s function as a Gaussian integral with some remainder (cf.
Lemma 2.2.2). This reduces the proof of Theorem 2.1.1 to bound this functional integral
appropriately (cf. Theorem 2.2.3). In the end we give ideas for the proof.

2.2.1. Duality transformation

The first step in the proof is to represent, via the supersymmetric formalism (cf. App.
2.A), the trace in (2.1.1) as a functional integral where a saddle point analysis can be
justified. Recall the definition of J given by (2.1.3). A normalized Gaussian measure
with covariance J is defined by

dµJpa, bq :“ det
”

J´1

2π

ı

e´
1
2
ppa,J´1aq`pb,J´1bqq

ź

jPΛ

daj dbj, (2.2.1)

with a, b P RΛ,
ś

jPΛ daj dbj is the product measure and pa, J´1aq “
ř

i,jPΛ aiJ
´1
ij aj.

With this definition we can state the following lemma which is a variant of [DPS02,
Lemma 1].
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Lemma 2.2.1. For any space dimension d ě 1, the following identities hold:

1

|Λ|
ErTrG`ΛpEεqs “

ż

dµJpa, bq
ź

jPΛ

Eε´ibj
Eε´aj

det r1´ FJs a0, (2.2.2)

B
n
E

1

|Λ|
ErTrG`ΛpEεqs “

ż

dµJpa, bq
ź

jPΛ

Eε´ibj
Eε´aj

det r1´ FJs a0

«

ÿ

jPΛ

aj ´ ibj

ffn

, (2.2.3)

where dµJpa, bq is the normalized Gaussian measure defined above and F “ F pa, bq is a
diagonal matrix with entries

F pa, bqij “ δij
1

pEε´ajqpEε´ibjq
.

Proof. The idea of the proof is to write pEε ´Hq
´1
ii as a complex Gaussian integral and

represent the normalization as a Fermionic Gaussian integral. Then the average over
H can be computed easily and one can integrate the Fermionic variables again. This is
analog to the procedure in [DPS02], but we apply an additional step of integration by
parts to simplify our result. The second identity is proven similarly. For convenience of
the reader, a sketch of the proof is given in App. 2.B.

The integrals above are well-defined only for ε ą 0 since for each aj there is a pole at
aj “ Eε. Note that there are no singularities in bj.

Remark. In this dual representation, the only contribution from the observable is the
term a0. By the same techniques, we obtain

1 “ Er1s “
ż

dµJpa, bq
ź

jPΛ

Eε´ibj
Eε´aj

det r1´ JF pa, bqs . (2.2.4)

2.2.2. Contour deformation

By the same saddle analysis performed in [DPS02, Section 4], we expect the complex
normalized measure

dµJpa, bq
ź

jPΛ

Eε´ibj
Eε´aj

det r1´ F pa, bqJs (2.2.5)

to be concentrated near the constant configurations given by aj “ a˘s , bj “ b˘s for all
j P Λ, where a˘s , b

˘
s are the saddle points a˘s “ Er ¯ iEi, b˘s “ ´iEr ¯ Ei, and

E “ Er ´ iEi “ E
2
´ i

b

1´ E2

4

has the useful properties E ´ E “ Ē and EĒ “ 1 for all |E| ă 2.
We perform a translation of the real axis in the complex plane in order to pass through

a saddle point. For the variables a, we translate to the saddle a`s “ E to avoid crossing
the pole in a “ Eε. The variables b have no pole and both saddle points have the same
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imaginary part. Hence a complex translation allows to pass through both saddles. We
will prove later that b`s “ ´iE is the dominant one. In the next lemma we show that,
after the deformation, we can take the limit ε Ñ 0, and the translated measure can be
reorganized as

dµJpa` E , b´ iEq
ź

jPΛ

Eε´ipbj´iEq
Eε´paj`Eq det r1´ F pa` E , b´ iEqJs “ dµBpa, bqRpa, bq,

where the Gaussian measure dµBpa, bq has now a complex covariance.

Lemma 2.2.2. By a complex deformation the functional integrals (2.2.2) and (2.2.3),
in the limit εÑ 0, can be written as

lim
εÑ0

1

|Λ|
ErTrG`ΛpEεqs “a

`
s `

ż

dµBpa, bqRpa, bqa0, (2.2.6)

lim
εÑ0

B
n
E

1

|Λ|
ErTrG`ΛpEεqs “

ż

dµBpa, bqRpa, bqa0

˜

ÿ

jPΛ

aj ´ ibj

¸n

(2.2.7)

“
ÿ

j1,...,jn

ż

dµBpa, bqRpa, bqa0

n
ź

k“1

pajk ´ ibjkq , (2.2.8)

where a, b P RΛ, and dµBpa, bq is the normalized Gaussian measure as defined in (2.2.1)
with complex covariance

B :“ p´W 2∆` p1´ E2
qq
´1. (2.2.9)

The remainder Rpa, bq is defined by

Rpa, bq :“ detr1`DBs eVpa,bq, (2.2.10)

where Dij “ Dijpa, bq “ δijDjpa, bq is a diagonal matrix, and we defined

Djpa, bq “ E2
´ F pa` a`s , b` b

`
s qjj “ E2

´
1

pĒ ´ ajqpĒ ´ ibjq

“ ´

ż 1

0

ˆ

aj
pĒ ´ tajq2pĒ ´ itbjq

`
ibj

pĒ ´ tajqpĒ ´ itbjq2

˙

dt,

(2.2.11)

Vpa, bq “
ÿ

jPΛ

Vjpa, bq “
ÿ

jPΛ

V pajq ´ V pibjq, V pxq “

ż 1

0

x3p1´ tq2

pĒ ´ txq3
dt. (2.2.12)

Proof. By Cauchy’s theorem, we can perform the translations aj ÞÑ aj ` a`s and bj ÞÑ
bj ` b

`
s for all j P Λ and take the limit εÑ 0 inside the functional integral (2.2.2). Note

that translating to a`s ensures that there is no additional contribution from the pole
E ` iε. Using (2.2.4), the integral with constant a`s gives 1. The measure (2.2.5) after
the translation is reorganized as follows. Expanding around a “ b “ 0 we can write

dµJpa` E , b´ iEq
ź

jPΛ

Eε´ipbj´iEq
Eε´paj`Eq “ dµBpa, bq

detB
det J

eVpa,bq.
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where Vpa, bq “ Op|a|3`|b3|q since linear contributions vanish (we are expanding around
the saddle) and constant terms cancel. Finally

detr1´ F pa` E , b´ iEqJsdetB
det J

“ detr1`DBs.

To obtain the second identity, note that paj`a
`
s q´ipbj`b

`
s q “ aj´ibj, and the integral

with constant a`s vanishes since it corresponds to the derivative of a constant.

Remark. Note that now there is no pole in aj if |E| ă 2 since |Ē ´ aj| ě |Ei| ą 0 for all
aj P R. For bj, a singularity appears from the determinant for the special case E “ 0.
As the same factor appears outside the determinant, this is a removable singularity.
Nevertheless we avoid E “ 0 in the definition of the interval I (2.1.4).

With these representations, the proof of Theorem 2.1.1 is reduced to prove the follow-
ing theorem since Im pa`s q “

a

1´ E2{4 yields the semicircle law (2.1.2).

Theorem 2.2.3. Under the same assumptions as in Theorem 2.1.1, we have

ˇ

ˇ

ˇ

ˇ

ż

dµBpa, bqRpa, bqa0

ˇ

ˇ

ˇ

ˇ

ď W´2KplnW qα (2.2.13)

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

j1,...,jnPΛ

ż

dµBpa, bqRpa, bqa0

n
ź

k“1

pajk ´ ibjkq

ˇ

ˇ

ˇ

ˇ

ˇ

ď CnW
´1
plnW qnpα`1q eKplnW q

α

. (2.2.14)

2.2.3. Strategy of the proof: finite and infinite volume

To prove the results above, we will need to estimate integrals of the following form

ż

dµBpa, bqRpa, bqOpa, bq, (2.2.15)

where Opa, bq :“
ś

k ak
ś

l bl is a local observable, i.e. a product of finitely many field
factors ak and bl. We will show that, inserting absolute values inside (2.2.15) leads to
the following estimate

ˇ

ˇ

ˇ

ˇ

ż

dµBpa, bqRpa, bqOpa, bq
ˇ

ˇ

ˇ

ˇ

ď eK
|Λ|

W2

ż

dµCpa, bq
ˇ

ˇ eTrDB
ˇ

ˇ

ˇ

ˇ eVpa,bq
ˇ

ˇ |Opa, bq| ,

where C is a real covariance (defined in (2.3.1) below), and D,B and V were defined
in Lemma 2.2.2. Guided by the saddle point approach, we will partition the domain of
integration into different regions, respectively near to and far from the saddle points,
and estimate the integral in each region separately (cf. Lemma 2.3.6). To obtain the
finite volume estimate of (2.2.13), an additional preliminary step of integration by parts
is needed to improve the error estimates. All this is done in Section 2.3.

These arguments work only in finite volume, since the factor exppK|Λ|W´2q diverges
as |Λ| Ñ 8. To deal with this problem, we will partition Λ into cubes (of finite, but
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large volume). Applying a suitable cluster expansion, we can write (2.2.15) as a sum of
the form

ÿ

Y

cY FY ,

where Y are polymers, i.e. unions of cubes, and the constant cY is an exponentially
small factor controlling the sum. Finally, FY is a functional integral depending only on
the fields inside Y , and can be estimated by the same tools as in the finite volume case.
The precise definitions and details are given in Section 2.4.

2.3. Preliminary results

In this section, we start by collecting in Section 2.3.1 and 2.3.2 some results and bounds
we will need later. Finally in Section 2.3.3 we prove an estimate for the absolute value
of the integral (2.2.15) in a large but finite volume. The proof uses a partition of the
integration domain into regions, selecting values of pa, bq in the vicinity or far from the
saddles.

2.3.1. Properties of the covariance

The Hessian B´1 “ ´W 2∆` p1´ E2q has a complex mass term

1´ E2
“ 2

´

1´ E2

4

¯

` iE

b

1´ E2

4
“: m2

r ` iσEm
2
i , σE :“ sgn pEq.

For |E| ă 2, m2
r ą 0, hence the integrals (2.2.6) and (2.2.7) are finite. We introduce the

real covariance C defined by

C :“ rRe pB´1
qs
´1
“ p´W 2∆`m2

rq
´1. (2.3.1)

Note that B´1 “ C´1` iσEm
2
i and C ą 0 both as a quadratic form and pointwise. The

decay of Cij depends on the space dimension d. For d “ 2, we have

0 ă Cij ď

$

&

%

K
W 2 ln

´

W
mrp1`|i´j|q

¯

if |i´ j| ď W
mr
,

K
|i´j|1{2W 3{2 e´

mr
W
|i´j| if |i´ j| ą W

mr
.

(2.3.2)

Morover |Bij| has the same decay as Cij. A proof is given in App. 2.C.

Remark. For d “ 3, the decay is easier:

Cij ď
K

W 2p1`|i´j|q
e´

mr
W
|i´j|

@i, j P Λ. (2.3.3)

Because of the log-behavior for small distances, estimating the error terms (2.1.5)-(2.1.6)
in d “ 2 is more difficult than in d “ 3 (cf. [DPS02, eq. (2.6)-(2.7)]).
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2.3.2. Some useful estimates

We frequently use the following statement to estimate determinants.

Lemma 2.3.1. For any complex matrix A with TrA˚A ă 8, we have

|detr1` As| ď
ˇ

ˇ eTrA
ˇ

ˇ e
1
2

TrA˚A. (2.3.4)

Proof. Consider the matrix M “ A`A˚`A˚A, which is self-adjoint and diagonalizable
with real eigenvalues λi. Then

| detr1` As|2 “ detr1`M s “
ź

i

p1` λiq ď e
ř

i λi “ eTrM
ď
ˇ

ˇ e2TrA
ˇ

ˇ eTrA˚A,

where we apply 1` λi ď eλi for all λi P R.

In the finite volume estimates, we will insert quadratic terms in a and b into the
measure and change the covariance from C to Cf :“ pC´1 ´ fm2

rq
´1. We estimate the

change of the normalization factor detrC´1{C´1
f s as follows.

Lemma 2.3.2. For d “ 2,W " 1 and 0 ă f ă 1{2, there exist some constants K ą 0
(independent of W and f) such that

det

«

C´1

C´1
f

ff

ď
1

1´ f
exp

„

Kf |Λ|

W 2
ln

ˆ

W 2

1´ f

˙

.

Proof. We use the explicite eigenvalues of C´1 and C´1
f to write

det

«

C´1

C´1
f

ff

“
ź

k

2
řd
l“1p1´ cos klqW

2 `m2
r

2
řd
l“1p1´ cos klqW 2 `m2

rp1´ fq

ď
1

1´ f
exp

»

–m2
rf

ÿ

k‰0

˜

2
d
ÿ

l“1

p1´ cos klqW
2
`m2

rp1´ fq

¸´1
fi

fl ,

where we extract the zero’s mode and apply 1 ` λi ď eλi . Approximating the sum in
the exponential yields the above result.

Finally, we give the Brascamp-Lieb inequality [BL76], which is used in the estimates
near the dominant saddle point.

Theorem 2.3.3 (Brascamp-Lieb inequality). Let Hpxq be a positive Hamiltonian, sym-
metric under x ÞÑ ´x and let dµHpxq be a Gibbs measure given by

dµHpxq :“ dx1 ¨ ¨ ¨ dxN
1

ZpHq
e´

1
2
Hpxq,
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where ZpHq :“
ş

dx1 ¨ ¨ ¨ dxN exp p´Hpxq{2q is the partition function. If H2 ě C´1 ą 0,
the following inequalities hold:

ż

dµHpxq|xi|
n
ď

ż

dµCpxq|xi|
n, @n ą 0 and (2.3.5)

ż

dµHpxq epv,xq ď

ż

dµCpxq epv,xq,

where dµCpxq is the free Gaussian measure and v P RN and pv, xq “
řN
i“1 vixi.

Remark. A direct consequence of Brascamp-Lieb inequality is the following estimate,
which holds under the same assumptions as above:

ż

dµHpxq
ź

i

|xi|
ni epv,xq “

ż

dµHvpxq
ź

i

|xi|
ni

ż

dµHpxq epv,xq

ď
ź

i

«

ż

dµHvpxq
ź

i

|xi|
n

ffni{n ż

dµHpxq epv,xq

ď
a

p2n´ 1q!!
ź

i

C
ni{2
ii e

1
2
pv,Cvq, @ni ě 0,

(2.3.6)

where n “
ř

i ni and we changed in the first line the measure to Hv “ H ´ pv, ¨q with
H2v “ H2. In the second line we applied a generalized Hölder estimate. In the last line,
the Gaussian integrals are computed exactly after applying Brascamp Lieb and Cauchy
Schwarz.

2.3.3. Finite volume estimates

In the following we prove Theorem 2.2.3 in finite volume by partitioning the domain of
integration and estimating the functional integrals in each region separately.

Inserting absolute values

To control the infinite volume limit, we will need to estimate integrals of the form
(2.2.15) with Opa, bq “ Om,npa, bq “

śp
k“1 |ajk |

mk
śq

l“1 |bjl |
nl , with p, q P N, mk, nl P N

and jk, jl P Λ for all k ď p, l ď q and m :“
řp
k“1mk and n :“

řq
l“1 nl. Following

[DPS02], we put the absolute values inside the integral (2.2.15) and replace the complex
covariance B (2.2.9) by the real one C (2.3.1). The next two lemmas are the analogs in
d “ 2 of [DPS02, Lemma 3 and 4].

Lemma 2.3.4. The absolute value of the complex measure dµB is bounded by

| dµBpa, bq| ď eK
|Λ|

W2 dµCpa, bq.

Proof. The measure dµBpa, bq can be written as

| dµBpa, bq| “
ˇ

ˇ

ˇ

detB´1

detC´1

ˇ

ˇ

ˇ
dµCpa, bq “ | detr1` iσEm

2
iCs|dµCpa, bq.
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Applying (2.3.4) with A “ iσEm
2
iC, TrA is purely imaginary and, using (2.3.2),

TrA˚A “ m4
iTrC˚C ď

ÿ

i,jPΛ

K
W 3|i´j|

e´
mr
W
|i´j|

`
ÿ

|i´j|ď W
mr

K
W 4 ln2

´

W
mrp1`|i´j|q

¯

ď
ÿ

iPΛ

K
W 2 .

Lemma 2.3.5. The determinant in the remainder (2.2.10) can be bounded by

| detr1`DBs| ď eK
|Λ|

W2
ˇ

ˇ eTrDB
ˇ

ˇ .

Proof. Applying again (2.3.4), we need to bound Tr pDBq˚pDBq “
ř

i,jPΛ |Dj|
2|Bij|

2.
We estimate D by its supremum norm, supjPΛ supaj ,bjPR |Djpaj, bjq| ď K. Finally we

bound TrB˚B by K|Λ|W´2 as we did above for C.

Applying the two lemmas in (2.2.15), we have
ˇ

ˇ

ˇ

ˇ

ż

dµBpa, bqRpa, bqOm,npa, bq
ˇ

ˇ

ˇ

ˇ

ď eK
|Λ|

W2Fm,n,

where Fm,n :“
ş

dµCpa, bq
ˇ

ˇ eTrDB
ˇ

ˇ

ˇ

ˇ eVpa,bq
ˇ

ˇ |Om,npa, bq|.

Partition of the integration domain

Guided by the saddle point picture, we partition, as in [DPS02], the domain of integration
into regions near and far from the saddle points: 1 “

ř5
k“1 χrI

ks with

I1 :“ ta, b : |aj|, |bj ´ bj1 | ď δ @j, j1 P Λ and |b0| ď 2δu,

I2 :“ ta, b : |aj|, |bj ´ bj1 | ď δ @j, j1 P Λ and |b0 ´ 2Ei| ď 2δu,

I3 :“ ta, b : bj P R @j P Λ and Dj0 P Λ : |aj0 | ą δu, (2.3.7)

I4 :“ ta, b : |aj| ď δ @j P Λ and Dj0, j
1
0 P Λ : |bj0 ´ bj10 | ą δu,

I5 :“ ta, b : |aj|, |bj ´ bj1 | ď δ @j, j1 P Λ and |b0|, |b0 ´ 2Ei| ą 2δu,

for δ “ δpW q ą 0 small to be fixed later. Hence, we can write Fm,n “
ř5
s“1 F

m,n
s , where

Fm,n
s :“

ż

dµCpa, bq χrI
s
s eRe TrDB

ˇ

ˇ eVpa,bq
ˇ

ˇ |Om,npa, bq|.

In the “small field” regions I1 and I2, all a variables are near the saddle, and the b
variables are all near the first saddle at 0 in I1, or near the second one at 2Ei in I2.
The main contribution to Fm,n comes from the region I1, while I2 is suppressed by a
small factor from the determinant. In the “large field” regions Is, s “ 3, 4, 5, at least
one variable is far away from the saddle points. Their contribution is exponentially
suppressed by the corresponding probabilities

ş

dµC χrIss.
The following lemma gives the precise estimates on Fm,n

s . Since we proceed analog to
[DPS02, Section 5], only the main ideas and the crucial steps are given in the proof.
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Lemma 2.3.6. Let δ “ W´ν, for some 0 ă ν ă 1 and W " 1. Then for any |Λ| we
have

Fm,n
1 ď Km`n`1

`

lnW
W 2

˘pm`nq{2 a

p2mq!!p2nq!! eK|Λ|W
´3plnW q3{2 ,

Fm,n
2 ď Kn`m`1 e´c|Λ|W

´2 lnW , (2.3.8)

where in the second line c ą 0 is independent of W and |Λ|. Moreover, there exists
W0pνq " 1 such that for any W ě W0pνq and W 3ν ď |Λ| ď pCjjq

´2δ2 ď KW 4´2νplnW q´2,
we have

Fm,n
s ď Kn`m`1W n

p
ź

k“1

a

mk!
q
ź

l“1

a

nl! e´Kδ
2W 2plnW q´1

for s “ 3, 4,

Fm,n
5 ď Kn`m`1W n

p
ź

k“1

a

mk!
q
ź

l“1

a

nl! e´Kδ
2|Λ|,

Remark. In the following, we want to fix the volume of our cube Λ to an appropriate
finite size. The natural choice would be W 2. This would ensure the global prefactor
eK|Λ|W

´2
from Lemma 2.3.4 is bounded by a constant independent of W . On the other

hand the contribution of the second saddle would be suppressed only by some W´c

(cf. (2.3.8)) which is not enough to compensate various W factors arising in the cluster
expansion. Extending the volume to W 2plnW qα for fixed α P p0, 1q reinforces the decay
to e´cplnW q

1`α
which bounds an arbitrary factor W n for α ą 0. The price to pay is

a worse estimate on the global prefactor eK|Λ|W
´2
ď eKplnW q

α
. For α ă 1 this can be

compensated by the observable, which is of order OpW´2q after extracting the leading
contribution (cf. (2.1.6)).

