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“I go down to the shore in the morning
and depending on the hour the waves
are rolling in or moving out,
and I say, oh, I am miserable,
what shall –
what should I do? And the sea says
in its lovely voice:
Excuse me, I have work to do.”

Mary Oliver, A Thousand Mornings
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RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITÄT BONN

Abstract
Mathematisch-Naturwissenschaftlichen Fakultät

Physikalisches Institut

Doctor rerum naturalium

Measurements of q2 moments of inclusive B→ Xc`ν decays toward an
alternative determination of |Vcb|

by Raynette VAN TONDER

This thesis presents the first measurement of the first to the fourth moments of the
four-momentum transfer squared q2 spectrum for inclusive B→ Xc`ν decays, where
` = e, µ. The determination of these moments and their systematic uncertainties are
crucial experimental inputs for a novel, alternative method to determine the mag-
nitude of the CKM matrix element Vcb using a reduced set of hadronic matrix ele-
ments in the heavy quark expansion. The analysis investigates the complete Υ(4S)
data set collected by the Belle detector, corresponding to 711 fb−1 of integrated lu-
minosity and a total of (772± 10)× 106 B meson pairs. To identify and reconstruct
the kinematic variables of inclusive semileptonic B meson decays, machine learn-
ing techniques are employed to fully reconstruct one of the B mesons in purely
hadronic decay modes. Consequently, this approach allows for the kinematics of
the remaining B meson to be inferred using conservation laws leading to the explicit
reconstruction of the hadronic Xc system and, in turn, the q2 spectrum. The mo-
ments are measured with progressively increasing threshold selections on q2: from
q2 > 3.0 GeV2 to q2 > 10.0 GeV2 while incrementing the threshold in 0.5 GeV2 steps.
To ensure an unbiased result, the measured moments are unfolded and corrected for
reconstruction and selection effects. The measured moments are reported separately
for electron and muon final states, allowing for a test of lepton flavour universality.
No deviation from the expectation of unity is observed. In addition, the presented
measurement is combined with theoretical predictions of the 〈qn〉 moments and the
semileptonic decay rate up to order 1/m4

b to perform a simultaneous fit and extract
|Vcb| in a data-driven manner. A value of |Vcb| × 103 = 41.7± 1.2 is obtained, which
is consistent with previous determinations within experimental uncertainty.
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Chapter 1

Introduction

The disagreement between inclusive and exclusive measurements of the Cabibbo-
Kobayashi-Maskawa [1, 2] matrix element |Vcb| has posed a longstanding puzzle
that still remains to be solved. One of the best means to determine |Vcb| is by
studying semileptonic B meson decays to hadronic final states containing a charm
quark and a lepton-neutrino pair: B → Xc`ν. These relatively abundant decays are
dominated by tree-level processes, which are expected to remain unaffected by new
physics contributions in most models and thus offer theoretically clean avenues to
measure |Vcb|. Additionally, semileptonic B decays are theoretically better under-
stood than decays containing purely hadronic final states, due to the factorisation of
the leptonic and hadronic final states. Current determinations of |Vcb| focus on two
complementary approaches that make use of different theoretical assumptions and
experimental reconstruction techniques. While the exclusive approach focuses on
the reconstruction of a specific decay mode, the inclusive approach aims to measure
the sum of all possible final states entailing the same quark-level transition.

The most precise exclusive determinations of |Vcb| to date are performed by measur-
ing partial or total differential decay rates of B → D`ν and B → D∗`ν decays [3]. In
order to extract a value of |Vcb| from the measured differential decay rates, theoret-
ical predictions of hadronic transition form factors are required. The estimation of
these functions involve non-perturbative methods, resulting in complicated calcula-
tions and larger theoretical uncertainties on the extracted value of |Vcb| depending
on the chosen parametrization. In contrast, inclusive determinations of |Vcb| ex-
ploit the fact that the total decay rate can be expanded into a manageable number
of non-perturbative matrix elements using the heavy quark expansion (HQE) [4, 5].
With this technique the total semileptonic decay rate is expressed as a series of terms
proportional to increasing powers of the inverse bottom quark mass 1/mn

b , while
corrections proportional to the strong coupling constant, αs(mb), are systematically
included. A simultaneous global fit is then performed in order to extract a value
of |Vcb|, together with the non-perturbative parameters of the HQE. However, with
each increasing order of the expansion in 1/mn

b , the number of non-perturbative
parameters increases and finally proliferates, which complicates their extraction at
order 1/m4

b and higher. Therefore, accessing higher orders in the expansion requires
the modelling of HQE parameters to gain a quantitative idea of the possible size of
these contributions.

A novel method for the extraction of inclusive |Vcb| is proposed in [6]: by exploit-
ing a symmetry within the HQE, known as reparametrization invariance, the coef-
ficients of different HQE operators can be linked by specific linear combinations of
the most general HQE parameters. Making use of these relations, the full set of thir-
teen non-perturbative parameters can be drastically reduced to a set involving only
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eight parameters at the order of 1/m4
b. This reduction of the total number of non-

perturbative parameters allows for the extraction of |Vcb| from inclusive decays in
a model-independent manner using a complementary data-driven approach. New
measurements are required to determine this reduced set of parameters, since the
four-momentum transfer squared q2 spectrum is found to be the unique observable
that satisfies the key prerequisite giving rise to the reparametrization invariance.

This thesis presents the first measurement of the first to the fourth moments of
the four-momentum transfer squared q2 spectrum for inclusive B → Xc`ν decays,
where ` = e, µ. The analysis investigates the complete Υ(4S) data set collected by
the Belle detector, corresponding to 711 fb−1 of integrated luminosity and a total of
(772± 10)× 106 B meson pairs. To identify and reconstruct the kinematic variables
of inclusive semileptonic B meson decays, one of the B mesons present in the event
is fully reconstructed in purely hadronic decay modes with the aid of neural net-
works. Consequently, this approach allows for the kinematics of the remaining B
meson to be inferred using conservation laws, leading to the explicit reconstruction
of the hadronic Xc system and, in turn, the explicit reconstruction of the q2 spec-
trum. The first measurement of the first moment of the q2 spectrum was reported
in [7] with a lepton energy requirement of 1 GeV1. However, this selection effectively
reintroduces the full set of hadronic matrix elements, since the lepton energy is not
a reparametrization invariant quantity. Furthermore, the moments of higher order
are found to be more sensitive to the higher order terms of the HQE. This thesis re-
ports a first systematic study with progressively increasing threshold selections on
the q2 distribution, while the third and fourth order q2 moments are presented for
the first time. The final q2 moments are measured separately for electron and muon
B→ Xc`ν final states, allowing for a test of lepton flavour universality. Furthermore,
a non-linear transformation is applied to the nominal measured moments in order
to directly determine the central moments, which are less correlated compared to
the systematic correlations of the nominal moments. In addition, this thesis presents
a preliminary test of the proposed alternative method to determine inclusive |Vcb|
in a fully data-driven manner: the presented measurement is combined with theo-
retical predictions of the 〈qn〉 moments and the semileptonic decay rate up to order
1/m4

b to perform a simultaneous fit and extract |Vcb|. Subsequently, a determination
of inclusive |Vcb| together with three heavy quark parameters at order 1/m4

b using
conservative theory uncertainties is reported.

Chapters of this thesis are structured in the following manner. First, the foundational
theoretical background concerning semileptonic B meson decays is introduced in
Chapter 2, followed by an overview of the KEKB accelerator complex and the Belle
detector in Chapter 3. Additionally, the recorded data set and simulated samples
used in this analysis are described. Next, the reconstruction algorithms employed
by the Belle Collaboration to identify candidate final state particles and subsequently
reconstruct B meson decays are summarised in Chapter 4. Contributions from var-
ious background processes are subtracted in an unbinned approach by making use
of event-by-event weights. These background subtraction weights are determined
by performing an extended maximum likelihood fit. Chapter 5 describes the imple-
mentation of the complete background subtraction procedure, while Chapter 6 out-
lines the analysis strategy to extract the 〈qn〉 moments. The calibration procedure

1Natural units are used throughout this thesis: h̄ = c = 1.
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that aims to correct the measured moments from detector resolution and acceptance
effects is introduced, and is verified on independent simulated samples. Further-
more, the statistical and systematic uncertainties affecting the measured moments
are obtained and described. Finally, the measured 〈qn〉 moments are presented and
compared to the expectation of the exclusive B → Xc`ν composition by making use
of simulated samples. A preliminary simultaneous fit is performed to fit the mea-
sured 〈qn〉 moments to the theoretical predictions at order 1/m4

b in order to extract
a value of |Vcb|. The final chapter provides a summary of the investigations and re-
sults obtained in this thesis.

Additional material relating to corrections applied to outdated simulated samples is
considered in Appendix A. Furthermore, distributions of various kinematic vari-
ables that are used to discriminate signal events from background processes are
shown in Appendix B. The event-wise signal probability weights for each consid-
ered threshold selection on the q2 distribution for both electron and muon candi-
dates are given in Appendix C. In addition, all material related to the calibration
procedure and verification thereof for muon candidates is given in Appendix D.
Since the assumed B → Xc`ν composition is a dominant systematic uncertainty on
the measured moments, the B → Xc`ν modelling systematics are summarised in
Appendix E. Statistical and experimental correlations for both the measured nomi-
nal and central moments of different threshold selections and orders are presented
in Appendix F. Moreover, comparisons of the measured nominal moments for both
electron and muon candidates to simulated samples are shown in Appendix G. The
measured 〈qn〉moments for muon candidates are fitted to the theoretical predictions
at order 1/m4

b in Appendix H. Lastly, studies concerning measured 〈qn〉moments for
threshold selections between 0.0 GeV2 and 2.5 GeV2 are condensed in Appendix I.
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Chapter 2

Theoretical background

Since its completion in the 1970s, the Standard Model of Particle Physics (SM) has be-
come one of the most successful and widely accepted theories in physics. The aim of
the SM is to provide a description of the universe at the very smallest scale through
the fundamental particles that comprise all known matter. These elementary par-
ticles and the forces that govern their interactions form the basis of the SM, which
combines quantum electrodynamics (QED) [8], the Glashow-Weinberg-Salam the-
ory of electroweak processes [9–11] and quantum chromodynamics (QCD) [12, 13]
to formulate a renormalisable Quantum Field Theory (QFT) [14]. Furthermore, to
allow for massive vector bosons and fermions the electroweak symmetry is broken
in the SM by the Brout-Englert-Higgs (BEH) mechanism [15–17]. Even though the
SM is extremely successful in describing a plethora of experimental observations, as
well as predicting a wide range of different phenomena, the theory fails to explain
several open questions in a satisfactory manner. In particular, the SM fails to explain
the dominance of matter over anti-matter in the universe, nor accounts for the obser-
vations of dark matter and dark energy. In addition, a renormalisable QFT does not
currently exist for gravitation, which therefore remains to be included in the current
framework of the SM. The failure to explain these observations, together with addi-
tional conceptual problems, suggests that the SM is an incomplete theory, forming
the low energy limit of a more fundamental, complete theory.

2.1 The Standard Model of Particle Physics

In the SM elementary particles are characterised by their intrinsic properties: spin,
mass, and charge. Fermions carry half-integer spin and are further divided into
leptons and quarks. These two types of particles are classified into three genera-
tions and account for a total of twelve different elementary particles. On the other
hand, particles known as vector bosons carry integer spin. Each vector boson is re-
sponsible for mediating at least one of the fundamental forces described by the SM:
electromagnetic, strong, and weak. Particles carrying electric charge will partake in
electromagnetic interactions, described by the famously successful theory of QED,
and are mediated by the massless photon, γ. Strong interactions are described by
QCD and are mediated by the exchange of massless gluons –eight in total. Anal-
ogous to the role of the electric charge in the electromagentic interaction, particles
participating in strong interactions carry a colour charge, which comes in three dif-
ferent flavours: red, blue and green. Therefore, only quarks and gluons are affected
by the strong interaction. Lastly, the weak force is conveyed by the massive, charged
W bosons and neutral Z bosons, and it affects both leptons and quarks.
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FIGURE 2.1: Classification of elementary particles in the Standard
Model [23]. Fermions are divided into quarks (violet) and leptons
(green), that can be further divided into three generations (columns).
Vector bosons (red) are grouped together with the scalar Higgs (yel-

low). Each particle’s mass, charge and spin is also given.

The SM is a gauge theory [18, 19] that requires the SM Lagrangian to be invari-
ant under complex phase transformations of a set of global symmetries. Each of
these global symmetries is connected to an underlying conservation law of nature,
as proven by Noether’s theorem [20]. For example, the conservation of linear and
angular momentum are related to translational and rotational invariance. The local
symmetry group that describes the SM is given by:

SU(3)C × SU(2)L ×U(1)Y . (2.1)

Here, the strong interaction is represented by the SU(3)C symmetry group with the
subscript C denoting colour charge, while the unified electroweak interaction is de-
scribed by the SU(2)L ×U(1)Y symmetry group. The subscripts L and Y refer to the
left-handed fields and weak hypercharge, respectively. By requiring gauge invari-
ance under the electroweak SU(3)C × SU(2)L × U(1)Y symmetry group, the pre-
diction of massless spin-1 vector bosons arises. While both mediators for the elec-
tromagnetic and strong interactions are found to be massless, the mediators for the
weak interaction are observed to be very massive. In order to accommodate these
massive bosons the electroweak symmetry is spontaneously broken by the presence
of a spin-0 field, leading to the prediction of the Higgs boson. The observation of
this elementary particle in 2012 by the ATLAS and CMS Collaborations at the Large
Hadron Collider [21, 22] provided the final missing piece of the SM. Unlike the vec-
tor bosons, the Higgs boson is not associated to any force. A classification of all
known elementary particles predicted by the SM as well as their intrinsic properties
is shown in Figure 2.1.
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In the following sections the theoretical formulations of the strong and electroweak
interactions are briefly described, which form the basis of all further calculations
concerning semileptonic B decays. Furthermore, the Cabibbo-Kobayashi-Maskawa
(CKM) mechanism is introduced together with the current strategy to overconstrain
the unitarity condition of the CKM matrix in an effort to find possible hints of physics
beyond the SM. The overview of the strong interaction given in Section 2.1.1, as well
as the subsequent description of heavy quark methods, is a summary of the dis-
cussions found in [24–28]. Furthermore, the overview of the electroweak theory in
Section 2.1.3, the summary of charge conjugation and parity (CP) invariance in the
SM and the description of the CKM unitarity triangle in Section 2.1.4 are discussed
in much greater detail in [27–30].

2.1.1 Strong interactions

Strong interactions in the SM are built on colour symmetry, which is described by a
non-Abelian Lie group SU(3)C that has eight generators corresponding to the glu-
ons. By assuming local gauge symmetry, the QCD Lagrangian can be written as:

LQCD = −1
4

GA
µνGµν

A + ∑
q={u,d,s}

q̄( /D−mq)q + ∑
Q={c,b,t}

Q̄(i /D−mq)Q , (2.2)

where q and Q are triplets of the light and heavy quarks, mq is the quark mass matrix,

GA
µν is the gluon field strength tensor and the covariant derivative for the QCD gauge

invariance D is given by,

iDµ = i∂µ − gAA
µ TA = i∂µ − gAµ . (2.3)

Here, g is the strong coupling constant, AA
µ denotes the eight gluon fields, while the

eight generators of the gauge group are given by TA. The distinction between light
(q) and heavy quarks (Q) in Eqn. 2.2 is introduced in anticipation for the discussion
in the following section. One of the successes of QCD was the realisation that the
coupling constant, defined as

gs =
√

4παs , (2.4)

is in fact not a constant, but depends on the separation distance between interacting
particles. An interplay of two different processes contributes towards this depen-
dence and thus the overall effective coupling strength, αs. On the one hand, virtual
quark-antiquark pairs create a shielding effect that reduces the value of αs for in-
creasing distances. On the other hand, since gluons themselves carry colour charge,
an additional contribution stemming from gluon self-interactions creates an oppos-
ing anti-screening effect. The effect of the gluon anti-screening exceeds that of the
quark-antiquark shielding, leading to an increase in the magnitude of αs with in-
creasing distance. This behaviour results in the confinement of quarks, which offers
a possible explanation to the fact that no single gluon has been observed yet by ex-
periments. In contrast, αs decreases at short distances, leading to the phenomenon
of asymptotic freedom in which quarks are allowed to behave as free particles. At
leading order, the effective running coupling constant can be written explicitly as a
function of the energy scale:

αs(q
2) =

12π

(33− 2Nq)ln(q
2/ΛQCD)

(2.5)
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where Nq is the effective number of quark flavours, q2 is the energy scale of the
process or the momentum transfer squared, and the scale at which QCD becomes
strongly coupled is defined by the constant ΛQCD. At this point non-perturbative
effects become important and perturbation theory breaks down. Experimentally,
ΛQCD ≈ 200 MeV and sets the scale for non-perturbative strong interaction effects [24].

2.1.2 Heavy quark methods

Methods based on the fact that some of the quark masses are large compared to
ΛQCD are standard strategies in B physics. In the case of semileptonic B decays, the
B meson can be treated as a bound system containing a heavy quark Q and light
degrees of freedom, i.e., the light quark and soft-gluon interactions. Since the mass
of the b quark is approximately 4 GeV [30] and thus much larger than ΛQCD, the
heavy quark moves non-relativistically within this system. The momentum of the
heavy quark ~pQ must balance the momentum of the light constituents ~plight such
that:

| ~pQ| = |~plight| ∼ ΛQCD . (2.6)

For the case of heavy-light systems the typical momentum transfer to the light con-
stituents is of order ΛQCD, while the size of the hadron is approximately 1/ΛQCD.
Thus,

|~vQ| =
|~pQ|
mQ
∼

ΛQCD

mQ
. (2.7)

In the limit mQ → ∞, the configuration of the light degrees of freedom within a
hadron containing a heavy quark with velocity v is almost completely undisturbed
if this quark is replaced by another heavy quark with the same velocity. Relativistic
effects depending on the mass of the heavy quark become negligible and the heavy
quark behaves as a stationary source of the colour field. Therefore, in the heavy
quark limit both the flavour and spin of the heavy quark decouple from the dynam-
ics of the system, leading to an SU(2Nh) spin-flavour symmetry group. These heavy
quark symmetries, which are obfuscated in the QCD Lagrangian, are exploited by
Heavy Quark Effective Theory (HQET): an effective field theory specifically con-
structed to describe the dynamics of heavy quarks inside heavy mesons.

In contrast to the QCD Lagrangian, HQET is constructed in a manner such that only
inverse powers of mQ appear in the effective Lagrangian. The first step is the ob-
servation that a heavy quark bound within a hadron moves with the velocity of the
hadron and is almost on-shell, p2

Q = m2
Q. It is convenient to write the momentum pµ

Q
as a sum of two parts

pµ = mQvµ + kµ , (2.8)

where mQvµ is the large on-shell contribution, with vµ the four-velocity of the heavy
quark, and kµ ∼ ΛQCD originates from the non-perturbative interactions binding the
hadron together. The soft interactions of the heavy quark with the light degrees of
freedom change the residual momentum by a small amount of order ∆k ∼ ΛQCD, but
the corresponding changes in the heavy quark velocity vanish as ΛQCD/mQ → 0. To
separate the heavy and light degrees of freedom, the four-velocity is used to split the
heavy quark field Q into large- and small-components, hv and Hv, given by

hv(x) = eimQv·xP+Q(x) and Hv(x) = eimQv·xP−Q(x) , (2.9)



2.1. The Standard Model of Particle Physics 9

where P± are projection operators defined as: P± = (1± /v)/2. The heavy quark
field can thus be expressed as:

Qx = eimQv·x[hv(x) + Hv(x)] , (2.10)

with the new fields satisfying

/vhv = hv and /vHv = −Hv , (2.11)

due to the projection operators. These equations can be inserted into the heavy quark
contribution of the QCD Lagrangian (Eqn. 2.2) to obtain:

LQ = h̄v(iv · D)hv︸ ︷︷ ︸
massless

− H̄v(iv · D + 2mQ)Hv︸ ︷︷ ︸
heavy d.o.f with 2mQ

+ h̄v(i /D⊥)Hv + H̄v(i /D⊥)vv︸ ︷︷ ︸
coupling

, (2.12)

where Dµ
⊥ = Dµ − (v·)vµ is orthogonal to the heavy quark velocity such that: v ·

D⊥ = 0. In this formulation, it becomes apparent that hv describes the massless
degrees of freedom due to the residual momentum k of the heavy quark. In contrast,
all heavy degrees of freedom are described by Hv with twice the mass of the heavy
quark. The third and fourth terms in Eqn. 2.12 describe pair annihilation or creation
of heavy quarks and antiquarks. The heavy degrees of freedom Hv can be eliminated
by using the equation of motion. Thus, taking the variation of the Lagrangian with
respect to the field Hv,

(iv · D + 2mQ)Hv = i /D⊥hv and thus Hv =
1

iv · D + 2mQ
i /D⊥hv . (2.13)

Here it becomes clear that the small-component field Hv is of order 1/mQ. By insert-
ing this solution into Eqn. 2.12, the “non-local effective Lagrangian” is obtained,

LQ = h̄v(iv · D)hv + i /D⊥hv
1

iv · D + 2mQ
i /D⊥hv

= h̄v(iv · D)hv +
1

2mQ
i /D⊥hv

∞

∑
n=0

(
− iv · D

2mQ

)n

i /D⊥hv . (2.14)

In the second step a geometric series of the denominator is used to expand the sec-
ond term into operators of increasing orders, which are suppressed by increasing
powers of 1/2mQ. This step yields the heavy quark expansion, which becomes ap-
plicable in the heavy quark limit mQ → ∞. The HQET Lagrangian can schematically
be written in the following manner:

LHQET = L0 + L1 +O(1/m2
Q) , (2.15)

where the 1/mQ contribution can be shown to be [25],

L1 =
1

2mQ
h̄v

(
(iD⊥)

2 − gs
2

σµν · G
µν
)

hv . (2.16)

Here, the first term can be identified as the non-relativistic motion of the heavy
quark, while the second term describes the colour-magnetic coupling of the heavy
quark spin rotation σµν to the gluon field.
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2.1.3 Electroweak interactions

The electroweak theory unifies the electromagnetic and weak interactions into one
single gauge theory described by the symmetry group SU(2)L ×U(1). Three vec-
tor bosons, W µ = (Wµ1, Wµ2, Wµ3), are associated with the SU(2) symmetry group,
while a vector boson, known as B, is associated with the U(1) symmetry. This the-
ory includes both charged currents (CC) and neutral currents (NC) of the electro-
magnetic and weak interactions. The weak CC interactions are mediated by the W±

bosons, which are linear combinations of the Wµ1 and Wµ2 vector bosons in the fol-
lowing manner:

W±µ =
1√
2
(W1

µ ∓ iW2
µ) . (2.17)

Similarly, it can be shown that the two neutral states, W3 and B, are mutually orthog-
onal linear combinations of the fields that mediate the electromagnetic and neutral
currents. The neutral states mix to produce two linear combinations: a massless
combination corresponding to the photon and a massive linear combination corre-
sponding to the Z0. The transformation can be expressed in terms of the two cou-
pling constants, g and g′, where the fields that mediate the electromagnetic and neu-
tral currents are denoted as A and Z, respectively:(

Zµ

Aµ

)
=

1√
g2 + g′2

(
g −g′

g′ g

)(
W3

µ

Bµ

)
. (2.18)

This transformation may also be expressed as a rotation through the weak mixing
angle θw, which has been experimentally determined to be approximately 29◦:(

Zµ

Aµ

)
=

(
cos θω − sin θω

sin θω cos θω

)(
W3

µ

Bµ

)
. (2.19)

Due to the observation of massive W± and Z0 bosons, the electroweak symmetry
SU(2)L×U(1) is broken in the SM by the BEH mechanism, which introduces a new,
complex scalar field Φ with a potential V(Φ) [15–17]. This scalar field transforms
as a self-interacting doublet under SU(2)L with four real degrees of freedom. The
scalar field together with its given potential are shown in Eqn. 2.20 and 2.21.

Φ =

(
φ+

φ0

)
=

1√
2

(
φ1 + iφ2
φ3 + iφ4

)
(2.20)

V(Φ) = −1
2

µ2(φ∗φ) +
λ2

4
(φ∗φ)2 (2.21)

The potential function V has rotational symmetry with minima that occur on a circle
in φ space at:

|Φ| = v√
2

, with radius v =
µ

λ
. (2.22)

In principle, any state satisfying |Φ|2 = v2/2 could be the ground state in the above-
mentioned potential, however a specific gauge that yields a massless photon, mas-
sive W± and Z0 bosons and a Higgs particle is a convenient choice. Therefore, the
following ground state is chosen such that,

Φ0 =
1√
2

(
0
ν

)
with ν =

√
µ2/λ . (2.23)
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By expanding about the ground state, the perturbations can be viewed as excitations
of the particle field

Φ0 =
1√
2

(
0

ν + H

)
, (2.24)

where H = H(x) is a real-valued scalar field representing the physical Higgs bo-
son and H(x) = 0 is the ground state of the potential. By assigning the particular
ground state given in Eqn. 2.29, the SM symmetry of SU(3)C × SU(2)L ×U(1)Y is
broken into U(1)em. This effect is known as spontaneous symmetry breaking, since
the symmetry of the underlying Lagrangian is not respected by a particular ground
state of the system. The effect occurs when a system tends to the lowest energy state
without any external influence, hence the term "spontaneous". In total, three of the
four degrees of freedom associated with the SU(2)L ×U(1)Y gauge group are spon-
taneously broken. This implies that these three bosons have non-trivial transforma-
tions of the ground state and indicate the existence of three massless scalar particles,
known as Goldstone bosons. The existence of one or more Goldstone bosons is a
general phenomenon that always accompanies the spontaneous symmetry breaking
of a continuous global symmetry [31] [32].

The Higgs field couples to the Wµ and Bµ gauge bosons associated with the elec-
troweak symmetry group through the covariant derivative that appears in the ki-
netic term of the Higgs Lagrangian,

L =
1
2
(Dµφ)∗(Dµφ) +

1
2

µ2(φ∗φ)− λ2

4
(φ∗φ)2 . (2.25)

As a result, the two charged and neutral massless Goldstone degrees of freedom mix
with the corresponding broken generators of SU(2)L×U(1)Y to become the longitu-
dinal polarisation modes of the physical vector bosons, W± and Z0, as described in
[30]. The fourth generator remains unbroken, since it is associated with the unbroken
gauge symmetry of U(1)em, which corresponds to the massless photon. Therefore,
from the initial four degrees of freedom of the BEH field, two are absorbed by the
W± vector bosons and another one is absorbed by the Z0 vector boson such that
these bosons become massive, as seen in Eqn. 2.26 and 2.27, respectively.

M2
W =

g2ν2

4
(2.26)

M2
Z =

(g′2 + g2)ν2

4
(2.27)

The final remaining degree of freedom is the physical Higgs boson, a new scalar
particle with mass mH =

√
2λν where λ is the Higgs self-coupling parameter in

V(Φ).

2.1.4 CP violation and the unitarity triangle

Unlike the other SM interactions, the weak interaction violates both parity transfor-
mations and charge conjugation. Prior to 1956, parity invariance was assumed to
be one of the fundamental conservation laws of physics. However, Lee and Yang
revealed that although ample evidence for parity invariance in strong and electro-
magnetic processes existed, there was no confirmation for weak interactions [33].
Soon thereafter, the first evidence of parity violation in the weak interaction was
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demonstrated by the famous experiment carried out by Wu and collaborators using
β-decays in polarised Cobalt-60 [34]. The violation was neither a small effect, nor
was it limited to the beta decay in cobalt. It became clear that parity violation was in
fact a signature of the weak interaction. As a consequence, charged currents of the
weak interaction only act on left-handed fermions and right-handed anti-fermions,
while the neutral currents act on both left-handed and right-handed fermions. For
each fermion, there is a weak isospin current, jµ = (j1µ, j2µ, j3µ), that couples to Wµ with
a dimensionless coupling constant of strength gω. Parity violation is expressed by a
projector PL in the weak charged current as:

jµ = ¯̀γµPLν (2.28)

which projects the fermion fields ` and ν onto their left-handed states (`, ν)L =

PL(`, ν), while PL is defined by the Dirac gamma matrices as PL = 1
2 (1 + γ5). While

the discovery of parity violation was devastating, the combined operation of both
charge and parity (CP) transformations was assumed to be infallible. This assump-
tion was also shown to be false: the violation of CP symmetry was first observed in
the decays of the neutral kaon system by Cronin and Fitch in 1964 [35].

Meanwhile, additional puzzles became evident concerning weak interactions. In the
case where the weak interaction is mediated by a W± boson, the strength of the cou-
pling to the neutrino-lepton pair across all generations of leptons is found to be the
same, a property known as lepton flavour universality. However, the analogous sit-
uation is not observed in the quark sector. Here, weak transitions were observed to
occur across quark generations. This observation led Cabibbo to formulate the con-
cept of quark mixing, where the weak eigenstates of quarks that couple to the W±

bosons are superpositions of the quark mass eigenstates [1]. The mixing of the first
and second generation of quarks is allowed through a 2× 2 unitary matrix expressed
in terms of a single parameter: the Cabibbo angle θC [36]. Maskawa and Kobayashi
extended this formulation to three generations arguing that CP violation arises natu-
rally in this theory, which was impossible to include using only two generations [2].
The resulting 3× 3 matrix transformation that relates the weak eigenstates (d′, s′, b′)
to the mass eigenstates (d, s, b) is known as the CKM matrix, defined as:

VCKM =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 , (2.29)

where the probability of a flavour transition from the i-th generation up-type quark
to a j-th generation down-type quark is proportional to the CKM matrix element
|Vij|

2. The values of the matrix elements exhibit a clear hierarchy leading to CKM
suppression of transitions between different generations. This can be visualised by
making use of the Wolfenstein parametrization [37], which expresses the CKM ma-
trix as a Taylor expansion around λ = |Vus| ≈ 0.225:

VCKM =

 1− λ2/2 λ Aλ3(ρ− iη)
−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

 , (2.30)

where A, ρ and η are additional parameters of order unity. Here, it can bee seen
that off-diagonal matrix elements are relatively small, while the diagonal elements
are close to unity. The suppression is maximal for the couplings between the first
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FIGURE 2.2: The triangle expressing the unitarity condition for the
first and third columns of the CKM matrix [38].

and third generation quarks, ub and td. In addition, the complex phase η is found
to reside only in the two outermost off-diagonal elements, implying that η must be
non-zero for CP violation to occur in the quark sector.

Due to the conservation of probability, the CKM matrix satisfies the unitary condi-
tion VV† = I, resulting in the following relations between the matrix elements:

∑
i
= VijV

∗
ik = δjk , and ∑

i
= VijV

∗
kj = δik . (2.31)

The six vanishing unitarity conditions are graphically represented as unitarity trian-
gles, while the conditions obtained from neighbouring rows and columns are nearly
degenerate. Since the lengths and sides of the triangles are invariant under phase
transformations, these values can be measured using suitable experiments. Further-
more, the areas of all the triangles are equal, which determine the size of CP violation
within the SM. The most commonly used triangle is found by imposing the unitarity
relation on the first and third columns:

VudV∗ub + VtdV∗tb + VcdV∗cb = 0 . (2.32)

Each term in the sum is of the order λ3, which enables the measurement of the angles
of the triangle if the complex phase is non-zero. Dividing this expression by the most
precisely measured term, VcdV∗cb, results in a triangle with unit base and two fixed
vertices at (0, 0) and (0, 1). The apex of the triangle is denoted as (ρ, η). By using
the parametrization given in Eqn. 2.30 and introducing two additional parameters,
ρ̄ = ρ(1− λ2/2) and η̄ = η(1− λ2/2), the sides of the triangle are redefined as

VudV∗ub

VcdV∗cb
= ρ̄ + iη̄ , and

VtdV∗tb
VcdV∗cb

= 1− ρ̄− iη̄ . (2.33)

A schematic of the unitarity triangle is shown in Figure 2.2.

Various processes are studied to determine the sides and angles of the unitarity tri-
angle, which are used in combination to ultimately overconstrain the unitarity con-
dition. For instance, a combined global fit in the (ρ̄, η̄) plane can be performed using
a compendium of measurements and predictions as input. A non-exhaustive list of
input results is given below [39]:
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FIGURE 2.3: Experimental constraints on the unitarity triangle as pro-
vided by the CKMfitter group [39].

• εK and sin 2β: measured by studying CP violation in the neutral kaon system
or the B meson system, respectively.

• ∆md and ∆ms: determined by studying the mass splitting from B(s) meson
mixing.

• sin 2α: constrained significantly by measuring CP violation in B0 → ρ+ρ− de-
cays.

• |Vub| and |Vcb|: measured by studying semileptonic B decays.

There are several approaches to combine the available experimental data: CKMfit-
ter [39] uses frequentist statistics, while UTfit [40] employs a Bayesian approach.
Both methods yield similar outcomes [30]. A result of the global fit to determine
the position of the unitarity triangle’s apex, performed by the CKMfitter group, is
shown in Figure 2.3. A deviation of the apex position from the theoretical expecta-
tion could hint at the existence of possible new physics processes that have not been
predicted by the SM.

Measurements of the |Vub| and |Vcb| matrix elements are of particular interest, since
these values are determined using tree-level dominated processes that are expected
to remain unaffected by new physics contributions. Therefore, a comparison of pre-
cise measurements of |Vub| and |Vcb| is crucial to uncover a possible violation of the
unitarity condition and provide an unbiased measure of the amount of CP viola-
tion in the quark sector. One of the best modes to determine both |Vub| and |Vcb| is
semileptonic B → X`ν decays. In the following sections, the different experimen-
tal and theoretical strategies to precisely determine |Vcb| by studying B → Xc`ν are
discussed.
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9. The Decay B æ Xu¸‹

The B meson, being the lightest meson containing a b quark, can only decay via the weak
interaction. In the following I discuss the semileptonic decay B æ Xu¸‹, where the final
state consists of a hadronic (Xu) and a leptonic (¸‹) system.

At the energy scale of the B meson mass the propagator term of the virtual W± boson
can be integrated out and the weak interaction is described by the e�ective coupling GF
together with the corresponding CKM matrix elements. However, at this energy scale
the bound state of the two quarks, of which the B meson is composed, is described by
non-perturbative QCD. In case the virtual W± boson decays into a lepton and neutrino
pair there exists no strong interaction between the decay products of the W± and the
hadronic system Xu. Therefore it is possible to factorize the strong and weak interaction
contributions and treat them separately.

The e�ective Standard Model (SM) Lagrangian describing these decays is given by

Le� = ≠4GFÔ
2

Vub(u“µPLb)(‹“µPL¸) + h.c., (9.1)

with Fermi’s constant GF, the CKM matrix element Vub and the projection operator
PL = (1 ≠ “5)/2. The decay B æ fi¸‹ is shown at parton level and as an e�ective diagram
in Figure 9.1.

b u

d d

⌫

`+

W+

B0 ⇡�

(a) Parton level Feynman diagram.

B0 ⌫

`+

⇡�

(b) E�ective Feynman diagram.

Figure 9.1.: One possible parton level Feynman diagram (a) and the e�ective Feynman
diagram (b). In the e�ective Feynman diagram, the propagator of the W is
integrated out, i.e. the weak interaction is point-like, and the gluon interactions
are described by the blob.
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FIGURE 2.4: Feynman diagram of semileptonic B → Xc`ν decays for
charged (left) and neutral (right) B mesons.

2.2 Semileptonic B decays

Semileptonic B → Xc`ν processes, depicted1 in Figure 2.4, involve the decay of B
mesons into a lepton-neutrino pair together with a set of charmed hadrons, where
Xc denotes the hadronic system. These relatively abundant decays are dominated
by tree-level processes and therefore offer a theoretically clean avenue to determine
the magnitude of the CKM matrix element |Vcb|. Since the resulting leptons are un-
affected by strong interactions, the leptonic and hadronic final states factorise up to
small electroweak corrections. Consequently, these processes are theoretically better
understood than purely hadronic decays. This is due to the fact that perturbation
theory is found to be invalid for the long-distance strong interactions that occur in
decays involving hadronic final states, whereas the theory is perfectly valid for cal-
culations of higher-order corrections at tree-level for electroweak interactions.

A key characteristic of semileptonic B decays is the relative simplicity due the fac-
torisation of the leptonic and hadronic final states. In the SM, semileptonic flavour-
changing weak decays are mediated by the exchange of charged W± bosons be-
tween a quark and lepton charged current according to the electroweak interaction
Lagrangian:

Lint =
g√
2
(j−µ Wµ

+ + j+µ Wµ
−). (2.34)

The hadronic current is written as,

jµ = c̄γµPLVcbb , (2.35)

where Vcb represents the CKM matrix element for c→ b quark transitions, while the
leptonic current is expressed in the following manner:

jµ = ¯̀
LγµPLν̄`,L . (2.36)

With the exception of the top quark, all quarks are considered light compared to the
mass of the W± boson. Therefore, the W±µ can be considered as infinitely heavy in
decays of weak hadrons [42], leading to the combination of Eqn. 2.35 and 2.36 into a
local effective Hamiltonian of the form,

Heff =
4GF√

2
Vcb(c̄γµPLb)( ¯̀

LγµPLν̄`,L) + h.c. (2.37)

1Feynman diagrams in this thesis are drawn with the package described in [41].
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where GF is the Fermi coupling constant defined as,

GF√
2
=

g2

8M2
W

. (2.38)

The simplicity of the leptonic current is overshadowed by the complicated hadronic
term, which cannot be calculated in a simple manner. Different approaches to sim-
plify and determine the hadronic matrix element exist that depend on the recon-
struction of the B→ Xc`ν final state.

Values of |Vcb| are extracted from the study of semileptonic B meson decays by mak-
ing use of two complementary approaches. While the exclusive approach focuses on
the reconstruction of a specific decay mode, the inclusive approach aims to measure
the sum of all possible final states with the same quark-level transition. Inclusive
determinations of |Vcb| exploit the fact that the total decay rate can be expanded into
a manageable number of non-perturbative matrix elements using the heavy quark
expansion (HQE). A simultaneous combined fit is then performed in order to ex-
tract a value of |Vcb| as well as the non-perturbative parameters of the HQE. On the
other hand, the most precise exclusive determinations of |Vcb| to date are performed
by measuring partial or total differential decay rates of B → D`ν and B → D∗`ν
decays [3]. To translate the differential decay rates into a measurement of |Vcb|,
theoretical predictions of hadronic form factors are required. Consequently, exclu-
sive determinations provide complementary information and serve as independent
cross-checks of the inclusive determinations.

In the next section, the decay kinematics of semileptonic B mesons are briefly dis-
cussed. The kinematic decay variables are important to describe both exclusive and
inclusive final states that are considered in subsequent sections. Overviews of the
experimental and theoretical descriptions of semileptonic B decays are presented in
great detail in [24, 28, 42], which the following sections summarise.

