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Chapter 1

Introduction

VLSI design is the process of designing very large scale integrated circuits. This comprises
both the definition of the logic behavior of the integrated circuit (called logic design) as
well as the design of the physical layout (called physical design). VLSI design is a huge
and extremely important field for applying discrete mathematics. Its enormous instance
sizes make efficient automation inevitable and its numerous mathematically difficult prob-
lems [30], [20] make efficient automation hard (or even impossible) to obtain. Therefore
the overall problem has to be divided into different subtasks and often approximation
algorithms or even heuristic approaches have to be used.

Major steps of physical design are the placement of the individual circuits (called place-
ment) and the layout of the connections between them (called routing). Input for routing
are so-called nets, sets of connection points (so-called pins) that need to be connected.
Routing further can be divided into two or three substeps, global routing, an optional step
called track assignment and detailed routing. In many cases, wires are preferably placed
on special coordinates, so-called tracks. The main contributions of this thesis concern de-
tailed routing. We describe a novel algorithm for automatically computing track patterns
for a set of different kinds of wires for detailed routing and show that it yields substantial
improvements both in run time and quality of results. We further develop an axiomatic
description of distance rules between wires of different nets, derive important properties
and describe a highly optimized algorithm to check such diff-net rules, reducing run time
by more than a factor two.

In the rest of this chapter, we briefly describe some further aspects of VLSI design
and give an overview of the structure of this thesis. It is important that an integrated
circuit can run correctly at the desired frequency. Although timing behavior needs to
be respected already during placement and routing, it is often considered a separate step
called timing optimization. In practice, some approximation of timing behavior is con-
sidered during most steps of both logic and physical design. The used timing models get
more accurate during the design process and the effort spent to meet timing constraints
increases. Typically, there are a number of steps dedicated exclusively to optimize re-
maining timing problems at the end of physical design. Furthermore, a number of special
subtasks can be identified such as the design of clock networks distributing clock signals
over the chip, the design of power distribution as well as the design of the primary inputs
and outputs delivering signals to and from the integrated circuit. For more details on the
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2 CHAPTER 1. INTRODUCTION

physical design process, we refer the reader for example to [32] or [5].

Current very large scale integrated circuits can have billions of transistors and many
kilometers of wires. Therefore, they are designed in a hierarchical fashion. This means
that the whole circuit is divided into smaller circuits which in turn are divided into smaller
parts again. At each level of hierarchy, some connections may remain, thus creating a
hierarchy of different instances containing other instances as subproblems. Each part is
designed individually, meeting certain boundary conditions ensuring compatibility with
the other parts. In the end, all the parts are combined together. During this hierarchical
design process, it frequently happens that changes in one part of the integrated circuit
require changes in other parts. Thus an iterative approach is used, designing all parts
with increased level of detail and precision during each iteration.

Instances from different levels of the hierarchy tend to have different characteristics.
Instances from the highest levels of hierarchy (so-called top-level instances) tend to have
few but very long nets, a large area and many very wide wires. Usually, they do not
contain any logic but only interconnections between their child instances. Instances at the
lower levels of the hierarchy (so-called RLMs, random logic macros), have much smaller
area, contain lots of logic gates and many nets and usually use only a limited amount
of wide wires. In between top-level instances and RLMs are so-called integration-level
instances which have intermediate features. Furthermore there might be instances called
macros which contain special functionality like memory arrays or analog circuits and need
to be designed differently. We consider such macros given and do not discuss their design
any further.

In this thesis we focus on the routing task of physical design or, more precisely, the
detailed routing task. This means, we assume the logic design of the integrated circuit
finished and thus the logic structure fixed as well as the physical placement of the circuits
and the primary inputs and outputs given. Further, we assume that power distribution
structures are already designed and fixed as well as the global clock networks. The task
is then to design all necessary connections on the chip in a way that they meet physical
design rules as well as timing requirements.

Due to the enormous instance sizes and the inherent complexity of the task, routing is
commonly done in two or even three steps. First global routing determines rough positions
for the connections of all nets, called global routes, optimizing complex objectives like
congestion and timing but largely ignoring local constraints. Some routing flows (e.g.
[42]) then use an intermediate step, called track assignment [6], [10], [35], which assigns
long wires of these global routes to individual detailed routing tracks, respecting some local
rules but not yet respecting all design rules or connecting these long segments together.
Finally, during detailed routing exact locations for all wires respecting all design rules are
calculated. The global routes and potentially track assigned wires are used to limit the
search space.

On some layers, wires need to be placed on a set of predefined coordinates, called
tracks. On other layers, wires can be placed freely. However, restricting the router mostly
to certain tracks (forming a routing grid) may be beneficial. Both grid-based (e.g. [33])
and grid-less approaches (e.g. [11], [14] and [15]) have been proposed to route on such
layers. We are interested in the detailed routing step with only a global routing but no
track assignment as input and we will restrict ourselves mostly to grid-based routing.
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Instance sizes in detailed routing are enormous. On large instances, several million
nets needs to be routed with hundreds of meters of wires on a graph with hundreds of
billions of nodes. As an example, Figure 1.1 shows 1

16000 of the lowest two routing layers
of a large instance.

Furthermore, the detailed routing problem is hard in theory. It includes many NP-hard
problems, for example finding a minimum-length rectilinear Steiner tree [17] or the vertex-
disjoint paths problem [25], which remains NP-hard even on grid graphs [31]. There is even
little hope for efficient approximation algorithms with a good approximation guarantee
[12]. Therefore, in practice either subproblems are discussed or heuristic methods are
employed.

The rest of this thesis is organized as follows. In Chapter 2, we introduce some notation
that is needed for the following chapters, especially for Chapter 5. In Chapter 3, we briefly
describe BonnRouteDetailed, the detailed routing solution developed by the Research
Institute for Discrete Mathematics at the University of Bonn in joint work with IBM.

In Chapter 4, we describe a novel algorithm for automatically computing track patters
for a set of different kinds of wires for detailed routing and how this algorithm can be used
efficiently in practice in BonnRouteDetailed. We prove its correctness and discuss its run
time.

In Chapter 5, we first develop an axiomatic description of diff-net rules and derive
important properties. We develop two descriptions of an important class of diff-net rules
and prove their equivalence. We prove for a number of practically important diff-net rules
that they are diff-net rules in our theoretical sense and belong to this class. Then we
describe a highly optimized algorithm to check such diff-net rules in BonnRouteDetailed.

In Chapter 6, we present experimental results of the algorithms developed in Chapter 4
and Chapter 5 as well as parallelization results of BonnRouteDetailed including these
algorithms. Our automatic track pattern calculation yields substantial improvements both
in run time and quality of results. Our optimized diff-net rule checking reduces the run
time of BonnRouteDetailed by more than a factor two. Furthermore, BonnRouteDetailed
parallelizes very well. The main routing step achieves a speedup of factor 40 with 64
threads on 14nm instances and a speedup of factor 32 with 64 threads on newer 7nm
instances.



4 CHAPTER 1. INTRODUCTION

Figure 1.1: 1
16000 of the lowest two routing layers of the instance L-14-A-2. Dark (light) blue

shapes are wires on the lowest (second lowest) routing layers. Pink shapes are pins, gray
shapes are blockages (including power rails) and black squares indicate vias connecting
the lowest and the second lowest routing layers. All wires on the lowest routing layer
run horizontally and all layers on the second lowest routing layer run vertically. Layers
(including adjacent via layers) above and below these two routing layers are not shown.



Chapter 2

Definitions and Notation

We assume basic knowledge of combinatorial optimization. For an overview, we refer the
reader to [29]. Let B := {true, false} be the set of Boolean values. We use ∧ for Boolean
’and’ and ∨ for Boolean ’or’. We may use these expressions and functions returning these
expressions directly in all places where Boolean values are required.

We use the O-notation to denote asymptotic running times.

By N we denote the set of all natural numbers including 0. By Z and R we denote the
set of all integers (positive, zero and negative) and the set of all real numbers respectively.

Let X be any set. By P(X) we denote the set of all subsets of X. Let k ∈ N. By
Pk(X) we denote the set of all subsets of size k of X.

We assume throughout this dissertation that all sets that are not explicitly defined to
be infinite are finite. For example, N and R (defined below) are explicitly infinite, but
whenever we write something like ’let R ⊆ R’ we implicitly assume R to be finite. In
particular all the sets occurring during the algorithms are finite and all the maxima and
minima exist because they are taken over a finite set.

Let x1, x2, y1, y2 ∈ R, p ∈ R, p ≥ 1. Define dx((x1, y1), (x2, y2)) := |x2 − x1|,
dy((x1, y1), (x2, y2)) := |y2 − y1|, dp((x1, y1), (x2, y2)) := (|x2 − x1|p + |y2 − y1|p)

1
p and

dmax((x1, y1), (x2, y2)) := d∞((x1, y1), (x2, y2)) := max(|x2 − x1|, |y2 − y1|).
Let lmax ∈ N with lmax even and L := {0, . . . , lmax} be the set of layers. Define

Lwiring := {l ∈ L : l even} and Lvia := L \ Lwiring. Lwiring are called wiring layers and
used for vertical or horizontal wires; Lvia are called via layers and used for interconnecting
adjacent wiring layers. To allow dense packing of wires, each wiring layer l has a preferred
direction pref (l) ∈ {horizontal, vertical} which means that most or all wires on that
layer run in that direction. To allow for efficient routing, the preferred direction of the
wiring layers alternates. We call wires running in the non-preferred direction jogs. To
simplify the notation and w.l.o.g. we arbitrarily fix the preferred direction of layer 0 to be
horizontal. Thus, for l ∈ Lwiring we get formally:

pref (l) :=

{
horizontal l ≡ 0 mod 4

vertical l ≡ 2 mod 4

Let Xmin,Ymin,Xmax,Ymax ∈ Z with Xmin ≤ Xmax and Ymin ≤ Ymax. The chip area

5



6 CHAPTER 2. DEFINITIONS AND NOTATION

A is defined as A := [Xmin,Xmax]× [Ymin,Ymax]. Let

R := {[x1, x2]× [y1, y2] : x1, y1, x2, y2 ∈ Z, x1 ≤ x2, y1 ≤ y2}

be the set of all closed, axis-parallel rectangles. In the following use the term
’rectangle’ when we mean ’closed axis-parallel rectangle’. For convenience, define the set
of rectangles containing (0, 0):

R0 := {r ∈ R : (0, 0) ∈ r}

as well as the set of all zero- or one-dimensional rectangles:

Rstick := {[x1, x2]× [y1, y2] ∈ R : x1 = x2 or y1 = y2}

For r1, r2 ∈ R let r1 + r2 := {v1 + v2 : v1 ∈ r1, v2 ∈ r2} be the Minkowski sum. Note
that r1 + r2 ∈ R. Let x, y ∈ Z, r ∈ R. Define (x, y) + r := r + (x, y) := [x, x]× [y, y] + r.
Let r = [xmin, xmax] × [ymin, ymax] ∈ R. Define xmin(r) := xmin, xmax(r) := xmax,
ymin(r) := ymin, ymax(r) := ymax. Define mirror(r) := [−xmax,−xmin]× [−ymax,−ymin].
Let r1, r2 ∈ R, p ∈ R, p ≥ 1. Define

dx(r1, r2) := min{dx((x1, y1), (x2, y2)) : (x1, y1) ∈ r1, (x2, y2) ∈ r2}

dy(r1, r2) := min{dy((x1, y1), (x2, y2)) : (x1, y1) ∈ r1, (x2, y2) ∈ r2}

dp(r1, r2) := min{dp((x1, y1), (x2, y2)) : (x1, y1) ∈ r1, (x2, y2) ∈ r2}

d∞(r1, r2) := dmax(r1, r2) := min{d∞((x1, y1), (x2, y2)) : (x1, y1) ∈ r1, (x2, y2) ∈ r2}

Let R ⊆ R. Define the bounding box bbox(R) ∈ R of all rectangles in R: bbox(R) :=
[min{xmin(r) : r ∈ R},max{xmax(r) : r ∈ R}] × [min{ymin(r) : r ∈ R},max{ymax(r) :
r ∈ R}].

In modern technologies, many layers on a chip cannot be manufactured with a single
mask, but multiple masks need to be applied, each creating some of the desired shapes.
Thus shapes need to be assigned to different masks. This is done by assigning a color to
each shape which determines the mask by which the shape is manufactured. Formally, let
COL be a finite set of colors. If there are no colors on a given layer, then one can simply
assign the same color to all shapes on this layer.

Let SC be a finite set, called the set of shape classes. Each object on the chip is
assigned a shape class determining together with its color which distance rules it needs
to obey. Let SCv ⊆ SC be a subset of the shape classes which are exclusively used on via
layers. We denote all other shape classes by SCo := SC \ SCv. We use this distinction
later because design rules on via layers can be substantially different from design rules on
metal layers.

We sometimes need to distinguish between shapes used for routing, shapes that are
parts of pins and shapes that serve as blockage. Therefore we define the set of possible
purposes of a shape:

SP := {wire, pin, blockage}
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Now we can formally define what a shape is. A shape is an integral, axis-parallel, closed,
rectangular area on a specific layer together with an associated shape class, a color and a
purpose. Formally, define the set of all shapes

S := {(r, l, sc, c, sp) : r ∈ R, l ∈ L, sc ∈ SC, c ∈ COL, sp ∈ SP}

Let s1 = (r1, l1, sc1, c1, sp1) ∈ S, s2 = (r2, l2, sc2, c2, sp2) ∈ S. We say s1 is a subshape
of s2 and write s1 ⊆ s2 if r1 ⊆ r2, l1 = l2, sc1 = sc2, c1 = c2 and sp1 = sp2. We say s1

is a proper subshape of s2 and write s1 ( s2 if s1 is a subshape of s2 and r1 6= r2. Let
s = (r, l, sc, c, sp) ∈ S. Define r(s) := r, l(s) := l, sc(s) := sc, c(s) := c, sp(s) := sp,
attr(s) := (l, sc, c, sp). For simplicity of notation, define:

Sw := {s ∈ S : sp(s) = wire}

Sp := {s ∈ S : sp(s) = pin}

Sb := {s ∈ S : sp(s) = blockage}

Further, define xmin(s) := xmin(r(s)), xmax(s) := xmax(r(s)), ymin(s) := ymin(r(s)),

ymax(s) := ymax(r(s)). Define center(s) := (xmin(s)+xmax(s)
2 , ymin(s)+ymax(s)

2 ). Define
area(s) := (xmax(s)−xmin(s))(ymax(s)−ymin(s)) and diam(s) := max(xmax(s)−xmin(s),
ymax(s)− ymin(s)).

For r ∈ R, s ∈ S, define r + s := s + r := (r + r(s), l(s), sc(s), c(s), sp(s)). For
x, y ∈ Z, s ∈ S, define (x, y) + s := s+ (x, y) := s+ [x, x]× [y, y].

Let S ⊆ S. Define S homogeneous := ∀s1, s2 ∈ S : attr(s1) = attr(s2). Let now S be
homogeneous, S 6= ∅ and s0 ∈ S. Define attr(S) := attr(s0). Let S ⊆ S, r ∈ R, x, y ∈ Z.
Define r+S := S+r := {r+s : s ∈ S} and (x, y)+S := S+(x, y) := {(x, y)+s : s ∈ S}. Let
s1, s2 ∈ S, p ∈ R, p ≥ 1. Define dx(s1, s2) := dx(r(s1), r(s2)), dy(s1, s2) := dy(r(s1), r(s2)),
dp(s1, s2) := dp(r(s1), r(s2)), d∞(s1, s2) := dmax(s1, s2) := d∞(r(s1), r(s2)).

Wires on a chip are modeled by so-called wire and via sticks. Wire sticks represent
wires within a wiring layer of the chip, vias interconnect wires on neighboring wire layers.
A via is modeled by three shapes, one on the lower wiring layer the via connects, one on
the upper wiring layer and one on the via layer in between. Wire and via models define
the metal shapes that are induced by a wire or a via stick. Define

WM := {(r, sc) : r ∈ R0, sc ∈ SCo}

WM is the set of all wire models. Let wm = (r, sc) ∈ WM. Define r(wm) := r,
sc(wm) := sc.

Similarly, define the set of all via models:

VM := {((rb, scb), (rm, scm), (rt, sct)) : rb, rm, rt ∈ R0, scb, sct ∈ SCo, scm ∈ SCv}

Let vm = ((rb, scb), (rm, scm), (rt, sct)). Define rb(vm) := rb, scb(vm) := scb, rm(vm) :=
rm, scm(vm) := scm, rt(vm) := rt and sct(vm) := sct.

A wire stick figure (short: wire stick) represents an axis-parallel segment of a wire
on a given layer. Formally, let

WS := {(r, l,m, c) : r ∈ Rstick, l ∈ Lwiring,m ∈ WM, c ∈ COL}
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be the set of all wire sticks. Similarly a via stick figure (short: via stick) represents
a via connecting two neighboring wiring layers. Let

VS := {(x, y, l,m, cb, cm, ct) : x, y ∈ Z, l ∈ Lvia,m ∈ VM, cb, cm, ct ∈ COL}

be the set of all via sticks. Define the set of all stick figures (or short: sticks)

ST :=WS ∪ VS

Let ws = (r, l, (rm, sc), c) ∈ WS. Define the shape of the wire stick ws in the follow-
ing way: shape(ws) := (r + rm, l, sc, c, wire) ∈ S. To simplify the notation, define
shapes(ws) := {shape(ws)}. Let vs = (x, y, l, ((rb, scb), (rm, scm), (rt, sct)), cb, cm, ct) ∈
VS. Define shapeb(vs) := ((x, y) + rb, l − 1, scb, cb, wire) ∈ S, shapem(vs) := ((x, y) +
rm, l, scm, cm, wire) ∈ S and shapet(vs) := ((x, y) + rt, l+ 1, sct, ct, wire) ∈ S. Let further
l′ ∈ {l − 1, l, l + 1}. Define

shapel′(vs) :=


shapeb(vs) l′ = l − 1

shapem(vs) l′ = l

shapet(vs) l′ = l + 1

Define the set of shapes of vs: shapes(vs) := {shapeb(vs), shapem(vs), shapet(vs)} ⊆ S.
In recent technology nodes on some layers wires need to be placed at special coordinates

called tracks due to manufacturing reasons. On other layers, very complex design rules
apply to combinations of three or more wires depending on their widths and relative
geometry. These design rules can often be fulfilled automatically if wires of certain widths
are only placed on certain coordinates. On some layers, wires could be placed arbitrarily,
but it is beneficial to restrict routing tools to a certain subset of possible coordinates
to facilitate efficient packing of wires, especially efficient packing of wires with different
widths and spacing values. Therefore, we define a set of usable tracks on each layer (in
theory these could be all coordinates although that would in most cases lead to very long
run times and very poor results). If tracks are given a priori by technology restrictions,
we simply use all possible coordinates for all possible wire models. If no such set is given
by the technology, we show how to compute optimized sets of tracks for a number of wire
models in Chapter 4. Again the tracks of the chip are simply the union of all these sets
of tracks.

A set of tracks is a nonempty, finite set of coordinates. Define the set of all sets of
tracks: T R := {{t1, . . . , tk} : k ∈ N, k ≥ 1, t1, . . . , tk ∈ Z}. A chip then contains for each
wiring layer a set of tracks.

In general, it is not an easy task to find a good set of tracks if multiple wire models
are involved. A future alternative might be to use the output of some trackless track-
assignment algorithm (e.g. as described in [35]) to define tracks for detailed routing.
Sometimes some wire models can only use a subset of the tracks on some layers.

On a chip there are typically some predefined structures and some areas that may not
be used for routing. From a routing perspective, these are simply blockages, shapes that
belong to the chip and induce distance rules for any metal shapes to be placed.

With T we denote a finite set of threads used for parallel computation.



Chapter 3

BonnRouteDetailed

BonnRouteDetailed [19] is a state-of-the-art, mostly track-based detailed routing tool with
an emphasis on low run time, efficient parallelization and effective high density routing.
It is the detailed routing tool of the BonnTools [28], the chip design solution developed at
the Research Institute for Discrete Mathematics at the University of Bonn in joint work
with IBM.

BonnRouteDetailed produces routings with short wire length, few vias, few detours
and avoids a number of electrically or timing-wise undesirable configurations. It obeys a
wide class of diff-net design rules exactly and avoids many same-net errors on a best effort
basis. It can be used to produce very dense detailed routings meeting timing constraints
but still containing a limited number of design rule violations. These can later be corrected
by an industrial routing tool, leading to superior results than running any one of the two
routing tools alone (see for example [40], [19] and [3]). Furthermore, BonnRouteDetailed
automatically detects and reports a wide range of problems in its input and produces com-
prehensible statistics on its output. In this chapter we give an overview of key components
and concepts of BonnRouteDetailed.

3.1 General Concept

BonnRouteDetailed is designed to be used as a bulk routing tool (and not an incremental
router). It contains a number of optimizations precomputing certain data for the given
chip which takes some time for precomputation but saves a lot of run time during actual
routing. Five major components need to be mentioned here.

First, so-called soft track patterns. BonnRouteDetailed precomputes for all wire
models that are not required to be located on certain given hard track patterns so-called
soft track patterns, special coordinates where wires of these wire models are preferably
placed. These track patterns are optimized to make efficient packing of a mixture of
different wire models possible. BonnRouteDetailed can deviate from them to access pins
or off-grid wires. We mention some more details in Section 3.3 and discuss the problem
to compute good soft track patterns in detail in Chapter 4.

Second, the so-called grid. All shapes on the chip are stored in a geometrical data
structure called the grid, allowing efficient geometrical queries. Because especially block-
ages are often represented in a redundant and inefficient way (for example there might be

9
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multiple blockages overlapping or even blockages completely contained within each other),
input shapes are preprocessed and represented in an optimized, overlap-free way [18]. The
grid can be efficiently queried and updated in a highly parallelized way. We describe this
data structure in more detail in Section 3.4.

Third, BonnRouteDetailed precomputes legality information (concerning diff-net rules)
for the most common wire and via models for on-grid locations in the so-called fast grid
(and updates this information during routing). This data structure is briefly mentioned
in Section 3.6 and described in more detail in Section 5.3. This reduces overall run time
significantly, because routing objects change a lot less often than legality information is
queried.

Fourth, accessing all pins on the lowest layers is often challenging. To avoid pins from
being blocked by routes for other nets, BonnRouteDetailed precomputes access paths for
most pins before routing, escaping them to a specified layer with a dynamic program. This
step selects one access path for as many considered pins as possible and guarantees that
all these access paths can be used simultaneously. However, sometimes it is beneficial to
deviate from these preselected access paths later on. Therefore, the router has the ability
to compute further access paths on the fly during routing and discard the precomputed
ones. If pins of the same net are very close together, it is preferable to connect them
directly instead of computing access paths. BonnRouteDetailed already connects such
pins during the dynamic program with very short and efficient connections. Precomputing
short connections and escaping the remaining low-layer pins improves results significantly
(see [2]). Further, BonnRouteDetailed also precomputes access paths for so-called blocked
pins (pins that are not legally accessible due to diff-net rules). In practice such pins often
occur due to unclean design data. While a chip is designed, many parts are changed
simultaneously by different people to save time. Thus it frequently occurs that a change
has already been made on some part of a chip but other parts have not yet been updated.
Yet such a chip still needs to be routed and thus routing tools need to cope with all sorts
of imperfect input such as blocked pins. To save run time and complexity in the core
routing algorithms, BonnRouteDetailed precomputes access paths for such blocked pins,
if possible making sure that the end points of the access paths are legally accessible. We
describe the algorithms used for pin access in a little more detail in Section 3.7.

Fifth, the way BonnRouteDetailed models and deals with diff-net rules is highly op-
timized for a bulk routing setup where all involved wire models, nets and diff-net rules
are known in advance. BonnRouteDetailed uses so-called shape classes to model which
diff-net rules apply for a certain piece of metal. These shape classes and the rules that
apply to them are precomputed. Many data structures like the fast grid and the grid
and some temporary data structures rely on the fact that the set of all shape classes and
rules is known such that the maximum distance where a shape (of a certain shape class)
can influence legality of another shape can be bounded from above. Also precomputing
checking data in the fast grid for the most common wire and via models assumes that the
most frequent wire and via models are known in advance.

After data has been loaded, access paths and short connections have been precomputed
and the grid and the fast grid have been initialized, nets are routed on a net-by-net basis
one after another (but with multiple threads each routing one net at a time). Consequently,
one very important aspect is the order in which the nets are routed. BonnRouteDetailed
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precomputes a desired order described in more detail in Section 3.8. The most important
criteria are the width of the default wire model of the net and the width of the special wire
models used to access pins. While routing in a multi-threaded way, BonnRouteDetailed
makes local changes to this precomputed order to reduce the probability of collisions
occurring. We describe these aspects of parallelization in more detail in Section 3.5.

Another key concept is the idea that the router should always produce a connected
routing for each net. Even if the task is impossible, because there is overcongestion or
some area is cut off by a blockage or pins are blocked, BonnRouteDetailed in almost
all cases produces a (potentially illegal) connection for the net. Only if input data is
severely incomplete or inconsistent (like there is no wire model at all or pins lie outside
the chip area), making it impossible to produce meaningful output, nets are left open.
BonnRouteDetailed does never postpone a task. When a net is due to be routed, it is
routed completely.

First, BonnRouteDetailed tries to route the net with (pretty restrictive) default pa-
rameters without changing any other nets. If this fails, BonnRouteDetailed tries to route
the net while changing (ripping-up and re-routing) other nets. If this again fails, some
parameters are successively relaxed, for example allowing to route in a larger area and
in later steps also reducing measures to avoid same-net errors. If all these attempts fail,
routes that violate diff-net rules to other nets are allowed. Ultimately, a path search that
can violate any legality restrictions at certain costs is run. This framework is described
in more detail in Section 3.9. One key assumption to the success of this framework is
that a net that was successfully routed might be ripped-up and re-routed but is never
disconnected again. Thus even though individual connections may change, any net that
is connected always stays connected.

To avoid same-net errors there are a number of very powerful frameworks implemented
in BonnRouteDetailed. Most importantly, BonnRouteDetailed includes a very efficient
multi-label path search [1]. This enables BonnRouteDetailed not only to find shortest
paths, but to find (not anymore necessarily shortest) paths with certain restrictions on
the minimum segment length after a certain kind of segment was placed; for example one
can specify that after a via the path needs to continue in preferred direction for a certain
distance until a jog is allowed. This is a very powerful tool to avoid a wide class of same-
net errors. Additionally, there is an elaborate post-processing function, fixing same-net
errors in computed paths by local changes (for example by moving the position of jogs)
and by extending segments by so-called endstyles, short segments of metal that are added
to the end of certain wire sticks to fix design rule violations but that are not necessary
for the connectivity of the path ([41]). BonnRouteDetailed can precompute for each pin a
so-called pin shrink, that is the set of positions where the pin can be accessed legally with
a wire of a given direction and wire model or a via with a given via model, thus restricting
pin access and fulfilling same-net rules at pins. Last but not least, BonnRouteDetailed
employs a concept called protections, allowing for each path search to precompute certain
positions where a wire or via of a given wire or via model should not be placed. This is
for example very helpful to avoid same-net errors between different vias or between vias
and jogs at Steiner points in the connection for a net.