Proof. Following [DPS02], we first perform some (region dependent) estimates on the
exponential terms Re TrDB ` ReVpa, bq and insert the results in the measure. In re-
gion I1 the resulting measure is no longer Gaussian, hence we apply a Brascamp-Lieb
inequality. In the other regions the measure remains Gaussian. The decay comes from
Re TrDB in I2 and from a small probability argument in the large field regions. New
features of d “ 2 appear in the choice of the volume of the cube |Λ| and in the bounds
of B and C, for example we have |Bjj| ď KW´2 lnW .

Region I1 In the first region, all variables aj and bj are small and we bound

ReV pxq ď K|x|3 and |Djpa, bq| ď Kp|aj| ` |bj|q for |x|, |aj|, |bj| ă δ. (2.3.9)

Then Re TrDB ď
ř

jPΛ |Dj||Bjj| ď
ř

jPΛKp|aj| ` |bj|qW
´2 lnW and

Fm,n
1 ď

ż

dµCpa, bqχrI
1
s eK

ř

jPΛp|aj |`|bj |qW
´2 lnW`|aj |

3`|bj |
3

p
ź

k“1

|ajk |
mk

q
ź

l“1

|bjl |
nl .

We define the Hamiltonian of the Gibbs measure by

Hpxq :“ xtC´1x´K
ÿ

jPΛ

|xj|W
´2 lnW ` |xj|

3
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and ZpHq :“
ş
ś

jPΛ dxj expp´Hpxq{2qχrI1s. Then we can write

Fm,n
1 ď

´

ZpHq
Z0

¯2
ż

dµHpa, bq
p
ź

k“1

|ajk |
mk

q
ź

l“1

|bjl |
nl ,

where Z0 “ detrC´1{2πs1{2. Repeating the proof of [DPS02, Lemma 5] in d “ 2,

ZpHq ď e
ř

jpCf q
3{2
jj `pCf q

1{2
jj W

´2

Z0 ď eK|Λ|W
´3plnW q3{2Z0. (2.3.10)

where C´1
f :“ C´1 ´ fm2

r ď H2 for f “ Opδq, and we used δ ă 1. When m ą 0,

p
ź

k“1

|ajk |
mk ď

1

m

p
ÿ

k“1

mk|ajk |
m.

The same holds for b. Applying the Brascamp-Lieb inequality (2.3.5) and a Cauchy-

Schwarz estimate, we obtain a factor
a

p2mq!!pCf q
m{2
jkjk

ď
a

p2mq!!pKW´2 lnW qm{2 for
each |ajk |

m and an analog factor for |bjk |
n.

Region I2 As in [DPS02], we can bound the factors a
mj
j and b

nj
j by constants and the

potential by

ReV pajq ď
m2
r

2
faa

2
j , ReV pibjq ď

m2
r

2
fbb

2
j ` p1´ fbq2Eim2

rpbj ´ Eiq, (2.3.11)

with fa “ fb “ Opδq. Analog to [DPS02, Lemma 6] the trace can be estimated as

ReDjBjj ď ´2cW´2 lnW, (2.3.12)

where c ą 0 is independent of W and Λ. Combining these estimates and using Lemma
2.3.2 in the second step, we obtain

Fm,n
2 ď Km`n e´2c|Λ|W´2 lnW

ż

dµCpa, bq e
m2
r

2

ř

jPΛpfaa
2
j`fbb

2
jq ep1´fbq2Eim

2
rpbj´Eiq

ď Km`n e´2pc´Kpfa`fbqq|Λ|W
´2 lnW K?

p1´faqp1´fbq

ż

dµCfb pbq ep1´fbq2Eim
2
rpbj´Eiq

ď Km`n`1 e´2pc´Kδq|Λ|W´2 lnW
ď Km`n`1 e´c|Λ|W

´2 lnW ,

where the remaining integral in the second line is 1 and we used δ ă c{2K for W large
enough.

Regions I3 and I4 As in [DPS02], for arbitrary aj and bj in R we can bound

ReV pajq ď
m2
r

2
faa

2
j , ReV pibjq ď

m2
r

2
fbb

2
j `Op1´ fbq, ReDjBjj ď

K
W 2 lnW,

(2.3.13)
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where fa, fb P p1{2, 1q. Inserting the quadratic terms into the measure, and using a small
fraction of the remaining mass, we bound

|aj|
mj ď

ˆ

K?
εp1´faq

˙mj
a

mj! e
1
2
εm2

rp1´faqa
2
j

and the same for bj, where 0 ă ε ! 1 is small but fixed and independent of W . Using
Lemma 2.3.2, and lnW 2p1´ fq´1 ď Km lnW for all f P r0, 1´W´ms,m P N, we obtain

Fm,n
s ď

Km,nKm`n

p1´faqm{2p1´fbqn{2
eK|Λ|pW

´2 lnW`p1´fbqq

ż

dµCpa, bq e
m2
r

2

ř

jPΛpf̃aa
2
j`f̃bb

2
j qχrIss

ď Km,nKm`nW n`1 eK|Λ|W
´2 lnW

ż

dµCf̃a paq dµCf̃b
pbq χrIss,

where Km,n “
śp

k“1

?
mk!

śq
l“1

?
nl!, and f̃a “ fa ` εp1 ´ faq (same for f̃b). In the

second line we take fa P p1{2, 3{4q and fb “ 1 ´W´2, to ensure that all error terms
in the exponent are not larger than the first one, i.e. |Λ|W´2 lnW . Applying [DPS02,
Lemma 8], we bound the remaining integral by:

ż

dµCf̃a paqχrI
3
s ď e´xδ

ÿ

jPΛ

e
1
2
x2pCf̃a qjj ď |Λ| e´Kδ

2W 2plnW q´1

,

ż

dµCf̃b
pbqχrI4

s ď e´xδ
ÿ

j,j1PΛ

e
1
2
x2rpCf̃b

qjj`pCf̃b
qj1j1´2pCf̃b

qjj1 s ď |Λ|2 e´Kδ
2W 2plnW q´1

,

where we set x “ KδW´2 lnW and in the first line we used pCf̃aqjj » W´2 lnW . In the

second line, pCf̃bqjj » W´2 lnW `W 2|Λ|´1, since p1 ´ f̃bq “ OpW´2q. The additional
term is canceled by the sum pCf̃bqjj`pCf̃bqj1j1´2pCf̃bqjj1 . Now, inserting the constraints
we assumed on |Λ| and δ we obtain the result.

Region I5 The proof in region I5 is similar to the one in the other large field region,
with the difference that the exponential decay comes from the bound of the potential in
b that can be improved to

ReV pibjq ď
m2
r

2
fbb

2
j `Op1´ fbq ´ cδ2 with fb “ 1´W´2. (2.3.14)

By the same arguments as above, we obtain a factor expp´c|Λ|δ2q from the last term
which gives the main behaviour of the integral since δ ą W´1plnW q1{2 for W large
enough.

Improved estimates

Let us now fix |Λ| “ W 2plnW qα, with α P p0, 1q as discussed is the remark below Lemma
2.3.6. We want to apply Lemma 2.3.6 to (2.2.6) and (2.2.8) to prove (2.1.5) and (2.1.6).
For the correction to the semicircle law in (2.1.5) we obtain
ˇ

ˇ

ˇ

ˇ

ż

dµBpa, bqRpa, bqa0

ˇ

ˇ

ˇ

ˇ

ď eKplnW q
α
”

plnW q1{2

W
` e´cplnW q

1`α

` e´Kδ
2W 2pplnW q´1`plnW qαq

ı

ď eKplnW q
α plnW q1{2

W
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which is not the desired estimate. To estimate the derivatives in (2.2.8), we need to
extract enough W factors to control the sum over the indices jk. If we apply Lemma
2.3.6 naively, we obtain

|(2.2.8)| ďKn

ÿ

j1,...,jn

eKplnW q
α
´

plnW q1{2

W

¯n`1

“ Kn eKplnW q
α plnW q1{2

W

`

W plnW qα`1{2
˘n
,

which grows in W algebraically for n ą 0. To improve these bounds similar to [DPS02],
we apply a few preliminary steps of integration by parts. This is done in the next lemma.

Lemma 2.3.7. For general Λ Ă Zd, the integrals (2.2.6) and (2.2.8) can be written as

lim
εÑ0

1

|Λ|
ErTrG`ΛpEεqs ´ a

`
s “

ÿ

l0PΛ

B0l0

ż

dµBpa, bqBal0Rpa, bq,

lim
εÑ0

BE
1

|Λ|
ErTrG`ΛpEεqs “

ÿ

j1PΛ

ÿ

l0,l1PΛ

B0l0Bj1l1

ż

dµBpa, bqBxl1Bal0Rpa, bq ` δj1,l1

lim
εÑ0

B
n
E

1

|Λ|
ErTrG`ΛpEεqs “

ÿ

j1,...,jnPΛ
l0,...,lnPΛ

B0l0

n
ź

m“1

Bjmlm

ż

dµBpa, bq
n
ź

m“1

BxlmBal0
Rpa, bq,

with Bxl “ Bal ` iBbl.

Proof. We use integration by parts. For the first equation we only need to apply one
step of integration by parts. For the derivatives, the case n “ 1 is special. We calculate

ÿ

jPΛ

ż

dµBpa, bqRpa, bqa0paj ´ ibjq

“
ÿ

jPΛ

ż

dµBpa, bq
ÿ

l0PΛ

B0l0

´

paj ´ ibjqBal0Rpa, bq ´ δjl0Rpa, bq
¯

“
ÿ

jPΛ

ÿ

l0,l1PΛ

B0l0Bjl1

ż

dµBpa, bqBxl1Bal0Rpa, bq ´ δjl0 ,

where we used in the last step that
ş

dµBpa, bqRpa, bq “ 1.
For n ě 2, we apply several steps of integration by parts. Writing xj “ aj ´ ibj,

ÿ

j1,...,jnPΛ

ż

dµBpa, bqRpa, bqa0

n
ź

m“1

xjm

“
ÿ

j1,...,jnPΛ

ż

dµBpa, bq
ÿ

l0PΛ

B0l0

˜

n
ź

m“1

xjmBal0Rpa, bq `Rpa, bqBal0
n
ź

m“1

xjm

¸

“
ÿ

j1,...,jnPΛ

ÿ

l0,...,lnPΛ

B0l0

n
ź

m“1

Bjmlm

ż

dµBpa, bq
n
ź

m“1

BxlmBal0
Rpa, bq

where the last term in the second line corresponds to the derivative of a constant, hence
equals zero. In the third line we used Bxixj “ 0 for all i, j.
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These representations give the stated decay in finite volume |Λ| “ W 2plnW qα:

Lemma 2.3.8. For fixed |Λ| “ W 2plnW qα we have

| lim
εÑ0

1

|Λ|
ErTrG`ΛpEεqs ´ a

`
s | ď eKplnW q

α

W´2 lnW,

| lim
εÑ0

B
n
E

1

|Λ|
ErTrG`ΛpEεqs| ď Cn.

Proof. We apply Lemma 2.3.6 on the representations of the previous lemma. Deriving
the remainder Rpa, bq, we obtain

Bal pRpa, bqq “
`

detr1`DBsBalV palq ` detB dettlu,tlurB
´1
`Ds BalDl

˘

eVpa,bq.

In the first summand, we can bound |BalV palq| ď K|al|
2. In the second one, we bound

|BalDl| ď K. In region I1 the matrix B´1 `D is invertible and

ˇ

ˇdetB dettlu,tlurB
´1
`Ds

ˇ

ˇ “
ˇ

ˇdetr1`DBspB´1
`Dq´1

ll

ˇ

ˇ ď | detr1`DBs| lnW
W 2 .

In the other regions, it suffices to write the expression above as | detp1`Mq| (for a certain
matrix M) and bound it similar to Lemma 2.3.5. Using Lemma 2.3.6, the integral is
bounded by

ÿ

lPΛ

|B0l| e
KplnW qαW´2 lnW ď eKplnW q

α

W´2 lnW

since
ř

lPΛ |B0l| ď K. This proves the first part.
For n “ 1 the first integral yields a factor pW´1plnW q1{2q3 which controls the sum

over j easily. In the second term, the sum over j disappears. In both cases the sum over
l is performed by B0l and is bounded by a constant.

For n ě 2, note that each factor Bij controls a sum over i P Λ or j P Λ. The
largest contribution appears when all lm are different. In this case the expression above
is bounded by W´2plnW q1`p2`αqn ! 1 for all n ď n0pW q. When lm “ lm1 the factor
W´2 lnW comes from Bjm1 lm1

, since no sum over lm1 is needed.

Remark. Note that the representation for the first derivative is special, but the additional
term is easy to handle, since it directly give control over the sums over Λ, hence we neglect
it in the following.

Large volume

We can easily extend the above result from one cube of volume W 2plnW qα to a finite
union of cubes of this volume. The procedure is independent of the space dimension
and follows [DPS02, Corollary 1]. The idea is to decouple the cubes by replacing the
periodic Laplacian in the covariance by one with Neumann boundary conditions.
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Theorem 2.3.9. For d “ 2 and each fixed α P p0, 1q, there exists a value W0pαq such
that for W ě W0pαq and Λ a union of N cubes of volume W 2plnW qα we have for all
E P I

|ρ̄ΛpEq ´ ρSCpEq| ď W´2 eNKplnW q
α

|B
n
E ρ̄ΛpEq| ď CnN

n eNKplnW q
α

,

where ρSC is Wigner’s semicircle law (2.1.2) and Cn depends only on n.

Remark. Note that here n can take any value independent of W .

Proof. We consider again the dual representations (2.2.6) and (2.2.7), apply the steps
of integration by parts described above and pull the sums in front of the integral. The
measure is again bounded by Lemma 2.3.4, and the determinant det 1`DB by Lemma
2.3.5. When derivatives fall on the determinant, this is replaced by terms of the form
detB detJJ pB

´1 ` Dq for an index set J , which can be bounded in the same way.
Collecting a factor exppK|Λ|W´2q “ exppNKplnW qαq, we need to estimate an integral
of the form (2.2.15). Note that all terms in the integral factorize over the cubes except the
measure dµC . Before applying Lemma 2.3.6, we insert the partition of the integration
domain in each cube separately: 1 “

ś

4
ř5
s4“1 χrI

s4
4 s. We estimate the terms Re TrDB

and ReV in each cube depending on the region (as in (2.3.9), (2.3.11), (2.3.12), (2.3.13),
(2.3.14)). Inserting the quadratic contributions into the measure and extracting the
normalizing factor, we obtain

ÿ

ts4u4PΛ

c

det C´1

C´1
fa

det C´1

C´1
fb

ż

dµCfa paq dµCfb pbq|Opa, bq| e
ř

4 hs4 pa,bq
ź

4
χrI

s4
4 s,

where we collect all non-quadratic (cubic, linear and constant) terms in hs4pa, bq, and

C´1
f “ C´1´ f̂m2

r, and f̂ “
ř

4,s4ą1 f414 is a block diagonal matrix. Note that, for the
moment, only the mass in regions with s4 ą 1 has been modified. Now we can bound
the normalization factor in each cube as usual since

detC´1

detC´1
f

“ detr1` f̂m2
rCf s ď detr1` f̂m2

rC
N
f s “

ź

4:s4ą1

detr14 ` f4m
2
rC

4,N
f4

s (2.3.15)

where CN
f “ p´W 2∆Np1 ´ f̂qm2

rq
´1, ´∆N is the Laplacian with Neumann boundary

conditions on the cube boundaries, and C4,N
f4

is this covariance restricted to 4. To

prove the inequality above, we use Cf ď CN
f and f̂ ě 0 as quadratic forms, and the

minmax-principle to compare the corresponding eigenvalues.
As in [DPS02, Lemma 8], we estimate the characteristic function χrI3

4s byK e˘
ř

jP4 xaj .
A similar bound holds for χrI4

4s. Now, apart from the cubic contributions in the first
region, all terms depending on a or b in the integral are of the form |a|n or expppa, vqq,
for some vector v. The same holds for b. We are then reduced to estimate an integral of
the following form

ż

dµCfa paq dµCfb pbq
ź

4:s4“1

eF4paq`F4pbq
ź

jP4
|aj|

mj |bj|
nj

ź

4:s4ą1

epa,v4q`pb,w4q,
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where F4paq “ K
ř

jP4 |aj|
3 ` |aj|W

´2, K ą 0 is some constant, nj,mj ě 0, v4, w4

are some vectors. Defining Hpaq “ pa, C´1
fa
aq{2 ´

ř

4:s4“1F4paq (same for b), we can

apply Brascamp-Lieb (2.3.6) and (2.3.10). As a result the integral above is bounded by

KN e
1
2
pv,Cfavq`

1
2
pw,Cfbwq

ź

4:s4“1

ź

jP4

?
p2nj´1q!!

?
p2mj´1q!! pCfaq

mj{2
jj pCfbq

nj{2
jj (2.3.16)

where now f̂ “
ř

4 f414, and f4 ą 0 for all cubes. Note that, to avoid heavy notations,

we write Cf in this case, too. Now we replace Cf by CN
f in the exponent and hence

obtain factorized estimates over each cube. Since CN
f decays in the same way as Cf , the

bounds now work as before.
Finally, when estimating n derivatives in E, we collect a factor Nn from the sums over

the jk’s.

This result is not sufficient to deal with the case of very large (or infinite) volume. To
handle this case, we introduce in the next section a cluster expansion.

2.4. Proof of Theorem 2.2.3

Following [DPS02] we will apply a cluster expansion which is a variation of the rooted
Brydges-Kennedy Taylor forest formula (cf. [Bry86],[AR95]) to decouple an appropri-
ate finite region containing the observable from the remaining volume. In contrast to
[DPS02], we perform first the steps of integration by parts described in Section 2.3.3.
This preliminary procedure simplifies the extraction of the correct decay later. The
cluster expansion and the preliminary steps of integrations by parts are more easily im-
plemented by going back to the original representation of the integrals (2.2.2),(2.2.3) in
terms of Bosonic and Fermionic variables, as in App. 2.B. This is done in Section 2.4.1
below. In Section 2.4.2 a cluster expansion is applied to the supersymmetric represen-
tation obtained in Section 2.4.1. The following Sections 2.4.3-2.4.5 bound the different
terms in the cluster expansion. More precisely, in Section 2.4.3 we give an estimate on
the propagators and in Section 2.4.4 we bound the functional integral on a finite set of
cubes. Section 2.4.5 is devoted to combining all bounds and performing the sum over
vertex and cube positions as well as the tree structure. Finally in Section 2.4.6, we
sketch the procedure for the derivatives.

2.4.1. Supersymmetric representation

To modify the dual representation introduced in Lemma 2.2.1 we introduce a family
pρ̄j, ρjqjPΛ of Grassmann variables (cf. App. 2.A). For each j P Λ we denote by Mj the

supermatrix Mj “

ˆ

aj ρ̄j
ρj ibj

˙

. Note that the trace is replaced by StrMj “ aj ´ ibj (cf.

(2.A.5)). With these notations we can state the new representaion.
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Lemma 2.4.1. The integrals in (2.2.6) and (2.2.8) can be reorganized to yield

lim
εÑ0

1

|Λ|
ErTrG`ΛpEεqs ´ a

`
s “

ż

dµBpMq eVpMqa0, (2.4.1)

lim
εÑ0

B
n
E

1

|Λ|
ErTrG`ΛpEεqs “

ż

dµBpMq eVpMqa0

n
ź

k“0

StrMjk , (2.4.2)

where the supersymmetric gaussian measure is defined by

dµBpMq :“ dM e´
1
2

Str pM,B´1Mq
“ dµBpa, bq dµBpρ̄, ρq (2.4.3)

with product measure dM “
ś

jPΛ dMj “
ś

jPΛ daj dbj dρ̄j dρj,

dµBpρ̄, ρq :“
ź

jPΛ

dρ̄j dρj det
“

2π
B´1

‰

e´pρ̄,B
´1ρq,

and Str pM,B´1Mq “
ř

i,jPΛB
´1
ij Str pMiMjq, Finally, all non Gaussian terms in the

integral are collected in the exponent VpMq “
ř

jPΛ VpMjq, defined by

VpMjq :“ ´ ln Sdet rĒ ´Mjs ´ EStrMj ´
E2

2
StrM2

j

“

ż 1

0

p1´ tq2Str
M3

pĒ ´ tMq3
dt “ Vjpa, bq ` ρ̄jρjDj,

(2.4.4)

where Vjpa, bq is the potential introduced in (2.2.12). Here we abuse notation by using
the same letter for the potential VpMjq and Vpa, bq, since the two expressions are closely
related.

Remark. This representation simplifies the cluster expansion since the covariance appears
only in the Gaussian measure. Note that the normalization constants for the real and
Fermionic variables above cancel each other.

Proof. We replace the determinant in Rpa, bq by a Fermionic integral using (2.A.2) and
collect all remaining terms into the exponent VpMq.

The following result is the analog of Lemma 2.3.7 in this new formalism.