2.2.1 Decay kinematics

Semileptonic decays for a fixed mass mX of the final-state hadronic system can be de-
scribed by a choice of several kinematic variables. Two key kinematic quantities, the
four-momentum transfer squared of the lepton-neutrino system q2 and the energy
of the charged lepton E`, are defined as:

q2 = (p` + pν)
2 = (pB − pX)

2 , E` =
pB p`
mB

. (2.39)

Here, mB and pB correspond to the nominal mass and momentum of the B meson,
while p`, pν and pX denote the momentum of the lepton, neutrino and the hadronic
final state, respectively. The two variables are not independent: Figure 2.5 (left)
shows the boundaries of the allowed region in the q2 − E` plane for the specific case
of B → D∗`ν decays. At high q2 most of the available energy is shared between
the masses of the virtual W∗ boson and the daughter hadron. As a result the W∗ is
produced nearly at rest, while the lepton and neutrino of the decay are produced
back-to-back. Therefore, the daughter hadron receives a negligible momentum ex-
change. This scenario is known as the “zero recoil” configuration, corresponding
to q2

max = (mB − mx)
2, and is typically the most favourable for the formation of

low-mass mesons. In contrast, the lepton and neutrino are produced in parallel at
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FIGURE 2.5: The allowed kinematic region in the q2 − E` plane for
B → D∗`ν decays (left) [43] and lepton momentum spectra for B →

Xc`ν decays (right) [44].

a minimum value q2
min = m2

` ≈ 0. For the formation of a bound state in this con-
figuration, gluons must be exchanged to transfer momentum to the light degrees of
freedom of the meson. Consequently, q2

min is typically the least favoured configura-
tion for the formation of a meson. Since each of the exclusive semileptonic decay
modes have spectra with different end-points, different B → Xc`ν decays will thus
dominate in different regions of q2 phase space. Figure 2.5 (right) shows the lepton
momentum spectra for different B→ Xc`ν decays.

As mentioned in Section 2.1.2, four-velocities rather than momenta are used to de-
scribe the dynamics of systems containing heavy quarks. For B and D(∗) mesons,
the four-velocities are defined as:

vB =
pB
mB

, vD(∗) =
pD(∗)

mD(∗)
, (2.40)

where pD(∗) and mD(∗) are the momentum and and nominal mass of the D(∗) meson,
respectively. In addition, the recoil variable w is defined as the scalar product of the
4-velocities of the B and D(∗) mesons and is related to q2 in the following manner:

w = vB · vD(∗) =
m2

B + m2
D(∗) − q2

2mBmD(∗)
. (2.41)

The point w = 1 corresponds to the maximum momentum transfer to the leptons
q2

max = (mB −mD(∗))
2, while the maximum value of w is reached at q2 = 0.

Semileptonic B → D∗`ν decays, where a vector D∗ meson decays to two pseu-
doscalars, are described completely by four independent kinematic variables. The
four variables most commonly used are q2 or w along with the three angular vari-
ables, illustrated in Figure 2.6 and defined as follows:

• θ`: the angle between the direction of the lepton and the direction opposite the
B meson in the virtual W rest frame.

• θν: the angle between the direction of the D0 meson and the direction opposite
the B meson in the D∗ rest frame.
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FIGURE 2.6: Definition of the angles θ`, θν and χ that characterise the
B → D∗`ν decay. These angles are used to describe any semileptonic
decay in which the vector meson decays to two pseudoscalars [45].

• χ: the angle between the two planes formed by the decays of the W and the D∗

meson, defined in the rest frame of the B meson.

2.2.2 Exclusive decays

The decays of B→ D`ν and B→ D∗`ν are the most frequent semileptonic B decays
into a charm meson. Neglecting higher order electroweak corrections, the decay
amplitude for these processes is determined by the tree-level matrix element of the
local effective Hamiltonian in Eqn. 2.37 and can be expressed as:

M(B→ D(∗)`ν) = −i
GF√

2
Vcb( ¯̀γµPLν`)〈D

(∗)(pD(∗))|c̄γµPLb|B(pB)〉 . (2.42)

The V − A structure of the weak current dictates that only the vector current con-
tributes for the decay of a pseudoscalar B meson to a pseudoscalar D meson fi-
nal state, whereas both the vector and axial-vector current contribute for a vec-
tor D∗ final state. Since the strong interaction between the quarks has to be taken
into account for hadronic currents, the decay rate calculations are noticeably more
complicated. The strong coupling becomes large for low momentum transfer, and
thus higher order corrections have to be taken into consideration. As a result, an-
alytical solutions are unavailable and the hadronic current is approximated by em-
ploying Lorentz invariant functions of q2 known as hadron transition form factors.
These functions describe how strong interactions modify the underlying weak de-
cay, which require non-perturbative methods to calculate.

The treatment of the form factors is an ongoing theoretical research topic and differ-
ent form factor parametrizations are available in the literature. Recent studies sug-
gest that the underlying simplification assumptions introduced in these parametriza-
tions should be re-evaluated, since the use of more generalised forms has hinted at
higher observed values of |Vcb| [46–49]. In addition, a fresh study aiming to address
the tensions between inclusive and exclusive measurements of |Vcb| computed the
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form factors of B → D∗`ν decays for nonzero values of the recoil parameter by uti-
lizing lattice QCD [50].

Two of the most commonly used form factor parametrizations for B → D(∗)`ν de-
cays are discussed below, followed by a brief description of the orbitally excited
D∗∗ states. The form factor parametrizations for the B → D`ν decay are described
in [28, 51], while the parametrizations for the B → D∗`ν decay are outlined in [28,
45, 52]. In addition, a comprehensive overview of the orbitally excited D∗∗ states
is presented in [24], while the form factor parametrization used in this analysis is
proposed in [53].

B→ D(∗)`ν decays

For the B → D`ν decay, the hadronic current can be decomposed in terms of the
vector f+(q

2) and scalar f0(q
2) form factors in the following manner:

〈D(pD)|c̄γµb|B(pB))〉 = f+(q
2)

(
(pB + pD)

µ − m2
B −m2

D

q2 qµ

)
+ f0(q

2)
m2

B −m2
D

q2 qµ .

(2.43)
In the limit of negligible lepton masses, the differential decay rate for B → D`ν

decays does not depend on f0(q
2) and can therefore to a very good approximation

be described by only one form factor:

dΓ(B→ D`ν)

dw
=

G2
F|Vcb|

2m3
D

48π3 (mB + mD)
2(w2 − 1)3/2|ηEWG(w)|2 . (2.44)

The form factor G(w) is given by

G(w)2 =
4r

(1 + r2)
f+(w)2 , (2.45)

where r = mD/mB and ηEW is the electroweak correction calculated to be 1.0066 [54].

The parametrization of the B→ D∗`ν decay is more complicated, since the D∗ vector
meson decays to two pseudoscalars. Therefore, the hadronic current is described by
four transition form factors: Ai(q

2) with i = 0, 1, 2 and V, which can be expressed as
follows:

〈D∗(pD∗ , εM)|c̄γµb|B(pB)〉 =
2iV(q2)

m2
B + m2

D∗
εµναβε∗ν pα

B pβ

D∗ ,

〈D∗(pD∗ , ε)|c̄γµγ5b|B(pB)〉 = 2mD∗A0(q
2)

ε∗ · q
q2 qµ + (mB + mD∗)A1(q

2)

(
ε∗µ −

ε∗ · q
q2 qµ

)

− A2(q
2)

ε∗ · q
mB + mD∗

(
(pB + pD∗)µ −

m2
B + m2

D∗

q2 qµ

)
(2.46)

where εµναβ is the Levi-Civita symbol and ε∗ is the complex conjugated polarization
vector of the D∗ meson. Using the above equations, the form factors can subse-
quently be expressed in terms of helicity amplitudes in the following manner [55]:

H±(q
2) = (mB + mD∗)A1(q

2)∓ 2mB
mB + mD∗

|pD∗ |V(q2) , (2.47)
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H0(q
2) =

1

2mD∗

√
q2

(
(m2

B −m2
D2 − q2)(mB + mD∗)A1(q

2)− 4m2
B|pD∗ |

2

mB + mD∗
A2(q

2)

)
,

Hs(q
2) =

2mB|pD∗ |√
q2

A0(q
2) . (2.48)

As in the previous case for B → D`ν decays, the corresponding lepton current van-
ishes in the limit of negligible lepton masses, leaving only three helicity amplitudes:
H± and H0. Therefore, the differential decay rate can be written in terms of the four
kinematic variables described in Section 2.2.1 as:

dΓ(B→ D∗(→ Dπ)`ν)

dwdθ`dθνdχ
=

6mBm2
mD∗

8(4π)2 G2
F|Vcb|

2√w− 1(1− 2wr + r2)×B(D∗ → Dπ)

{(1− cos θ`)
2 sin θν

2H2
+(w) + ((1 + cos θ`)

2 sin θν
2H2
−(w)

+ 4 sin θ`
2 cos θν

2H2
0(w)− 2 sin θ`

2 sin θν
2 cos 2χH+(w)H−(w)

− 4 sin θ`(1− cos θ`) sin θν cos θν cos χH+(w)H0(w)

− 4 sin θ`(1 + cos θ`) sin θν cos θν cos χH−(w)H0(w)}
(2.49)

The CLN parametrization

Up until recently, the form factor parametrization by Caprini, Lellouch and Neubert
(CLN) [56] was the most commonly used approach. The CLN approach relies on the
spin-flavour symmetry of HQET to derive relations between the form factors and
reduce the number of free parameters. A general approach is to express the form
factors as an expansion in the complex variable z defined as:

z(w) =

√
w + 1−

√
2√

w + 1 +
√

2
, (2.50)

while the coefficients of the expansion are subject to constraints from unitarity and
analyticity [42]. Using this parametrization, the B → D`ν form factor in Eqn. 2.45
can be expressed as:

G(z) = G(1)
(

1− 8ρ2
Dz + (51ρ2

D − 10)z2 − (252ρ2
D − 84)z3

)
, (2.51)

where form factor at zero recoil G(1) and the linear slope ρ2
D are the free parameters

to be determined.

The remaining form factors describing B → D∗`ν decays can be written in terms of
a universal form factor hA1

(w) and two ratios R1,2(w) using the following relations
derived from heavy quark symmetry,

A1 =
w + 1

2
r′hA1

(w) , A2 =
R2(w)

r′
hA1

(w) , V =
R1(w)

r′
hA1

(w) , (2.52)

where r′ = 2
√

mBmD∗/(mB + mD∗). Subsequently, the helicity amplitudes can be
expressed in terms of the universal form factor hA1

(w), the form factor ratios R1,2(w)
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and the slope parameter ρ2
D∗ :

hA1
(w) = hA1

(1)
(

1− 8ρ2
D∗z + (53ρ2

D∗ − 15)z2 − (231ρ2
D∗ − 91)z3

)
,

R1(w) = R1(1)− 0.12(w− 1) + 0.05(w− 1)2 ,

R2(w) = R2(1)− 0.11(w− 1) + 0.06(w− 1)2 . (2.53)

Additional electroweak corrections are taken into consideration by introducing the
transformation: hA1

(1) → hA1
(1)ηEW. Therefore, the CLN description parametrizes

the differential decay rates of B → D`ν and B → D∗`ν decays by {G(1), ρ2
D}, and

{hA1
(1)ηEW, ρ2

D∗ , R1(1), R2(1)}. The values of these parameters are not calculated
theoretically and must be extracted though an experimental analysis of the differen-
tial B→ D(∗)`ν spectrum.

The BGL parametrization

A more general parametrization proposed by Boyd, Grinstein and Lebed (BGL) [57]
relies only on QCD dispersion relations. In this approach the form factors can be
written as a series in powers of z. Thus, the form factors describing B → D`ν using
this parametrization take the form:

fi(z) =
1

Pi(z)φi(z)

N

∑
n=0

ai,nzn , i = +, 0 . (2.54)

Here, Pi(z) are given by the “Blaschke factors” that contain the Bc or B∗c poles, while
φi(z) are the “outer functions”. The free parameters of the expansion are ai,n and N
denotes the order at which the series is truncated. By explicitly choosing the values
to be Pi(z) = 1 with the outer functions,

φ+(z) = 1.1213(1 + z)2(1− z)1/2[(1 + r)(1− z) + 2
√

r(1 + z)]−5 ,

φ0(z) = 0.5299(1 + z)2(1− z)3/2[(1 + r)(1− z) + 2
√

r(1 + z)]−4 . (2.55)

the unitarity bound on the coefficients ai,n takes the simple form

N

∑
n=0
|ai,n|

2 ≤ 1 , ∀ N . (2.56)

The helicity amplitudes describing B→ D∗`ν decays are written slightly differently
in the BGL approach and are given in terms of three form factors, i.e. F1(w), f (w)
and g(w):

H0(w) = F1(w)/
√

q2 ,

H±(w) = f (w)∓mBmD∗

√
w2 − 1g(w) . (2.57)

These three BGL form factors can, in turn, be written in a similar manner as the
above-mentioned expansion,

f (z) =
1

P1+(z)φ f (z)

N

∑
n=0

a f
nzn ,

F1(z) =
1

P1+(z)φF1
(z)

N

∑
n=0

aF1
n zn ,

g(z) =
1

P1−(z)φg(z)

N

∑
n=0

ag
nzn . (2.58)
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The outer functions φi for i = g, f ,F are as follows:

φg(z) =

√
nI

3πχT
1 (0)

24r2(1 + z)2(1− z)−1/2

[(1 + r)(1− z) + 2
√

2(1 + z)]4
,

φ f (z) =
4r
m2

B

√
nI

3πχT
+(0)

(1 + z)(1− z)3/2

[(1 + r)(1− z) + 2
√

2(1 + z)]4
,

φF1
(z) =

4r
m3

B

√
nI

6πχT
+(0)

(1 + z)(1− z)5/2

[(1 + r)(1− z) + 2
√

2(1 + z)]5
, (2.59)

where χT
+(0) and χT

−(0) are additional constraints given in [52] and nI represents
the number of spectator quarks. A relation between the form factors F1(0) = (mB −
mD∗) f (0) can be obtained by exploiting the dynamics at zero recoil (w = 1 or z = 0).
As with the previous case, the coefficients in each of the expansions are subject to
constraints from unitarity. Similar to the parameters of the CLN description, the
values of the coefficients that parametrize the differential decay rates for B→ D(∗)`ν
decays in the BGL description must also be determined by studying experimental
data.

B→ D∗∗`ν decays

Understanding the modelling of heavy-light quark meson Qq̄ systems as well as
their mass spectra is important while studying semileptonic B decays, since these
decays produce charmed mesons (Q = c) almost exclusively. A direct consequence
of the spin-flavour symmetry that arises in the heavy quark limit mQ → ∞ is that
these heavy-light bound systems resemble a similar configuration to that of hydro-
gen. Not only is the total angular momentum of the hadron J conserved, but also the
spin of the heavy quark in the mQ → ∞ limit. Therefore, the spin of the light degrees
of freedom, which is defined by

S` ≡ J− SQ , (2.60)

is also a conserved quantity in the heavy quark limit. As a result, the excited states
of charmed mesons can be classified by spin-symmetry doublets containing states
with total spin:

j± = s` ± 1/2 , (2.61)

which is obtained by combining the spin of the light degrees of freedom with the
spin of the heavy quark sQ = 1/2. For a spin-parity s` = 1/2, the two lightest
states are the narrow 1S mesons: D and D∗, with total spin 0 and 1, respectively. The
next highest orbitally excited mesons correspond to L = 1 excitations in the non-
relativistic quark model. Here, L denotes the quantum number of the orbital angu-
lar momentum. The two states D1 and D∗2 correspond to s` = 3/2 with total spin 1
and 2. These resonances are narrow with widths of a few tens of MeV. Furthermore,
two states correspond to s` = 1/2: D∗0 and D∗1 with total spin 0 and 1. In contrast
to the pair, these resonances are broad and have widths of a few hundred MeV. The
mass spectrum of these orbitally excited 1P states, collectively referred to as D∗∗, is
shown in Figure 2.7. Experimental knowledge of B → D∗∗`ν decays is still rather
poor, especially for the broad states. Since the branching fractions of D∗∗ mesons
themselves are not well known, the product of the B → D∗∗`ν and D∗∗ → D(∗)π
branching fractions are generally quoted. Both Belle [58] and BaBar [59] performed
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FIGURE 2.7: Masses and widths of the orbitally excited D∗∗ mesons.
The D1 and D∗2 states have a narrow width, while the widths of the

D∗0 and D∗1 states are much broader [60].

analyses of B → D(∗)π`ν decays to select B → D∗∗`ν candidates, where the D∗∗

mesons decay specifically to D∗π. A concise summary of the experimental efforts to
measure these decays is given in [42].

The decay kinematics of semileptonic B → D∗∗`ν processes are investigated by Lei-
bovich, Ligeti, Stewart and Wise (LLSW) [61]. In this model, the differential decay
widths are given as a function of the recoil parameter and the angle between the
charmed meson and the lepton, similar to the depiction given in Figure 2.6. To de-
scribe these decays, a new set of axial and vector form factors is introduced: fi,
ki(w), g±(w) and gi(w) where i = V, A. In addition, different sets of functions
parametrizes the form factors describing the narrow and broad resonances. The
hadronic matrix elements between the B meson and D1 or D∗2 mesons can once again
be separated into the vector and axial-vector currents:

〈D1(v
′, ε)|c̄γµb|B(v)〉
√mD1

mB
= fV1

ε∗µ + ( fV2
vµ + fV3

v′µ)(ε∗ · v) ,

〈D1(v
′, ε)|c̄γµγ5b|B(v)〉
√mD1

mB
= i fAεµαβγε∗αvβv′γ ,

〈D∗2(v
′, ε)|c̄γµb|B(v)〉
√mD∗2

mB
= ikVεµαβγε∗ασvσvβv′γ ,

〈D∗2(v
′, ε)|c̄γµγ5b|B(v)〉
√mD∗2

mB
= ikA1

ε∗µαvα + (kA2
vµ + kA3

v′µ)(e∗αβvαvβ) . (2.62)
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Similarly, the hadronic matrix elements for the broad states are written as:

〈D∗0(v
′, ε)|c̄γµb|B(v)〉√mD∗0

mB
= 0 ,

〈D∗0(v
′, ε)|c̄γµγ5b|B(v)〉√mD∗0

mB
= g+(v

µ + v′µ) + g−(v
µ − v′µ) ,

〈D∗2(v
′, ε)|c̄γµb|B(v)〉
√mD∗2

mB
= gV1

ε∗µ + (gV2
vµ + gV3v′µ)(ε

∗ · v) ,

〈D∗2(v
′, ε)|c̄γµγ5b|B(v)〉
√mD∗2

mB
= igAεµαβγε∗αvβv′γ , (2.63)

where v and v′ are four-velocities of the B and D∗∗ mesons, and the polarisation of
the charmed meson is given by ε∗µ or ε∗µα. Using the free-quark decay rate Γ0 =

G2
F|Vcb|

2m5
B/(192π3) and r = mD∗∗/mB, the double differential decay rates are given

by:

dΓD1

dwdθ
= 3Γ0r3

√
w2 − 1

(
sin θ2[(w− r) fV1

+ (w2 − 1)( fV3
+ r fV2

)]2

+ (1− 2wr + r2)[(1 + cos θ2)[ f 2
V1
+ (w2 − 1) f 2

A]− 4 cos θ

√
w2 − 1 fV1

fA]

)
,

dΓD∗2
dwdθ

=
3
2

Γ0r3(w2 − 1)3/2
(

4
3

sin θ2[(w− r)kA1
+ (w2 − 1)(kA3

+ rkA2
)]2

+ (1− 2wr + r2)[(1 + cos θ2)[k2
A1

+ (w2 − 1)k2
V ]− 4 cos θ

√
w2 − 1kA1

kV ]

)
,

dΓD∗1
dwdθ

= 3Γ0r3
√

w2 − 1
(

sin θ2[(w− r)gV1
+ (w2 − 1)(gV3

+ rgV2
)]2

+ (1− 2wr + r2)[(1 + cos θ2)[g2
V1
+ (w2 − 1)g2

A]− 4 cos θ

√
w2 − 1gV1

gA]

)
,

dΓD∗0
dwdθ

= 3Γ0r3(w2 − 1)3/2 sin θ2[(1 + r)g+ − (1− r)g−]
2 . (2.64)

Even though a large number of form factors was introduced within the above equa-
tions, this can be reduced to only a single form factor for the two spin-parity states,
τ1/2 and τ3/2, in the heavy quark limit of an expansion in powers of 1/mQ (Q = c, b).
The complete expansions of the form factors for all four D∗∗ states are omitted here
for readability, however they are documented in their entirety in [53]. These form
factors are still poorly understood; while an estimate of the contributions for the
various D∗∗ states may be obtained by constraining τ1/2 and τ3/2 with sum rules,
significantly smaller decay rates are predicted than observed in current data. Fur-
ther discussions and possible solutions for this puzzle are found in [60].

2.2.3 Inclusive decays

Rather than explicitly reconstructing a specific final state, an inclusive approach ig-
nores all the details of the final hadronic state Xc and sums over all final states con-
taining a c quark instead. Here Xc can be a single-particle state, like a D meson, or a
multi-particle state, like Dπ for example. The simplest approximation of a semilep-
tonic B → Xc`ν decay is to only consider the decay of the b quark, i.e. b → c`ν.
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Using the theoretical framework of HQET to perform an operator product expan-
sion, this approximation can be shown to be the leading result in the limit mb → ∞.
Derivations of this result can be found in [24, 25, 38, 62], while key steps are sum-
marised in the following section.

The mass of the b quark is of particular importance, since theoretical predictions of
several quantities depend on this value. However, unlike leptons, quarks are con-
fined inside physical hadrons and thus are not observed as physical particles. As a
result, any information regarding their mass must be inferred through their influ-
ence on hadron properties. Therefore, several mass definitions employing different
renormalization schemes can be used to describe the mass of the b quark. The dif-
ference between mass schemes can be determined as a series in powers of αs. Trans-
formations between some of the different schemes are possible by following simple
guidelines. The two main schemes that are used in semileptonic b → c`ν decays
are the 1S and kinetic schemes, since these schemes are defined at an energy scale µ,
below which HQET is valid. The kinetic scheme defines a µ-dependent mass from a
sum rule for the non-relativistic kinetic energy of the heavy quark mkin

b , where val-
ues of µ is below mb. In the 1S scheme, the b quark is defined as half the perturbative
contribution to the mass of a JPC = 1−− and 2s+1LJ = 3S1 bound bb̄ state. This
bottomonium state is known as the Υ(1S) meson, for which precise measurements
exist.

The Operator Product Expansion

Starting from the low energy effective Hamiltonian given by Eqn. 2.37, the triple
differential decay rate can be written in terms of the momentum transfer squared of
the virtual W boson q2 and the lepton and neutrino energies E` and Eν`

as follows:

dΓ

dq2dE`dEν`

=
1
4 ∑

Xc

∑
lepton spins

|〈Xc`ν|Heff|B̄〉|
2

2mB
(2π)3δ4(pB − (p` − pν`

)︸ ︷︷ ︸
= q

−pXc
) .

(2.65)
Since leptons do not interact strongly, the matrix element can once again be fac-
torised into two parts: a complicated hadronic contribution B → W∗Xc and an eas-
ily calculable leptonic contribution W∗ → `ν. Subsequently, Eqn. 2.65 can be further
simplified,

dΓ

dq2dE`dEν`

= 2G2
F|Vcb|

2WαβLαβ , (2.66)

with Wαβ and Lαβ denoting the hadronic and the leptonic tensor, respectively. The
hadronic tensor depends on the B four-momentum pB = mbv as well as the momen-
tum transfer q, and is given by

Wαβ = ∑
Xc

(2π)3

mB
δ4(pB − q− pXc

)〈B̄(pB)|J
†α
L |Xc(pXx

)〉〈Xc(pXx
)|Jβ

L |B̄(pB)〉 . (2.67)

All strong interaction physics relevant for inclusive semileptonic B decays are pa-
rameterized by the hadronic tensor, which cannot easily be simplified and must be
approximated using an Operator Product Expansion (OPE). The first step is to use
the Optical Theorem to relate Wαβ to the time-ordered product of currents Tαβ such
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that,

Wαβ = − 1
π

ImTαβ = − 1
π

Im
∫

d4xe−iq·x 〈B̄|T[J
†
Lα(x)JLβ(0)]|B̄〉

2mB
. (2.68)

Next, the time-ordered product of currents can be expressed in terms of an expansion
of matrix elements of local operators Oi,∫

d4xe−iq·xT[J†
Lα(x)JLβ(0)] = ∑

n,i

1
mn

B
Cn,iOn,i . (2.69)

Here, Cn represents a set of coefficients that can be confidently calculated in terms
of αs using perturbative methods in the limit of large momenta (q � ΛQCD). These
coefficients are often referred to as Wilson coefficients. On the other hand, the matrix
elements of the operators On encode all non-perturbative inputs into the decay rate.
The normalized forward matrix elements of the local operators are defined as:

〈On〉B =
〈B|On|B〉

2mB
. (2.70)

The goal is thus to systematically expand 〈On〉B for increasing powers of 1/mB and
increasing complexity, while applying the formalism of HQET. The transition is im-
plemented by replacing the physical b quark fields by the corresponding heavy
quark fields defined by the Lagrangian in Eqn. 2.14, resulting in the light degrees
of freedom only becoming relevant for corrections at expansion orders of 1/m2

b and
higher. Details of the expansions will not be shown here, however, the main results
are briefly summarised.

At leading order (n = 0) it can be shown that all operators of higher order corrections
up to O(1/mb) are related to the matrix element containing the operator 〈b̄b〉B, or
even vanish completely due to parity invariance of the strong interaction. Therefore,
there are no unknown matrix elements at leading order and C0 yields the decay
rate of the free b quark. All operators at order n = 1 can be written in terms of
higher order operators using the equation of motion of the b quark. Consequently,
there are no additional contributions of order 1/mb to the decay rate of the free
quark. The first non-trivial non-perturbative contributions appear at order n = 2
with an operator given by 〈b̄gsσµνGµνb〉B, which contains the gluon field. Using
these operators, the semileptonic decay rate can be written as:

Γ(B→ Xc`ν) =
G2

F

192π3 m5
b

(
c3〈b̄b〉B + c5

〈b̄gsσµνGµνb〉B
m2

b
+O(1/m3

b)

)
, (2.71)

where the results of expanding the matrix elements in powers of 1/mb are given by

〈b̄b〉B = 1 +
λ1 + 3λ2

2m2
b

+O(1/m3
b) , (2.72)

〈b̄gsσµνGµνb〉B =
6λ2

m2
b
+O(1/m3

b) . (2.73)

These two matrix elements can be directly compared to Eqn. 2.16 and are found to
be, in fact, the matrix elements of L1. Therefore, the two HQE parameters have a
simple physical interpretation: λ1 corresponds to the residual kinetic energy due to
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the motion of the heavy quark, while λ2 corresponds to the chromomagnetic mo-
ment of the heavy quark.

The total inclusive semileptonic decay rate is subsequently calculated by combining
each of the individual contributions introduced in this section and can be written in
compact form as follows:

Γ =
G2

Fm5
b

192π3 |Vcb|
2

[
1 +

λ1

2m2
b
+

3λ2

2m2
b
(2ρ

d
dρ
− 3)

]
f (ρ) , (2.74)

where the short distance coefficients take the form,

f (ρ) = 1− 8ρ + 8ρ3 − ρ4 − 12ρ2lnρ , and ρ =
m2

c

m2
b

. (2.75)

Here, the first term is the leading term in the mb → ∞ limit and yields the free quark
decay rate. The next two terms are 1/m2

b corrections, since the corrections at 1/mb
vanish. The HQE can be further utilised to calculate the next set of corrections to
the total decay rate for order 1/m3

b, however, each higher order introduces addi-
tional operators and thus, matrix elements. Therefore, for calculations of O(1/m3

b),
two additional matrix elements of another two local operators arise. These matrix
elements are discussed in the following section in the context of the kinetic scheme.

The kinetic scheme

The total inclusive decay rate shown in Eqn. 2.74 can also be expressed in terms of
the kinetic operators up to order 1/m3

b as [63]:

Γ =
G2

Fm5
b

192π3 |Vcb|
2(1 + Aew)Apert(r, µ)

[
z0(r)

(
1−

µ2
π(µ)− µ2

G(µ) +
ρ3

D(µ)+ρ3
LS(µ)

mb(µ)

2m2
b(µ)

)

− 2(1− r)4
µ2

G(µ)−
ρ3

D(µ)+ρ3
LS(µ)

mb(µ)

m2
b(µ)

+ d(r)
ρ3

D

m3
b
+O(1/m4

b)

]
, (2.76)

where z0(r) is the same tree-level expression in Eqn. 2.75 and the expression d(r) is
given by

d(r) = 8lnr +
34
3

+
32
3

r− 8r2 +
32
3

r3 − 10
3

4
. (2.77)

The quantities Aew and Apert accounts for electroweak and perturbative corrections,
respectively, and are calculated in [63]. The parameter µ is chosen to be 1 GeV, which
sets the scale for short-distance dynamics in the OPE. In the kinetic scheme, the
matrix operators corresponding to the kinetic and chromomagnetic operators are
called µ2

π and µ2
G. They are defined as:

2mBµ2
π ≡ −〈B|b̄v(iD)2bv|B〉 ,

2mBµ2
G ≡ 〈B|b̄v(iD

µ)(iDν)(iσµν)bv|B〉 . (2.78)

Corrections of order 1/m3
b arise from the appearance of two additional operators,

which are known as the Darwin and spin-orbital terms:

2mBρ3
D ≡ −〈B|b̄v(iDµ)(ivD)(iDµ)bv|B〉 ,

2mBρ3
LS ≡ 〈B|b̄v(iD

µ)(ivD)(iDν)(iσµν)bv|B〉 . (2.79)
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For calculations of even higher order corrections (n ≥ 4) the number of non-perturba-
tive parameters proliferates, which complicates their extraction at order 1/m4

b and
higher. Therefore, accessing higher orders in the expansion requires the modelling
of HQE parameters, which has been investigated in [64].

In order to determine |Vcb| from inclusive decays, a simultaneous fit is performed to
not only extract |Vcb|, but also the parameters of the HQE and the quark masses. The
HQE parameters are sensitive to distributions of various kinematic variables such
as the lepton energy, the hadronic mass or the hadronic energy spectrum of B →
Xc`ν decays. Therefore, the spectral moments of these inclusive distributions are
measured to characterize the shapes of these variables, which can also be expressed
in a similar manner as the total rate using the OPE. The expressions describing these
observables are known [65–72]:

• to leading order in the HQE with next-to-next-to-leading order precision in αs,

• up to the HQE of O(1/m2
b) with next-to-leading order in αs,

• up to the HQE of O(1/m5
b) at tree-level with respect to the strong interaction.

By combining all available measurements of the total B → Xc`ν rate, the lepton
energy and the hadronic mass moments [7, 73–78], the non-perturbative HQE pa-
rameters and |Vcb| can be determined by carrying out a global fit [79, 80]. A detailed
overview of this method and various measurements of spectral moments from dif-
ferent experiments is given in [42].

2.3 Current status of |Vcb| (and beyond!)

The current world averages of |Vcb| from exclusive and inclusive determinations
are [3]:

|Vexcl.
cb | = (39.25± 0.56)× 10−3 , (2.80)

|Vincl.
cb | = (42.19± 0.78)× 10−3 , (2.81)

where the total uncertainty is the sum of both experimental and theoretical contribu-
tions. Both world averages exhibit a disagreement of approximately three standard
deviations with one another. This disagreement between both measurements is lim-
iting the reach of current searches for loop-level new physics in the CKM sector of the
SM2. Recent measurements of exclusive |Vcb| tend to agree better with the inclusive
value, however the uncertainties of these values also tend to be larger. The current
inclusive |Vcb| average is measured with a relative precision of approximately 2%,
which is dominated by the theoretical uncertainty including an additional 1.4% to
account for missing higher order corrections [63, 82].

An alternative method for the extraction of inclusive |Vcb| is proposed in [6]: by ex-
ploiting a symmetry within the HQE, known as reparametrization invariance (RPI)3,
the coefficients of different HQE operators can be linked forming linear combina-
tions of the most general HQE parameters. Thus, the number of independent param-
eters for specific observables, especially total decay rates, are drastically reduced.

2See for example [81].
3A textbook example is given in [24].
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The calculated reduced set involves only three parameters up to order 1/m3
b, while

only five additional inputs are necessary once the contributions for order 1/m4
b are

included. New measurements are needed to determine this reduced set of eight
parameters, as the key prerequisite that gives rise to the RPI in the total rate is vio-
lated in measurements of moments of lepton energy, hadronic mass, and hadronic
energy spectra. For semileptonic B → Xc`ν decays, the q2 spectrum is found to be
the unique observable that satisfies the RPI requirement. Since the lepton energy
is not a RPI quantity, the reduction of parameters using the proposed strategy only
works by measuring the moments of the q2 distribution without a selection on the
lepton energy, or by imposing progressively increasing requirements directly on the
q2 distribution. Furthermore, the lowest requirement should preferably be set as low
as possible to not only ensure the selection of an inclusive B → Xc`ν sample, but to
also reduce the theoretical uncertainties. Combining measurements of the moments
of the q2 distribution with the alternative setup of the HQE would allow and extrac-
tion of |Vcb| up to an order of 1/m4

b without the modelling of higher orders, resulting
in a complementary and fully data-driven determination.
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Chapter 3

The Belle Experiment at the
precision frontier

In order to investigate the SM in the search of a possible, more fundamental theory,
a complementary strategy involving several approaches is carried out by physicists.
First, the “energy frontier” experiments make use of powerful colliders to accelerate
particles to unprecedented energies. The main goal of these experiments is to search
for new, heavy particles or interactions that have thus far eluded detection. Next, at
the “cosmic frontier” the universe itself serves as a laboratory by utilising satellites
or ground based telescopes. Finally, the “intensity frontier” experiments create low
energy, albeit intense, beams to search for deviations from the SM with high preci-
sion measurements, or search for new physics by studying rare processes.

An international collaboration known as the Belle Experiment played a key role
in the intensity frontier by successfully establishing CP violation in the BB̄ sys-
tem. The main goal of this experiment was to study CP violation in the flavour
sector as well as study rare or forbidden B meson decays. The Belle Experiment
was conducted at the High Energy Accelerator Research Organisation (KEK), which
is located in Tsukuba, Japan. An electron-positron asymmetric-energy accelerator
known as KEKB allowed the collection of the world’s largest sample of Υ(4S) energy
data by the Belle detector during the course of its lifetime from 1999 to 2010. Sub-
sequently, a total of 711 fb−1 integrated luminosity, corresponding to 772 million B
mesons, was produced at KEKB leading to the aptly named B-factory. Belle’s legacy
as a B-factory was only recently superseded by its successor, Belle II, which broke
the world record of the total collected instantaneous luminosity in June 2020 [83].

This chapter presents a brief overview of the KEKB accelerator facility, followed by
a description of the Belle detector and its main detector sub-systems.

3.1 The KEKB Accelerator

The KEKB accelerator complex comprises an injector line and two storage rings with
a circumference of 3 km. Furthermore, the injector line consists of two linear ac-
celerators (LINAC), which are connected by a 180◦ bending magnet. A schematic
overview of the accelerator infrastructure at KEKB is shown in Figure 3.1. The fol-
lowing section briefly describes the accelerator complex and is a summary of [84].
Additionally, an overview of the KEKB accelerator is also given in [85]. Furthermore,
the subsequent section on luminosity is a summary of the concepts described in [86]
and [87].
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FIGURE 3.1: A schematic of the KEKB accelerator complex [88].

The process begins by producing electrons with an electron gun. In order to cre-
ate positrons the electron beam with an energy of 3.7 GeV is targeted at a tungsten
plate. Next, the electrons are accelerated to 8 GeV, while the captured positrons are
accelerated to 3.5 GeV. Subsequently, the electron and positron beams are separated
and injected into the High Energy Ring (HER) and Low Energy Ring (LER), respec-
tively. The maximal current reached in each storage ring is 1.6 A for HER and 1.1 A
for LER, while each beam consists of approximately 1584 individual bunches. These
two particle beams follow opposing trajectories and may collide at a single point,
known as the interaction point (IP), at a beam crossing angle of 11 mrad to reduce
beam background.

Neglecting the electron mass, the components of the beam four-momentum can be
written as follows:

pH =


EH
0

EH sin θbeam
EH cos θbeam

 and pL =


EL
0
0
−EL

 (3.1)

Therefore, using an invariant mass of P = pH + pL the resulting centre of mass
energy can be estimated as
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FIGURE 3.2: The Feynman diagram of the production and decay of
the Υ(4S).

√
s =

√
Pµ pµ (3.2)

=
√

2EHEL(1 + cos θbeam)

≈ 2
√

EHEL

≈ 10.58 GeV.

Here, the resulting centre of mass energy corresponds to the Υ(4S) resonance: a bb̄
state which decays via the strong force almost exclusively to a BB̄ meson pair [89].
Figure 3.2 shows the Feynman diagram of the production and decay of the Υ(4S)
resonance. Due to the asymmetry of the beam energies, the created final states ex-
perience a Lorentz boost of βγ = 0.425 in the forward direction with respect to the
laboratory frame. Consequently, the average flight length of the two B mesons is in-
creased by approximately 200 µm, which simplifies the separation of the two decay
vertices.

The KEKB accelerator facility was not only designed to operate at the centre of mass
energy of the Υ(4S) resonance, but also additional Υ(nS) resonances. Cross sections
of different Υ(nS) resonances, originally measured by the CLEO collaboration [90],
are given in Figure 3.3. In the context of this thesis, however, only the Υ(4S) res-
onance is of importance. Electron-positron collisions not only produce Υ(nS) reso-
nances, but also various non-resonant processes. The largest of these background
processes is light-quark production e+e− → qq̄ (q = u, d, s, c) and is often referred to
as “continuum”. Further additional processes that might occur are: Bhabha scatter-
ing, tau and muon pair production and two-photon events.

Since the mass of the Υ(4S) is only marginally larger than the mass of the two
B mesons, no additional particles are produced during the hadronization of the b
quarks in the decay of the Υ(4S). Furthermore, in the centre of mass frame of the
Υ(4S) system the two B mesons are produced back-to-back with a momentum of
pB ≈ 320 MeV [42], i.e. nearly at rest production. This kinematic property is exclu-
sive to the Υ(4S) resonance. Due to the precisely known initial state, coupled with
the knowledge that each event will produce exactly two B mesons, this setup pro-
vides an experimentally clean environment to study B mesons decays with lower
backgrounds than generally encountered at hadron colliders. B-factories are unique
laboratories where rare B meson decays containing neutrinos in the final states may
be precisely measured, due to the exact knowledge of initial and final states.
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FIGURE 3.3: The scan of the first Υ(nS) resonances measured by the
Cleo Collaboration [90].