These four concepts are used to efficiently avoid same-net errors in the following way.
Whenever a non-trivial pin is accessed, the pin shrink is respected. Before searching a
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path, first a set of protections is computed to avoid same-net errors to already existing
wiring of the same net. The number and kind of protections is determined by the current
set of parameters, first it is tried with rather restrictive protections and if this fails, the
number of protections is reduced. Then, a path is searched with a standard path search
and post-processed. Often, the result is same-net error clean and can be used. If this is
not the case, a minimum label system is computed that can fix as many of the remaining
same-net errors as possible and a new path is computed with a multi-label path search and
post-processed. This is iterated until all multi-label restrictions are used or the found path
is same-net error clean. In the end, the path with the least number of same-net errors is
taken. This setting is very beneficial because post-processing a path is very fast (and can
fix already most same-net errors) and multi-label path searches are comparatively slow.

Another very important aspect of the quality of detailed routing is timing behavior.
Design rule clean connections are useless if they do not meet timing requirements. Bonn-
RouteDetailed does not measure timing directly. Instead it relies on two powerful concepts
to ensure that computed connections meet timing constraints. First, it is designed to use
global wires computed by BonnRouteGlobal which in turn is directly timing aware ([21],
[39], [38], [22]). BonnRouteGlobal computes global routes that have certain timing prop-
erties and BonnRouteDetailed aims to implement detailed routes that are geometrically
and topologically similar to the input global routes. Therefore, the rough structure of
computed detailed routes is timing-wise well-designed. To this end, BonnRouteDetailed
uses a complex data structure to store global and detailed routes initially described in
[26]. It can guarantee that global and detailed routes are similar in some sense as well
as enable good run times for huge nets with many components. We mention some more
details on this data structure in Section 3.4 and refer to [26] for further insight. But for
timing characteristics, also the very details matter. BonnRouteDetailed tries to ensure
that its routes have locally good timing characteristics by avoiding certain problematic
configurations. Some further details on this topic are mentioned in Section 3.12.

Last but not least, efficient parallelization is key to the success of BonnRouteDetailed.
We mention more details in Section 3.5, but the main concept is to allow full paralleliza-
tion for all major steps. The basic concept was introduced in [27] for the main parallel
routing step and has since then been applied to many more steps of BonnRouteDetailed
improving total parallel speedup even more. The main idea is to compute small sub-tasks
in parallel and add them to central data structures as quickly as possible while locking
as little as possible. When the solutions of sub-tasks computed in parallel conflict, Bonn-
RouteDetailed recomputes one of the solutions rather than ensuring that sub tasks are
independent (for example by geometric partitioning of the chip area like in [37]). Most of
the key data structures of BonnRouteDetailed have been implemented in a way to enable
such kinds of parallelization efficiently and often with very little additional programming
effort.

One often underestimated factor for the practical success of BonnRouteDetailed is the
fact that it can compute a powerful set of comprehensive statistics assessing the state
of its in- and output and that it can automatically detect and report a wide number of
problems in its input. In times of iterative and hierarchical design flows, these capabilities
are, besides the ability to produce efficient routings in good run time, a key factor for
effective chip design. Most instances initially contain a number of problems that prevent
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clean detailed routing. Identifying and fixing such issues quickly is key in successfully
designing very large scale integrated circuits efficiently in practice. We briefly mention
some key points in Section 3.2.

In the following sections, we describe some of the key concepts of BonnRouteDetailed
in more detail and refer to previous works for some other key concepts.

3.2 Data and Input Specification

In this section we briefly summarize the kind of input data that BonnRouteDetailed ex-
pects, mention some checks that are performed on input data and briefly discuss some
assumptions that are made and how they are enforced.

Of course a detailed routing tool needs a geometric description of the chip to be routed.
This includes the chip area, the number and type of routing layers, blockages and pins.
It needs diff-net rules which are encoded in the form of shape classes and distance rules
(see Chapter 2 or [40]). It further needs the information which kind of metal can be used
to route connections which is encoded in wire and via models for each layer. Obviously
also logical information is needed, in particular which pins need to be connected. This is
encoded in the so-called nets. Each net contains a number of pins (usually exactly one
source pin and a number of sink pins) which need to be connected as well as wire and
via models that can be used to connect the pins. Special wire and via models that can
be used in a limited region around the pins to attach to the pins may be provided as
well as a range of assigned layers on which the majority of routing of the net should be
located. Nets may already contain input wires, both modifiable ones that can be changed
and locked ones that need to be kept as they are.

As described in Section 3.9 and Section 3.12, BonnRouteDetailed needs a complete
global routing for each net to be routed. This means, for each net that is to be routed, the
union of pins, input detailed routes and global routes should be connected. These global
routes are used to determine the rough topology of the created detailed routing as well
as to create routing areas for detailed path searches and thus the rough geometry of the
detailed routing produced. BonnRouteDetailed might get (hard) track patterns for some
wire models as input and it gets usually a large number of different same-net design rules
that need to be obeyed.

BonnRouteDetailed makes a few assumptions about its input. One of the most impor-
tant has already been mentioned, there should be a complete global routing. Input global
and detailed routing should not contain any loops (with the exception of some precom-
puted structures used to add redundant vias at certain pins) and all leaves of the union
of detailed routing and pins should be pins or locked detailed wires. Otherwise, some
detailed routes are turned into global routes and some global routes are deleted to fulfill
this assumption.

BonnRouteDetailed detects and reports many problematic situations in its input. In-
put track patterns are checked for sanity, in particular neighboring tracks are checked to
be legal with respect to each other and warnings are issued if any odd situations are en-
countered. Wire and via models and diff-net rules are checked for basic requirements, for
example there should be at least one diff-net rule between any kind of metal shapes. Pins
are checked to be accessible and access wire codes are verified to be suitable for the pins



14 CHAPTER 3. BONNROUTEDETAILED

they are assigned to. Global routes are checked for completeness and redundant wires.
Nets are checked to contain at least two pins (preferably exactly one source and at least
one sink pin) and no obviously useless wiring. Shapes on colored and uncolored layers are
verified to have the required attributes. Pins are verified to lie within the chip area and
nets and pins to have usable wire and via models.

If any problems are detected, BonnRouteDetailed still routes the given chip but issues
a comprehensive summary of warnings such that detected issues can be resolved efficiently.
This kind of automatic input verification is, whenever possible, extremely valuable, espe-
cially because many aspects of input data are in practice created in a semi-automated
fashion or even entirely hand-coded and seldom thoroughly covered by external automatic
testing.

3.3 Track Patterns

As briefly mentioned in Section 3.1, BonnRouteDetailed is a mostly track-based routing
tool. This means that it does not place detailed wires on arbitrary coordinates but mostly
sticks to precomputed special coordinates for each wire model called tracks. We discuss
the problem to compute these tracks in detail in Chapter 4. Currently, soft track patterns
are computed in the beginning of BonnRouteDetailed, but we aim to compute track pat-
terns earlier in the flow in the near future. Then, to estimate resource usage of different
wire models, global routing tools can take into account exactly the track patterns that
BonnRouteDetailed uses. This should lead to increased accuracy when predicting detailed
routability based on global routing and thus better chip design flow stability and reliabil-
ity as well as better resource usage by the global router and thus better detailed routing
quality (e.g. fewer detours).

3.4 Storing Routing Objects

BonnRouteDetailed uses two main data structures to store routing data. The first data
structure stores nets (and the wires of the nets). As described first in [26], the net data
structure serves two goals. First, under some mild assumptions, it provides facilities
to generate source and target locations and routing areas for path search in time, up to
logarithmic terms, linear in the number of wires and vias and pin shapes that are currently
stored in the net. Thus it enables BonnRouteDetailed to route very large nets efficiently.
Second and maybe even more important, it guarantees that detailed routing solutions can
not deviate too much from the input global routing. A sample net with global and detailed
routing can be found in Figure 3.1.

To this end, the net data structure consists of a number of different data structures.
First, it stores two graphs, one containing the union of global and input detailed wires and
pins (the so-called global wire graph) and one containing all detailed wires and pins
(the detailed wire graph). At each point in time the detailed wire graph represents the
(detailed) connected components of a net. The global wire graph remains unchanged and
represents the input global routing (plus all detailed wiring that was already there before
global routing was done and thus is necessary to make the global wire graph connected).
For technical reasons, the degree of all nodes in both graphs that do not represent pins is
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source

Figure 3.1: Detailed wiring (blue) and corresponding global wiring (red). The sink pins
are drawn in cyan and the source pin is marked in magenta.
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restricted to be at most three. A node of higher degree can be represented by a number of
nodes of degree three and some dummy arcs. Furthermore, the net data structure stores
references from certain nodes in the global wire graph to nodes in the detailed wire graph
and vice versa. In particular, for each node of degree three and each node that represents
a fixed object (a pin or a locked wire) in the detailed wire graph, BonnRouteDetailed
stores a corresponding node in the global wire graph. When some detailed connection
needs to be ripped-up, the violating segment can be found in the detailed wire graph.
Then, the graph is traversed in both directions until nodes of degree three or fixed nodes
are reached. Source and target nodes are created from the neighborhood of those nodes.
Furthermore, the two corresponding nodes in the global wire graph define a unique path
connecting them in the global wire graph. BonnRouteDetailed calculates the routing area
to reconnect the ripped-up connection from this global route. If a replacement is found,
BonnRouteDetailed replaces the ripped-up connection by the new one and updates the
data structures. For each node in the global wire graph that has a counterpart in the
detailed wire graph and has an incident edge that belongs to a global route that has not
yet been detailed routed, the net data structure stores a corresponding detailed node.

When a component is to be connected (BonnRouteDetailed always connects compo-
nents to the electrical source component for a number of reasons described in [26]) the
node in the detailed wire graph that represents the component has by definition a cor-
responding global node. From that corresponding global node BonnRouteDetailed goes
backwards towards the electrical source component until the first (different) global node
that has a corresponding detailed node. BonnRouteDetailed creates the routing area from
the global wires traversed and source and target areas from the two detailed nodes found.
Again, if BonnRouteDetailed successfully finds a path, all data structures are updated
and in particular corresponding detailed nodes are assigned to nodes of degree three along
the path in the global wire graph. Furthermore, a number of minor data structures are
stored, most notably a set of components (basically pointers into the components of the
detailed wire graph) to access individual components quickly and for nodes in the global
wire graph the closest detailed component (away from the electrical source) that can be
reached from that node and its distance. This information is used to quickly decide which
component to route next in case of multi-terminal nets. Furthermore, the net data struc-
ture stores the distance to the (electrical) source node at each global node. This enables
BonnRouteDetailed to find the unique path between any two global nodes efficiently.

The second main data structure, the grid, stores all objects on the chip; that is
blockages, pins and wires. Its main purpose is to allow fast regional queries, mainly
to check diff-net distance rules. When assessing whether a given shape is legal at a
given position, BonnRouteDetailed needs to find all nearby shapes as quickly as possible.
Furthermore the grid has to be capable of highly parallel access (both to read data and to
modify data). We describe parallelization requirements in more detail in Section 3.5 and
thus concentrate here on the core data structure by itself.

The vast majority of objects on many chips are (at least at the end of detailed routing)
detailed wires. Detailed wires have two properties that BonnRouteDetailed exploits to
store them efficiently. First, they are naturally represented by stick figures and second
these stick figures are in almost all cases located on tracks. BonnRouteDetailed first
divides the whole chip area on each layer into smaller rectangular sub-areas in a way that
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Figure 3.2: The structure of a grid with four sub-grids. The sub-grids are marked in
black, tracks are drawn as dashed blue lines. The borders of the stripes are marked in
green dotted lines. One stripe and the corresponding part of the corresponding track are
highlighted.

each side of each sub-area is roughly some constant (which could depend on the layer but
currently does not). Then within each sub-area (we call the corresponding part of the grid
a sub-grid), wire sticks and other shapes are stored in so-called stripes. For each track that
intersects a given sub-grid, there is exactly one stripe which spans the whole sub-grid in
preferred direction and whose area ends in the middle between two tracks against preferred
direction. Thus the whole chip area on each layer is partitioned into stripes which have
roughly constant length in preferred direction and which have the property that (the sticks
of) most detailed wires (excluding vias) are located within exactly one stripe. Figure 3.2
shows the global structure of the grid.

Wire sticks are stored in all stripes that they intersect (via sticks are typically stored
in three stripes on three different layers) and all other shapes are also stored in all stripes
that they intersect. Pin shapes are typically relatively small and thus intersect only a few
stripes. Blockages can be substantially larger and thus sometimes intersect many stripes.
BonnRouteDetailed preprocesses all blockage (and pin) shapes to maximize them along
the preferred direction of the given layer to minimize the total number of blockage-stripe
intersections. For more details concerning the algorithm to preprocess blockages, we refer
to [18]. Typically, most blockages are very small and there are only a few large blockages.
On most instances, the majority of objects in the grid are stored in only very few stripes
and each object is only stored in very few stripes on average.

Within each stripe, BonnRouteDetailed stores all objects (sticks and shapes) in a
simple array, ordered lexicographically by their minimum and maximum coordinate in
preferred direction. For each object stored in a stripe, it is stored how many objects
stored to the left intersect its minimum coordinate (objects on the chip can overlap).
This simple implementation with an array instead of a balanced binary search tree has
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experimentally been proven to be clearly superior. Insertion and deletion time is linear
in the size of the array, but first, queries are much more frequent than modifications and
second, the size of the array is bounded because the length of the stripe is bounded.
Storing objects in an array instead of a balanced binary search tree benefits from the fact
that in this way geometrically close objects are stored in only a few large blocks of main
memory. Accessing data is much faster because there is less memory overhead and because
memory caches can be used much more efficiently.

Querying all objects in a given area A is very fast. The grid stores the maximum
extension of a wire or via model around its stick. To get all shapes intersecting A Bonn-
RouteDetailed first extends A by these maximum extensions (because shapes need to be
collected but sticks are stored). Then each relevant stripe can be accessed in constant time.
Within a stripe, BonnRouteDetailed uses binary search to find the last object whose min-
imum coordinate lies within the search area (or whose minimum coordinate lies before the
search area if no object with minimum coordinate within the search area exists.). Then
it traverses all objects to the left until it reaches the end of the stripe or finds an object
whose maximum coordinate does not lie within the search area anymore. At this point
BonnRouteDetailed checks how many more objects to the left intersect this object and
thus can possibly intersect the search area. Then BonnRouteDetailed traverses further to
the left until all these objects have been found and checked. In practice, intersections are
typically very short and only few objects are involved thus this requires little overhead.
Note that even though objects can be stored in multiple stripes, BonnRouteDetailed makes
sure to report them only once. Figure 3.3 illustrates an example query.

A more detailed description of a slightly different version of the grid data structure
(with the most notable difference that it used balanced binary search trees instead of
arrays) was described in [40] and a different version formerly used can be found in [34].

Furthermore, BonnRouteDetailed uses the so-called fast grid to store precomputed
legality information. This data structure is quite similar to the grid, it also stores data
for each track in each sub grid on each layer, but it does not store actual shapes or sticks
but precomputed legality information for possible future sticks. To this end, it stores for
each stripe an array of maximal intervals of identical precomputed data. The definition
and use of this data is described in detail in Section 5.3.

3.5 Parallelization

With the work in [27] BonnRouteDetailed has switched its main parallelization paradigm
from a region-based multi-sequential approach (originally described in [37]) to full paral-
lelization. The concept of full parallelization means that all threads in parallel select a
net, find a path for a component of the net and try to add the path to the grid. While
adding paths to the grid, collisions are detected and eventually paths are recalculated if
necessary. Therefore, the grid needs to be thread-safe in the following sense: Reading data
and removing sticks needs to be thread-safe and there needs to be a thread-safe mechanism
to either atomically add a set of sticks or reject it if it conflicts with other sticks already
in the grid. Also the fast grid needs to support thread-safe read and update operations.
Each thread needs to temporarily ignore some shapes (for example shapes that should be
accessed by the path search as well as shapes that have been ripped-up to make space
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Figure 3.3: An example grid query. The query area A is marked as an orange rectangle.
The extended query area is marked in yellow. In this case five stripes need to be traversed
and objects a,b,c and d are reported. Note that object b is reported only once, exactly for
the stripe that contains the vertical minimum of the intersection of the search area with
the object. Object c is only found because the search area is extended. When traversing
the third lowest stripe, object e is the first one whose maximum coordinate lies outside
the search area. Together with object e the grid stores that one more object to the left
intersects e. Thus the traversal is continued until the intersecting object (object d) is
found (and in this case also reported). Object f is traversed but not reported, as its stick
figure intersects the extended search area, but its shape does not intersect the search area.
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for new shapes) and also to maintain a set of temporary additional shapes (for example
routes that have already been computed for other nets but not yet been submitted). Fur-
thermore, each thread needs a data structure storing where it can use the data from the
fast grid (or more precisely to which extent it can use the data) or if it has to recalculate
checking information from the grid and its temporary data structures.

These challenges are solved efficiently in the implementation of BonnRouteDetailed
based on the PThreads library [8], [9]. Basic thread-safety of the grid and fast grid is
ensured because each stripe (both of the fast grid and the grid) possesses an individual
read-write lock which is automatically locked as required when the grid or the fast grid
respectively is accessed or updated. The only tricky part is how to securely detect and
handle so-called collisions, situations when the solution for one task of one thread conflicts
with the solution of another thread for another task. Note that each solution can include
routes for multiple nets if rip-up and re-route is involved. This part is solved in the
following way: Once a solution is found, the total area that can potentially influence
legality of any part of the solution is computed. This whole area is locked in the grid (in
a globally fixed order so that no deadlocks can occur). Then every stick of the solution
is checked for legality and if possible added to the grid. If anything illegal is detected,
everything is reset. In the end, the whole area is unlocked. Afterward, non-critical parts
of the update are carried out, old wires that have been ripped-up are removed from the
grid and the fast grid is updated. Temporary shapes for each thread are stored in thread-
local additional data structures based on quadtrees. These data structures are briefly
introduced in Section 5.2 and discussed in more detail in [27]. For more information on
quadtrees, we refer the reader for example to [7].

This approach gives huge speedups compared to former approaches for the main par-
allelized routing routine (see [27]). However, initially, only the main routing step was fully
parallelized, but the techniques and infrastructure developed to that end also allow effi-
cient parallelization of wider parts of the code. Furthermore, the order in which nets are
processed was only driven by general routing requirements but not by parallelization needs
and for multi-threaded rip-up and re-route, a very simple locking scheme was used. There-
fore, since the original implementation of full parallelization a number of improvements
have been made. We now briefly describe these improvements.

The greatest effect on the overall multi-threaded performance of BonnRouteDetailed
has the successive parallelization (or elimination) of many more parts of the code. This
was greatly facilitated by the work described in [27]. Some of the most important parts
that have been parallelized are:

• preprocessing of nets (building the net data structure and assuring assumptions)

• circuit row pin access (see Section 3.7)

• preselecting access paths for blocked pins

• precomputing pin access criterion for the net order (see Section 3.8)

• initializing the fast grid

• numerous statistics before and after detailed routing
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Therefore, by now most of the run time of BonnRouteDetailed is in parallelized parts and
overall parallelization speedup is very good (see Section 6.4).

Another improvement is a modification of the order in which nets are processed. The
general order in which nets are processed is described in detail in Section 3.8. For par-
allelization purposes, local modifications are applied to this order on the fly. In order
to avoid collisions, it is beneficial if nets that are routed in parallel do not share the
same area (although the parallelization framework explicitly can handle overlapping ar-
eas). Therefore, BonnRouteDetailed tries to minimize the overlap of the areas of different
nets that are processed in parallel. On each layer, it uses a regular partition of the chip
area in rectangular cells. For each net the set of cells that intersect parts of the net is
precomputed. Whenever a net is processed, BonnRouteDetailed marks all cells that it
intersects as currently occupied. Whenever BonnRouteDetailed starts to route a new net,
it searches among the next k nets for the net with the least overlap to all nets that are
currently being processed (while making sure that no net is postponed more than l times).
This guarantees that the actual order is still similar to the original order (for sufficiently
small k and l) but gives good reductions in the total number of collisions. Note that even
if each net would be scheduled perfectly (that is with no overlap at all), collisions can still
occur because during rip-up also nets in cells that are not intersected by the original net
can be affected. Furthermore, it is usually not possible to schedule nets in a way that
at no time no two active nets intersect the same cells for a reasonable number of threads
while not disturbing the original order too much.

Experimental results show large reductions in the number of collisions and small re-
ductions in the number of remaining design rule violations with many threads. Run time,
however, is almost identical. With 64 threads, collisions in non-ripup path searches de-
crease by more than a factor ten and collisions in rip-up path searches by roughly a factor
two. This is very plausible, because in normal path searches the affected area is known in
advance and can be used to optimize scheduling whereas rip-up path searches can affect
an arbitrary area by ripping-up other nets. With these changes, with 64 threads, Bonn-
RouteDetailed produces on average about one collision per 1700 tasks. With 64 threads,
remaining design rule violations are reduced by roughly one percent, mostly diff-net spac-
ing violations and shorts are avoided. Figure 3.4 shows all active nets at some point in
time and the corresponding cells.

The third improvement that has been made concerns the locking strategy during rip-
up and re-route. The original approach used a very simple strategy. When trying to
rip-up a net, it would try to lock the net and if that was not possible, it would discard
the whole rip-up sequence as a collision and restart. This could lead to situations where
multiple tasks were restarted as collisions while no task was successfully finished or added
to the grid. This has been changed. During a rip-up-sequence, nets are not locked all the
time anymore, but they are copied when they are first encountered and then the thread
works on the copy. Thus locking nets can not fail anymore, because threads can wait for
the locks and still deadlocks can not happen (for more information on deadlocks, see for
example [13]). Therefore, collisions can occur only when trying to add results to the grid.
In this case, some other thread has to have been successful for a collision to occur. Thus
the whole framework is guaranteed to converge even if unlimited number of collisions per
net are allowed (in practice BonnRouteDetailed still limits the number of collisions per
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Figure 3.4: Active nets at some point in time with 16 threads. The cells used to decide
which nets might conflict are drawn in black. Yellow cells are currently occupied by an
active net. Red are global wires of active nets; magenta and cyan are the pins of the active
nets.
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net; after the limit is reached violations-allowing backup modes are activated to save run
time on hopelessly overcongested designs).

Remark. In practice, BonnRouteDetailed saves some copies by not copying the original
net of a rip-up sequence but this makes little difference because in the majority of cases
the initial net does not contain any detailed wiring and thus can not be involved in any
rip-up sequence anyway.

This change again reduces the number of collisions (especially during rip-up and re-
route) and thus sometimes saves quite some run time. Both changes lead to less variability
in the parallel detailed routing results and thus to more stability during the chip design
flow.

3.6 Handling Diff-Net Rules

BonnRouteDetailed aims to produce diff-net-error clean output. To this end each piece
of metal is assigned a so-called shape class which encodes distance rules that apply. We
discuss which rules can be handled exactly and how to handle them efficiently in great
detail in Chapter 5. In particular, in Section 5.3, we discuss how to precompute legality
information stored in the fast grid to speed up frequent queries during path search. We
show practical results for this framework in Section 6.3. We only mention some practically
relevant exceptions here and refer to Chapter 5 and [40] for more details.

As described in Chapter 5, most diff-net rules can be modeled exactly. There are
two practically relevant exceptions. The first one are run length dependent diff-net rules
(see Definition 5.1.8 for a formal definition of run length). On some layers, some wire
models need to obey larger distance rules if they have a common run length greater than
some value r (with r > 1). This kind of diff-net rules can not be modeled exactly by our
framework (see Lemma 5.1.13). But in practice, the value r is usually only moderately
large such that a high percentage of pairs of wires that have common run length larger
than zero and are close to each other have common run length larger than r anyway. Thus
assuming the higher spacing requirements that apply for wires with run length larger than
r for all wires is only slightly restrictive. Further, if track patterns are calculated for such
a wire model, one has one track pattern for all wires of the wire model independent of their
length (or common run length with other wires) anyway. Thus taking into account the
larger spacing value for the wire model when calculating track patterns is usually required
anyway. Thus this solution introduces only slight pessimism and makes sure that these
diff-net rules are always fulfilled.

The second (and probably even more important) class of rules that can not directly be
modeled exactly are so-called line end rules. These rules mean, roughly speaking, that if
an edge between two convex vertices of a metal component is shorter than some threshold
it needs to meet additional spacing requirements. There are three main cases when this
rule occurs.

First, at the end of wires running in preferred direction whose width is small enough
(line ends against preferred direction). Almost every end of such wires running in preferred
direction has a line end and thus needs to meet the additional spacing requirements.
Furthermore, assuming a line end against preferred direction at every position along a wire
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(a) The most common case. Simple line ends
against preferred direction are modeled ex-
actly and spacing requirements are precisely
obeyed.

(b) A rare but pessimistic case. If wires in
preferred direction are continued with a wire
against preferred direction, there is not nec-
essarily a line end. The yellow areas are in-
correctly blocked by the wire running in pre-
ferred direction (some or all of them is blocked
by the wire running against preferred direc-
tion anyway).

(c) An incorrect case to be avoided. Line
ends in preferred direction along wires are not
modeled correctly and thus can lead to diff-
net spacing violations.

(d) Line ends in preferred direction should be
avoided. If there is space available, they can
easily be fixed by an endstyle.

Figure 3.5: Modeling of line end rules. Blue and green indicate metal shapes on a routing
layer (of different nets). Orange indicates via shapes. Red marks indicate violated design
rules. Cyan edges indicate line ends.

in preferred direction usually blocks no additional shapes. Therefore, BonnRouteDetailed
models this case slightly pessimistically by assuming a line end against preferred direction
at the end of each narrow piece of wiring running in preferred direction (even if it is
continued by another piece of wire running in preferred direction) (Figure 3.5(a)). There
are only very few cases when this is really pessimistic, for example if the wire is continued
with a wire running against preferred direction that prevents the resulting edge against
preferred direction to be a line end (Figure 3.5(b)). Because jogs are seldomly used, this
case occurs very rarely.

This technique can not handle so-called adjacent track line end rules, rules where a
line end one some track interacts with line ends on neighboring tracks. If such rules are
present, further techniques have to be employed. For more information about modeling
line ends in BonnRouteDetailed, see [40].