Lemma 2.4.2. The expressions (2.4.1) and (2.4.2) can be reorganized as follows

lim
εÑ0

1

|Λ|
ErTrG`ΛpEεqs ´ a

`
s “

ÿ

l0PΛ

B0l0

ż

dµBpMqBal0 eVpMq “:
ÿ

l0PΛ

B0l0F
pl0q
Λ , (2.4.5)

lim
εÑ0

B
n
E

1

|Λ|
ErTrG`ΛpEεqs “

ÿ

l0,...,ln

B0l0

n
ź

m“1

Bjmlm

ż

dµBpMq
n
ź

m“1

Str BMlm
Bal0

eVpMq

“:
ÿ

l0,...,ln

B0l0

n
ź

m“1

BjmlmF
pl0,...,lnq
Λ , (2.4.6)

where BMj
is defined in (2.B.5).
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Proof. We apply integration by parts as in Lemma 2.3.7. and use the following relations:
pStr BMi

qStrMn
j “ nδijStrMn´1

j and rStr BMi
, Str BMj

s “ 0.

Note that Bal0 moves the local observable a0 in 0 to the local observable Bal0VpMl0q at
position l0. Moreover, the B-factors enable summation over j1, . . . , jn and l0.

Remark. In the remaining we will show that applying a cluster expansion to F
pl0q
Λ and

F
pl0,...,lnq
Λ defined in (2.4.5) and (2.4.6) yields the stated estimate for the semicircle law

(2.2.13), but not for the derivatives (2.2.14), since in this last case one may not be able
to extract enough fine structure to sum over the indices l1, . . . , ln. This happens when
two or more of the lk coincide and we obtain linear terms in M from the derivatives
śn

m“1 Str BMlm
Bal0

exppVpMqq. In this case, we need to apply again integration by parts
on the resulting field factors before performing the cluster expansion. Nevertheless, for
clarity, we first prove the cluster expansion only for (2.4.6). It is easy to see that the
same approach works for the (more involved) expression we obtain after some steps of
integration by parts. A detailed description of the procedure can be found in Section
2.4.6 below.

The following lemma will simplify the cluster expansion, since the integrals over regions
without observable contributions turn out to be trivial.

Lemma 2.4.3. If we restrict the functional integrals F
pl0q
Λ and F

pl0,...,lnq
Λ defined in (2.4.5)

and (2.4.6) to a set Y C “ ΛzY not containing l0, we have for m ą 0 and indices lj P Y
C

for j “ 1, . . . ,m that

FY C “

ż

dµB
Y C
pMq e

ř

jPY C
VpMjq “ 1,

F
pl1,...,lmq

Y C
“

ż

dµB
Y C
pMq

m
ź

j“1

Str BMlj
e
ř

jPY C
VpMjq “ 0,

where BY C is the covariance restricted to the volume Y C.

Proof. Using the definition of VpMq, we can write

FY C “

ż

dM e´
1
2

Str pM,J̃´1Mq epE,StrMq

ż

dΦ̄ dΦ eipΦ̄,pĒ´MqΦq,

F
pl1,...,lmq

Y C
“

ż

dM e´
1
2

Str pM,J̃´1Mq epE,StrMq

ˆ

˜

ÿ

P1,P2

ź

j1PP1

p´E2StrMj1q
ź

j2PP2

Str BMj2

¸

ż

dΦ̄ dΦ eipΦ̄,pĒ´MqΦq,

where J̃´1 “ B´1
Y C
` E2 and we insert for the superdeterminant a superintegral with

measure dΦ̄ dΦ “
ś

jPΛ dz̄j dzj dχ̄j dχj. In the second line we sum over all partitions
P1 Y P2 “ t1, . . . ,mu with P1 X P2 “ H. Note that we can rewrite both Str BMj

and
StrMj using integration by parts (in Φ for the first, in M and then in Φ for the second)
as BĒ and

ř

k E2J̃´1
jk BĒ . For a general Λ1 Ă Λ, the restriction of B´1 to Λ1 does not have
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the form ´W 2∆ ` p1 ´ E2q, but Re J̃´1 ě 1 still holds (cf. Lemma 2.C.2). Hence we
can interchange the measures and perform integration over M by completing the square.
Inserting (2.B.2), we obtain

FY C “ EJ̃

„
ż

dΦ̄ dΦ eipΦ̄,pE`A´HqΦq


“ EJ̃ r1s “ 1,

F
pl1,...,lmq

Y C
“

¨

˝

ÿ

P1,P2

ź

j1PP1

ÿ

kj1

E2J̃´1
j1kj1

˛

‚B
m
Ē EJ̃ r1s “ 0

where A is a diagonal matrix with Aj “ E
ř

k J̃jk. Note that Im pE `A´Hq ą 0, since
Re E and Im J̃ have the same sign. Hence the integrals above are well-defined.

2.4.2. Cluster expansion

In the following, we prove a cluster expansion for the integrals F
pl0q
Λ and F

pl0,...,lnq
Λ defined

in (2.4.5) and (2.4.6). We partition a large but finite volume Λ into disjoint cubes 4 of
fixed volume W 2plnW qα. By interpolating the covariance, the functional integral over Λ
can be rewritten as a sum of local integrals over unions of these cubes called polymers.
Here, we use a non-standard cluster expansion interpolating in the real covariance C
instead of B and setting Bpsq “ pCpsq´1 ` iσEm

2
i q
´1 (cf. also the remark below). This

is done in an inductive procedure. Because of the interpolation in C, we extract a
“multi-link” consisting of three edges instead of a single edge in each step.

Before stating the result, we give a few notations: The volume Λ is divided into cubes
4 of size W 2plnW qα. Denote by 40 the root cube containing l0. In each step we
extract a generalized cube 4̃ “ p4,41,42q connected via a multi-link pi, k, k1, jq, where
k1 P 4, i P 41, j P 42 and k is in the volume already extracted. The links pi, kq and pk1, jq
are “weak” while pk, k1q is “strong” in the sense that it prescribes the tree structure.
The collection of40 and the extracted generalized cube is called the generalized polymer
Ỹ “ p40, 4̃1, . . . , 4̃rq.

40 “ 411 41 “ 421

40

41 “ 421
411

40 41

411

421

40

411 “ 421 41

i1

k1

k1
1

j1

i1

k1

k1
1

j1

i1

k1 k1
1

j1i1

k1

k1
1

j1

Figure 2.1.: Some examples for the first generalized cube 4̃1 “ p41,411,421q extracted
by the first link l1 “ pi1, k1, k

1
1, j1q with k1 P 40, k11 P 41, i1 P 411 and

j1 P 421. The cubes may coincide with the unique constraint 40 ‰ 41.
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Lemma 2.4.4. For p˚q equals to the set of fixed indices pl0q and pl0, . . . , lnq, respectively,

we can write F
pl0q
Λ and F

pl0,...,lnq
Λ defined in (2.4.5) and (2.4.6) as

F
p˚q

Λ “
ÿ

Ỹ :
p˚qPỸ

ÿ

T on Ỹ ,
|T |“r

ż

r0,1sr
dsr ¨ ¨ ¨ ds1MT psq

ˆ
ÿ

piq ,jqq
pkq ,k1qq

r
ź

q“1

GqpsqiqkqCkqk1qGqpsqk1qjq F
p˚q

T rssptiq, jqu
r
q“1q,

where Ỹ “ p40, 4̃1, . . . , 4̃rq is a generalized polymer consisting of the root cube 40 (con-
taining l0) and r ordered generalized cubes 4̃q, q “ 1, . . . , r. Each 4̃q “ p4q,41q,42qq is
a collection of three cubes not necessarily disjoint with the unique constraint 4qXp40Y
Ťq´1
p“1 4̃pq “ H. For p˚q “ pl0, . . . , lnq, the generalized polymer Ỹ needs to contain all

the indices l0, . . . , ln. We sum over all ordered trees T on the generalized polymer, such
that the q-th tree link connects 4̃q with 40 Y

Ťq´1
p“1 4̃p.

Each tree link consists of three lines piq, kqq, pkq, k
1
qq and pk1q, jqq, where the kq ´ k1q

connection forms the tree structure. Precisely, kq P 40 Y
Ťq´1
p“1 4̃p is in the generalized

polymer up to index q ´ 1, k1q P 4q, iq P 41q and jq P 42q. Note that the position of 41
and 42 is arbitrary and they can coincide with each other or an already extracted cube.
For each link, we have an interpolation parameter 0 ď sq ď 1. The functional integrals

F
pl0q
T and F

pl0,...,lnq
T are defined by

F
pl0q
T rssptiq, jquq :“

ż

dµBpsqpMq
r
ź

q“1

Str pBMiq
BMjq

q

”

Bal0
eVpMq

ı

, (2.4.7)

F
pl0,...,lnq
T rssptiq, jquq :“

ż

dµBpsqpMq
r
ź

q“1

Str pBMiq
BMjq

q

«

n
ź

m“1

Str BMlm
Bal0

eVpMq

ff

,

where Bpsq :“ pCpsq´1 ` iσEm
2
i q
´1 and Cpsqij :“ sijCij with

sij :“

$

’

&

’

%

1 if D q : i, j P 4̃q,
śq´1

p“q1 sp if D q1 ă q : i P 4̃q and j P 4̃q1 or vice versa,

0 otherwise,

MT psq is a product of s factors extracted by the derivative BsqBpsq. The propagator
Gqpsq

´1 :“ p1` iσEm
2
iCpsqq|sp“1@pąq depends only on the first q interpolation parameters

s1, . . . , sq.

Remark. The most standard way to do a cluster expansion would be to interpolate
directly in the total complex covariance B. The propagator GpsqCGpsq would then be
replaced by B. Nevertheless, in order to bound our expressions, we need pReBpsq´1q´1

to behave similar to C, and it is not easy to compare these two operators.
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40

4̃1

4̃2

4̃3

40 “ 411 “ 412

41

421 “ 422

42

43 “ 413
423

40 “ 413

41 “ 411
421 “ 412

42 “ 422

43 423

i

k

k1

j

i

k

k1

j

i

k

k1

j

i

k

k1

j

ik

k1j

i

k

k1 j

Figure 2.2.: Two examples of links and underlying generalized polymere for a fixed tree

structure on Ỹ . Note that cubes and even the notes can coincide as long as
the conditions kq P

Ťq´1
p“1 4̃p Y40 and k1q P 4̃q are fulfilled.

One may also use a standard cluster expansion (e.g. a Brydges-Kennedy Taylor forest
formula or Erice type cluster expansion [AR95, Bry86]) in the real covariance C. Since
the propagator GpsqCGpsq has an s-dependence, derivatives in s could also fall on it,
which complicates the algebra involved in factorizing the contributions from different
connected components.

Therefore, we use the same “inductive” interpolation scheme as in [DPS02] (analog
to older versions of cluster expansions, cf. [Riv91, Chapter III.1]).

Proof. We construct the cluster expansion by an inductive argument. The large volume
is divided into cubes of size W 2plnW qα. In the following, we want to extract the set
of cubes interacting with the observable. Therefore, we test if there exists a connection
between the root cube 40 and some other cube 4 Ă Λ.

We introduce an interpolating covariance Bps1q with 0 ď s1 ď 1, which satisfies
Bp1q “ B while Bp0q decouples the root cube 40 from the rest of the volume. We
define Bps1q

´1 :“ Cps1q
´1 ` iσEm

2
i , where

Cps1qij :“

"

s1Cij if i P 40 and j P 4 ‰ 40 or vice versa,
Cij otherwise.

This is equivalent to Cps1q “ s1C`p1´s1qpC4040`C4C
0 4C

0
q, where C44 is the covariance

C restricted to the set 4. By this definition, Cps1q is still a positive operator because
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it is a convex combination of positive operators. Define

F
pl0q
Λ rs1s :“

ż

dµBps1qpMqBal0 eVpMq

and F
pl0,...,lnq
Λ rs1s similarly. Note that for s1 “ 1 we have F

p˚q

Λ rs1s|s1“1 “ F
p˚q

Λ . By the
fundamental theorem of calculus

F
p˚q

Λ rs1s|s1“1 “ F
p˚q

Λ rs1s|s1“0 `

ż 1

0

ds1 Bs1F
p˚q

Λ rs1s.

F
p˚q

Λ rs1s|s1“0 corresponds to decoupling40 from the remaining volume. By Lemma 2.4.3,
the integral over 4C

0 yields one in the case ˚ “ l0 or if all indices l0, . . . , ln are in 40,
and zero otherwise. The derivative is written by integration by parts as

ż

Bs1 dµBps1qpMqr¨s “

ż

dµBps1qpMq
ÿ

i1j1

Bs1Bps1qi1j1
1
2
Str BMi1

BMj1
r¨s,

Moreover, the propagator Bs1Bps1qi1j1 gives three connections

Bs1Bps1qi1j1 “
ÿ

41‰40

ÿ

k1P40

k11P41

Gps1qi1k1Ck1k11
Gps1qk11j1 `Gps1qi1k11Ck11k1

Gps1qk1j1 ,

where Gps1q “ p1` iσEm
2
iCps1qq

´1. Since the matrices C and Gps1q are symmetric, one
can rewrite the second summand as Gps1qj1k1Ck1k11

Gps1qk11i1 . To sum the two terms, note
that the supertrace is invariant under changing i1 and j1. Therefore we obtain

Bs1F
p˚q

Λ rs1s “
ÿ

pi1,j1q
pk1,k11q

`

Gps1qi1k1Ck1k11
Gps1qk11j1

˘

F
p˚q

Λ rs1sppi1, j1qq,

where

F
pl0q
Λ rs1sppi1, j1qq “

ż

dµBps1qpMqStr BMi1
BMj1

Bal0
eVpMq

and F
pl0,...,lnq
Λ rs1sppi1, j1qq is defined similarly.

For each pair pk1, k
1
1q with k1 P 40 and k11 P 41, there is a strong connection between

40 and 41, but there is no corresponding derivative in the functional integral as for
i1 and j1. If i1 or j1 belong to some cube 4 Ę 40 Y 41, they give some additional
connections. Therefore, the first step of induction extracts a link consisting of three
connection between the four points i1, j1, k1 and k11. This link connects 40 to a set of
one, two or three new cubes, which we call the generalized cube 4̃1 (cf. Figure 2.1).

Now, we fix pi1, j1q, pk1, k
1
1q corresponding to a connection between 40 and 4̃1. We

test if there is a connection between 4̃0,1 “ 40 Y 4̃1 and any other cube 41. For this,
we define for 0 ď s2 ď 1 the real interpolating covariance as

Cps1, s2qij “

"

s2Cps1qij if i P 4̃0,1 and j R 4̃0,1 or vice versa,
Cps1qij otherwise.
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We can write Cps1, s2q again as a convex combination of positive operators

Cps1, s2q “ s2Cps1q ` p1´ s2qpC4̃0,14̃0,1
ps1q ` C4̃C

0,14̃C
0,1
ps1qq,

thus Cps1, s2q is still positive. Now, F
p˚q

Λ rs1sppi1, j1qq “ F
p˚q

Λ rs1, s2sppi1, j1qq|s2“1. By the
fundamental theorem of calculus

F
p˚q

Λ rs1, s2sppi1, j1qq|s2“1 “ F
p˚q

Λ rs1, s2sppi1, j1qq|s2“0 `

ż 1

0

ds2 Bs2F
p˚q

Λ rs1, s2sppi1, j1qq.

As before F
p˚q

Λ rs1, s2sppi1, j1qq|s2“0 corresponds to the functional integral restricted to

4̃0,1 (if all indices l0, . . . , ln are in 4̃0,1, otherwise it is zero). The derivative in s2 of

F
p˚q

Λ rs1, s2sppi1, j1qq gives

ÿ

pi2,j2q,pk2,k12q

k2P4̃0,1,k12R4̃0,1

“

Gps1, s2qi2k2Cps1qk2k12
Gps1, s2qk12j2

‰

F
p˚q

Λ rs1, s2sppi1, j1q, pi2, j2qq.

Note that i2 and j2 are arbitrary but k2 needs to be in 4̃0,1 and k12 in a new cube.
We repeat this argument until we construct all possible connected components con-

taining the root cube. Note that in the second case, only generalized polymers containing
all indices l0, . . . , ln give a non-zero contribution. This is a finite sum for Λ fixed. The
kr ´ k1r connections build a tree structure on the generalized cubes, while the positions
of ir and jr are arbitrary (cf. Figure 2.2).

2.4.3. Decay of Gqpsq and Bpsq

First we determine the decay of the propagator Gqpsq and the interpolated complex
covariance Bpsq. Note that, for Cpsq, we can simply use that Cpsqij ď Cij.

Lemma 2.4.5. The decays of Bpsq and Gqpsq, respectively, are given by

|Bpsqij| ď |Cij| `
K
W 2 e´f

mr
W
|i´j|

|Gppsqij| ď δij ` |Cij| `
K
W 2 e´f

mr
W
|i´j|

where f “ infr1{2, gs with a constant g ă 1 independent of W .

Remark. Note that the decay of Bpsq and Gpsq is bounded by

|Cij| `
K
W 2 e´f

mr
W
|i´j|

ď

#

K
W 2 ln

´

W
mrp1`|i´j|q

¯

if |i´ j| ď W
mr
,

K
W 2 e´f

mr
W
|i´j| if |i´ j| ą W

mr
.

Proof. The proof works exactly like the one in [DPS02, Lemma 15], replacing the three
dimensional decay (2.3.3) with the two dimensional decay given in (2.3.2), the key rela-
tion being

ř

kPΛpCpsqjk exppµ|k ´ j|qq2 ď KW´2 for µ ă mr{p2W q.
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2.4.4. Bounding the functional integrals

To estimate (2.4.7), we fix a generalized polymer Ỹ and indices tiq, jqu, and we define
J “ tiq, jq : q “ 1, . . . , ru Ď Y as the set of all derived indices. Then the corresponding
integrand can be written as

r
ź

p“1

Str BMip
BMjp

”

Bal0
eVpMq

ı

“ Bal0

ź

jPY {J

eVpMjq
ÿ

dPD

ź

jPJ
B
dj
Mj

eVpMjq

where B
dj
Mj

:“ B
djpaq
aj B

djpbq
bj

B
djpρ̄q
ρ̄j B

djpρq
ρj , and D “ td “ tdjujPJ u is a set of multi-indices with

dj “ pdjpaq, djpbq, djpρ̄q, djpρqq. Note that djpρ̄q, djpρq P t0, 1u and |dj| :“ djpaq ` djpbq `
djpρ̄q`djpρq equals the multiplicity of j in J . For the case j “ l0, we have an additional
derivative in al0 which needs to be treated separately. Computing the derivatives for
each j P J Y tl0u and each multi-index dj,

B
δjl0
al0
B
dj
Mj

eVpMjq “
ÿ

rj

M
rj
j Cdj ,rjpaj, bjq eVjpa,bq e´ρ̄jρjDjpa,bqr1´djpρ̄qdjpρqs,

where M
rj
j :“ a

rjpaq
j b

rjpbq
j ρ̄

rjpρ̄q
j ρ

rjpρq
j , rj “ prjpaq, rjpbq, rjpρ̄q, rjpρqq are the remaining pow-

ers of the variables in M, and Cdj ,rjpaj, bjq is a bounded function remaining after deriva-
tives have been taken. Note that we use the notation dj “ 0 for j R J , and the same
for rj for j R J Y tl0u. Using the definitions (2.4.4), (2.2.11), (2.2.12), and the relation

Bda exppV paqq “
řd
k“1

`

d
k

˘

Bd´ka

“

pBaV paqq
k
‰

exppV paqq, one can see that

|Cdj ,rjpaj, bjq| ď Kdjpaq`djpbqdjpaq!djpbq!

independent of rj for all paj, bjq configurations. Note that nj :“ |rj| ` |dj| ě 3 and
|rj| ď 3|dj| for all j P J ztl0u. If l0 R J , we have |rl0 | “ 2 and if l0 P J , we have at least
nl0 ě 2.

Lemma 2.4.6. The functional integral (2.4.7) is bounded by

|F
pl0q
T rssptiq, jquq| ď K

|Y |plnW qα

1

ÿ

dPD

ÿ

trjujPJ

ź

4PY

«

K
n4
2 r4!

ź

jPJX4
dj!

`

lnW
W 2

˘

rj
2

ff

, (2.4.8)

where K1 and K2 are constants, and |Y | denotes the number of cubes in Y .

Proof. We first compute the Fermionic integral and estimate the resulting determinant
(see the two lemmas below). We obtain

ˇ

ˇ

ˇ

ˇ

ˇ

ż

dµBpsqpρ̄, ρq e´
ř

jPJ4
ρ̄jρjDj

˜

ź

jPJ1

ρj ρ̄j

¸˜

ź

jPJ2

ρj

¸˜

ź

jPJ3

ρ̄j

¸
ˇ

ˇ

ˇ

ˇ

ˇ

(2.4.9)

ď
ź

4PY
r4pρq

r4pρqr4pρ̄q
r4pρ̄q

´?
lnW
W

¯r4pρq`r4pρ̄q

eRe Tr pBpsqDqJ3YJ4,J3YJ4 eKp|Y |plnW q
α`|J |q,
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where Y “
Ť5
j“1 Jj is a partition given by

J1 “ tj P Y : rjpρq “ rjpρ̄q “ 1u,

J2 “ tj P Y : rjpρq “ 1, rjpρ̄q “ 0u,

J3 “ tj P Y : rjpρq “ 0, rjpρ̄q “ 1u,

J4 “ tj P Y : rjpρq “ rjpρ̄q “ 0, djpρq “ djpρ̄q “ 0u,

J5 “ tj P Y : rjpρq “ rjpρ̄q “ 0, djpρq “ djpρ̄q “ 1u.