Given a specific cross section for a process of interest, the rate of interactions pro-
duced per second can be described by:

dN
dt

= Lσ . (3.3)

In this particular case dN/dt corresponds to the rate of e+e− collisions, while σ is the
interaction cross section for Υ(4S) production at the Υ(4S) resonance energy. The
instantaneous luminosity, denoted as L, refers to the number of collisions occurring
at an interaction point of a particle collider per unit time, per cross sectional area, and
is therefore useful to characterize the performance of an accelerator. For beam-beam
collisions, the instantaneous luminosity can be expressed as follows:

L = f n
N1N2

A
(3.4)

where f is the rate per second that n number of bunches, consisting of N1 and N2
particles in opposing beams with overlapping area A collide. Assuming equal beam
parameters and flat beams, this expression is re-parameterized at KEKB as [91]

L =
γ±
2ere

I±ζy±

β∗y±
RL
RζY

, (3.5)

where γ, e and re are the Lorentz factor, the elementary electric charge and classi-
cal electron radius. The beam current, beam-beam parameter and the vertical beta
function at the point of interaction are denoted as I, ζy and β∗y, while the suffix ±
indicates the electron (−) or positron (+) beam. Lastly, the parameters RL and RζY
represent geometrical reduction factors for the luminosity and the beam-beam pa-
rameter.
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The aim of the operation of a particle collider is to optimise the integrated lumi-
nosity, which is defined as the maximum achieved luminosity. The total integrated
luminosity can be obtained directly from the instantaneous luminosity using the fol-
lowing equation [87]:

Lint =
∫ T

0
L(t′)dt′ (3.6)

where the integral is taken over the total amount of sensitive time, excluding pos-
sible periods of dead time. Rather than interrupting the facility’s data taking oper-
ations to “fill” the two storage rings, the injector line continuously injects the rings
with their respective electron and positron beams. Keeping the beam currents in the
storage rings nearly constant during the experiment allows for nearly uninterrupted
data acquisition with the Belle detector.

An accelerator’s energy and luminosity are the most important figures in experi-
mental accelerator physics [86]. The peak design luminosity of KEKB is of the order
1034 cm−2s−1 and this goal was not only reached in 2004, but even exceeded. A
maximum peak luminosity of L = 2.11× 1034 cm−2s−1 was achieved by the accel-
erator during its run period. With the cross section of Υ(4S) production given by
σΥ(4S) = 1.2 nb, a total of 25 Υ(4S) events were produced every second.

3.2 The Belle detector

The Belle detector is a multi-layered, general purpose detector designed to detect
final state particles as well as their kinematics with high precision, allowing for pre-
cise investigations of B meson decays. It was designed to cover a large solid angle
and is nearly a full 4π detector. Additionally, the detector consists of seven sub-
detector systems that are specialised in the detection of a plethora of different types
of particles. The main components of the Belle detector are the Silicon Vertex De-
tectors (SVD), the Central Drift Chamber (CDC), the Aerogel Cherenkov Counters
(ACC), the Time of Flight Counters (TOF), the calorimeter systems, the muon and KL
detection system (KLM), and lastly the trigger system. A superconducting solenoid
encompasses all sub-detector systems up to the KLM, providing a 1.5 T magnetic
field. The nearly homogenous field covers a a cylindrical volume of 4.4 m in length
and 3.4 m in diameter. Additionally, the iron structure of the Belle detector serves
as a return path for the magnetic field, as well as absorber material for the KLM. A
schematic of the Belle detector can be seen in Figure 3.4 which has been sliced in
order for each of the main components to be visible.

This section will provide a brief summary of the main sub-detectors. The following
sections are based on the comprehensive descriptions of the Belle detector and its
sub-components found in [92].

3.2.1 Coordinate system

Within the Belle detector a right-handed coordinate system is used with the nominal
IP taken as the origin: the x-axis points horizontally away from the IP, the y-axis
points directly upwards and the z-axis points along the beam tunnel in the direction
of the electron beam. The polar angle θ is subtended from the positive z-axis, while
the azimuthal angle φ is subtended from the positive x-axis and lies in the x − y
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FIGURE 3.4: A sideview of the Belle detector, highlighting the main
sub-components [92].

plane. Cylindrical coordinates are used in this plane, where the radius is measured

from the origin as r =
√

x2 + y2 .

3.2.2 Interaction Point

The beam pipe encloses the IP and maintains the accelerator vacuum. Since the
main limiting factor of the resolution on the z-vertex position is multiple Coulomb
scattering of particles originating in the beam pipe, the material budget at the inter-
action region is minimised. To this end, the material of the beam pipe is changed
from aluminium to a double-wall beryllium cylinder. Each wall has a thickness of
only 0.5 mm, while a 2.5 mm gap between the walls is constantly flushed with he-
lium gas for cooling purposes. The cooling is crucial to the operation of the SVD,
since the vertex detectors must be placed as close to the IP as possible to improve
the vertex resolution. However, the close proximity to the beam pipe, which reaches
beam-induced heating of several hundred watts, might damage the detectors with-
out constant cooling.

3.2.3 Silicon Vertex Detector

Not only is the SVD designed to precisely measure the vertices of B meson de-
cays, but it also aids the CDC in charged particle tracking. Two different designs
of the SVD were deployed during the lifetime of the Belle detector. The first version,
SVD1, covered a region of θ ∈ [23◦, 140◦] and was used until July 2003, after which
it was replaced with the second version, SVD2, which covered a larger region of
θ ∈ [17◦, 150◦].

Both versions of the SVD measure incident charged particles by employing double-
sided silicon strip detectors (DSSD): a p-n junction that is operated under a reverse
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FIGURE 3.5: Schematic view of a DSSD [93].

bias of 75 V to a create full depletion zone. A charged particle traversing through the
DSSD liberates electrons from the valence band into the conduction band, creating
electron-hole pairs along its trajectory. These electron-hole pairs induce currents in
the p+ and n+ strips that are situated along the surface of the bulk, on directly op-
posing sides of the DSSD. A DSSD has the dimensions of 57.5× 33.5× 0.3 mm3 and
consists of 1280 sense strips with 640 readout pads on each side. An illustration of
the operation of a DSSD is depicted in Figure 3.5.

The first version of the detector, SVD1, consists of three concentric layers arranged in
a cylindrical barrel structure placed at radii of 30, 45.4 and 60.5 mm from the IP. Each
layer in turn comprises 8, 10 and 14 ladders in the inner, middle and outer layers,
respectively. Furthermore, each ladder contains two to four DSSDs. Therefore, the
first version of the detector contains a total of 102 DSSDs together with a total of
81920 readout channels. On the other hand, the second version, SVD2, includes a
fourth layer in order to allow for the reconstruction of charged tracks by making use
of only SVD hits. Furthermore, the radius of the beam pipe is also reduced from 20
to 15 mm in order to place the SVD even closer to the IP. The layers of SVD2 are then
located at radii of 20, 43.5, 70 and 88 mm. With the additional layer, SVD2 consists of
138 DSSDs and a total number of readout channels of 110592. A detailed description
of the SVD upgrade can be found in [94].

3.2.4 Central Drift Chamber

The CDC is the principle component of the Belle tracking system: its main design
purpose is to measure the trajectories of charged particles, as well as the specific
ionisation energy loss, dE/dx. Due to the presence of the 1.5 T magnetic field, pro-
duced by the superconducting solenoidal coil, which completely immerses the CDC,
charged particles follow a helicoidal trajectory when traversing through the detec-
tor. Additionally, the curvature of the particle’s track is inversely proportional to the
momentum of the particle.
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FIGURE 3.6: Cell structure in the cathode sector of the Central Drift
Chamber [92].

Due to the asymmetric beam energies, the centre of mass system carries a non-zero
momentum in the z direction. Consequently, the CDC is constructed asymmetri-
cally as well and is divided into three geometric sections: the cathode, the conical-
shaped inner and the toroidal-shaped outer, which ensures an angular coverage of
θ ∈ [17◦, 150◦]. The CDC consists of 32 axial layers and 18 small angle stereo layers
each providing different spatial information of a charged particle’s trajectory. The
main purpose of the axial layers is to measure the r− φ position. On the other hand,
stereo layers are inclined at a small angle with respect to the beam pipe and measure
the z position in conjunction with the axial layers. The spatial resolution in r− φ is
130 µm, and is better than 2 mm in the z direction. Together with the three cathode
strip layers the CDC contains a total of 8400 drift cells. Each drift cell, in turn, com-
prises a positively biased sense wire which is surrounded by eight negatively biased
field wires strung along the beam direction. Figure 3.6 provides an illustration of
the cell structure in the cathode section of the detector. In oder to minimise mul-
tiple Coulomb scattering, the cells are immersed in a 50% Helium and 50% Ethane
gas mixture, which has a relatively long radiation length of 640 m. Additionally,
the Ethane component of the mixture increases the specific ionisation energy loss
resolution, which in turn improves the particle identification capabilities of charged
particles.

A particle traversing through the CDC ionises the gas mixture along its path. The
ionised electrons and positive ions then proceed to drift toward the anode and cath-
ode sense wires, respectively, instigating further ionisations resulting in electron and
positive ion avalanches. The electrons are collected by the sense wire and a hit is
recorded by the CDC readout electronics. Due the presence of an homogenous elec-
tric field within the detector, the ionised particles accelerate until a saturation ve-
locity is reached. At this point the energy gained from the electric field is equalled
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FIGURE 3.7: Truncated mean of dE/dx vs. momentum. The points
are measurements taken during accelerator operations, while the

lines are the expected distributions for each different particle type.

by the energy lost from interaction with the surrounded gas. Once this saturation
velocity is reached, a linear correlation exists between the drift time of the ionised
particle and its velocity. Therefore, the exact determination of the incident time di-
rectly leads to an accurate determination of a particle’s position. The axial wires
provide transverse momentum (pT) information, while the small-angle-stereo lay-
ers provide z-axis information.

The hit amplitude recorded by the sense wire is used to determine the total energy of
ionisation and, in turn, a charged particle’s energy loss due to ionisation in the drift
cell. Since the ionisation energy loss is dependent on the velocity of a particle at a
given momentum, dE/dx varies with respect to the mass of the particle. For each
CDC hit, the ionisation loss is measured along the trajectory and combined in order
to determine the truncated average dE/dx of the track. The truncated mean dE/dx
vs different particle’s momenta observed in collision data is shown in Figure 3.7. The
CDC distinguishes pions from kaons for momenta up to 0.8 GeV with a separation
of 3σ.

3.2.5 Time of Flight Counters

The TOF measures the velocity of particles in a intermediate momentum range of
0.8 GeV to 1.2 GeV. Approximately 90% of the tracks produced in Υ(4S) decays
fall into this momentum range. The incident particle’s velocity is measured by de-
termining its time-of-flight, as well as the flight length which is provided by the
CDC’s measurement of track parameters. The particle’s velocity, in combination
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with the momentum provided by the CDC, allows for the determination of the par-
ticle’s mass, and therefore, the type.

The TOF is based on the concept of scintillation: the property of certain chemical
compounds to emit short light pulses after excitation by the passage of charged parti-
cles or by photons of high energy. Consisting of 64 concentrically arranged modules
as a radius of 1.2 m from the IP, the TOF covers a polar angle range of θ ∈ [34◦, 120◦].
Each module comprises two trapezoid-shaped time of flight counters as well as one
Trigger Scintillation Counter (TSC) separated by a 1.5 cm gap. Photomultiplier tubes
placed directly on the TOF and TSC counters collect the scintillation light, which en-
ables the sub-detector to measure the time of flight of a particle originating at the IP
up until it’s passage through the scintillator. Time intervals are measured within a
precision of 100 ps. Primarily dedicated to the discrimination between kaons and pi-
ons, the subsystem’s separation power is better than 3σ for momenta below 1.2 GeV.

3.2.6 Aerogel Cherenkov Counter

The final component of the particle identification system, the silica ACC extends
the momentum coverage beyond the reach of the dE/dx measurements in the CDC
and the time of flight measurements from the TOF. As suggested by the subsystem’s
name, the ACC’s functionality relies on the Cherenkov principle: when a charged
particle’s velocity exceeds the speed of light in the medium it is traversing through,
it emits Cherenkov radiation. As a result the emitted light appears as a coherent
waveform at a fixed angle with respect to the particle’s trajectory. The threshold
energy for emitting Cherenkov photons can be related to a particle’s velocity by,

|v| ≥ c
n

(3.7)

where n is the refractive index of the medium. Therefore, selecting media with ap-
propriate refractive indices allows for discrimination between pions and kaons. For
the ACC, the refractive index was chosen such that pions with momenta between 1.2
and 3.5 GeV produce Cherenkov radiation, while kaons within the same momentum
range do not.

The ACC is divided in two distinct regions, namely the barrel and the endcap, and
is designed to cover a polar angle range of θ ∈ [17◦, 127◦]. While the barrel contains
960 counter modules segmented into 60 cells in the φ direction, the forward endcap
contains 228 counter modules arranged into five concentric layers. An ACC module
consists of five Aerogel tiles that are stacked inside a thin aluminium box. In order to
allow for efficient detection of Cherenkov light, photomultiplier tubes are attached
directly to the aerogel boxes.

Since pions are some of the most ubiquitous particles in hadronic events, the ACC’s
performance is determined by its ability to identify kaons amongst pions. The ACC
provides good K/π separation, with a kaon efficiency of 73% and a pion-to-kaon
fake rate of 7% [95].

3.2.7 Calorimeters

A calorimeter system provides energy and position measurements of electrons and
photons originating from B meson decays. The Belle calorimeter system consists
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of two main calorimeters: the electromagnetic calorimeter (ECL) and the extreme
forward calorimeter (EFC). Both calorimeters make use of a sampling methodology
based design, in which the detectors consist of absorber and active materials. Ab-
sorber materials are usually of high density and aid in particle shower development,
while the active materials collect and measure the deposited energy.

The main purposes of the ECL is the detection of photons, as well as the identifi-
cation of electron tracks. It consists of a highly segmented array of 8736 Caesium
Iodide crystals doped with Thallium (CsI(TI)). Since the Thallium shifts the excita-
tion light to the visible spectrum, a pair of silicon photodiodes are placed at the rear
of each crystal to collect the light. A typical crystal is shaped like a tower with a
length of 30 cm, which is equivalent to 1.62 radiation lengths (X0) for electrons and
photons. This length was specifically chosen in order to minimise energy resolu-
tion deterioration at high energies due to shower leakage at the back of the crystal.
Additionally, the crystals are designed such that a photon entering the centre of a
crystal would deposit 80% of its energy in that crystal. The crystals are arranged in
three sections: the forward end cap (θ ∈ [12.4◦, 31.4◦]), the barrel (θ ∈ [32.2◦, 128.7◦]),
and the backward end cap (θ ∈ [130.7◦, 155.1◦]). A crystal in the barrel region has
a forward and backward face measuring an area of 55× 55 mm2 and 65× 65 mm2,
while crystals in the forward and backward end caps vary from 44.5− 70.8 mm and
from 54− 82 mm, respectively. In order to prevent particles from escaping through
gaps between the crystals, the barrel region’s crystals are slightly tilted at an angle of
approximately 1.3◦ in the θ and φ directions. The ECL has the capability to measure
photon energies up to a lower limit of 50 MeV. Additionally, since pions deposit less
energy in the crystals than electrons, the ECL plays a crucial role in distinguishing
electrons tracks from hadrons. The rate of mis-identifying a pion as an electron is
less than 1% for momenta above 2 GeV.

The EFC extends the range of photon and electron calorimetry energy measurements
to the extreme forward and backward regions. These regions correspond to a polar
angle of θ ∈ [6.4◦, 11.5◦] in the forward direction and θ ∈ [163.3◦, 171.2◦] in the
backward region. Additionally, the EFC is also instrumented as a beam monitor
for KEKB, as well as a luminosity monitor for Belle. It is located on the front faces
of the KEKB accelerator compensation solenoid magnet cryostats and completely
surrounds the beam. Due to its proximity to the IP, the EFC is exposed to a high
dose of radiation. Consequently, the EFC is constructed from radiation hard Bismuth
Germanate in order to ensure a long lifetime of the sub-detector system. For both
forward and backward cones, the detector is separated into 32 azimuthal and 5 polar
sections. Each crystal is tower shaped and is tilted towards the IP.

3.2.8 KLM Detector

Located in the outermost layer of the Belle detector, the KLM is designed to iden-
tify KL mesons and muons with high efficiency for momenta greater than 600 MeV.
Long-lived neutral particles like KL mesons originating from the IP will typically
traverse undetected through the inner sub-components of the detector before reach-
ing the KLM. When a KL meson interacts with matter, a shower of ionising parti-
cles is created. The KLM induces these showers by providing a minimum of 3.9
interaction lengths, while the ECL provides an additional 0.8 interaction lengths.
While the shower position enables the determination of the flight direction of the
KL, fluctuations in the total shower size prevents an accurate energy measurement.
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FIGURE 3.8: Cross section of a KLM super layer.

On the other hand, since muons neither interact strongly nor suffer from signifi-
cant Bremsstrahlung radiation loss, given sufficient energy these particles will pass
through the KLM. Therefore, any track matched with a particle traversing several
layers of the KLM may be identified as a muon. Furthermore, muons may be sep-
arated from charged hadrons, particularly K± and π±, by comparing the energy
deposited by the charged tracks along their paths. In contrast to strongly interacting
particles, muons deposit a smaller fraction of their energy prior to reaching the KLM.
Muons with momenta below 500 MeV do not reach the KLM and must be discarded.

In order to detect the passage of charged particles, the KLM makes use of Resistive
Plate Chambers (RPC). As their name suggests, RPCs consist of two resistive plates
separated by a gas filled gap. This gap between the plates is held at an uniform
electric field. A typical detector layer consists of a super layer of two glass-electrode
RPC modules, interleaved between high voltage biased plates, insulators and exter-
nal pickup strips. The layout of a super layer is shown in Figure 3.8. The entire
KLM comprises alternating layers of detector super layers and thick iron plates with
a thickness of 4.7 cm. The barrel region is octagonally shaped and consists of 15 de-
tector layers and 4 iron layers, while the forward and backward regions consist of
14 detector layers each. In total the barrel and end cap regions contain 240 and 122
RPC modules, respectively.

An ionising particle traversing the gas filled gap in the single layer RPC induces a
streamer in the gas which results in a local discharge of the plates. The discharge, in
turn, induces a signal on the external orthogonal pickup strips located on either side
of the pair of RPCs. These pickup strips, which are typically 5 cm wide, provide φ− z
and θ− φ information in the barrel end cap regions, respectively. The KLM provides
a total coverage of θ ∈ [20◦, 155◦] and an angular resolution from the IP that is better
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FIGURE 3.9: The Level-1 trigger system for the Belle detector.

than 10 mrad. Additionally, the muon identification efficiency is greater than 90%
for momenta greater than 1.5 GeV, with a mis-identification rate smaller than 5%.

3.2.9 Trigger and Data Acquisiton System

In the Belle experiment, the main interesting physics events are considered to be
e+e− → Υ(4S), e+e− → cc̄, e+e− → ττ̄ processes. Additionally, events of interest
also include two photons (e+e− → γγ), Bhabha (e+e− → e+e−) and µ-pair pro-
cesses, which are used for luminosity measurements as well as detector calibration.
The main sources of background events stem from interactions between the beams
and residual gas molecules in the beam pipe, synchrotron radiation, and cosmic ray
events. At an instantaneous luminosity of 1034 cm−2s−1 the trigger rate for physics
events of interest is around 100 Hz, while the trigger system maintains a total trigger
rate of 200 Hz. Since the rate of beam background events is sensitive to the actual
accelerator conditions, it is difficult to calculate a reliable estimate. The Belle trigger
system consists of the Level-1 (L1) hardware trigger and the Level-3 (L3) and Level-4
(L4) software triggers.

An overview of the L1 trigger system is shown in Figure 3.9. The L1 trigger consists
of sub-trigger systems that are governed by a single central trigger system called
the Global Decision Logic (GDL). The GDL receives information from the individual
trigger systems of each of the detector sub-systems within 1.85 µs after a collision
event in order to issue a global trigger decision 2.2 µs after a collision. Sub-detector
triggers are based on track or cluster information. The CDC provides r − φ and
r− z track signal trigger signals, while the EFC triggers on Bhabha and two-photon
events. The ECL provides two complementary triggers based on the total energy
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FIGURE 3.10: Overview of the Belle DAQ system.

deposits and cluster counting of crystal hits. Furthermore, the KLM provides a high
efficiency trigger for muon tracks. Timing information of the event is provided by
the TOF, however when unavailable the ECL is used for the trigger timing. The
combined efficiency of the L1 trigger is 99.5%. A more detailed description can be
found in [96].

Once the sequence control (SEQ) receives a trigger decision from the GDL, the sub-
detector information from the L1 triggered events is collected by the Data Acqui-
sition (DAQ) system. An overview of the DAQ system is shown in Figure 3.10.
The system is segmented into 7 sub-systems dedicated to each of the different sub-
detectors and running in parallel. An event-builder combines data from each sub-
system into a single event record. The resulting output is transferred to an online PC
farm, where the raw data is converted into offline data format and processed by the
L3 trigger. The purpose of the L3 trigger is to further reduce background events. A
fast track fitting algorithm is used to find tracks originating from the IP. It requires
at least one track with an impact parameter of less than 5 cm and the total energy
deposit in the ECL to be greater than 3 GeV. The L3 trigger retains physics events
of interest with 99% efficiency, while reducing the total event rate by approximately
40% − 50% [97].

At the next step of the process, the L4 trigger is applied to the raw data. To pass
this filter, events are required to have at least one track with pT > 300 MeV and an
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TABLE 3.1: Summary of the data sets recorded with the Belle detector
at KEKB [100].

On-peak Off-peak Number of
Resonance luminosity ( f b−1) luminosity ( f b−1) resonances

Υ(1S) 5.7 1.8 102 × 106

Υ(2S) 24.9 1.7 158 × 106

Υ(3S) 2.9 0.25 11 × 106

Υ(4S) 711.0 89.4 772 × 106 BB̄
Υ(5S) 121.4 1.7 7.1 × 106 BsB̄s

impact parameter in r and |z| to be less than 1 cm and 4 cm, respectively. Further-
more, a total energy deposit in the ECL greater than 4 GeV is also a requirement.
Events passing these selection criteria are converted from raw data to fully recon-
structed data and are stored in files known as Data Summary Tapes (DST) in the
PANTHER [98] file format.

The large quantities of data are further reduced to isolate specific physics processes
of interest and stored in Mini-DST (MDST) files. The analysis presented in this work
makes use of a skim, which imposes loose requirements on B meson events. The
production of the MDST files as well as the analysis of Belle data are carried out in
the Belle Analysis Framework (BASF) [99].

3.3 Recorded data set

The Belle detector recorded a data sample of L ≈ 1 ab−1 during its successful 10-
year run period. While the largest fraction of the data sample was recorded at the
Υ(4S) resonance, data at the other Υ(nS) resonances were also recorded. In order to
study non-resonant contributions, smaller data samples were recorded at energies
below the energy of each of the resonances and are referred to as “off-resonance”
data samples. A summary of the collected data sets is given in Table 3.1.

To carry out precise measurements of rare semileptonic B meson decays, or to prop-
erly investigate possible physics processes beyond the SM, it is crucial to compare
data measured by the Belle detector subsystems to theoretical predictions. This can
be achieved by simulating data samples based on the Monte Carlo (MC) procedure
–hence the name of MC samples for simulated data [101]. These MC samples can
also be used to reflect the response and performance of the current detector, by com-
paring well-understood predictions of SM processes with the estimations produced
from full detector simulations.

In order to generate MC samples two key components are required: an event gen-
erator and a detector response simulator. Belle makes use of the EvtGen [102] event
generator to simulate events of Υ(4S) decays, while hadronic continuum events are
produced with PYTHIA [103]. Event generators create a list of particles from e+e−

interactions, as well as subsequent decays, according to a decay table. This decay
table contains information regarding the decay models, modes, branching fractions,
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lifetimes, etc., of all possible particles involved in the decay of the Υ(4S) and sub-
sequent decays. The generated list, containing information such as particle’s four
vector momentum, is passed on to the detector response simulator. In order to sim-
ulate particle interactions with the detector, GEANT3 [104] is employed to model
the geometry of the detector and particle interactions with matter. Furthermore,
electromagnetic final-state radiation, where photons are radiated into the final state
B→ X`νγ, is simulated using the PHOTOS package [105, 106].

Since the existing Belle MC samples were generated circa 2010, the branching ratios
and theoretical models of key processes are outdated. Furthermore, various particle
properties need to be updated to the latest values for more accurate modelling of
both signal and background processes. The details of the updated or, in some cases,
newly produced MC samples are described in the following sections.

3.3.1 Monte Carlo samples

The official MC samples provided by the Belle Collaboration are produced in several
sets. These sets are referred to as “streams” and correspond to a total integrated lu-
minosity equivalent to that of the data sample recorded by the Belle detector. The ad-
vantages of incorporating several streams for an analysis can range from overcoming
statistical limitations to the validation of analysis and fitting procedures. Addition-
ally, the produced MC samples are generated to be dependent on specific experiment
numbers to take into account variable detector performance and beam conditions for
each experimental run. This section describes the simulated signal and background
processes that are used in this analysis. The modelling of B → D∗∗`ν decays, non-
resonant B → Xc`ν processes, and B → Xu`ν decays is treated identically to the
detailed description found in [107].

Generic: This sample contains all possible processes that may occur in an e+e− →
Υ(4S)→ BB̄ event, where the B meson decays via the dominating quark-level
transition b → cW. Therefore, both B → D`ν and B → D∗`ν decays, which
form the largest signal contribution in the analysis, are present in this sample.
The generic MC sample consists of a total of ten streams that is separated into
decays of neutral B0 mesons, and charged B± mesons.

B → D∗∗`ν: Since the particle masses and widths of the four orbitally excited
charmed mesons (Section 2.2.2) are outdated in the existing generic MC, new
samples are generated using the values from [30] to replace the B → D∗∗`ν
events in the generic sample. The branching fraction values are adopted from [3]
and are corrected to account for missing isospin-conjugated decay modes by
following the prescription proposed in [53]. The branching fractions of the
subsequent D∗∗ decays to final states containing charged and neutral pions
are also considered in the event simulation. As previously discussed, current
available measurements only target D∗∗ 0 → D(∗)+ π− decay modes. There-
fore, the missing isospin modes are taken into account with a factor of

fπ =
B(D∗∗ 0 → D(∗)−π+)

B(D∗∗ 0 → D(∗)
π)

=
2
3

. (3.8)

Furthermore, the measurements of the B → D∗2 `ν process given in [3] are
converted to be only with respect to the D∗ 0

2 → D∗−π+ final states, while
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D∗ 0
2 → D−π+ contributions are taken into account by applying a factor of

of [30]

fD∗2
=
B(D∗ 0

2 → D−π+)

B(D∗ 0
2 → D∗−π+)

= 1.54± 0.15 . (3.9)

The world average of the B→ D∗1 `ν decay is given by a combination of several
measurements in [3], however poor agreement is observed. Notably, the mea-
surement of [58] is in conflict with the measured branching fractions of [59]
and [74]. The conflicting measurement is thus excluded and a new average is
calculated for this analysis:

B(B+ → D∗ 0
1 (→ D∗−π+) `+ν`) = (0.28± 0.06)× 10−2 . (3.10)

This value deviates slightly from the average given in [30], which not only ex-
cludes the measurement of [58], but also [74]. The world average of B→ D1 `ν
does not consider contributions from three-body decays of the form D1 →
Dππ. These final states are taken into account by making use of a factor [108]:

fD1
=
B(D1 → D∗−π+)

B(D1 → D0π+π−)
= 2.32± 0.54 . (3.11)

In addition, the contribution of D1 → Dππ is subtracted from the measured
non-resonant plus resonant B → Dππ`ν̄ branching fraction of [109]. In order
to account for the missing isospin-conjugated modes of the three-hadron final
states, the prescription from [109] is adopted. An average isospin correction
factor is quoted to be:

fππ =
B(D∗∗ 0 → D(∗) 0

π+π−)

B(D∗∗ 0 → D(∗)
ππ)

=
1
2
± 1

6
. (3.12)

Furthermore, the following constraints are implicitly assumed:

B(D∗2 → Dπ) + B(D∗2 → D∗π) = 1 ,

B(D1 → D∗π) + B(D1 → Dππ) = 1 ,

B(D∗1 → D∗π) = 1 , and B(D∗0 → Dπ) = 1 . (3.13)

For the remaining B→ D(∗) π π `+ ν contributions the measured value of [109]
is implemented. A summary of the masses and widths used in the event gen-
eration of the new B → D∗∗`ν sample is given in Table 3.2, while the updated
branching fractions are shown in Table 3.3.

Non-resonant B → Xc`ν: The remaining “gap” between the sum of all consid-
ered exclusive modes and the inclusive B → Xc`ν branching fraction is filled
in equal parts with B → D η `+ ν and non-resonant B → D∗ η `+ ν decays that
are not included in the current, official generic Belle MC. The final states are
simulated assuming that they are produced by the decay of two intermedi-
ate broad resonant states, D∗∗gap, with masses and widths identical to D∗0 and
D∗1 . Currently, no experimental evidence suggests the existence of an addi-
tional broad state in semileptonic transitions, however this estimate provides
a better kinematic description of the initial three-body decay, B → D∗∗gap `ν,
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TABLE 3.2: Masses and widths of the four different D∗∗ mesons used
in the event generation of the new B → D∗∗`ν sample. The values
are taken from [30], while the values given in parentheses denote the
original values that were used in the simulation of the official Belle

MC.

Charged Neutral

D∗∗ Type Mass (GeV) Width (GeV) Mass (GeV) Width (GeV)

D1 2.4230 (2.4270) 0.0200 (0.0280) 2.4208 (2.4222) 0.0317 (0.0189)

D∗2 2.4654 (2.4590) 0.0467 (0.0250) 2.4607 (2.4589) 0.0475 (0.0230)

D∗1 2.4450 (2.4223) 0.2503 (0.4120) 2.4450 (2.4223) 0.2503 (0.4120)

D∗0 2.3000 (2.3080) 0.2700 (0.2760) 2.3000 (2.3080) 0.2700 (0.2760)

than alternative models. An example of an alternative model is based on the
equidistribution of all final-state particles in phase-space, which predicts lower
lepton momenta than expected from semileptonic B decays. Comparisons of
kinematic distributions for the different B → D∗∗gap `ν models are shown in
Figure 3.11. A summary of the assumed branching fractions for the above-
mentioned hypothetical decays is given in Table 3.3. Throughout this analy-
sis, an uncertainty of 100% is assumed for these samples. An overview of the
current status concerning the gap between the sum of all exclusive states and
the inclusive branching fraction, together with possible solutions, is detailed
in [60].

Continuum: The generic continuum sample contains simulated events for e+e− →
qq̄ (q = u, d, s, c) processes. A total of six streams are available, which con-
sists of two individual samples containing simulated events for e+e− → cc̄
processes and events with light quarks u, d, and s, respectively. Since the
modelling of quark fragmentation is difficult, analyses with a large number
of continuum background events often rely on the off-resonance data sample
for accurate modelling of these processes.

B → Xu`ν: Semileptonic B → Xu`ν decays are modelled as a mixture of specific
exclusive modes and non-resonant contributions. A method originally pro-
posed by [110], known as the “hybrid” method, is adopted to combine the in-
clusive and exclusive b→ u`ν processes. The implementation of this approach
is described in [111].

3.3.2 Monte Carlo corrections

Since the generation of the official Belle MC, several decay models describing key
signal processes have become outdated, while branching fractions of various signal
and background decays have been measured with much greater precision. Further-
more, different reconstruction and particle identification efficiencies between data
and MC are observed, which led to the overall improvement of the initial detector
response models over the course of the Belle detector’s lifetime. To account for these
shortcomings, the MC samples are corrected by applying event-by-event weights to
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FIGURE 3.11: Comparisons between the different B→ D∗∗gap `ν̄ decay
models for the reconstructed lepton energy in the signal B rest frame
EB
` (upper left), the MX (upper right), and the q2 (bottom) distribu-

tions.

the affected samples or decays. Depending on the type of correction under consid-
eration, these weights are either calculated analytically or obtained through data-
driven methods. The uncertainties on the calculated correction weights are treated
as different sources of systematic errors. An outline of the corrections considered
in this analysis is given in the next sections, while the implementation of the un-
certainties on the correction weights as systematic errors is discussed in Section 5
and 6.

Branching fractions

Due to the presence of numerous different decay channels in the simulated MC sam-
ples, it is simply not feasible to update the branching fractions of all involved pro-
cesses. Rather, the branching fractions of crucial signal processes, as well as dom-
inant background components, are updated to the current world averages quoted
in [3] and [30]. Table 3.3 shows a summary of the updated branching fractions of
semileptonic B → X`ν decays. Furthermore, secondary leptons originating from
semileptonic D meson decays form a large contribution to the secondary lepton
background component. Consequently, the branching fractions of these decays are
scaled to the latest values in [30] (shown in Table A.1), while the uncertainties on
these values are assigned as an additional systematic error on this background com-
ponent.
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TABLE 3.3: The updated branching fractions for the main signal and
background processes. Values of the B → Xc`ν branching fractions
are taken from the world averages given in [3], while the total inclu-

sive B→ Xu`ν branching fractions is from [30].

B Value B+ Value B0

B→ Xc`
+ ν`

B→ D `+ ν` (2.5± 0.1)× 10−2 (2.3± 0.1)× 10−2

B→ D∗ `+ ν` (5.4± 0.1)× 10−2 (5.1± 0.1)× 10−2

B→ D∗0 `
+ ν` (0.420± 0.075)× 10−2 (0.390± 0.069)× 10−2

(↪→ Dπ)

B→ D∗1 `
+ ν` (0.423± 0.083)× 10−2 (0.394± 0.077)× 10−2

(↪→ D∗π)

B→ D1 `
+ ν` (0.422± 0.027)× 10−2 (0.392± 0.025)× 10−2

(↪→ D∗π)

B→ D∗2 `
+ ν` (0.116± 0.011)× 10−2 (0.107± 0.010)× 10−2

(↪→ D∗π)

B→ D∗2 `
+ ν` (0.178± 0.024)× 10−2 (0.165± 0.022)× 10−2

(↪→ Dπ)

ρ(D∗2 → D∗π, D∗2 → Dπ) = 0.693

B→ D1 `
+ ν` (0.242± 0.100)× 10−2 (0.225± 0.093)× 10−2

(↪→ Dππ)

B→ Dππ `+ ν` (0.06± 0.06)× 10−2 (0.06± 0.06)× 10−2

B→ D∗ππ `+ ν` (0.216± 0.102)× 10−2 (0.201± 0.095)× 10−2

B→ Dη `+ ν` (0.396± 0.396)× 10−2 (0.399± 0.399)× 10−2

B→ D∗η `+ ν` (0.396± 0.396)× 10−2 (0.399± 0.399)× 10−2

B→ Xc `
+ ν` (10.8± 0.4)× 10−2 (10.1± 0.4)× 10−2

B→ Xu `
+ ν` (2.2± 0.3)× 10−3 (2.0± 0.3)× 10−3
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FIGURE 3.12: Comparison of the original and reweighted q2 distribu-
tions for B → D`ν (left) and B → D∗`ν (right) decays. The original
MC samples were simulated using the CLN form factor parametriza-

tion (red) that are reweighted to the BGL (blue) model.

Form factor corrections

Since the shapes of kinematic distributions are dictated by the choice of form fac-
tor parametrization for a given kinematic decay model, the correct modelling of
B → Xc`ν decays plays a crucial role in signal and background separation. A mis-
modelling of a decay process may not only result in poor modelling of the distri-
butions that are chosen to be signal extraction variables, but also affect the overall
selection efficiency of the process. Therefore, the main exclusive signal decays are
updated to the latest theoretical models. To this end, event-wise correction weights
are calculated from the normalised differential decay rates of the new and old mod-
els according to the following equation:

w(~v) =
Γold

Γnew

dΓ(~v)new/dv
dΓ(~v)old/dv

. (3.14)

Here, the weight w is a function of a set of kinematic variables ~v, while the differ-
ential decays rates are either determined from analytical expressions or from MC
distributions. An overview of the different reweighting strategies implemented for
different signal decays is given below.

B→ D(∗)`ν: These decays completely dominate inclusive semileptonic B→ Xc`ν
decays and are simulated using the CLN parametrization (Section 2.2.2) with
the HQET2 EvtGen package. However, it has recently become clear that the CLN
parametrization no longer provides an adequate description of the B → D`ν
data from current experiments and is superseded by the model-independent
BGL parametrization. Event-by-event correction weights are calculated us-
ing the library by [112] to evaluate Eqn. 3.14 with the analytical expressions
of the differential decay rates. As previously discussed, the differential de-
cay rate for B → D`ν decays is described by the recoil variable w, defined
in Eqn. 2.41, and only one form factor to a very good approximation. The
most recent form factor central values and uncertainties, obtained from the
fit result in [51], are implemented to determine the weights. For B → D∗`ν
decays, the BGL implementation proposed by [113] is utilised, while using the
form factor central values and uncertainties obtained from the fit results of [52].
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FIGURE 3.13: Comparison of the original and reweighted w distri-
butions for each of the four B → D∗∗`ν decays. The original MC
samples were simulated using the ISGW form factor parametrization

(red) that are reweighted to the LLSW (blue) model.

Here, several parametrizations with different truncations were provided and
the most precise set with the best χ2 value is adopted. Since the differential
rate for B → D∗`ν decays is described completely by four independent kine-
matic decay variables, the reweighting is performed in four dimensions. The
four variables most commonly used are q2 or w together with the three angular
variables, defined in Section 2.2.1 and illustrated in Figure 2.6. Comparisons
of the original and newly reweighted q2 distributions for both B → D`ν and
B → D∗`ν decays are shown in Figure 3.12, while the additional kinematic
variables are shown in Figure A.1.

B → D∗∗`ν and “gap”: The MC samples for the B → D∗∗`ν decays are gen-
erated with the ISGW2 EvtGen package, based on the quark model described
in [114]. This model describes the data poorly and has been superseded by
the LLSW model (Section 2.2.2). Since the differential decay rates for B →
D∗∗`ν decays are not implemented analytically, the ratio given in Eqn. 3.14
is rather estimated from an interpolated ratio. This is achieved by employ-
ing a similar method outlined in [115]. The interpolation is approximated by
creating generator-level MC histograms of the relevant kinematic decay vari-
ables. Since the shape of the reconstructed q2 distribution is the most impor-
tant distribution for this analysis, the generator-level histograms are created
using only one of the kinematic decay variables describing B→ D∗∗`ν decays,
namely the recoil variable w. Furthermore, the range and number of bins used
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to construct the histograms of w vary for each D∗∗ type. In order to deter-
mine these histograms, dedicated B → D∗∗`ν MC samples, corresponding to
one million events, are generated using the ISGW2 and LLSW decay models
for each of the four D∗∗ types. The central values of the LLSW form factor
parameters proposed in [53] are adopted to simulate the new samples. Com-
parisons of the updated q2 distributions for each of the D∗∗ types are shown in
Figure 3.13, while the histogram parameters for each D∗∗ type are summarised
in Table A.2.