The second case when line ends can occur are the side edges of short wires in preferred
direction (line ends in preferred direction). This is in general an undesirable case anyway,
because those wires in most cases block both neighboring tracks for further wiring (Fig-
ure 3.5(c)). Thus although not strictly illegal, BonnRouteDetailed tries to avoid to create
this situation to save routing space. This can effectively be achieved by either adding
endstyles to short wires running in preferred direction (Figure 3.5(d)) or, if this fails, by
forcing wires running in preferred direction to be long enough via multi-label path search
(basically the same mechanisms that can avoid min area violations for such wires).

The third case are vias or input wiring, but in these cases it is mostly known which
edges are a line end and which edges are not a line end and thus the information if stricter
rules apply to each edge can be encoded into the shape class of the pieces of metal.
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With these techniques, BonnRouteDetailed achieves routings that are mostly diff-net
error clean, apart from situations where the diff-net error aware path search framework
fails completely (for example at blocked pins or in overcongested areas). In such situations,
typically the input can, is and needs to be changed to enable clean detailed routing.

3.7 Pin Access

One of the trickiest parts of detailed routing is pin access. While struggling to simultane-
ously access all types of pins even in the densest regions, detailed routing tools need to pay
special attention not only to diff-net rules but also to avoid same-net errors that can be
created in combination with the pins and between wires of different wire and via models
that are sometimes used to access pins. Furthermore, electrical characteristics need to be
taken into account, especially close to the electrical source pin. BonnRouteDetailed has
four mechanisms to efficiently access pins (and other off-track input metal).

The most important mechanism is the so-called circuit row pin access. We briefly
summarize some key facts and refer for further details to [2]. The circuit row pin access
is basically a dynamic program working in each circuit row to preselect one access path
for each pin on the lowest layers (or already connecting close-by pins). First, a number of
simple design rule clean candidate access paths and short connections are precomputed for
each pin. Then, the dynamic program computes an optimal combination of these access
paths for all pins within a single circuit row with respect to some objective function. Due
to the nature of the dynamic program, a wide range of objective functions can be used.
The objective function that BonnRouteDetailed uses incorporates the following criteria
(in order of importance):

• maximize number of pins accessed

• maximize number of pins already connected

• use access paths going in the right direction

• spread access paths

Obviously, the main goal is to compute an access path for as many pins as possible
(such that all access paths together are legal). Next, already connecting pins during the
circuit row pin access leads to very efficient and short connections and is thus desirable.
Furthermore, BonnRouteDetailed computes for each pin in which direction the rest of
the net is located and tries to direct access paths already in that direction. Last, it is
beneficial to spread the endpoints of the access paths in a way that no two endpoints are
located too close together to make them easier accessible. The circuit row pin access in
BonnRouteDetailed runs in O(n log(n)) time where n is the number of pins in the instance
(that is all pins in the given circuit row) [2].

Figure 3.6 shows a small part of a sample solution found by the circuit row pin access.
Note that all pins are accessed, there are already four connections made, all access paths
point in a direction where something else of the net is located and all the vias concluding
access paths end on different (vertical) tracks.
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Figure 3.6: Circuit row pin access. The two grey horizontal stripes are power rails. Pins are
colored according to the net they belong to. Black crosses mark legal via positions on the
pins. Colored horizontal stripes are the computed pin access paths and short connections.
Light gray rectangles indicate the vias accessing the pins and dark gray rectangles indicate
vias to the next layer above. Small arrows indicate in which directions other parts of the
nets are located. This picture was taken from [2].

Furthermore, BonnRouteDetailed has an on-the-fly pin access that can compute (po-
tentially more complex) access paths for any pin (also higher-layer pins) during routing.
The main reason for computing such access paths is that the path search in BonnRoute-
Detailed works on a grid graph and thus currently can not access pins that are not located
on the path search grid. This version is on the one hand used for all off-grid pins that
are not located on the lowest layers and on the other hand used if for some reason the
preselected path for a low-layer pin can not be used. It works in a parametrized way,
first, only simple and same-net-error clean paths are computed and then parameters are
gradually relaxed to allow more complicated (but potentially also more error-prone) paths
until some target number of paths per pin is reached. Undesirable paths (such as paths
that contain or are likely to produce a same-net error) are assigned higher costs during
path search.

Third, BonnRouteDetailed checks each pin prior to routing if it can be legally accessed
with any path that the on-the-fly pin access can compute at all. If this is not the case, the
pin is called blocked and BonnRouteDetailed precomputes a single (illegal) access path
prior to routing. Furthermore, the pin is marked as blocked such that no attempts to
access it legally are made anymore. Instead, further violation-mode paths are computed
if necessary, ignoring certain design rules.

Fourth, BonnRouteDetailed has a module accessing off-track input wires with very
simple access paths. Such off-track input wires should occur only rarely, but if they do,
BonnRouteDetailed adds simple paths consisting of a via and potentially a short piece of
wire in preferred direction to access them on the routing grid.

These mechanisms have been proven to be very efficient and increase the quality of
results significantly (see [2]).
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(a) Placing single wide wires after triple wide
wire have been placed is trivial.

(b) Placing triple wide wires after single
wide wires have been placed often requires
lots of rip-up and re-route.

Figure 3.7: The order in which nets are routed is important. Wide wires need to be routed
early to avoid many problems.

3.8 Net Ordering

The order in which nets are processed is very important. Nets that are routed early
tend to make less detours and require fewer vias than nets that are routed late. Timing
characteristics of early routed nets are significantly better because they have less detours
and less undesired configurations such as layer and taper fuses (see Section 3.12 for a
definition of layer and taper fuses). Further, the order of nets can greatly influence success
of detailed routing as such and therefore the number of shorts and diff-net errors produced.
Experiments showed that one simple key feature is most important for this fact. Nets with
wide wire models need to be routed first. This is very plausible; it is much harder to find
free space for a wide wire after most narrow wires have already been routed and the chip
is already relatively full than it is to find space for a narrow wire after many wide wires
have been routed (see Figure 3.7 for an example). Further criteria that can be taken into
account are the timing criticality of a net (although critical nets tend to have wide wires
so this usually coincides with the wire width of the net) and how hard it is to access the
pins of a net. If there are only very few possibilities to access a pin of a net, it might
be beneficial to route the net earlier than if there are hundreds of ways to access each
pin, because if pins with few possibilities are routed late they are easily blocked by other
nets while pins with many possibilities typically can still be accessed. For these reasons,
BonnRouteDetailed orders nets by the following criteria lexicographically:

• average relative width and spacing of the default wire models of the net over all
relevant layers

• average relative width and spacing of the pin access wire models of the pins of the
net over all relevant layers
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• some user-defined parameter indicating timing criticality of a net

• hardness to access the hardest to access pin of the net

• random value

Remark. In fact, for historical reasons, there are two different user-defined parameters
indicating timing criticality per net which are used and BonnRouteDetailed uses one more
minor criterion computed from the minimum over all components of the minimum of the
x- and y-distance of the given component to the hardest to access component.

As discussed above, the width of the wire models (including spacing) is the most
important criterion. Here, the spacing from the given wire model to itself is taken as it is
usually a good indicator of the overall spacing requirements of a given wire model. Width
and spacing are normalized by the minimum possible width and spacing on each layer to
compare values for different layers. The default wire model is more important than the
pin access wire models, because usually the majority of wiring of a net is comprised of the
default wire model and only little is comprised of the access wire models. The user-defined
parameters are taken into account next to give designers some control about the order of
nets while still making sure that routing quality can not degrade too much by always
considering widths of wire models before the user-defined parameters. Usually these user-
defined parameters coincide with the width of the default wire models of a net anyway.
The last important criterion is the hardness to access the pins of a net. BonnRouteDetailed
calculates how many access paths the pin access code can find. If enough paths can be
found without modifying any existing wiring, the pin is easy to access. If only very few
paths can be found, the number of paths is relevant. If the pin can only be accessed
by modifying existing wiring or even can not be accessed legally at all, it is considered
very hard to access. Last but not least, if all these criteria are equal, BonnRouteDetailed
computes a pseudo random number for each net to order them randomly. Experiments
have shown that this is clearly superior to taking some arbitrary orderings like considering
nets in the order they appear in the input if all criteria agree, probably because similar
nets in the same region tend to be specified one after the other in the input thus degrading
parallelization quality.

3.9 Path Search

As described in Section 3.5, each thread of BonnRouteDetailed routes one net at a time.
For a given net, BonnRouteDetailed routes again one component at a time. BonnRoute-
Detailed always connects the closest component to the component that contains the elec-
trical source. Distances are measured with respect to the global wire graph.

For each component to be routed, different path searches are tried. First, BonnRoute-
Detailed tries to route the component without rip-up and with very restrictive parameters
concerning allowed layers, size of the routing area and protections. If for some reason no
solution is found, BonnRouteDetailed tries the same parameters but allows rip-up and
re-route. If again no path is found, BonnRouteDetailed relaxes the parameters and tries
again. The relevant parameters are divided into three sets, parameters that concern the
source component, parameters that concern the target component and parameters that
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concern the connection globally. If BonnRouteDetailed detects a problem at a specific
location, only the relevant parameters are relaxed. For example, if it fails to compute
any access location at the source component, it only relaxes the parameters for the source
component. BonnRouteDetailed alternates for each parameter set between normal and
rip-up path searches until the most relaxed parameter set is reached. If still no path is
found, BonnRouteDetailed consecutively activates three backup modes. First, it allows
at high costs to conflict to other wires without ripping them up and re-routing them.
Second, it allows to conflict to any metal object on the chip at very high costs. Last, it
generates a connection from the global route by attaching it to the source and target com-
ponent purely geometrically without checking any rules. Like this, it is guaranteed that
BonnRouteDetailed computes a connection for each net unless some fundamental data is
missing (such as if there is no wire model for a net at all).

For a given parameter set, BonnRouteDetailed calculates source and target locations,
a routing area for each wire and via model, ignored shapes and protections. An example
sequence of computed paths with their routing areas can be found in Figure 3.8. If rip-up
is allowed, a rip-up sequence is started (see Section 3.10 for further details about rip-up
and re-route).

Then, BonnRouteDetailed starts the multi-label framework (see Section 3.11 for further
details about multi-labeling). Within the routing area, a local track graph is precomputed
containing only the tracks for the relevant wire models (separately for different regions of
the routing area because some wire models are typically only allowed in certain regions
of the routing area) [1]. Additional coordinates can be added to locally access pins but
currently this is not done. Then, a path with the least restrictive label system is searched
and post-processed. If this path contains same-net errors, the least restrictive label system
that can avoid the maximum number of the contained errors is calculated and a new path
search is started. This is iterated until either the path is legal with respect to same-net
errors or the most powerful label system is reached or no path is found. Then the path
with the fewest errors is taken. Computed legality information from the last path search
with the same parameters but a less restrictive label system are reused for the next path
search to reduce run time.

The path search itself is a very fast multi-label path search [1] based on Dijkstra’s
algorithm [16] that supports costs per layer, direction and wire model. Further it supports
additional costs for certain nodes, tracks and high net-dependent costs to rip-up nets or
violate diff-net rules. Additional costs on some (but not all) tracks of some layers are used
to spread wires efficiently in areas with low congestion. The path search uses future costs
that compute for given cost per layer and direction (including costs for vias per via layer)
a shortest path in the complete grid graph. The main task here is to calculate which layer
should be considered for the future costs. For further information about the future cost,
we refer to [23] and [1]. The future costs can not take into account rip-up costs, additional
costs for individual nodes and additional costs for individual tracks.

For further information about the path search inside BonnRouteDetailed, we refer to
[1].
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Figure 3.8: Routing a multi-terminal net. Global wires are drawn in red, detailed wires
in blue. Source pins are colored magenta and sink pins cyan. Routing areas are colored
yellow and the currently active part of the global route is green.
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3.10 Rip-Up and Re-Route

As briefly mentioned in Section 3.1 and Section 3.9, sometimes it is necessary to change
already routed nets in order to route some other net. To guarantee convergence, Bonn-
RouteDetailed always maintains connectivity of already routed nets. This is done with
the help of so-called rip-up sequences. When rip-up is required to route a net, a rip-up
sequence is started. First, a path that can (at high costs) conflict to existing modifiable
wiring of other nets is searched. If no such path exists, it is impossible to route the net
without introducing conflicts to non-changeable objects. Rip-up thus fails and further
measures to compute a connected routing are taken. If such a path is found, the state of
the concerned net is copied for potential later restoration. Then, the set of all shapes of
other nets that need to be removed and re-routed in order to make the new path legal is
calculated. These shapes are processed one by one. First, the concerned net is identified
and copied. This serves two purposes. First, if the rip-up-sequence fails, the original net
is not modified. Furthermore, if BonnRouteDetailed does not work on the original net but
only on a copy, it can be guarantee during parallel computation that in case of a collision,
at least one result can successfully be applied. For any given shape that needs to be
ripped-up and re-routed, the path that needs to be ripped-up and re-routed is calculated
with the help of the net data structure briefly described in Section 3.4. Furthermore, a
corresponding global route is found and source and target locations are calculated. Then
a new path search is started. First, only legal paths are considered. If this succeeds, the
conflict is successfully resolved. BonnRouteDetailed can apply the new path to the copied
net and has one violation less to deal with. If it fails, BonnRouteDetailed tries to find
a path that in turn can have violations to other nets. If such a path is found, the new
violations are added to the set of shapes that need to be ripped-up and re-routed and the
path is applied to the copy of the net. If no path is found, BonnRouteDetailed aborts the
whole rip-up sequence and restores the original state of all nets. This only happens in rare
circumstances, e.g. if a time or memory limit is encountered. Furthermore, if a rip-up
sequence rips out too many nets, it is unlikely that it successfully finishes in reasonable
run time. Thus there is a limit on the total number of connections that can be ripped-up
by any rip-up sequence. If this limit is reached, BonnRouteDetailed also aborts the rip-up
sequence.

To avoid cyclic rip-up sequences, node costs are temporarily increased for all nodes
covered by conflicting ripped-up wire sticks. Therefore it is less likely that while re-routing
a ripped-up route the old route is found again. These node costs are cleared after each
component is routed.

To make this framework work in a parallel environment, it needs to be ensured that no
global data structures are changed before the rip-up sequence is successfully completed.
To ensure this, a number of additional data structures are necessary. BonnRouteDetailed
write-locks the original net, so it can modify (and potentially reset) it during a rip-up
sequence. BonnRouteDetailed copies all other involved nets and modifies only the copies
until the rip-up sequence is successful. It does not modify the grid or the fast grid until
the rip-up sequence is complete, but uses additional thread-local data structures ISt and
ASt for each thread t ∈ T to store temporary ignored or additional shapes for each
thread. Thus everything can easily be reset in case a rip-up sequence fails. If a rip-up
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sequence is successful and all violations can be resolved, all areas that can affect legality
of all computed shapes and all affected nets need to be locked simultaneously. If some net
has been changed in the mean time, there is a collision and the rip-up sequence needs to be
restarted. Likewise if some computed shape has become illegal in the meantime. Otherwise
all computed changes can be applied and everything can be unlocked. Like this, it is made
sure that either all changes are applied, increasing the number of successful connections
by one, or everything is reset to the state before the rip-up sequence started. For further
details on parallel implementation of rip-up and re-route, we refer to [27].

3.11 Handling Same Net Rules

Handling same-net rules efficiently during detailed routing has become more and more
important with each new technology. While physical structures on the chips have become
smaller, design rules have become more and more complex. In the past, it was sufficient
for BonnRouteDetailed to pay special attention to design rule clean pin access and post-
process paths after they have been found to fulfill same-net design rules (see for example
[19]). In recent technologies, this has no longer been true. Therefore, a number of more
advanced mechanisms have been introduced to BonnRouteDetailed to handle same-net
rules. We summarize the most important concepts here and refer to previous works for
more details.

One of the oldest concepts implemented in BonnRouteDetailed is the so-called pin
shrink. For each pin, direction and wire or via model, one can compute a subset of the
points contained in the pin where accessing the pin with a wire or via of the given model
in the given direction is same-net rule clean (for wires assuming that the piece accessing
the pin is sufficiently long). BonnRouteDetailed has implemented pin shrinks for many
same-net rules. Therefore, when accessing a pin, especially with a via, the set of points
where the pin can be legally accessed is known. This reduces the number of same-net
errors made during pin access greatly. Figure 3.9 shows an example for a very simple via
pin shrink, the so-called contained pin shrink, calculating the positions where a via pad is
completely contained in the pin shape. This pin shrink is extensively used especially on the
lowest layer touched by routing, because one usually does not wish to add any additional
metal on that layer due to the fact that there are extremely complex rules between metal
on this layer and the layers below. Usually routing tools do not even know the exact
shapes below this layer because there are very many shapes on the lowest layers and even
storing them imposes a substantial overhead. Therefore pins on this layer are exclusively
accessed by vias from above that are completely contained in the pin. Additionally, more
complex kinds of pin shrinks are used on all routing layers.

Unfortunately, the use of a correct pin shrink alone is not enough to avoid same-net
rule violations at pins and it does not help at all to avoid same-net rule violations at Steiner
points. Therefore, same-net errors are avoided by another concept in certain situations.
For example consider a route that contains a piece of wire running in preferred direction
that is continued with a via whose pad is wider than the wire, shown in Figure 3.10(a). The
metal component formed contains a concave vertex. In many technologies, placing a via too
close to such a concave vertex is forbidden. Therefore, if the route shown in Figure 3.10(a)
is part of a multi-terminal net, it might be accessed as shown in Figure 3.10(b) by a via
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(a) Via pad (b) Pin (c) Pin shrink (gray: pin, blue: area
where the stick of a via can be
placed)

Figure 3.9: Via contained pin shrink

(a) Original route with wide via pad.

(b) Bad access leading to a violation.

(c) Computed protections.

Figure 3.10: Avoiding via-middle-to-concave-vertex errors with protections. Blue indicates
metal shapes on a wiring layer, orange shapes are via middle shapes. Concave vertices of
the metal component are marked with a red circle. The red error indicates the violation.
Protections are marked in cyan.
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close to the existing concave vertex which would lead to a same-net error. To avoid such
kind of errors, BonnRouteDetailed uses so-called protections. Before each path search,
for each usable wire and via model, a set of points is calculated where placing a wire of
the given wire or via model would very likely lead to a same-net error. Then during path
search these positions are forbidden. Due to the fact that some of these protections are
slightly over-restrictive, they are relaxed during later path searches if no path is found.
Figure 3.10(c) shows example protections for the via-middle-to-concave-vertex rule.

The concepts described above deal with same-net errors at pins or Steiner points.
Of course, same-net errors can also occur within a single path. To avoid such errors,
BonnRouteDetailed employs two more concepts. First, paths are post-processed to avoid
same-net errors. Two techniques are used. First, jogs are moved within the path to
combine multiple short jogs to one longer one and to move jogs away from vias, because
jog-via combinations often lead to a number of same-net errors. Second, endstyles are
added to wires or to via pads in order to fulfill certain same-net design rules (or in one
case avoid diff-net rule violations). The most important post-processing routines are:

• combine jogs (Figure 3.11(a))

• move jogs away from vias (Figure 3.11(b))

• fix min area violations with endstyles (Figure 3.11(c))

• remove line ends in preferred direction with endstyles (Figure 3.11(d))

• align via and wire shape with endstyles (Figure 3.11(e))

• move line ends against preferred direction away from vias to respect certain design
rules (Figure 3.11(f))

All these post-processing routines are very fast and most same-net design rule violation
within paths can already be resolved this way. For more information about endstyles and
post-processing in paths in BonnRouteDetailed, see [41].

Some error classes are not handled by post-processing routines and some design rules
that are handled are not always fixed. Therefore, if design rule violations remain, an even
more powerful (but also slower) concept, multi-label path search, is employed. Multi-label
path search in BonnRouteDetailed was initially described in [36] and further discussed
and improved in [18], [3] and [1]. The basic concept is to use multiple labels per grid
node to pose certain restrictions on segment length after different types of segments (wires
running in preferred direction, jogs and vias) have been used. For example, min area
errors can be avoided if after each via one needs to go a certain length (depending on the
width of the wire model and the required min area value) in preferred direction before
being allowed to place another via. Furthermore, so-called via bridges, two vias of the
same net that are connected by a very short wire in preferred direction and whose middle
shapes are too close together to be legal, can be efficiently avoided by multi-label path
searches. Again, after placing a via, one needs to go a certain distance (in any direction)
before being allowed to place a via on the layer where the former via was placed. Note
that for this rule a via in the other direction is fine independent of the distance to the first
via. Additionally, multi-label path searches can represent colored wires in an effective way
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(a) Combine multiple jogs to a single one to reduce likelihood of several classes of design rule
violations.

(b) Move jogs away from vias to reduce likelihood of several classes of design rule violations.

(c) Fix min area violations with endstyles.

(d) Remove line ends along preferred direction with endstyles (cyan indicates line ends).

(e) Align wire and via shapes with endstyles. In this case, two forbidden adjacent short edges errors
are fixed by the modification.

(f) Move line ends against preferred direction away from vias to respect via middle to line end
distance rules.

Figure 3.11: Post-processing paths in BonnRouteDetailed. Blue shapes are located on
wiring layers, orange are via middle shapes. Red indicates design rule violations.
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and thus avoid coloring problems. Furthermore, segments at the start and the end of a
path can be forced to be long enough and running in preferred direction to avoid certain
same-net errors at the start or end of a path. Currently, the most important purposes
concerning same-net rules of multi-label path search are:

• color paths correctly

• avoid design rule violations at the end of paths

• avoid illegal via bridges

• avoid illegal via towers

• avoid illegal jog via combinations

• avoid min area errors

• avoid notch errors

BonnRouteDetailed does not always employ all kinds of multi-label restrictions, but chooses
the multi-label system according to the errors present after post-processing a path. It
chooses the least restrictive label system that can fix all present errors, finds a new path
and if necessary iterates. In the end the best path found (the path with the least weighted
number of errors with some experimentally tuned weights) is taken. For more information
about avoiding design rule violations by multi-label systems in BonnRouteDetailed, see
[1].

The concepts presented here can avoid most same-net design rule violations, but still
a small number of such errors remain. Therefore, in practice, BonnRouteDetailed is used
in combination with an industrial routing tool. BonnRouteDetailed is first run, producing
very dense and efficient routing solutions in low run time, but leaving some design rule
violations. Then the industrial routing tool is run, cleaning up the remaining violations
and hopefully disturbing routing quality not too much (see [40], [19] and [3]).

3.12 Handling Timing Requirements

BonnRouteDetailed does not explicitly calculate timing information itself. Instead it uses
a twofold strategy to deliver detailed routing with good timing characteristics. The first
part relies on a good global routing. BonnRouteGlobal (and probably every major global
routing tool) can produce timing aware global routings and is heavily used to optimize
timing. Timing aware global wires (including wire models and layer assignments) are
used as input to BonnRouteDetailed. BonnRouteDetailed tries to produce detailed routes
that are (with regard to wire models, layers, topology and geometry) similar to the global
routes. An example global and detailed routing can be found in Figure 3.12. In this way,
good global timing characteristics are mostly maintained by the detailed routing. We refer
to Section 3.4 and [26] for further details on the net data structure and routing algorithms
enabling close global-detailed routing correspondence.

Secondly even if detailed routing is similar to the global routing, it must locally have
good timing properties. When timing is concerned, one feature is predominantly impor-
tant. Lots of capacitance topologically behind high resistance leads to long delays and



3.12. HANDLING TIMING REQUIREMENTS 37

Figure 3.12: Detailed wiring (blue) and corresponding global wiring (red). The sink pins
are drawn in cyan and the source pin is marked in magenta. Note the similarity of the
global and the detailed routing structure.
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(a) Layer fuse. (b) Taper fuse.

(c) Pin fuse.

Figure 3.13: Timing-wise bad configurations. Blue are shapes on an assigned layer. Cyan
are shapes on a lower layer. Orange are via middle shapes. Magenta are pin shapes on a
lower layer.

thus to bad timing behavior. Capacitance is usually pretty much determined by global
routing and unmodifiable features of a net. During detailed routing, BonnRouteDetailed
can not change circuits or pins, thus input capacitance of the sink pins is fixed. Small
detours typically lead to small changes in capacitance, therefore if the rough structure of
the net is fixed, capacitance is basically predetermined. But local resistance very much is
dependent on local features such as layers, wire models and via models. Even a very short
piece of thin wire close to the source of a net can add a significant amount of delay due
to the added resistance which has to drive most of the capacitance of the net. Likewise, a
bad via or a wire on the wrong layer (which is thus thin) or a route going through a pin
shape with high resistance can easily make the timing of a net degrade. Sometimes it is
still unavoidable that low layers or thin wires are used to access the source pin of a net
(if the pin is located on a low layer, somehow the route needs to go up and if the pin is
narrow, there needs to be a legal transition to a wide wire).

Therefore, in the optimal case, source-sink-paths in the beginning transition to the
assigned layers and wire width as quickly as possible, then remain on the assigned layers
and with the assigned wire width and in the end somehow connect the sink pin (small
deviations close to the sink pin usually are not so important because they drive much
less capacitance). In particular, it is undesirable if within one source-sink-path the router
switches down from the assigned layers and then back up to the assigned layers (Fig-
ure 3.13(a)), or if it switches from a wide to a thin and back to a wide wire model
(Figure 3.13(b)). Furthermore it is often undesired if the path from the source to a sink
contains another sink pin (Figure 3.13(c)). We call these cases layer fuse, taper fuse
and pin fuse respectively. (Taper fuse because thin wire models usually are exclusively
used to access pins, so-called taper wire codes). Therefore, there are two objectives for
detailed routing. First, keep the usage of thin wire models and lower layers low (for nets



3.12. HANDLING TIMING REQUIREMENTS 39

(a) Bad solution. Long piece of thin wiring at the source pin.

(b) Good solution.

Figure 3.14: Two detailed routing solutions for the same net. Black wires are thick and
on high layers. Red wires are thin and on lower layers. The source pin is magenta, sink
pins are cyan.

where timing matters). This is achieved by restricted routing areas and largely increased
costs below the assigned layers. Therefore, long wires below the assigned layers and long
thin wires become very unlikely. In areas where no pins need to be accessed, BonnRoute-
Detailed can even guarantee not to place any wire below the assigned layers. Figure 3.14
shows two routing solutions for a net. A good one and one with a long piece of thin wire
on low layers right at the source pin leading to a timing degradation.