The remaining Bosonic functional integral is bounded by generalizing the results of the
finite volume case. We first insert the partition into the different domains of integration
for each cube separately. In I1 we need the factors |aj|

rjpaq|bj|
rjpbq of M

rj
j since they give

additional small factors of order W´1plnW q1{2. In the other regions these factors can
be bounded by exppVjpa, bqq and we include them into CpajqCpbjq.

Summarizing the above procedure, we estimate |F
pl0q
T rssptiq, jquq| by

eKp|Y |plnW q
α`|J |q

ż

ˇ

ˇ dµBpsqpa, bq
ˇ

ˇ eRe Tr pBpsqDqJ3J3
`Re Tr pBpsqDqJ4J4

ź

jPY

ˇ

ˇ eVjpa,bq
ˇ

ˇ

ˆ
ÿ

dPD

ÿ

trjujPJ

ź

4PY

r4pρq
r4pρqr4pρ̄q

r4pρ̄q

W r4pρq`r4pρ̄q

ˆ
ź

jPJX4

`

χrI1
4s|aj|

rjpaq|bj|
rjpbq ` χrpI1

4q
C
s
˘

Kdjpaq`djpbqdjpaq!djpbq!

We first apply Lemma 2.3.4 which also holds for Bpsq and Cpsq. Proceeding as in the
proof of Theorem 2.3.9 we insert the bounds of Lemma 2.3.6. As a result we obtain
(2.3.15) and (2.3.16) with C replaced by Cpsq and Cf replaced by Cf psq “ pCpsq

´1 ´

fm2
rq
´1 ą 0. Now we have Cpsq ă CN “ p´W

2∆N`m
2
rq
´1 since Cpsq can be represented

as a quadratic form of block diagonal pieces of C and each of these is smaller (as a
quadratic form) than CN by the arguments of Lemma 2.C.2. This decouples the different
cubes. In I1 we obtain for each j P J a factor

rjpaq!rjpbq!
´

KplnW q1{2

W

¯rjpaq`rjpbq

.

In the other regions we extract this factor from the exponential decay. The factorials
in djpaq and djpbq are bounded by dj! and the factors in r4 are bounded by Kr4r4!.
Finally, we end up with (2.4.8). Note that we obtain an additional factor W´2 lnW in
the case, where l0 R J . In the other case, we extract the precision later.

Lemma 2.4.7. The Fermionic integral (2.4.9) can be written as

ź

4PY
r4pρq

r4pρqr4pρ̄q
r4pρ̄q

´?
lnW
W

¯r4pρq`r4pρ̄q

σ detM, (2.4.10)
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where σ is a sign and the matrix M is given by M “ pMJiJjq
5
i,j“1 with blocks

pMJiJjqαβ “

´

W 2

r4pραqr4pρ̄βq lnW
Bpsqαβ

¯

αPJi,βPJj1
for i, j P t1, 2u,

pMJiJjqαβ “

´

W
r4pραq

?
lnW

pDBpsqqαβ

¯

αPJi,βPJj
for i P t1, 2u and j P t3, 4u,

pMJiJjqαβ “

´

W
r4pρ̄βq

?
lnW

Bpsqαβ

¯

αPJi,βPJj1
for i P t3, 4, 5u and j P t1, 2u,

pMJiJjqαβ “ pp1`DBpsqqαβqαPJi,βPJj for i P t3, 4, 5u, j P t3, 4u,

pMJiJjqαβ “ 0 for i P t1, 2, 3, 4u, j “ 5,

pMJiJjqαβ “ δαβ for i “ j “ 5,

where j1 “ 1 for j “ 1 and j1 “ 3 for j “ 2.

Proof. Note that the integral is zero unless |J2| “ |J3| because of the symmetry of the
Fermionic Gaussian integral. Computing the Fermionic integral (2.4.9) by (2.A.3), it is
equal to

σ detBpsqdetJ1YJ3,J1YJ2pBpsq
´1
` D̃q,

where σ is a sign, D̃ is a diagonal matrix with D̃j “ Djr1 ´ djpρ̄qdjpρqs and detIJ A is
the determinant of the minor of A, where the rows with indices in I and the columns
with indices in J are crossed out. Since we estimate the absolute value in the next step,
we do not need the precise sign. We assume without loss of generality that the indices
j P Λ are ordered such that Bpsq is a block matrix of the form Bpsq “ pBpsqJiJjq

5
i,j“1

and BpsqJi,Jj “ pBpsqαβqαPJi,βPJj .
To simplify this expression the minor is extended to a |Λ|ˆ|Λ|matrix without changing

the determinant up to a sign in the following way:

M1 “

»

—

—

—

—

–

A ˚ ˚ ˚ ˚

0 0 pBpsq´1qJ2J3 pBpsq´1qJ2J4 pBpsq´1qJ2J5

0 A1 ˚ ˚ ˚

0 0 pBpsq´1qJ4J3 pBpsq´1 `DqJ4J4 pBpsq´1qJ4J5

0 0 pBpsq´1qJ5J3 pBpsq´1qJ5J4 pBpsq´1qJ5J5

fi

ffi

ffi

ffi

ffi

fl

,

where the blocks A and A1 have determinant one. The blocks ˚ can be chosen arbitrarily.
We choose A and A1 as the identity, pM1qJ1J2 “ 0 and the other freely selectable blocks
pM1qJiJj as pBpsq´1 `DqJiJj . By multiplying with Bpsq from the left, we obtain

M̃ “ BpsqM1 “

»

—

—

—

—

–

BpsqJ1J1 BpsqJ1J3 pBpsqDqJ1J3 pBpsqDqJ1J4 0
BpsqJ2J1 BpsqJ2J3 pBpsqDqJ2J3 pBpsqDqJ2J4 0
BpsqJ3J1 BpsqJ3J3 p1`BpsqDqJ3J3 pBpsqDqJ3J4 0
BpsqJ4J1 BpsqJ4J3 pBpsqDqJ4J3 p1`BpsqDqJ4J4 0
BpsqJ5J1 BpsqJ5J3 pBpsqDqJ5J3 pBpsqDqJ5J4 p1qJ5J5

fi

ffi

ffi

ffi

ffi

fl
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Extracting a factor r4j
pρq
?

lnW {W for each j P J1 Y J2 from lines J1 and J2 and a

factor r4j
pρ̄q
?

lnW {W for each j P J1Y J3 from columns J1 and J2, we obtain (2.4.10).

Note that columns of Bpsq with indices in J3 become columns with indices in J2 in M̃
such that we need to extract the factors from column J2.

Lemma 2.4.8. The determinant of the matrix M can be bounded by

| detM | ď K eRe Tr pBpsqDqJ3YJ4,J3YJ4 eKp|Y |plnW q
α`|J |q.

Proof. We use the usual bound for determinants (2.3.4) with A “M ´ 1. Since

TrA˚A “
5
ÿ

i,j“1

Tr pAJiJjq
˚AJiJj and Tr pAJiJjq

˚AJiJj “
ÿ

αPJi,βPJj

ĀαβAαβ,

each block can be bounded separately. For j “ 5 and all i the trace above is zero. For
i “ 3, 4, 5 and j “ 3, 4, we have AJiJj “ pDBpsqqJiJj and we estimate

Tr pAJiJjq
˚AJiJj “

ÿ

αPJi,βPJj

|Bpsqαβ|
2
|Dβ|

2
ď K

ÿ

αPY

1

W 2
ď K|Y |plnW qα,

where we used |Dβ| ď K and the decay of Bpsq (Lemma 2.4.5). For i “ 1, 2 and j “ 3, 4,

we only have off-diagonal terms and AJiJj “
´

W
r4pρq

?
lnW

BpsqD
¯

JiJj
. Using r4 ě 1 and

|Dβ| ď K, we estimate

Tr pAJiJjq
˚AJiJj ď K W 2

lnW

ÿ

αPJi,βPJj

|Bpsqαβ|
2
ď K W 2

lnW

ÿ

αPJi

1
W 2 ď K |J |

lnW
,

where the sum over β P Jj is extended to β P Λ. We bound the trace similarly for the

case i “ 3, 4, 5 and j “ 1, 2, where AJiJj “
´

W
r4pρ̄q

?
lnW

Bpsq
¯

JiJ 1j

. Extending the sum

over α P Ji to α P Λ, we end up with

Tr pAJiJjq
˚AJiJj ď

W 2

lnW

ÿ

αPJi,βPJj

|Bpsqαβ|
2
ď K W 2

lnW

ÿ

βJj

1
W 2 ď K |J |

lnW
,

For i, j “ 1, 2, we have AJiJj “
´

W 2

r4pρqr4pρ̄q lnW
Bpsq ´ 1

¯

JiJ 1j

. Summing the trace of the

quadratic term and the corresponding block of Re TrA, terms linear in M cancel and
we end up with

1
2
Tr ppMJiJjq

˚
´ 1qpMJiJj ´ 1q ` Re Tr pMJiJj ´ 1q ď 1

2
Tr pMJiJjq

˚MJiJj .

Now, the term Tr pMJiJjq
˚MJiJj is bounded by using the factor r4 explicitly. Rewriting

the sum over α P Ji and β P Jj into a sum over cubes, we obtain

Tr pMJiJjq
˚MJiJj ď

ÿ

αPJi,βPJj

W 4

r4αpρq
2r4β

pρ̄q2plnW q2
|Bpsqαβ|

2

ď
ÿ

4:4XJi‰H
41:41XJj‰H

ÿ

αP4XJi
βP41XJj

W 4

r4pρq2r41pρ̄q2plnW q2
|Bpsqαβ|

2.
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The number of summands in the second sum is bounded by r4pρqr41pρ̄q. Applying the
estimate |α ´ β| ě W pdist p4α,4βq ´ 1q and the decay of Bpsq, we end up with

Tr pMJiJjq
˚MJiJj ď

ÿ

4:4XJi‰H
41:41XJj‰H

K
r4pρqr41 pρ̄qplnW q

2

´

δdist p4,41q´1ă 1
mr

ln2
”

W
mr

1
W pdist p4,41q´1q`1

ı

` δdist p4,41q´1ě 1
mr

e´mrpdist p4,41q´1q
¯

,

where the factor W 4 cancels. The sum over 41 is bounded by a constant independent
of W because of the exponential decay. Therefore,

Tr pMJiJjq
˚MJiJj ď K

ÿ

4:4XJi‰H

1

r4pρq
ď K|J |.

Combining these estimates, we end up with the result.

2.4.5. Summing up

In this section we will put together the estimates above to complete the proof. The large
factorials and combinatoric factors arising from the bound of the functional integral and
the sum over the cube positions will be controlled by fractions of the exponential decay of
GqpsqCGqpsq, while the non-exponential part will allow to sum over the vertex positions
i, j, k, k1 inside each fixed cube. Finally the sum over the tree structure will be achieved
by a standard argument.

Reorganizing W factors. Before performing the estimates, we extract additional W
factors from G as follows:

r
ź

q“1

|Gqpsqiqkq | |Ckqk1q | |Gqpsqk1qjq |
ź

4PY

´

plnW q1{2

W

¯r4
(2.4.11)

“

r
ź

q“1

ˇ

ˇ

ˇ

W 2

lnW
Gqpsqiqkq

ˇ

ˇ

ˇ

ˇ

ˇ

lnW
W 2 Ckqk1q

ˇ

ˇ

ˇ

ˇ

ˇ

W 2

lnW
Gqpsqk1qjq

ˇ

ˇ

ˇ

ź

jPJYtl0u

´

plnW q1{2

W

¯nj
,

where we remember that dl0 “ 0 and rl0 “ 2 if l0 R J .

Factorials. We extract a small fraction of the exponential to control finite powers of
factorials d4!p. The number d4 counts the number of multi-link starting points iq and
endpoints jq inside 4. Denoting by q0 the first (smallest) index in this family, one can
see that for all q ą q0, the cubes containing the vertex k1q are pairwise disjoint and
different from 4. For d4 large, more than half of these cubes have distance of order

W plnW qα{2d
1{2
4 from 4 since we are in a finite dimensional space. Therefore we gain a
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factor of order expp´plnW qα{2d
3{2
4 q from the exponential decay of GCG. A small fraction

from this beats finite powers of factorials in d4 and n4:

r
ź

q“1

e´ε|iq´kq |{W e´ε|kq´k
1
q |{W e´ε|k

1
q´jq |{W ď

ź

4

K
d4!p

ď
ź

4

K
n4

n4!p{4
, (2.4.12)

where we used n4 ď 4d4 in the last step.

Applying Lemma 2.4.6, the bound of the factorials (2.4.12) and the reorganization of
the W factors in (2.4.11), we have

r
ź

q“1

`

|Gqpsqiqkq ||Ckqk1q ||Gqpsqk1qjq |
˘

|FT rssptiq, jquq| (2.4.13)

ď lnW
W 2 K

plnW qα

«

r
ź

q“1

e´f
1dp41q ,4qq{W e´f

1dp4q ,4Apqqq{W e´f
1dp4Apqq,42qq{W

ff

ˆ
ÿ

dPD

ÿ

trjujPJ

´

KplnW q
α
plnW q1{2

W

¯nl0´2 ź

jPJ ztl0u

´

KplnW q
α
plnW q1{2

W

¯nj
r
ź

q“1

G̃iqkqC̃kqk1qG̃k1qjq

where f 1 “ fmr ´ ε is the remaining mass, dp4,41q is the distance between the centers
of the cubes 4 and 41, and G̃ and C̃ are the prefactors of the exponential decay of G
and C given by

C̃ij “δ
|i´j|ď

W
mr

K lnW
W 4 ln

´

W
mr

1
|i´j|`1

¯

` δ
|i´j|ą

W
mr

K lnW
W 7{2|i´j|1{2

G̃ij “δij
W 2

lnW
` δ

|i´j|ď
W
mr

K
lnW

ln
´

W
mr

1
|i´j|`1

¯

` δ
|i´j|ą

W
mr

1
lnW

.

Sum over the vertex position inside each cube. Remember that 4̃q “ p4q,41q,42qq,
q “ 0, . . . r. For each 4̃q we call 4̃Apqq the ancestor of 4̃q in the tree, and 4Apqq the cube

in 4̃Apqq containing kq. Let us now fix the tree structure T, the position of the above
cubes, and the multiplicities d P D.

Lemma 2.4.9. The sum over the vertex positions iq, jq, kq, k
1
q compatible with the above

constraints is bounded by

pT,dq
ÿ

iqP41q ,jqP42q
kqP4q ,k1qP4Apqq

r
ź

q“1

G̃iqkqC̃kqk1qG̃k1qjq ď Kdl0 plnW qαdl0
ź

jPJ ztl0u

KdjW 2
plnW q5dj{2 (2.4.14)

Proof. Each multi-link consists of four vertices iq, jq, kq, k
1
q, where kq and k1q must belong

to different cubes while iq and jq are arbitrary. For j “ iq or j “ jq, we say

• j is new in step q if the qth multi-link extracts j and j was never extracted before.
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• j is old in step q if the qth multi-link extracts j and j was already extracted.

Since the multi-indices d and the tree structure are fixed, the fact that j is old or new
is preserved when summing over its position inside the cubes. We consider the different
cases. Note that we only sum over iq and jq if they are new. If both iq and jq are of the
same type (old or new), we distribute the resulting factor to both indices. If one is old
and one is new, the resulting factor counts only for the new index.

a) iq ‰ jq and both iq and jq are new. We sum over iq and jq:

ÿ

kqP4kq

ÿ

iqP4iq

G̃iqkq

ÿ

k1qP4k1q

C̃kqk1q

ÿ

jqP4jq

G̃k1qjq ď KW 4
plnW q9α{2´1

Therefore, we pay a factor W 2plnW q9α{4´1{2 for iq and the same factor for jq.
b) iq ‰ jq and iq is new and jq is old. The same estimate holds for iq old and jq new.

Then we sum only over iq.

ÿ

k1qP4k1q

G̃k1qjq

ÿ

kqP4kq

C̃kqk1q

ÿ

iqP4iq

G̃iqkq ď KW 2
plnW q7α{2´1.

Hence, we need to bound a factor W 2plnW q7α{2´1 for iq and no factor for jq.
c) iq ‰ jq and iq and jq are old. Then, iq and jq are both fixed and

ÿ

kqP4kq

G̃iqkqW
´4 ln2W

ÿ

k1qP4k1q

G̃k1qjq ď KplnW q2α,

where we bound C̃kqk1q ď W´4 ln2W . For both iq and jq we collect a factor KplnW qα.
d) iq “ jq and iq is new. Then, we sum over iq

ÿ

kqP4kq

ÿ

k1qP4k1q

C̃kqk1q

ÿ

iqP4iq

G̃iqkqG̃k1qiq ď KW 2
plnW q5α{2

and obtain a factor W 2plnW q5α{2 for iq and no factor for jq.
e) iq “ jq and iq is old. Then, iq is fixed and

ÿ

kqP4kq

G̃iqkqW
´4 ln2W

ÿ

k1qP4k1q

G̃k1qjq ď KplnW q2α.

We gain a factor plnW qα for iq and jq. Note that for l0 P J , l0 is always old.

Combining the products over j P J in (2.4.13) and (2.4.14) we obtain

ź

jPJ ztl0u

´

KplnW q
α
plnW q1{2

W

¯nj
KdjW 2

plnW q5dj{2 ď
ź

jPJ ztl0u

´

KplnW q
α
plnW q3

W 1{3

¯nj
, (2.4.15)
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where we used nj ě 3 for all j P J , j ‰ l0. The point j “ l0 is special since nl0 ě 2. But
since the position l0 is fixed, l0 is always “old” and we obtain

´

KplnW qα plnW q1{2

W

¯nl0´2

pKplnW qαqdl0 . (2.4.16)

Finally, we perform the sum over the multi-indices d and r, compatibles with the fixed
tree structure. The sum over rj “ prjpaq, rjpbq, rjpρ̄q, rjpρqq gives a factor Kr since
|rj| ď 3|dj| and

ř

jPJ |dj| “ 2r. The sum over dj “ pdjpaq, djpbq, djpρ̄q, djpρqq can be
estimated by an integral over a simplex of length r, giving an additional factor Kr.

Combining these factors with (2.4.15) and (2.4.16) we obtain the bound gr´1, where
g “ KplnW qαW´1{3`ε with 0 ă ε ! 1{3, hence g ! 1 for W large.

Sum over the cube position and the tree structure. For a fixed tree structure we
use the remaining exponential decay of GCG to sum over the positions of the all cubes
inside 4̃q for all 1 ď q ď r, starting from the leafs (i.e. vertices with degree 1) and
going towards the root 40. For each multi-link connecting a generalized cube 4̃q to
its ancestor 4̃Apqq the position of 4q,41q and 42q is summed over using the exponential
decay of GCG. This costs only a constant factor for each cube. Finally we pay a factor
3 to choose the position of the ancestor in 4̃Apqq. We end up with

ˇ

ˇ

ˇ
F
pl0q
Λ

ˇ

ˇ

ˇ
“ lnW

W 2 eKplnW q
α

«

1`
ÿ

rě1

ÿ

T unordered

ÿ

orders

ż

r0,1sr

r
ź

q“1

dsq|MT psq| g
r´1

ff

.

Integrating over the interpolating factors s cancels the last sum over the orders of the
trees (cf. [Riv91, Lemma III.1.1]):

ř

orders

ş

r0,1sr

śr
q“1 dsq|MT psq| “ 1. The remaining

sum is written as

ÿ

rě1

ÿ

T

gr´1
ď 1`

ÿ

rě2

ÿ

T

?
gr “

ÿ

deg4̃0
ě1

deg4̃0
ź

i0“1

?
g

»

—

–

ÿ

deg4̃i0
ě1

deg4̃i0
´1

ź

i1“1

?
g
ÿ

. . .

fi

ffi

fl

,

where deg4̃ denotes the degree of the generalized cube 4̃ in the tree T . Since g ! 1,
we can sum from the leaves towards the root using a standard procedure (cf. [DPS02,
Section 6.3.4]) and bound the sum above by a constant. It suffices to assume

?
g ă

1{4 to make this procedure work. Hence W0pαq need to be chosen large enough that
KplnW qαW´1{3`ε ă 1{16 for all W ě W0pαq. Finally we estimate the sum over l0 using
the exponential decay of |B0l0 |. As a result

ˇ

ˇ

ˇ

ˇ

ż

dµBpMq eVpMqa0

ˇ

ˇ

ˇ

ˇ

ď
ÿ

l0PΛ

|B0l0 |

ˇ

ˇ

ˇ
F
pl0q
Λ

ˇ

ˇ

ˇ
ď lnW

W 2 eKplnW q
α

.