As described in Section 3.3.1, the non-resonant B→ Xc`ν contribution is simu-
lated assuming that the final states are the decay products of two intermediate
broad resonant states with masses and widths identical to D∗0 and D∗1 . The ad-
vantage of this model is that these B → D∗∗gap`ν decays are correctly described
by the LLSW form factor parametrization. Therefore, the dedicated gap MC
samples are also updated from the default ISGW2 to the LLSW model by mak-
ing use of the implementation described above.

In order to estimate the systematic uncertainty due to the choice of form factor
parametrization, the experimental correlations between the fitted form factor pa-
rameters must be taken into consideration. To this end, a new basis of orthogonal
parameters is defined that contains uncorrelated uncertainties. Each of the new pa-
rameters corresponds to the eigenvalues λi and eigenvectors ~ei of the covariance
matrix V. This matrix describes the correlations between the central values of the
fitted parameters ~xnom and is usually provided in addition to the fit results. Subse-
quently, a set of one sigma variations is calculated in the newly defined basis with
the equation:

~x±var,i = ~xnom ±
√

λi~ei , (3.15)

These varied parameters are used as inputs for Eqn. 3.14 to calculate sets of varied
correction weights which are, in turn, utilised in the analysis to compute indepen-
dent contributions of systematic uncertainty from each of the form factor parame-
ters.

Particle identification efficiency corrections

Since the identification of charged tracks and neutral clusters is dependent on the
geometry of the Belle detector, differences in the identification efficiency between
the simulated MC samples and data are observed due to inaccurate modelling of the
detector response. In order to take the observed differences into consideration, cal-
ibrations are performed on precisely measured decays, known as control samples,
to provide sets of efficiency corrections that are used to adjust the existing MC sam-
ples. The most important Particle identification (PID) corrections applied to the sim-
ulated MC samples for this analysis are described below, while the algorithms used
to reconstruct and identify various final state particles with information of collision
events recorded by the Belle detector are described in greater detail in Section 4.1.

Lepton PID efficiency: The lepton identification efficiency is studied in [116] by
using a control sample of the two-photon process e+e− → e+e−`+`−. Since
this sample is a clean channel with a low multiplicity of tracks, the efficiency
corrections are validated on a sample with hadrons in the final states, namely
inclusive B → XJ/ψ(→ `+`−). In order to account for different acceptance
regions due to the detector geometry as well as differences due to the track
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momentum, the efficiency corrections are available in bins of lepton momen-
tum p` in the lab frame and polar angle θ. The bin-wise corrections are given
by the efficiency ratio,

Ri =
εdata

i

εMC
i

, (3.16)

where εMC
i and εdata

i are the efficiencies in MC and data, respectively. The
uncertainty associated with the efficiency corrections consists of contributions
stemming from two different sources: a statistical error σstat

i due to the size of
MC and data samples, while the two systematic uncertainties, σ

sys,1
i and σ

sys,2
i ,

stem from the reconstruction of the two decay channels. In order to estimate
the total uncertainty due to the lepton identification correction factors, the bin-
wise efficiency ratios together with their respective uncertainties are used to
create an ensemble of variation ratios. To this end, statistical fluctuations are
simulated by generating varied errors that is randomly drawn from a Gaussian
distribution such that:

∆σstat
i = G(0, σstat

i ) . (3.17)

One the other hand, since the systematic uncertainties are assumed to be fully
correlated across all bins, the total systematic uncertainty is multiplied with a
global scaling factor that is randomly drawn from a unit normal distribution:

∆σ
sys
i = G(0, 1)× σ

sys
i , (3.18)

after estimating the total systematic error by adding the two error sources in
quadrature. Subsequently, sets of varied efficiency ratios are then calculated in
the following manner:

Rvar
i = Rnom

i + ∆σstat
i + ∆σ

sys
i . (3.19)

The corrections are applied to all correctly reconstructed leptons, while the
variation weights are utilised to evaluate the total systematic uncertainty due
to the PID corrections.

Hadron PID and fake rate: The efficiency and fake rate corrections of kaon and
pion identification are investigated [117] by making use of the D∗+ → D0(→
K−π+)π+

slow process. The procedure is similar to the lepton identification ef-
ficiency discussed in the previous section. Furthermore, the mis-identification
rate of hadrons reconstructed as leptons is studied by [118] using the same con-
trol sample. Since this decay has a low available phase space, the pions that
originate from the D∗ decay have a low momentum in the range of 50 MeV
< pπslow

< 200 MeV in the lab frame and are thus known as slow pions. A clear
distinction between correctly reconstructed and background events is visible
in the distribution of the mass difference ∆m = m(D∗)−m(D), which is fitted
to obtain the number of events per bin. Similar to the previous PID correc-
tions, the resulting efficiency ratios are provided in bins of lepton momentum,
evaluated in the lab frame and the polar angle. All kaon and pion tracks are
corrected, while varied efficiency ratios are generated using the same prescrip-
tion outlined in the previous section.

Track finding efficiency: In order to account for the track finding efficiency for high
momentum tracks, the number of partially and fully reconstructed D∗ decays
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in MC and data is investigated and compared in [119]. Here, a systematic un-
certainty associated to the track finding efficiency is estimated to be 0.35% per
track. Therefore, the multiplicity of reconstructed tracks with pT > 200 MeV is
determined and the recommended weight of 0.35% per track is applied as an
additional systematic. One weight per event is calculated, which is then used
to obtain a pair of varied weights.
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Chapter 4

Event reconstruction

Many different kinds of particles can be produced in e+e− collisions, however many
of these particles cannot be observed directly. Often the type of particle and its
kinematic properties can only be inferred by examining its interactions with vari-
ous components of the Belle detector. Some particles, such as B mesons, have short
lifetimes and decay before they can reach any sensitive component of the detector
and therefore cannot be measured directly. On the other hand, the decay products
of the B meson might have lifetimes that are long enough to interact with the Belle
detector. However, decays involving neutrinos are hard to reconstruct, since neutri-
nos traverse the entire detector without interacting with any sub-detector systems.
This means that there are only a small number of final state particles that interact
with various sub-detector components. Final state particles in B meson decays that
are stable enough to be observed1 by the Belle detector are: e±, µ±, π±, K±, protons,
neutrons and photons.

The algorithms employed by the Belle Collaboration to reconstruct and identity fi-
nal state particles are briefly outlined in Section 4.1. This is followed by a discussion
of the various strategies utilized by B-factory experiments to reconstruct B meson
decays in Section 4.2. Since this analysis make use of a technique known as hadronic
tagging, Section 4.2.1 describes the full reconstruction of the candidate B meson in
the event in purely hadronic decay modes with the aid of neural networks. This ap-
proach enables the explicit reconstruction of the inclusive hadronic Xc system and,
in turn, the explicit reconstruction of the q2 spectrum, discussed in 4.2.2. The re-
construction strategy employed by this analysis is similar to the method outlined
in [107]. Lastly, Section 4.3 introduces the main processes that can mimic the ex-
perimental signature of signal B → Xc`ν decays and summarises the event signal
selection criteria. These requirements are optimised to not only reject background
processes, but also ensure the selection of well-reconstructed candidates.

4.1 Particle identification

In order to identify final state particles, a probability density function (PDF) is cal-
culated for each component of the Belle detector. The PDFs are combined to create
a likelihood account for the particle candidate, which peaks close to unity. A de-
scription of the discriminating variables that are employed for particle identification
is given in the following sections and are summaries of the in-depth discussions
found in [92].

1In order to avoid the difficulties in understanding the reconstruction efficiencies of K0
L mesons,

these particles are not explicitly reconstructed or used in this measurement.
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FIGURE 4.1: Efficiency of electron identification (top) and the pion
fake rate (bottom) in radiative Bhabha events as a function of lab mo-
mentum for Leid > 0.5. Data is represented by filled red circles and

MC by blue squares [120].

4.1.1 Electron identification

Several discriminating variables are used to associate a track and calorimeter cluster
with an electron candidate. The following list of the most important identifying
features is a summary of the discussion found in [120]:

• Track to cluster matching: electron tracks extrapolated to the ECL are required
to match with the position of the ECL cluster. The matching is assessed with
a χ2-like variable based on the separation between the extrapolated track and
the centre of the ECL cluster.

• E/p: the ratio between the energy deposited in the ECL and the momentum
measured by the CDC. Since the mass of the electron is negligible compared to
other final state particles, this ratio is close to unity for electrons.

• E9/E25: since electrons produce a narrow shower in the ECL, the transverse
shower shape is compared with the ratio of the deposited energy in 3× 3 (E9)
and 5 × 5 (E25) crystals. This variable peaks at 0.95 for electrons, while the
value tends to peak at lower values for hadrons.

• dE/dx: the specific energy loss due to ionisation of a charged track’s trajectory.
The energy loss is dependent on a particle’s velocity β and provides excellent
separation between electrons and pions for momenta greater than 0.5 GeV.



4.1. Particle identification 59

FIGURE 4.2: Efficiency of muon identification (left) and the pion fake
rate (right) as a function of lab momentum over the entire polar angle
region. Open circles represent Lµid > 0.1, while filled circles denote

Lµid > 0.9 [121].

• ACC light yield: the presence or absence of photoelectrons due to the Cherenkov
effect can aid in the particle identification of a passing particle, since the thresh-
old for emitting photons differs for different particle candidates. This thresh-
old is of the order of MeV for electrons, while it lies in the momentum range of
0.5− 1 GeV for pions. The separation of electrons from pions is therefore only
possible for momenta below 1 GeV.

A likelihood between electron and pion candidates is constructed by combining the
PDFs from each of the discriminating variables. Subsequently, an overall likelihood
for electron identification is defined as the sum of products from a single variable:

Leid =
∏i L

e
i

∏i L
e
i + ∏i L

π
i

(4.1)

where i runs over all input parameters. The efficiency for electron selection and the
pion fake rate as a function of the momentum in the lab frame, measured in radiative
Bhabha events, are shown in Figure 4.1.

4.1.2 Muon identification

To identify a track produced by a muon candidate, the reconstructed track is extrap-
olated to the KLM and associated hits within 25 cm of the track are located. Two
variables are utilised to calculate PDFs for muon identification: the difference be-
tween the measured and expected range of the track ∆R and the normalized trans-
verse deviations of all hits associated with the track χ2

r . Assuming a weak correlation
between the two quantities, the final PDF is a product of these separate PDFs. The
likelihood for muon identification is calculated as follows:

Lµid =
Lµ

Lµ + Lπ + LK
(4.2)

where Lµ, Lπ and LK are the probabilities from muons, pions and kaons, respec-
tively. The efficiency of muon selection and the pion fake rate for two different Lµid
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FIGURE 4.3: Kaon efficiency and pion fake rate for the barrel region
of the ACC, measured using D∗+ → D0(→ Kπ) + π+ decays. A

likelihood ratio selection of PID(K) ≥ 0.6 is applied [92].

selections as a function of lab momentum, measured in the e+e− → e+e−, µ+µ−

processes, are shown in Figure 4.2.

4.1.3 Hadron identification

In order to identify hadron candidates and to separate pions from kaons, the com-
bined information is required:

• ACC light yield: The refractive indices of the aerogel Cerenkov radiators are
optimised for the separation of hadrons with a momentum in the range of
1.2 < p < 3.5 GeV. The likelihoods for different particle candidates are deter-
mined from the total light yield that was obtained.

• Expected time of flight: The TOF is used to measure particle velocities by
making use of the time required for the particle to traverse a certain distance. It
is useful for the separation between pions and kaons that carry low momenta
below 1.2 GeV. The likelihood is calculated from the difference between the
expected time of flight for a particle candidate and the measured time.

• dE/dx: the likelihood obtained from the specific ionisation loss is calculated
from the difference between a particle candidate’s expected specific ionisation
loss and the quantity that was measured in the CDC.

The global probability for a track to correspond to either a kaon or a pion is de-
termined as the product of the three likelihood functions. Therefore, a particle is
identified as a kaon or pion by selecting a probability from the likelihood ratio:

PID(K) =
Pk

Pk + Pπ

(4.3)
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FIGURE 4.4: Signal- and tag-side reconstruction of an Υ(4S) event.
One B meson decays in a signal channel B+ → D̄∗∗`+ν` (red),
while the companion B meson decays in a hadronic channel B →
D0π+π−π− (blue), which is reconstructed as the tag-side for this

event [115].

where tracks with values of P(K) close to unity are regarded as kaons, while tracks
with values close to zero are identified as pions. The kaon selection efficiency to-
gether with the pion fake rate for PID(K) ≥ 0.6 is shown in Figure 4.3.

4.1.4 Reconstruction of photon clusters

Photons are reconstructed from calorimeter clusters that have not been matched to
any nearby charged tracks. The ECL is specifically constructed such that a large frac-
tion of the energy of an electromagnetic shower produced by a photon is deposited
in this sub-detector system. Consequently, the energy of the photon candidate is
obtained by locating the crystal with the largest energy deposit and summing the
energies of 3× 3 and 5× 5 surrounding counters to determine the cluster energy.
The position of the cluster is obtained by calculating the "centre of gravity" of the
energy, while the momentum vector of the photon candidate is determined from the
position and energy of the cluster.

4.2 Reconstruction of B meson decays

Once the final state particles have been reconstructed and identified, their momenta
can be summed to create intermediate state particles, which in turn can be assigned
to a specific B meson decay. Since semileptonic B decays contain an undetected neu-
trino with unmeasured momentum in the final state, these decays cannot easily be
reconstructed. However, the perfect hermicity of the Belle detector can be exploited
to impose kinematic constraints on the decay in order to infer the momentum of
the neutrino. In addition, these kinematic constraints benefit from the unique event
topology of an Υ(4S) decay, since BB̄ pairs are produced without the presence of any
additional particles and the initial state energy is precisely known.

B-factories employ three strategies to reconstruct B meson decays: inclusive, semilep-
tonic, and hadronic tagging methods. The inclusive tagging method involves recon-
structing only the B meson decay of interest, denoted as the signal B or Bsig. Since no
additional requirements are placed on the companion B meson, this method yields
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FIGURE 4.5: Different reconstruction techniques of the signal B me-
son, together with the efficiency and purity for each method. The
inclusive method only reconstructs the signal Bsig, which results in a
large sample of signal and background events. On the other hand,
semileptonic and hadronic tagging requires the reconstruction of the
companion Btag, which improves the background rejection but yields

a smaller signal sample [122].

a large sample of signal candidates, while at the same time incuring a large sam-
ple of background events. Therefore, the inclusive tagging method offers a high
signal efficiency together with a low purity. The remaining two methods involve
the reconstruction of the companion B meson in exclusive channels, denoted as the
tag B or Btag. Semileptonic tagging involves reconstructing the Btag in semileptonic
decays to charm mesons such as D±, D0, D∗±, and D∗0 among others. Due to the
presence of an additional neutrino, the kinematic constraints that can be inferred
are restricted and only partial information of Bsig can be determined from the Btag.
Finally, hadronic tagging involves fully reconstructing the Btag by making use of
hadronic decays containing charm mesons of the form B → D̄∗nπ, B → D̄∗D∗S or
B→ J/ψ Kmπ. Here, n and m indicate a number (n, m < 10) of charged and neutral
pions, respectively. An illustration of the signal- and tag-side reconstruction of an
Υ(4S) event using the hadronic tagging method is shown in Figure 4.4. The signal
efficiency for hadronic tagging is the smallest of all the reconstruction techniques, of
the order 0.1%, and therefore a large data set is required in order to produce precise
results. On the other hand, this method provides a considerably high signal purity,
together with complete knowledge of the event. Hence, hadronic tagging allows for
the determination of the direction, momentum, flavour and charge of Bsig. Further-
more, this method ensures that various kinematic variables of the signal side can be
accessed, for example the hadronic mass spectrum of the charm system MX as well
as the squared four-momentum transfer q2. A summary of the three tagging meth-
ods together with the interplay of efficiency and purity, is depicted in Figure 4.5.
The analysis presented in this thesis utilises hadronic tagging, which is described in
further detail in the following section.
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FIGURE 4.6: The four stages of the Full Reconstruction algorithm rep-
resented by different colours [123].

4.2.1 NeuroBayes Full Reconstruction

At Belle, Btag candidates are reconstructed using the Full Reconstruction (FR) algo-
rithm, which is based on the NeuroBayes package [123]. The algorithm reconstructs
charged and neutral B candidates by making use of a hierarchical approach with
four different reconstruction stages, as illustrated in Figure 4.6. At each stage a Neu-
roBayes artificial neural network combines all available information of a specific
particle candidate to generate a single scalar variable referred to as the classifier out-
put. This variable can be interpreted as the probability for a given particle candidate
to be reconstructed correctly. The classifier output for each reconstructed particle
becomes an input for the neural network in the following stage.

The first stage starts with the reconstruction of final state particles as well as neu-
tral pions and kaons. Each particle candidate that passes the identification criteria
is classified by a dedicated neural network that uses various discriminating vari-
ables as input including momentum, time-of-flight measurements as well as flight
direction, specific energy loss in the CDC, Cherenkov light yield in the ACC for
charged particles, and shower shape variables for photons. Multiple candidates are
possible, however each track signature may only contribute once in the formation
of a Btag candidate. In the next stage, the reconstructed particles are combined to
form intermediate state particles or resonances, namely J/ψ, D0 and D±s candidates.
Vertex fits are performed for these candidates in order to improve momentum and
spatial resolution. The fit results, together with information of daughter particles
and the invariant mass of the candidate, are used as input for the next classifying
stage. Excited charmed mesons are reconstructed in the third stage using similar
input variables as the previous stage, with the exception of the invariant mass of
the candidate. For this stage, the mass difference ∆m = mD

(S)∗
−mD(S)

is employed
instead. Finally, B meson candidates are reconstructed at the fourth and final stage,
while making use of variables such as network outputs of the daughter particles, the
mass of the D mesons or ∆m, and the angle between the B meson momentum and
the beam. The combination of all decay modes that are included in the reconstruc-
tion algorithm leads to a total of 1104 exclusive B meson decay channels, resulting
in an efficiency of 0.28% and 0.18% for charged and neutral B meson pairs [124].
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FIGURE 4.7: Comparison between the event shape of a continuum
event (left) in comparison to the event shape of a BB̄ event (right) in

the centre of mass reference frame [125].

After the full hadronic reconstruction the NeuroBayes package also provides a fur-
ther suppression of continuum events, since a large fraction of events recorded by
the Belle detector originates from these processes. At the production centre of mass
energy of the Υ(4S) resonance, the cross-section for continuum events e+e− → qq̄
has a value of σ(qq̄) = 2.8 nb, while the cross-section for e+e− → Υ(4S) is given
by σ(Υ(4S)) = 1.2 nb [124]. Kinematic constraints from the accelerator as well as
different variables describing the event shape can be utilised to discriminate B me-
son decays from continuum processes. Since B mesons decay almost at rest in the
centre of mass frame, their decay products are isotropically distributed in the detec-
tor. On the other hand, light quarks in continuum events are produced with large
initial momenta in back-to-back topology that results in events exhibiting two jets of
light hadrons. A comparison of the event shapes for the two different processes is
given in Figure 4.7. There are numerous variables to further discriminate continuum
events from BB̄ events, which are described in [124] and are briefly summarised in
the following list. Each event consists of a set of N particles with momenta pi with
i ∈ [1, 2, . . . , N].

• Thrust: The thrust axis T is defined as the unit vector along which the pro-
jection of all momenta is maximised. The scalar thrust variable T is defined
as:

T =
∑N

i=1 |T · pi|
∑N

i=1 |pi|
. (4.4)

A thrust value of T = 1/2 indicates a spherical distribution of the particle
momenta, while a value of T = 1 corresponds to a jet-like structure.

• cos θB: The angle between the momentum of the reconstructed B meson and
the beam axis is denoted by cos θB, which is distributed as 1− cos θB

2. This
distribution is flat for continuum events.

• CLEO cones: A set of momentum flow variables introduced by the CLEO col-
laboration in a study of charmless B meson decays [126]. These cones are de-
fined along 10◦ intervals around the B meson’s thrust axis. In these cones, the
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scalar momenta of all particles pointing in this interval are summed. For con-
tinuum events the momentum flow is clustered inside the CLEO cones with
small opening angles.

• Fox Wolfram Moments: The Fox Wolfram moments describe the phase-space
distribution of energy and momenta in the event. The k-th Fox Wolfram mo-
ment is defined as

Hk =
N

∑
i,j
|pi||pj|Pk(cos θij), (4.5)

where θij is the angle between pi and pj and Pk is the k-th order Legendre poly-
nomial. For collimated jets, the reduced Fox-Wolfram moments, Rk = Hk/H0,
take values close to zero and one for odd and even values of k, respectively.
R2 is one of the most powerful variables that can be used to separate BB̄ from
continuum events.

• Super Fox Wolfram Moments: The Super Fox Wolfram moments are calcu-
lated by calculating the Fox Wolfram Moments with respect to the particles
belonging to the reconstructed B meson (labelled s) and the rest of the event
(labelled o). Possible combinations are then Roo

k , Rso
k and Rss

k .

The NeuroBayes Full Reconstruction provides an additional algorithm which in-
cludes the above-mentioned variables as input for the training of an additional neu-
ral network allowing for the separation of continuum and BB̄ events. The final clas-
sifier score is the network output of the B mesons, denoted as OFR, and the output
discriminating between continuum events,OCont. Both outputs take values between
0 and 1 and correspond to the probability of selecting a well-reconstructed Btag can-
didate. In each event a single Btag candidate is then selected according to the highest
OFR score value.

The Btag candidates are selected based on requirements of the beam-constrained
mass Mbc, which further reduces continuum events as well as combinatorial back-
grounds, hence ensuring the selection of well-reconstructed candidates. By exploit-
ing the precisely known beam-energy and using the information obtained from fully
reconstructing the charge and momentum of the event’s decay products, the four-
momentum of the Btag candidate is easily determined. The beam-constrained mass
of the event is then calculated using the following equation:

Mbc =

√
E∗2beam − p∗2B . (4.6)

Here, E∗beam =
√

s/2 is the beam energy and p∗B is the reconstructed three-momentum
of the Btag candidate. Both quantities are evaluated in the centre of mass frame, de-
noted here by the star. An additional variable of interest is the deviation from the
beam energy ∆E which is defined as the difference of the reconstructed Btag candi-
date’s energy and the beam energy:

∆E = E∗B − E∗beam . (4.7)

Since this variable is already used as an input for the final stage of the Full Recon-
struction algorithm, no further requirements are imposed in this analysis.

After the reconstruction of the Btag candidate all remaining tracks and clusters in the
event are used to reconstruct the signal side. By using the momentum of the Btag
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candidate together with the precisely known initial beam-momentum, the signal B
meson rest frame is defined as:

psig = pe+e− −
(√

m2
B + |ptag|

2, ptag

)
. (4.8)

Here, pe+e− denotes the four-momentum of the colliding electron-positron pair. The
reconstruction of the signal side will be described in the following section.

4.2.2 Signal side reconstruction

In order to suppress beam background processes and ensure the selection of qual-
ity tracks, final state particle candidates are required to pass several loose selection
criteria. Due to the magnetic field surrounding the Belle detector, low momentum
tracks spiral inside the CDC and may lead to the reconstruction of duplicate tracks.
These tracks can either be two tracks of the same charge within close proximity
of each other, or two oppositely charged tracks with a back-to-back trajectory. To
identify and remove duplicated tracks similar criteria to those outlined in [127] are
implemented. A pair of tracks is regarded as duplicated tracks if their momenta
transverse to the beam direction are below 275 MeV and the momentum difference
of the two tracks is less than 100 MeV. Additionally, the polar angle between the
tracks is θ < 15◦ for equally charged tracks, while θ > 165◦ for oppositely charged
tracks. Once a pair of duplicated tracks is identified, the track which origin lies
closer to the interaction point is kept. All remaining charged tracks must meet se-
lection requirements dependent on their transverse momenta in order to suppress
beam background processes. These requirements are summarised in Table 4.1. Lep-
ton and hadron identification is then performed on the accepted tracks with stricter
requirements.

Well-reconstructed leptons are selected based on the probability likelihood described
in Sections 4.1.1 and 4.1.2. Leptons are required to originate with close proximity to
the interaction point and lie within the acceptance of the tracking detectors. In order
to be identified, electrons must reach the ECL which requires a transverse momen-
tum of pT > 0.3 GeV, while muons must traverse the detector and reach the KLM
requiring pT > 0.6 GeV. Electrons are more susceptible to the Bremsstrahlung pro-
cess than other charged final state particles, which reduces the reconstructed electron
momentum. In order to account for the lost momentum due to the Bremsstrahlung
process, a cone of 5° is applied around the flight direction of each electron candidate
to identify an energetic Bremsstrahlung photon with Eγ < 1 GeV. Subsequently, the
four-momentum of the associated photon is added to the momentum of the corre-
sponding electron candidate. In the case where multiple Bremsstrahlung photons
are present, the most energetic photon is selected.

Charged tracks that fail the selection and identification requirements of lepton can-
didates are reconstructed as kaons or pions based on the probability likelihood de-
scribed in Section 4.1.3. In addition, kaon and pion candidates are also required
to originate from the vicinity of interaction point. Tracks that fail the selection and
identification requirements for charged final state particles, summarised in Table 4.2,
are discarded.

Photons are identified as neutral clusters in the ECL without an associated charged
track. Since the ECL can be separated into different regions according to the polar
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TABLE 4.1: Summary of pT-dependent selection criteria for charged
tracks to suppress beam background.

pT range (GeV) |dr| (cm) |dz| (cm)

pT < 0.25 < 20 < 100

0.25 < pT < 0.5 < 5 < 50

pT > 0.5 < 10 < 20

TABLE 4.2: Summary of the selection and identification criteria for
charged and neutral particles on the signal side. Final state particles

that fail these requirements are discarded.

Particle ID prob. dr (cm) |dz| (cm) pT (GeV) θ

e eID > 0.9 < 0.5 < 2 > 0.3 (17°, 150°)

µ muID > 0.9 < 0.5 < 2 > 0.6 (25°, 145°)

K Atckpi > 0.6 < 1 < 2 - -

π Atckpi < 0.4 < 1 < 2 - -

angle of the photon in the lab frame θγ, the energy thresholds to select photon candi-
dates are dependent on different angular regions. The minimum threshold require-
ments are 50 MeV in the barrel region (32◦ < θγ < 130◦), 150 MeV in the forward
endcap (130◦ < θγ < 150◦), and 100 MeV in the backward endcap (17◦ < θγ < 32◦).
Neutral pions are reconstructed from a pair of photon candidates with a requirement
on the invariant mass to lie between mγγ ∈ [0.12, 0.15] GeV.

The four-momentum of the hadronic system pX is reconstructed from the sum of
the remaining unassigned charged particles and neutral energy depositions after
identifying a signal lepton, such that

pX = ∑
i

(√
m2

π + |pi|
2, pi

)
+ ∑

j

(
Ej, kj

)
. (4.9)

Where Ej = |kj| is the energy of the neutral clusters and all charged particles with
momentum pi are assumed to be pions. Furthermore, the hadronic mass of the
X system, which is later used to discriminate B → Xc`ν decays from background
processes, is reconstructed using

MX =
√
(pX)

µ (pX)µ . (4.10)

Explicitly reconstructing the X system allows for the direct reconstruction of several
kinematic variables of interest using conservation laws. The total observed charge
of the event is simply reconstructed as:

|Qtot| = |QBtag
+ QX + Q`| . (4.11)
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In addition, the four-momentum of the neutrino in the event is estimated by ex-
ploiting the fact that the initial state is known and the hadronic tag side is fully
reconstructed. Thus, the missing four-momentum can be calculated as follows:

Pmiss = (Emiss, pmiss) = psig − pX − p` , (4.12)

where the four-momentum of the measured lepton and the combined Xc is also used.
This four-vector, in the case of a semileptonic B → Xc`ν decay with a correctly
reconstructed lepton and Xc system, will fulfil,

P2
miss = M2

miss = E2
miss − (|pmiss|)

2 = 0 (4.13)

which is equivalent to:
Emiss − |pmiss| = 0 (4.14)

with Emiss > 0 and |pmiss| > 0 within the detector resolution.

Finally, the four-momentum transfer squared is reconstructed by once again making
use of the fully reconstructed hadronic tag side and is calculated as:

q2 = (pB − pX)
2 (4.15)

= (pl + pν)
2

where pX and pB are the four-momentum vectors of the reconstructed hadronic mass
system and the Btag candidate, respectively.

4.3 Event selection

A variety of processes, with a similar experimental signature to that of signal B →
Xc`ν decays, or detector effects can contribute to the inclusive semileptonic event
samples. In addition to continuum e+e− → qq̄ events, the following background
classes are also considered:

• Secondary background: Leptons that do not originate from a semileptonic B
decay, but from a secondary decay, for example from semileptonic decays of D
mesons or J/ψ.

• Fake leptons: Kaons and pions that are mis-identified as leptons. The largest
contributor to this background source are mis-identified muons.

• B→ Xu`ν: This background process exhibits a similar experimental signature
to B → Xc`ν decays with the presence of a high momentum lepton and unde-
tected neutrino in the final state. Even though B→ Xc`ν decays are of O(100)
times more likely than inclusive charmless semileptonic B decays, the latest
experimental uncertainty for the B → Xu`ν branching fraction, estimated to
be approximately 14%, results in the process forming a large contribution to
the overall systematics of the final measurement.

Secondary decays, fake leptons and continuum events are the dominating back-
ground processes at low q2, while B → Xu`ν becomes more prevalent at high q2

regions of phase space.

Various analysis selection criteria are imposed to not only minimise the total con-
tributions from background processes, but also to increase the signal to background
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ratio. Additionally, the requirements ensure that only events originating from well-
reconstructed B → Xc`ν decays are selected for the analysis. In order to sup-
press continuum events, which as previously discussed is one of the dominant back-
ground processes for semileptonic B decays, the NeuroBayes output discriminating
between continuum events OCont is optimised. To determine the optimum selection
requirement the Figure of Merit (FOM), which is defined as:

FOM =
S√

S + B
(4.16)

is maximised. Here, S and B denote the number of signal and background events,
respectively. Since the Full Reconstruction efficiency differs for continuum and BB̄
events, the optimisation is also evaluated for the classifier output, OFR, which sig-
nifies the probability of selecting a well-reconstructed B meson. Both optimisations
yield similar results and a requirement of OFR > 10−4 and OCont > 10−4 is chosen.
For correctly reconstructed B meson candidates the beam-constrained mass peaks
at the nominal B mass, while conversely this distinctive peaking structure is ab-
sent for continuum processes. Therefore, to further reject continuum processes only
events with a beam-constrained mass greater than 5.27 GeV on the tag B side are
selected. Additionally, this requirement aids in removing poorly reconstructed Btag
candidates. Since the charge of the signal lepton is equal to the sign of the charge
of the b quark for semileptonic B decays, leptons originating from secondary de-
cays are rejected by requiring that the charge correlation between the reconstructed
lepton on the signal side and the Btag candidate is correct. This can be achieved by
requiring that Qtag × Qlep < 0 where Qtag is the charge of the Btag candidate, and
Qlep the charge of the signal lepton. Furthermore, the selection requirement is only
applied on reconstructed B+ decays, since this condition does not strictly hold for
B0 decays due to flavour mixing. With all selection criteria on the hadronic tag side
complete, the remainder of the requirements focuses on the signal side.

Since Emiss ≈ |pmiss| is true for correctly reconstructed semileptonic B → Xc`ν de-
cays, the selection of correctly reconstructed signal events is ensured by requiring
that |Emiss − pmiss| < 0.5 GeV. Furthermore, this selection requirement rejects re-
gions of phase space that are poorly understood and inadequately described by
the generated MC samples, improving the resolution of the reconstructed q2 dis-
tribution significantly. In addition, the total observed charge of the event is re-
quired to be |Qtot| ≤ 1, allowing for a charge imbalance in events with low mo-
mentum tracks. This requirement is not only aimed towards the selection of well-
reconstructed semileptonic decays, but also the rejection of leptons originating from
secondary leptons. Since events containing multiple signal leptons are more likely to
originate from secondary, charm or J/ψ decays, exactly one signal lepton per event
is required.

As can be seen in Figures 4.1 and 4.2, the measured efficiencies of electron and muon
identification drastically decreases below a momentum of 1 GeV in the laboratory
frame. Conversely, the pion fake rate increases monotonically below this point for
muons, before dropping off at approximately 0.6 GeV, while the fake rate increases
steadily for electrons below a momentum of 0.5 GeV. Due to the relationship be-
tween q2 and lepton momentum, only events passing the selection requirement of
q2 > 3 GeV2 are selected, which excludes all leptons with a momentum of approx-
imately 0.3 GeV in the B meson rest frame. This region corresponds to a region of
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FIGURE 4.8: The reconstructed lepton momentum MC distributions
in the B meson rest frame for electrons (left) and muons (right) before
(top) and after (bottom) applying the q2 > 3.0 GeV2 selection require-
ment. Each of the exclusive signal modes, continuum, and “back-
ground” which consists of fakes, secondary leptons and B → Xu`ν

decays is shown.

phase space in the laboratory frame at which the Belle detector operates efficiently
in the reconstruction and identification of leptons that originate from signal decays.
The region of phase space below 3.0 GeV2 is dominated by leptons originating from
secondary decays and continuum processes, as well as fake lepton candidates, which
are reduced by this final selection requirement. Figure 4.8 shows the reconstructed
lepton momentum distributions for electrons and muons in the B meson rest frame,
with and without a requirement of q2 > 3.0 GeV2. Here one can see that this require-
ment excludes a large amount of background, which mainly stems from leptons
originating from secondary decays and fake lepton candidates.

A summary of the impact of each of the signal selection criteria on reconstructed
MC events for each of the exclusive signal modes as well as the main background
processes is presented in Table 4.3. The values are given in terms of cumulative
efficiencies and are normalized to the initial yield obtained after the pre-selection re-
quirements. Furthermore, the initial yield for each signal or background component
is provided in the top row of the table. Figure B.1 shows the distributions of the
kinematic variables that appear in Table 4.3. The overall efficiency for the selection
of signal B → Xc`ν decays is 27.2%, while the background reduction is 87.6% for
B→ Xu`ν decays and 98.7% for the remaining background events.
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TABLE 4.3: Comparison of the cumulative selection efficiencies (%)
for signal and background processes. The values are normalized to
the initial pre-selection yields, which are shown for each of the sam-

ples.

B→ Dlν B→ D∗lν B→ D∗∗lν Gap modes

Number of pre-selected events 443758 1353696 561481 333395

Selection

OFR & OCont > 10−4 40.34 37.59 30.40 28.93
Qtag ×Qlep < 0 39.54 36.56 29.32 27.87
Nlep = 1 36.53 33.75 26.94 25.53
Mbc > 5.27 GeV 28.77 26.26 18.67 19.49
|Emiss − pmiss| < 0.5 GeV 12.48 12.79 8.07 7.61
|Qtot| ≤ 1 12.21 12.26 7.67 7.16
q2 > 3.0 GeV2 8.76 9.67 4.84 3.92

Secondaries Fakes Continuum B→ Xulν

Number of pre-selected events 2284619 878375 5133948 59753

Selection

OFR & OCont > 10−4 23.71 23.11 5.39 35.87
Qtag ×Qlep < 0 16.23 18.17 4.08 35.10
Nlep = 1 14.56 16.21 3.90 32.31
Mbc > 5.27 GeV 8.49 7.84 0.77 23.89
|Emiss − pmiss| < 0.5 GeV 2.98 3.84 0.36 15.75
|Qtot| ≤ 1 2.66 3.43 0.32 15.41
q2 > 3.0 GeV2 0.52 0.70 0.05 12.42
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simulated samples incorporate the full set of systematic uncertainties

discussed in Section 3.3.2.

The resolution of both the reconstructed MX and q2 distributions for B → Xc`ν de-
cays is shown in Figure 4.9 as residuals with respect to the generator-level distribu-
tions. The resolution for MX has a root-mean-square (RMS) deviation of 0.45 GeV
and exhibits a tail towards negative values of the residuals. Constituents of the
hadronic X system that have not been reconstructed correctly or missing charged
and neutral particles contribute to the distortion of the resolution of the reconstructed
MX distribution. The four-momentum transfer squared q2 exhibits a poor resolution,
which is caused by a combination of errors in the tag-side B and the X reconstruc-
tion. The RMS deviation for q2 is 3.35 GeV2. The core resolution is dominated by
the tagging resolution, whereas the large positive tail is dominated by the resolution
of the reconstruction of the X system. Figure 4.9 compares the selected events with
the expected simulated events, obtained from the simulated signal and background
MC samples described in 3.3.1. Here, the small contribution from the continuum
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processes is normalized using the off-resonance data sample, while the remaining
simulated events are normalized to the number of reconstructed events originating
from Υ(4S) → BB̄ decays. The error band of the simulated samples incorporates
the full set of systematic uncertainties stemming from various MC corrections, dis-
cussed in Section 3.3.2. Despite poor knowledge of the non-resonant component of
B→ Xc`ν decays, the overall observed agreement between the reconstructed events
selected in data and the simulated events is fair within experimental uncertainty.
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Chapter 5

Background subtraction

Even though the signal selection criteria suppresses a large amount of background
events, a small residual amount of fakes and secondaries remain in the low q2 region.
In addition, B→ Xu`ν decays have a very similar experimental signature to the sig-
nal B → Xc`ν decays and become a more significant background component for
higher selection values on q2. In order to determine the remaining background con-
tributions after the final signal selection criteria has been applied, a 1-dimensional
binned χ2 fit in the MX distribution is performed. Both signal and background yields
are determined from the fit parameters, however only the total fitted background
yield is utilised to calculate event-by-event signal probability weights, w. The event-
wise signal probability function completes the final step to subtract residual back-
ground events and is required to calculate the q2 moments.

The fitting procedure as well as the treatment of statistical and systematic uncertain-
ties in the fit model are described in Section 5.1, while the signal and background fit
templates are presented in Section 5.1.4. The description of the method likelihood in
the following section is a short summary of the detailed discussion found in [128].
To validate the fit procedure and test for possible bias in the yield extraction, various
pseudo-experiments are carried out. The results, which confirm that the fit proce-
dure is unbiased, are summarised in Section 5.2.1. An example fit to the MX distribu-
tion in data with the nominal signal selection criteria is subsequently performed in
Section 5.2.2 to extract the remaining contributions of background processes present
in the recorded collision events. Finally, the event-wise signal probability weights
as a function of lower q2 selections are calculated in Section 5.3. Unless otherwise
stated, all studies are conducted with the nominal selection criteria for the first and
loosest q2 threshold selection of q2 > 3.0 GeV2 in the electron channel.

5.1 Fit model

The aim of the fitting procedure is to find the set of model parameters~θ that provides
the best agreement between the observed data and the underlying model. Due to
the lack of analytical probability density distributions describing background com-
ponents and non-resonant contributions for signal decays, a binned likelihood fit is
performed by using templates representing each background and signal shape. This
method exploits the shape differences in a discriminating variable that are observed
between individual components to extract the estimated yields for each process.