Second, BonnRouteDetailed has a number of mechanisms to avoid layer, taper and pin
fuses. Pin fuses can completely be forbidden by selecting source and target locations ap-
propriately. Layer fuses are made improbable by routing layer costs and by an appropriate
choice of source and target locations but still can occur. If they do, BonnRouteDetailed
tries to avoid them by multi-labelling (it is easy to create a label system that allows going
up to and down from the assigned layers exactly once). Taper fuses can also be made
unlikely by appropriate choice of source and target locations and small routing areas for
access wire models. If they still occur, a post-processing routine tries to eliminate them by
switching wire models along the path. Due to track pattern restrictions this can fail. In
this case, this could also be fixed by multi-labelling (it can be more time consuming than
fixing layer fuses because three or more different kinds of wire models can be involved)
but this is currently not implemented in BonnRouteDetailed. Overall, BonnRouteDetailed
leaves very few timing-wise undesired configurations.
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Chapter 4

Computing Track Patterns

In this chapter, we deal with the problem to compute good track patterns for a given set
of wire models. The terms tracks and track patterns both denote a set of coordinates that
are used to place wires. We use the term tracks when we want to emphasize that we deal
with a general set of coordinates and the term track pattern when we want to emphasize
that we have a specially structured set of tracks (e.g. tracks that are repeating between
each pair of power rails).

BonnRouteDetailed relies on a very powerful and optimized path search framework
finding shortest paths in an implicitly given grid graph. For this model to work, Bonn-
RouteDetailed requires special coordinates where most of the wires in preferred direction
are placed, so-called tracks. On some layers, tracks are predefined by technology require-
ments (we call these hard track patterns because they need to be obeyed in any case).
On many layers, there are no such restrictions a priori, but it is very beneficial to restrict
the path search to predefined track patterns both to speed up the path search and to
facilitate efficient packing of wires. We call such additional track patterns soft track
patterns because they do not need to be obeyed everywhere; for example to access pins,
short wires can be placed on different coordinates. Due to the large number of different
wire models and layers on modern chips, it is both very laborious and very error-prone to
define all such soft track patterns by hand. Additionally, if track patterns are computed
automatically, they can be computed separately on each chip taking into account the in-
dividual mix of wire and via models. Furthermore, the choice of soft track patterns has
a huge influence on routing quality. Therefore, in this section, we discuss the automated
computation of good combinations of soft track patterns per chip. Our automatic soft
track pattern generation reduces run time by 40% and 33% on 14nm and 7nm instances
respectively and improves almost all measured metrics significantly. Detailed experimental
results can be found in Section 6.2.

This chapter is organized as follows. In Section 4.1 we formalize the problem and
specify the input. In Section 4.2 we discuss a number of simple track patterns and their
shortcomings and develop objectives for optimized track patterns. In Section 4.3 we
describe a dynamic program to calculate optimized track patterns efficiently, prove its
correctness and discuss its theoretical run time. In Section 4.4 we discuss some practical
aspects concerning optimized track patterns.

41
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power rail on layer l power rail on layer l + 2

Figure 4.1: Power grid. Neighboring layers have alternating preferred direction. Usually
power rails are placed in regular intervals. On each intersection of the power rails on
neighboring layers there is a power via connecting the power rails.

4.1 Input and Problem Specification

Wiring layers have alternating preferred direction, therefore track patterns on adjacent
wiring layers are basically independent. Thus for the purpose of this section we can
restrict ourselves to deal with a single wiring layer l ∈ Lwiring. The vast majority of
instances has a uniform power distribution structure and almost all wires run in preferred
direction. Therefore, we compute one uniform track pattern for each wire model for the
whole instance. Consequently, it does not matter which direction is the preferred direction
on layer l, we only consider coordinates in the non-preferred direction anyway. Although
definitions and algorithms work independently of the preferred direction, for examples and
descriptions we assume the preferred direction to be vertical for this chapter.

On most layers, power is distributed via so-called power rails. That means, there are
stripes of metal spanning the whole length of the chip in preferred direction in regular
intervals in non-preferred direction.

Because power distribution is both subject to different constraints and very critical for
the design of a chip, it is determined long before detailed routing. Thus we assume power
rails are fixed input and do not try to optimize them. Figure 4.1 shows typical power rails
on two neighboring layers. Formally, we get two numbers, the power rail width wp ∈ N
and the power rail pitch p ∈ N. W.l.o.g., we assume that the center of the first power rail
is located exactly at coordinate zero. We further assume that wp is even. This means that
we have power rails at [kp− wp

2 , kp+
wp

2 ] (k ∈ N). Furthermore, we get a set of relevant
wire models WM ⊆ WM. We assume WM = WM o∪WM i with WM o∩WM i = ∅ and
WM o 6= ∅. WM o is the set of wire models we want to optimize, WM i is an additional
(possibly empty) set of wire models for which we have a track pattern given that we want
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to take into account while optimizing. For a wire model wm ∈WM we define the width
of wm:

w(wm) :=

{
xmax(r(wm))− xmin(r(wm)) pref (l) = vertical

ymax(r(wm))− ymin(r(wm)) pref (l) = horizontal

We assume that for all wm ∈ WM we have w(wm) even. This is necessary to have a
stick at the center of the wire model at an integer coordinate. If it is not the case, one
can scale the coordinate system to achieve this assumption. Furthermore, we assume
xmax(r(wm)) = −xmin(r(wm)) (if pref (l) = vertical) or the analogous statement in the
horizontal case (this means, we assume that a stick lies in the center of its shape). If this
is not the case, one can simply move the computed tracks to match the origin of the wire
model. Moreover, we assume w(wm) > 0 for all wm ∈WM .

In Chapter 5 we show how do deal with a wide range of distance rules between metal
shapes. However, in this section we can restrict ourselves to a much simpler model. We are
not interested in local rules occurring at the end of wires or between vias, the only relevant
rules are those that apply between two long wires with a certain wire model (and thus
shape class) running in preferred direction. In this case, almost always a single minimum
distance value suffices. Therefore, we define minimum spacing values for each pair of wire
models and for each wire model and the power rail. Formally, for wm1, wm2, wm ∈WM
let s(wm1, wm2) > 0 be the required spacing between the shapes of two wires running
in preferred direction with wire models wm1 and wm2 respectively and let sp(wm) > 0
be the required spacing between the shape of a wire running in preferred direction
with wire model wm and a power rail. We restrict ourselves to single-colored layers here
(and thus do not discuss colors at all) because on most colored layers there are further
restrictions on the track patterns and thus usually track patterns are hand-coded and
obligatory anyway. We briefly mention how to extend our results to multi-colored layers
in Section 4.4. Figure 4.2 illustrates power rails, width and spacing constraints.

Remark. Sometimes, vias on a given layer have wider pads than the wires they are used
for. In this case it might be beneficial to take the width and spacing of the via pad
into account when calculating track patterns. We leave this as an opportunity for future
research.

Furthermore, on most chips, the frequency of different wire models varies a lot. Often,
the most frequent wire model accounts for much more than half of the total wire length
on a chip while the third or fourth most frequent wire model accounts for less than one
percent. Therefore, while computing track patterns it makes sense to take into account
the frequency of a given wire model. An inefficient track pattern for a less frequent wire
model is much less harmful than an inefficient track pattern for the most frequent wire
model. To this end, we estimate the total wire length for each wire model before routing
and use the relative estimated wire length for our algorithm. Formally, for a wire model
wm ∈WM let f(wm) ∈ (0, 1] be the relative estimated frequency of that wire model.

Remark. On some chips, the relative estimated frequencies of wire models may vary
significantly over different regions of the chip. In this case it might be beneficial to compute
different track patterns for different regions. On the other hand, transitioning between
different track pattern regions is highly non-trivial and might introduce severe local routing
problems. Therefore, we do not pursue this approach.
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p p

wp w(wm2) s(wm1, wm2) s(wm1, wm1) sp(wm2)

power rail wire with model wm1 wire with model wm2

Figure 4.2: Input specification.

We explicitly exclude a relative estimated frequency of zero here, because the wire
model would be irrelevant for optimization anyway and because this leads to numerical
problems.

Remark. All input values should be of reasonable size, in particular not too close to zero
to avoid numerical problems. We assume this is the case and do not discuss it any further.

Of course, we expect
∑

wm∈WM f(wm) ≤ 1. We only assume less-or-equal instead of
equal because we might only consider a subset of all wire models. For some set of wire
models WM 1 ⊆WM we define f(WM 1) :=

∑
wm∈WM 1

f(wm). In Section 4.4 we describe
how we compute the relative estimated frequencies.

4.2 Simple Track Patterns

In this section we describe a number of natural simple track patterns and show their
advantages and limitations. This also motivates the next section. To simplify the notation,
we first define adjusted spacing values as the spacing values that are implied between the
sticks of the wires and power rails (or in other words the tracks). Let wm1, wm2, wm ∈
WM . We define

s̄(wm1, wm2) := s(wm1, wm2) +
w(wm1)

2
+
w(wm2)

2

and

s̄p(wm) := sp(wm) +
w(wm)

2
+
wp

2
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Figure 4.3: TP1 for single wide wires. Red wires are illegal due to the power rails. Dark
red indicates (illegal) wires overlapping power rails. Note that in every second power bay
one track is wasted.

Now, consider a wire model wm with width w(wm) and spacing requirement s(wm,wm).
The simplest possible track pattern might be to start at any arbitrary coordinate t0 and
then place each track as close as possible to the previous track. This yields tracks at

{t0 + ks̄(wm,wm) : k ∈ N} (TP1)

Note that TP1 contains infinitely many tracks. In practice we only need the finitely many
tracks that intersect the chip area. We do not restrict the number of tracks here for
simplicity of notation.

If there were only wires with wire model wm on the chip, this would be perfect.
Unfortunately this is never the case, as there are at least some power rails. Our simple
tracks might or might not pack well with regard to the power rails, but in any case we now
have some tracks that overlap with the power rails and thus can not be used (Figure 4.3).

A better way to define a simple track pattern is to consider the space between two
power rails, pack as many wires as fit between them and then repeat the same pattern
between the next power rails. In fact, from now on, we define all our track patterns
between two consecutive power rails (and they are repeated between each two consecutive
power rails).

For wm ∈ WM we define n(wm) to be the number of tracks of wire model wm
that fit between two power rails. In the following, we assume n(wm) ≥ 1. If this is not
the case, the wire model is useless and can be discarded. One easily computes

n(wm) =

⌊
p− 2s̄p(wm)

s̄(wm,wm)

⌋
+ 1

For our wire model wm we get

{kp+ s̄p(wm) + ls̄(wm,wm) : k ∈ N, 0 ≤ l < n(wm)} (TP2)

TP2 now gives us as many usable tracks on the chip for wire model wm as possible
(Figure 4.4). Still, if wires of the wire model do not fit perfectly between the power rails,
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Figure 4.4: TP2 for single wide wires. In each power bay, the maximum number of tracks
can be used and each track is legal with respect to the power rails.

we now pack all wires closest possible to the previous power rail as well as to each other
and leave some open space next to the next power rail (Figure 4.5(a)). This has some
advantages and some disadvantages. On the positive side, the additional space next to
the power rail can sometimes be used to replace a thin wire by a thicker wire, thus losing
only one thin track for placing a thicker wire. On the negative side, if we only place wires
of wire model wm it results in better timing characteristics if we move wires as close to
the power rails as possible and distribute the additional space between the wires evenly
because power rails do not switch and thus can not induce noise in neighboring wires.

A simple alternative is to distribute the additional space equally between the wires
(Figure 4.5(b)). To formally describe this track pattern, we define the slack slack(wm)
of a wire model wm ∈ WM as the space between two power rails that is not needed to
place n(wm) wires:

slack(wm) := p− 2s̄p(wm)− (n(wm)− 1)s̄(wm,wm)

Note that we always have 0 ≤ slack(wm) < s̄(wm,wm). Now we can formally describe
the track pattern:{

kp+ s̄p(wm) +

⌊
l

(
s̄(wm,wm) +

slack(wm)

n(wm)− 1

)⌋
: k ∈ N, 0 ≤ l < n(wm)

}
(TP3)

Remark. Note that in the definition of TP3 we arbitrarily choose to round non-integral
numbers down. We need integral coordinates due to the definition above, but we can
round in any way we please and if necessary or beneficial, we can scale the coordinate
system to contain any rational coordinate that we like.

TP3 is in some sense optimal if only one wire model is used because it lexicographically
maximizes the available number of tracks and average spacing between different tracks.

But this is not the only relevant objective. There are certainly many situations where
the main requirement is to pack as many wires of a given wire model as possible between
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(a) TP2

(b) TP3

Figure 4.5: TP2 and TP3 for double wide wires with single spacing. Both track patterns
yield the same number of tracks, but for TP3 the extra spacing is evenly distributed
between the signal wires.
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two power rails, but on many instances, a certain mixture of wire models needs to be
packed together (and even though the average relative usage of the different wire models
usually is known quite precisely before detailed routing, the concrete mixture between
any two power rails or even in different sections between the same power rails varies a
lot). Therefore, optimally one would like to simultaneously optimize the total number
of tracks of any mixture of different wire models that can be packed between two power
rails. Of course one could place a track on each coordinate to reach this goal, but run time
requirements certainly forbid this solution. In fact, there are even more objectives. First,
it is beneficial to reduce interaction between different tracks, meaning any given track
should block as few other tracks (potentially of different wire models) as possible. This
is the case because reducing interaction or dependencies between different tracks makes it
easier to free any given track for a given wire model if that is necessary after other wires
have already been placed. This is in practice very relevant for the rip-up and re-route
strategy described in Section 3.10. Furthermore, often more than one wire model can be
used to route a given net. For example, additional wire models are beneficial to access
pins that have a width that does not match the width of the default wire model of the
net. In this case, it would be beneficial if the additional pin access wire models and the
default wire model of the given net had the same track pattern such that the router can
easily switch from the pin access wire model to the default wire model without having to
use a via. Ideally, tracks should in some sense align with pins such that each pin can be
legally accessed by a wire on a track.

For some of the objectives above it would be optimal to use the same track pattern
for all wire models, for example TP3 with respect to the most frequent wire model.

It is questionable if track patterns should be optimized considering pin positions or if
pins should be designed according to some optimized track patterns. If pins are given a
priori (for example because they belong to some macro that was designed independently
and has to be used as-is) it might be beneficial to take pin positions into account when
defining track patterns. However, it is easy to create instances where it is impossible to
define a reasonable number of tracks that can legally access each pin. Therefore, if pins are
also subject to optimization, we propose to first optimize track patterns and then adjust
pin positions to the computed tracks.

If we assume that pins will be adjusted to the track patterns, four objectives remain:

1. maximize number of legal tracks for each wire model and for all combinations

2. minimize dependency between different tracks

3. enable switching of wire models within path

4. spread tracks as much as possible to improve timing characteristics

Note that objective 2 automatically implies that we will not have too many tracks in total.
Further note that objective 3 is of minor importance for at least two reasons. First, often
the best way to switch wire models is at vias anyway for both timing and design rule
reasons. Second, if this is not possible, a short piece of wiring in non-preferred direction
can be inserted to switch tracks. Still this is non-trivial to do legally because of certain
design rules. Therefore, we consider the third objective with a lower priority. Also note
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that objective 4 often contradicts objective 1 which is much more important. Thus we use
objective 4 only as a tie-breaker if it does not harm objective 1 and 2.

If more than one wire model is used, all of the above track patterns have severe
weaknesses with respect to above objectives. TP1 does not take into account the structure
of the power rails and thus contains tracks that are blocked by the power rails. For the
other track patterns, consider for example the situation in Figure 4.6 and 4.7. There,
we see eight perfectly packing 1x wires between 3x wide power rails. If we now consider
a 1.5x wide wire model with 1.5x spacing to other wires and 1x spacing to power (only
default spacing to power rails is a pretty common situation, because power does not switch
and thus does not induce electrical noise in neighboring wires), we see that each of the
previously mentioned track patterns has major weaknesses.

If we use the default tracks for the 1.5x wires as shown in Figure 4.6(a) we can trivially
switch between 1x and 1.5x wires. But unfortunately, the leftmost and rightmost tracks are
illegal due to the power rails. Furthermore, each two neighboring tracks block each other,
so that we can place at most three 1.5x tracks between adjacent power rails (although
five are possible with different tracks). Even worse, no matter which legal subset of size
three of the 1.5x wires we choose, at least one of the 1x wires blocks two of the 1.5x wires
simultaneously (compare Figure 4.7(a)).

If we use TP2 for the 1.5x wires (Figures 4.6(b) and 4.7(b)), we are able to pack five
of them between adjacent power rails. However, now the 1.5x tracks and the 1x tracks are
disjoint. Furthermore, two of the 1.5x wires block three 1x wires simultaneously and four
of the 1x wires block two of the 1.5x wires simultaneously. Additionally, we placed all of
the additional space next to a power rail where it helps timing least.

TP3 fixes the last problem, the additional space is now equally distributed in between
the 1.5x wires but still two of the 1.5 wires block three 1x wires and four of the 1x wires
block two of the 1.5x wires (see Figure 4.6(c) and 4.7(c)).

In general, it is not possible to fulfill all these objectives at the same time, but in
Section 4.3 we show how we can do significantly better than this.

4.3 Optimized Track Patterns

In the last section, we have discussed some simple track patterns and formulated objectives
for good (combinations of) track patterns. We will now describe how to compute good
track patterns.

The main idea is to optimize a number of track patterns between two adjacent power
rails simultaneously with a dynamic program. We start next to one power rail and traverse
the space between the power rails (say from left to right), at each point computing all
relevant partial track pattern combinations with tracks up to that point. The fact that
tracks far enough to the left of the current coordinate can not influence any tracks to the
right of it makes it possible to reduce the number of candidates to consider significantly. We
design an efficiently computable objective function, make some well-founded assumptions
and describe techniques that allow us to prune a large number of candidates away at each
point.

The main assumption is that no two tracks of the same track pattern should block each
other. This seems very reasonable; one of our main objectives is to reduce dependency
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2 3 3 3 3 3 3 2 2 3 3 3 3 3 3 2

(a) Use 1x tracks for 1.5x wires.

2 2 3 2 3 2 2 3 2 3

(b) Use TP2 for 1.5x wires.

2 3 2 3 2 2 3 2 3 2

(c) Use TP3 for 1.5x wires.

Figure 4.6: Suboptimal simple track patterns for a 1.5x wide wire with 1.5x spacing: Dark
gray are power rails, orange are single-wide (1x) default wires with the canonical track
pattern, green are 1.5x wide wires with 1.5x spacing, red wires conflict with the power
rails, red arrows mark conflicting tracks of the same track pattern, light gray marks the
area where a 1.5x wire blocks other wires and the numbers indicate how many 1x tracks
are blocked by each 1.5x track.
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2 3 3 3 3 3 3 2 2 3 3 3 3 3 3 2

(a) Use 1x tracks for 1.5x wires.

1 2 2 1 2 2 1 1 1 2 2 1 2 2 1 1

(b) Use TP2 for 1.5x wires.

1 2 1 2 2 1 2 1 1 2 1 2 2 1 2 1

(c) Use TP3 for 1.5x wires.

Figure 4.7: Suboptimal simple track patterns for a 1.5x wide wire with 1.5x spacing: Dark
gray are power rails, orange are single-wide (1x) default wires with the canonical track
pattern, green are 1.5x wide wires with 1.5x spacing, red wires conflict with the power
rails, red arrows mark conflicting tracks of the same track pattern, light gray marks the
area where a 1x wire blocks 1.5x wires and the numbers indicate how many 1.5x tracks
are blocked by each 1x track.
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Figure 4.8: Overlapping alternative tracks for a very wide wire model.

between different tracks. At least in the simplest case with only one track pattern, (and
probably the most important; it occurs very often that in some section between two power
rails only wires of one wire model are placed) we should be optimal.

Remark. One could argue that for very infrequent or very wide wire models it might
be beneficial to allow a number of different alternative tracks that block each other (like
shown in Figure 4.8), but experiments show that this is not beneficial at all.

The second assumption is that for each track pattern, we should only lose very few
tracks compared to a densest possible packing of that wire model. This is also very natural,
because otherwise it is likely that we encounter situations that are unroutable with our
track patterns although they are easily routable with a simple track pattern. In practice
it turned out to be best to lose at most one track of each wire model (but this is not
inherent to the algorithm, it can trivially be modified to allow more tracks lost). Now, we
can describe our dynamic program. For simplicity, we introduce some notation (and in
practice, these values are precomputed before the dynamic program starts to reduce run
time).

We never place any track that conflicts with a power rail, so for each wire model
wm ∈ WM we know the first and last position where we can place a track, we call them
tf (wm) and tl(wm) and have: tf (wm) := s̄p(wm) and tl(wm) := p − s̄p(wm). When
evaluating how many tracks of some wire model a track of another wire model blocks, we
compare the actual value to the minimum possible value given that both wire models are
packed densest possible. For two wire models wm1, wm2 ∈WM we denote the minimum
number of tracks of wire model wm2 that a track of wire model wm1 can block if the
tracks of wire model wm2 are packed densest possible (without regard of the power rails)
by bmin(wm1, wm2). One easily computes (compare Figure 4.9):

bmin(wm1, wm2) =

⌈
max(w(wm1) + 2s(wm1, wm2)− s(wm2, wm2), 0)

w(wm2) + s(wm2, wm2)

⌉
We want to use bmin(wm1, wm2) as a reference value to normalize the number of blocked
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wm2 wm2 wm2 wm2

wm1

s(wm2, wm2) w(wm2) + s(wm2, wm2)

w(wm1) + 2s(wm1, wm2)

(a) w(wm1)+2s(wm1, wm2) ≤ s(wm2, wm2): wm1 can legally be placed between two tracks of wm2

that are packed at minimum distance. Therefore, no track is blocked.

wm2 wm2 wm2 wm2

wm1

s(wm2, wm2) w(wm2) + s(wm2, wm2)

w(wm1) + 2s(wm1, wm2)

(b) w(wm1) + 2s(wm1, wm2) > s(wm2, wm2): wm1 blocks an interval of width w(wm1) +
2s(wm1, wm2) for wm2. To minimize the number of wm2 tracks in this interval, it is optimal to
align the left border of this interval with the right border of a wm2 track. The first s(wm2, wm2)
units of this interval do not contain a wm2 track. After this, each w(wm2) + s(wm2, wm2) units a
new wm2 track is blocked.

Figure 4.9: Computing bmin(wm1, wm2).
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tracks to compare them for different wire models. This fails if it is zero or negative,
therefore we define a modified version b̃min(wm1, wm2) := max(1, bmin(wm1, wm2)).

Remark. In practice, the spacing between two wire models wm1, wm2 ∈ WM is al-
most always the maximum of the two spacings of the two wire models (s(wm1, wm2) =
max(s(wm1, wm1), s(wm2, wm2))) which implies b̃min(wm1, wm2) = bmin(wm1, wm2).

Now, we can define a candidate. A candidate consists of a (possibly empty) set of
legal tracks for each wire model to optimize. Let wm ∈WM . First, we define such a set
of legal tracks:

T PCwm := {(t1, . . . , tn) : n ∈ N, tf (wm) ≤ t1, tn ≤ tl(wm), ti + s̄(wm,wm) ≤ ti+1

(1 ≤ i < n)}

For each wire model wm ∈ WM i, we assume that we have a track pattern given; we
denote them by Twm ∈ T PCwm(wm ∈ WM i). Then, we define the set of all possible
candidates for our given set of wire models T PC:

T PC := {(Twm)wm∈WM o : Twm ∈ T PCwm(wm ∈WM o)}

Further, we define some notation. Let wm ∈ WM and T = (t1, . . . , tn) ∈ T PCwm.
We define lt(T ) := tn, n(T ) := n and for 1 ≤ i ≤ n: ti(T ) := ti. In particular, if
T = () define n(T ) := 0. Moreover let cand = (Twm)wm∈WM o . For wm ∈ WM o define
Twm(cand) := Twm.

Now we will define our objective function. We take into account two competing objec-
tives. First, each wire model should get as many tracks as possible and second, each track of
each wire model should block as few tracks of each other wire model as possible (including
the predefined tracks for the wire models in WM i). First, we define a function indicating
if two tracks for two wire models block each other. Let wm1, wm2 ∈ WM , t1, t2 ∈ N.
Define

χwm1,wm2(t1, t2) :=

{
1 |t1 − t2| < s̄(wm1, wm2)

0 else

Now, we define formally how many tracks of some track pattern for some wire model a track
of another wire model blocks. For wm1, wm2 ∈ WM , t ∈ N, T2 = (t1, . . . , tn) ∈ T PCwm2

define

b(wm1, t, wm2, T2) :=
∑

i=1,...,n

χwm1,wm2(t, ti)

And for wm1 ∈WM , T1 = (t1, . . . , tn) ∈ T PCwm1 , wm2 ∈WM , T2 ∈ T PCwm2 define

b(wm1, T1, wm2, T2) :=
∑

i=1,...,n

b(wm1, ti, wm2, T2)

Now, for two track patterns, we define how many tracks are blocked on average by one
of the wire models. To make blocked tracks comparable between different wire models,
we consider the number of blocked tracks normalized by the adjusted minimum number
of blocked tracks defined above. Thus it is considered worse if a wire model blocks an
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additional track that would normally only block one track than if a wire model blocks six
instead of five tracks.

For wm1 ∈WM , T1 ∈ T PCwm1 , wm2 ∈WM , T2 ∈ T PCwm2 define

b̄rel(wm1, T1, wm2, T2) :=
b(wm1, T1, wm2, T2)

n(T1)b̃min(wm1, wm2)
(4.1)

For a candidate we can now define the average relative number of tracks blocked
by computing the weighted average over all combinations of wire models. We weight
everything by the relative frequency of the wire models here, because if more frequent
wire models block more tracks as well as blocking more tracks of more frequent wire
models is worse than for less frequent wire models. Note that the terms for the number
of tracks that a wire model blocks of its own tracks do neither harm nor help but for
simplicity of notation we keep them. For cand = (Twm)wm∈WM o ∈ T PC define

b̄rel(cand) :=
1

(f(WM ))2

∑
wm1∈WM

∑
wm2∈WM

f(wm1)f(wm2)b̄rel(wm1, Twm1 , wm2, Twm2)

(4.2)

Note that by slight abuse of notation, for wm1 ∈ WM i or wm2 ∈ WM i by Twm1 or
Twm2 we mean the given precomputed track patterns defined above.

We can now define our objective function obj: Let cand = (Twm)wm∈WM o ∈ T PC.
First we define a term for the number of tracks that each wire model loses.

on(cand) :=
1

f(WM o)

∑
wm∈WM o

n(wm)− n(Twm)

n(wm)
f(wm)

Note that we normalize by the maximum possible number of tracks here. Losing one
track of many should be less expensive than losing one of few. Further we again weight
by the relative frequency because losing a track for a very frequent wire model is worse
than for a wire model that is rarely used.