This proves the first part of Theorem 2.2.3.
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2.4.6. Derivatives

Bounding the derivative is similar to the procedure above. Our starting point is

ÿ

j1,...,jn

ÿ

l0,...,ln

B0l0

n
ź

m“1

BjmlmF
pl0,...,lnq
Λ .

Since the B factors control the sums over l0 and over the jm’s, we have only n remaining
sums of l1, . . . , ln over the volume Λ. We observe that a cluster expansion of F

pl0,...,lnq
Λ

extracts only trees such that all indices l0, . . . , ln are in the connected cluster. We can
extract a fraction of the exponential decay of GCG to sum over the ’coarse’ position of
the l0, . . . , ln, i.e. the position of the cubes containing the indices. Finally, to sum over
the index position inside each cube, we need to extract at least a factor pW 2plnW qαq´1

for each l1, . . . , ln.
As mentioned above, applying the cluster expansion directly to F

pl0,...,lnq
Λ is not enough

to extract this fine structure. Problems arise when two or more of the lj’s coincide and we
have contributions from

śn
m“1 Str BMlm

Bal0
exppVpMqq of the form pStr BMl

qnVpMlq with
n ě 2. Since the lowest order contribution of VpMq is cubic, we obtain linear or constant
terms in M . Note that constant terms vanish, since pStr BMi

qnStrMn
j “ δijn!Str 1 “ 0.

Linear terms may display a problem if a derivative of the cluster expansion falls on them.
In this case, we have no field factor left and we gain only only W´1plnW q1{2 from the
derivative (cf. eq. (2.4.11)) of the cluster expansion, which is not enough for the fine
structure estimates.

In the special case l0, problems arise for terms of the form pStr BMl0
qnBal0

VpMl0q, with
n ě 1, since we obtain again linear or constant terms in al0 . For linear terms we have
the same problem as above. Note that also in this case the constant term vanishes since
the whole integral corresponds to the derivative of a constant (cf. proof of Lemma 2.2.2
and Lemma 2.4.3) except in the special case when n ě 2 and all lk coincide. Indeed, in
this case the integral coincides with (2.2.4) and hence yields one, but this is no problem
since we can sum over the remaining indices using the B factors.

To solve these problems, we apply integration by parts on the linear contributions of
the form StrMlj with lj ‰ l0 as in (2.B.4) before performing the cluster expansion. Each
new B factor that we obtain ensures summation over at least one old index, while a
new index to be summed, coupled with an Str BM , appears. Again, the derivative may
fall on the exponential exppVpMqq (extracting a new term StrM2 at lowest order) or a
prefactor StrMn for n ě 1. If n “ 1 the integral vanishes by the same arguments as
above. For n “ 2 we obtain a new linear term, where we need to perform integration by
parts. In all other cases we obtain enough fine structure. Note that the procedure ends
after at most 2n steps.

Again a derivative falling on another linear contribution vanishes since by the same
arguments as above. Therefore we end up with functional integrals of the form

ÿ

kPΛ@kPK

ż

dµBpMqa
mk0
k0

ź

kPK
StrMmk

k eVpMq
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where mk0 ě 1, mk ě 2 and |K| ď n. Note that again the index k0 is special and
a constant term i.e. mk0 “ 0 means the integral corresponds to the derivative of a
constant.

Applying here the cluster expansion yields a connected tree containing all indices
k0, . . . , kn. We obtain a functional integral of the form

F
pk0,...,knq
T rssptiq, jquq “

ż

dµBpsqpMq
r
ź

q“1

Str pBMiq
BMjq

q

«

a
mk0
k0

ź

kPK
StrMmk

k eVpMq

ff

and bound it similar to Lemma 2.4.6. Note that the indices k0, . . . , kn need to be treated
separately as l0 before. We obtain nk0 ě 1 and nk ě 2 for k P K. Since we sum later over
these indices, they are ’old’ and hence we obtain at least a total factor W´p2n`1qplnW qn.
Collecting all W contributions we get

W 2n
plnW qnαW´p2n`1q

plnW qn eKplnW q
α

“ W´1
plnW qnpα`1q eKplnW q

α

ď 1

for W large enough (depending on n). Note that the first factor comes from the sum
over the index position inside each cube, and the last from the contribution of the root
cube (see end of Section 2.4.5).

2.A. Supersymmetric Formalism

We will summarize the main ideas of the supersymmetric formalism (see [Efe99] for an
easy-to-read introduction and [Ber87] for a detailed description).

Definition 2.A.1 (Grassmann algebra). Let N P N and let V be a vector space over a
field K with basis pα1, ..., αNq and denote the antisymmetric tensor product by

^ : V ˆ V Ñ V bas V,

pv, wq ÞÑ v ^ w “ vw “ ´wv.

The corresponding Grassmann algebra is defined by

A :“
à

kě0

V k,

where V 0 “ K, V 1 “ V and V k “ V k´1 bas V for k ě 2. This is an associative algebra
with unit. We distinguish between the subsets of even elements A0 :“

À

kě0 V
2k and

odd elements A1 :“
À

kě0 V
2k`1. While the even elements form an algebra again, this

is not true for A1. Even elements commute with all elements in the Grassmann algebra
and are called Bosonic variables. On the other hand, two odd elements anticommute
and are called Fermionic (or Grassmann) variables.

The generators pα1, ..., αNq of A are Grassmann variables, and are provided with the
anticommutation property αiαj “ ´αjαi for all i, j “ 1, ..., N . Note that this directly
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implies α2
i “ 0. Hence, any element in A is a finite polynomial of the form

fpα1, ..., αNq “ f0 `

N
ÿ

k“1

ÿ

i1ă...ăik

fi1,...,ikαi1 ¨ ¨ ¨αik ,

where f0, fi1,...,ik P K and f0 is called spectrum of fpα1, ..., αNq.

Definition 2.A.2 (Grassmann integration). As a formal symbol, we define the integral
over a Grassmann variable as

ş

dαi 1 “ 0 and
ş

dαi αi “
1?
2π
. To define integration of

multiple variables, we assume Fubini’s theorem applies, but the differentials anticom-
mute.

Notation. To keep the notation as short as possible, we write for any two families pζiqiPI
and pξiqiPI of Bosonic and/or Fermionic variables, the sum over the corresponding index
set I as pζ, ξq “

ř

iPI ζiξi.

Gaussian integral. We will often use the following Gaussian integral formulas. Let
x P Rn and z P Cn. For M P Cnˆn with positive definite Hermitian part,

ż

dx e´
1
2
px,Mxq epx,yq “ p2πqn{2

?
detM

e
1
2
py,M´1yq,

ż

dz̄ dz e´pz̄,Mzq epv̄,zq`pz̄,wq “ p2πqn

detM
epv̄,M

´1wq,

where y, v, w P Cn and the measures are usual Lebesgue product measures, i.e. dx “
śn

i“1 dxi, dz̄ dz “
śn

i“1 dz̄i dzi and dz̄i dzi “ 2 dRe zi dIm zi. Note that the formulas
remain valid if we replace yi, vi and wi by even elements of A. A direct consequence of
the latter are the following identities

ż

dz̄ dz epz̄,Mzq
“

p2πqn

detM
and

ż

dz̄ dz zk z̄l e´pz̄,Mzq
“M´1

kl
p2πqn

detM
. (2.A.1)

Using Definition 2.A.2 above, we obtain similar Fermionic formulas. Let pχiq
n
i“1 and

pχ̄iq
n
i“1 Ă A1 be two families of the Grassmann variables, where the χ̄i’s are independent

of the χi’s. For an arbitrary M P Cnˆn, we have
ż

dχ̄ dχ e´pχ̄,Mχq
“ p2πq´n detM, (2.A.2)

ż

dχ̄ dχ e´pχ̄,Mχq epρ̄,χq`pχ̄,ρq “ p2πq´n detM epρ̄,M
´1ρq,

ż

dχ̄ dχ e´pχ̄,Mχq
ź

iPI

χi
ź

jPJ

χ̄j “ σIJδ|I|“|J |p2πq
´ndetJIM, (2.A.3)

where dχ̄ dχ “
śn

i“1 dχ̄i dχi and pρiq
n
i“1 and pρ̄iq

n
i“1 Ă A1 are two families of Grassmann

variables. Moreover, σIJ is a sign, I, J Ă t1, . . . , nu are two index sets and detJIM is
the determinant of the minor of M where the rows with indices in J and the columns
with indices of I are crossed out.
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Supervectors and Supermatrices To combine real or complex variables with Grass-
mann ones, we introduce the notation of a supervector Φ consisting of p Bosonic variable
X “ pXiq

p
i“1 P pA0qp and q Fermionic variable α “ pαjq

q
j“1 P pA1qq by

Φ “

ˆ

X
α

˙

.

A supermatrix is a linear transformation between supervectors, i.e.

Φ1 “ MΦ, M “

ˆ

a σ
ρ b

˙

, (2.A.4)

where a, b are p ˆ p and q ˆ q matrices in A0 and σ, ρ are p ˆ q and q ˆ p matrices in
A1. We denote supermatrices by bold face capital letters. For the supermatrix M, we
define the notation of a supertrace and a superdeterminant as

Str M :“ Tr a´ Tr b and Sdet M :“ detra´ σb´1ρs detrb´1
s. (2.A.5)

Finally, the inverse of the supermatrix M is given by

M´1
“

ˆ

pa´ σb´1ρq´1 ´pa´ σb´1ρq´1σb´1

´b´1ρpa´ σb´1ρq´1 b´1 ` b´1ρpa´ σb´1ρq´1σb´1

˙

.

Let M be a supermatrix of the form (2.A.4) and Φ a supervector and Φ˚ its adjoint

Φ “

ˆ

z
χ

˙

and Φ˚ “ pz̄, χ̄q, (2.A.6)

where z P Cp, χ “ pχjq
q
j“1 and χ̄ “ pχ̄jq

q
j“1 are again independent families of Grassmann

variables. We can write the superdeterminant as a Gaussian integral
ż

dΦ˚ dΦ e´pΦ̄,MΦq
“ Sdet M´1, (2.A.7)

where dΦ˚ dΦ “ dχ̄ dχ dz̄ dz. Below, we consider only the special case p “ q “ 1.

2.B. Proof of Lemma 2.2.1

We combine (2.A.1) and (2.A.2) to rewrite the Green’s function as a Gaussian integral.
Let χ “ pχiqiPΛ and χ̄ “ pχ̄iqiPΛ be two families of Grassmann variables, z “ pzjqjPΛ P CΛ

and Φ “ pΦjqjPΛ and Φ˚ “ pΦ˚j qjPΛ two sets of supervectors defined as in (2.A.6). Using
the fact that p´ipEε ´Hqq

´1 has positive definite Hermitian part, we write

ÿ

kPΛ

G`ΛpEεqkk “ ´ip2πq
´|Λ| detr´ipEε ´Hqs

ż

dz̄ dz eipz̄,pEε´Hqzq
ÿ

kPΛ

zkz̄k

“ ´i

ż

dΦ˚ dΦ ei
ř

i,jPΛpΦi,pδijEε´HijqΦjq
ÿ

kPΛ

zkz̄k, (2.B.1)
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where the product measure is defined as in (2.A.7). Note that the bold face printed
Eε and Hij are 2ˆ 2 supermatrices with diagonal entries Eε and Hij, respectively, and
vanishing off-diagonal entries. Since the contribution of the random matrix H appears
only in the exponential, using a Hubbard-Stratonovitch transformation as in [DPS02,
Lemma 1], we can rewrite the average over H as

E
”

e´i
ř

i,jPΛpΦ̄i,HijΦjq
ı

“ e´
1
2

ř

i,jPΛ JijpΦ
˚
i ΦjqpΦ

˚
j Φiq “ e´

1
2

ř

i,jPΛ JijStr pΦiΦ
˚
i qpΦjΦ

˚
j q (2.B.2)

“

ż

ź

jPΛ

dMj e´
1
2

ř

i,jPΛ J
´1
ij Str rMiMjs e´i

ř

jPΛpΦ̄j ,MjΦjq, (2.B.3)

where

Mj “

ˆ

aj ρ̄j
ρj ibj

˙

and dMj :“ daj dbj dρ̄j dρj,

pajqjPΛ and pbjqjPΛ are families of real variables and pρjqjPΛ and pρ̄jqjPΛ are two families
of Grassmann variables.

The expression for the observable ´i
ř

kPΛ z̄kzk can be written as a derivative
ř

kPΛ Bak
of the second exponential in (2.B.3). Hence, applying integration by parts in the variables
aj, the derivative falls on the first exponential in (2.B.3) which yields

ř

kPΛ

ř

lPΛ J
´1
kl al “

ř

lPΛ al. Since the integral expression is still translation invariant in Λ, by relabeling
the indices we can now substitute the sum |Λ|´1

ř

lPΛ al by a0. This step simplifies the
integral compared to [DPS02, eq.(3.1)].

By (2.A.7), the integral over the supervector yields

1

|Λ|

ÿ

kPΛ

ErG`ΛpEεqkks “
ż

ź

jPΛ

dMj e´
ř

i,jPΛ J
´1
ij Str rMiMjs

ź

jPΛ

Sdet rEε ´Mjs
´1a0.

Finally, we insert the expressions for the supermatrix M and perform the integration
over the Grassmann variables applying (2.A.2). This proves (2.2.2).

For (2.2.3), note that each E-derivative of (2.B.1) results into i
ř

kPΛ z̄kzk`χ̄kχk, which
can be replaced by

ř

kPΛ Str Mk. Now, using the definition (2.4.3) with B replaced by
J , integration by parts in Str Mk yields

ż

dµJpMqStr MjFpMq “
ÿ

k

Jkj

ż

dµJpMqStr BMj
FpMq, (2.B.4)

where

BMj
“

ˆ

Baj ´Bρj
Bρ̄j iBbj

˙

(2.B.5)

and FpMq is any smooth function such that the integral above exists.
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2.C. Estimates of the covariance

Let d “ 2, Λ Ă Z2 a finite cube, ´∆P
Λ the discrete Laplacian on Λ with periodic boundary

conditions and ´∆ the discrete Laplacian on Z2. We consider the two covariances
CΛ
m :“ p´∆P

Λ `m
2q´1 for the finite cube Λ and C8m “ p´∆`m2q´1 for Z2, with m ą 0.

We will prove the following result.

Lemma 2.C.1. The finite volume covariance CΛ
m satisfies

0 ă pCΛ
mqij ď

$

&

%

K ln
´

1
mp1`|i´j|q

¯

if |i´ j| ď 1
m

K
p|i´j|mq1{2

e´m|i´j| if |i´ j| ą 1
m
,

(2.C.1)

provided the mass is small 0 ă m ! 1 and m|Λ|1{2 ą 1. Moreover for all m ă 1 the
diagonal part satisfies

pCΛ
mqjj ě pC

8
mqjj ě K1 lnpm´1

q `K2

for some constants K1, K2 ą 0 uniformly in Λ.

Remark. The decay for J and C in (2.3.2) follow directly from this result. The same
holds for the complex covariance B since |Bij| ď Cij (see (2.C.6) below).

Proof. First we establish a series expansion and write CΛ
m as a series in C8m . Using the

ideas of Salmhofer [Sal99] in the continuous case, we prove the desired decay for C8m .
Finally we conclude that CΛ

m has the same decay.

Step 1: Series expansion To compare CΛ
m and C8m , we can write the two Laplacians

as ´∆P
Λ “ 41Λ ´ NP

Λ , and ´∆ “ 41Z2 ´ NZ2 , where 1 is the identity matrix on Λ and
Z2, respectively, and N is the matrix with entries Nij “ 1 if |i ´ j| “ 1 and Nij “ 0
otherwise. Note that one uses the periodic distance | ¨ |P in the torus Λ in the case of
periodic boundary conditions. The covariances can then be written as a series

CΛ
m “ pD ´N

P
Λ q
´1
“

8
ÿ

k“0

D´1
pNP

ΛD
´1
q
k, C8m “

8
ÿ

k“0

D´1
Z2 pNZ2D´1

Z2 q
k (2.C.2)

where D “ p4`m2q1Λ and DZ2 “ p4`m2q1Z2 are diagonal matrices. This representation
is obtained by iterating the identity

pA`Bq´1
´ A´1

“ ´A´1BpA`Bq´1,

for matrices A and B with A and A ` B invertible. To prove convergence, we use the
structure of NP

Λ and rewrite the sum as a sum over paths

8
ÿ

k“0

`

D´1
pNP

ΛD
´1
q
k
˘

ij
“

8
ÿ

k“0

ÿ

γPΓΛ
ij ,|γ|“k

λk`1
ď

8
ÿ

k“0

4kλk`1
“

λ

1´ 4λ
“

1

m2
ă 8,
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where λ “ p4 `m2q´1 and ΓΛ
ij is the set of all paths from i to j in the torus Λ. In the

second step, we bound the number of paths from i to j of length k by the number of all
paths of length k starting in i, i.e. 4k. Therefore, the sum converges and is well-defined.
By the same arguments, we can write

pC8mqij “
ÿ

γPΓZ2
ij

λ|γ|`1
ă 8,

where ΓZ2

ij is the set of all paths from i to j in Z2. The formulas above imply directly that

pCΛ
mq, pC

8
mqij ą 0. Now, we can identify each point x P Z2 with a point x̃ “ x ` n|Λ|1{2

in Λ, where n P Z2. By identifying each path γ P ΓZ2

ij in Z2 with the corresponding
path in γ̃ P ΓΛ

ij in the torus, we easily obtain pC8mqij ď pC
Λ
mqij, hence the first part of

Lemma 2.C.1. In order to get the inverse relation we need to characterize the paths in
ΓΛ
ij, which cannot be identified with paths in ΓZ2

ij . These are exactly the paths in ΓΛ
ij

such that their corresponding paths in Z2 do not end in j but rather in jn “ j`n|Λ|1{2,
with n P Z2zt0u. These paths cross the boundary of the cube Λ in such a way that for
at least one of the 2 space dimensions the differences n1 and/or n2 of the number of
crossings in positive and negative direction, respectively, is non-vanishing. We write

pCΛ
mqij “

ÿ

nPZ2

ÿ

γ̃PΓZ2
ijn

λ|γ|`1
“

ÿ

nPZ2

pC8mqijn , (2.C.3)

where jn “ j ` n|Λ|1{2 as before.

Step 2: Decay of C8
m We prove that C8m has the desired decay (2.C.1) The proof is

similar to the proof in the continuous case in [Sal99, Lemma 1.10], but the expressions
become more complicated in the discrete case. We give a sketch of the main steps. By
its Fourier representations, the covariance for Z2 can be written as

pC8mqij “

ż

r´π,πs2

eipk,i´jq

2
ř2
l“1p1´ cos klq `m2

d2k, (2.C.4)

where k “ p2πq{|Λ|1{dn. First, by rescaling k Ñ mk, we obtain

pC8mqij “

ż

r´π{m,π{ms2

eimpk,i´jq

2m´2
ř2
l“1p1´ cospmklqq ` 1

d2k.

We can assume that i1 ´ j1 ě |i2 ´ j2| ą 0. Considering the integrand as a function in
k1, there are two poles

k˘1 “ ˘i
1
m

arcosh
´

m2

2
` 2´ cos pmk2q

¯

“ ˘irpk2q

of order one in the complex plain. Closing the integration contour for k1 to the rectangle
with vertices ´m´1π,m´1π,m´1π`iy and ´m´1π`iy such that the sign sgn ypi1´j1q “

1 and send |y| Ñ 8, we can apply the residue theorem and the following integral in k2

remains

pC8mqij “ 2π

ż π{m

´π{m

eimk2pi2´j2q e´mpi1´j1qrpk2q

2
m

sinh arcosh
`

m2

2
` 2´ cospmk2q

˘ dk2. (2.C.5)
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Using sinh arcosh z “
?
z2 ´ 1 for z ě 1, the absolute value of the integral can be

bounded by

|pC8mqij| ď 2π

ż π{m

0

e´rpk2qt

1
m

b

`

m2

2
` 2´ cospmk2q

˘2
´ 1

dk2,

where t “ m|i´ j|{2. Note that we showed above that pC8mqij ě 0. Let us assume t ě 1
first. The residual rpk2q is monotone increasing for k2 P r0,m

´1πs and bounded by

rpk2q ě

#

rp0q ` ck2
2 “ 1`Opmq ` ck2

2 if k2 ď 1,

rp0q ` ck2 “ 1`Opmq ` ck2 if k2 ą 1,

where c is independent of m and k2. One can bound the square root in the denominator
for all k2 P r0,m

´1πs by
c

´

m2

2
` 2´ cos pmk2q

¯2

´ 1 ě m.