The number of events in each individual bin of the template histogram is described
by a Poisson distribution, P(ni|vi(~θ)). Here, ni and vi denote the number of ob-
served and expected events in bin i, respectively. When considering large data sets,
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the underlying Poisson distributions are well-approximated by a Gaussian distribu-
tion. The optimal set of parameters that maximises the probability of the observed
data with an underlying model hypothesis is given as a maximum likelihood func-
tion L, which is constructed as the product of each of the bin-wise Gaussian proba-
bilities:

L(ni; vi(~θ)) =
bins

∏
i

1√
2πσi

exp

(
− (ni − vi(~θ))

2

2σ2
i

)
, (5.1)

with a mean of µ = ni and the standard deviation given as σi =
√

ni.

Taking the logarithm of the PDF in order to reduce computationally expensive prod-
ucts and exponentials gives the log-likelihood function,

− 2 lnL(~θ) = ∑
i

(
ni − vi(~θ)

σi

)2

. (5.2)

This equation is maximised by finding the values of the parameters ~θ that minimise
the quantity,

χ2(~θ) =
N

∑
i=1

(
ni − vi(~θ)

σi

)2

, (5.3)

which is easily recognised as the well-known method of least squares. In order to
generalise this method, Eqn. 5.1 can be replaced with a multivariate Gaussian distri-
bution leading to the generalised form of the χ2 method,

χ2(~θ) = (~n− v(~θ))TC−1(~n− v(~θ)) . (5.4)

The covariance matrix C describes the correlations across various bins and is here
simply represented by a diagonal matrix, since the bins are known to be uncorre-
lated for the observed data.

The number of expected events vi in a specific bin i is defined as:

vi =
templates

∑
k

fiknk , (5.5)

where nk is the total number of expected events from a process described by tem-
plate k and fik is the fraction of events found in bin i for template k. This fraction is
determined from the underlying template histogram such that:

fik =
nik

∑bins
j njk

, (5.6)

where nik is the number of expected events from template k in bin i. A total of
three signal and background templates are estimated using simulated MC samples
and incorporated into the fit procedure. In addition, the signal template is further
divided into sub-templates for each of the exclusive B → Xc`ν decays in order to
form a signal multi-template. The total the number of events in a given bin in terms
of the considered templates is thus given by,

v = nsig fi,sig + nbkg fi,bkg + ncont fi,cont . (5.7)

Here, nsig is the total number of B→ Xc`ν signal events, which is divided into differ-
ent sub-fractions for each of the exclusive decay modes. Furthermore, nbkg denotes
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the background events stemming from secondary semileptonic decays, B → Xu`ν
decays, and from hadrons mis-identified as leptons. The number of continuum
events is denoted as ncont. Further discussions regarding the distributions of the
different signal and background fit templates are given in Section 5.1.4.

Systematic uncertainties arising from MC efficiency corrections such as lepton and
hadron identification efficiencies, tracking efficiencies and form factor corrections for
signal decays allow the overall shape of a template to change. These shape uncer-
tainties are included in the likelihood function by introducing nuisance parameters
θik that are incorporated by altering Eqn. 5.6 such that,

fik →
nik(1 + εikθik)

∑bins
j njk(1 + εjkθjk)

. (5.8)

A nuisance parameter θik is introduced for each template k and bin i, while the rel-
ative uncertainty of template k in bin i is denoted by εik. Although a template’s
shape might change slightly by the fit pulling on a nuisance parameter of a given
systematic uncertainty, the denominator of the fraction in the expression above en-
sures that the overall normalization of the template remains constant. Furthermore,
the nuisance parameters are constrained by a multivariate Gaussian distribution
N (θjk|0, Σjk) with mean µ = 0 and a correlation matrix, Σjk. This correlation ma-
trix is obtained from the total covariance matrix, which is the combined sum of in-
dividual covariance matrices corresponding to each of the systematic and statistical
sources. The associated bin-to-bin correlations arising from systematic uncertainties
are thus accounted for in the fit with this method.

A Poisson constraint is imposed on the expected yield parameter for the continuum
process and is implemented by adding an additional term Pcont(ncont|ñcont) to the
likelihood function. Here ñcont denotes the expected continuum yield as determined
from off-resonance collision events, which is adjusted to reflect the number of con-
tinuum events for each q2 threshold selection under consideration. In addition, a
multivariate Gaussian distributionN ( fl | f̃l , Σ fl

) is included to constrain the expected
fraction of events f for each of the exclusive B→ Xc`ν processes to the expectations
estimated from MC events. In this term f̃l is the experimental branching fraction for
the respective process, while Σ fl

is the corresponding error covariance matrix.

Including all systematic uncertainties together with the additional constraints, the
final likelihood function takes the form:

L =
bins

∏
i
P(ni|νi(θ)) ×

templates

∏
k
N (θk|0, Σk) × Pcont(ncont|ñcont) ×

fconstr.

∏
l
N ( fl | f̃l , Σ fl

) .

(5.9)

The treatment of systematic uncertainties as nuisance parameters as well as the im-
plementation of both the additional constraints are outlined in the following sec-
tions.

5.1.1 Systematic uncertainties

Shape uncertainties related to the choice of form factor parametrization for B→ Dlν,
B → D∗lν, and B → D∗∗lν decays are incorporated into the fit by determining co-
variance matrices for each of the form factor parameters associated to the specific
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process. This is achieved by making use of the sets of varied event-wise weights,
described in Section 3.3.2, and creating varied histograms for the specific signal pro-
cess. The independent contribution of systematic uncertainty for a given form factor
parameter is subsequently estimated as follows:

σi =
hup,i − hdown,i

2
, (5.10)

where hup,i and hdown,i are the number of events found in bin i of the varied his-
tograms created from a pair of up and down variations. This formulation allows
for a change of sign in the case where hdown,i < hup,i, which introduces a negative
correlation between bins with opposite signs. The error source stemming from each
model parameter is fully correlated or anti-correlated across all bins by taking the
outer product of the bin-wise uncertainty vector to obtain the associated covariance
matrix. Each of the individual covariance matrices are summed in order to deter-
mine the total covariance matrix relating to B → Dlν, B → D∗lν, and B → D∗∗lν
form factor uncertainties. A similar strategy is employed to include the uncertain-
ties of the branching fractions of secondary leptons originating from semileptonic D
decays, summarised in Table A.1, in the fit.

Lepton and hadron identification efficiencies as well as tracking efficiencies are con-
sidered in the fit by applying the respective variation weights discussed in Sec-
tion 3.3.2, and creating new varied histogram templates. By creating histograms for
all considered templates with different sets of variation weights, a dedicated global
covariance matrix governing shape uncertainties for each of the respective particle
identification efficiency corrections can be estimated for the fit. This global matrix
is calculated by constructing a matrix M that contains varied histograms for each
template with rows spanning the total number of variations for a given efficiency
correction. Together with the matrix P, which consists of the equivalent nominal
histograms in every row, the global covariance matrix for a given efficiency correc-
tion is simply estimated in the following manner:

G =
(M− P)T(M− P)

Nvar
. (5.11)

Here, Nvar denotes the total number of variations for the efficiency correction under
study. Since the dimensions of M and P are given by Nvars×N′ where N′ = Ntemps×
Nbins, the global covariance matrix for a given PID correction has dimension N′×N′,
as expected.

5.1.2 Continuum constraint

A Poisson constraint is imposed on the expected continuum yield parameter that en-
ters the fit with value ncont. The normalization of the continuum MC is determined
using off-resonance data that consists of 79 fb−1. Since the data was collected at a
centre of mass energy approximately 60 MeV lower than the on-resonance data set,
the data points are shifted to the expected kinematic end-point of the on-resonance
Mbc distribution. The shift value ∆Mbc is calculated by determining the mean dif-
ference between on- and off-resonance data sets, which is found to be ∆Mbc =
0.0289± 0.0004 GeV.

The constraint value for ncont in the fit is subsequently estimated from the number
of expected events in off-resonance data, which is calculated as follows:
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FIGURE 5.1: Comparison between the off-resonance data and
reweighted continuum MC Mbc distributions for q2 > 3.0 GeV2.
Good agreement within statistical and systematic uncertainties is ob-

served.

Nexpected = Noff ×
711fb−1

79fb−1 . (5.12)

Here, Noff is the number of observed off-resonance events passing the selection cri-
teria, which is scaled up by the ratio of on-resonance to off-resonance luminosity
factors. The uncertainty in the shift value ∆Mbc is taken into account by varying
the shift value around its error and shifting the off-resonance continuum to obtain
varied Nexpected estimates. Thus, the error due to the Mbc shift is determined by:

σshift =
|Nexpected, up − Nexpected, down|

2
. (5.13)

In order to determine the final uncertainty of the continuum yield extracted from the
fit procedure, the uncertainty on the yield parameter and the error due to the Mbc
shift are added in quadrature.

The ratio between Nexpected and the initial number of events found in the continuum
MC sample Ncont, MC is calculated as a correction factor,

rcontinuum =
Nexpected

Ncont, MC
, (5.14)

which is used to study the agreement between the shifted off-resonance data and
simulated MC distributions. Figure 5.1 compares the Mbc distributions for the re-
weighted continuum MC and the measured off-resonance data. An example correc-
tion factor of r = 0.822± 0.057 is calculated for the nominal selection requirements,
while considering the combined electron and muon final state channels.
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5.1.3 Branching fraction constraints

The branching fractions of key B→ Xc`ν processes are propagated into the fit, while
the associated errors on these values are implemented as Gaussian constraints for
each of the exclusive signal templates. Both the updated branching fraction values
and their respective estimated errors are summarised in Table 3.3. In contrast to ex-
clusive signal decays, the non-resonant gap states are corrected by a factor of 1± 0.1.
This correction is equivalent to assuming that the branching fraction of this compo-
nent is unchanged, but allowing it to fluctuate by 100% in the fit.

The uncertainties due to branching fractions are propagated into the sub-fraction pa-
rameter covariance matrix for B → Xc`ν decays. The sub-fractions are determined
from MC with the following equation,

fi =
Ni

∑k Nk
, (5.15)

where fi and Ni is the fraction and number of events observed in MC for a specific
exclusive decay. Additionally, the yields for each decay process are updated to the
latest state-of-the-art branching fractions by calculating:

Ninew = Nold
i
Bnew

i

Bold
i

, (5.16)

where Bnew
i denotes the newest branching fractions given by [3], while Bold

i rep-
resents the outdated branching fractions. Furthermore, the uncertainty stemming
from MC statistics as well as from the updated branching fractions is taken into con-
sideration. Since the expected yields and their respective errors are uncorrelated, the
covariance matrix simply contains diagonal elements such that:

ΣN = diag(σ2
BD

, σ2
BD∗

, . . . , σ2
Bgap

). (5.17)

In order to subsequently determine the covariance matrix for the sub-fractions Σ f

one makes use of the Jacobian formulation of error propagation together with the
matrix equation:

Σ f = J T ΣN J (5.18)

where J is a Jacobian matrix computed using J = ∂ fi/∂Ni. This method of propa-
gating the uncertainties of the branching fractions for exclusive decay channels was
also implemented in the fitting procedure outlined in [129], which gave consistent
results. A summary of the uncertainties due to the branching fractions of B → Xc`ν
processes for both the electron and muon final states is given in Table 5.1. The slight
difference between the computed uncertainties of the electron and muon channels is
due to the differences in MC statistics and lepton and hadron identification efficien-
cies.

5.1.4 Fit templates

The remaining number of events originating from background processes in the recor-
ded collision events are determined by performing the above-mentioned likelihood
fit in 20 equidistant bins of the MX distribution as a progression of increasing thresh-
old selections on q2. In order to avoid empty bins the range of each fit is adjusted for
each incremental step in q2. Furthermore, the fits are performed separately for the
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TABLE 5.1: Summary of the uncertainties due to the branching frac-
tions of exclusive B → Xc`ν processes, separated into the electron

and muon final states.

Process Uncertainty (%) Process Uncertainty (%)

B→ D e ν 5.429 B→ D µ ν 5.380
B→ D∗ e ν 4.665 B→ D∗ µ ν 4.609
B→ D1 e ν 9.348 B→ D1 µ ν 9.374
B→ D∗1 e ν 7.586 B→ D∗1 µ ν 7.520
B→ D∗0 e ν 7.247 B→ D∗0 µ ν 7.212
B→ D∗2 e ν 5.491 B→ D∗2 µ ν 5.480

electron and muon final states due to different mis-identification efficiencies in these
channels. As already mentioned, the final likelihood function, shown in Eqn. 5.9,
depends on three expectation values vi of signal and background templates. In ad-
dition, the signal template is divided into sub-templates for each of the exclusive
B → Xc`ν decays. The likelihood function is therefore also dependent on six addi-
tional signal sub-fractions f while the gap template is constrained by these fractions
such that:

fgap = 1−∑
m

fm . (5.19)

Here, the sum runs is performed all exclusive signal states. Template histograms
for each of the processes considered in the likelihood fit are created from MC sam-
ples. Furthermore, the statistical and systematic uncertainties for each of the fit tem-
plates are parametrized by a total of 180 nuisance parameters θi with Gaussian con-
straints. Figure 5.2 shows the template histograms for background processes, while
Figures 5.3 and 5.4 show the histograms for signal decays. Additionally, the system-
atic correlation matrix for each template is also given. The composition of individual
templates as well as the considered systematic uncertainties are described below.

• Signal: The signal template forms a multi-template consisting of seven tem-
plates for the exclusive signal decays: B → D`ν, B → D∗`ν, B → D∗∗`ν as
well as the non-resonant gap contribution. Furthermore, separate templates
for each of the individual B → D∗∗`ν decays, D∗∗ = {D1, D∗1 , D∗0 , D∗2}, are
also considered. The B → D`ν and B → D∗`ν templates exhibit a clear, dis-
tinctive peak at MX ≈ 2.0 GeV with longer tails extending towards low values
of MX. On the other hand, the distributions for the B → D∗∗`ν decays as well
as the gap template exhibit much broader distributions with peaks between
2.0 GeV < MX < 2.5 GeV depending on the specific process. Each of the sig-
nal templates are constrained to their expected branching fractions, while the
gap template is allowed to fluctuate by 100%. Systematic uncertainties consid-
ered for all signal templates include MC statistics, lepton and hadron identifi-
cation efficiency corrections as well as tracking efficiencies. In addition, form
factor corrections corresponding to the specific signal process and model are
also taken into account.

• Background: This template comprises the combination of all remaining back-
ground components; namely fake lepton candidates, leptons originating from
secondary decays as well as from B → Xu`ν decays. Unlike the signal tem-
plates, this template exhibits a broad structure that peaks at higher values
of MX. The uncertainties for this template include MC statistics, lepton and
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FIGURE 5.2: Template histograms for continuum and background
processes together with the corresponding error correlation matrix,
calculated on MC samples. The MC uncertainties include uncertain-
ties from MC statistics, lepton and hadron identification efficiency
corrections, and the tracking efficiency correction. The uncertainty
due to the branching fractions for secondary leptons originating from
semileptonic D decays is included for the secondary component of

the background template.

hadron identification efficiency corrections, and tracking efficiency. Further-
more, the branching fraction uncertainties for secondary leptons originating
from semileptonic D decays are included as an additional systematic for the
secondary component.

• Continuum: The continuum template consists of two individual components.
While one sample contains simulated events for e+e− → cc̄ processes, the other
contains events with light quarks u, d, and s. This template exhibits a broad
peak at MX ≈ 3.0 GeV, which drops off at lower values for MX. Although
the normalization of this template is constrained to the expectation calculated
from off-resonance continuum data, the template may still vary within its sta-
tistical and systematic uncertainties. Only lepton and hadron identification
efficiency corrections and the tracking efficiency correction are considered for
this template.

With the fit procedure setup complete, the minimization of the final likelihood func-
tion is performed using the Sequential Least Squares Programming algorithm de-
scribed in [130]. The implementation of this algorithm is provided by the IMINUIT

software package [131].
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FIGURE 5.3: Template histograms for signal processes together with
the corresponding error correlation matrix, calculated on MC sam-
ples. The MC uncertainties include uncertainties from MC statistics,
form factor corrections, lepton and hadron identification efficiency

corrections, and the tracking efficiency correction.
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FIGURE 5.4: Template histograms for signal processes together with
the corresponding error correlation matrix, calculated on MC sam-
ples. The MC uncertainties include uncertainties from MC statistics,
form factor corrections, lepton and hadron identification efficiency
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FIGURE 5.5: Normalized pull distributions for each of the fit yield pa-
rameters determine with N = 1000 pseudo-experiments. The mean
and variance are obtained by fitting a Gaussian curve to the distribu-

tions.

5.2 Fit validation & results

5.2.1 Toy experiments

Various pseudo-experiments are performed to not only test the stability of the fit
model, but also uncover potential bias in the extraction of the yields. To this end,
pseudo-data sets are generated by sampling from a Poisson distribution for each bin,
with the expectation value set to the MC expectation, in order to simulate statistical
fluctuations. The fit procedure is then performed on each pseudo-data set, while
extracting the pull for each fitted parameter. For a given parameter v in the fit, the
pull is given by:

Pull =
vfit − vexpected

σfit
v

. (5.20)

For a completely unbiased fit, the distribution of pulls should be described by a unit
normal distribution, i.e. a Gaussian distribution with µ = 0 and σ = 1. A pull
distribution that deviates from the mean and standard deviation of a unit normal
distribution suggests a bias in the extraction of the yield parameters, or an incorrect
estimation of the extracted yield uncertainty. Figure 5.5 shows the normalized pull
distributions for each of the yield parameters in the fit, while the mean and variance
are determined by fitting a Gaussian curve to the distributions. Neither the extracted
yield parameters nor the estimated parameter errors exhibit any observed bias.
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FIGURE 5.6: Linearity test results for the signal extraction (top), and
the results to test for possible correlations between the signal extrac-
tion and the background normalization (bottom). A linear polyno-
mial is fitted to the extracted yield parameters and results for the

slope m and intercept y are shown.

A similar strategy is employed to perform a linearity test to determine whether any
correlation between the expected and extracted values exist. A stable fit is verified by
demonstrating that the fitted yield parameter depends linearly with gradient, m = 1,
on the true parameter yield that was initially used as input. Subsequently, the linear-
ity test is performed on pseudo-experiments while scaling the expected signal yield
parameter from half to double the nominal yield value. In addition, possible bias
between the extracted signal yield and the normalization of the background com-
ponents is investigated by scaling the expected background yield parameters by the
same incremental steps. Figure 5.6 shows the scaled expectation values for the signal
and background yield parameters, together with the extracted signal values for each
pseudo-experiment. Linear polynomials are fitted to the extracted yield parameters.
The fitted slopes and intercepts for each test indicate an unbiased and stable fit.

The fit procedure is validated by carrying out the fit on a so-called Asimov data
sample. Here, the measured data corresponds exactly to the MC expectation, lead-
ing to a perfect fit result in the case of a correct fit setup. The successful fit result in
Figure 5.7 verifies that the Asimov data points in each bin matches exactly with the
expected number of MC events. In addition, the bin-wise pull distribution, which is
calculated in each bin as the difference between the expectation and the fitted pre-
diction divided by the total error, is shown in the bottom panel and is consistently
zero as expected. The uncertainty of a nuisance parameter gives an indication of
the fit’s dependence on a particular nuisance parameter as well as the parameter’s
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FIGURE 5.7: Post-fit MX distribution after fitting the templates to an
Asimov data sample.
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FIGURE 5.8: Nuisance parameters for each of the signal and back-
ground templates after performing the fit on an Asimov data sample.
The error bars correspond to the initial 1σ error assigned to the nui-
sance parameters, while the yellow shading corresponds to the post-

fit errors.

contribution to the overall uncertainty. Furthermore, the uncertainty signifies how
the observed data constrains a specific nuisance parameter. In the absence of any
constraints, nuisance parameters have uncertainties of exactly one standard devia-
tion, whereas a tight or loose constraint from data is reflected by a small or large
uncertainty. Figure 5.8 shows the parameter pulls for the nuisance parameters of
each signal and background template. An upward or downward 1σ pull in the bin
for a given template is represented by a bin parameter value of 1 or −1. For an Asi-
mov fit, no significant pull on any of the nuisance parameters should be observed,
as verified in Figure 5.8.

5.2.2 Fit results on data

The reconstructed MC and data MX distributions are shown in Figure 5.9, together
with the post-fit distribution of the previously discussed three component template
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FIGURE 5.9: The reconstructed, pre-fit MC and data MX distributions
(left) and the post-fit distribution of the three component template fit

(right).
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FIGURE 5.10: Nuisance parameters for each of the signal and back-
ground templates after performing the fit on data with the nominal
selection criteria. The error bars correspond to the initial 1σ error
assigned to the nuisance parameters, while the yellow shading corre-

sponds to the post-fit errors.

fit. An initial mismatch between data and MC in the reconstructed, pre-fit distribu-
tion is observed, which is due to the different reconstruction efficiencies of the FR in
data and MC. The MC uncertainty shown in the pre-fit distribution includes all of
the previously discussed sources of error for each of the signal and background tem-
plates, while the error bars for the post-fit distribution are given by the global post-fit
covariance matrix. The bin-wise pulls for the post-fit distribution, shown in the bot-
tom panel, do not exceed 2σ, which indicates a good consistency between data and
the fitted result. Figure 5.10 shows the parameter pulls for the nuisance parame-
ters of each signal and background template. The nuisance parameters are generally
consistent with 0σ, with slight downward pulls for the B→ Dlν and B→ D∗lν tem-
plates. These pulls, however, do not exceed 1σ and the overall well-behaved pull on
the nuisance parameters shows that the fit templates describe the data adequately.

By using normalizations of the continuum and remaining background processes,
obtained from the fit results, bin-wise signal probabilities w(q2) can be calculated in
the next section.
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5.3 Signal probability weights

The moments of the measured q2 distribution are calculated as a weighted mean
where the event-wise weight function wi(q

2) represents the probability for a given
event with a certain value of q2 to be a signal event. Therefore, the event-wise signal
probability function ensures the effective subtraction of residual background events
in the recorded data. To this end, the estimated number of residual background and
continuum events, obtained from the normalizations of the fitted MX distribution,
are used to construct binned signal probability weights as a function of q2. These
weights are determined for each q2 threshold selection and are defined in the fol-
lowing manner:

wi(q
2) =

Ni
Total − Ni

Bkg

Ni
Total

, (5.21)

where Ni
Total is the total amount of events in a certain bin i, and Ni

Bkg is the sum
of continuum processes and residual background components in the same bin. To
ensure independence from binning effects, the binned signal probabilities for each
q2 threshold selection are fitted with a polynomial function of a given order n to
obtain continuous signal probability functions in q2. The polynomial function is
determined by performing a least squared χ2 minimization, while the order of the
polynomial is determined using a nested hypothesis test. A polynomial of order n
over n− 1 is accepted in the case where the improvement in the final calculated χ2 is
larger than one. Shape uncertainties of the two background distributions are propa-
gated directly into the χ2 minimization by calculating the total systematic covariance
matrix, as previously described Section 5.1.1. In addition, the uncertainty due to the
background normalization is taken into account by estimating the total relative error
of the bin-wise signal probability weights and taking the outer product of the bin-
wise uncertainty vector to obtain the associated covariance matrix. The calculation
of this covariance matrix is briefly outlined below.

Since the fitted yields of the continuum and residual background are correlated, the
post-fit covariance matrix is used to determine the uncertainty on the total back-
ground yield with the given formula:

σTotal Bkg =
√

σ2
Cont + σ2

Bkg + 2 · ρ · σContσBkg , (5.22)

where ρ is the non-zero correlation coefficient given by the post-fit covariance ma-
trix. Next, the relative background error, r = σTotal Bkg/NTotal Bkg, is calculated which
in turn is used to determine modified background subtraction weights:

w̃i(q
2) =

Ni
Total − Ni

Bkg(1 + r)

Ni
Total

. (5.23)

Here, the bin-wise errors are taken as the difference between the modified and nomi-
nal background subtraction weights. Subsequently, the associated covariance matrix
is calculated by taking the outer product of the bin-wise error vector.

Figure 5.11 shows the extracted q2 distribution in data, together with the estimated
residual background from the fitted MX distribution for B → Xc e ν and B → Xc µ ν
decays. Furthermore, the corresponding bin-wise signal probability weights with
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FIGURE 5.11: The extracted post-fit background and data MX dis-
tributions (left) for B → Xc e ν (top) and B → Xc µ ν (bottom) de-
cays. The corresponding bin-wise signal probability weights, wi(q

2)
together with a fitted polynomial of a given order n (right) are dis-

played for q2 > 3.0 GeV2.

the fitted polynomial curves are also shown. The resulting polynomials w(q2) are
required to have positive or zero event weights. Therefore, negative values at the
end-points of the q2 spectrum, where mainly background events contribute, are set
to zero to avoid unrealistic probability weights. The signal probability functions
for all q2 threshold selections between q2 > 0.0 GeV2 and q2 > 10.0 GeV2 for pro-
gressively increasing incremental steps of 0.5 GeV2 are found in Appendix C. These
probability curves are utilised in the following section to complete the calculation of
the q2 moments.
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Chapter 6

Measurement of q2 moments

This section describes the developed methodology to calculate the moments of the
q2 distribution 〈qn〉 with n = 2, 4, 6, 8. The moments are measured as a set of thresh-
old selections on the reconstructed q2 distribution that start at q2 > 3.0 GeV2 and
progressively increase with incremental steps of 0.5 GeV2 up to q2 > 10.0 GeV2. In
addition, the lower q2 threshold selections between 0.0 GeV2 and 2.5 GeV2 are also
studied to verify the analysis strategies employed to calibrate and extract the mea-
sured moments. The studies concerning these low q2 threshold selections are found
in Appendix I.

The background subtracted moments of order n are calculated as a weighted mean
summing over all selected events:

〈qn〉 = ∑i wi(q
2)(qn

calib,i)

∑i wi(q
2)

× Ccal × Cacc , (6.1)

where wi(q
2) are the signal probability weights calculated as a continuous function

of q2, qn
calib,i is the event-wise calibrated q2 value to the power of n, and Ccalib and Ctrue

denote additional correction factors. The reconstructed q2 distribution is distorted by
missing charged and neutral particles in the reconstruction of the hadronic tag-side
and by finite detector acceptance and resolution effects. To correct for reconstruction
and selection effects and ensure an unbiased measurement, the 〈qn〉moments are un-
folded with correction methods based on generator-level MC samples. The selected
calibration method has yielded reliable results in past measurements of the moments
of the hadronic mass, and combined mass-and-energy spectra of B → Xc`ν decays,
found in [132, 133]. Consequently, this calibration method is adjusted and tested to
meet the requirements of this analysis. Both the calibration method and the calcu-
lation of the additional correction factors, which further correct the moments from
selection and acceptance effects, are described in Section 6.1. Various sources of sta-
tistical and systematic uncertainties are introduced by the background subtraction
and calibration procedures and affect the final measured 〈qn〉moments. The evalua-
tion of the statistical and systematic uncertainties considered in the measurement is
discussed in Section 6.2. The measurement of the 〈qn〉moments of B→ Xc`ν decays
are presented separately for electron and muon candidates in Section 6.3, allowing
for a test of lepton flavour universality. Lastly, Section 6.4 describes the interpreta-
tion of the measured 〈qn〉 moments in the framework of the HQE. A preliminary,
simultaneous fit is performed to the theoretical predictions based on the reduced
set of HQE parameters at O(1/m4

b) and a value of |Vcb| is subsequently extracted.
Unless otherwise stated, all calibration studies shown in the following sections are
calculated on simulated signal decays for electron candidates, while the calibrations
derived for muon candidates are given in Appendix D.
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FIGURE 6.1: Calibration curves for 〈q2,4,6,8〉 for electron candidates.
The extracted 〈qn

,reco〉 versus 〈qn
,true〉 as a function of q2 threshold se-

lections together with the fitted linear calibration curves are shown.

6.1 Calibration

The main goal of the calibration method is to correct the measured moments of the
selected data sample to the underlying true moments. This is achieved by exploit-
ing the linear relationship between the moments of the reconstructed q2 distribution
〈qn

,reco〉 and the true distribution 〈qn
,true〉. Therefore, each calibration curve is based

on the following linear approximation:

qn
reco = cn + mn · q

n
true for n = 2, 4, 6, 8, (6.2)

where mn and cn are parameters of the linear curve that are determined for each or-
der of moment. The final calibration is subsequently applied as an event-by-event
linear correction function, which is given as a function of the reconstructed qn. Fur-
thermore, two additional global correction factors are introduced to correct for any
residual bias as well as selection and acceptance effects. The parameters in the func-
tion shown in Eqn. 6.2 are determined by utilising a separate, independent B→ Xc`ν
MC sample, which corresponds to one stream of the data set recorded by the Belle
detector.

For each q2 threshold selection, the true underlying 〈qn
, true〉 and the reconstructed

moments 〈qn
, reco〉 are calculated on an independent simulated signal MC sample. A

strong linear relationship is found for all orders of moments under study and linear
calibration functions are derived by fitting linear curves to the calculated moments.
Therefore, this method leads to the extraction of exactly one calibration curve for
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FIGURE 6.2: Moments of qn calculated on simulated B→ Xceν decays
for different q2 threshold selections. The reconstructed, calibrated
and true moments after all selection criteria have been applied are
compared. Additionally, the true moments without any selection cri-

teria are shown as the yellow diamonds.

each order of 〈qn〉, reducing the possible statistical error due to the calibration func-
tions. The extracted moments for 〈q2,4,6,8〉 are shown in Figure 6.1, together with the
fitted calibration curves. Due to a greater presence of final state radiative photons in
the electron channel, a small difference between the fitted slope and intercept of the
obtained calibration curves for electron and muon candidates is observed.

After obtaining a set of calibration curves for each order of moment 〈qn〉, the recon-
structed q2 distribution is subsequently corrected by making use of the linear cali-
bration function in Eqn. 6.2 to calculate the calibrated values q2

calib. For each event
with a given reconstructed q2, the corresponding calibrated value is determined by
simply inverting the linear calibration function:

qn
calib =

(qn
reco)− cn

mn
, (6.3)

where n = 2, 4, 6, 8, and m and c denote the fitted slope and intercept of the lin-
ear correction function, respectively. The performance of this calibration method is
shown in Figure 6.2, where the reconstructed, calibrated and true underlying mo-
ments are compared as a function of q2 threshold selections. These moments are
calculated on the same independent simulated signal sample used to derive the lin-
ear calibration functions.
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FIGURE 6.3: Remaining bias after application of the calibration curves
on simulated B→ Xceν decays as a function of q2 threshold selection.
Shown here are the bias correction factors Ccal (blue) and Cacc (red).

6.1.1 Residual bias corrections

Even though the above-mentioned calibration method corrects most of the recon-
structed moments to the underlying true moments, small deviations still remain af-
ter the correction procedure. The observed bias is due to imperfections in the cal-
ibration method, i.e. small non-linearities that the extracted curves do not account
for. Furthermore, the remaining bias increases for higher q2 threshold selections due
to limited statistics in these regions of phase space. In order to eliminate any possible
residual bias, sets of correction factors for each q2 threshold selection are determined,
while using the same independent simulated signal sample discussed in the previ-
ous section. Two distinct factors are considered: Ccal corrects the remaining bias due
to imperfections in the calibration method, while Cacc corrects for a possible intrinsic
bias introduced by finite detector resolution as well as the chosen signal selection
criteria.

The correction factor Ccal accounts for the observed residual bias after applying the
derived calibration functions to the reconstructed q2 distribution to obtain calibrated
values. A global correction factor is calculated for each individual q2 threshold se-
lection and each order of moment as follows:

Ccal =
〈qn

true〉
〈qn

calib〉
. (6.4)

The determined correction factors vary greatly depending on the specific q2 thresh-
old selection, with the largest observed bias found for higher q2 regions. In these
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FIGURE 6.4: Selection efficiencies of different B → Xceν (left) and
B→ Xc µ ν (right) components with basic transverse momentum and
angular requirements in bins of q2. The error bars include only the
uncertainty due to limited MC statistics. Different q2 bins are indi-

cated by the alternating shaded regions.

regions of phase space, the limited statistics as well as the poor q2 resolution con-
tributes to a large residual bias after performing the calibration procedure. Figure 6.3
shows the calculated correction factors, where the overall residual bias is observed
to be less than a percent for the first moment 〈q2〉. On the other hand, the largest
residual bias is found for the higher moments, where the calibrated and true under-
lying moments differ by approximately 2%.

Since the calibration curves are derived by calculating the reconstructed 〈qn
reco〉 and

true 〈qn
true〉moments after applying all signal selection criteria, the true moments are

affected by an intrinsic selection bias. This effect is observed in Figure 6.4, which
shows the selection efficiencies in bins of q2 for different exclusive B → Xc`ν de-
cays with the basic angular and transverse momentum requirements outlined in
Table 4.2. Different selection and acceptance efficiencies are observed for different
B → Xc`ν final states, especially for the poorly constrained D∗∗ and non-resonant
decays in the low q2 region. Therefore, the calculated underlying true moments are
biased with respect to the true moments calculated on events selected only with a
true q2 threshold selection. In addition, theoretical interpretations are based on cal-
culations that do not account for photons emitted by final state radiation. However,
these photons are not only simulated in MC, but also present in data. Consequently,
this additional, albeit tiny, effect as well as detector resolution and selection effects
are considered by applying a global correction factor Cacc for each q2 threshold selec-
tion and order of moment. The bias correction factor Cacc is calculated on simulated
signal samples and is defined as:

Cacc =
〈qn

true without cut〉
〈qn

true〉
. (6.5)

Here, 〈qn
true〉 is the underlying true moment calculated after all selection criteria

have been applied, while 〈qn
true without cut〉 is the true moment calculated without

any selection requirements except a true q2 threshold selection. The true moments
〈qn

true without cut〉 are calculated by making use of a dedicated generator-level signal
sample that does not include effects due to final state radiation. Figure 6.3 shows
the calculated Cacc correction factors for each considered q2 threshold selection and
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moment order. The observed factors are once again clearly dependent on the spe-
cific q2 threshold selection: the poorly constrained non-resonant decays are more
abundant in low regions of the q2 spectrum, leading to an estimated bias correction
factor of approximately 5% for the first moments 〈q2〉 that increases for higher or-
ders. One the other hand, the well-understood D`ν and D∗`ν decays dominate in
the high regions of q2 phase space resulting in smaller corrections tending toward
unity for higher q2 threshold selections. A similar trend in the calculated Cacc correc-
tion factors is reported in [134] where a similar methodology is utilized to measure
the hadronic mass moments of inclusive B→ Xc`ν decays.

6.1.2 Verification of the calibration procedure

In order to verify the full background subtraction and calibration methodology, sets
of calibrated and background subtracted q2 moments are calculated on ensembles
of independent simulated samples to determine any bias in the extraction method.
The verification procedure is briefly outlined below:

1. Linear calibration functions are derived by making use of an independent sam-
ple of signal MC corresponding to one stream of the data set recorded by the
Belle detector.

2. An additional, independent sample of generic MC containing both signal and
background processes is divided into two equal samples. Both the continu-
ous signal probability weights and the bias correction factors are calculated by
using one of the halved samples.

3. The remaining halved sample is treated as “mock data” and is used to test the
moment extraction method. Calibrated and background subtracted q2 “mock
moments” are calculated using Eqn. 6.1. The above-mentioned linear calibra-
tion functions and the additional bias correction factors, Ccal and Cacc, are ap-
plied to the q2 distribution in combination with the Asimov signal probability
weights.

This study tests the complete extraction formalism; if the true generator-level mo-
ments are obtained after the background subtraction and calibration steps, then the
procedure can be trusted to produce reliable results. In order to determine any
additional remaining bias due to the extraction method, the bootstrapping algo-
rithm [135, 136] is implemented. A bootstrapped sample is determined by repeat-
edly sampling the nominal data set with replacement, repeating the verification pro-
cedure described above and calculating new bootstrapped moments 〈qn

mock〉. A sam-
ple size of 500 pseudo-data sets is used to evaluate the relative error of the remaining
bias, which is calculated as:

σnon-closure =
〈qn

mock〉 − 〈q
n
gen〉

〈qn
gen〉

, (6.6)

where 〈qn
gen〉 denotes the true generator-level moments. Figure 6.5 shows box plots

of the resulting relative errors for electron candidates. The box plots show the stan-
dard 0.25%, 0.5%, and 0.75%-percentiles, while the whiskers correspond to the stan-
dard 1.5 times the interquartile range. While a small remaining bias is still observed,
it is not considered to be statistically significant compared to the leading sources
of statistical and systematic uncertainties, further discussed in Section 6.2. The ob-
served residual bias is possibly introduced by imperfections in the interpolation of
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FIGURE 6.5: Box plot of the sample test relative error distributions
for qn moments as a function of q2 threshold selections for electron

candidates.

the bin-wise signal probabilities. To obtain a quantitative estimate of the bias, the
mean value of the relative error distribution is estimated and added as an additional
non-closure uncertainty on the final measured moments. Overall this test gives us
confidence that the analysis strategy yields unbiased unfolded qn moments.

6.2 Statistical and systematic uncertainties

Various sources of statistical and systematic uncertainty arising from the background
subtraction and calibration procedures are estimated in this section. The total esti-
mated error on the final measured moments 〈qn〉 is obtained by adding the indi-
vidual uncertainty sources in quadrature. Tables 6.1 and 6.2 summarise the relative
statistical and systematic uncertainties on the measured moments 〈qn〉 for both elec-
tron and muon candidates, given in permille.
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6.2.1 Statistical error on extracted moments

The statistical error on the extracted moments, which is directly related to the amount
of observed events in simulated samples and data, is determined as the variance of
a weighted mean in the following manner:

V(〈qn〉) = V
(

∑ wi(q
2)(qn)

∑i wi(q
2)

)
(6.7)

=
1(

∑i wi(q
2)
)2 V

(
∑ wi(q

2)(qn)
)

=
∑i wi(q

2)2(
∑i wi(q

2)
)2 V(qn)

=
∑i wi(q

2)2(
∑i wi(q

2)
)2 〈q

2n〉 − 〈qn〉2 .

Here, the overall statistical variance is given by the calibrated, but unweighted, qn

distribution. Since the errors due to the background subtraction, calibration and bias
correction factors are estimated separately as systematic effects, the treatment of the
probability density weights, wi(q

2), as constants in the aforementioned equation is
sound.

6.2.2 Statistical error on the signal probability weights

Since the continuous signal probability functions are determined by fitting the binned
signal probabilities for each q2 threshold selection with a polynomial function of a
given order n, each of the fitted coefficients have correlated statistical errors. In order
to propagate the correlated uncertainties correctly, the eigenvectors and eigenvalues
of the post-fit covariance matrix are calculated to extract orthogonal variations cor-
responding to each of the fitted function’s coefficients. The varied parameters, c±i ,
are calculated by making use of Eqn. 3.15, where i corresponds to the number of
eigen variations for a given polynomial function.