Then we simply use a weighted sum of the two terms as objective function.

obj(cand) := wnon(cand) + (b̄rel(cand)− 1)

Where wn ∈ R, wn ≥ 0 is a parameter governing the trade-off between the two different
objectives, maximizing the number of tracks for each wire model and minimizing the de-
pendency between different tracks. Note that we subtract one from the average relative
number of tracks blocked because conceptually we want to measure the number of ad-
ditional tracks blocked although this of course makes no difference as it is constant for
all candidates. Our goal now is to minimize our objective function and thus minimize
the weighted average of the number of tracks lost and the additional number of tracks
blocked. Further, we do not want to lose too many tracks for any given wire model, be-
cause that could easily lead to situations where routing is impossible with our optimized
track patterns but is easy with trivial track patterns. For our description, we will assume
that losing at most one track for each wire model is acceptable, but this can trivially be
adapted (for each wire model individually) if needed. To simplify the description of the
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algorithm, we define the set of track pattern candidates losing at most one track
for each wire model.

T PC1 := {(Twm)wm∈WM o ∈ T PC : n(Twm) ≥ n(wm)− 1 (wm ∈WM o)}

The task is now to find a candidate cand ∈ T PC1 with obj(cand) minimum.

We start by describing a very simple dynamic program enumerating all possible can-
didates and then subsequently optimizing our algorithm until it is efficient enough for
practical use.

Our dynamic program traverses the space between two power rails from left to right
and at each coordinate c stores a set of (partial) track pattern candidates that contain
tracks up to that point. We call this set CAND(c). Let tf := minwm∈WM o tf (wm) and
tl := maxwm∈WM o tl(wm). These are the first and the last track that we need to consider
for any wire model. Therefore, we can restrict our dynamic program to work on the
interval [tf , tl]. Further, we have a set of final (complete) track pattern candidates
which we denote by FINAL. Algorithm 4.3.1 formalizes this most simple version of our
algorithm. It begins with the empty candidate and at the leftmost relevant coordinate tf .
At each coordinate c until tl, it considers every candidate and adds every possible set of
new tracks at the current coordinate to it. The generated new candidates are added to
the set of relevant candidates CAND(c+ 1) at the next coordinate. Finally, it chooses the
best candidate that has enough tracks for each wire model among all the final candidates.

Algorithm 4.3.1: ComputeOptimizedTrackPatternsSimple

Input: l ∈ Lwiring,WM o,WM i ⊆ WM
1 CAND(tf ) := {(())wm∈WM o}
2 CAND(c) := ∅ (tf < c ≤ tl + 1)
3 for c = tf to tl do
4 foreach cand = (Twm)wm∈WM o ∈ CAND(c) do
5 WM p := {wm ∈WM o : TrackLegal(wm,Twm, c)}
6 foreach WM n ⊆WM p do
7 candnew := AddTracks(cand,WM n, c)
8 CAND(c+ 1) := CAND(c+ 1) ∪ {candnew}

9 FINAL := CAND(tl + 1) ∩ T PC1

10 candbest := argmincand∈FINALobj(cand)
11 return candbest

The subroutines AddTracks and TrackLegal are defined in Algorithms 4.3.3, 4.3.4
and 4.3.2. Algorithm 4.3.2 decides if a track at a certain position can be added to a partial
set of tracks for a given wire model because it does not conflict with the existing tracks
and the power rails.

Algorithm 4.3.2: TrackLegal

Input: wm ∈WM o, Twm = (t1, . . . , tn) ∈ T PCwm, c ∈ N
1 return tf (wm) ≤ c ≤ tl(wm) and (Twm = () or c ≥ tn + s̄(wm,wm))

Algorithm 4.3.3 and 4.3.4 add tracks for the given set of wire models to the given
partial track pattern candidate.



4.3. OPTIMIZED TRACK PATTERNS 57

Algorithm 4.3.3: AddTrack

Input: wm ∈WM o, Twm = (t1, . . . , tn) ∈ T PCwm, c ∈ N
1 return Tnew

wm := (t1, . . . , tn, c)

Algorithm 4.3.4: AddTracks

Input: cand = (Twm)wm∈WM o ∈ T PC,WM n ⊆WM o, c ∈ N

1 candnew :=

(
Tnew
wm :=

{
AddTrack(wm,Twm, c) wm ∈WM n

Twm wm /∈WM n

)
wm∈WM o

2 return candnew

Note that Algorithm 4.3.1 implicitly also requires the spacing values, frequencies and
power rail data as input.

Lemma 4.3.1. Algorithm 4.3.1 computes an optimal track pattern candidate losing at
most one track for each wire model. More formally, it computes a cand ∈ T PC1 with
obj(cand) minimal.

Proof. Algorithm 4.3.2 makes sure that only track pattern candidates are considered
throughout Algorithm 4.3.1. Line 9 makes sure that any track pattern candidate con-
sidered as the final result loses at most one track for each wire model. Therefore, Algo-
rithm 4.3.1 indeed returns a track pattern candidate that loses at most one track for each
wire model (if anything at all). Due to Line 10 it returns an optimal one of the candidates
in FINAL (if anything at all).

Algorithm 4.3.1 traverses all relevant coordinates from left to right and adds at each
coordinate every possible set of tracks to every computed candidate, thus enumerating
every possible track pattern candidate. Because we assume that for each wire model at
least one track fits between two consecutive power rails, there is at least one track pattern
candidate (losing no tracks for every wire model). Therefore the output of Algorithm 4.3.1
is well defined, which concludes the proof.

Now we will describe a number of modifications to Algorithm 4.3.1 making it more effi-
cient. First, we note that Algorithm 4.3.1 considers many irrelevant candidates which con-
tain too few tracks for some wire model. To prevent this, we define the slack slack(Twm, c)
of a (partial) candidate Twm = (t1, . . . , tn) ∈ T PCwm for some wire model wm ∈ WM
and some current coordinate c ∈ N with tf (wm) ≤ c ≤ tl(wm) + 1 and Twm = () or
tn + s̄(wm,wm) ≤ c by adding up the slack between the slacks to the left of and including
c assuming an additional track at coordinate c (free space to the right of c is not counted).
Thus, for a non-empty candidate, we get t1−tf (wm)+(

∑n
i=2 (ti − (ti−1 + s̄(wm,wm))))+

c− (tn + s̄(wm,wm)) = c− tf (wm)−ns̄(wm,wm) and for an empty candidate simply get
c− tf (wm). Therefore, we define:

slack(Twm, c) := c− tf (wm)− n(Twm)s̄(wm,wm)

To simplify some proofs later one, we define slack(Twm, c) by the same formula for any
coordinate.

The purpose of this is that we can calculate in advance for each wire model, how
much additional space (slack) between any tracks can be allocated in total. If more slack
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is allocated between some of the tracks, then not enough tracks will fit in total. Thus,
by keeping track of the slack that was already allocated, we can decide at which point
we have to add a new track of a given wire model to our (partial) candidate because
otherwise it can never be completed to a complete candidate with enough tracks. In the
beginning of the algorithm, we calculate for each wire model wm the total allowed slack:
allowed slackwm := slack(wm) + s̄(wm,wm)(wm ∈WM o) (we allow track patterns with
up to one track less than the maximum possible number, therefore we add s̄(wm,wm)
here; if we want to allow more or less tracks lost, we can adapt this formula). Then, when
deciding for which wire models we add tracks to a given candidate cand = (Twm)wm∈WM o

at coordinate c, we calculate the set of wire models for which we have to add tracks
at this coordinate because otherwise we will exceed our slack budget: WM a := {wm ∈
WM p : slack(Twm, c) = allowed slackwm}. We consider only those subsets WM n of
WM p such that WM a ⊆ WM n. In addition, because the algorithm now keeps track of
the slack of (partial) candidates, all candidates in CAND(tl+1) now automatically contain
enough tracks for each wire model. Figure 4.10 illustrates the slack for some examples.
Our updated procedure can be found in Algorithm 4.3.5. We will now prove that this
modification does not affect the correctness of our algorithm.

Lemma 4.3.2. A set of tracks Twm = (t1, . . . , tn) ∈ T PCwm for some wire model wm ∈
WM with a current coordinate c ∈ N with tf ≤ c ≤ tl(wm), tn < c and slack(Twm, c) =
allowed slackwm can not be completed to Twm = (t1, . . . , tn, . . . , tn(wm)−1) ∈ T PCwm if no
track is placed at coordinate c.

Proof. From slack(Twm, c) = allowed slackwm we get by using the definitions: c =
slack(wm) + s̄(wm,wm) + tf (wm) +n(Twm)s̄(wm,wm). First, we note that we still need
to place additional tracks. If this was not the case (that is to say, if we had n(Twm) ≥
n(wm)−1), then we would get c ≥ p− s̄p(wm)+ s̄(wm,wm) = tl(wm)+ s̄(wm,wm) which
is a contradiction. Thus we need to place n(wm)− 1−n(Twm) additional tracks. If we do
not place any track at coordinate c, the next track can not be placed before c+1. The last
one of these can not be placed before c+1+(n(wm)−1−n(Twm)−1)s̄(wm,wm). There-
fore, the last track can not be placed before: c+1+(n(wm)−1−n(Twm)−1)s̄(wm,wm) =
slack(wm) + s̄(wm,wm) + tf (wm) + n(Twm)s̄(wm,wm) + 1 + (n(wm) − 1 − n(Twm) −
1)s̄(wm,wm) = tf (wm) + slack(wm) + s̄(wm,wm)(n(wm)− 1) + 1 = p− s̄p(wm) + 1 =
tl(wm) + 1. But a track at this position (or at any position further to the right) is not
legal with respect to the power rail, which concludes the proof.
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0 283 7 11 15

193 25

(a) No slack has been spent.

0 283 8 12 18

233 25

(b) Four units of slack have been spent.

0 283 11 15

213 25

(c) The total allowed slack has been spent. All further tracks have to be placed closest
possible (at the current coordinate 21 and at the last possible coordinate 25).

0 283 11 18

223 25

(d) Too much slack has been spent. This candidate can not be completed to a candidate
containing enough tracks anymore and thus is not relevant.

Figure 4.10: Examples for the slack of a (partial) candidate. Gray shapes are the power
rails. Blue shapes represent the tracks for our wire model. The dashed line indicates
the current coordinate. Black lines mark the first and last legal coordinate. Gray arrows
indicate the required spacing and the slack is illustrated in magenta. The width of our
wire model and the power rails is 2, the required spacing to the power rails is 1 and the
required spacing between the blue shapes is 2. 6 tracks fit between the power rails, the
slack of this wire model is 2. The allowed slack is 6.
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Algorithm 4.3.5: ComputeOptimizedTrackPatternsWithSlack

Input: l ∈ Lwiring,WM o,WM i ⊆ WM
1 CAND(tf ) := {(())wm∈WM o}
2 CAND(c) := ∅ (tf < c ≤ tl + 1)
3 allowed slackwm := slack(wm) + s̄(wm,wm) (wm ∈WM o)
4 for c = tf to tl do
5 foreach cand = (Twm)wm∈WM o ∈ CAND(c) do
6 WM p := {wm ∈WM o : TrackLegal(wm,Twm, c)}
7 WM a := {wm ∈WM p : slack(Twm, c) = allowed slackwm}
8 foreach WM n ⊆WM p : WM a ⊆WM n do
9 candnew := AddTracks(cand,WM n, c)

10 CAND(c+ 1) := CAND(c+ 1) ∪ {candnew}

11 FINAL := CAND(tl + 1)
12 candbest := argmincand∈FINALobj(cand)
13 return candbest

Lemma 4.3.3. Algorithm 4.3.5 works correctly.

Proof. Lemma 4.3.2 shows that the modifications in Line 7 and Line 8 of Algorithm 4.3.5
are correct. It is necessary to add a track to cand for each wire model in WM a at
coordinate c, otherwise cand can never be completed to a candidate with enough tracks
for each wire model.

It remains to show that each candidate in CAND(tl + 1) contains sufficiently many
tracks for each wire model to prove that the modification of Line 11 is correct. This is true
because the algorithm only adds (partial) candidates to CAND(c) that can be completed
to a candidate containing sufficiently many tracks for each wire model by adding tracks
at coordinates larger or equal to c (and partial candidates in CAND(c) do not contain
any tracks at coordinate c). As no tracks can be added to any candidate at coordinates
larger or equal tl + 1, this implies that all candidates in FINAL have sufficiently many
tracks for all wire models. The statement is trivially true for the empty candidate added
to CAND(tf ) in Line 1.

To prove the statement for the other (partial) candidates, we first prove for a wire
model wm ∈ WM o by induction for each tf ≤ c ≤ tl(wm) + 1 that for every partial
candidate cand = (Twm)wm∈WM o ∈ CAND(c), we have slack(Twm, c) ≤ allowed slackwm.
We will show this claim by induction over c. The statement is trivial for c = tf . For
the induction step, we note that the slack of a candidate from CAND(c) concerning any
wire model can be increased by at most one when considering the candidate (potentially
augmented by some tracks) at coordinate c+ 1. Due to the fact that in the case that the
slack was equal to the allowed slack, a track was added for the given wire model which
reduces the slack (given that s̄(wm,wm) > 0 which we assume), the slack can never be
greater than the allowed slack.

Now for a wire model wm ∈ WM o we consider the coordinate tl(wm) + 1. If each
candidate cand = (Twm)wm∈WM o in CAND(tl(wm) + 1) has enough tracks for wire model
wm, so do the final candidates. We have slack(Twm, tl(wm) + 1) ≤ allowed slackwm. By
using the definitions of the slack and the allowed slack, this yields: n(Twm) ≥ n(wm) +
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1
s̄(wm,wm) − 2. Because everything (apart from the fraction) is integral, we get n(Twm) ≥
n(wm)− 1, which concludes the proof.

Next, we prune dominated candidates during our algorithm. To this end, we will
replace Line 10 of Algorithm 4.3.5 by a more sophisticated version, only adding the new
candidate if there is no old candidate that is clearly better and pruning old candidates that
are clearly inferior to our new candidate. Instead of simply adding candnew to CAND(c+
1), we replace CAND(c+1) by a call of UpdateCandidates(CAND(c+1), candnew, c+1)
where UpdateCandidates is defined in Algorithm 4.3.6.

Algorithm 4.3.6: UpdateCandidates

Input: CAND ⊆ T PC, candnew ∈ T PC, c ∈ N
1 if ∃cand ∈ CAND : BetterOrEqual(cand, candnew, c) then
2 return CAND

3 else
4 return {cand ∈ CAND : not

BetterOrEqual(candnew, cand, c)} ∪ {candnew}

It remains to define when some (partial) candidate dominates another (partial) candi-
date (with respect to some current coordinate c). A candidate dominates another one if
for each set of tracks located to the right of c that can legally be added to the dominated
candidate it can also be legally added to the dominating candidate and the objective func-
tion of the completed dominating candidate is better or equal than the objective function
of the completed dominated candidate. The meaning of the coordinate c here is that we
consider the (partial) candidates complete up to (excluding) c.

When comparing two partial candidates, one problem arises. We do not yet know how
much tracks completions of the two partial candidates will have for certain wire models.
In particular, different completions can have a different number of tracks for some wire
models. Therefore, we do not yet know the exact relative weight of blocked tracks between
different combinations of wire models in the final candidates. Therefore, we can not easily
compare (partial) objective functions of our partial candidates (we do not know the final
value of n(T1) in (4.1)).

To overcome this problem, there are several possibilities. First, one could compare for
each combination of wire models the number of mutually blocked tracks and only prune
a candidate if all of them are not smaller. In this case, for any final number of tracks
the resulting objecting function would not be worse. Slightly better, instead of compar-
ing |WM o||WM | different values, it suffices to compare |WM o| different values. We can
rearrange the terms in the definition of b̄rel(cand) in a way that we group everything that
is multiplied by the number of tracks of a wire model together. Then we can compare for
each wire model in WM o the term multiplied by the number of tracks of that wire model.
Like this we only need to compare |WM o| different values (and can potentially prune more
partial candidates away). Still, the total number of candidates to be considered at any
coordinate can not be bounded by the maximum number of local track configurations.

Other possibilities would be to change the objective function such that it does not
include the final number of tracks or to apply heuristic pruning, losing optimality of the
calculated solution. Both of these solutions in practice give good results but are from a
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theoretical point of view not satisfactory.

The solution that we chose is very simple, very fast in practice and retains the fact
that in our final algorithm, we can bound the total number of candidates considered at
any coordinate by the maximum number of local track configurations possible. Due to
the fact that we consider only a small number of wire models together, we can run our
algorithm for every combination of final number of tracks individually. Because we allow
at most one track to be lost for every wire model, we need to run our algorithm at most
2|WM o| times (which is constant if we consider the total number of track patterns to be
optimized constant). This approach is in practice much faster than the first alternative
described above, computes an optimal solution and does not impact our final theoretical
run time (given that the number of track patterns to optimize is constant). To implement
this approach, we add for each track pattern to optimize the exact total desired number
of tracks nt(wm) for wire model wm as input to our algorithm. We then can use a
modified version of (4.1) and (4.2) by replacing n(T1) in (4.1) by nt(wm1). We call the
modified version of (4.2) b̄prel(cand). Then we can simply call our algorithm for all relevant
combinations of nt(wm) values and take the best result.

Algorithm 4.3.7 gives a formal definition which we now explain in detail.

Algorithm 4.3.7: BetterOrEqual

Input: candbetter = (T b
wm)wm∈WM o , candworse = (Tw

wm)wm∈WM o ∈ T PC, c ∈ N
1 if b̄prel(candbetter ) > b̄prel(candworse) then
2 return false

3 foreach wm ∈WM o do
4 if n(T b

wm) 6= n(Tw
wm) then

5 return false

6 if n(T b
wm) > 0 and lt(T b

wm) > lt(Tw
wm) and lt(T b

wm) + s̄(wm,wm) > c and
n(Tw

wm) < nt(wm) then
7 return false

8 foreach wmw ∈WM o do
9 nptw := max(NextPossibleTrack(wmw, T

w
wmw

), c)
10 if n(Tw

wmw
) < nt(wmw) then

11 foreach wmb ∈WM o \ {wmw} do
12 if ∃i ∈ {1, . . . , n(T b

wmb
)}, |ti(T b

wmb
)− nptw| < s̄(wmb, wmw) and

ti(T
b
wmb

) > ti(T
w
wmb

) then
13 return false

14 return true

The subroutine NextPossibleTrack can be found in Algorithm 4.3.8. If there is no
track yet, it returns the first coordinate legal with respect to the power rail. Note that in
this case it is not necessary to check legality of that track due to our assumption that for
each wire model at least one track does legally fit between two consecutive power rails.
If there are already some tracks, it returns the first coordinate legal with respect to the
rightmost track if a track can be placed there. If no legal track can be placed anymore at
all, it returns tl + 1 to indicate this.
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Algorithm 4.3.8: NextPossibleTrack

Input: wm ∈WM o, T = (t1, . . . , tn) ∈ T PCwm

1 if T = () then
2 return tf (wm)

3 else
4 if tn + s̄(wm,wm) ≤ tl(wm) then
5 return tn + s̄(wm,wm)

6 else
7 return tl + 1

We now describe the cases when Algorithm 4.3.7 does not declare a candidate to be
dominating another one. (We do not have to prove these cases for the correctness of our
algorithm, but we want to give some reasons why we believe some cases are not likely to
be possible to be pruned away. We have to prove the other direction though.)

If the average relative number of blocked tracks is higher (Line 1), the candidate can
not be dominating because the objective function of completed candidates can be higher.

Remark. Note that we could possibly prune even more candidates away, because we run
our algorithm multiple times for different combinations of desired total numbers of tracks.
Therefore, after the first run, we have an upper bound for the objective function, which
we could use to prune away any candidate that can not be better anymore. However,
experiments show that our algorithm already is very fast for any practically relevant
instance, therefore we did not pursue this possibility any further.

If for any wire model, the two candidates have different numbers of tracks, we will not
declare one of them dominating (Line 4). If a candidate has fewer tracks, the corresponding
part of its objective function will be larger. Due to the fact that we determined the final
number of tracks for each wire model before the algorithm, only candidates with the same
number of tracks for all wire models can be completed (with the same completion) to valid
final candidates.

Remark. Note that it would also be possible to prune candidates with fewer tracks, if all
other conditions are fulfilled, but this would complicate our algorithm and proofs further.
In practice, this case occurs only rarely, therefore we omit this optimization.

If for any wire model, both candidates have at least one track, and for the candidate in
question, the track is further to the right, and it affects tracks to the right of c and addi-
tional tracks of that wire model can be added to the other candidate, then the candidate
in question can not dominate the other one (Line 6). In this case, one can add another
track for this wire model at coordinate c for the other candidate but not for the candidate
in question, so it can not be dominating by definition.

Last but not least, we also need to take into account the effect of already placed tracks
on the objective function with regard to future tracks. In particular, if any track that can
still influence legality of any yet to be placed track is further to the right, we will not declare
a candidate dominating (Lines 8 to 13). In a little more detail, if for some wire model we
can still add a track to the potentially dominated candidate (Line 10) and we find any
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other wire model and a track of the potentially dominating candidate that forbids that
next track and where the potentially dominated candidate has the corresponding track
further to the left (Line 12) then we do not declare the candidate to be dominating the
other one.

To illustrate the relevance of this more complicated case, we now present an example
where taking into account the third last track of a candidate is necessary to get the
correct solution. Consider two power rails with a power rail pitch of 28 and let the
power rails have a width of 2. Consider three different wire models wm0, wm1 and
wm2. Let the width of all three wire models be 2. Let the spacing requirements be as
follows: s(wm0, wm0) = 14, s(wm0, wm1) = 9, s(wm0, wm2) = 13, s(wm1, wm1) = 2,
s(wm1, wm2) = 2 and s(wm2, wm2) = 6. Let further the required spacings to power be:
sp(wm0) = 4, sp(wm1) = 1 and sp(wm2) = 2. For this example, we require each track
pattern to have the maximum number of tracks possible (which are 2, 6 and 3 here for
the three wire models). Further, we assume that wm0 is much more frequent than the
other two, e.g. let wm0 be responsible for 80% of the estimated total wire length and the
other two for 10% each. We set wn = 2 (as we also do in practice). In this setting, one
optimal solution is shown in Figure 4.11(a). Figure 4.11(b) and 4.11(c) show two (partial)
candidates which are considered during execution of our algorithm at coordinate 21. All
their rightmost tracks are equal, but the partial objective function of the candidate in
Figure 4.11(c) is better because there is one conflict less between tracks of wire models wm1

and wm2. If the algorithm would not take into account all tracks that still can influence
tracks that might be placed in the future, it would prune the candidate in Figure 4.11(b).
Unfortunately, it would then never find the optimal solution shown in Figure 4.11(a). The
best solution that can be constructed using the candidate in Figure 4.11(c) (actually the
only one as it is unique) is shown in Figure 4.11(d). It has one conflict less between wire
models wm1 and wm2 but one conflict more between wire models wm0 and wm1. Due to
our choice of the estimated relative frequencies of the wire models, its objective function
value is worse than the one of the optimal solution shown in Figure 4.11(a).

The modified version of Algorithm 4.3.5 can be found in Algorithm 4.3.9.

Algorithm 4.3.9: ComputeOptimizedTrackPatternsWithPruning

Input: l ∈ Lwiring,WM o,WM i ⊆ WM, nt(wm) ≤ n(wm) (wm ∈WM o)
1 CAND(tf ) := {(())wm∈WM o}
2 CAND(c) := ∅ (tf < c ≤ tl + 1)
3 allowed slackwm := slack(wm) + s̄(wm,wm)(n(wm)− nt(wm)) (wm ∈WM o)
4 for c = tf to tl do
5 foreach cand = (Twm)wm∈WM o ∈ CAND(c) do
6 WM p := {wm ∈WM o : TrackLegal(wm,Twm, c), n(Twm) < nt(wm)}
7 WM a := {wm ∈WM p : slack(Twm, c) = allowed slackwm}
8 foreach WM n ⊆WM p : WM a ⊆WM n do
9 candnew := AddTracks(cand,WM n, c)

10 CAND(c+ 1) := UpdateCandidates(CAND(c+ 1), candnew, c+ 1)

11 FINAL := CAND(tl + 1)
12 candbest := argmincand∈FINALobj(cand)
13 return candbest
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(a) An optimal solution. It has 6 conflicts between wm0 and wm1, 4 conflicts between
wm1 and wm2 and 4 conflicts between wm0 and wm2.
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(b) A (partial) candidate with worse objective value. It has 3 conflicts between wm0

and wm1, 4 conflicts between wm1 and wm2 and 2 conflicts between wm0 and wm2.
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(c) A (partial) candidate with better objective value. It has 3 conflicts between wm0

and wm1, 3 conflicts between wm1 and wm2 and 2 conflicts between wm0 and wm2.
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(d) The candidate with better objective value completed (the completion is unique in
this case). It has 7 conflicts between wm0 and wm1, 3 conflicts between wm1 and wm2

and 4 conflicts between wm0 and wm2.

Figure 4.11: Example of track patterns where considering more than the last track is
necessary. Gray shapes are the power rails. Orange shapes represent tracks for wire
model wm0, blue shapes represent tracks for wire model wm1 and green shapes represent
tracks for wire model wm2. Conflicts between wire models wm0 and wm1 are indicated
in cyan, conflicts between wm1 and wm2 in magenta and conflicts between wm0 and wm2

in purple.
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It remains to prove that we do not prune too much.

Lemma 4.3.4. Algorithm 4.3.9 works correctly. Any (partial) candidate pruned out by
Algorithm 4.3.6 is not necessary to find an optimal solution.

Proof. First, we note that we have correctly adapted our algorithm to only consider can-
didates with the desired number of tracks for each wire model. We have adapted the
calculation of the slack for each wire model accordingly (Line 3) and the algorithm only
can add tracks until the desired number is reached (Line 6).

Now, it suffices to show that if Algorithm 4.3.7 returns true for two candidates candbetter ,
candworse ∈ T PC and a coordinate c then candworse is not needed for an optimal solution
at coordinate c. In order to show this, we show that in this situation, any completion of the
(partial) candidate candworse can instead be applied to the (partial) candidate candbetter
giving an objective value that is at most as large. We have to show two things.

First, any completion of candworse can indeed be applied to candbetter instead. In other
words, any track that is located at coordinate c or further to the right and can be added
to candworse can also be added to candbetter . This can only be violated, if for a wire model
wm it is possible to add another track to candworse and the last track of candbetter is
further to the right than the last track of candworse and the last track of candbetter forbids
a track at coordinate c or further to the right to be added. In this case Algorithm 4.3.7
would return false in Line 7.