Therefore, the integral is bounded by

pC8mqij ď2π e´t

˜

ż 1

0

e´tck
2
2 dk2 `

ż π{m

1

e´tck2 dk2

¸

ď2π e´t

˜

1
?
t

ż

?
t

0

e´ck
2
2 dk2 `

1

t

ż πt{m

t

e´ck2 dk2

¸

ď
2π
?
t

e´t
ˆ
ż 8

0

e´ck
2
2 dk2 `

ż 8

1

e´ck2 dk2

˙

ď
K
?
t

e´t,

where in the last line we used t ě 1. This proves the second part of (2.C.1). In the case
0 ă t ď 1, we perform first in (2.C.5) the change of variables

s “ rpk2qt ” k2psq “
1
m

arccos
´

2` m2

2
´ cosh

`

ms
t

˘

¯

.

Inserting the Jacobian

dk2

ds
“

sinhpmst q

t

c

1´
´

2`m2

2
´coshpmst q

¯2
,

and repeating the arguments after (2.C.5), we obtain

pC8mqij ď K

ż s1

s0

e´s

t
m

b

1´
`

2` m2

2
´ cosh

`

ms
t

˘˘2
ds „ K

ż 8

t

e´s
?
s2 ´ t2

ds „ K ln t´1,

where s0 “ rp0qt and s1 “ rpπ{mqt, and we used again m ! 1. It remains to consider the
case i “ j. Using the Fourier integral representation one can see that pC8mqjj ď K lnm´1,
hence we can change the bound for small distances to

pC8mqij ď K ln
´

1
mp1`|i´j|q

¯

if |i´ j| ď 1
m
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Step 3: Conclusion In order to estimate (2.C.3), we divide the sum into two pieces:

pCΛ
mqij “

ÿ

nPZ2

pC8mqijn “
ÿ

nPZ2:|n|ă2

pC8mqijn `
ÿ

nPZ2:|n|ě2

pC8mqijn .

For the first sum, note that pCΛ
mqij depends only on the distance |i ´ j|P and we can

assume that the periodic distance is reached inside the cube, i.e. |i´ j|P “ |i´ j|. Then
we can estimate |i´ jn| ě |i´ j| and therefore each covariance pC8mqijn ď pC

8
mqij. Since

the sum contains finitely terms, the first sum decays as C8m with a modified constant K
in front. To control the second sum note that |i´jn| ě maxkpnk´1q|Λ|1{2 ě |Λ|1{2 ě m´1

for |n| ě 2. Extracting the desired decay from each pC8mqijn , a fraction of the exponential
decay (2.C.1) remains in the sum that allows to perform the sum and yields a constant.

Finally, to prove the second part of Lemma 2.C.1, we partition the integration region
of (2.C.4) into }k} ď 1, and }k} ą 1. The integral over the second region is bounded
below by a constant, while the the integral over the first region generates the lnm´1

contribution.

Remark. For the case of a complex mass as in B, note that we can apply the same series
expansion as in (2.C.2) and estimate the absolute value by

|Bij| ď W´2
8
ÿ

k“0

|pD̃´1
pNP

Λ D̃
´1
q
k
qij| ď W´2

8
ÿ

k“0

ppD´1
pNP

ΛD
´1
q
k
qij “ Cij, (2.C.6)

where D̃ is a diagonal matrix with entries 4` pm2
r ` im

2
i q{W

2 and Re D̃ “ D.

Lemma 2.C.2. Let C P RNˆN be a real symmetric matrix such that C´1 ě c Id as
a quadratic form, for some c ą 0. Let B “ pC´1 ` im Idq´1, with m P R. Then, the
restriction of B to any subset Y Ă t1, . . . , Nu, satisfies Re pBY q

´1 ě c IdY for any choice
of m.

Proof. Using Schur’s complement, we can write

ReB´1
Y “ C´1

Y Y ´ C
´1
Y Y C

C´1
Y CY C

ppC´1
Y CY C

q
2
`m2

q
´1C´1

Y CY
.

By assumption we have for all v P RY and w P RY C

pv, C´1
Y Y vq ` pv, C

´1
Y Y C

wq ` pw,C´1
Y CY

vq ` pw,C´1
Y CY C

wq ě cppv, vq ` pw,wqq.

Choosing w “ ´C´1
Y CY C

ppC´1
Y CY C

q2`m2q´1C´1
Y CY

v, we obtain an even better bound than
the desired result for Re pBY q

´1.
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List of symbols

Λ Ă Z2, discrete cube.
H : Λˆ Λ Ñ C random band matrix.
W band width.
ρ̄ΛpEq averaged density of states in finite volume Λ.
G`Λpzq Green’s function, z P C.
ρSCpEq Wigner’s semicircle law.
Eε “ E ` iε energy with imaginary part.
J initial covariance.
I energy interval.
α P p0, 1q, parameter entering in the definition of the reference volume

in the cluster expansion.
a, b P RΛ integration variables.
a˘s , b

˘
s saddle points.

E “ Er ´ iEi “ E
2
´ i

b

1´ E2

4
, value of saddle point a`s .

B new complex covariance, obtained after contour deformation.
C new real covariance.
dµJpa, bq Gaussian measure with covariance J .
Rpa, bq remainder in the functional integral after contour deformation.
D diagonal matrix depending on a, b.
Vpa, bq effective potential after contour deformation.
V pxq cubic Taylor remainder.
Opa, bq local observable, later Om,npa, bq.
mr,mi real and imaginary part of complex mass term 1´ E2 of C.
Is Ă RΛ ˆ RΛ, partition of integration domain, s “ 1, ...5.
Fm,n
s functional integral with local observable Om.m restricted to Is.
M “ pMjqjPΛ set of 2ˆ 2 supermatrices.
ρ̄j, ρjqjPΛ set of Grassmann variables.
dµBpMq Gaussian measure in both complex and Grassmann variables.
VpMq effective potential depending on the supermatrix M .
sp inductively introduced interpolation parameters.
Cpsq interpolated real covariance Cpsqij “ sijCij.
Bpsq interpolated complex covariance pCpsq´1 ` iσEm

2
i q
´1.

Gqpsq propagator depending only on s1, . . . , sq.

Ỹ p40, 4̃1, . . . , 4̃rq generalized polymer.

T ordered tree on generalized polymer Ỹ .
4 cube in Z2 of size W 2plnW qα.
40 root cube containing 0.

4̃ “ p4,41,42q generalized cube.
i, k, k1, j P Z2 indices summed over i P 41, j P 42, k1 P 4, k P “old” cubes.
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3. Supersymmetric Polar Coordinates
with applications to the Lloyd model

3.1. Introduction

A major open problem in mathematical physics is the existence of an Anderson transi-
tion in dimension three and higher for random Schrödinger operators. These operators
model transport in disordered media, a classical example being electrical conductivity in
metals with impurities. In this paper, we consider the quantum mechanical problem of
an electron moving on a lattice Zd and interacting with a random potential. The corre-
sponding mathematical model is the so-called discrete Random Schrödinger operator, or
Anderson’s tight binding model [And58], acting on the Hilbert space l2pZdq and defined
by

H :“ ´∆Zd ` λV,

where ∆Zd is the lattice Laplacian p∆ψqpjq “
ř

k:|j´k|“1pψpjq ´ψpkqq, and V is a multi-

plication operator pV ψqpjq “ Vjψpjq. Here, tVjujPZd is a collection of random variables
(independent or correlated) and λ ą 0 is a parameter expressing the strength of disor-
der. Physical information are encoded in the spectral properties of H. For a large class
of random potentials V localization of the eigenfunctions has been proved in d “ 1 for
arbitrary disorder and in d ě 2 for large disorder or at the band edge. A localization -
delocalization transition has been proved on tree graphs, and is conjectured to hold on
Zd, for d ě 3. A detailed up-to-date review on the model, known results and tools can
be found in the book by Aizenman and Warzel [AW15].

Finite volume criteria allow to reconstruct properties of H from the Green’s function
(or resolvent) of a finite volume approximation HΛ, by taking the thermodynamic limit
Λ Ò Zd. More precisely, let Λ Ă Zd be a finite cube centered around the origin with
volume |Λ| “ N . We define the Random Schrödinger operator HΛ P l

2pΛq on Λ as

HΛ “ ´∆` λV, (3.1.1)

where ∆ “ ∆Λ is the discrete Laplacian on Λ

p∆ψqpjq “
ÿ

kPΛ:|j´k|“1

pψpkq ´ ψpjqq ` eventual boundary terms.

The relevant quantities are expressions of the form

ErGΛpz1qj1,k1 . . . GΛpznqjn,kns, (3.1.2)
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where GΛpzq :“ pz1Λ ´HΛq
´1, z P CzσpHq, and E denotes the average with respect to

the random vector V.
In particular the (averaged) density of states ρ̄λpEq satisfies the relation,

ż

R

1

z ´ E
ρ̄λpEq dE “

1

π|Λ|
ErTrGΛpzqs,

hence (see for example [AW15, Section 4 and Appendix B])

ρ̄ΛpEq :“ ´
1

π|Λ|
lim
εÑ0`

ErIm TrGΛpE ` iεqs,

where E P R. Regularity properties of ρ̄ΛpEq and its derivatives can be inferred from
the generating function

GεpE, Ẽq “ E
„

detppE ` iεq1Λ ´HΛq

detppẼ ` iεq1Λ ´HΛq



. (3.1.3)

For example

TrGΛpE ` iεq “ ´BẼGεpE, Ẽq|Ẽ“E “ BEGεpE, Ẽq|Ẽ“E. (3.1.4)

Information on the nature of the spectrum can be deduced from the thermodynamic
limit of

Er|GΛpE ` iεqjk|
2
s, or ρ2pE,E ` ωq :“ ErρΛpEqρΛpE ` ωqs

where the spectral parameter ε and the energy difference ω must be taken of order |Λ|´1.

A possible tool to analyse these objects is the so-called supersymmetric (SUSY) ap-
proach. It allows to rewrite averages of the form (3.1.2) as an integral involving only the
Fourier transform of the probability distribution, at the cost of introducing Grassmann
variables in the intermediate steps. A short introduction on Grassmann variables and
their application in our context is given in Appendix 3.A. For more details see for exam-
ple the following monographs: [Var04, Ber87, Weg16, DeW92]. This formalism proved to
be especially useful in the case of random operators arising from quantum diffusion prob-
lems [Efe99]. The supersymmetric approach was applied with success to study Anderson
localization as well as phase transitions on tree-graphs [Wan01, Bov90, CK86, KMP86].
All these applications are based on variations of the following key fact.

Theorem 3.1.1. Let HΛ be as in Eq. (3.1.1) and assume the Vj are independent random
variables with probability measure µj such that

ş

v2
jdµjpvjq ă 8 @j, i.e., its Fourier

transform µ̂jptq :“
ş

e´itvjdµjpvjq is twice differentiable with bounded first and second
derivatives.

Let A “ Artχj, χ̄jujPΛus be a Grassmann algebra, z P CΛ a family of complex variables
and set Φj :“ pzj, χjq

t, Φ˚j :“ pz̄j, χ̄jq such that Φ˚jΦk “ z̄jzk ` χ̄jχk is an even element
in A for all j, k P Λ. For any matrix A P CΛˆΛ, we define

Φ˚AΦ :“ Φdiag
pA,AqΦ “

ÿ

j,kPΛ

AjkΦ
˚
jΦk,
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where diag pA,Aq is a 2|Λ|ˆ2|Λ| block diagonal matrix. In particular Φ˚Φ “
ř

jPΛ Φ˚jΦj.

Finally, for any even element a “ ba`na in A0 with n3
a “ 0 we define (cf. Eq. (3.A.2))

µ̂jpaq “ EreiaVj s :“ µ̂jpbaq ` µ̂
1
jpbaqna `

1
2
µ̂2jpbaqn

2
a. (3.1.5)

Then the generating function (3.1.3) can be written as

GεpE, Ẽq “
ż

r dΦ˚ dΦs eiΦ
˚pE`iε`∆qΦ

ź

jPΛ

µ̂jpλΦ˚jΦjq, (3.1.6)

where we defined r dΦ˚ dΦs :“
ś

jPΛp2πq
´1 dz̄j dzj dχ̄j dχj, Φ˚εΦ “ εΦ˚Φ and E “

diag pẼ1|Λ|, E1|Λ|q is a diagonal matrix. Moreover

Er|GΛpE ` iεqjk|
2
s “

ż

r dΦ˚ dΦs r dΦ̃˚ dΦ̃s eiΦ
˚pE`iε`∆qΦ´iΦ̃˚pE´iε`∆qΦ̃

ˆ zj z̄kz̃kz̃j
ź

jPΛ

µ̂jpλpΦ
˚
jΦj ´ Φ̃˚j Φ̃jqq.

(3.1.7)

A similar representation holds for the two-point function ρ2pE, Ẽq.

Remark. In the formulas above both µ̂jpλpΦ
˚
jΦjqq and µ̂jpλpΦ

˚
jΦj ´ Φ̃˚j Φ̃jqq are well

defined. Indeed, the even elements a1 :“ Φ˚jΦj and a2 :“ Φ˚jΦj ´ Φ̃˚j Φ̃j, have nilpotent
part na1 “ χ̄jχj and na2 “ χ̄jχj ´ ¯̃χjχ̃j, respectively. The result then follows from
n2
a1
“ 0 “ n3

a2
, together with Eq. (3.1.5).

Note that we have taken independent variables above only to simplify notations. In
the general case, the product of one-dimensional Fourier transforms is replaced by a joint
Fourier transform. The generalized formula will hold as long as the Fourier transform
admits enough derivatives.

Proof. We write GεpE, Ẽq and Er|GΛpE` iεqjk|
2s as a supersymmetric integral (cf. The-

orem 3.A.1)

GpE, Ẽq “ E
„
ż

r dΦ˚ dΦs eiΦ
˚pE`iε`∆´λV qΦ



Er|GΛpE ` iεqjk|
2
s “

E
„
ż

r dΦ˚ dΦs r dΦ̃˚ dΦ̃s eiΦ
˚pE`iε`∆´λV qΦ´iΦ̃˚pE´iε`∆´λV qΦ̃zj z̄kz̃kz̃j



This step holds for any choice of V P RΛ. Note that we need two copies of SUSY variables
to represent Er|GΛpE` iεqjk|

2s. When dµj admits two finite moments, we can move the
average inside. The result follows.

The aim of this paper is to extend this representation to probability distributions
with less regularity. To this purpose we introduce a supersymmetric version of polar
coordinates which allows to reexpress eiλVjΦ

˚
j Φj as eiλVjxi , where xj P R is a real variable.
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As a result, the formula can be extended to any probability distribution on N “ |Λ| real
variables. In contrast to the ordinary ones, supersymmetric polar coordinates introduce
correction terms due to the boundary of the integration domain. The simple formula
above will then be replaced by a sum of integrals.

As a concrete example, we consider the so-called Lloyd model, with V defined as
Vj :“

ř

kPΛ TjkWk, where tWkukPΛ is a family of i.i.d. random variables with Cauchy
distribution dµpxq “ π´1p1 ` x2q´1 dx. The standard (uncorrelated) Lloyd model cor-
responds to Tjk “ δjk. In this case the variables tVjujPΛ are independent and Cauchy
distributed. Note that dµpxq has no finite moments. For this model, the averaged
Green’s function (and hence the density of states) can be computed exactly whenever
Tjk ě 0 @j, k (non-negative correlation) [Llo69, Sim83].

Using supersymmetric polar coordinates, we show here that for the non-negative lin-
early correlated Lloyd model Eq. (3.1.6) and (3.1.7) remain valid, with an appropriate
redefinition of µ̂pba ` naq. In this case, one can easily recover the exact formula for the
averaged Green’s function. The formula remains valid also in the case of linear negative
correlation, at the price of adding additional correction terms, due to boundary effects.

We expect the supersymmetric representation will help to study problems not yet
accessible via other tools, such as negative correlations or the two point function at weak
disorder. As a first test, we considered a simplified model with small negative correlations
localized on one site. For this toymodel we used the supersymmetric representation to
prove that the density of states remains in the vicinity of the exact formula. Our result
holds in any dimension and arbitrary volume.

Overview of this article. In Section 3.2 we state the main results of the paper, and give
some ideas about the proofs. More precisely, Section 3.2.1 introduces supersymmetric
polar coordinates (Theorem 3.2.1), with a general integrated function f, not necessarily
compactly supported. Applications to GεpE, Ẽq and Er|GΛpE ` iεqjk|

2s are given in
Theorem 3.2.2. The detailed proofs of both theorems can be found in Section 3.3. In
Subsection 3.2.2 we consider the Lloyd model and give an application of the formula for
a simple toymodel. The corresponding proofs are in Section 3.4.

3.2. Main results

3.2.1. Supersymmetric polar coordinates

For an introduction to the supersymmetric formalism see Appendix 3.A.
Consider first Arχ̄, χs a Grassmann algebra with two generators. The idea of super-

symmetric polar coordinates is to transform between generators pz̄, z, χ̄, χq of A2,2pCq
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and pr, θ, ρ̄, ρq of A2,2pR` ˆ p0, 2πqq 1 such that z̄z ` χ̄χ “ r2. A reasonable change is

Ψpr, θ, ρ̄, ρq “

¨

˚

˚

˝

zpr, θ, ρ̄, ρq
z̄pr, θ, ρ̄, ρq
χpr, θ, ρ̄, ρq
χ̄pr, θ, ρ̄, ρq

˛

‹

‹

‚

:“

¨

˚

˚

˝

eiθpr ´ 1
2
ρ̄ρq

e´iθpr ´ 1
2
ρ̄ρq

?
rρ

?
rρ̄

˛

‹

‹

‚

(3.2.1)

Indeed, we have z̄z ` χ̄χ “ pr ´ 1
2
ρ̄ρq2 ` rρ̄ρ “ r2.

Note that 0 is a boundary point for polar coordinates since it maps R` ˆ p0, 2πq to
Czt0u. For functions with compact support in U “ Czt0u a SUSY version of the standard
coordinate change formula applies, where the Jacobian is replaced by a Berezinian, c.f.
Theorem 3.A.3. On the contrary, functions with fp0q ‰ 0 have no compact support
in the domain U “ Czt0u and we collect additional boundary terms as the following
theorem shows.

Theorem 3.2.1 (Supersymmetric polar coordinates). Let N P N, A2N the complex
Grassmann algebra generated by tχ̄j, χju

N
j“1 and tΦ˚j ,Φju

N
j“1 a set of supervectors defined

as in Theorem 3.1.1. Let f P A2N,2NpCNq be integrable, i.e., all fI : CN Ñ C are
integrable. Then

Ipfq “

ż

CN
r dΦ˚ dΦs fpΦ˚,Φq “

ÿ

αPt0,1uN

Iαpfq (3.2.2)

with multiindex α and

Iαpfq “ π´|1´α|
ż

pR`ˆp0,2πqq1´α
p dr dθ dρ̄ dρq1´α f ˝Ψαpr, θ, ρ̄, ρq, (3.2.3)

where p drq1´α “
ś

j:αj“0 drj and Ψα is given by Ψα : pr, θ, ρ̄, ρq ÞÑ pz, z̄, χ, χ̄q with

$

’

’

’

&

’

’

’

%

zjprj, θj, ρ̄j, ρjq “ δαj0 eiθjprj ´
1
2
ρ̄jρjq,

z̄jprj, θj, ρ̄j, ρjq “ δαj0 e´iθjprj ´
1
2
ρ̄jρjq,

χjprj, θj, ρ̄j, ρjq “ δαj0
?
rjρj,

χ̄jprj, θj, ρ̄j, ρjq “ δαj0
?
rj ρ̄j.

Proof. See Section 3.3.

Remark. For f compactly supported on Czt0u (this means in particular fp0q “ 0), we
recover the result of Theorem 3.A.3. Namely for α “ 0, we obtain the right-hand side
of Theorem 3.A.3 while all contributions from α ‰ 0 vanish.

Example. To illustrate the idea behind the above result, consider the following simple
example. Let ϕ be the smooth compactly supported function ϕ : RÑ R, given by

ϕpxq “

#

e´p1´2|x|2q´1
if |x| ă 1?

2

0 otherwise.

1cf. Definition 3.A.2. Note that ρ̄, ρ P A1rχ̄, χs.
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Note that ϕp0q “ e´1 ‰ 0, hence fpz̄, z, χ̄, χq “ ϕpz̄z` χ̄χq is a smooth function without
compact support in Czt0u. By a straightforward computation, we have

Ipfq “

ż

|z|ă 1?
2

r dΦ˚ dΦs e´p1´2z̄zq´1

p1´ 2p1´ 2z̄zq´2χ̄χq

“
1

2π

ż 1?
2

0

dr

ż 2π

0

dθ 4r e´p1´2r2q´1

p1´ 2r2
q
´2
“ e´1,

where we expand the expression in the Grassmann variables and change to ordinary
polar coordinates after integrating over the Grassmann variables. Applying formulas
(3.2.2) and (3.2.3), we obtain directly

Ipfq “ π´1

ż

R`ˆp0,2πq
dr dθ dρ̄ dρ f ˝Ψpr, θ, ρ̄, ρq ` f ˝Ψp0q “ e´1,

where the first integral vanishes, since f ˝Ψ is independent of ρ̄ and ρ.