To estimate the impact of the uncertainties on the fitted parameters, the calculation
of the measured moments 〈qn〉 is repeated for each of the varied polynomial coeffi-
cients. An uncertainty for each variation is then estimated as follows:

σ〈qn
ci
〉 =
|〈qn

c+i
〉 − 〈qn

c−i
〉|

2
. (6.8)

The total uncertainty due to the background subtraction weights is estimated by
adding all individual uncertainties in quadrature.

6.2.3 Statistical error on the linear calibration functions

Similar to the previous error calculation, the fitted coefficients of the linear calibra-
tion curves also have correlated statistical errors. Therefore, varied parameters are
again calculated by making use of Eqn. 3.15. In total, two independent variations of
the fitted parameters are determined for this error source. The impact of the uncer-
tainties on the fitted calibration curve is estimated by repeating the calculation of the
moments 〈qn〉 and estimating an uncertainty for each variation with Eqn. 6.8. The
total uncertainty due to the determination of the calibration function is calculated in
the same manner as described in the previous section.
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6.2.4 Statistical error on the additional bias correction factors

The statistical uncertainty due to the additional bias correction factors is estimated
by varying the bias correction factors within one standard deviation and repeating
the moments 〈qn〉 calculation. The resulting statistical uncertainty due to the global
correction factors Ccal and Cacc is estimated as half the difference between the two
varied moments.

6.2.5 Uncertainty due to the B→ Xu`ν branching fraction

As summarised in Table 3.3, the latest experimental uncertainty for the B → Xu`ν
branching fraction is estimated to be approximately 14% [30]. To propagate the un-
certainty of the branching fraction into the measurement of the moments 〈qn〉, the
corresponding B→ Xu`ν simulated background component is rescaled with scaling
factors given by:

s = snominal ± σB . (6.9)

New varied signal probability curves are subsequently derived using the altered
MC sample and the calculation of the moments is repeated. Finally, the resulting
uncertainty is estimated in the same manner as described in the previous section.

6.2.6 Uncertainty due to the B→ Xc`ν composition

Since the developed methodology to calculate the moments of the q2 distribution
〈qn〉 relies very strongly on MC simulations, the final measured moments depend
strongly on the choice of B→ Xc`ν modelling that was employed to simulate the sig-
nal decays. With the exception of the B → D`ν and B → D∗`ν decays, higher mass
contributions of the full semileptonic decay width are scarcely known. Furthermore,
the composition of the simulated signal MC affects the background normalization as
well as the calibration of the measured moments. The systematic uncertainty related
to the chosen signal model is evaluated by changing the assumed composition, i.e.
by dropping each of the exclusive B→ D∗∗`ν states. In addition, two different meth-
ods are implemented to estimate the impact of the non-resonant contribution of the
Xc system. The first approach involves completely dropping the B→ D(∗)ππ`ν and
B → D(∗)η`ν states, while the second method replaces the current gap model with
the scaled-up contributions of the two broad D∗∗ states (D′1 and D∗0 ). In addition, the
systematic uncertainties due to the B→ D`ν and B→ D∗`ν branching fractions are
estimated by varying the corresponding MC sample within the experimental uncer-
tainty of the current branching fractions, shown in Table 3.3, while using the same
scaling factors introduced in Eqn. 6.9. The simulation model-dependence of both
the derived calibration curves and the residual bias corrections is studied as well by
carrying out each of the subsequent analysis steps outlined in previous sections.

Since the calibration curves are also sensitive to the chosen signal model, the sys-
tematic uncertainty arising from this dependency is taken into account by calculat-
ing new calibration curves for each of the altered compositions of the signal model.
Furthermore, new residual bias correction factors are also calculated with the modi-
fied signal decay models. Therefore, six different sets of calibration curves and bias
corrections for the B → D∗∗`ν and non-resonant states are derived, while four sets
of varied calibration curves are calculated for B→ D`ν and B→ D∗`ν decays.
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Subsequently, the estimated uncertainties due to the B → D`ν and B → D∗`ν
branching fractions are calculated as described in previous sections, while uncertain-
ties due to the modelling of the B → D∗∗`ν and non-resonant states are estimated
by calculating:

σXccomponent = |〈q
n
, nominal〉 − 〈q

n
,Xc component〉| . (6.10)

Summaries of the uncertainties due to the modelling of each exclusive state for the
moments 〈q2,4,6,8〉 are found in Appendix E. The total systematic uncertainty due to
the B → Xc`ν composition is estimated by adding all individual uncertainties in
quadrature.

6.2.7 Uncertainty due to the B→ Xc`ν modelling

The final measured moments not only depend on the B → Xc`ν composition, but
also on the choice of specific exclusive kinetic decay models. In order to take into ac-
count the uncertainty due to the choice of form factor parametrization for exclusive
B→ Xc`ν decays, the event-wise form factor weights are varied with the sets of vari-
ation weights, described in Section 3.3.2, for each of the specific form factor param-
eters. New sets of calibration curves as well as bias correction factors are calculated
for the each of the varied parameters associated with the B → Dlν, B → D∗lν, and
B → D∗∗lν decays. The moments 〈qn〉 calculation is subsequently repeated with
the sets of varied calibration and bias correction factors. The error due to a given
form factor parameter is estimated by making use of Eqn. 6.8. Summaries of the
uncertainties due to the choice of form factor parametrization describing exclusive
B → Xc`ν decays for the moments 〈q2,4,6,8〉 are also provided in Appendix E. The
final uncertainty due to the choice of B → Xc`ν form factor parameters is estimated
by adding individual form factor parameter errors from each of the respective pro-
cesses in quadrature.

6.2.8 Efficiency correction uncertainties

As mentioned in Section 3.3.2, the track finding efficiency has an associated system-
atic uncertainty of 0.35% per track due to the difference between the value in MC
and data. Therefore, the error due to the tracking efficiency is estimated by vary-
ing the nominal tracking weight by 0.35% per track. Varied calibration curves are
derived for the varied track efficiency correction weights, which in turn are used to
calculate new varied sets of bias correction factors. The moments 〈qn〉 are extracted
with the new varied calibrations, and the total uncertainty due to the difference in
track finding efficiency between MC and data is estimated by once again making use
of Eqn. 6.8.

The systematic uncertainty due to lepton and hadron identification efficiency cor-
rections is estimated by applying the sets of associated variation weights, described
in Section 3.3.2. Varied calibration curves and new sets of bias correction factors are
calculated for each of the variations leading to a total of 20 different calibrations per
PID type. The analysis procedure is repeated in order to extract an ensemble of var-
ied moments qn, while the size of the uncertainty is evaluated by taking the RMS of
the observed moment variations.

The reconstruction efficiencies of the Full Reconstruction algorithm, described in
Section 4.2.1, differ for neutral and charged B mesons in data and simulated MC
samples. This difference arises due to inaccurate modelling of the detector response



6.2. Statistical and systematic uncertainties 101

0 2 4 6 8 10
Number of charged tracks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ev
en

ts
 / 

(1
.0

0)
×104

B De
B D*e
B D* * e
Gap
Other Background
Continuum
MC Uncertainty
Data

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Number of neutral clusters

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Ev
en

ts
 / 

(1
.0

0)

×104

B De
B D*e
B D* * e
Gap
Other Background
Continuum
MC Uncertainty
Data

0 2 4 6 8 10
Number of charged tracks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ev
en

ts
 / 

(1
.0

0)

×104

B D
B D*

B D* *

Gap
Other Background
Continuum
MC Uncertainty
Data

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Number of neutral clusters

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Ev
en

ts
 / 

(1
.0

0)

×104

B D
B D*

B D* *

Gap
Other Background
Continuum
MC Uncertainty
Data

FIGURE 6.6: Comparisons between the data and MC distributions of
the number of charged tracks and neutral clusters in the electron (top)

and muon (bottom) channels.

or incorrect branching fractions of the exclusive B meson decay channels included
in the reconstruction algorithm. The systematic uncertainty due to the B0/B± recon-
struction efficiency is taken into account by correcting for the difference in MC and
repeating the calibration procedure to determine a varied set of q2 moments. Sub-
sequently, the full difference between the varied and nominal moments is estimated
as the systematic uncertainty.

6.2.9 MC modelling of tracks and clusters in the X system

As can be seen in Figure 6.6, a slight disagreement between the expected and ob-
served number of charged tracks and neutral clusters in the X system is observed.
In order to estimate the impact of a potential mis-modelling of the X system res-
olution in MC, bin-wise weight functions are determined in a region where signal
dominates: MX < 3 GeV and p` > 1 GeV. The weights are calculated separately for
electron and muon candidates as the bin-wise ratio of the normalized MC and data
distribution. Since the number of charged tracks and neutral clusters are indepen-
dent, separate sets of weight functions are calculated for each of these distributions
and applied independently to the signal MC. Subsequently, new calibrations, bias
correction factors and varied sets of moments are determined and the absolute value
of the difference between the varied and nominal moments is taken as the estimated
error.
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Since the Emiss− |pmiss| distribution is not only used to select correctly reconstructed
semileptonic B → Xc`ν decays, but also to improve the resolution of the recon-
structed q2, a similar strategy as described above is employed to take into account
any mis-modelling of the Emiss − |pmiss| distribution. The impact of this systematic
uncertainty is estimated by calculating correction functions based on the interpo-
lated bin-wise ratios between the normalized MC and data distributions, while ap-
plying the bin-wise weights derived for the number of charged tracks and neutral
clusters to avoid double counting.

6.2.10 MC modelling of the q2 distribution

To estimate an uncertainty on the modeling of the q2 distribution, the reconstructed
distribution is scaled by 1%. This shift in the q2 distribution corresponds to the
observed differences in the mean values of the energy and momentum of the recon-
structed X system. The calibration procedure is repeated in order to redetermine cal-
ibration functions as well as bias correction factors, while varied sets of background
subtraction weights are determined for the shifted distribution. Subsequently, var-
ied sets of shifted moments are extracted and the uncertainty due to the modelling of
the q2 distribution is evaluated by taking the full difference to the nominal moments.

6.2.11 Statistical and systematic correlations

Since the determined moments 〈qn〉 are measured with progressively increasing
threshold selections on the q2 distribution, moments of different cuts share a subset
of events and are therefore statistically correlated. The correlations between the mo-
ments 〈qn〉 for different q2 threshold selections are important if these measurements
are to be used to extract HQE parameters in a simultaneous fit to the theoretical
moment predictions. This fit is beyond the scope of this work, however, measured
correlations are included for completeness. The bootstrapping algorithm is imple-
mented in order to determine the measured correlations between the moments for
different q2 threshold selections. Similar to the strategy employed in Section 6.1.2,
the bootstrapped sample is determined by sampling the nominal data set with re-
placement and repeatedly calculating new values of 〈qn〉. The correlation values are
then calculated by making use of the Pearson correlation coefficient to estimate the
correlation matrix of the measured moments 〈qn〉. Figure 6.7 shows an example of
the statistical correlations for electron candidates. Moments of the same order with
similar selections on q2 are highly correlated, while moments of higher order with
identical q2 selections contain more independent information as the difference in the
order increases.

Additionally, a covariance for the lepton and hadron identification efficiencies is esti-
mated in a similar manner as discussed above, however here the ensemble of varied
moments described in Section 6.2.8 is used for the calculation. The MC non-closure
uncertainty discussed in Section 6.1.2 is assumed to be uncorrelated across different
moment orders as well as different q2 threshold selections. Therefore, only a diago-
nal covariance matrix is constructed to describe this error source. For the remaining
systematic uncertainties considered in previous sections, identical sources are fully
correlated or anti-correlated across bins. The complete systematic covariance matrix
is determined by combining the statistical and all systematic covariance matrices



6.2. Statistical and systematic uncertainties 103

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

q2 (GeV2) with q2 Cut

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

q2
(G

eV
2 )

 w
ith

 q
2  C

ut
1.0 1.0 0.98 0.95 0.91 0.87 0.83 0.79 0.74 0.7 0.68 0.62 0.56 0.52 0.5 0.5 0.45 0.41 0.37 0.32 0.28

1.0 1.0 0.99 0.95 0.92 0.88 0.83 0.79 0.75 0.7 0.68 0.62 0.56 0.52 0.5 0.5 0.46 0.42 0.37 0.32 0.27

0.98 0.99 1.0 0.97 0.93 0.89 0.84 0.8 0.76 0.71 0.69 0.63 0.57 0.53 0.51 0.5 0.47 0.42 0.38 0.32 0.28

0.95 0.95 0.97 1.0 0.97 0.94 0.89 0.84 0.79 0.74 0.72 0.66 0.6 0.56 0.53 0.52 0.48 0.44 0.39 0.34 0.29

0.91 0.92 0.93 0.97 1.0 0.96 0.92 0.87 0.82 0.77 0.74 0.68 0.62 0.58 0.55 0.53 0.49 0.45 0.4 0.35 0.3

0.87 0.88 0.89 0.94 0.96 1.0 0.96 0.9 0.86 0.81 0.78 0.72 0.66 0.62 0.58 0.56 0.52 0.48 0.43 0.38 0.31

0.83 0.83 0.84 0.89 0.92 0.96 1.0 0.95 0.9 0.85 0.81 0.75 0.69 0.65 0.61 0.58 0.55 0.5 0.45 0.4 0.33

0.79 0.79 0.8 0.84 0.87 0.9 0.95 1.0 0.94 0.89 0.83 0.78 0.71 0.66 0.61 0.59 0.55 0.51 0.44 0.39 0.33

0.74 0.75 0.76 0.79 0.82 0.86 0.9 0.94 1.0 0.94 0.88 0.83 0.76 0.71 0.66 0.63 0.6 0.54 0.48 0.42 0.35

0.7 0.7 0.71 0.74 0.77 0.81 0.85 0.89 0.94 1.0 0.93 0.86 0.79 0.74 0.69 0.65 0.62 0.55 0.5 0.44 0.37

0.68 0.68 0.69 0.72 0.74 0.78 0.81 0.83 0.88 0.93 1.0 0.93 0.84 0.78 0.72 0.68 0.64 0.57 0.52 0.45 0.38

0.62 0.62 0.63 0.66 0.68 0.72 0.75 0.78 0.83 0.86 0.93 1.0 0.92 0.86 0.8 0.74 0.69 0.63 0.56 0.51 0.42

0.56 0.56 0.57 0.6 0.62 0.66 0.69 0.71 0.76 0.79 0.84 0.92 1.0 0.92 0.86 0.8 0.75 0.67 0.61 0.55 0.44

0.52 0.52 0.53 0.56 0.58 0.62 0.65 0.66 0.71 0.74 0.78 0.86 0.92 1.0 0.92 0.85 0.78 0.71 0.65 0.58 0.48

0.5 0.5 0.51 0.53 0.55 0.58 0.61 0.61 0.66 0.69 0.72 0.8 0.86 0.92 1.0 0.92 0.84 0.76 0.7 0.62 0.54

0.5 0.5 0.5 0.52 0.53 0.56 0.58 0.59 0.63 0.65 0.68 0.74 0.8 0.85 0.92 1.0 0.91 0.82 0.74 0.68 0.59

0.45 0.46 0.47 0.48 0.49 0.52 0.55 0.55 0.6 0.62 0.64 0.69 0.75 0.78 0.84 0.91 1.0 0.91 0.82 0.74 0.64

0.41 0.42 0.42 0.44 0.45 0.48 0.5 0.51 0.54 0.55 0.57 0.63 0.67 0.71 0.76 0.82 0.91 1.0 0.9 0.81 0.73

0.37 0.37 0.38 0.39 0.4 0.43 0.45 0.44 0.48 0.5 0.52 0.56 0.61 0.65 0.7 0.74 0.82 0.9 1.0 0.9 0.8

0.32 0.32 0.32 0.34 0.35 0.38 0.4 0.39 0.42 0.44 0.45 0.51 0.55 0.58 0.62 0.68 0.74 0.81 0.9 1.0 0.89

0.28 0.27 0.28 0.29 0.3 0.31 0.33 0.33 0.35 0.37 0.38 0.42 0.44 0.48 0.54 0.59 0.64 0.73 0.8 0.89 1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

q2 (GeV2) with q2 Cut

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

q2
(G

eV
2 )

 w
ith

 q
2  C

ut

1.0 0.95 0.86 0.74 0.77 0.81 0.78 0.83 0.86 0.86 0.86 0.85 0.81 0.77 0.71 0.66 0.61 0.57 0.51 0.5 0.48

0.95 1.0 0.98 0.9 0.93 0.94 0.92 0.94 0.95 0.93 0.91 0.88 0.84 0.78 0.71 0.67 0.62 0.59 0.54 0.53 0.51

0.86 0.98 1.0 0.95 0.98 0.98 0.96 0.97 0.96 0.94 0.9 0.87 0.82 0.76 0.69 0.65 0.61 0.58 0.54 0.54 0.52

0.74 0.9 0.95 1.0 0.97 0.96 0.94 0.94 0.92 0.89 0.84 0.8 0.76 0.7 0.64 0.6 0.56 0.54 0.52 0.52 0.5

0.77 0.93 0.98 0.97 1.0 1.0 0.98 0.97 0.95 0.93 0.89 0.84 0.8 0.74 0.68 0.64 0.6 0.58 0.56 0.56 0.54

0.81 0.94 0.98 0.96 1.0 1.0 0.98 0.99 0.97 0.95 0.92 0.88 0.84 0.79 0.73 0.69 0.65 0.63 0.59 0.59 0.58

0.78 0.92 0.96 0.94 0.98 0.98 1.0 0.99 0.98 0.96 0.93 0.89 0.85 0.8 0.74 0.7 0.67 0.66 0.63 0.63 0.62

0.83 0.94 0.97 0.94 0.97 0.99 0.99 1.0 0.99 0.98 0.95 0.92 0.88 0.82 0.76 0.72 0.68 0.66 0.62 0.62 0.61

0.86 0.95 0.96 0.92 0.95 0.97 0.98 0.99 1.0 0.99 0.97 0.95 0.91 0.86 0.8 0.76 0.72 0.69 0.65 0.65 0.63

0.86 0.93 0.94 0.89 0.93 0.95 0.96 0.98 0.99 1.0 0.99 0.98 0.95 0.9 0.85 0.81 0.77 0.75 0.7 0.7 0.68

0.86 0.91 0.9 0.84 0.89 0.92 0.93 0.95 0.97 0.99 1.0 0.99 0.98 0.94 0.9 0.87 0.83 0.8 0.76 0.75 0.73

0.85 0.88 0.87 0.8 0.84 0.88 0.89 0.92 0.95 0.98 0.99 1.0 0.99 0.97 0.94 0.91 0.88 0.85 0.8 0.8 0.78

0.81 0.84 0.82 0.76 0.8 0.84 0.85 0.88 0.91 0.95 0.98 0.99 1.0 0.99 0.97 0.95 0.92 0.9 0.85 0.85 0.83

0.77 0.78 0.76 0.7 0.74 0.79 0.8 0.82 0.86 0.9 0.94 0.97 0.99 1.0 0.99 0.98 0.96 0.93 0.89 0.89 0.87

0.71 0.71 0.69 0.64 0.68 0.73 0.74 0.76 0.8 0.85 0.9 0.94 0.97 0.99 1.0 0.99 0.98 0.96 0.93 0.92 0.9

0.66 0.67 0.65 0.6 0.64 0.69 0.7 0.72 0.76 0.81 0.87 0.91 0.95 0.98 0.99 1.0 0.99 0.98 0.95 0.94 0.92

0.61 0.62 0.61 0.56 0.6 0.65 0.67 0.68 0.72 0.77 0.83 0.88 0.92 0.96 0.98 0.99 1.0 0.99 0.97 0.96 0.95

0.57 0.59 0.58 0.54 0.58 0.63 0.66 0.66 0.69 0.75 0.8 0.85 0.9 0.93 0.96 0.98 0.99 1.0 0.99 0.98 0.97

0.51 0.54 0.54 0.52 0.56 0.59 0.63 0.62 0.65 0.7 0.76 0.8 0.85 0.89 0.93 0.95 0.97 0.99 1.0 0.99 0.99

0.5 0.53 0.54 0.52 0.56 0.59 0.63 0.62 0.65 0.7 0.75 0.8 0.85 0.89 0.92 0.94 0.96 0.98 0.99 1.0 0.99

0.48 0.51 0.52 0.5 0.54 0.58 0.62 0.61 0.63 0.68 0.73 0.78 0.83 0.87 0.9 0.92 0.95 0.97 0.99 0.99 1.0

FIGURE 6.7: Statistical correlations (left) and experimental correla-
tions (right) between measured 〈q2〉moments for electron candidates.

stemming from the individual systematic error sources. An example of the experi-
mental correlations for electron candidates is shown in Figure 6.7. The statistical and
experimental correlation matrices for the measured 〈qn〉 moments for both electron
and muon candidates are given in Appendix F.
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TABLE 6.1: Summary of statistical and systematic uncertainties for
the moments 〈q2,4,6,8〉 for electron candidates. The values are given as

the relative error in permille.

q2 selection in GeV2 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

〈q2〉 in GeV2 6.21 6.51 6.81 7.10 7.41 7.71 8.01 8.30 8.60 8.88 9.19 9.48 9.78 10.07 10.38

Stat. error (data) 1.42 1.36 1.31 1.27 1.24 1.21 1.18 1.17 1.16 1.16 1.17 1.19 1.22 1.25 1.29
Bkg. subtraction 1.06 0.76 0.57 0.40 0.37 0.41 0.48 0.55 0.60 0.63 0.67 0.70 0.77 0.83 0.91
B→ Xu`ν BF 1.80 1.66 1.52 1.10 0.78 0.57 0.42 0.29 0.23 0.19 0.16 0.13 0.12 0.15 0.10
B→ Xc`ν BF 4.94 4.72 4.90 4.55 4.47 4.30 3.77 3.47 3.28 2.99 2.49 1.96 1.41 1.27 1.16
Non-resonant model 13.20 11.54 10.14 8.33 6.93 5.78 4.50 3.54 2.76 2.21 1.63 1.24 0.81 0.77 0.66
B→ Xc`ν FF 1.63 1.47 1.27 1.10 0.94 0.84 0.79 0.75 0.69 0.63 0.56 0.49 0.42 0.40 0.37
Ntracks res. 4.67 4.40 4.17 3.91 3.72 3.50 3.31 3.13 2.95 2.83 2.66 2.50 2.40 2.24 2.13
Nγ res. 0.50 0.49 0.44 0.43 0.40 0.37 0.36 0.36 0.36 0.35 0.33 0.31 0.31 0.32 0.32
Emiss − |pmiss| shape 0.71 0.69 0.73 0.68 0.77 0.86 0.89 0.94 0.97 1.06 1.14 1.20 1.30 1.29 1.31
q2 scale 8.98 6.77 6.12 5.77 5.70 5.50 5.12 4.86 4.72 4.62 4.25 4.33 3.91 3.90 3.94
MC non-closure 0.06 0.09 0.03 0.01 0.01 0.03 0.02 0.01 0.01 0.01 0.00 0.03 0.00 0.01 0.00
Cal. function 0.13 0.08 0.03 0.02 0.08 0.12 0.17 0.22 0.26 0.30 0.34 0.38 0.42 0.45 0.49
Stat. bias corr. 1.22 1.18 1.14 1.11 1.08 1.06 1.04 1.03 1.02 1.02 1.02 1.03 1.05 1.07 1.10
PID eff. 0.17 0.16 0.14 0.13 0.13 0.11 0.10 0.09 0.09 0.08 0.08 0.08 0.07 0.06 0.05
Track eff. 0.42 0.39 0.36 0.33 0.31 0.29 0.27 0.25 0.23 0.22 0.20 0.19 0.18 0.16 0.15
B0/B± tag eff. 0.21 0.25 0.35 0.41 0.52 0.44 0.45 0.37 0.55 0.74 0.72 0.73 0.60 0.47 0.45

Sys. error (total) 17.62 15.11 13.72 11.98 10.88 9.89 8.66 7.83 7.27 6.85 6.16 5.87 5.29 5.17 5.13

Total rel. error in h 17.68 15.17 13.78 12.04 10.95 9.96 8.74 7.92 7.36 6.95 6.27 5.99 5.43 5.32 5.29

〈q4〉 in GeV4 42.99 46.27 49.74 53.41 57.42 61.64 65.96 70.46 75.15 79.92 85.20 90.50 96.07 101.73 108.10

Stat. error (data) 3.23 3.13 3.04 2.96 2.88 2.82 2.77 2.74 2.72 2.72 2.74 2.78 2.84 2.92 3.01
Bkg. subtraction 1.78 1.35 1.14 0.99 1.06 1.17 1.33 1.49 1.58 1.65 1.71 1.78 1.93 2.05 2.23
B→ Xu`ν BF 3.84 3.52 3.16 2.29 1.64 1.21 0.90 0.63 0.52 0.43 0.37 0.31 0.29 0.34 0.24
B→ Xc`ν BF 9.45 9.45 9.93 9.48 9.41 9.10 8.13 7.54 7.11 6.45 5.40 4.31 3.18 2.88 2.62
Non-resonant model 25.19 22.36 19.84 16.57 13.95 11.72 9.25 7.36 5.81 4.68 3.49 2.69 1.82 1.73 1.49
B→ Xc`ν FF 3.13 2.84 2.51 2.22 1.95 1.81 1.72 1.64 1.52 1.41 1.26 1.12 0.98 0.92 0.85
Ntracks res. 10.44 9.95 9.49 8.98 8.56 8.09 7.67 7.26 6.84 6.52 6.13 5.75 5.48 5.11 4.84
Nγ res. 1.18 1.16 1.07 1.05 1.00 0.93 0.91 0.90 0.90 0.86 0.82 0.79 0.78 0.81 0.80
Emiss − |pmiss| shape 2.17 2.11 2.15 2.05 2.20 2.32 2.36 2.43 2.47 2.62 2.75 2.83 3.00 2.95 2.93
q2 scale 18.61 15.14 14.05 13.28 13.10 12.57 11.79 11.15 10.79 10.59 9.81 9.95 9.04 9.03 9.15
MC non-closure 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.00 0.00 0.00
Cal. function 0.27 0.15 0.03 0.08 0.20 0.31 0.42 0.52 0.61 0.70 0.79 0.88 0.95 1.03 1.10
Stat. bias corr. 2.68 2.63 2.57 2.52 2.47 2.43 2.40 2.37 2.35 2.35 2.35 2.37 2.40 2.45 2.50
PID eff. 0.36 0.33 0.31 0.29 0.28 0.24 0.22 0.20 0.20 0.19 0.18 0.17 0.14 0.12 0.10
Track eff. 0.90 0.85 0.80 0.75 0.71 0.66 0.62 0.58 0.53 0.50 0.46 0.43 0.40 0.36 0.34
B0/B± tag eff. 0.81 0.89 1.03 1.12 1.30 1.14 1.15 1.00 1.32 1.65 1.60 1.58 1.30 1.03 0.97

Sys. error (total) 34.95 30.89 28.49 25.42 23.45 21.54 19.21 17.53 16.35 15.48 14.04 13.42 12.18 11.90 11.82

Total rel. error in h 35.10 31.04 28.65 25.59 23.63 21.72 19.41 17.74 16.58 15.72 14.30 13.71 12.50 12.25 12.20

〈q6〉 in GeV6 326.23 355.51 387.59 423.92 465.17 510.57 558.65 610.98 667.93 728.29 797.82 870.48 949.14 1031.95 1128.69

Stat. error (data) 5.84 5.70 5.56 5.40 5.26 5.13 5.03 4.96 4.91 4.89 4.89 4.94 5.03 5.14 5.27
Bkg. subtraction 2.55 2.18 2.20 2.14 2.38 2.54 2.81 3.05 3.14 3.22 3.30 3.37 3.62 3.81 4.11
B→ Xu`ν BF 6.43 5.82 5.07 3.66 2.62 1.97 1.45 1.04 0.88 0.74 0.65 0.55 0.51 0.59 0.42
B→ Xc`ν BF 13.83 14.41 15.25 14.81 14.75 14.32 12.97 12.09 11.37 10.31 8.70 7.01 5.31 4.81 4.38
Non-resonant model 35.93 32.23 28.84 24.43 20.79 17.60 14.08 11.34 9.04 7.33 5.55 4.33 3.03 2.85 2.48
B→ Xc`ν FF 4.42 4.10 3.73 3.41 3.12 2.96 2.84 2.72 2.54 2.36 2.12 1.90 1.68 1.58 1.44
Ntracks res. 17.45 16.76 16.09 15.31 14.63 13.87 13.17 12.46 11.75 11.16 10.46 9.79 9.28 8.63 8.12
Nγ res. 2.15 2.11 1.99 1.95 1.87 1.76 1.72 1.69 1.68 1.61 1.54 1.48 1.47 1.49 1.47
Emiss − |pmiss| shape 4.56 4.44 4.43 4.27 4.41 4.53 4.53 4.58 4.59 4.75 4.88 4.93 5.10 4.96 4.86
q2 scale 29.62 25.28 23.94 22.61 22.35 21.35 20.15 19.01 18.35 18.07 16.85 17.06 15.55 15.56 15.83
MC non-closure 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Cal. function 0.42 0.22 0.02 0.18 0.38 0.57 0.75 0.92 1.09 1.24 1.39 1.53 1.65 1.77 1.87
Stat. bias corr. 4.68 4.60 4.52 4.44 4.36 4.29 4.23 4.18 4.14 4.11 4.10 4.12 4.15 4.20 4.27
PID eff. 0.57 0.53 0.50 0.47 0.45 0.40 0.37 0.33 0.33 0.30 0.29 0.27 0.23 0.19 0.16
Track eff. 1.47 1.40 1.33 1.25 1.18 1.10 1.04 0.97 0.90 0.84 0.78 0.72 0.67 0.61 0.57
B0/B± tag eff. 1.79 1.87 2.03 2.13 2.34 2.11 2.09 1.86 2.29 2.71 2.58 2.50 2.06 1.64 1.52

Sys. error (total) 52.77 47.68 44.62 40.49 37.88 35.07 31.80 29.25 27.40 26.06 23.83 22.86 20.84 20.39 20.28

Total rel. error in h 53.09 48.01 44.96 40.85 38.24 35.44 32.20 29.67 27.84 26.52 24.33 23.39 21.44 21.03 20.95

〈q8〉 in GeV8 2663.52 2914.20 3192.80 3531.01 3925.20 4375.31 4862.26 5414.29 6036.81 6723.88 7545.39 8439.78 9431.26 10512.44 11818.99

Stat. error (data) 9.77 9.58 9.38 9.11 8.84 8.58 8.40 8.23 8.09 8.00 7.93 7.93 8.01 8.13 8.25
Bkg. subtraction 4.02 3.88 4.31 4.24 4.67 4.85 5.20 5.52 5.51 5.58 5.65 5.71 6.05 6.31 6.77
B→ Xu`ν BF 9.95 8.85 7.47 5.32 3.79 2.87 2.11 1.52 1.32 1.13 1.01 0.87 0.80 0.91 0.64
B→ Xc`ν BF 19.15 20.11 21.08 20.54 20.40 19.78 18.08 16.93 15.92 14.46 12.29 10.03 7.78 7.06 6.42
Non-resonant model 45.70 41.23 37.11 31.73 27.22 23.21 18.80 15.31 12.33 10.08 7.73 6.11 4.40 4.13 3.61
B→ Xc`ν FF 5.57 5.32 5.03 4.75 4.49 4.33 4.19 4.01 3.76 3.50 3.16 2.85 2.54 2.37 2.16
Ntracks res. 25.81 24.89 24.00 22.90 21.91 20.80 19.77 18.71 17.64 16.71 15.64 14.60 13.78 12.78 11.97
Nγ res. 3.51 3.45 3.30 3.22 3.10 2.94 2.87 2.81 2.77 2.66 2.55 2.44 2.41 2.42 2.37
Emiss − |pmiss| shape 7.95 7.73 7.63 7.37 7.46 7.52 7.44 7.42 7.34 7.44 7.51 7.47 7.59 7.30 7.07
q2 scale 42.51 37.31 35.84 33.74 33.46 31.82 30.22 28.43 27.42 27.12 25.46 25.75 23.55 23.65 24.18
MC non-closure 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Cal. function 0.62 0.31 0.01 0.31 0.62 0.93 1.20 1.47 1.72 1.95 2.18 2.39 2.57 2.74 2.89
Stat. bias corr. 7.59 7.45 7.31 7.16 7.02 6.89 6.76 6.65 6.56 6.48 6.43 6.40 6.40 6.44 6.51
PID eff. 0.79 0.74 0.70 0.66 0.63 0.56 0.53 0.48 0.47 0.43 0.41 0.37 0.32 0.27 0.22
Track eff. 2.11 2.02 1.93 1.83 1.73 1.62 1.53 1.43 1.33 1.24 1.15 1.06 0.98 0.89 0.83
B0/B± tag eff. 3.03 3.10 3.26 3.34 3.56 3.24 3.18 2.86 3.35 3.81 3.59 3.43 2.81 2.24 2.05

Sys. error (total) 72.27 66.18 62.60 57.37 54.26 50.52 46.44 42.99 40.44 38.66 35.64 34.31 31.44 30.82 30.73

Total rel. error in h 72.93 66.86 63.30 58.09 54.97 51.25 47.19 43.77 41.24 39.48 36.51 35.21 32.44 31.87 31.81
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TABLE 6.2: Summary of statistical and systematic uncertainties for
the moments 〈q2,4,6,8〉 for muon candidates. The values are given as

the relative error in permille.

q2 selection in GeV2 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

〈q2〉 in GeV2 6.25 6.54 6.83 7.13 7.42 7.72 8.02 8.32 8.61 8.91 9.21 9.51 9.80 10.09 10.40

Stat. error (data) 1.51 1.45 1.39 1.34 1.30 1.27 1.24 1.22 1.21 1.20 1.20 1.22 1.23 1.26 1.29
Bkg. subtraction 1.34 1.12 0.90 0.71 0.59 0.53 0.49 0.49 0.57 0.63 0.65 0.70 0.76 0.77 0.82
B→ Xu`ν BF 2.18 2.04 1.75 1.48 1.35 1.04 0.76 0.54 0.38 0.29 0.19 0.16 0.12 0.05 0.05
B→ Xc`ν BF 4.82 5.02 5.14 5.14 5.05 5.00 4.67 4.05 3.51 3.11 2.66 2.21 1.75 1.36 1.16
Non-resonant model 14.25 12.72 11.04 9.28 7.83 6.62 5.42 4.00 3.02 2.28 1.65 1.43 1.04 0.86 0.78
B→ Xc`ν FF 1.43 1.30 1.16 1.03 0.91 0.85 0.82 0.74 0.69 0.62 0.54 0.48 0.42 0.39 0.35
Ntracks res. 5.66 5.31 4.96 4.65 4.36 4.06 3.78 3.52 3.29 3.06 2.85 2.66 2.51 2.38 2.20
Nγ res. 0.39 0.38 0.34 0.31 0.30 0.28 0.30 0.31 0.32 0.28 0.27 0.26 0.25 0.27 0.29
Emiss − |pmiss| shape 1.29 1.26 1.21 1.17 1.15 1.11 1.04 1.05 1.06 1.09 1.16 1.20 1.30 1.33 1.29
q2 scale 9.48 7.15 6.65 6.65 6.12 5.91 5.83 5.48 5.26 4.69 4.27 4.42 3.91 3.94 4.38
MC non-closure 0.19 0.11 0.12 0.11 0.11 0.05 0.05 0.06 0.08 0.07 0.11 0.04 0.04 0.06 0.02
Cal. function 0.13 0.08 0.03 0.02 0.07 0.12 0.17 0.22 0.26 0.31 0.35 0.39 0.43 0.47 0.51
Stat. bias corr. 1.32 1.27 1.23 1.19 1.16 1.13 1.10 1.08 1.07 1.06 1.06 1.06 1.07 1.09 1.11
PID eff. 0.16 0.14 0.14 0.13 0.13 0.12 0.11 0.10 0.10 0.10 0.09 0.08 0.08 0.07 0.06
Track eff. 0.44 0.42 0.39 0.36 0.34 0.31 0.29 0.27 0.25 0.23 0.21 0.20 0.18 0.17 0.15
B0/B± tag eff. 0.46 0.58 0.50 0.44 0.51 0.40 0.28 0.34 0.36 0.38 0.29 0.23 0.20 0.12 0.47

Sys. error (total) 18.99 16.65 15.03 13.62 12.22 11.19 10.17 8.86 7.97 7.06 6.30 6.09 5.44 5.27 5.50

Total rel. error in h 19.05 16.71 15.09 13.68 12.29 11.26 10.25 8.94 8.06 7.16 6.41 6.21 5.58 5.42 5.65

〈q4〉 in GeV4 43.52 46.73 50.16 53.81 57.65 61.75 66.09 70.71 75.36 80.34 85.63 90.96 96.39 102.18 108.50

Stat. error (data) 3.45 3.33 3.22 3.12 3.03 2.95 2.88 2.83 2.80 2.79 2.79 2.81 2.86 2.91 2.97
Bkg. subtraction 2.41 2.10 1.76 1.48 1.36 1.34 1.30 1.34 1.53 1.65 1.67 1.80 1.90 1.90 2.00
B→ Xu`ν BF 4.66 4.39 3.80 3.20 2.90 2.23 1.61 1.14 0.81 0.61 0.39 0.34 0.26 0.11 0.10
B→ Xc`ν BF 9.55 10.30 10.68 10.78 10.67 10.50 9.84 8.63 7.52 6.67 5.69 4.73 3.78 2.97 2.52
Non-resonant model 27.34 24.67 21.67 18.48 15.72 13.36 11.00 8.24 6.30 4.82 3.53 3.05 2.27 1.88 1.69
B→ Xc`ν FF 2.73 2.51 2.29 2.08 1.90 1.80 1.75 1.61 1.49 1.36 1.20 1.07 0.95 0.87 0.79
Ntracks res. 12.45 11.81 11.13 10.51 9.89 9.25 8.63 8.04 7.51 6.98 6.49 6.04 5.66 5.34 4.90
Nγ res. 0.95 0.92 0.85 0.79 0.78 0.74 0.77 0.78 0.78 0.71 0.69 0.66 0.64 0.67 0.71
Emiss − |pmiss| shape 3.35 3.26 3.12 3.01 2.92 2.81 2.66 2.65 2.64 2.67 2.76 2.81 2.95 2.98 2.85
q2 scale 19.97 16.30 15.38 15.26 14.19 13.68 13.33 12.59 11.97 10.81 9.86 10.03 8.97 9.17 10.05
MC non-closure 0.06 0.04 0.04 0.03 0.03 0.02 0.02 0.02 0.03 0.02 0.03 0.01 0.01 0.01 0.01
Cal. function 0.27 0.16 0.04 0.07 0.19 0.30 0.41 0.52 0.62 0.71 0.81 0.90 0.98 1.06 1.14
Stat. bias corr. 2.92 2.85 2.77 2.70 2.64 2.58 2.53 2.48 2.45 2.43 2.42 2.42 2.43 2.46 2.49
PID eff. 0.35 0.32 0.31 0.29 0.29 0.26 0.25 0.23 0.22 0.22 0.20 0.18 0.18 0.16 0.13
Track eff. 0.97 0.91 0.86 0.81 0.76 0.70 0.65 0.61 0.56 0.52 0.48 0.44 0.41 0.38 0.34
B0/B± tag eff. 0.92 1.09 0.95 0.84 0.94 0.74 0.51 0.59 0.62 0.63 0.43 0.29 0.22 0.42 1.12