Second, we need to show that when adding the same tracks to candbetter instead of
candworse , the objective function can not increase. Due to Line 4, both completed can-
didates have the same number of tracks for all wire models. The corresponding part of
the objective function will consequently be equal. The part of the objective function cor-
responding to the average relative number of blocked tracks can be written as a large
weighted sum. Because the relative frequencies of the wire models are constant and both
completed candidates have the same number of tracks for each wire model, all the weights
are equal. The summands can be divided into three classes. First, terms that correspond
to combinations of tracks blocking each other such that both tracks are precomputed
tracks or part of the partial candidates candworse and candbetter respectively. This part of
the sum is smaller or equal for candbetter because Algorithm 4.3.7 did not return false in
Line 2. Second, terms that correspond to combinations of tracks blocking each other such
that both tracks are part of the completion or one track is part of the completion and
the other is part of a precomputed track pattern. This part of the sum is trivially equal
because we apply the same completion to both candidates. Third, terms that correspond
to one track that is part of the completion and another track that is part of the (partial)
candidates candworse and candbetter respectively. For this part of the sum it suffices to
show that each track of the completion blocks fewer or the same number of tracks of any
wire model if it is added to candbetter as it blocks when being added to candworse . If a
track t for wire model wm′ of the completion blocked more tracks of a wire model wm
if added to candbetter than it does if added to candworse then there needs to be a k ∈ N
such that the kth track for wire model wm of candbetter is further to the right than the
kth track for wire model wm of candworse . Additionally, it needs to be possible to add
another track for wire model wm′ to candworse at position t and the kth track for wire
model wm of candbetter needs to make the track t illegal. But in this case, Algorithm 4.3.7
would have returned false in Line 13, which concludes the proof.
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Last, we optimize our algorithm by noting that we do not need to consider each
(partial) candidate at each coordinate and that we can omit some candidates already
during creation because they are dominated by another candidate considered earlier. This
optimization is based on two ideas. First, it is not necessary to try to add another track for
a wire model at a coordinate where it is forbidden by the last track for that wire model or
the power rail. Therefore, we do not need to consider a candidate again at any coordinate
left of the minimum of the next allowed positions for all wire models. Consequently, we
do not add each newly generated candidate to the set of candidates at coordinate c + 1
but at the maximum of c+1 and the minimum over all wire models of the next coordinate
where we can place another track.

Secondly, there is a certain class of candidates that are never needed for an optimal
solution (in the sense that when we exclude this class, there always remains an optimum
solution). Whenever in a (partial) candidate any track can be moved by one unit to the
left without generating any new conflict (to any track of the same wire model, another wire
model or the power rail), this candidate is not necessary to generate an optimum solution.
It can always be replaced by the version where the track is moved to the left (in the sense
that any completion of this (partial) candidate can be applied to the modified version
instead and this can only decrease the objective value). Consequently, if for a candidate
we add an arc between any two tracks (not necessarily of the same wire model) which
do not have a conflict but which can not be moved closer together without generating a
conflict and we do the same for pairs of tracks and power rails (directed from the one
further to the left to the one further to the right), we only need to keep those candidates
where all tracks have a path from the left power rail or a predefined track. Any track
that can not be reached from the left power rail and the predefined tracks can be moved
at least one unit to the left without generating any new conflict. Figure 4.12 shows three
examples of this concept. Figures 4.12(a) and 4.12(b) show the tight constraints for the
two examples from Figure 4.11(a) and 4.11(d). Note that every track does have a path
from the left power rail in both cases. Figure 4.12(c) shows an example of a (partial)
candidate where some tracks can be moved to the left.

This observation leads to two more optimizations we can make. First, when generating
new candidates at a certain coordinate, we only need to add tracks for wire models (among
those for which it is legal to add tracks at all) for which at least one constraint to the
left is tight (otherwise, if no constraint to the left is tight, we can omit to add a track
if there is sufficient slack left, otherwise we have proven that the candidate which we are
extending was not needed at all and we can skip it completely).

To implement this, we modify the way we generate the sets WM n of wire models
to add new tracks for. We define WM l := {wm ∈ WM o : TrackLegal(wm,Twm, c),
n(Twm) < nt(wm)}, the set of all wire models for which it is legal to add a track at
coordinate c (and for which we still do not have enough tracks). Then we define the
subset of wire models for which a track at coordinate c has at least one tight constraint to
the left WM p := {wm ∈WM l : HasTightConstraint(wm, cand, c)} and the subsets of
wire models with tight slack: WM a := {wm ∈ WM l : slack(Twm, c) = allowed slackwm}
(for which we have to add a track at coordinate c to get the required total number of
tracks). The function HasTightConstraint can be found in Algorithm 4.3.10. Then
we add tracks for all sets WM n which are a superset of WM a and at the same time a
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(a) The solution from Figure 4.11(a).
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(b) The candidate from Figure 4.11(d).
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(c) A candidate which we can omit because the track marked in orange can be moved
to the left without introducing any new conflicts.

Figure 4.12: Only candidates where all tracks have a path of tight constraints from the
left power rail (or a predefined track) need to be considered. The instance is the same as
in Figure 4.11. Green arrows show tight constraints.
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subset of WM p. Note that we do not necessarily have WM a ⊆ WM p. If this is not the
case, then no such set WM n exists which is intended. In this case, the candidate we
started with was redundant and can be omitted.

Algorithm 4.3.10: HasTightConstraint

Input: wm ∈WM o, cand = (Twm′)wm′∈WM o ∈ T PC, c ∈ N
1 return ∃wm′ ∈WM , i ∈ N, 1 ≤ i ≤ n(Twm′), ti(Twm′) + s̄(wm′, wm) = c or

c = tf (wm)

Lemma 4.3.5. Algorithm 4.3.10 correctly determines if a track added at coordinate c for
wire model wm to the (partial) candidate cand has a tight constraint to the left.

Proof. There are two possible kinds of tight constraints, distances to the left power rail
and distances to other tracks placed to the left of c. Algorithm 4.3.10 checks both of them
correctly. Note that in the Algorithm there is no difference between the distance to the
last track of the same wire model (if it exists), to tracks of other wire models in WM o and
the distances to tracks of wire models in WM i).

Second, we can further optimize the position where we insert new candidates. We do
not need to take the maximum of c + 1 and the minimum over all wire models of the
coordinate where the next track is legal. We can for each wire model consider the next
coordinate where we can place a track and it does have at least one tight constraint to the
left and take the minimum of these. There are some details to consider here. First, there
might be a wire model for which no such coordinate exists. In this case, this wire model
is not relevant for the next coordinate to consider, no track can be placed for it anymore.
Second, there might be a wire model for which the next coordinate at which we could
place a track legally and it would have a tight constraint to the left would inevitably lead
to a larger than allowed slack (or we can not place any track with a tight constraint to
the left anymore but do not have enough tracks yet). In this case, the candidate we are
considering is not relevant at all and can be omitted. Figure 4.13(b) shows an example
for this case. Third, we might already have placed enough tracks for some wire model.
Then, like in the first case, the wire model is not relevant, no track can be placed for it
anymore. Algorithm 4.3.11 formalize the calculation of the next relevant coordinate for
a given (partial) candidate. It returns ∞ if the given candidate is irrelevant and should
be omitted. Consequently, if Algorithm 4.3.11 returns ∞, the generated candidate is
discarded. If it returns tl + 1, the generated candidate is a final candidate and otherwise
the candidate set at the returned coordinate is updated with the generated candidate.
Figure 4.13(a) shows an example how the next relevant coordinate is calculated.
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(a) Example how the next relevant coordinate is determined. This candidate is created
at coordinate 12, but does not need to be considered before coordinate 16 again. For
wm0 and wm1, no track can be placed before coordinate 16, and for wm2, a track can
be placed at any coordinate larger than 12, but it would not have a tight constraint to
the left before coordinate 16.
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(b) Example of a (partial) candidate which is discovered to be irrelevant at coordinate
21. Consider wm1. The allowed slack for wm1 in our example instance is 2 (because
we do not allow any track to be lost). At coordinate 19, another track for wm1 is legal,
but the already spend slack is 0, so a candidate not placing a track is created. It needs
to be reconsidered at coordinate 20, where the next tack of wm2 can be placed. wm2

also has sufficient slack left, so a candidate with no track is created. This candidate
is reconsidered at coordinate 21 due to the distance between wm0 and wm2. At this
point, there is no possible solution for wm1 anymore. We can not place a track for
wm1, because it would not have a tight constraint to the left and thus should have
been placed further to the left. It is also not possible not to place a track for wm1,
because the current slack is 2 which is the allowed slack. Therefore this candidate is
discarded and no further candidates are generated from it. Note, that in general it
is not trivial to discard such candidates even earlier (for example at coordinate 19 in
this case), because at coordinate 19 we do not know if we will place another track of
a different wire model before coordinate 21 which will then generate a tight constraint
for wm1 at coordinate 21. We could sort out some candidates earlier by considering
the minimum adjusted spacing between different wire models and thus proving that no
other track that will be placed can generate a tight constraint for a coordinate close
enough, but this is probably too expensive to be beneficial.

Figure 4.13: Two examples concerning the optimizations introduced in Algorithm 4.3.12.
The instance is the same as in Figure 4.11. Gray shapes are the power rails. Orange
shapes are tracks for wire model wm0, blue shapes are tracks for wire model wm1 and
green shapes are tracks for wire model wm2. Gray arrows show relevant constraints.
Magenta lines indicate used slack. The black dashed line indicates the current coordinate,
gray dashed lines mark other relevant coordinates.
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Algorithm 4.3.11: NextRelevantCoordinate

Input: cand = (Twm)wm∈WM o ∈ T PC, c ∈ N
1 result := tl + 1
2 foreach wm ∈WM o do
3 if n(Twm) = nt(wm) then
4 result := min{result , tl + 1}
5 else if NextPossibleTrack(wm,Twm) > c then
6 result := min{result ,NextPossibleTrack(wm,Twm)}
7 else
8 ntc := min{c′ ∈ N : c < c′,HasTightConstraint(wm, cand, c′)}
9 if slack(Twm,min{ntc, tl(wm) + 1}) > allowed slackwm then

10 return ∞
11 if ntc ≤ tl(wm) then
12 result := min{result ,ntc}
13 else
14 result := min{result , tl + 1}

15 return result

Lemma 4.3.6. Algorithm 4.3.11 correctly returns the next coordinate for which adding a
new track (at a position larger than c) to the candidate cand needs to be considered (in the
sense that not inserting any tacks before the coordinate returned by Algorithm 4.3.11 does
not make Algorithm 4.3.12 incorrect). If Algorithm 4.3.11 returns tl + 1, no tracks can be
added to cand anymore. If Algorithm 4.3.11 returns ∞, cand was a redundant candidate
that is not relevant for the solution of Algorithm 4.3.12 at all.

Proof. There are five cases that can happen for each wire model wm. First, it can already
have enough tracks. In this case (Line 4), no further track can be added for this wire model
and the candidate is marked final by returning tl + 1 if no smaller value is computed for
the other wire models. Second, it is not legal to place a track for wire model wm at
coordinate c. In this case (Line 6), the next relevant coordinate for this wire model is the
next coordinate where a track can be placed (and a track there automatically has a tight
constraint to the left). Note, that if it is not possible to place any track for wm anymore,
the candidate is complete with regard to wm and NextPossibleTrack returns tl + 1,
marking the candidate final if no smaller value is computed for the other wire models. If a
track for wm can legally be placed at coordinate c, then the next greater coordinate than
c for which a track would have a tight constraint to the left is relevant. The third case
(Line 10) occurs when at the next such coordinate (or more precisely, at the minimum of
the next such coordinate and tl(wm) + 1) the slack of the candidate would be too large.
In this case, the given (partial) candidate can not be completed to any relevant final
candidate anymore and thus can be discarded. Here, we need to take the minimum with
tl(wm) + 1, because tl(wm) is the last legal coordinate to place a track of wire model wm,
therefore at tl(wm) + 1, all tracks for wire model wm have been determined. If we would
not take the minimum, then free space after tl(wm) would also be considered although
this area is already blocked by the right power rail and thus does not add to the slack. In
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the fourth case (Line 12), the next coordinate with a tight constraint to the left is small
enough so that a track can be placed legally. Then for wm this is the next coordinate
to consider. The fifth and last case (Line 14) occurs, when the next coordinate with a
tight constraint to the left if larger then tl(wm). In this case, the given candidate is final
with regard to wm (it has enough tracks, otherwise case two would have occurred). As
above, we consider tl + 1 in this case again for this wire model. If the algorithm does not
return ∞ to indicate that the given candidate was irrelevant, it returns the minimum of
the calculated values for all wire models. If the candidate was final with respect to all
wire models, it is final and tl + 1 is returned. Otherwise the next relevant coordinate is
returned.

The updated (and final) version of our dynamic program can be found in Algo-
rithm 4.3.12.

Algorithm 4.3.12: ComputeOptimizedTrackPatterns

Input: l ∈ Lwiring,WM o,WM i ⊆ WM, nt(wm) ≤ n(wm) (wm ∈WM o)
1 CAND(tf ) := {(())wm∈WM o}
2 CAND(c) := ∅ (tf < c ≤ tl)
3 FINAL := ∅
4 allowed slackwm := slack(wm) + s̄(wm,wm)(n(wm)− nt(wm)) (wm ∈WM o)
5 for c = tf to tl do
6 foreach cand = (Twm)wm∈WM o ∈ CAND(c) do
7 WM l := {wm ∈WM o : TrackLegal(wm,Twm, c), n(Twm) < nt(wm)}
8 WM p := {wm ∈WM l : HasTightConstraint(wm, cand, c)}
9 WM a := {wm ∈WM l : slack(Twm, c) = allowed slackwm}

10 foreach WM n ⊆WM p : WM a ⊆WM n do
11 candnew := AddTracks(cand,WM n, c)
12 cn := NextRelevantCoordinate(candnew, c)
13 if cn 6=∞ then
14 if cn ≤ tl then
15 CAND(cn) := UpdateCandidates(CAND(cn), candnew, cn)

16 else
17 FINAL := FINAL ∪ {candnew}

18 candbest := argmincand∈FINALobj(cand)
19 return candbest

Now we can prove that our final algorithm works correctly.

Theorem 4.3.7. Algorithm 4.3.12 computes a candidate cand = (Twm)wm∈WM o ∈ T PC
such that for all wm ∈WM o we have n(Twm) = nt(wm) with minimal objective function.

Proof. Due to Lemma 4.3.4 we only need to prove that the modifications marked in blue
do not make the algorithm incorrect. The modification in Line 8 has the effect that
Algorithm 4.3.12 only considers (partial) candidates such that each track has at least
one tight constraint to the left. This is sufficient as discussed above. In Line 12, the
next coordinate where a track can potentially be added to candnew (only considering
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coordinates such that each track has at least one tight constraint to the left) is correctly
calculated according to Lemma 4.3.6. If cn = ∞, candnew can be discarded according
to Lemma 4.3.6. If cn ≤ tl, the set of candidates at cn is updated, otherwise candnew
is a final candidate. Note, that FINAL is directly updated, therefore the minor change
in Line 2 is correct. There is one more detail to take care of. Due to the fact that the
algorithm does not consider every candidate at each coordinate anymore, the slack can
increase by more than one between two times when an (updated) candidate is considered.
Line 9 of Algorithm 4.3.11 makes sure that candidates whose slack gets too large are not
processed anymore the next time they are considered for some wire model. Therefore, all
final candidates have sufficiently many tracks for each wire model, which concludes the
proof.

Next, we analyze some aspects of Algorithm 4.3.12 concerning its run time. First
we note that Algorithm 4.3.12 can easily be implemented in a much faster (and memory
efficient) way than the simple description above.

In the simple description above, Algorithm 4.3.7 computes b̄prel values for the two
candidates from scratch considering all already placed tracks until the left-hand side power
rail. This is not necessary. These values can be precomputed and incrementally updated
when a new candidate is created from an existing one. Then they are stored at the
candidate to be accessed in constant time during Algorithm 4.3.7. We do not describe
the incremental calculation of the objective function in detail here because calculations
are straightforward. When adding a new track, one simply needs to add all terms of the
sums that depend on the newly created track (with all the relevant constant coefficients
applied).

Furthermore, when creating a new track pattern candidate, a naive implementation
needs to copy all the tracks back to the left-hand side power rail. This can also be
optimized significantly. In each candidate, we store for each track pattern the number
of tracks, the remaining (or already used) slack, the precomputed parts of the objective
function and an index in a global array of track descriptions, pointing to the description
of the last (rightmost) track of that track pattern. Such a track description then contains
the coordinate of the track, the index of the description of the next track to the left (or
an invalid index if there is no such track) and a reference counter how often this track
description is referenced by later track descriptions. Furthermore, we have only one global
array of track descriptions and a stack of free entries in this array. Whenever a reference
count of a track description drops to zero, we can add the corresponding index to the stack
of free entries (also implemented by a simple array) to reuse the memory when we create
the next new track description. Because all the data is stored in two simple large arrays,
memory overhead is very small and access times are very good. This significantly reduces
memory allocation and usage. When creating a new candidate we only need to allocate
a constant amount of memory plus memory for the newly created tracks. Total memory
usage is reduced because multiple new candidates can reuse the same track descriptions.
Furthermore, we can access all relevant information (the number of tracks, the coordinate
of the rightmost track and the coordinates of a small number of rightmost tracks) in
constant time / in time linear in the number of tracks examined.

Additionally, the set FINAL never needs to be computed or stored. We can instead
store only the currently best candidate and its objective value and update these whenever
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a new candidate would be added to FINAL.

In the simple description above, Algorithm 4.3.12 stores a set of track pattern candidate
for each coordinate between tf and tl which makes its run time dependent on the coordinate
system used. This is not necessary, one can instead store only the sets that are non-empty
in a map indexed by the coordinates the sets belong to (and once a given coordinate c has
been processed, the set CAND(c) is no longer needed and can be removed). This removes
the theoretic dependence on the coordinate system completely, but in practice storing a
few thousand empty sets does not induce any measurable run time overhead. Therefore
our practical implementation does not use this optimization.

Concerning the overall run time of our algorithm, there are a few points we want to
mention. First, as stated above, it is practically not dependent on the coordinate system
used (and can be implemented such that this is also true in a strict sense). This is the
case because every coordinate at which the algorithm will ever attempt to place any track
is the sum of a number of input values (to be precise, of one adjusted spacing to the left
power rail and then a number of adjusted spacing values between wire models or of the
coordinate of a predefined track and a number of adjusted spacing values between wire
models). This is true because only coordinates are considered where at least one wire
model has a tight constraint to the left. Consequently, the set of coordinates that need
to be considered (which influences the total run time) heavily depends on the structure of
the adjusted spacing constraints (and predefined track patterns). For example, if all the
adjusted spacing constraints are an integer multiple of some base value and there are no
predefined track patterns, then every coordinate ever considered will also be an integer
multiple of the base value. If on the other hand adjusted spacing values are relatively prime
and some of them are very small, then most coordinates will be relevant. In practice, in
many cases the relevant adjusted spacing values have a large common divisor and therefore
most coordinates are irrelevant, greatly speeding up the algorithm.

The number of candidates that need to be considered at any relevant coordinate de-
pends highly on the largest spacing value, or more precisely on the ratio of the largest
and the smallest spacing value (and, of course, on the number of wire models to optimize
track patterns for). The higher this ratio is, the more combinations of tracks are possible
within the range where they still can influence future tracks. It does not depend on the
distance between the power rails, so if the wire models to optimize and all adjusted spacing
values are fixed, Algorithm 4.3.12 runs in time linear in the distance between the power
rails. In practice, on our instances the run time of Algorithm 4.3.12 is negligible (compare
Section 6.2).

After we have described the main algorithm, proven its correctness and briefly ex-
amined its run time behavior, we need to discuss some practical extensions of the core
algorithm described above.

First, as we have mentioned above, it is easy to modify the algorithm such that for
some track patterns more than one or no track at all can be lost compared to the maxi-
mum number of tracks possible for the corresponding wire model. Experiments show that
allowing to lose more than one track is not beneficial. The average efficiency to pack mix-
tures of different wire models increases only slightly but the chance that local unroutable
situations are created increases drastically. Designers tend to expect that they can pack
the maximum number of wires of each wire model between any two power rails (and the
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assumption that close to the maximum number can indeed be packed seems to be reason-
able). Thus we never allow to lose more than one track. For the same reason we define a
threshold such that for wire models with the maximum number of tracks possible below
this threshold the algorithm is guaranteed to lose no tracks. Note that in many cases
this does not completely fix the track pattern but still leaves some space for optimization
because many of the wide wire models that are affected by this threshold do not pack
optimally between two power rails anyway.

Second, as mentioned above, an as uniform as possible spreading of the tracks of any
track pattern has some benefits to timing and noise (with the exception of the tracks next
to the power rails, these can be moved close to the power rails as power never switches).
Thus, we use a heuristic post-processing routine, spreading tracks more evenly if this does
not change the objective value. This routine works as follows. For each track pattern, it
iterates from right to left over each track, checking if it can improve spreading locally. For
the first and last tracks, it checks if there is a different coordinate for the track with the
same objective value but closer to the power rail. For the other tracks, it checks if there is a
different coordinate for the track with the same objective value but a more even spacing to
both sides. This procedure is repeated until no track can be moved anymore. If considering
only one track pattern alone, this results in perfect spreading. When optimizing two or
more wire models at once, there are often few possibilities to improve spreading without
increasing the objective function.

Remark. We do not consider to optimize this post-processing routine, because the trivial
version does the job and its run time is negligible.

Concluding this section, we show some track patterns computed by our algorithm. Fig-
ure 4.14 shows the track patterns computed for the wire models that we already discussed
in Section 4.2 and for which we have shown and analyzed track patterns generated by sim-
pler algorithms in Figure 4.6 and 4.7. Note that our algorithm simultaneously optimized
track patterns for the 1x and 1.5x wires that are shown in Figure 4.14 and also for 2x
wires that are shown in Figure 4.16. In Figure 4.14(a) we can see that both wire models
have the optimum number of tracks (five and eight respectively). Furthermore, each of
the 1.5x tracks blocks only two 1x tracks (note that with each of the simpler approaches
at least two of the 1.5x tracks blocked three default tracks simultaneously). Conversely,
in Figure 4.14(b) we see that for our optimized tracks, all but two of the 1x tracks block
only one 1.5x track. With the simpler approaches, at least four of the 1x tracks blocked
two 1.5x tracks. Thus in this simple example, our optimized tracks are in each metric
as least as good as each of the simple track patterns and often significantly better (apart
from the minor objective of evenly spreading the tracks, this is slightly worse for the 1.5x
tracks). This shows that already considering only two track patterns at a time we can get
huge benefits by optimizing the track patterns.

If we consider more track patterns, we see the same effect. Sometimes, there are
basically no options, but if there are, our algorithm can reduce the number of tracks blocked
significantly. Figure 4.15 and Figure 4.16 show track patterns TP3 and the optimized track
patterns generated by our algorithm for 2x wires (with respect to 1x and 1.5x wires). 1.5x
and 2x wires block the same number of tracks of each other, but the two 2x tracks in the
center between the power rails block three instead of four 1x tracks and only two of the
1x tracks block two 2x tracks instead of four.
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2 2 2 2 2 2 2 2 2 2

(a) Number of 1x tracks blocked by 1.5x wires.

1 2 1 1 1 1 2 1 1 2 1 1 1 1 2 1

(b) Number of 1.5x tracks blocked by 1x wires.

Figure 4.14: Optimized tracks for 1x and 1.5x wires.

We will now show one more example illustrating benefits and effects if more than two
track patterns are considered simultaneously. Our algorithm provides a powerful frame-
work to test different settings. For example, one could consider using TP3 for the most
common wire model and then optimize each track pattern separately while considering
the number of blocked tracks of the default track pattern. Figure 4.17, 4.18 and 4.19 show
the track patterns TP3, the track patterns if TP3 is taken for the most common wire
model and each other is optimized separately and the result if all three track patterns are
optimized simultaneously for 1x wires with 1.5x spacing, 1.5x wires and 2x wires (note
that this example comes from a differently designed layer, therefore power rails are set up
differently and thus the problem is entirely different to the examples above). As expected,
the intermediate approach gives some but not all the benefits of the simultaneously op-
timized track patterns. For example for the 2x wires, in Figure 4.17(a) we can see that
two of the 2x tracks block three 1x tracks, in Figure 4.18(a) only one of the 2x tracks
block three 1x tracks and in Figure 4.19(a) all 2x tracks block only two 1x tracks. Looking
at all combinations of track patterns, the intermediate approach is clearly superior than
simply using TP3, but optimizing three track patterns simultaneously is in turn clearly
superior to the intermediate approach in this example. Furthermore, there is no reason
why the intermediate approach should ever be better than our optimized approach. Due
to the fact that the run time of all approaches are negligible compared to the run time of
BonnRouteDetailed, we do not consider the intermediate approach any further.
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2 4 4 2 2 4 4 2

(a) Number of 1x tracks blocked by 2x wires.

2 2 2 2 2 2 2 2

(b) Number of 1.5x tracks blocked by 2x wires.

1 2 1 2 2 1 2 1 1 2 1 2 2 1 2 1

(c) Number of 2x tracks blocked by 1x wires.

1 2 2 2 1 1 2 2 2 1

(d) Number of 2x tracks blocked by 1.5x wires.

Figure 4.15: Use TP3 for 2x, 1.5x and 1x wires.
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2 3 3 2 2 3 3 2

(a) Number of 1x tracks blocked by 2x wires.

2 2 2 2 2 2 2 2

(b) Number of 1.5x tracks blocked by 2x wires.

1 2 1 2 1 1 1 1 1 2 1 2 1 1 1 1

(c) Number of 2x tracks blocked by 1x wires.

1 2 2 2 1 1 2 2 2 1

(d) Number of 2x tracks blocked by 1.5x wires.

Figure 4.16: Optimized tracks for 2x, 1.5x and 1x wires.



4.3. OPTIMIZED TRACK PATTERNS 79

2 3 2 2 3 2 2 3 2 2 3 2

(a) Number of 1x tracks blocked by 2x wires.

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

(b) Number of 1x tracks blocked by 1.5x wires.

1 2 1 2 1 1 2 1 2 1 1 2 1 2 1 1 2 1 2 1

(c) Number of 2x tracks blocked by 1x wires.

1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1

(d) Number of 2x tracks blocked by 1.5x wires.

1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1

(e) Number of 1.5x tracks blocked by 1x wires.

2 2 2 2 2 2 2 2 2 2 2 2

(f) Number of 1.5x tracks blocked by 2x wires.

Figure 4.17: Use TP3 for 1x wires with 1.5x spacing, 1.5x wires and 2x wires.
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2 2 3 2 2 2 2 2 3 2 2 2

(a) Number of 1x tracks blocked by 2x wires.

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

(b) Number of 1x tracks blocked by 1.5x wires.

1 2 2 1 2 1 1 1 1 1 1 2 2 1 2 1 1 1 1 1

(c) Number of 2x tracks blocked by 1x wires.

1 2 2 2 1 1 2 1 1 2 2 2 1 1 2 1

(d) Number of 2x tracks blocked by 1.5x wires.