Now consider the generating function (3.1.3). In the case of an integrable density
without other regularity conditions, we obtain the following result.

Theorem 3.2.2. Let Λ Ă Zd be a finite volume and HΛ “ ´∆`λV be the Schrödinger
operator introduced in Eq. (3.1.1), where tVjujPΛ is a family of real random variables
with integrable joint density µ. Then the generating function (3.1.3) can be written as

GεpE, Ẽq “
ÿ

αPt0,1uΛ

ż

pR`ˆp0,2πqq1´α
p

dr dθ dρ̄ dρ
π

q
1´αµ̂ptλr2

j ujPΛq|rα“0 g ˝Ψαpr, θ, ρ̄, ρq (3.2.4)

where gpΦ˚,Φq “ eiΦ
˚pE`iε`∆qΦ, E “ diag pẼ1|Λ|, E1|Λ|q and µ̂ptλr2

j ujPΛq is the |Λ|-
dimensional, joint Fourier transform of µ. Similarly

Er|GΛpE ` iεqjk|
2
s

“
ÿ

αPt0,1uΛ

α̃Pt0,1uΛ

π´|1´α|´|1´α̃|
ż

pR`ˆp0,2πqq1´α
ˆpR`ˆp0,2πqq1´α̃

p dr dθ dρ̄ dρq1´αp dr̃ dθ̃ d¯̃ρ dρ̃q1´α̃

µ̂ptλpr2
j ´ r̃

2
j qujPΛqrα“0“r̃α̃ g

`
˝Ψαpr, θ, ρ̄, ρq g

´
˝Ψα̃pr, θ, ρ̄, ρq,

where g`pΦ˚,Φq “ z̄kzj eiΦ
˚pE`iε`∆qΦ and g´pΦ̃˚, Φ̃q “ z̃j z̃k e´iΦ̃

˚pE´iε`∆qΦ̃.

Idea of the proof. Again we write GεpE, Ẽq and |GΛpE ` iεqjk|
2 as a supersymmetric

integral (Theorem 3.A.1). Note that we need two copies of SUSY variables to represent
|GΛpE ` iεqjk|

2. Taking the average inside at this point would cause problems. Hence
we apply first our polar-coordinate formula Theorem 3.2.1. Since r is now real, the
expression Er eiλ

ř

j Vjr
2
j s is the standard Fourier transform µ̂ptλr2

j ujPΛq. Details can be
found in Section 3.3.
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3.2.2. Applications to the Lloyd model

As a concrete example, we consider the Lloyd model with linear correlated random
potentials, i.e. Vj “

ř

k TjkWk, where Wk „ Cauchyp0, 1q are i.i.d. random variables,
Tjk “ Tkj P R and

ř

j Tjk ą 0.
We discuss three cases:

1. the classical Lloyd model, where Tjk “ δjk, hence Vj „ Cauchyp0, 1q are i.i.d.

2. the (positive) correlated Lloyd model, where Tjk ě 0 with
ř

j Tjk ą 0.

3. a toymodel with single negative correlation, i.e. Tjj “ 1 and T21 “ T12 “ ´δ
2 with

0 ă δ ă 1 and Tjk “ 0 otherwise. The indices 1 and 2 denote two fixed, nearest
neighbour points i1, i2 P Λ with |i1 ´ i2| “ 1.

Proposition 3.2.3. When Tjk ě 0 for all j, k (Case 1. and 2. above) we have

GεpE, Ẽq “
ż

r dΦ˚ dΦs gpΦ˚,Φq e´
ř

k λ
ř

j TjkΦ˚j Φj .

where gpΦ˚,Φq :“ eiΦ
˚pE´iε`∆qΦ. For the toymodel (Case 3. above) a similar formula

holds with additional correction terms. Precisely

GεpE, Ẽq “
ÿ

βPt``,`´,´`u

ż

Iβ
r dΦ˚ dΦs hpΦ˚,Φq e´λ

ř2
j“1 T

β
j Φ˚j Φj `Rphq

where hpΦ˚,Φq “ gpΦ˚,Φq e´λ
ř

j‰1,2 Φ˚j Φj , we defined T`` “ p1 ´ δ2qp1, 1q, T`´ “ p1 `
δ2qp1,´1q and T´` “ p1` δ2qp´1, 1q and

I`` “ tz P CN : δ|z2| ă |z1| ă |z2|{δu,

I`´ “ tz P CN : |z1| ą |z2|{δu,

I´` “ tz P CN : |z1| ă δ|z2|u.

(3.2.5)

Moreover, the additional boundary term is given by

Rphq “ ´
1

π2

ż

R`ˆp0,2πq2
dr2 dθ1 dθ2r dΦ̂˚ dΦ̂s h ˝Ψ12pr2, θ1, θ2, Φ̂

˚, Φ̂q

ˆ λr2δ
2
”

e´λp1´δ
4qr2

2 ` δ2 e´λp1´δ
4qδ2r2

2

ı

,

(3.2.6)

where Φ̂ “ pΦjqjPΛzt1,2u and

Ψ12pr2, θ1, θ2q “ pΦ1,Φ2q “

ˆ

eiθ1δr2 eiθ2r2

0 0

˙

The same formulas hold for ErTrGΛpE`iεqs with g replaced by g1pΦ
˚,Φq “

ř

j |zj|
2 eiΦ

˚pE´iε`∆qΦ.
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Idea of the proof. We use the representation from Theorem 3.2.2 and insert the Fourier
transform of the given density. For non-negative correlations we can then undo the
coordinate change. When negative correlations are present this operation generates
additional correction terms. For details see Section 3.4.

In the case of non-negative correlations we recover exact formulas, as follows.

Theorem 3.2.4. Let Tjk “ δjk (classical Lloyd model). We have

lim
εÑ0
GεpE, Ẽq “

detppE ` iλq1Λ ´H0q

detppẼ ` iλq1Λ ´H0q
, (3.2.7)

where H0 “ ´∆. In particular

lim
εÑ0

ErTrGΛpE ` iεqs “ Tr ppE ` iλq1Λ ´H0q
´1. (3.2.8)

For Tjk ě 0 (non-negative correlation) Eq. (3.2.7) and (3.2.8) still hold, with λ1Λ

replaced by the diagonal matrix λT̂ , where T̂ij “ δij
ř

k Tjk.
In particular both, the classical and the (positive) correlated Lloyd model have the same

(averaged) density of states as the free Laplacian H0 “ ´∆ with imaginary mass λ and
λT̂ , respectively.

Idea of the proof. Follows from Proposition 3.2.3. For details see Section 3.4.

Note that the results on the density of states above can be derived also by other
methods (cf. [Llo69] and [Sim83]).

In the case of localized negative correlation (the toymodel in Case 3. above) we obtain
the following result.

Theorem 3.2.5 (Toymodel). Consider Tjk be as in Case 3. above, λ ą 0 and 0 ă δ !
p1` λ´1q´1. Then

lim
εÑ0

ErTrGΛpE ` iεqs “

Tr pE1Λ ` iλT̂ ´H0q
´1

”

1`O
´

pδp1` λ´1
qq

2
¯

`Op|Λ|´1
q

ı

.

Idea of the proof. Follows from Proposition 3.2.3 by integrating first over the uncor-
related variables in Λ and estimating the remaining integral. For details see Section
3.4.

3.3. Supersymmetric polar coordinates

3.3.1. Proof of Theorem 3.2.1

Proof of Theorem 3.2.1. The idea is to apply the coordinate change Ψ from Eq. (3.2.1)
for each j P t0, . . . , Nu. To simplify the procedure, we divide it into Ψ1 ˝Ψ2 ˝Ψ3, where

96



Ψ1 is a change from ordinary polar coordinates into complex variables, Ψ2 rescales the
odd variables and Ψ3 translates the radii into super space. Note that only the last step
mixes ordinary and Grassmann variables and produces boundary terms.

We first change the complex variables zj, z̄j for all j into polar coordinates

ψ1 : p0,8q ˆ r0, 2πq Ñ Czt0u
pr, θq ÞÑ zpr, θq, zjprj, θjq “ rj eiθj @j.

The Jacobian is
śN

j“1 2rj and by an ordinary change of variables

Ipfq “
1

p2πqN

ż

pR`ˆp0,2πqqN
dr dθ dχ̄ dχ

N
ź

j“1

2rj f ˝Ψ1pr, θ, χ̄, χq,

where Ψ1 “ ψ1ˆ1. Note that no boundary terms arise. Now we rescale the odd variables
by

ψ2pρ̄, ρq :“ pχ̄pρ̄, ρq, χpρ̄, ρqq

#

χ̄jpρ̄j, ρjq :“
?
rj ρ̄j

χjpρ̄j, ρjq :“
?
rjρj

@j.

There are again no boundary terms since we have a purely odd transformation. The
Berezinian is given by

śN
j“1 r

´1
j . Since ψ2 is a linear transformation, this can also be

computed directly. This cancels with the Jacobian from Ψ1 up to a constant. Hence

Ipfq “
1

πN

ż

pR`ˆp0,2πqqN
dr dθ dρ̄ dρ f ˝Ψ1 ˝Ψ2pr, θ, ρ̄, ρq,

where Ψ2 “ 1 ˆ ψ2. After these transformations, we have z̄jzj ` χ̄jχj “ r2
j ` rj ρ̄jρj “

prj `
1
2
ρ̄jρjq

2. We set Ψ3pr, θ, ρ̄, ρq “ pr ´
1
2
ρ̄ρ, θ, ρ̄, ρq. Hence Ψ “ Ψ1 ˝Ψ2 ˝Ψ3 is the Ψ

from Eq. (3.2.1):

zj
Ψ1
ÞÑ rje

iθj Ψ2
ÞÑ rje

iθj Ψ3
ÞÑ

`

rj ´
1
2
ρ̄jρj

˘

eiθj ,

χj
Ψ1
ÞÑ χj

Ψ2
ÞÑ

?
rjρj

Ψ3
ÞÑ

b

rj ´
1
2
ρ̄jρj ρj “

?
rjρj.

We expand f̃ “ f ˝Ψ1 ˝Ψ2 ˝Ψ3 as follows

f ˝Ψ1 ˝Ψ2pr, θ, ρ̄, ρq “ f̃pr ` ρ̄ρ
2
, θ, ρ̄, ρq “

ÿ

αPt0,1uN

`

ρ̄ρ
2

˘α
B
α
r f̃pr, θ, ρ̄, ρq. (3.3.1)

Note that we can set ρj “ 0 and ρ̄j “ 0 for αj “ 1 in Bαr f̃ . We use the short-hand notation
Bαr f̃pr, θ, ρ̄, ρq|ρ̄α“ρα“0. Inserting this into the integral I and applying integration by parts
in rα, we obtain

Ipfq “ 1
πN

ż

pR`ˆp0,2πqqN
dr dθ dρ̄ dρ

ÿ

αPt0,1uN

2´|α| pρ̄ρqα Bαr f̃pr, θ, ρ̄, ρq (3.3.2)

“
ÿ

αPt0,1uN

1
2|α|πN

ż

pR`q1´αˆp0,2πqN
p drq1´α dθp dρ̄ dρq1´αf̃pr, θ, ρ̄, ρq|rα“ρ̄α“ρα“0,
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where we applied
ş

pR`qαpdrq
αBαr f̃ “ p´1qαf̃|rα“0 and

ş

p dρ̄ dρqαpρ̄ρqα “ p´1qα. Note that

f̃pr, θ, ρ̄, ρq|rα“ρ̄α“ρα“0 “ f ˝ Ψα is independent of θj for αj “ 1 and we can integrate
ş

p dθqα “ p2πq|α|. This proves the theorem.

3.3.2. Proof of Theorem 3.2.2

Proof of Theorem 3.2.2. Applying Theorem 3.A.1 to GεpE, Ẽq yields

GεpE, Ẽq “ E
„
ż

r dΦ˚ dΦs eiΦ
˚pE`iε´λV`∆qΦ



.

Note that we cannot interchange the average with the integral, since the average of the
supersymmetric expression eiλΦ˚V Φ may be ill-defined if infinite moments are present.
But after applying Theorem 3.2.1 we get

GεpE, Ẽq “
ÿ

αPt0,1uΛ

π´|1´α|E
„
ż

pR`ˆp0,2πqq1´α
p dr dθ dρ̄ dρq1´α e´iλ

ř

j Vjr
2
j g ˝Ψαpr, θ, ρ̄, ρq



,

where gpΦ˚,Φq “ eiΦ
˚pE`iε`∆qΦ. Now we can take the average inside the integral. The

same arguments hold for Er|GΛpE ` iεqjk|
2s.

3.4. Applications to the Lloyd model

3.4.1. Proof of Proposition 3.2.3

We will need the following well-known result for the proof of the proposition.

Lemma 3.4.1. Let A „ Cauchyp0, 1q and t P R. Then Er eitAs “ e´|t|.

Proof. Let t ě 0. We take the principal value and apply the residue theorem.

lim
RÑ8

ż

r´R,Rs

eitx

πp1` x2q
dx “ lim

RÑ8

„

2πiRes i
eitx

πp1` x2q
´

ż

γ

eitx dx

πp1` x2q



“ e´t,

where γpsq “ R eis for s P r0, πs. The case t ă 0 follows analogously by closing the
contour from below.

Proof of Proposition 3.2.3. Starting from the representation (3.2.4) of Theorem 3.2.2,
we use Lemma 3.4.1 to determine the Fourier transform

µ̂ptλr2
j ujPΛq “ Er eiλ

ř

j,k TjkWkr
2
j s “ e´

ř

k λ|
ř

j Tjkr
2
j |.

As long as rj P R, this is well-defined and the integral remains finite for arbitrary
correlation T . When Tjk ě 0 for all j, k, we can drop the absolute value and obtain

µ̂ptλr2
j ujPΛq “ e´

ř

k λ
ř

j Tjkr
2
j “ µ̃ ˝Ψα,
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where µ̃pΦ˚,Φq “ expr´
ř

k λ
ř

j TjkΦ
˚
jΦjs is a smooth, integrable function inA2N,2NpCNq,

which can be transformed back to ordinary supersymmetric coordinates by Theorem
3.2.1.

In the case of the toymodel, our function is continuous but only piecewise smooth. We
partition the integration domain into regions, where our function is smooth. In polar
coordinates the regions (3.2.5) become

I`` “ t0 ă δr2 ă r1 ă
r2
δ
u ˆ p0,8qΛzt1,2u “tr P p0,8qΛ : δr2 ă r1 ă

r2
δ
u,

I`´ “ t0 ă r2
δ
ă r1u ˆ p0,8q

Λzt1,2u
“tr P p0,8qΛ : r1 ą

r2
δ
u,

I´` “ t0 ă r1 ă δr2u ˆ p0,8q
Λzt1,2u

“tr P p0,8qΛ : r1 ă δr2u.

Hence p0,8qΛ can be written as the disjoint union I`` Y I`´ Y I´` YN , where N is
a set of measure 0. Using T β defined above, we can write

I1 “
ÿ

αPt0,1uΛ

π´|1´α|
ż

pR`ˆp0,2πqq1´α
p dr dθ dρ̄ dρq1´αµ̂ptλr2

j ujPΛq|rα“0 g ˝Ψαpr, θ, ρ̄, ρq

“
ÿ

β

ÿ

αPt0,1uΛ

π´|1´α|
ż

pR`ˆp0,2πqq1´α
p dr dθ dρ̄ dρq1´αχpIβq|rα“0

ˆ e´λpδα10r2
1T

β
1 `δα20r2

2T
β
2 qh ˝Ψαpr, θ, ρ̄, ρq,

where β P t``,`´,´`u and hpΦ˚,Φq “ gpΦ˚,Φq e´λ
ř

j‰1,2 Φ˚j Φj is independent of β.
Finally, χpIβq is the characteristic function of Iβ and rα “ 0 means rj “ 0 for αj “ 1.

To transform back we need to repeat the proof of Theorem 3.2.1 on the different
domains. Consider the integral

I2 “
ÿ

β

ż

Iβ
r dΦ˚ dΦs hpΦ˚,Φq e´λ

ř2
j“1 T

β
j Φ˚j Φj ,

where Iβ are the corresponding subsets of CΛ (cf. Eq. (3.2.5)). We will show that
inserting polar coordinates in I2, we recover I1 plus some correction terms. In each
region, the integrated function is smooth and we can apply the first two transformations
Ψ1 and Ψ2 from the proof of Theorem 3.2.1 and obtain

I2 “
1

π|Λ|

ÿ

β

ż

Iβˆp0,2πq|Λ|
dr dθ dρ̄ dρ e´λ

ř2
j“1 T

β
j prj`

1
2
ρ̄jρjq

2

h ˝Ψ1 ˝Ψ2pr, θ, ρ̄, ρq.

Replacing as in Eq. (3.3.1) the integrand by the Taylor-expansion of f̃β “ e´λ
ř2
j“1pTβqjr

2
j h̃,

with h̃ “ h ˝Ψ1 ˝Ψ2 ˝Ψ3, we obtain

I2 “
ÿ

αPt0,1uΛ

Iα, where

Iα “
1

π|Λ|2|α|

ÿ

β

ż

Iβˆp0,2πq|Λ|
dr dθ dρ̄ dρ pρ̄ρqα Bαr f̃βpr, θ, ρ̄, ρq.
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Applying now integration by parts as in Eq. (3.3.2) generates additional boundary
terms. More precisely, when α1 “ α2 “ 0, no derivatives in r1 and r2 appear and
Iβ “ Ĩβ ˆ p0,8qΛzt1,2u. Hence no additional terms arise and

Iα “ π´|1´α|
ÿ

β

ż

pR`ˆp0,2πqq1´α
p dr dθ dρ̄ dρq1´α e´λ

ř2
j“1pTβqjr

2
jχpĨβq h ˝Ψαpr, θ, ρ̄, ρq.

For α1 “ 1 and α2 “ 0 (or vice versa), additional boundary terms do appear but cancel
since the function is continuous:

Iα “
1

π|Λ|2|α|

ÿ

β

ż

Iβˆp0,2πq|Λ|
dr dθ dρ̄ dρ pρ̄ρqα Br1

”

hpαqpr, θ, ρ̄, ρq e´λ
ř2
j“1 T

β
j r

2
j

ı

“
1

π|Λ|2|α|

ż

pR`q|Λ|´1ˆp0,2πq|Λ|
dr̂ dθ dρ̄ dρ pρ̄ρqα

”

hpαq e´λ
ř2
j“1 T

´`
j r2

j

ır1“δr2

r1“0

`

”

hpαq e´λ
ř2
j“1 T

``
j r2

j

ır1“r2{δ

r1“δr2
`

”

hpαq e´λ
ř2
j“1 T

`´
j r2

j

ır1“8

r1“r2{δ

“´
1

π|Λ|2|α|

ż

pR`q|Λ|´1ˆp0,2πq|Λ|
dr̂ dθ dρ̄ dρ pρ̄ρqαhpαq|r1“0 e´λT

´`
2 r2

2 ,

where dr̂ “
ś

j‰1 drj and hpαq “ Bα̂r h̃ and α̂j “ αj for all j ‰ 1, 2, α̂1 “ α̂2 “ 0.
Note that in the second step all terms except the first one cancel because of continuity:
ř2
j“1 T

´`
j r2

j |r1“δr2 “
ř2
j“1 T

``
j r2

j |r1“δr2 and
ř2
j“1 T

``
j r2

j |r1“r2{δ “
ř2
j“1 T

`´
j r2

j |r1“r2{δ.

We can apply now integration by parts for rα̂ as before. Note that for r1 “ 0 the sets
I`` “ I`´ “ H and we obtain only contributions from the set I´` “ tr2 P R`u which
is the same as writing

ř

β χpIβq|r1“0.
When α1 “ α2 “ 1, we obtain additional boundary terms which do not cancel. Applying
integration by parts in r1, we need to evaluate

Br2rh
pαq e´λ

ř2
j“1pTβqjr

2
j s “ pBr2h

pαq
´ 2λT β2 r2h

pαq
q e´λ

ř2
j“1pTβqjr

2
j

on the different boundaries. The contributions of Br2h
pαq e´λ

ř2
j“1pTβqjr

2
j cancel as above

by continuity except for the term at r1 “ 0. The contributions from the second summand
remain:

Iα “
1

π|Λ|2|α|

ÿ

β

ż

Iβˆp0,2πq|Λ|
dr dθ dρ̄ dρ pρ̄ρqαBr1Br2

”

hpαq e´λ
ř2
j“1pTβqjr

2
j

ı

“
1

π|Λ|2|α|

ż

pR`q|Λ|´1ˆp0,2πq|Λ|
dr̂ dθ dρ̄ dρ pρ̄ρqαBr2

”

´hpαq e´λT
´`
2 r2

2

ı

r1“0
`Rαphq,

where Rαphq is the remaining part defined below in Eq. (3.4.1). In the first integral, we
can apply integration by parts in r2 and rα̂ as before and the result is independent of β.
It remains to consider

Rαphq “
1

π|Λ|2|α|

ż

pR`q|Λ|´1ˆp0,2πq|Λ|
dr̂ dθ dρ̄ dρ pρ̄ρqα 2λr2 (3.4.1)

ˆ

”

hpαq|r1“δr2pT
``
2 ´ T´`2 q e´λp1´δ

4qr2
2 ` hpαq|r1“ r2

δ
pT`´2 ´ T``2 q e´λp1´δ

4qδ´2r2
2

ı

.
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Here, we can integrate over rα̂, but the integral over r2 remains:

Rαphq “ ´π
´|1´α̂|

ż

pR`ˆp0,2πqq1´α̂ˆR`ˆp0,2πq2
p dr dθq1´α̂p dρ̄ dρq1´α dr2 dθ1 dθ2 λr2

ˆ

”

h̃|rα̂“ρ̄α“ρα“0,r1“δr2δ
2 e´λp1´δ

4qr2
2 ` h̃|rα̂“ρ̄α“ρα“0,r1“r2{δ e´λp1´δ

4qδ´2r2
2

ı

.