Sys. error (total) 38.08 34.23 31.41 28.91 26.30 24.24 22.18 19.65 17.77 15.90 14.27 13.73 12.36 12.08 12.51

Total rel. error in h 38.23 34.39 31.58 29.08 26.48 24.42 22.37 19.85 17.99 16.14 14.54 14.02 12.69 12.43 12.86

〈q6〉 in GeV6 331.70 360.44 392.58 428.49 467.70 511.77 560.28 614.62 670.90 733.57 803.64 876.13 952.91 1038.72 1135.12

Stat. error (data) 6.22 6.03 5.84 5.66 5.49 5.34 5.20 5.08 5.01 4.96 4.94 4.96 5.02 5.07 5.16
Bkg. subtraction 3.62 3.28 2.94 2.67 2.67 2.77 2.71 2.77 3.08 3.26 3.24 3.48 3.57 3.52 3.68
B→ Xu`ν BF 7.78 7.30 6.34 5.26 4.74 3.62 2.57 1.81 1.27 0.95 0.59 0.52 0.41 0.15 0.14
B→ Xc`ν BF 14.82 16.14 16.68 16.81 16.67 16.30 15.29 13.54 11.86 10.53 9.00 7.50 6.04 4.78 4.06
Non-resonant model 39.15 35.58 31.54 27.20 23.35 19.95 16.53 12.55 9.72 7.52 5.59 4.82 3.64 3.02 2.71
B→ Xc`ν FF 3.86 3.65 3.42 3.19 3.00 2.88 2.82 2.61 2.44 2.23 1.98 1.78 1.58 1.44 1.30
Ntracks res. 20.45 19.54 18.55 17.59 16.63 15.59 14.58 13.60 12.70 11.79 10.93 10.14 9.46 8.85 8.10
Nγ res. 1.77 1.73 1.63 1.54 1.52 1.45 1.46 1.47 1.46 1.34 1.30 1.25 1.21 1.24 1.29
Emiss − |pmiss| shape 6.30 6.10 5.85 5.63 5.43 5.22 4.94 4.87 4.79 4.76 4.83 4.82 4.95 4.92 4.65
q2 shift 32.17 27.63 26.32 26.02 24.37 23.45 22.66 21.49 20.24 18.50 16.91 16.97 15.32 15.86 17.17
MC non-closure 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00
Cal. function 0.42 0.24 0.04 0.16 0.35 0.54 0.73 0.91 1.08 1.24 1.40 1.55 1.68 1.80 1.92
Stat. bias corr. 5.10 4.98 4.86 4.75 4.64 4.53 4.43 4.34 4.27 4.21 4.17 4.15 4.14 4.16 4.19
PID eff. 0.57 0.53 0.51 0.48 0.48 0.44 0.41 0.39 0.36 0.36 0.33 0.29 0.28 0.25 0.21
Track eff. 1.57 1.50 1.42 1.34 1.26 1.18 1.09 1.02 0.94 0.87 0.80 0.73 0.67 0.62 0.56
B0/B± tag eff. 1.16 1.36 1.18 1.03 1.15 0.85 0.53 0.63 0.65 0.63 0.32 0.10 0.02 0.97 1.98

Sys. error (total) 58.03 53.09 49.34 45.97 42.29 39.22 36.10 32.45 29.49 26.65 24.04 23.03 20.88 20.59 21.17

Total rel. error in h 58.36 53.43 49.68 46.32 42.65 39.58 36.47 32.84 29.91 27.11 24.54 23.56 21.47 21.21 21.79

〈q8〉 in GeV8 2717.22 2963.88 3248.31 3578.45 3947.44 4384.73 4878.23 5458.95 6072.92 6780.95 7616.67 8497.60 9466.03 10603.31 11917.23

Stat. error (data) 10.35 10.07 9.78 9.47 9.19 8.89 8.63 8.36 8.19 8.05 7.94 7.91 7.94 7.95 7.99
Bkg. subtraction 5.57 5.25 4.98 4.80 4.99 5.23 5.02 5.06 5.51 5.71 5.58 6.00 5.96 5.81 6.02
B→ Xu`ν BF 11.94 11.10 9.61 7.82 7.00 5.31 3.66 2.53 1.76 1.30 0.79 0.69 0.59 0.20 0.16
B→ Xc`ν BF 21.51 22.91 23.24 23.14 22.84 22.14 20.76 18.50 16.31 14.53 12.43 10.40 8.44 6.74 5.74
Non-resonant model 49.93 45.52 40.56 35.22 30.45 26.13 21.80 16.75 13.12 10.26 7.73 6.66 5.10 4.25 3.79
B→ Xc`ν FF 4.91 4.76 4.60 4.40 4.23 4.12 4.03 3.75 3.52 3.23 2.88 2.59 2.31 2.09 1.89
Ntracks res. 29.72 28.51 27.15 25.82 24.47 22.99 21.54 20.09 18.76 17.40 16.09 14.89 13.83 12.86 11.73
Nγ res. 2.95 2.89 2.75 2.62 2.58 2.46 2.46 2.44 2.39 2.22 2.16 2.07 2.00 2.01 2.06
Emiss − |pmiss| shape 10.18 9.83 9.42 9.05 8.69 8.33 7.89 7.70 7.50 7.35 7.33 7.21 7.26 7.11 6.66
q2 scale 46.61 41.26 39.53 39.00 36.70 35.23 33.82 32.22 30.11 27.83 25.47 25.28 23.04 24.16 25.90
MC non-closure 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Cal. function 0.63 0.34 0.04 0.26 0.55 0.86 1.14 1.42 1.68 1.92 2.17 2.37 2.56 2.74 2.90
Stat. bias corr. 8.21 8.00 7.79 7.59 7.38 7.18 6.99 6.83 6.67 6.54 6.43 6.35 6.29 6.27 6.27
PID eff. 0.81 0.77 0.74 0.70 0.69 0.64 0.60 0.56 0.52 0.51 0.47 0.42 0.40 0.35 0.30
Track eff. 2.25 2.16 2.05 1.95 1.84 1.72 1.60 1.49 1.38 1.27 1.16 1.06 0.98 0.89 0.81
B0/B± tag eff. 0.97 1.19 0.98 0.80 0.94 0.58 0.18 0.29 0.30 0.26 0.14 0.42 0.59 1.79 3.06

Sys. error (total) 79.98 73.90 69.18 64.95 60.23 56.09 51.86 47.19 43.06 39.32 35.61 34.06 31.06 30.93 31.65

Total rel. error in h 80.64 74.58 69.87 65.64 60.93 56.79 52.58 47.93 43.83 40.13 36.48 34.97 32.06 31.93 32.64
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FIGURE 6.8: Comparison of the measured 〈q2,4,6,8〉moments for elec-
tron and muon candidates with full statistical and systematic errors.
The expectation of lepton flavour universality is tested: in the shown
ratio of electron to muon moments many of the associated systematic
uncertainties cancel and all reported moments are compatible with
the expectation of unity. Note that the individual electron and muon

moments are strongly correlated.

6.3 Results

The extracted 〈q2,4,6,8〉 moments measured as a progression of increasing threshold
selections on the q2 distribution for both electron and muon candidates are sum-
marised in Tables 6.1 and 6.2, respectively. Furthermore, the expectation of lepton
flavour universality is tested for moments of the same order: Figure 6.8 compares
the first to fourth order measured moments for electron and muon candidates. In
the shown ratio many of the associated systematic uncertainties cancel and all re-
ported moments are compatible with the expectation of unity.

Dominant systematic uncertainties stem from the uncertainty associated with the
modelling of the B → Xc`ν composition, especially the non-resonant components.
The estimated uncertainties associated with these sources for the first moment, with
the lowest selection of q2 > 3.0 GeV2 for electron candidates, are found to be 0.49%
and 1.32%, respectively. This is followed in size by the uncertainty associated with
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FIGURE 6.9: Comparison of the simulated and measured moments
for electron (left) and muon (right) candidates.

the modelling of the number of charged particles in the X system as well as the
modelling of the q2 distribution. These sources of uncertainty remain leading sys-
tematics across all q2 selections for both muon and electron candidates. On the other
hand, the uncertainty due to the modelling of the B → Xu`ν background compo-
nent is found to be a leading systematic mainly for low q2 selections. While the
statistical uncertainties due to the additional correction factors, the determination
of the linear calibration functions and the reconstruction efficiency of neutral and
charged B mesons are small contributions to the overall systematic error for low q2

selections, these sources increase in significance as the selection criteria progress to
higher values of q2 and the number of signal events gradually decrease. Conversely,
the uncertainties due to the lepton and hadron identification efficiency, the overall
track finding efficiency and the modelling of the number of neutral clusters in the X
system are already small for the lower q2 selections and gradually decrease further
as stricter q2 selections are imposed. The smallest source of systematic error across
all q2 selections is the estimated residual bias due to the extraction method.

The measured moments are compared to simulated moments calculated on generator-
level signal MC. Figure 6.9 compares the first measured moments to the simulated
moments for electron and muon candidates, while the comparisons for the mea-
sured moments of higher orders are given in Appendix G. For the generator-level
moments, uncertainties on the B → Xc`ν composition as well as form factor varia-
tions are considered. The first moment with the lowest threshold selection of q2 >

3.0 GeV2 is observed to be approximately one standard deviation higher in data than
in the simulated signal samples. The agreement steadily improves with each succes-
sive q2 threshold selection, until the best possible agreement is observed for high
values of q2, where B → D`ν and B → D∗`ν decays dominate. This trend is found
to be consistent between electron and muon candidates and also for moments of
higher order. This suggests that the chosen modelling of the B→ Xc`ν composition
tends to overestimate the number of signal events in low regions of the q2 spectrum.
A comparable trend has been reported by [137] in which the inclusive lepton spec-
trum is analysed using a B → Xc`ν model similar to the one used in this work. In
addition, similar observations have also been reported by [138] where the moments
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FIGURE 6.10: The extracted central moments for both electron and
muon candidates calculated from the measured nominal moments

with Eqn. 6.11.

of the lepton energy, hadronic mass, and hadronic energy spectra were investigated
to determine the exclusive composition of B→ Xc`ν. Here, it was observed that the
data prefer to increase the yield of the B → Xc`ν components that produce a more
energetic lepton momentum spectrum, resulting in higher values of the moments at
low regions of q2. The direct measurement of the q2 moments presented in this work
supports this explanation.

In addition to measuring the nominal q2 moments, the central or normalized mo-
ments are also extracted. The central moments have the advantage of becoming
slightly less correlated with respect to the correlations of the nominal moments, es-
pecially for the higher moments. To calculate the central moments directly from the
measured nominal moments, the following non-linear transformations are imple-
mented: 

〈q2〉
〈q4〉
〈q6〉
〈q8〉

 →


〈q2〉

〈(q2 − 〈q2〉)2〉
〈(q2 − 〈q2〉)3〉
〈(q2 − 〈q2〉)4〉

 . (6.11)

The new systematic covariance matrix C ′ for the vector of central moments is calcu-
lated by making use of the Jacobian matrix J for the transformation, together with
the initial experimental covariance matrix C describing the nominal moments, such
that

C ′ = J TCJ . (6.12)
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FIGURE 6.11: Correlations between the measured central moments
for electron candidates.

This approximation of the uncertainties of the central moments yields the same re-
sults as given by performing Gaussian error propagation. Figure 6.10 shows the
extracted central moments for both electron and muon candidates after applying
the non-linear transformations with Eqn. 6.11. The central moments become slightly
less correlated with respect to the correlations of the nominal moments, especially
for the higher moments, while negative correlations between different orders of mo-
ments are also observed. Figure 6.11 shows an example of the correlations between
different orders of the extracted central moments, while the complete experimental
correlation matrices for the determined central moments are given in Appendix F.

6.4 Interpretation of the measurement

In this section the CKM matrix element |Vcb| is extracted based on the reduced set
of HQE parameters discussed in Section 2.3, while using the total B → Xc`ν rate
together with preliminary measured q2 moments presented in [139]. These mea-
surements are calculated by making use of a similar method as described in the
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TABLE 6.3: Summary of the HQE parameters restricted in all fits by
Gaussian error constraints.

Parameter Value σ

mMS
c 1.093 GeV 0.010 GeV

µ2
π 1.423 GeV2 0.24 GeV2

µ2
G 0.362 GeV2 0.21 GeV2

previous sections, however the minimum threshold selection on q2 was chosen to
be q2 > 3.6 GeV2. Furthermore, the results presented in this section were obtained
through close collaboration with M. Fael, K. Olschewsky and K. Keri Vos, who pro-
vided theoretical calculations in the form of a preliminary software package de-
scribed in [140].

An identical strategy to the approach in [79] is proposed to extract the HQE parame-
ters as well as |Vcb| from a global fit to the lepton energy, hadronic mass or hadronic
energy spectra of B → Xc`ν decays. The moments of the q2 distribution are defined
as

〈(q2)n〉q2
cut
≡

∫ q2
max

q2
cut

(q2)n(dΓ/dq2)dq2

∫ q2
max

q2
cut

(dΓ/dq2)dq2
, (6.13)

where q2
cut denotes the lower limit of integration. By making use of the calculable

dependence of the q2 moments on the threshold selections as well as the theoretical
prediction of the total semileptonic rate, |Vcb| can also be extracted as an additional
free parameter in the global fit. To this end, the ratio R∗ is defined as follows

R∗ ≡
Γq2

cut

Γtot
. (6.14)

This quantity relates the measurement of the rate with a threshold selection on q2

to the total semileptonic rate without any threshold selection, which allows for the
determination of |Vcb|.

The fit method designed to extract HQE parameters from the moments measure-
ment has been documented in [141], which is based on a χ2 function constructed as
follows:

χ2 = (~xpred −~xmeas)
TC−1(~xpred −~xmeas) + ∑

i

(pi − pc
i )

2

(σc
i )

2 . (6.15)

Here, the vectors ~xmeas and ~xpred contain the measured moments included in the fit
and the corresponding moments determined from theory predictions. Furthermore,
the total covariance matrix C is defined as the sum of the experimental and theo-
retical covariance matrices: C = Cstat + Csys + Ctheory. The final term in Eqn. 6.15
includes pc

i and denotes Gaussian constraints on nuisance parameters that are used
to introduce external information to the fit. Table 6.3 summarises the constraints im-
posed on various fit parameters. Furthermore, for the fits to the measured moments
of higher order, additional constraints are applied on mkin

b and the following HQE
parameters:
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FIGURE 6.12: The fitted 〈q2,4,6,8〉moments for electron candidates and
the theoretical predictions at O(1/m4

b). While both experimental and
theoretical uncertainties are shown in the ratio, the results are domi-
nated by theoretical systematic uncertainties. The fit converges with

a final χ2 of 80.5 for 83 degrees of freedom.

s4
B = (−0.13± 5)GeV4 , s4

E = (−0.072± 5)GeV4 , s4
qB = (−0.80± 5)GeV4 .

(6.16)
The values for all restricted parameters are determined in [6] by converting the val-
ues quoted in [79] to the RPI basis.

The theoretical covariance matrix is constructed by assuming a decorrelation of 0.96|i−j|

across increasing threshold selections i and j for theoretical uncertainties. Further-
more, a correlation of 0.2|k−l| is assumed for moments of different orders k and l.
The fit result is also compared to a theory covariance that assumes stronger correla-
tions of theoretical uncertainties between moments of different orders: 0.99|k−l| and
a decorrelation between selections of 0.97|i−j|. Subsequently, an additional uncer-
tainty is estimated for the assumed theoretical covariance as the difference between
the two extracted central values of |Vcb| obtained from the different scenarios. In
addition, a shift of 10 MeV on mkin

b is used to determine an additional uncertainty on
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TABLE 6.4: The fitted HQE parameters as well as |Vcb|, where the
quotes errors include both experimental and theoretical uncertainties.
Correlation coefficients for all parameters are summarised below the

results.

|Vcb| mkin
b mMS

c µ2
G s4

B r4
E s4

qB s4
E r4

G ρ̃3
D µ2

π

GeV GeV GeV2 GeV4 GeV4 GeV4 GeV4 GeV4 GeV3 GeV2

Value 0.0417 4.5277 1.0936 0.4272 3.5764 0.0314 -1.2158 -1.9477 3.2288 -0.6649 0.4315
σ 0.0009 0.0453 0.0099 0.1268 0.7459 0.0168 1.5897 0.4255 0.1616 0.0424 0.2387

1.00 -0.77 -0.04 -0.73 -0.53 -0.32 0.09 0.16 -0.48 -0.40 0.02
1.00 0.18 0.93 0.67 0.45 -0.14 -0.20 0.62 0.56 0.14

1.00 -0.01 -0.01 0.01 -0.01 -0.05 -0.01 -0.05 0.01
1.00 0.64 0.38 -0.12 -0.22 0.58 0.46 0.13

1.00 0.24 0.33 -0.04 0.55 0.26 0.10
1.00 0.05 0.04 0.40 0.44 0.08

1.00 -0.31 -0.13 0.07 0.01
1.00 -0.38 -0.40 -0.05

1.00 0.14 0.11
1.00 0.08

1.00

the total rate to account for missing higher order contributions.

The χ2 function is numerically minimised and all quoted errors on the fitted pa-
rameters are obtained from ∆χ2 = 1 contours, while the correlations are estimated
directly from the Hessian matrix at the best fit point. Figure 6.12 shows the fit results
for the first to the fourth q2 moments over a threshold selection range of q2 ∈ [3.6, 8.6]
GeV2 in incremental steps of 0.5 GeV2 for the electron candidates. Overall good
agreement between the fitted moments and the theoretical predictions is observed
with a final χ2 of 80.5 for 83 degrees of freedom. Table 6.4 summarises the results of
the fitted HQE parameters together with |Vcb|, which is found to be:

|Vcb| × 103 = 41.7± 1.2 . (6.17)

Here, the final quoted uncertainty is the linear sum of the experimental and the-
oretical errors. This determination of |Vcb| agrees within experimental uncertainty
with the current world average of inclusive |Vcb| given by Eqn. 2.81, as well as pre-
vious determinations, shown in Figure 6.13. Due to conservative theoretical system-
atic uncertainties, the estimated total error on the final value is larger than previous
measurements. Further work regarding the treatment of theoretical systematic un-
certainties and correlations is required to refine this novel method, which would no
doubt produce an updated future result that would provide complementary infor-
mation to previous determinations of |Vcb|.
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FIGURE 6.13: Comparison of this result with previous determinations
of inclusive and exclusive |Vcb| and |Vub|.
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Chapter 7

Conclusion and outlook

This thesis presents the first systematic study of the first to the fourth moments of
the four-momentum transfer squared q2 spectrum in semileptonic B meson decays
to hadronic final states containing a charm quark: B → Xc`ν, where ` = e, µ. The
study investigates the full Belle data set corresponding to 711 fb−1 of integrated lu-
minosity at the Υ(4S) resonance and a total of (772± 10)× 106 B meson pairs. To
identify and reconstruct the hadronic Xc system, the Full Reconstruction algorithm
is employed to fully reconstruct one of the B mesons present in the event in purely
hadronic decay modes with the aid of neural networks. Consequently, this approach
allows for the kinematics of the remaining B meson to be inferred using conserva-
tion laws, leading to the explicit reconstruction of the hadronic Xc system and, in
turn, the explicit reconstruction of the q2 spectrum. Background contributions stem-
ming from continuum, semileptonic cascade and B → Xu`ν processes, as well as
mis-identified leptons are subtracted by making use of the hadronic mass system
MX in an unbinned approach with event-wise signal probability weights. Since the
reconstructed MX and q2 distributions are distorted by missing charged and neutral
particles in the reconstruction of the hadronic tag-side and by finite detector accep-
tance and resolution effects, the measured moments are unfolded with correction
methods based on generator-level MC samples to ensure an unbiased measurement.
The full background subtraction and calibration procedure is verified on ensembles
of statistically independent MC samples and no statistical significant biases in the
unfolded moments are observed. Various sources of statistical and systematic un-
certainties on the measurement that are introduced by the background subtraction
and calibration procedures are investigated. Dominant contributions stem from the
assumed B → Xc`ν composition and from the modelling of the resolution of the X
system. These contributions are followed in significance by the subtraction of the
B → Xu`ν process, which exhibits a very similar experimental signature to the sig-
nal decay of interest. The final q2 moments are measured separately for electron and
muon B→ Xc`ν final states, allowing for a test of lepton flavour universality and no
deviation in the moments from the expectation of unity is observed. Furthermore, a
non-linear transformation is applied to the nominal measured moments in order to
directly determine the central moments, which are less correlated compared to the
systematic correlations of the nominal moments.

The 〈qn〉 moments are crucial experimental inputs for a novel approach to deter-
mine the quark mixing parameter |Vcb| from inclusive decays, outlined in [6]. By
exploiting reparametrization invariance the set of non-perturbative hadronic matrix
elements present in the heavy quark expansion is greatly reduced from thirteen to
eight at O(1/m4

b), allowing for a model-independent determination of |Vcb|. Using
the software package provided by [140], which includes theoretical predictions of



116 Chapter 7. Conclusion and outlook

the 〈qn〉 moments and the semileptonic decay rate up to O(1/m4
b), a simultaneous

fit to preliminary measured 〈qn〉 moments presented in [139] is performed. Con-
servative theory uncertainties are employed to determine |Vcb| together with three
heavy quark parameters at O(1/m4

b). A value of |Vcb| is found to be:

|Vcb| × 103 = 41.7± 1.2 . (7.1)

Here, the final quoted uncertainty is the linear sum of the experimental and theoret-
ical errors. This result is consistent with the current world average of inclusive |Vcb|
as well as previous determinations. The successful fit serves as an important test for
the novel, complementary method to determine inclusive |Vcb| in a fully data-driven
manner.

Even though the 〈qn〉 moments are already measured with high experimental pre-
cision, several improvements in the analysis strategy could lead to an even more
precise measurement as well as an improvement in the precision of the extracted
value of |Vcb|. Since the dominant contribution on the measured q2 composition
stems from heavier charmed final states and high multiplicity decays that are poorly
constrained by current measurements, an improvement in the current understand-
ing of these decays by exploiting the larger data set expected to be collected by the
Belle Collaboration’s successor, Belle II, could improve the overall precision of the
measurement. As mentioned, one of the leading sources of systematic uncertainty
on the measured q2 moments is observed to be the modelling of the B → Xu`ν
decays. Events originating from this background component are first rejected by
imposing selection criteria on decay kinematics, after which the remaining compo-
nent is further suppressed by making use of the background subtraction procedure.
A possible future improvement of the analysis strategy is outlined in [142]. Rather
than subtracting the B → Xu`ν component, the authors suggest measuring the full
B → X`ν spectrum and obtaining the B → Xu`ν contribution precisely from within
the HQE. This strategy has the potential to not only increase the precision of the
measured 〈qn〉 moments, but also reduce the uncertainty on the measured value of
|Vcb| determined from a global fit to the moments. Due to the high precision of the
measured 〈qn〉moments, the treatment of theoretical uncertainties on the extraction
of |Vcb| is imperative. An updated determination of |Vcb| using the measured nom-
inal and central moments presented in this thesis is expected with anticipation and
excitement.



117

Appendix A

Monte Carlo corrections

TABLE A.1: The updated branching fractions of semileptonic D me-
son decays. All values are from [30], while the values of the unmea-
sured non-resonant decays (labeled with "†") are assumed based on

the measured isospin-symmetry counterpart.

B Value D+ Value D0

D → K?e+ν (5.40± 0.10)× 10−2 (2.15± 0.16)× 10−2

D → K?µ+ν (5.27± 0.15)× 10−2 (1.89± 0.24)× 10−2

D → Ke+ν (8.73± 0.10)× 10−2 (3.54± 0.035)× 10−2

D → Kµ+ν (8.76± 0.19)× 10−2 (3.41± 0.04)× 10−2

D → πe+ν (3.72± 0.17)× 10−3 (2.91± 0.04)× 10−3

D → πµ+ν (3.50± 0.15)× 10−3 (2.67± 0.12)× 10−3

D → η`+ν (1.11± 0.07)× 10−3 -

D → ρe+ν (2.18+0.17
−0.25)× 10−3 (1.5± 0.12)× 10−2

D → ρµ+ν (2.4± 0.4)× 10−3 (1.5± 0.12)× 10−2

D → ω`+ν (1.69± 0.11)× 10−3 -

D → K−π+e+ν non-resonant (0.7± 0.7)× 10−2 -

D → K−π+µ+ν non-resonant (1.9± 0.5)× 10−3 -

D → Kπ0e+ν non-resonant (3.5± 3.5)× 10−3 † (7.9± 1.67)× 10−4

D → Kπ0µ+ν non-resonant (0.95± 0.95)× 10−3 † (7.9± 1.67)× 10−4

D → K0π−`+ν non-resonant - (1.58± 0.33)× 10−3 †

D → K?
2`

+ν 0 0

D → K1`
+ν 0 -
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FIGURE A.1: Comparison of kinematic variables describing B →
D∗`ν decays. The variables shown are q2, cos θ`, cos θν and χ. The
original MC samples were simulated using the CLN form factor
parametrization (red) that are reweighted to the BGL (blue) model.

TABLE A.2: Variables, number of bins and range of the generator-
level histograms used to reweight each of the D∗∗ types from the

ISGW2 to the LLSW form factor model.

D∗∗ Type Variable Number of bins Range

D1 w 50 [1.0,1.42]

D∗2 w 50 [1.0,1.42]

D∗1 w 50 [1.0,1.425]

D∗0 w 50 [1.0,1.425]
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Appendix B

Distributions of kinematic
variables



120 Appendix B. Distributions of kinematic variables

7 6 5 4 3 2 1 0
log(NB)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ev
en

ts
 / 

(1
.0

0)

×106

B D
B D*

B D* *

Gap
Other Background
Continuum

12 10 8 6 4 2 0
log(contNB)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Ev
en

ts
 / 

(1
.0

0)

×106

1.0 0.5 0.0 0.5 1.0 1.5 2.0
Qtag × Qlep

0

1

2

3

4

5

6

7

8

Ev
en

ts
 / 

(1
.0

0)

×105

1 2 3 4 5
Number of leptons

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ev
en

ts
 / 

(1
.0

0)

×106

5.24 5.25 5.26 5.27 5.28 5.29
mbc (GeV)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ev
en

ts
 / 

(0
.0

02
5 

Ge
V)

×105

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
|Emiss pmiss| (GeV)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ev
en

ts
 / 

(0
.5

 G
eV

)

×105

2 1 0 1 2
Total charge

0.0

0.5

1.0

1.5

2.0

2.5

Ev
en

ts
 / 

(1
.0

0)

×105

0 5 10 15 20 25 30
q2 (GeV2)

0

1

2

3

4

5

6

7

Ev
en

ts
 / 

(1
.5

 G
eV

2 )

×104

FIGURE B.1: Reconstructed MC distributions of the kinematic vari-
ables for which signal selection requirements are applied, as listed
in Table 4.3. Each of the exclusive signal modes, continuum, and
“other background” which consists of fakes, secondary leptons and
B → Xu`ν decays is shown. The selection criteria have been applied
cumulatively, except those affecting the variable under investigation.
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Appendix C

Signal probability weights

C.1 Signal probability functions for electron candidates
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FIGURE C.1: The left column shows the extracted post-fit and data
q2 distributions for electron candidates for different lower q2 selec-
tions. The corresponding bin-wise signal probability weights, wi(q

2),
together with a fitted polynomial of a given order n are shown in the

right column.
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FIGURE C.2: The left column shows the extracted post-fit and data
q2 distributions for electron candidates for different lower q2 selec-
tions. The corresponding bin-wise signal probability weights, wi(q

2),
together with a fitted polynomial of a given order n are shown in the

right column.
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FIGURE C.3: The left column shows the extracted post-fit and data
q2 distributions for electron candidates for different lower q2 selec-
tions. The corresponding bin-wise signal probability weights, wi(q

2),
together with a fitted polynomial of a given order n are shown in the

right column.
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FIGURE C.4: The left column shows the extracted post-fit and data
q2 distributions for electron candidates for different lower q2 selec-
tions. The corresponding bin-wise signal probability weights, wi(q

2),
together with a fitted polynomial of a given order n are shown in the

right column.
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FIGURE C.5: The left column shows the extracted post-fit and data
q2 distributions for electron candidates for different lower q2 selec-
tions. The corresponding bin-wise signal probability weights, wi(q

2),
together with a fitted polynomial of a given order n are shown in the

right column.
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FIGURE C.6: The left column shows the extracted post-fit and data
q2 distributions for electron candidates for different lower q2 selec-
tions. The corresponding bin-wise signal probability weights, wi(q

2),
together with a fitted polynomial of a given order n are shown in the

right column.



C.2. Signal probability functions for muon candidates 127

C.2 Signal probability functions for muon candidates

0 5 10 15 20 25
q2 (GeV2)

0.0

0.5

1.0

1.5

2.0

Ev
en

ts
 / 

(1
.4

7 
Ge

V2 )

×104

q2 > 0.0 GeV2

Other Background
Continuum
Data

0 5 10 15 20 25
q2 (GeV2)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Si
gn

al
 P

ro
ba

bi
lit

y

q2 > 0.0 GeV2 2 Fit

5 10 15 20 25
q2 (GeV2)

0.0

0.5

1.0

1.5

2.0

Ev
en

ts
 / 

(1
.4

5 
Ge

V2 )

×104

q2 > 0.5 GeV2

Other Background
Continuum
Data

5 10 15 20 25
q2 (GeV2)

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Si

gn
al

 P
ro

ba
bi

lit
y

q2 > 0.5 GeV2 2 Fit

5 10 15 20 25
q2 (GeV2)

0.0

0.5

1.0

1.5

2.0

Ev
en

ts
 / 

(1
.4

2 
Ge

V2 )

×104

q2 > 1.0 GeV2

Other Background
Continuum
Data

5 10 15 20 25
q2 (GeV2)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Si
gn

al
 P

ro
ba

bi
lit

y

q2 > 1.0 GeV2 2 Fit

FIGURE C.7: The left column shows the extracted post-fit and data q2

distributions for muon candidates for different lower q2 selections.
The corresponding bin-wise signal probability weights, wi(q

2), to-
gether with a fitted polynomial of a given order n are shown in the

right column.
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FIGURE C.8: The left column shows the extracted post-fit and data q2

distributions for muon candidates for different lower q2 selections.
The corresponding bin-wise signal probability weights, wi(q

2), to-
gether with a fitted polynomial of a given order n are shown in the

right column.
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FIGURE C.9: The left column shows the extracted post-fit and data q2

distributions for muon candidates for different lower q2 selections.
The corresponding bin-wise signal probability weights, wi(q

2), to-
gether with a fitted polynomial of a given order n are shown in the

right column.
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FIGURE C.10: The left column shows the extracted post-fit and data
q2 distributions for muon candidates for different lower q2 selections.
The corresponding bin-wise signal probability weights, wi(q

2), to-
gether with a fitted polynomial of a given order n are shown in the

right column.
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FIGURE C.11: The left column shows the extracted post-fit and data
q2 distributions for muon candidates for different lower q2 selections.
The corresponding bin-wise signal probability weights, wi(q

2), to-
gether with a fitted polynomial of a given order n are shown in the

right column.
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FIGURE C.12: The left column shows the extracted post-fit and data
q2 distributions for muon candidates for different lower q2 selections.
The corresponding bin-wise signal probability weights, wi(q

2), to-
gether with a fitted polynomial of a given order n are shown in the

right column.
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FIGURE D.1: Calibration curves for 〈q2,4,6,8〉 for muon candidates.
Shown here are the the extracted 〈qn

,reco〉 versus 〈qn
,true〉 as a function

of lower q2 cut, together with the fitted linear calibration curves.
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FIGURE D.2: Moments of qn calculated on simulated B → Xcµν de-
cays for different lower cuts on q2. Shown here are the reconstructed,
calibrated and true moments after all selection criteria have been ap-
plied. Additionally, the true moments without any selection criteria

are shown as the yellow diamonds.
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FIGURE D.3: Remaining bias after application of the calibration
curves on simulated B → Xcµν decays as a function of q2. Shown

here are the bias correction factors Ccal (blue) and Cacc (red).
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FIGURE D.4: Box plot of the sample test relative error distributions
for qn moments as a function of lower level q2 selections in the muon

channel.
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TABLE E.1: Summary of systematic uncertainties due to the B →
Xc`ν composition for the moments 〈q2,4,6,8〉 for electron candidates.

The values are given as the total relative error in permille.

q2 selection in GeV2 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

〈q2〉

B→ Dlν 0.412 0.358 0.326 0.276 0.215 0.174 0.081 0.063 0.051 0.042 0.005 0.010 0.019 0.026 0.034 0.039 0.053 0.058 0.066 0.064 0.051

B→ D∗lν 1.075 0.814 0.660 0.554 0.496 0.442 0.538 0.472 0.407 0.340 0.283 0.218 0.159 0.090 0.020 0.033 0.060 0.075 0.080 0.106 0.137

B→ D1lν 4.269 5.247 5.300 4.844 4.554 3.854 4.248 3.262 2.639 1.793 1.033 0.333 0.213 0.870 1.299 1.436 1.319 1.011 0.724 0.582 0.512

B→ D′1lν 9.339 5.682 3.369 1.518 0.291 0.639 0.286 0.797 1.116 1.420 1.724 1.732 1.569 1.390 1.203 0.991 0.891 0.753 0.612 0.528 0.531

B→ D∗0 lν 9.351 5.828 3.714 2.196 1.123 0.426 0.549 0.044 0.187 0.446 0.624 0.602 0.544 0.560 0.597 0.535 0.486 0.345 0.164 0.167 0.194

B→ D∗2 lν 1.891 1.816 1.702 1.387 1.059 0.713 1.014 0.814 0.357 0.116 0.342 0.486 0.666 0.678 0.858 0.754 0.535 0.391 0.412 0.404 0.349

Gap 23.445 11.239 4.948 0.989 1.496 3.021 2.160 3.178 3.931 3.886 3.918 3.833 3.311 2.924 2.556 2.241 1.772 1.408 0.943 0.892 0.794

Total rel. error in h 27.339 14.973 9.009 5.820 5.074 5.030 4.942 4.719 4.898 4.546 4.469 4.295 3.773 3.467 3.281 2.988 2.491 1.963 1.413 1.273 1.164

〈q4〉

B→ Dlν 0.807 0.720 0.634 0.558 0.477 0.392 0.077 0.052 0.034 0.019 0.046 0.071 0.088 0.101 0.118 0.127 0.153 0.163 0.178 0.173 0.144

B→ D∗lν 1.613 1.388 1.212 1.047 0.915 0.809 1.100 0.960 0.824 0.682 0.560 0.426 0.304 0.167 0.031 0.071 0.123 0.151 0.161 0.211 0.271

B→ D1lν 5.701 6.406 6.423 6.122 5.212 4.226 7.361 5.592 4.385 2.807 1.373 0.065 0.953 2.149 2.914 3.125 2.848 2.209 1.615 1.320 1.164

B→ D′1lν 10.838 6.903 4.315 2.103 0.363 0.935 1.375 2.232 2.774 3.284 3.771 3.745 3.405 3.026 2.632 2.196 1.971 1.678 1.381 1.203 1.189

B→ D∗0 lν 10.677 7.243 4.663 2.272 0.917 0.242 0.673 0.192 0.612 1.074 1.386 1.341 1.222 1.238 1.288 1.149 1.036 0.747 0.391 0.393 0.441

B→ D∗2 lν 2.549 2.172 1.961 1.649 1.183 0.645 1.474 1.074 0.272 0.563 0.973 1.235 1.548 1.553 1.859 1.637 1.200 0.910 0.940 0.915 0.792

Gap 25.386 13.270 4.538 2.080 6.635 9.440 5.415 7.139 8.404 8.322 8.321 8.082 7.048 6.250 5.472 4.794 3.828 3.069 2.127 2.003 1.787

Total rel. error in h 28.914 17.016 11.383 9.058 9.461 10.154 9.447 9.452 9.934 9.479 9.409 9.102 8.134 7.537 7.106 6.449 5.404 4.307 3.183 2.875 2.622

〈q6〉

B→ Dlν 0.926 0.818 0.706 0.607 0.504 0.397 0.020 0.053 0.078 0.098 0.183 0.216 0.237 0.253 0.275 0.285 0.319 0.329 0.347 0.334 0.283

B→ D∗lν 1.895 1.717 1.581 1.440 1.317 1.206 1.563 1.384 1.200 1.002 0.823 0.627 0.446 0.244 0.047 0.103 0.180 0.221 0.236 0.312 0.400

B→ D1lν 5.017 5.863 6.047 5.896 5.045 4.054 8.608 6.459 4.938 2.883 0.974 0.785 2.162 3.774 4.788 5.028 4.568 3.589 2.684 2.228 1.971

B→ D′1lν 9.181 5.359 2.881 0.700 1.061 2.407 3.375 4.341 4.949 5.538 6.093 5.987 5.460 4.874 4.266 3.602 3.232 2.770 2.305 2.023 1.972

B→ D∗0 lν 9.510 6.199 3.716 1.315 0.038 1.252 0.188 0.824 1.317 1.887 2.270 2.188 2.005 2.008 2.050 1.830 1.644 1.209 0.688 0.686 0.747

B→ D∗2 lν 1.615 1.310 1.212 0.983 0.554 0.012 1.135 0.665 0.320 1.375 1.895 2.228 2.623 2.605 2.991 2.644 1.996 1.562 1.584 1.531 1.327

Gap 18.074 6.416 1.988 8.458 12.949 15.710 10.104 12.005 13.426 13.182 13.044 12.583 11.066 9.858 8.660 7.593 6.127 4.956 3.546 3.326 2.973

Total rel. error in h 22.665 13.143 11.187 12.061 14.123 15.535 9.447 9.452 9.934 9.479 9.409 9.102 8.134 7.537 7.106 6.449 5.404 4.307 3.183 2.875 2.622

〈q8〉

B→ Dlν 0.444 0.347 0.268 0.151 0.021 0.073 0.221 0.269 0.304 0.332 0.432 0.469 0.489 0.504 0.524 0.529 0.563 0.566 0.578 0.551 0.472

B→ D∗lν 2.185 2.037 1.945 1.883 1.829 1.747 1.871 1.698 1.503 1.280 1.067 0.826 0.594 0.334 0.079 0.117 0.222 0.279 0.303 0.405 0.522

B→ D1lν 6.378 7.751 8.119 7.756 7.629 6.647 7.779 5.673 4.195 1.987 0.134 2.144 3.747 5.656 6.848 7.092 6.448 5.143 3.934 3.316 2.947