1 2 2 2 2 1 1 2 2 1 1 2 2 2 2 1 1 2 2 1

(e) Number of 1.5x tracks blocked by 1x wires.

2 2 2 2 2 2 2 2 2 2 2 2

(f) Number of 1.5x tracks blocked by 2x wires.

Figure 4.18: Use TP3 for 1x wires with 1.5x spacing and optimize tracks for 1.5x wires
and 2x wires separately while taking into account tracks for 1x wires with 1.5x spacing.
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2 2 2 2 2 2 2 2 2 2 2 2

(a) Number of 1x tracks blocked by 2x wires.

1 2 2 2 2 2 1 1 1 2 2 2 2 2 1 1

(b) Number of 1x tracks blocked by 1.5x wires.

1 2 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 2 1

(c) Number of 2x tracks blocked by 1x wires.

1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1

(d) Number of 2x tracks blocked by 1.5x wires.

1 1 2 2 1 1 2 1 1 1 1 1 2 2 1 1 2 1 1 1

(e) Number of 1.5x tracks blocked by 1x wires.

1 2 2 1 2 2 1 2 2 1 2 2

(f) Number of 1.5x tracks blocked by 2x wires.

Figure 4.19: Optimized tracks for 1x wires with 1.5x spacing, 1.5x wires and 2x wires.



82 CHAPTER 4. COMPUTING TRACK PATTERNS

4.4 Some Practical Considerations

In this section we discuss some further practical considerations concerning our track pat-
tern generation algorithm. First and most importantly, we describe how we use Algo-
rithm 4.3.12 in practice. Our algorithm can easily optimize up to three track patterns
simultaneously while considering a larger number of already precomputed track patterns
as side constraints in very good run time. In almost all cases, four track patterns can
be optimized simultaneously in very good run time and often, depending on the involved
spacing values, five or more track patterns can be optimized simultaneously in an accept-
able run time. However, on the instances we use for testing there are only very few cases
where four or more different wire models are used to a relevant extend on any layer. Even
on the instances where on some layers more than three wire models are used, the overall
results improve only very slightly, if at all, if optimizing more than three wire models
simultaneously. The combination of track patterns calculated improves (in the sense that
for some pairs of wire models, the number of blocked tracks decrease) but these improve-
ments effect only a very small fraction of the overall routing on these instances such that
the effects on the overall results are negligible. Therefore the setting that we use is as
follows: We sort all wire models by the frequency they occur on the chip. Then we first
optimize the three most frequent wire models simultaneously (if there are three wire mod-
els with a relevant portion of the total wire length each, otherwise we use less) and then
optimize each remaining wire model (in the order of decreasing frequency) alone while
considering the five most frequent wire models as side constraints. We could of course also
optimize wire models four to six simultaneously, but experiments indicated that this does
not improve results significantly. On the testbed we use, for the vast majority of testcases
and layers there are only few wire models used to a substantial amount anyway.

As discussed in Section 4.2, there are competing objectives. Most relevantly we need
to mention the ability to switch between different wire models and the ability to pack a
mixture of different wire models efficiently here. Obviously, on a dense chip, the ability
to pack wires efficiently is very important. Equally obviously, on a very sparse chip,
the ability to pack wires efficiently does not matter and the ability to switch different
wire models predominates. Furthermore, the importance of the different objectives also
depends on the definition of pins, the assignment of layers to nets and the definition of
special wire codes that are used to access pins. Also, wire models that are in terms of
total wire length only very rarely used have very little influence on the total packing
of wire models but can be responsible for a significant amount of necessary wire model
changes. Therefore, if such rare wire models do not pack very efficiently or block many
tracks it has little influence on overall routing results. On the other hand it might be
important that they can be easily combined with other wire models. On the other hand,
a wire model that is responsible for most of the total wire length needs to pack efficiently
on a dense design. This is the motivation for one further modification to our algorithm
that we made. We have a (technology dependent) threshold such that for wire models
with total relative estimated wire length above the threshold we compute an optimized
track pattern and for wire models with total relative estimated wire length below the
threshold we assign the track pattern of the default (most frequent) wire model. This
ensures that paths can easily switch between all these infrequent wire models and the
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most frequent wire model while harming global packing efficiency only very marginally.
This approach has the additional benefit that it limits the total number of tracks generated
(of all track patterns combined). This is important, because some of the data structures
used in BonnRouteDetailed (especially the grid) use the union of the tracks of all track
patterns to store objects on the chip. This becomes inefficient if there are very many
different tracks which are used for only very few wires. Experiments have shown that this
approach is superior to always optimizing all wire models with our algorithm.

The objective function in the algorithm (and the choice of wire models to optimize
first) heavily depends on the estimated total frequency of the wire models. There are a
number of ways to obtain such estimates before routing. BonnRouteDetailed currently
uses an estimate based on global wires. For each net, it gets one default wire model per
layer. Therefore it counts on each layer for each net the global wire length on that layer
for the associated wire model. This does not take into account the special wire models
used to access pins. It is unclear how to consider those and if considering them yields
any improvements at all. If such detailed information is not yet available (for example
because these track patterns should already be computed before global routing such that
the global router can use them to approximate resource usage of different wire models
more accurately), simpler models can be used. For example, for each net the bounding
box wire length could be used and distributed somehow (in the simplest case evenly) over
the layers assigned to the net. Which estimate is best depends on the kind of information
available and on the accuracy needed, which in turn heavily depends on the criticality of
the chip and on the mix of wire models used.

Another important point to mention is that one should consider the stability of the
computed track patterns during the chip design work flow. Typically, during the design
of a chip, there are multiple iterations of rerouting the chip from scratch, analyzing the
result, changing something and iterating. After that, usually most of the routing is fixed
and only small portions are rerouted in each iteration to fix any remaining problems. The
potential issue to consider here is that during these iterations often the frequencies of
different wire models change. This leads to the risk that track patterns suddenly change
between iterations which might disrupt the design flow heavily and lead to unpredictable
results due to relations between track patterns and pins for example. Furthermore, if track
patterns change during the later phases when most of the routing is already fixed, new
wires on new track patterns might fit very badly between already fixed wires on old track
patterns.

There are a number of ways to prevent these problems. One easy way is to compute
track patterns once and store them with the design. Then one can keep the same track
patterns as long as they are reasonable and only recompute them if a lot of wire model
usages change. This has the advantage that the designer has complete control about
the creation and change of the track patterns but at the same time the disadvantage
that it requires manual decisions. Another option is to compute track patterns each
time a chip is routed, but take into account the positions of already present wires and
potentially blockages and pins, preferring tracks that match existing structures. This has
the advantage that it requires no manual interaction and fixes at least the second half of
the problem. If most of the wires are already routed on some given tracks and these are
considered, the algorithm can be tuned to find the same track patterns again with high
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probability (unless there is a very good reason). This maintains full flexibility of the tracks
generated while routing the complete chip from scratch but at the same time ensures a
high level of stability later on.

One should note that considering existing wires should work smoothly if they were
created by the same router with the same constraints, but considering pin and or blockage
positions is in general a lot more tricky. Often, there are too few pins and / or blockages
that they make any significant difference on many layers and they are designed with
different objectives in mind and fixed comparatively early in the flow. Thus adapting
tracks to pins and or blockages can lead to poor results because the tracks that fit to
the pins inherently pack badly. We made various experiments taking pin positions into
account but could achieve no benefit at all and often even got worse results. Thus we
recommend to consider existing wires only or to store track patterns at the chip.

Reconsidering the example from Figure 4.14, one can notice that some of the 1x tracks
are worse than the others, because they block more 1.5x tracks. This is a very common
phenomenon, in most cases some tracks block more tracks of other wire models than
others. Thus one could think that it is a good idea to prefer better tracks during routing
over worse tracks by introducing different costs. On the other hand, this is another type
of costs that is added to the already complex mix of different costs for different objectives.
Even though potentially improving packing of tracks on average, this can also lead to
longer (and thus suboptimal) routes. We made a number of experiments which showed
no benefit. Positive and negative effects seemed to roughly even out if costs were chosen
at a suitable level. Thus we propose to discard this idea since it gives no clear practical
benefit but complicates code and algorithms.

Above we assume that on the layers considered there are evenly spaced power rails and
no colors. Both assumptions may be wrong in practice, but this difficulty can easily be
overcome. First, if we have colors on a layer, usually there are predefined track patterns
anyway that are designed to fulfill complex restrictions on colored metal. If this is not
the case, we can easily adapt our algorithm to store a color along with each track and
thus can create colored track patterns. This increases the number of candidates but is
no fundamental problem. We did not test this because we are not aware of any instances
where track patterns on colored layers can be subject to automated optimization. Second,
we do not necessarily have uniformly spaced power rails. There might be power rails with
different spacings. In this case, we can trivially apply our algorithm for each different
power rail spacing separately and use the computed tracks only in the corresponding
power bays. Furthermore, there might be power staples instead of power rails, but this
does not really make a difference as in practice there are usually very many such power
staples on only few coordinates in non-preferred direction. We can then treat these rows
of power staples just like a power rail. Usually it is not possible to route any meaningful
wire in preferred direction between two power staples anyway. Only in the case when
power staples are not arranged in rows in preferred direction, our algorithm is not directly
applicable.

It remains to discuss the choice of the various parameters which we introduced above.
We have done a lot of tuning of the individual parameters and finally chose the following
values. For our choice of instances, wn = 2 gives best results independent of the technology
of the chips. We do not consider a wire model in the first optimizing step optimizing up
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to three track patterns if it is used for less than one per cent of total wire length. We do
not allow any track to be lost for a given wire model if less than five tracks are possible.
Furthermore, we use our optimized track patterns only if a wire model is used for at least
five (for 14nm instances) respectively a half per cent (for 7nm instances) of the total wire
length, otherwise we assign the track pattern of the default wire model. This choice is very
likely to change, because current instances are at least to some extent tuned to former sets
of track patterns, thus increasing the negative effects of different track patterns especially
at pins and access wire models. Once the whole design of the chips gets tuned to the new
track patterns we expect to be able to use optimized track patterns also for wire models
which are less frequent. This expectation is backed up by the fact that tuning on older
and more mature 14nm instances showed a much larger cut-off value to be optimal than
tuning on newer and less optimized 7nm instances. Unfortunately it is not practical to
design a whole chip from start to finish with both choices of track patterns due to the
massive amount of manual work required.

4.5 Conclusion

In this section, we have discussed the problem to generate good (soft) track patterns
automatically, identifying objectives and restrictions and discussing a number of simple
approaches. Then we have developed a fast algorithm computing optimal combinations
of track patterns, proving its optimality and briefly discussing its asymptotic run time.
Furthermore, we have discussed a number of practical implications and use cases. We
show its practical effectiveness and run time in Section 6.2.
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Chapter 5

Checking Diff-Net Rules

The metal shapes of different nets need to obey certain minimum distance rules. In the
simplest form, the shapes of different nets may not touch each other. Touching shapes
would be electrically connected and thus cause wrong behavior of the chip. In practice
also very close shapes have a high probability to end up electrically connected due to
variations during manufacturing and are thus forbidden.

In former technologies, often a simple minimum distance rule d was sufficient, e.g. all
s1, s2 ∈ S that belong to different nets must fulfill:

d2(s1, s2) ≥ d

With each new technology, the produced metal structures become smaller and the fab-
rication processes become more complicated. This introduces more and more complex
rules for the metal shapes of a chip. Typically, the smaller the involved structures, the
more complicated are the rules. Thus the most complex rules occur on the lowest layers,
especially on the layers containing the transistors of a chip, but also the lowest routing
layers which mostly contain circuit internal wiring and pins.

For circuit design and for designing specialized and highly optimized structures like
memory elements, it seems inevitable to model many complex rules exactly. For routing
signal nets however, it is often acceptable to simplify the most complex rules. By intro-
ducing slightly stronger restrictions, it is often possible to simplify diff-net spacing rules
a lot. In practice such techniques have proven to be very helpful to reduce routing run
time, for example so-called line end minimum distance rules can be modeled very well by
simpler rules in practice [40]. As another example, rules forbidding certain combinations
of three or more wires with certain widths at certain distances next to each other can
be automatically fulfilled by forcing wires of certain widths to be placed on certain track
patterns.

In this chapter, we first model diff-net rules formally in Section 5.1 and derive some
important properties. We develop two descriptions of an important class of diff-net rules
and prove their equivalence. We prove for a number of practically important diff-net
rules that they are diff-net rules in our theoretical sense and belong to this class. Then
we describe how they are handled efficiently by BonnRouteDetailed in two steps. First,
we describe in Section 5.2 a basic and simple procedure to check diff-net rules. Second,
we develop in Section 5.3 a more complex and highly optimized framework suitable for

87
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extensive diff-net rule checking during path search. Our optimized framework for diff-net
rule checking reduces the run time of the main detailed routing step of BonnRouteDetailed
by factor 2.4 and the total run time of BonnRouteDetailed by factor 2.2. We present
more detailed experimental results showing the effectiveness of the presented methods in
Section 6.3.

5.1 Diff-Net Rules

For us, a diff-net rule is a function taking two shapes and returning if they are legal with
respect to each other that fulfills certain requirements.

Definition 5.1.1. We call a function dr : S × S → B:

• symmetric, iff: ∀s1, s2 ∈ S : dr(s1, s2) = dr(s2, s1)

• local, iff: ∃b ∈ N : ∀s1, s2 ∈ S, dmax(s1, s2) > b : dr(s1, s2) = true

• invariant under translation, iff: ∀s1, s2 ∈ S, (x, y) ∈ Z2 : dr(s1, s2) = dr(s1 +
(x, y), s2 + (x, y))

For such a local function we call the smallest such b its locality constant. For certain
restrictions on the shapes the diff-net rule is applied to, we call the corresponding b the
locality constant with respect to these restrictions. We also define the locality constant
of a set of such local functions as the maximum of the locality constants of the functions.
Formally:

Definition 5.1.2. Let dr : S × S → B be local and symmetric, sc, sc1, sc2 ∈ SC, l ∈ L.
Define:

b(dr) := min{b ∈ N : ∀s1, s2 ∈ S, dmax(s1, s2) > b : dr(s1, s2) = true}

bsc,l(dr) := min{b ∈ N : ∀s1, s2 ∈ S, l(s1) = l(s2) = l, sc(s1) = sc,

dmax(s1, s2) > b : dr(s1, s2) = true}

bsc1,sc2,l(dr) := min{b ∈ N : ∀s1, s2 ∈ S, l(s1) = l(s2) = l, sc(s1) = sc1, sc(s2) = sc2,

dmax(s1, s2) > b : dr(s1, s2) = true}

Let DR be a set of such local functions. Define:

b(DR) := max{b(dr) : dr ∈ DR}

bsc,l(DR) := max{bsc,l(dr) : dr ∈ DR}

bsc1,sc2,l(DR) := max{bsc1,sc2,l(dr) : dr ∈ DR}

Now we can define diff-net rules formally:
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Definition 5.1.3. A diff-net rule is a symmetric, local function dr : S × S → B that is
invariant under translation. Define the set of all diff-net rules:

DR := {dr : S × S → B : dr symmetric, local and invariant under translation}

A diff-net rule directly gives us a function on two sets of shapes in the following way. Let
dr ∈ DR, S1, S2 ⊆ S. Then define

dr(S1, S2) :=
∧

s1∈S1,s2∈S2

dr(s1, s2)

This means, two sets of shapes are legal with respect to each other if each shape in
the first set is legal with respect to each shape in the other set.

Efficient path search algorithms can only handle diff-net rules that fulfill some further
constraints, at least on routing layers. We will now model these requirements.

Definition 5.1.4. We call a diff-net rule dr

• invariant under representation, iff: ∀S1, S
′
1, S2 ⊆ S,

⋃
s∈S1

r(s) =
⋃

s∈S′
1
r(s),

S1 ∪ S′1 homogeneous : dr(S1, S2) = dr(S′1, S2)

• monotone, iff: ∀s1, s
′
1, s2 ∈ S, s′1 ⊆ s1, dr(s1, s2) = true : dr(s′1, s2) = true

• consistent, iff: ∀s1, s2 ∈ S, diam(s1) > 1, dr(s1, s2) = false : ∃s′1 ∈ S, s′1 (
s1, dr(s

′
1, s2) = false

Thus, monotone means that if a shape is legal with regard to another shape then any
subshape also is. Consistent means, if some shape with longest edge length larger than
1 is illegal with respect to another shape then at least one part is illegal too. Invariant
under representation means that if some metal area is represented in different ways by
shapes, this does not influence legality with respect to other shapes. An illustration of
this concept can be found in Figure 5.1.

Remark. Note that in the definition of consistent, we exclude shapes with longest edge
length smaller or equal to 1. Shapes with the largest edge length smaller than 1 do not
have any proper subshapes. Shapes with the largest edge length equal to 1 do have proper
subshapes but any set of proper subshapes represents a different metal area (in a way, they
can not be split into parts). Therefore we do not require that there is a proper subshape
that is illegal with regard to another shape if the shape is illegal with regard to that other
shape.

Lemma 5.1.5. Monotone and consistent are independent, meaning that there are both
diff-net rules that are consistent and not monotone as well as diff-net rules that are mono-
tone and not consistent.
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S1 S′1

Figure 5.1: For any diff-net rule that is invariant under representation, S1 should be legal
with regard to a set of shapes S2 if and only if S′1 is.

Proof. Let d ∈ N, k ∈ N, k ≥ 2. Consider the following functions:

dr1(s1, s2) :=

{
false dmax(r(s1), r(s2)) < b, area(s1) ≥ k, area(s2) ≥ k
true else

dr2(s1, s2) :=

{
false dmax(r(s1), r(s2)) < b, area(s1) ≤ k, area(s2) ≤ k
true else

Both are symmetric, local with locality constant b − 1 and invariant under translation,
thus both are diff-net rules.

Consider dr1: Let s1, s
′
1, s2 ∈ S, s′1 ⊆ s1, dr1(s1, s2) = true. This means, area(s1) <

k or area(s2) < k or dmax(r(s1), r(s2)) ≥ b. Because we have dmax(r(s′1), r(s2)) ≥
dmax(r(s1), r(s2)) and area(s′1) ≤ area(s1) we also get dr1(s′1, s2) = true. Thus dr1 is
monotone.

Consider s1, s2 ∈ S, dmax(s1, s2) < b, area(s1) = k, area(s2) = k. Then we have
dr1(s1, s2) = false, and because k ≥ 2, diam(s1) > 1. But we also have ∀s′′1 ( s1 :
area(s′′1) < area(s1) = k. Thus dr1(s′′1, s2) = true. Thus dr1 is not consistent.

Consider dr2: Let s1, s2 ∈ S, diam(s1) > 1, dr2(s1, s2) = false. Then we have
dmax(r(s1), r(s2)) < b, area(s1) ≤ k, area(s2) ≤ k. Let s′1 ( s1 with dmax(r(s′1), r(s2)) =
dmax(r(s1), r(s2)). Then we get area(s′1) < area(s1) ≤ k. Thus we get dr2(s′1, s2) = false.
dr2 is consistent.

On the other hand, let s1, s2, s
′
1 ∈ S, dmax(r(s1), r(s2)) < b, area(s2) = k, area(s1) =

k+ 1, s′1 ( s1. Then we have dr2(s1, s2) = true and area(s′1) < area(s1) = k+ 1 and thus
area(s′1) ≤ k. Thus we get dr2(s′1, s2) = false and dr2 is not monotone.
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Theorem 5.1.6. A diff-net rule is invariant under representation if and only if it is
monotone and consistent.

Proof. Let dr ∈ DR be invariant under representation. Let s1, s
′
1, s2 ∈ S, s′1 ⊆ s1,

dr(s1, s2) = true. We have r(s1) ∪ r(s′1) = r(s1) and {s1, s
′
1} homogeneous. Thus by the

definition of invariance under representation we get dr({s1, s
′
1}, {s2}) = dr({s1}, {s2}) =

true. Further true = dr({s1, s
′
1}, {s2}) = dr(s1, s2) ∧ dr(s′1, s2) = dr(s′1, s2). Thus dr is

monotone.

Now let s1, s2 ∈ S, diam(s1) > 1, dr(s1, s2) = false (if such s1, s2 do not exist, dr is
trivially consistent). Then we have, r(s1) =

⋃
s⊆s1,diam(s)≤1 r(s) =

⋃
s(s1,diam(s)≤1 r(s).

Because dr is invariant under representation and by definition, we get false = dr(s1, s2) =
dr({s ( s1, diam(s) ≤ 1}, {s2}) =

∧
s(s1,diam(s)≤1 dr(s, s2). Thus ∃s ( s1 : dr(s, s2) =

false. Therefore, dr is consistent.

Now, let dr be monotone and consistent. Let S1, S
′
1, S2 ⊆ S,

⋃
s∈S1

r(s) =
⋃

s∈S′
1
r(s)

and S1 ∪ S′1 homogeneous. Assume dr(S1, S2) 6= dr(S′1, S2). W.l.o.g. we can assume
dr(S1, S2) = false and dr(S′1, S2) = true. We have: dr(S1, S2) =

∧
s1∈S1,s2∈S2

dr(s1, s2).
Thus there are s1 ∈ S1, s2 ∈ S2 with dr(s1, s2) = false. Now we have two cases. Either
diam(s1) ≤ 1. Otherwise, we have diam(s1) > 1. Because dr is consistent we get: ∃s′1 (
s1 : dr(s′1, s2) = false. We further have area(s′1) < area(s1) or diam(s′1) < diam(s1). By
repeating this argument iteratively, we have: ∃s′′1 ⊆ s1, diam(s′′1) ≤ 1, dr(s′′1, s2) = false.
Now because

⋃
s∈S1

r(s) =
⋃

s∈S′
1
r(s), diam(s′′1) ≤ 1 and S1 ∪ S′1 homogeneous we have

∃s′′′1 ∈ S′1 : s′′1 ⊆ s′′′1 . If dr(s′′′1 , s2) = true, we also had dr(s′′1, s2) = true because dr is
monotone. Thus we have dr(s′′′1 , s2) = false. By definition of the diff-net rule for sets it
follows dr(S′1, S2) = false. This is a contradiction, thus we have dr(S1, S2) = dr(S′1, S2)
and dr is invariant under representation.

The following lemma shows that diff-net rules that are invariant under representation
are completely defined by its values on shapes of diameter less or equal 1.

Lemma 5.1.7. Let dr ∈ DR, let dr be invariant under representation, S1, S2 ⊆ S,
S1 homogeneous. Then

dr(S1, S2) =
∧

s∈S,attr(s)=attr(S1),diam(s)≤1,r(s)⊆
⋃

t∈S1
(r(t))

dr({s}, S2)

Proof. Let S′1 := {s ∈ S, attr(s) = attr(S1), diam(s) ≤ 1, r(s) ⊆
⋃

t∈S1
(r(t))}. Then we

have
⋃

s∈S1
r(s) =

⋃
s∈S′

1
r(s). By the definition of invariance under representation we

then get dr(S1, S2) = dr(S′1, S2). By the definition of diff-net rules for sets we further get
dr(S′1, S2) =

∧
s1∈S′

1,s2∈S2
dr(s1, s2) =

∧
s1∈S′

1

∧
s∈{s1},s2∈S2

dr(s, s2) =
∧

s1∈S′
1
dr({s1}, S2)

We will now look at the most frequent restrictions that are imposed on shapes of
different nets in practice and examine if they are diff-net rules in our mathematical sense
and which constraints they fulfill. To do so, we need to introduce the notion of run
length between two shapes. Some examples for this concept can be found in Figure 5.2.
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s1

s2

run lengthx(s1, s2) > 0

s3

s4

run lengthx(s3, s4) < 0

s5

s6

run lengthx(s5, s6) = 0

Figure 5.2: Run length examples.

Definition 5.1.8. Let s1, s2 ∈ S. Define

run lengthx(s1, s2) := min(xmax(s1), xmax(s2))−max(xmin(s1), xmin(s2)).

Analogously, define

run lengthy(s1, s2) := min(ymax(s1), ymax(s2))−max(ymin(s1), ymin(s2)).

Let
run length(s1, s2) := max(run lengthx(s1, s2), run lengthy(s1, s2)).

The probably most common and simplest possible diff-net rule is the restriction that
shapes need to have a specific Euclidean distance. This is an example of a wide class
of diff-net rules:

Definition 5.1.9. Let p ∈ R ∪ {∞}, 1 ≤ p ≤ ∞, d ∈ N, s1, s2 ∈ S, then define

distpd(s1, s2) :=

{
false dp(s1, s2) < d

true else

This means, shapes need to have at least distance d measured by the p-norm.

Remark. Note that according to this definition the rule applies between shapes of any
shape classes, colors and on any layers. Lemma 5.1.14 shows that we can also restrict
any rule to apply only to shapes on the same layer and of certain shape classes and color
combinations. In fact, analogously to Lemma 5.1.14, we can also restrict any diff-net rule
to any combination of layers if necessary.

Lemma 5.1.10. For all p ∈ R ∪ {∞}, 1 ≤ p ≤ ∞, d ∈ N, distpd is a diff-net rule that is
invariant under representation.

Proof. distpd is symmetric. Because dp is invariant under translation, this is also true for
distpd. Further, distpd is local with locality constant d− 1: Let s1, s2 ∈ S, dmax(s1, s2) ≥ d.
Then we have d ≤ dmax(s1, s2) ≤ dp(s1, s2) and therefore distpd(s1, s2) = true. Thus
distpd is a diff-net rule. By Theorem 5.1.6, it suffices to show that distpd is monotone
and consistent. Let s1, s

′
1, s2 ∈ S, s′1 ⊆ s1. Then dp(s

′
1, s2) ≥ dp(s1, s2). Thus distpd is

monotone. Let s1, s2 ∈ S, diam(s1) > 1. Then ∃s′1 ∈ S, s′1 ( s1, dp(s
′
1, s2) = dp(s1, s2).

Thus distpd is also consistent.

Another very common type of diff-net rules are horizontal and vertical rules. These
rules formalize that shapes must have a specific distance in x- respectively y-direction if
they have run-length at least some a ∈ Z in y- respectively x-direction. Formally:
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Definition 5.1.11. Let d ∈ N, d > 0, a ∈ Z, s1, s2 ∈ S.

hora,d(s1, s2) :=

{
false run lengthy(s1, s2) ≥ a, dx(s1, s2) < d

true else

Analogously, define

Definition 5.1.12.

vera,d(s1, s2) :=

{
false run lengthx(s1, s2) ≥ a, dy(s1, s2) < d

true else

Lemma 5.1.13. For all d ∈ N, d > 0, a ∈ Z, hora,d and vera,d are monotone diff-net
rules. hora,d and vera,d are consistent and thus invariant under representation if and only
if a ≤ 1.