By rescaling the second term r2 ÞÑ δ2r2, we obtain

I2 ´ I1 “´
ÿ

α̂

π´|1´α̂|
ż

pR`ˆp0,2πqq1´α̂ˆR`ˆp0,2πq2
p dr dθq1´α̂p dρ̄ dρq1´α dr2 dθ1 dθ2

ˆ λr2δ
2 h̃|rα̂“ρ̄α“ρα“0,r1“δr2

”

e´λp1´δ
4qr2

2 ` δ2 e´λp1´δ
4qδ2r2

2

ı

.

Note that we can transform the variables of Λzt1, 2u back to flat coordinates by Theorem
3.2.1 and obtain I2 ´ I1 “ Rphq that finishes the proof.

3.4.2. Proof of Theorem 3.2.4

Proof of Theorem 3.2.4. We start from the result of Propostion 3.2.3.
In both models, the classical and the positive correlated one, we have Tjk ě 0 and

ř

k Tjk ą 0, hence the body of λ
ř

j TjkΦ
˚
jΦj is strictly positive except on a set of measure

0. We end up with

GεpE, Ẽq “
ż

r dΦ˚ dΦs eiΦ
˚pÊ`iε`iλT̂`∆qΦ,

where we can take the average εÑ 0 and go back to the original representation.

3.4.3. Proof of Theorem 3.2.5

Proof of Theorem 3.2.5. Using Eq. (3.1.4) and the result of Proposition 3.2.3, we get

ErTrGΛpE ` iεqs “ E
”

ż

r dΦ˚ dΦs eiΦ
˚pE`iε´λV`∆qΦ

ÿ

jPΛ

|zj|
2
ı

“ I`` ` I`´ ` I´` `Rphq

where for β “ p``q, p`´q or p´`q we have

Iβ “

ż

Iβ
r dΦ˚ dΦs eiΦ

˚pE`iε`∆qΦ
ÿ

jPΛ

|zj|
2 e´λpT

β
1 Φ˚1 Φ1`T

β
2 Φ˚2 Φ2`

ř

k‰1,2 Φ˚kΦkq,

and for hpΦ˚,Φq “
ř

j |zj|
2 e´λ

ř

j‰1,2 Φ˚j Φj eiΦ
˚pE´iε`∆qΦ the remainder Rphq is defined in

Eq. (3.2.6).
We will show that the main contribution comes from I`` and indeed

body pT``1 Φ˚1Φ1 ` T
``
2 Φ˚2Φ2q “ p1´ δ

2
qr|z1|

2
` |z2|

2
s ą 0 @pz1, z2q ‰ p0, 0q.

In the following we show that I`´ and I´`, as well as Rphq are small in terms of δ.
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Analysis of the IβIβIβ terms. Integrating out the Grassmann variables, we obtain for all
β

Iβ “

ż

Iβ
dz̄ dz

ÿ

jPΛ

|zj|
2 det

”

Cβ`ε

2π

ı

e´z̄pCβ`εqz,

where Cβ has the block structure

Cβ “

ˆ

Aβ ´iD
´iDT B

˙

, Aβ :“ A0 ` λdiag T β, A0 :“ ´ipE `∆q|t1,2u

B :“ pλ´ ipE `∆qq|Λzt1,2u, DT :“ pd1, d2q, (3.4.2)

and we defined the vectors d1, d2 P RΛzt1,2u as d1pjq “ δ|i1´j|,1, d2pjq “ δ|i2´j|,1, where
i1, i2 are the positions of 1, 2. Note that the blocks B and D are independent of β and
ReB ą 0. On the contrary ReCβ ą 0 holds only for β “ p`,`q. We set then ε “ 0 in
our formulas and reorganize I`` ` I`´ ` I´` as follows

rI`` ` I`´ ` I´`s|ε“0 “

ż

dz̄ dz
ÿ

jPΛ

|zj|
2 det

”

C``
2π

ı

e´z̄C``z

`

ż

I`´
dz̄ dz

ÿ

jPΛ

|zj|
2
´

det
”

C`´
2π

ı

e´z̄C`´z ´ det
”

C``
2π

ı

e´z̄C``z
¯

`

ż

I´`
dz̄ dz

ÿ

jPΛ

|zj|
2
´

det
”

C´`
2π

ı

e´z̄C´`z ´ det
”

C``
2π

ı

e´z̄C``z
¯

“ TrC´1
`` `

ż

I`´
p¨ ¨ ¨ q `

ż

I´`
p¨ ¨ ¨ q “ TrC´1

`` p1` E`´ ` E´`q

To estimate E`´ and E´`, we integrate over the variables w “ pzjqjPΛ,j‰1,2 exactly. We
define z “ pẑ, wq, ẑ “ pz1, z2q. Then

z̄Cβz “ w̄Bw ´ iw̄Dtẑ ´ iẑDw ` ẑAβ ẑ,
ÿ

jPΛ

|zj|
2
“ ẑẑ `

ÿ

lPΛzt1,2u

|wl|
2.

Integrating over w we get
ż

dw̄ dw det
“

B
2π

‰

e´w̄Bw e´iw̄D
tẑ´iẑDw

pw̄w ` ẑẑq

“ e´ẑDB
´1Dtẑ

pTrB´1
´ ẑDB´2Dtẑ ` ẑẑq “ e´ẑDB

´1Dtẑ
pTrB´1

` ẑMẑq,

where we defined M :“ 1´DB´2DT . Then for β “ p`´q, p´`q and β1 “ β or β1 “ p``q
we have

ż

Iβ
dz̄ dz det

”

Cβ1

2π

ı

e´z̄Cβ1z
ÿ

jPΛ

|zj|
2

“

ż

Iβ
dẑ dẑ det

”

Sβ1

2π

ı

e´ẑSβ1 ẑ
`

TrB´1
` ẑMẑ

˘

,
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where Sβ1 “ Aβ1 ` DB´1DT is the Schur complement of the 2 ˆ 2 block of Cβ1 corre-
sponding to 1, 2. We also used detCβ1 “ detB detSβ1 . We consider now the error term
E´`. The error term E`´ works analogously. From the results above we get

E´` “
1

TrC´1
``

ż

I´`
dz̄ dz

ÿ

jPΛ

|zj|
2
´

det
”

C´`
2π

ı

e´z̄C´`z ´ det
”

C``
2π

ı

e´z̄C``z
¯

“

ż

|z1|ăδ|z2|

dẑ dẑ det
”

S``
2π

ı

e´ẑS``ẑ TrB´1`ẑMẑ
TrC´1

``

´

e´ẑXẑ detp1` S´1
``Xq ´ 1

¯

,

where we used S´1
`` invertible and we defined

X :“ A´` ´ A`` “ 2λ

ˆ

´1 0
0 δ2

˙

, hence ẑXẑ “ 2λpδ2
|z2|

2
´ |z1|

2
q ą 0.

Now we change the coordinate z1 to v “ z1z
´1
2 δ´1. As a short-hand notation write

S “ S``. We have

ẑSẑ “ |z2|
2
pv˚Svq, ẑMẑ “ |z2|

2v˚Mv, ẑXẑ “ |z2|
2
pv˚Xvq,

where v “ pδv, 1qt and v˚ “ pδv̄, 1q. Note that ReS ą 0 and

pv˚Xvq “ 2λδ2
p1´ |v|2q ě 0, (3.4.3)

therefore we can perform the integral over z2 exactly

E´` “ det
“

S
2π

‰

ż

|v|ă1

dz̄2 dz2 dv̄ dv δ2
|z2|

2 e´|z2|
2v˚Sv TrB´1`|z2|2v˚Mv

TrC´1
``

ˆ

´

e´|z2|
2v˚Xv detp1` S´1Xq ´ 1

¯

“δ2

ż

|v|ă1

dv̄ dv

2π

„

TrB´1

TrC´1
``

ˆ

detpS `Xq

pv˚pS `Xqvq2
´

detS

pv˚Svq2

˙

`
2v˚Mv

TrC´1
``

ˆ

detpS `Xq

pv˚pS `Xqvq3
´

detS

pv˚Svq3

˙

“δ2

ż

|v|ă1

dv̄ dv

2π

ˆ

detpS `Xq

pv˚pS `Xqvq2
´

detS

pv˚Svq2

˙

`Op|Λ|´1
q,

where we applied Lemma 3.4.2 below and

TrB´1

TrC´1
``

“ 1´
TrS´1

``M

TrC´1
``

“ 1`Op|Λ|´1
q. (3.4.4)

Applying Lemma 3.4.2 again, together with Eq. (3.4.3) we get

detpS `Xq

pv˚pS `Xqvq2
´

detS

pv˚Svq2
“ ´

pv˚Xvq detS

pv˚pS `Xqvq2pv˚Svq

„

2`
pv˚Xvq

pv˚Svq



`
X11S22 `X22S11 `X11X22

pv˚pS `Xqvq2
“ O

´

p1`
1

λ2
q

„

1` δ2
p1`

1

λ2
q



¯

.
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Analysis of RphqRphqRphq. Note that we can set ε “ 0 in Rphq. By the notations in Eq. (3.4.2),
we can write

Rphq “ ´ 1
π2

ż

R`ˆp0,2πq2
dr2 dθ1 dθ2r dΦ̂˚ dΦ̂sλr2δ

2
”

e´λp1´δ
4qr2

2 ` δ2 e´λp1´δ
4qδ2r2

2

ı

ˆ

˜

p1` δ2
qr2

2 `
ÿ

j

|wj|
2

¸

e´Φ̂˚BΦ̂ eir2pw̄D
T vθ`v̄θDwq e´r

2
2 v̄θA0vθ ,

where vtθ “ p eiθ1δ, eiθ2q. Integrating over the Grassmann variables, we obtain

Rphq “ ´ 1
π2

ż

R`ˆp0,2πq2
dr2 dθ1 dθ2 dw̄ dwλr2δ

2
”

e´λp1´δ
4qr2

2 ` δ2 e´λp1´δ
4qδ2r2

2

ı

ˆ

˜

p1` δ2
qr2

2 `
ÿ

j

|wj|
2

¸

det
“

B
2π

‰

e´w̄Bw eir2pw̄D
T vθ`v̄θDwq e´r

2
2 v̄θA0vθ ,

Define S0 “ A0 `DB
´1DT . Integrating over w and r2, we obtain

Rphq

TrC´1
``

“´ 1
π2

1
TrC´1

``

ż

R`ˆp0,2πq2
dr2 dθ1 dθ2λr2δ

2
”

e´λp1´δ
4qr2

2 ` δ2 e´λp1´δ
4qδ2r2

2

ı

ˆ
`

v̄θMvθr
2
2 ` TrB´1

˘

e´r
2
2 v̄θS0vθ

“´ 1
π2

TrB´1

TrC´1
``

ż

p0,2πq2
dθ1 dθ2

λδ2

2

”

1
λp1´δ4q`v̄θS0vθ

` δ2

λδ2p1´δ4q`v̄θS0vθ

ı

´ 1
π2

ż

p0,2πq2
dθ1 dθ2

λδ2

2
v̄θMvθ
TrC´1

``

”

1
pλp1´δ4q`v̄θS0vθq2

` δ2

pλδ2p1´δ4q`v̄θS0vθq2

ı

.

Similar to the estimates above, we insert absolute values and use Lemma 3.4.2 and Eq.
(3.4.4) to bound the first term by δ2p1`Op|Λ|´1qq and the second one by δ2Opλ´1|Λ|´1q.

Lemma 3.4.2. Let η ą 0 and µλ “
λη

λ`4d eη
. Let B,M,C`` and S`` be the matrices in

the proof above. Set 0 ă δ ď 1
2
. Then

1. |B´1
ij | ď

2
λ

e´µλ|i´j| and Re pf˚B´1fq ě λ
λ2`p4dq2

}f}2 @f P CΛzt1,2u

2. |TrC´1
``| ě

|Λ|λ
Kpλ`1q2

.

3. Re pf˚S``fq ě
λ
2
}f}2 @f P CΛzt1,2u. Moreover

|pS``qjk| ď Kpλ` 1
λ
q for all j, k “ 1, 2 .

Proof. piq We have B “ ip´∆|Λzt1,2u ´ pE ` iλqq. The upper bound follows by Combes-
Thomas [AW15][Sect 10.3]. For the lower bound note that

f˚ReB´1f “ λ}B´1f}2
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Moreover }Bg}2 “ λ2}g}2 ` g˚pE ` ∆|Λzt1,2uqg ď pλ2 ` p4dq2q}g}2. The result follows
setting g “ B´1f .
piiq As in piq above f˚ReC´1

``f ě λp1´ δ2q}C´1
``f}

2. We can write C`` “ λ´ λδ211,2 ´

ipE `∆q, where 11,2 is the diagonal matrix p11,2qij “ δijrδji1 ` δji2s. Hence

C˚``C`` “ pλ´ λδ
211,2q

2
` pE `∆q2 ` iλδ2

r11,2,∆s.

The result follows by inserting this decomposition in }C``g}
2 for g “ C´1

``f.
piiiq Using piq we have

Re f˚Sf “ λp1´ δ2
q}f}2 ` Re f˚DB´1Dtf ě λp1´ δ2

q}f}2.

The upper bound follows from piq too.

3.A. Super analysis

We collect here only a minimal set of definitions for our purpose. For details, see
[Ber87, Var04, Weg16, DeW92].

3.A.1. Basic definitions

Let q P N. Let A “ Aq “ Arχ1, . . . , χqs be the Grassmann algebra over C generated by
χ1, . . . , χq, i.e.

A “ ‘qi“0V
i,

where V is the complex vector space with basis pχ1, . . . , χqq, V
0 “ C and V j “ V j´1^V

for j ě 2 with the anticommutative product ^

χi ^ χj “ ´χj ^ χi.

As a short hand notation, we write in the following χiχj “ χi^χj and for I Ă t1, . . . , qu
denote χI “

ś

jPI χj the ordered product of the χj with j P I. Then each a P A has the
form

a “
ÿ

IPPpqq

aIχ
I , (3.A.1)

where Ppqq is the power set of t1, . . . , qu and aI P C for all I P Ppqq. We distinguish
even and odd elements A “ A0 ‘A1, where

A0
“ ‘

tq{2u

i“0 V
2i, A1

“ ‘
tq{2u

i“0 V
2i`1.

The parity operator p for homogeneous (i.e. purely even, resp. purely odd) elements is
defined by

ppaq “

#

0 if a P A0,

1 if a P A1.
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Note that even elements commute with all elements in A and two odd elements anti-
commute. For an even element a P A0, we write a “ ba ` na, where na is the nilpotent
part and ba “ aH P C is called the body of a.

Let U Ă R open. For any function f P C8pUq, we define

f : A0
Ñ A0

a ÞÑ fpaq “ fpba ` naq “
8
ÿ

k“0

1

k!
f pkqpbaqn

k
a

(3.A.2)

via its Taylor expansion. Note that the sum above is always finite.

3.A.2. Differentiation

Let I 1 Ă I. We define the signs σlpI, I
1q and σrpI, I

1q via

χI “ σlpI, I
1
qχI

1

χIzI
1

χI “ σrpI, I
1
qχIzI

1

χI
1

.

Then the left- resp. right-derivative of an element a of the form (3.A.1) is defined as

ÝÝÑ
B

Bχj
a :“

ÿ

IPPpqq:jPI

aI σlpI, tjuq χ
Iztju,

a

ÐÝÝ
B

Bχj
:“

ÿ

IPPpqq:jPI

aI σrpI, tjuq χ
Iztju.

3.A.3. Integration

The integration over a subset of (odd) generators χj, j P I is defined by

ż

dχIa :“

˜

ÝÑ
B

Bχ

¸I

a “
ÿ

JPPpqq:IĂJ

aJ σlpJ, Iq χ
JzI ,

where a has the form (3.A.1) and dχI “
ś

jPI dχj is again a ordered product. Note that

the one forms dχi are anticommutative objects and e.g.
ş

dχi dχjχiχj “ ´
ş

dχi dχjχjχi “
´1.

Gaussian integral. There is a useful Gaussian integral formula for Grassmann vari-
ables. We rename our basis as pχ1, . . . , χq, χ̄1, . . . χ̄qq. Then for M P Cqˆq

ż

dχ̄ dχ e´
ř

i,j χ̄iMijχj “ detM, (3.A.3)

where dχ̄ dχ “
śq

j“1 dχ̄j dχj. Combining this with complex Gaussian integral formulas,
we obtain the following result.
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Theorem 3.A.1 (Supersymmetric integral representation). Let A1, A2 P Cnˆn with
ReA1 ą 0. Let Φ “ pz, χqt P Cn ˆ V n be a supervector and Φ˚ “ pz̄, χ̄q P Cn ˆ

V n its transpose. With the notations r dΦ˚ dΦs “ p2πq´n dz̄ dz dχ̄ dχ and Φ˚AΦ “

řn
j,k“1 z̄jpA1qjkzk ` χ̄jpA2qjkχk for a block matrix A “

ˆ

A1 0
0 A2

˙

(a supermatrix with

odd parts 0) we can write

detA2

detA1

“

ż

r dΦ˚ dΦs e´Φ˚AΦ

and

pA´1
1 qjk “

ż

r dΦ˚ dΦs z̄kzj e´Φ˚Â1Φ,

where Â1 “

ˆ

A1 0
0 A1

˙

.

Proof. Combine Eq. (3.A.3) with the complex Gaussian integral formulas

detA1 “
1

p2πqn

ż

dz̄ dz e´z̄A1z, pA´1
1 qjk “

detA1

p2πqn

ż

dz̄ dz z̄kzj e´z̄A1z.

Note that while Eq. (3.A.3) holds for all matrices A P Cnˆn, we need the additional
condition ReA ą 0 for the complex ones to ensure that the complex integral is finite.

3.A.4. Grassmann algebra functions and change of variables

In this section, we denote the body of an even element a by bpaq instead of ba.

Definition 3.A.2. Let U Ă Rp open. The algebra of smooth Arχ1, . . . , χqs-valued func-
tions on a domain U is defined by

Ap,qpUq :“

$

&

%

f “ fpx, χq “
ÿ

IPPpqq

fIpxqχ
I : fI P C

8
pUq

,

.

-

.

We call yipx, χq, ηjpx, χq, for i “ 1, . . . p, j “ 1, . . . , q generators of Ap,qpUq if ppyiq “ 0,
ppηjq “ 1 and

1. tpbpy1px, 0qq, . . . , bpyppx, 0qqq, x P Uu is a domain in Rp,

2. we can write all f P Ap,qpUq as f “
ř

I fIpyqη
I .

Note that px, χq are generators for Ap,qpUq.
A change of variables is then a parity preserving transformation between systems

of generators of Ap,qpUq. A practical change of variable formula for super integrals is
currently only known for functions with compact support, i.e. functions f P Ap,qpUq
such that fI P C

8
c pUq for all I P Ppqq.
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Theorem 3.A.3. Let U Ă Rp open, x, χ and ypx, χq, ηpx, χq two sets of generators of
Ap,qpUq. Denote the isomorphism between the generators by

ψ : px, χq ÞÑ pypx, χq, ηpx, χqq

and V “ bpψpUqq “ tpbpy1px, 0qq, . . . , bpyppx, 0qqq, x P Uu. Then for all f P Ap,qpV q with
compact support, we have

ż

V

dy dηfpy, ηq “

ż

U

dx dχf ˝ ψpx, χqSdet pJψq,

where Sdet pJψq is called the Berezinian defined by

Jψ “

˜

By
Bx

y
ÐÝ
B

Bχ
Bη
Bx

η
ÐÝ
B

Bχ

¸

, Sdet

ˆ

a σ
ρ b

˙

“ detpa´ σb´1ρq det b´1.

Integration over even elements x and y means integration over the body bpxq and bpyq in
the corresponding regions U and V .

Proof. See [Ber87, Theorem 2.1] or [Var04, Theorem 4.6.1].

Remark. Applying an isomorphism ψ that changes only the odd elements, Theorem
3.A.3 holds also for smooth, integrable functions that are not necessarily compactly
supported. Changing also the even elements for a non compactly supported function,
boundary integrals can occur.
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