B→ D′1lν 3.431 0.077 2.552 4.675 6.197 7.447 6.240 7.084 7.583 8.110 8.622 8.387 7.664 6.872 6.054 5.171 4.644 4.007 3.370 2.977 2.867

B→ D∗0 lν 8.493 5.030 2.773 1.066 0.352 1.331 0.942 1.897 2.321 2.882 3.258 3.110 2.856 2.835 2.858 2.561 2.300 1.730 1.062 1.051 1.115

B→ D∗2 lν 0.287 0.131 0.003 0.188 0.487 0.911 0.044 0.420 1.421 2.548 3.083 3.424 3.852 3.795 4.226 3.757 2.912 2.339 2.337 2.243 1.950

Gap 7.230 4.690 11.048 14.508 17.223 18.842 16.212 17.759 18.961 18.323 17.900 17.141 15.179 13.583 11.986 10.540 8.594 7.018 5.168 4.836 4.330

Total rel. error in h 13.487 10.567 14.354 17.241 19.923 21.455 13.833 14.413 15.245 14.805 14.753 14.317 12.966 12.087 11.373 10.312 8.699 7.013 5.315 4.811 4.378
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TABLE E.2: Summary of systematic uncertainties due to the B →
Xc`ν composition for the moments 〈q2,4,6,8〉 for muon candidates. The

values are given as the total relative error in permille.

q2 selection in GeV2 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

〈q2〉

B→ Dlν 0.561 0.493 0.427 0.372 0.316 0.260 0.143 0.102 0.065 0.048 0.026 0.005 0.006 0.018 0.022 0.022 0.017 0.019 0.004 0.010 0.008

B→ D∗lν 1.033 0.778 0.618 0.496 0.415 0.362 0.458 0.399 0.357 0.295 0.231 0.175 0.113 0.055 0.003 0.048 0.088 0.106 0.129 0.139 0.156

B→ D1lν 3.467 4.116 4.161 3.989 3.400 2.797 3.454 2.402 1.652 1.047 0.076 0.290 0.735 1.432 1.442 1.608 1.655 1.339 1.105 0.768 0.681

B→ D′1lν 9.695 5.947 3.751 2.053 0.816 0.055 0.081 0.517 0.738 1.142 1.266 1.335 1.263 1.127 1.067 0.866 0.673 0.474 0.361 0.180 0.056

B→ D∗0 lν 9.213 5.929 3.743 1.913 0.966 0.200 0.191 0.163 0.397 0.724 0.839 0.967 0.961 0.875 0.770 0.727 0.639 0.466 0.457 0.431 0.265

B→ D∗2 lν 2.076 1.708 1.528 1.306 0.998 0.654 0.733 0.310 0.085 0.315 0.531 0.577 0.734 0.837 0.756 0.669 0.507 0.411 0.311 0.331 0.305

Gap 25.434 13.802 6.334 1.186 2.110 4.031 3.234 4.340 4.782 4.829 4.778 4.672 4.268 3.406 2.819 2.316 1.786 1.566 1.186 0.960 0.827

Total rel. error in h 29.043 16.785 9.403 5.223 4.345 4.974 4.817 5.017 5.142 5.141 5.048 4.999 4.672 4.049 3.511 3.111 2.656 2.206 1.755 1.363 1.157

〈q4〉

B→ Dlν 0.807 0.720 0.634 0.558 0.477 0.392 0.205 0.142 0.082 0.053 0.014 0.022 0.043 0.064 0.071 0.072 0.061 0.065 0.037 0.048 0.040

B→ D∗lν 1.613 1.388 1.212 1.047 0.915 0.809 0.946 0.819 0.718 0.584 0.452 0.334 0.208 0.091 0.011 0.112 0.188 0.219 0.264 0.282 0.315

B→ D1lν 5.701 6.406 6.423 6.122 5.212 4.226 5.547 3.711 2.333 1.196 0.548 1.236 2.044 3.289 3.268 3.524 3.545 2.876 2.374 1.686 1.491

B→ D′1lν 10.838 6.903 4.315 2.103 0.363 0.935 0.758 1.489 1.875 2.550 2.744 2.832 2.659 2.370 2.214 1.796 1.394 0.992 0.754 0.391 0.145

B→ D∗0 lν 10.677 7.243 4.663 2.272 0.917 0.242 0.117 0.738 1.158 1.719 1.914 2.121 2.083 1.894 1.671 1.561 1.361 1.006 0.967 0.899 0.560

B→ D∗2 lν 2.549 2.172 1.961 1.649 1.183 0.645 0.936 0.202 0.218 0.918 1.302 1.384 1.653 1.815 1.636 1.447 1.117 0.914 0.711 0.744 0.683

Gap 25.386 13.270 4.538 2.080 6.635 9.440 7.616 9.427 10.157 10.200 10.027 9.709 8.857 7.154 5.962 4.927 3.837 3.350 2.570 2.091 1.799

Total rel. error in h 30.301 18.011 10.389 7.451 8.638 10.447 9.548 10.302 10.678 10.776 10.674 10.504 9.839 8.632 7.523 6.669 5.690 4.730 3.784 2.968 2.522

〈q6〉

B→ Dlν 0.926 0.818 0.706 0.607 0.504 0.397 0.197 0.113 0.034 0.005 0.057 0.105 0.131 0.158 0.166 0.165 0.147 0.151 0.107 0.120 0.102

B→ D∗lν 1.895 1.717 1.581 1.440 1.317 1.206 1.334 1.172 1.032 0.845 0.654 0.481 0.294 0.121 0.030 0.177 0.287 0.333 0.397 0.422 0.471

B→ D1lν 5.017 5.863 6.047 5.896 5.045 4.054 5.677 3.496 1.811 0.378 1.871 2.764 3.823 5.466 5.384 5.668 5.609 4.567 3.776 2.737 2.414

B→ D′1lν 9.181 5.359 2.881 0.700 1.061 2.407 2.132 2.933 3.346 4.145 4.340 4.395 4.102 3.655 3.386 2.751 2.137 1.537 1.172 0.634 0.275

B→ D∗0 lν 9.510 6.199 3.716 1.315 0.038 1.252 1.098 1.792 2.271 2.946 3.160 3.394 3.300 2.997 2.651 2.461 2.132 1.596 1.512 1.386 0.876

B→ D∗2 lν 1.615 1.310 1.212 0.983 0.554 0.012 0.403 0.455 0.955 1.823 2.298 2.385 2.718 2.902 2.619 2.322 1.825 1.509 1.203 1.236 1.132

Gap 18.074 6.416 1.988 8.458 12.949 15.710 13.400 15.328 16.016 15.887 15.492 14.874 13.560 11.072 9.294 7.731 6.077 5.292 4.110 3.358 2.885

Total rel. error in h 23.100 12.166 8.191 10.580 14.020 16.499 14.817 16.142 16.677 16.806 16.674 16.299 15.287 13.537 11.864 10.535 8.996 7.496 6.036 4.776 4.063

〈q8〉

B→ Dlν 0.954 0.821 0.680 0.552 0.421 0.290 0.123 0.011 0.092 0.143 0.207 0.264 0.293 0.321 0.325 0.317 0.288 0.286 0.225 0.235 0.201

B→ D∗lν 1.977 1.838 1.747 1.650 1.567 1.487 1.563 1.412 1.270 1.061 0.835 0.621 0.385 0.162 0.038 0.232 0.376 0.437 0.522 0.556 0.621

B→ D1lν 2.021 3.057 3.503 3.662 3.107 2.400 3.746 1.662 0.057 1.354 3.807 4.736 5.915 7.816 7.658 7.932 7.759 6.355 5.271 3.894 3.430

B→ D′1lν 6.373 2.711 0.454 1.521 3.088 4.262 4.154 4.804 5.077 5.855 5.970 5.942 5.514 4.911 4.525 3.692 2.877 2.098 1.613 0.916 0.455

B→ D∗0 lν 7.209 4.065 1.784 0.458 1.611 2.681 2.737 3.301 3.683 4.343 4.501 4.703 4.533 4.110 3.648 3.374 2.914 2.209 2.071 1.879 1.207

B→ D∗2 lν 0.256 0.466 0.401 0.465 0.741 1.155 0.896 1.695 2.124 3.018 3.492 3.531 3.883 4.057 3.674 3.272 2.615 2.187 1.781 1.800 1.646

Gap 8.215 2.856 10.626 16.450 20.296 22.461 20.508 21.985 22.238 21.687 20.937 19.930 18.156 14.950 12.645 10.593 8.397 7.311 5.747 4.716 4.051

Total rel. error in h 13.002 6.757 11.500 17.022 20.902 23.222 21.509 22.912 23.239 23.142 22.841 22.135 20.758 18.498 16.308 14.526 12.432 10.401 8.438 6.736 5.742
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TABLE E.3: Summary of systematic uncertainties due to the B →
Xc`ν modelling for the moments 〈q2,4,6,8〉 for electron candidates. The

values are given as the total relative error in permille.

q2 selection in GeV2 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

〈q2〉

B→ Dlν 0.380 0.229 0.140 0.092 0.075 0.064 0.094 0.080 0.068 0.057 0.045 0.037 0.032 0.028 0.025 0.029 0.030 0.033 0.038 0.046 0.061

B→ D∗lν 0.827 0.784 0.778 0.768 0.773 0.774 0.894 0.871 0.841 0.812 0.769 0.722 0.670 0.614 0.549 0.493 0.438 0.400 0.369 0.343 0.310

B→ D1lν 1.330 0.846 0.516 0.427 0.468 0.503 0.520 0.489 0.463 0.416 0.333 0.274 0.223 0.184 0.128 0.093 0.091 0.080 0.066 0.057 0.047

B→ D′1lν 1.207 0.805 0.383 0.040 0.192 0.354 0.418 0.466 0.451 0.420 0.327 0.201 0.112 0.023 0.052 0.100 0.116 0.114 0.096 0.098 0.097

B→ D∗0 lν 1.101 0.782 0.503 0.252 0.069 0.064 0.117 0.177 0.203 0.210 0.199 0.163 0.124 0.081 0.016 0.024 0.057 0.082 0.072 0.076 0.081

B→ D∗2 lν 0.612 0.352 0.158 0.030 0.080 0.147 0.183 0.208 0.201 0.180 0.143 0.104 0.058 0.009 0.050 0.063 0.055 0.041 0.037 0.039 0.035

Gap 0.135 0.580 1.042 1.282 1.367 1.222 1.167 0.924 0.636 0.352 0.068 0.168 0.300 0.370 0.381 0.363 0.299 0.233 0.149 0.146 0.126

Total rel. error in h 2.379 1.761 1.550 1.578 1.655 1.582 1.632 1.466 1.271 1.101 0.936 0.839 0.788 0.746 0.685 0.632 0.558 0.493 0.424 0.402 0.367

〈q4〉

B→ Dlν 0.508 0.359 0.260 0.199 0.173 0.152 0.201 0.172 0.147 0.124 0.100 0.082 0.074 0.065 0.059 0.066 0.069 0.074 0.084 0.099 0.131

B→ D∗lν 1.871 1.884 1.896 1.868 1.866 1.853 2.040 1.974 1.894 1.814 1.711 1.604 1.491 1.371 1.237 1.122 1.009 0.927 0.860 0.801 0.727

B→ D1lν 1.371 0.932 0.695 0.722 0.834 0.903 0.949 0.896 0.846 0.757 0.609 0.502 0.413 0.344 0.247 0.200 0.201 0.176 0.146 0.126 0.103

B→ D′1lν 1.248 0.822 0.318 0.120 0.444 0.680 0.787 0.854 0.815 0.744 0.565 0.328 0.157 0.016 0.150 0.238 0.266 0.258 0.218 0.219 0.214

B→ D∗0 lν 1.306 0.971 0.639 0.316 0.062 0.145 0.235 0.334 0.374 0.380 0.352 0.280 0.204 0.119 0.006 0.082 0.145 0.191 0.168 0.175 0.182

B→ D∗2 lν 0.630 0.355 0.126 0.046 0.190 0.288 0.349 0.384 0.365 0.322 0.249 0.174 0.086 0.015 0.115 0.139 0.121 0.092 0.084 0.086 0.075

Gap 0.823 1.344 1.879 2.160 2.245 1.997 1.977 1.532 1.008 0.488 0.033 0.458 0.694 0.815 0.822 0.774 0.638 0.499 0.329 0.318 0.274

Total rel. error in h 3.158 2.846 2.864 2.972 3.080 2.971 3.132 2.840 2.506 2.218 1.953 1.805 1.719 1.637 1.518 1.409 1.255 1.121 0.979 0.925 0.846

〈q6〉

B→ Dlν 0.544 0.415 0.332 0.284 0.266 0.247 0.300 0.265 0.233 0.201 0.168 0.142 0.129 0.116 0.106 0.116 0.120 0.127 0.141 0.163 0.211

B→ D∗lν 3.076 3.141 3.193 3.169 3.190 3.185 3.343 3.258 3.148 3.022 2.862 2.693 2.514 2.323 2.112 1.928 1.746 1.609 1.492 1.387 1.260

B→ D1lν 1.175 0.821 0.758 0.905 1.073 1.169 1.242 1.180 1.117 1.002 0.811 0.674 0.565 0.479 0.359 0.319 0.327 0.287 0.239 0.206 0.170

B→ D′1lν 1.068 0.648 0.141 0.300 0.644 0.903 1.034 1.105 1.045 0.939 0.694 0.369 0.132 0.103 0.294 0.415 0.448 0.429 0.365 0.362 0.348

B→ D∗0 lν 1.257 0.934 0.610 0.291 0.048 0.206 0.320 0.434 0.480 0.481 0.438 0.336 0.228 0.107 0.068 0.178 0.266 0.327 0.292 0.298 0.303

B→ D∗2 lν 0.544 0.272 0.047 0.124 0.281 0.390 0.464 0.502 0.474 0.413 0.312 0.207 0.087 0.051 0.195 0.225 0.196 0.152 0.138 0.139 0.121

Gap 1.070 1.607 2.167 2.476 2.572 2.290 2.314 1.756 1.084 0.405 0.282 0.847 1.159 1.311 1.303 1.216 1.006 0.791 0.536 0.512 0.439

Total rel. error in h 3.912 3.829 3.996 4.155 4.302 4.222 4.422 4.101 3.733 3.410 3.119 2.956 2.841 2.717 2.536 2.359 2.119 1.905 1.682 1.579 1.443

〈q8〉

B→ Dlν 0.539 0.433 0.375 0.349 0.348 0.341 0.388 0.358 0.326 0.292 0.252 0.220 0.203 0.185 0.171 0.183 0.187 0.195 0.212 0.241 0.304

B→ D∗lν 4.392 4.512 4.614 4.599 4.675 4.706 4.740 4.683 4.587 4.440 4.239 4.015 3.773 3.507 3.210 2.941 2.672 2.461 2.276 2.107 1.911

B→ D1lν 0.993 0.704 0.776 0.990 1.191 1.305 1.389 1.328 1.269 1.145 0.936 0.789 0.680 0.591 0.467 0.449 0.466 0.410 0.343 0.297 0.245

B→ D′1lν 0.948 0.536 0.036 0.387 0.730 0.992 1.120 1.192 1.123 0.997 0.709 0.324 0.044 0.246 0.478 0.623 0.657 0.624 0.535 0.524 0.497

B→ D∗0 lν 1.185 0.875 0.570 0.276 0.053 0.215 0.333 0.451 0.500 0.497 0.445 0.323 0.192 0.044 0.172 0.309 0.417 0.490 0.440 0.442 0.443

B→ D∗2 lν 0.482 0.213 0.021 0.167 0.326 0.438 0.512 0.552 0.521 0.449 0.330 0.206 0.067 0.108 0.284 0.318 0.278 0.220 0.198 0.197 0.170

Gap 0.828 1.380 1.966 2.322 2.451 2.185 2.199 1.613 0.884 0.132 0.651 1.303 1.660 1.829 1.800 1.671 1.387 1.097 0.761 0.721 0.619

Total rel. error in h 4.878 4.904 5.121 5.282 5.482 5.474 5.568 5.325 5.032 4.751 4.488 4.329 4.188 4.012 3.759 3.502 3.162 2.854 2.538 2.369 2.158
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TABLE E.4: Summary of systematic uncertainties due to the B →
Xc`ν modelling for the moments 〈q2,4,6,8〉 for muon candidates. The

values are given as the total relative error in permille.

q2 selection in GeV2 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

〈q2〉

B→ Dlν 0.324 0.206 0.130 0.082 0.061 0.050 0.079 0.067 0.059 0.051 0.044 0.040 0.036 0.036 0.040 0.045 0.056 0.065 0.080 0.089 0.104

B→ D∗lν 0.817 0.792 0.781 0.763 0.757 0.749 0.847 0.822 0.795 0.764 0.730 0.687 0.632 0.573 0.516 0.463 0.416 0.382 0.346 0.322 0.293

B→ D1lν 1.044 0.646 0.401 0.374 0.430 0.468 0.474 0.463 0.428 0.391 0.314 0.266 0.227 0.194 0.136 0.091 0.102 0.093 0.087 0.070 0.063

B→ D′1lν 0.836 0.481 0.141 0.161 0.380 0.519 0.499 0.523 0.525 0.460 0.377 0.260 0.139 0.040 0.055 0.101 0.122 0.105 0.101 0.076 0.076

B→ D∗0 lν 1.055 0.756 0.485 0.252 0.105 0.031 0.109 0.167 0.195 0.192 0.175 0.150 0.109 0.058 0.007 0.035 0.065 0.074 0.087 0.088 0.079

B→ D∗2 lν 0.516 0.298 0.132 0.020 0.097 0.152 0.187 0.217 0.219 0.198 0.162 0.119 0.058 0.009 0.037 0.053 0.042 0.037 0.029 0.029 0.026

Gap 0.199 0.408 0.792 1.037 1.072 0.953 0.900 0.668 0.400 0.177 0.047 0.261 0.430 0.424 0.426 0.384 0.290 0.233 0.169 0.143 0.112

Total rel. error in h 1.995 1.465 1.299 1.376 1.441 1.409 1.433 1.300 1.158 1.029 0.914 0.846 0.820 0.743 0.687 0.622 0.540 0.481 0.425 0.388 0.355

〈q4〉

B→ Dlν 0.449 0.337 0.257 0.196 0.163 0.143 0.183 0.160 0.141 0.125 0.111 0.103 0.096 0.095 0.103 0.112 0.133 0.151 0.179 0.195 0.223

B→ D∗lν 1.838 1.844 1.841 1.814 1.793 1.764 1.923 1.855 1.782 1.701 1.615 1.514 1.394 1.269 1.151 1.040 0.942 0.868 0.788 0.732 0.667

B→ D1lν 0.981 0.652 0.530 0.629 0.747 0.817 0.841 0.823 0.762 0.695 0.564 0.480 0.415 0.360 0.257 0.197 0.228 0.208 0.193 0.159 0.144

B→ D′1lν 0.909 0.551 0.164 0.217 0.514 0.717 0.921 0.948 0.937 0.813 0.656 0.438 0.213 0.028 0.147 0.232 0.266 0.229 0.217 0.164 0.161

B→ D∗0 lν 1.367 1.067 0.760 0.464 0.257 0.087 0.207 0.300 0.344 0.335 0.302 0.252 0.173 0.078 0.022 0.096 0.151 0.164 0.185 0.184 0.163

B→ D∗2 lν 0.481 0.260 0.075 0.105 0.221 0.298 0.355 0.398 0.393 0.351 0.281 0.200 0.087 0.033 0.089 0.117 0.096 0.084 0.068 0.067 0.059

Gap 0.309 0.898 1.327 1.615 1.642 1.452 1.410 1.014 0.549 0.150 0.244 0.630 0.927 0.906 0.896 0.803 0.610 0.491 0.359 0.301 0.237

Total rel. error in h 2.750 2.502 2.471 2.570 2.623 2.553 2.729 2.514 2.287 2.077 1.897 1.796 1.751 1.606 1.495 1.362 1.197 1.071 0.952 0.869 0.792

〈q6〉

B→ Dlν 0.522 0.428 0.362 0.310 0.280 0.260 0.300 0.272 0.248 0.226 0.206 0.194 0.184 0.183 0.192 0.205 0.233 0.258 0.296 0.318 0.358

B→ D∗lν 2.970 3.003 3.025 3.015 3.004 2.974 3.123 3.034 2.930 2.805 2.670 2.508 2.319 2.120 1.933 1.755 1.593 1.466 1.331 1.228 1.113

B→ D1lν 0.766 0.535 0.582 0.780 0.936 1.027 1.064 1.048 0.974 0.893 0.733 0.631 0.557 0.499 0.371 0.325 0.379 0.347 0.321 0.268 0.243

B→ D′1lν 1.068 0.724 0.341 0.059 0.370 0.601 1.203 1.226 1.202 1.035 0.823 0.528 0.222 0.037 0.273 0.387 0.429 0.370 0.346 0.264 0.254

B→ D∗0 lν 1.579 1.297 0.999 0.701 0.482 0.285 0.277 0.383 0.435 0.421 0.375 0.305 0.195 0.064 0.073 0.176 0.251 0.265 0.291 0.284 0.248

B→ D∗2 lν 0.368 0.157 0.033 0.199 0.320 0.403 0.470 0.515 0.504 0.446 0.351 0.239 0.086 0.077 0.156 0.193 0.161 0.141 0.116 0.114 0.101

Gap 0.384 0.969 1.400 1.701 1.736 1.532 1.486 1.013 0.442 0.075 0.574 1.076 1.462 1.420 1.389 1.240 0.951 0.767 0.568 0.475 0.374

Total rel. error in h 3.687 3.557 3.563 3.636 3.669 3.594 3.864 3.649 3.418 3.189 2.996 2.883 2.820 2.608 2.438 2.232 1.978 1.775 1.582 1.439 1.305

〈q8〉

B→ Dlν 0.586 0.508 0.460 0.421 0.404 0.392 0.424 0.401 0.378 0.355 0.331 0.317 0.303 0.300 0.310 0.324 0.357 0.386 0.432 0.459 0.509

B→ D∗lν 4.144 4.205 4.260 4.281 4.299 4.294 4.369 4.297 4.195 4.052 3.885 3.671 3.416 3.137 2.874 2.616 2.372 2.177 1.970 1.804 1.625

B→ D1lν 0.600 0.440 0.593 0.833 1.006 1.109 1.139 1.130 1.058 0.979 0.815 0.717 0.658 0.615 0.488 0.476 0.556 0.510 0.471 0.399 0.362

B→ D′1lν 1.427 1.092 0.714 0.331 0.043 0.255 1.324 1.343 1.315 1.126 0.882 0.535 0.172 0.140 0.426 0.563 0.609 0.527 0.488 0.377 0.357

B→ D∗0 lν 1.822 1.554 1.271 0.982 0.765 0.561 0.306 0.413 0.466 0.448 0.397 0.314 0.183 0.027 0.142 0.268 0.358 0.372 0.398 0.383 0.332

B→ D∗2 lν 0.289 0.088 0.087 0.252 0.370 0.453 0.513 0.560 0.548 0.481 0.371 0.240 0.063 0.139 0.235 0.278 0.236 0.208 0.174 0.168 0.149

Gap 0.128 0.680 1.112 1.428 1.484 1.303 1.187 0.711 0.120 0.436 0.994 1.561 2.001 1.936 1.882 1.680 1.301 1.054 0.793 0.663 0.526

Total rel. error in h 4.831 4.713 4.699 4.730 4.752 4.701 4.908 4.764 4.596 4.403 4.235 4.120 4.033 3.755 3.520 3.234 2.883 2.592 2.312 2.093 1.889
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F.1 Statistical correlations for electron candidates
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FIGURE F.1: Statistical correlations between measured 〈qn〉 moments
for the electron channel.
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F.2 Experimental correlations for electron candidates
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FIGURE F.2: Full experimental correlations between measured 〈qn〉
moments for the electron channel.
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F.3 Experimental correlations for normalized electron candi-
dates
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FIGURE F.3: Full experimental correlations between measured
〈(q2 − 〈q2〉)n〉 central moments for the electron channel.



F.4. Statistical correlations for muon candidates 147

F.4 Statistical correlations for muon candidates
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FIGURE F.4: Statistical correlations between measured 〈qn〉 moments
for the muon channel.
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F.5 Experimental correlations for muon candidates
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FIGURE F.5: Full experimental correlations between measured 〈qn〉
moments for the muon channel.
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F.6 Experimental correlations for normalized muon candidates
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FIGURE F.6: Full experimental correlations between measured
〈(q2 − 〈q2〉)n〉 central moments for the muon channel.
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FIGURE G.1: Comparison of the simulated and measured higher or-
der moments for electron (left) and muon (right) candidates.
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Fitted q2 moments for muon
candidates

FIGURE H.1: The fitted 〈q2,4,6,8〉 moments for muon candidates and
the theoretical predictions at O(1/m4

b). While both experimental and
theoretical uncertainties are shown in the ratio, the results are domi-
nated by theoretical systematic uncertainties. The fit converges with

a final χ2 of 80.5 for 83 degrees of freedom.
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samples incorporate the full set of systematic uncertainties discussed

in Section 3.3.2.
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FIGURE I.2: Calibration curves for 〈q2,4,6,8〉 for electron candidates.
Shown here are the the extracted 〈qn

,reco〉 versus 〈qn
,true〉 as a function

of lower q2 cut, together with the fitted linear calibration curves.
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FIGURE I.3: Calibration curves for 〈q2,4,6,8〉 for muon candidates.
Shown here are the the extracted 〈qn

,reco〉 versus 〈qn
,true〉 as a function

of lower q2 cut, together with the fitted linear calibration curves.



158 Appendix I. Studies for low q2 moments

FIGURE I.4: Remaining bias after application of the calibration curves
on simulated B → Xceν decays as a function of q2. Shown here are

the bias correction factors Ccal (blue) and Cacc (red).
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FIGURE I.5: Remaining bias after application of the calibration curves
on simulated B → Xcµν decays as a function of q2. Shown here are

the bias correction factors Ccal (blue) and Cacc (red).
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FIGURE I.6: Box plot of the sample test relative error distributions for
qn moments as a function of lower level q2 selections in the electron

channel.
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FIGURE I.7: Box plot of the sample test relative error distributions
for qn moments as a function of lower level q2 selections in the muon

channel.
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FIGURE I.8: The extracted central moments for both electron and
muon candidates calculated from the measured nominal moments

using Eqn. 6.11.
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TABLE I.1: Summary of statistical and systematic uncertainties for the
moments 〈q2,4,6,8〉 for electron candidates. The values are given as the

relative error in permille.

q2 selection in GeV2 0.0 0.5 1.0 1.5 2.0 2.5

〈q2〉 in GeV2 4.37 4.67 4.97 5.35 5.64 5.95

Stat. error (data) 2.18 2.02 1.89 1.78 1.68 1.60
Bkg. subtraction 3.23 2.86 2.48 2.50 1.97 1.48
B→ Xu`ν BF 1.11 1.71 1.79 9.03 2.40 2.15
B→ Xc`ν BF 27.34 14.97 9.01 5.82 5.07 5.03
Non-resonant model 24.99 25.38 23.92 21.75 19.40 16.97
B→ Xc`ν FF 2.38 1.76 1.55 1.58 1.66 1.58
Ntracks res. 8.06 7.66 7.21 6.68 6.23 5.85
Nγ res. 1.12 1.27 1.33 1.12 1.36 1.35
Emiss − |pmiss| shape 1.89 2.47 2.82 2.93 3.19 3.19
q2 scale 9.94 9.73 9.49 8.90 8.38 7.90
MC non-closure 3.39 1.54 0.40 0.26 0.16 0.08
Cal. function 0.18 0.16 0.13 0.07 0.03 0.01
Stat. bias corr. 1.75 1.70 1.64 1.57 1.50 1.44
PID eff. 0.34 0.32 0.29 0.26 0.24 0.21
Track eff. 0.73 0.69 0.65 0.59 0.55 0.51
B0/B± tag eff. 0.04 0.03 0.08 0.24 0.18 0.21

Sys. error (total) 39.66 32.40 28.64 27.09 23.20 20.82

Total error 39.72 32.46 28.71 27.15 23.26 20.88

〈q4〉 in GeV4 27.53 29.55 31.68 34.83 37.45 40.37

Stat. error (data) 4.20 4.02 3.90 3.74 3.64 3.53
Bkg. subtraction 4.20 3.93 3.59 3.75 3.09 2.41
B→ Xu`ν BF 3.20 4.16 4.24 14.84 4.97 4.59
B→ Xc`ν BF 28.91 17.02 11.38 9.06 9.46 10.15
Non-resonant model 44.05 44.26 42.32 39.18 35.67 31.84
B→ Xc`ν FF 3.16 2.85 2.86 2.97 3.08 2.97
Ntracks res. 16.16 15.71 15.14 14.31 13.60 12.93
Nγ res. 3.71 3.88 3.95 3.65 3.95 3.90
Emiss − |pmiss| shape 7.37 8.01 8.40 8.46 8.75 8.66
q2 scale 20.93 20.72 20.42 19.44 18.63 17.78
MC non-closure 0.65 0.33 0.11 0.08 0.04 0.03
Cal. function 0.28 0.25 0.20 0.09 0.01 0.07
Stat. bias corr. 3.48 3.44 3.37 3.29 3.21 3.12
PID eff. 0.62 0.59 0.56 0.52 0.48 0.44
Track eff. 1.41 1.37 1.31 1.22 1.15 1.09
B0/B± tag eff. 0.55 0.57 0.71 0.91 0.83 0.86

Sys. error (total) 59.97 55.30 52.01 50.41 45.19 41.69

Total error 60.12 55.45 52.16 50.55 45.34 41.84

〈q6〉 in GeV6 204.19 218.73 234.35 259.51 279.94 304.07

Stat. error (data) 6.92 6.72 6.61 6.40 6.31 6.19
Bkg. subtraction 4.91 4.64 4.33 4.69 3.98 3.24
B→ Xu`ν BF 6.20 7.56 7.61 20.82 8.17 7.66
B→ Xc`ν BF 22.67 13.14 11.19 12.06 14.12 15.54
Non-resonant model 59.30 59.25 56.89 52.98 48.77 44.08
B→ Xc`ν FF 3.91 3.83 4.00 4.15 4.30 4.22
Ntracks res. 25.09 24.61 23.95 22.83 21.95 21.05
Nγ res. 8.21 8.39 8.45 8.04 8.35 8.24
Emiss − |pmiss| shape 16.12 16.79 17.16 17.08 17.29 17.06
q2 scale 33.31 33.12 32.77 31.38 30.39 29.27
MC non-closure 0.12 0.06 0.03 0.02 0.01 0.01
Cal. function 0.37 0.33 0.25 0.08 0.04 0.17
Stat. bias corr. 5.79 5.73 5.65 5.55 5.44 5.32
PID eff. 0.88 0.86 0.82 0.76 0.72 0.67
Track eff. 2.12 2.07 2.00 1.89 1.81 1.72
B0/B± tag eff. 1.60 1.62 1.78 1.97 1.87 1.90

Sys. error (total) 78.84 76.63 74.21 72.98 67.01 62.97

Total error 79.14 76.92 74.50 73.26 67.30 63.28

〈q8〉 in GeV8 1663.85 1775.83 1899.15 2114.84 2275.67 2474.78

Stat. error (data) 10.92 10.69 10.59 10.26 10.22 10.09
Bkg. subtraction 5.85 5.59 5.28 6.02 5.34 4.60
B→ Xu`ν BF 10.44 12.32 12.30 28.94 12.40 11.69
B→ Xc`ν BF 13.49 10.57 14.35 17.24 19.92 21.45
Non-resonant model 72.40 72.07 69.20 64.37 59.53 54.12
B→ Xc`ν FF 4.88 4.90 5.12 5.28 5.48 5.47
Ntracks res. 35.11 34.60 33.81 32.26 31.23 30.09
Nγ res. 15.27 15.46 15.48 14.85 15.12 14.90
Emiss − |pmiss| shape 28.73 29.40 29.70 29.30 29.37 28.91
q2 scale 47.29 47.15 46.71 44.69 43.54 42.12
MC non-closure 0.02 0.01 0.00 0.00 0.00 0.00
Cal. function 0.49 0.43 0.32 0.04 0.12 0.32
Stat. bias corr. 9.12 9.02 8.88 8.72 8.54 8.35
PID eff. 1.14 1.12 1.08 1.00 0.95 0.90
Track eff. 2.87 2.82 2.74 2.60 2.50 2.39
B0/B± tag eff. 2.92 2.93 3.10 3.28 3.16 3.16

Sys. error (total) 101.09 100.67 98.71 97.75 90.58 86.03

Total error 101.68 101.24 99.28 98.28 91.16 86.62
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TABLE I.2: Summary of statistical and systematic uncertainties for the
moments 〈q2,4,6,8〉 for muon candidates. The values are given as the

relative error in permille.

q2 selection in GeV2 0.0 0.5 1.0 1.5 2.0 2.5

〈q2〉 in GeV2 4.45 4.76 5.07 5.37 5.68 5.98

Stat. error (data) 2.38 2.21 2.06 1.93 1.82 1.72
Bkg. subtraction 3.81 3.59 3.14 2.67 2.24 1.84
B→ Xu`ν BF 2.59 2.93 3.04 2.98 2.83 2.67
B→ Xc`ν BF 29.04 16.78 9.40 5.22 4.34 4.97
Non-resonant model 22.96 23.34 22.87 21.76 20.14 18.07
B→ Xc`ν FF 2.00 1.46 1.30 1.38 1.44 1.41
Ntracks res. 9.36 8.90 8.35 7.85 7.34 6.86
Nγ res. 0.07 0.04 0.06 0.06 0.08 0.09
Emiss − |pmiss| shape 1.42 1.93 2.12 2.33 2.28 2.22
q2 scale 10.53 10.34 9.98 9.72 9.35 8.58
MC non-closure 0.61 0.40 0.41 0.09 0.05 0.03
Cal. function 0.16 0.14 0.11 0.07 0.03 0.01
Stat. bias corr. 1.90 1.84 1.77 1.70 1.62 1.56
PID eff. 0.28 0.27 0.25 0.23 0.22 0.20
Track eff. 0.75 0.71 0.67 0.62 0.58 0.54
B0/B± tag eff. 0.81 0.92 0.99 1.18 0.88 0.68

Sys. error (total) 40.02 32.32 28.48 26.17 24.29 22.20

Total error 40.09 32.40 28.55 26.24 24.36 22.26

〈q4〉 in GeV4 28.33 30.44 32.74 35.20 37.90 40.85

Stat. error (data) 4.69 4.47 4.28 4.11 3.95 3.80
Bkg. subtraction 5.22 5.16 4.73 4.22 3.70 3.18
B→ Xu`ν BF 5.03 5.69 5.97 5.97 5.75 5.54
B→ Xc`ν BF 30.30 18.01 10.39 7.45 8.64 10.45
Non-resonant model 42.24 42.37 41.55 39.85 37.32 33.99
B→ Xc`ν FF 2.75 2.50 2.47 2.57 2.62 2.55
Ntracks res. 18.60 18.03 17.29 16.56 15.74 14.92
Nγ res. 0.25 0.22 0.24 0.24 0.27 0.29
Emiss − |pmiss| shape 4.72 5.27 5.46 5.68 5.55 5.39
q2 scale 22.47 22.19 21.70 21.27 20.65 19.39
MC non-closure 0.12 0.11 0.09 0.00 0.04 0.02
Cal. function 0.26 0.21 0.16 0.09 0.02 0.06
Stat. bias corr. 3.80 3.75 3.67 3.58 3.49 3.38
PID eff. 0.54 0.52 0.50 0.47 0.45 0.42
Track eff. 1.47 1.42 1.35 1.29 1.22 1.15
B0/B± tag eff. 1.58 1.71 1.78 2.01 1.58 1.28

Sys. error (total) 60.46 55.22 52.13 49.81 47.35 44.20

Total error 60.64 55.40 52.30 49.98 47.52 44.37

〈q6〉 in GeV6 211.98 227.49 244.46 263.32 284.76 309.04

Stat. error (data) 7.74 7.45 7.22 7.02 6.82 6.63
Bkg. subtraction 6.42 6.52 6.10 5.57 5.03 4.47
B→ Xu`ν BF 8.17 9.22 9.61 9.59 9.26 8.98
B→ Xc`ν BF 23.10 12.17 8.19 10.58 14.02 16.50
Non-resonant model 58.13 57.92 56.70 54.50 51.31 47.15
B→ Xc`ν FF 3.69 3.56 3.56 3.64 3.67 3.59
Ntracks res. 28.50 27.82 26.95 26.04 25.00 23.90
Nγ res. 0.59 0.55 0.58 0.57 0.60 0.62
Emiss − |pmiss| shape 9.15 9.71 9.87 10.05 9.83 9.56
q2 scale 35.98 35.63 35.03 34.46 33.61 31.98
MC non-closure 0.03 0.02 0.01 0.00 0.01 0.01
Cal. function 0.33 0.27 0.18 0.09 0.03 0.15
Stat. bias corr. 6.34 6.26 6.16 6.04 5.90 5.75
PID eff. 0.81 0.79 0.76 0.73 0.70 0.66
Track eff. 2.20 2.15 2.07 2.00 1.91 1.82
B0/B± tag eff. 1.96 2.09 2.18 2.43 1.93 1.57

Sys. error (total) 79.22 76.36 74.31 72.33 69.63 65.83

Total error 79.59 76.72 74.66 72.67 69.96 66.16

〈q8〉 in GeV8 1744.59 1867.12 2000.34 2151.09 2324.52 2523.62

Stat. error (data) 12.09 11.72 11.45 11.21 10.98 10.74
Bkg. subtraction 8.03 8.47 8.04 7.49 6.93 6.38
B→ Xu`ν BF 12.36 14.05 14.46 14.35 13.78 13.34
B→ Xc`ν BF 13.00 6.76 11.50 17.02 20.90 23.22
Non-resonant model 71.72 71.13 69.45 66.71 62.88 57.99
B→ Xc`ν FF 4.83 4.71 4.70 4.73 4.75 4.70
Ntracks res. 39.28 38.48 37.44 36.33 35.03 33.66
Nγ res. 1.13 1.09 1.11 1.10 1.12 1.14
Emiss − |pmiss| shape 14.66 15.22 15.32 15.43 15.08 14.67
q2 scale 51.22 50.79 50.06 49.30 48.18 46.17
MC non-closure 0.00 0.00 0.00 0.00 0.00 0.00
Cal. function 0.41 0.32 0.21 0.07 0.10 0.28
Stat. bias corr. 9.92 9.79 9.61 9.41 9.19 8.95
PID eff. 1.09 1.07 1.04 1.00 0.96 0.91
Track eff. 2.98 2.91 2.83 2.74 2.63 2.52
B0/B± tag eff. 1.77 1.93 2.02 2.30 1.76 1.36

Sys. error (total) 100.24 98.99 97.47 95.48 92.33 87.82

Total error 100.96 99.68 98.14 96.13 92.98 88.47
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