Proof. We prove the lemma for hora,d. The proof for vera,d is completely analogous.
hora,d is obviously symmetric. Because dx as well as run length are invariant under
translation, hora,d is invariant under translation. Further, hora,d is local with locality
constant max{d− 1,−a}. Thus hora,d is a diff-net rule.

Now we show that hora,d is monotone. Let s1, s
′
1, s2 ∈ S, s′1 ⊆ s1, hora,d(s1, s2) =

true. We have run lengthy(s1, s2) < a or dx(s1, s2) ≥ d. Because run lengthy(s′1, s2) ≤
run lengthy(s1, s2) and dx(s′1, s2) ≥ dx(s1, s2), we also have hora,d(s′1, s2) = true. Thus
hora,d is monotone.

Let now a ≤ 1. We need to show that hora,d is consistent. Let s1, s2 ∈ S, diam(s1) >
1, hora,d(s1, s2) = false. Thus we have run lengthy(s1, s2) ≥ a and dx(s1, s2) < d. There
are two cases.

First, assume xmax(s1) 6= xmin(s1). At least one x-coordinate of s1 has x-distance
smaller d to s2, say x0. Let s′1 := ([x0, x0]× [ymin(s1), ymax(s1)], l(s1), sc(s1), c(s1), sp(s1)).
We have s′1 ( s1, run lengthy(s′1, s2) = run lengthy(s1, s2) and dx(s′1, s2) < d. Thus we
have hora,d(s′1, s2) = false.

Now, assume xmax(s1) = xmin(s1). Because of diam(s1) > 1 we have ymax(s1) ≥
ymin(s1) + 2. Because a ≤ 1, some part of s1 of vertical length at most 1 is responsible for
run lengthy(s1, s2) ≥ a. If a = 1, a sub shape of vertical length 1 is necessary, otherwise
a sub shape of vertical length 0 suffices. In any case, there is a sub shape of vertical
length 1 with run length ≥ a. Formally: ∃s′1 ⊆ s1 : ymax(s′1) − ymin(s′1) = 1, xmin(s′1) =
xmin(s1), xmax(s′1) = xmax(s1). For this sub shape we also have s′1 ( s1 and dx(s′1, s2) < d.
Thus hora,d(s′1, s2) = false. Thus, hora,d is consistent.

Let now a > 1. We show that hora,d is not consistent. Let s1, s2 ∈ S two shapes
with run lengthy(s1, s2) = a, the same y-coordinates, zero length in x-direction and
dx(s1, s2) < d. Then we have hora,d(s1, s2) = false. Then for all s′1 ( s1, s′1 also has zero
length in x-direction but is shorter than s1 in y-direction. Thus run lengthy(s′1, s2) <
run lengthy(s1, s2) = a. Thus hora,d(s′1, s2) = true. Thus hora,d is not consistent.

We now need the notion of color dependency. In technologies where multiple colors
are used on a layer, diff-net rules depend on the colors of the shapes. More precisely, there
are different diff-net rules for shapes of different colors than for shapes of the same color.
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Further there might be rules that apply independently of the colors of the shapes. We
model this formally in the following way: Let

CD := {same, diff , arbitrary}

Let cd ∈ CD, col1, col2 ∈ COL. We define

cd(col1, col2) :=



true col1 = col2, cd = same

false col1 6= col2, cd = same

true col1 6= col2, cd = diff

false col1 = col2, cd = diff

true cd = arbitrary

Remark. Technically, we could also make rules dependent on both colors directly instead
of force that rules depend only on the fact if colors are equal or different. But we want to
stress the inherent symmetry of production processes producing each color with the same
technique and thus force symmetry in the colors.

For simpler notation we define the following function deciding if two shapes match
certain specifications: Let s1, s2 ∈ S, l ∈ L, sc1, sc2 ∈ SC, cd ∈ CD, sp1, sp2 ∈ SP. Then

applies(s1, s2, l, sc1, sc2, cd, sp1, sp2) := l(s1) = l(s2) = l ∧ {sc(s1), sc(s2)} = {sc1, sc2}
∧ cd(col(s1), col(s2)) ∧ {sp(s1), sp(s2)} = {sp1, sp2}

The following lemma shows that restricting any diff-net rule to a single combination
of shape classes, layer, color dependency and shape purposes again gives a diff-net rule.
This enables us to store and consider diff-net rules for each combination of shape class,
layer, color dependency and purposes individually.

Lemma 5.1.14. Let dr ∈ DR be a diff-net rule. Let l ∈ L, sc1, sc2 ∈ SC, cd ∈ CD and
sp1, sp2 ∈ SP. Let s1, s2 ∈ S. Then the following also defines a diff-net rule:

dr′(s1, s2) :=

{
dr(s1, s2) applies(s1, s2, l, sc1, sc2, cd, sp1, sp2)

true else

Further, if dr is invariant under representation, so is dr′.

Proof. dr′ is symmetric because dr and applies are symmetric in s1, s2.
dr′ is invariant under translation because dr is invariant under translation and applies

does not depend on r(s1) and r(s2).
Let b be the locality constant of dr restricted to shape classes {sc1, sc2}, layer l,

color dependency cd and purposes {sp1, sp2} (meaning that dr is only applied to shapes
s1, s2 such that {sc(s1), sc(s2)} = {sc1, sc2}, cd(col(s1), col(s2)), l(s1) = l(s2) = l and
{sp(s1), sp(s2)} = {sp1, sp2}). Then dr′ is local with locality constant b.

Thus dr′ is a diff-net rule.
Let now dr be invariant under representation. Then dr is monotone and consistent

and it suffices to show that dr′ is also monotone and consistent. Let s1, s
′
1, s2 ∈ S, s′1 ⊆
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s1, dr
′(s1, s2) = true. Because s′1 ⊆ s1, we have applies(s1, s2, l, sc1, sc2, cd, sp1, sp2) ⇔

applies(s′1, s2, l, sc1, sc2, cd, sp1, sp2). If applies(s′1, s2, l, sc1, sc2, cd, sp1, sp2) = false, we
have dr′(s′1, s2) = true. Otherwise, we have applies(s1, s2, l, sc1, sc2, cd, sp1, sp2) = true
and because dr′(s1, s2) = true also dr(s1, s2) = true. Because dr is monotone we get
dr(s′1, s2) = true and thus dr′(s′1, s2) = true. Thus dr′ is monotone.

Let now s1, s2 ∈ S, diam(s1) > 1, dr′(s1, s2) = false. Because dr′(s1, s2) = false,
we have applies(s1, s2, l, sc1, sc2, cd, sp1, sp2) = true and dr(s1, s2) = false. Because dr
is consistent, ∃s′1 ∈ S, s′1 ( s1, dr(s

′
1, s2) = false. Because by definition we also have

applies(s′1, s2, l, sc1, sc2, cd, sp1, sp2) = true we get dr′(s′1, s2) = false and dr′ is also con-
sistent.

The following lemma shows that we can take the Minkowski sum with an arbitrary
rectangle (depending on the shape class, layer and color) before applying a diff-net rule
and still obtain a diff-net rule. This includes moving shapes by a constant offset and
extending shapes by a constant in each direction and can be used for modeling a number
of more complicated restrictions in practice.

Lemma 5.1.15. Let dr ∈ DR be a diff-net rule. Let r : L × SC → R. Let s1, s2 ∈ S
Then the following also defines a diff-net rule:

dr′(s1, s2) := dr(s1 + r(l(s1), sc(s1)), s2 + r(l(s2), sc(s2)))

Further, if dr is invariant under representation, so is dr′.

Proof. dr′ is symmetric because dr is.
Let s1 ∈ S, s2 ∈ S, (x, y) ∈ Z2. Then we have dr′(s1 + (x, y), s2 + (x, y)) = dr(s1 +

(x, y)+r(l(s1), sc(s1)), s2+(x, y)+r(l(s2), sc(s2))) = dr((s1+r(l(s1), sc(s1)))+(x, y), (s2+
r(l(s2), sc(s2)))+(x, y)) = dr(s1 + r(l(s1), sc(s1)), s2 + r(l(s2), sc(s2))) = dr′(s1, s2). Thus
dr′ is invariant under translation.

Let m := maxl∈L,sc∈SC{xmax(r(l, sc)), ymax(r(l, sc)),−xmin(r(l, sc)),−ymin(r(l, sc))}.
Then let the locality constant of dr be b. Let s1, s2 ∈ S with dmax(s1, s2) > b+ 2m. Then
we have dmax(s1 + r(l(s1), sc(s1)), s2 + r(l(s2), sc(s2))) > b+ 2m− 2m = b. Thus we get
dr(s1 + r(l(s1), sc(s1)), s2 + r(l(s2), sc(s2))) = true and therefore dr′(s1, s2) = true. Thus
dr′ is also local with locality constant at most b+ 2m.

Let now dr be invariant under representation. Let S1, S
′
1, S2 ⊆ S,

⋃
s∈S1

r(s) =⋃
s∈S′

1
r(s), S1 ∪ S′1 homogeneous . Define T2 := {s2 + r(l(s2), sc(s2)) : s2 ∈ S2}. Let

r := r(l(S1), sc(S1)) = r(l(S′1), sc(S′1)). This is well defined because S1 ∪ S′1 is homo-
geneous. Let T1 := S1 + r, T ′1 := S′1 + r. We have

⋃
t∈T1

r(t) =
⋃

t∈T ′
1
r(t) because

the same holds for S1, S
′
1 and the union swaps with the Minkowski sum. Thus we have

dr′(S1, S2) =
∧

s1∈S1,s2∈S2
dr(s1 + r(l(s1), sc(s1)), s2 + r(l(s2), sc(s2))) =

∧
s1∈S1

dr(s1 +
r, T2) = dr(T1, T2) = dr(T ′1, T2) = dr′(S′1, S2). Thus dr′ is invariant under representa-
tion.

Remark. Usually, the above lemma is used for r : L × SC → R0 such that the original
shape is a subshape of the checked shape.

Remark. Shrinking shapes by some distance in any direction and then applying an invari-
ant under representation diff-net rule usually does not give a diff-net rule that is invariant
under representation.
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Lemma 5.1.16. Let dr1 and dr2 be two diff-net rules, s1, s2 ∈ S. Then dr(s1, s2) :=
dr1(s1, s2)∧ dr2(s1, s2) defines a diff-net rule. Further, if dr1 and dr2 are invariant under
representation, so is dr.

Proof. dr is symmetric because dr1 and dr2 are.
dr is invariant under translation, because dr1 and dr2 are.
Let b1 and b2 be the locality constants of dr1 and dr2. Then dr is local with locality

constant max{b1, b2}.
Let now dr1 and dr2 be invariant under representation. It suffices to show that dr

is monotone and consistent. Let s1, s
′
1, s2 ∈ S, s′1 ⊆ s1, dr(s1, s2) = true. Then we

have dr1(s1, s2) = true and dr2(s1, s2) = true. Thus we get dr1(s′1, s2) = true and
dr2(s′1, s2) = true and therefore dr(s′1, s2) = true. dr is monotone.

Let now s1, s2 ∈ S, diam(s1) > 1, dr(s1, s2) = false. We have dr1(s1, s2) = false
or dr2(s1, s2) = false. W.l.o.g we can assume dr1(s1, s2) = false. Then ∃s′1 ∈ S, s′1 (
s1, dr1(s′1, s2) = false. But then we also have dr(s′1, s2) = false and dr is consistent.

One more commonly used type of diff-net rules are center to center rules.

Definition 5.1.17. Let p ∈ R ∪ {∞}, 1 ≤ p ≤ ∞, d ∈ N, s1, s2 ∈ S and define:

c2cpd(s1, s2) :=

{
false dp(center(s1), center(s2)) < d

true else

These rules are usually used only on via layers for a very good reason, as the following
lemma shows.

Lemma 5.1.18. For all p ∈ R ∪ {∞}, 1 ≤ p ≤ ∞, d ∈ N, d > 0, c2cpd is a diff-net rule.
c2cpd is not monotone for any d.

Proof. c2cpd is symmetric and invariant under translation.
It is also local, because dp(center(s1), center(s2)) ≥ dmax(s1, s2).
c2cpd is not monotone for any d > 0: Let s1, s2 ∈ S be two shapes with ymin(s1) =

ymin(s2), ymax(s1) = ymax(s2), xmax(s1) = xmin(s2) = xmax(s2), xmin(s1)+2d = xmax(s1)
and attr(s1) = attr(s2). Then we have s2 ⊆ s1 and c2cpd(s1, s2) = true because dp(center(s1),
center(s2)) = d. But we have dp(center(s2), center(s2)) = 0 < d and thus c2cpd(s2, s2) =
false. Therefore, c2cpd is not monotone.

ymin(s1) = ymin(s2)

ymax(s1) = ymax(s2)
xmin(s1) xmax(s1) = xmin(s2) = xmax(s2)

d d

s2

s1

Above, we have seen that the conjunction of two invariant under representation diff-net
rules is again a diff-net rule that is invariant under representation. The following lemma
shows that the same is not true for the disjunction.
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Lemma 5.1.19. Let dr1 and dr2 be two diff-net rules, s1, s2 ∈ S. Then dr(s1, s2) :=
dr1(s1, s2) ∨ dr2(s1, s2) defines a diff-net rule. Further, if dr1 and dr2 are monotone, so
is dr. dr is not necessarily consistent even if dr1 and dr2 are.

Proof. dr is symmetric and invariant under translation because dr1 and dr2 are. Let b1
and b2 be the locality constants of dr1 and dr2. Then dr is local with locality constant
b ≤ min{b1, b2}. Thus dr is a diff-net rule.

Let dr1 and dr2 be monotone. Let s1, s
′
1, s2 ∈ S, s′1 ⊆ s1, dr(s1, s2) = true. W.l.o.g we

have dr1(s1, s2) = true. Because dr1 is monotone, we have dr1(s′1, s2) = true and thus by
definition dr(s′1, s2) = true. Thus dr is monotone.

Let sc1, sc2 ∈ SC, r : L × SC → R, r(l, sc) :=

{
[0, 0]× [0, 0] sc = sc1

[0, 0]× [5, 5] sc = sc2

. Consider the

following diff-net rules: dr1(s1, s2) := dist22(s1+r(l(s1), sc(s1)), s2+r(l(s2), sc(s2))), dr2 :=
dist22. dr1 and dr2 are both consistent. Let l ∈ L, c ∈ COL, sp ∈ SP. Define s2 = ([0, 0]×
[0, 1], l, sc2, c, sp) ∈ S, s1 = ([0, 0]× [2, 4], l, sc1, c, sp) ∈ S. We have diam(s1) = 2 > 1 and
dr(s1, s2) = dr1(s1, s2)∨dr2(s1, s2) = false. But all sub shapes of s1 which are not s1 itself
are: ([0, 0]× [2, 2], l, sc1, c, sp), ([0, 0]× [3, 3], l, sc1, c, sp), ([0, 0]× [4, 4], l, sc1, c, sp), ([0, 0]×
[2, 3], l, sc1, c, sp), ([0, 0]× [3, 4], l, sc1, c, sp). Thus we have ∀s′1 ( s1 : dr(s′1, s2) = true. dr
is not consistent.

Summarizing we now have a powerful framework to specify diff-net rules. We can
specify multiple rules for each combination of shape classes, layer and for same or different
colors individually. We can use horizontal, vertical and Euclidean rules as well as add
arbitrary extensions to any rule. This covers many rules used in practice on real designs.
Some other commonly used rules can be modeled efficiently by these rules without making
relevant errors in practice (see [40]).

In the next section we will see how we can use this framework to implement checking
of diff-net rules very efficiently based on the assumptions we made here. We see how
these assumptions play together with a number of optimizations commonly used during
detailed routing in particular and VLSI-design in general and why they are necessary for
computing shortest paths to route nets during detailed routing in Section 5.2.

5.2 Simple Diff-Net Rule Checking in BonnRouteDetailed

In this section we describe how diff-net rules are handled in BonnRouteDetailed. First we
describe a simple way to handle diff-net rules suitable for not run time critical uses. In
the next chapter we develop an optimized interface suitable for extensive use, e.g. during
path search.

BonnRouteDetailed uses an optimized data structure called the grid to store shapes
and sticks. We denote by SG ⊆ S the set of shapes that are currently stored in the
grid. For further details on this data structure we refer to [40]. BonnRouteDetailed
furthermore uses a very efficient parallelization framework which was first described in
[27]. This requires for each thread t ∈ T two sets of temporary shapes, one set of
shapes that are currently not considered for checking diff-net rules (e.g. because they
are pins of the same net that is currently routed and should not be checked against or
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because they have been ripped-up but not submitted yet) denoted by ISt ⊆ Sw ∪ Sp
and one set of shapes that currently have to be considered additionally for diff-net rule
checking (mainly consisting of new routes for different nets that have been found during
a rip-up sequence but not submitted yet) denoted by ASt ⊆ Sw. Let l ∈ L. We define
SCIS lt := {sc(s) : s ∈ ISt, l(s) = l} and SCAS lt := {sc(s) : s ∈ ASt, l(s) = l}. We use
these sets of shape classes to efficiently check diff-net rules in Section 5.3. We can easily
store these sets and update them when ISt or ASt are changed.

The by far most common use case of diff-net rule checking during detailed routing is
checking if a possible new shape meets all diff-net rules with respect to the already existent
shapes. We now define legality of a shape s ∈ S with respect to thread t ∈ T (with
respect to SG, ISt and ASt and diff-net rules DR ⊆ DR):

Definition 5.2.1.

s legalt := ∀dr ∈ DR, s′ ∈ (SG \ ISt) ∪ ASt : dr(s, s′) = true

This means that a shape is legal with respect to thread t if it is compatible with each
other shape currently on the chip (with consideration of ISt and ASt). We both use the
notation legalt and equivalently write legal with respect to thread t. We define legality
of a shape (without respect to any thread):

Definition 5.2.2.

s legal := ∀dr ∈ DR, s′ ∈ SG : dr(s, s′) = true

We use this thread-independent notation in Section 5.3.

Likewise, we define a stick st ∈ ST to be legal (with respect to thread t), if each
of its shapes is legal:

Definition 5.2.3.

st legalt := ∀s ∈ shapes(st) : s legalt

st legal := ∀s ∈ shapes(st) : s legal

Sometimes, a given net can not be routed without changing already routed nets. In
these cases, diff-net checking can ignore modifiable shapes of other nets. Still, diff-net
rules need to be checked correctly for all shapes that can not be modified.

Definition 5.2.4.

s legalt with rip-up := ∀dr ∈ DR, s′ ∈ (SG \ ISt) ∪ ASt, sp(s′) 6= wire : dr(s, s′) = true

s legal with rip-up := ∀dr ∈ DR, s′ ∈ SG, sp(s′) 6= wire : dr(s, s′) = true
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Definition 5.2.5.

st legalt with rip-up := ∀s ∈ shapes(st) : s legalt with rip-up

st legal with rip-up := ∀s ∈ shapes(st) : s legal with rip-up

Thus, a shape is legal with rip-up if it can be made legal by removing any number
of wire shapes from the chip.

Remark. In practice, some wires may not be modified during detailed routing. Definitions
5.2.4 and 5.2.5 (and the following algorithms) can easily be adapted to handle these cases.
We omit such details to simplify our notation.

By modeling diff-net rules according to Definition 5.1.3 we have made some assump-
tions about the structure of practical diff-net rules. We have assumed that diff-net rules
are always symmetric. This is very natural. The order in which two shapes are given
to the rule does not influence legality. We have further assumed that diff-net rules are
invariant under translation. This is also a natural requirement coming from practical use
cases. For example when a chip is designed hierarchically, legality of a configuration of
shapes should not depend on the local coordinate system. Legality of shapes within a
macro with regard to each other should not depend on the placement of the macro. Third
we have assumed that each diff-net rule is local (and implicitly assume that the locality
constants are small). This is necessary to make efficient detailed routing possible. If a
shape can influence other shapes far away, checking diff-net rules becomes too expensive
and parallelization becomes impossible. Thus these basic restrictions seem to be well cho-
sen and for the same reasons they are widely fulfilled in practice. Unfortunately we need
some further restrictions to make efficient detailed routing possible.

While constructing new wiring for a net, paths are searched on a certain graph con-
structed by checking legality of wire sticks for each edge individually (and this is necessary
to make efficient path search possible). The path has to be legal if and only if each edge is.
In different words, legality of the path should only depend on the metal it consists of, not
on the representation by individual wire sticks (but still it needs to be checked by checking
its individual shapes). For example if a wire stick is split into two substicks, the whole
stick should be legal if and only if both substicks are. Illustrations of this requirement can
be found in Figure 5.3 and 5.4. There is one exception, via middle shapes are naturally
represented in only one way within a path. Furthermore, vias of the same net usually
also have to fulfill diff-net rules, so different via shapes can never merge, they always stay
separate, single, rectangular shapes.

These requirements are fulfilled if and only if all diff-net rules (apart from those that
are only used for via middle shapes) are invariant under representation.

Requiring diff-net rules (apart from rules for via middle shapes) to be invariant under
representation has further benefits. Blockages, pins or any metal (apart from via middle
shapes which look very simple anyway, they are just one rectangle) can safely be repre-
sented in any way by shapes, as long as the total area (of parts with a given color, shape
class and purpose) stays the same. For example, one can represent them in an overlap



100 CHAPTER 5. CHECKING DIFF-NET RULES

Figure 5.3: Wire sticks might be split when they are accessed by another stick.

Figure 5.4: The grid used for path search influences checked shapes.

free form or maximize representation in a specific direction to store them more efficiently
(see for example [40], [18], [34] and [43]).

Therefore, BonnRouteDetailed can in principal support all diff-net rules that are in-
variant under representation (as defined in Definition 5.1.3 and 5.1.4) and that can be
efficiently stored and evaluated for two given shapes as well as arbitrary diff-net rules that
can be efficiently stored and evaluated for via middle shapes. In practice, a small number of
different types of such rules occur and are currently supported, mainly Euclidean distance
rules with an optional extension for both shapes and horizontal and vertical rules with an
optional extension. Furthermore, for via layers rules between the centers of two vias are
used. Supporting a new type of rule is very easy, as long as it meets the aforementioned
requirements.

Formally, let DR be the set of all diff-net rules on a chip. All these diff-net rules should
be given in a way that they can be evaluated in constant time for any two given shapes.
Furthermore, all diff-net rules that are not only used for via middle shapes need to be
invariant under representation. The set DR of relevant diff-net rules is given as input to
BonnRouteDetailed.

Remark. Note that for the rest of this chapter we assume for simplicity of notation that
there are no restrictions between shapes on different layers (such as for example inter-layer
via rules). If there are such restrictions, these can be added in a straightforward way.

In order to access relevant diff-net rules efficiently, one defines and stores diff-net rules
per layer and per combination of shape classes separately. This is possible because of
Lemma 5.1.14 and Lemma 5.1.16. Therefore, when checking diff-net rules for two shapes,
one needs to check only diff-net rules that apply for the combination of shape classes and
layer. In the following we will omit this detail but of course in practice it is important to
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check only relevant diff-net rules to achieve a good run time.
We will now describe a first simple method to check diff-net rules. The general proce-

dure to check a shape (or stick) for legality with respect to a thread t is very easy: For a
given shape s, calculate the area that can influence legality of this shape (this is always
bounded because all diff-net rules are by definition local). Then collect all shapes within
this area from the grid. Finally, for each of these collected shapes (say s′) and for each
relevant diff-net rule, check if s and s′ are legalt with respect to each other. A formal
description of this procedure can be found in Algorithm 5.2.1.

Algorithm 5.2.1: ShapeLegal

Input: s ∈ S, t ∈ T ,DR ⊆ DR, ripup allowed ∈ B
1 b := bsc(s),l(s)(DR)

2 r := r(s) + [−b, b]× [−b, b]
3 S := {s′ ∈ (SG \ ISt) ∪ ASt : r(s′) ∩ r 6= ∅, l(s′) = l(s)}
4 foreach s′ ∈ S : not ripup allowed or sp(s′) 6= wire do
5 foreach dr ∈ DR do
6 if dr(s, s′) = false then
7 return false

8 return true

Remark. In practice, the values bsc(s),l(s)(DR) can be precomputed for all possible layers
and shape classes such that line 1 only takes constant time. Further, as stated above, we
do not need to loop over all diff-net rules in DR, considering those relevant for the given
shapes (determined by their shape classes and layer) is sufficient.

To check a stick for legality with respect to a thread t, one simply checks each shape
of the stick separately as shown in Algorithm 5.2.2.

Algorithm 5.2.2: StickLegal

Input: stick ∈ ST , t ∈ T , DR ⊆ DR, ripup allowed ∈ B
1 foreach s ∈ shapes(stick) do
2 if not ShapeLegal(s, t, DR, ripup allowed) then
3 return false

4 return true

Remark. In practice, one should also check if a stick is not too close to the chip border,
lies on an allowed track and runs in an allowed direction. These checks are rather trivial,
so we omit them for simplicity.

Remark. In case of rip-up it might be useful to know the set of shapes that need to be
ripped-up. For example shapes of more critical nets might be more expensive to rip-up.
It is straightforward to modify Algorithm 5.2.1 and 5.2.2 such that they also output the
set of shapes that need to be ripped-up to make a stick or shape legal.

Before we prove correctness of Algorithm 5.2.2 and Algorithm 5.2.1, we formulate and
prove a simple lemma that we will use in the proof of the following theorem and in the
next section.
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Lemma 5.2.6. Let s ∈ S, DR ⊆ DR.

(a) Let b := bsc(s),l(s)(DR) and r := r(s) + [−b, b]× [−b, b]. Let so ∈ S with l(so) = l(s)
and r(so) ∩ r = ∅. Then for all dr ∈ DR we have dr(s, so) = true.

(b) Let further sc ∈ SC. Let further bsc := bsc(s),sc,l(s)(DR) and rsc := r(s)+ [−bsc, bsc]×
[−bsc, bsc]. Let further s′o ∈ S with l(s′o) = l(s) and sc(s′o) = sc and r(s′o) ∩ rsc = ∅.
Then for all dr ∈ DR we have dr(s, s′o) = true.

In words, all shapes outside r are legal with respect to s and all shapes outside rsc with
shape class sc are legal with respect to s.

Proof. Let s, DR, sc, b, bsc, r, rsc, so and s′o as in the lemma. We first note, that because
we have r(so) ∩ r = ∅, it follows that we have dmax(s, so) > b. Analogously, we also
get dmax(s, s′o) > bsc. The statement of the lemma follows directly from the definition of
bsc(s),l(s)(DR) and bsc(s),sc,l(s)(DR).

Now we prove the correctness of the algorithms.

Theorem 5.2.7. Algorithm 5.2.1 and Algorithm 5.2.2 correctly check if a stick or shape
is legal with respect to thread t (according to Definition 5.2.3 and 5.2.1) if ripup allowed
is false and correctly check if a stick or shape is legal with respect to thread t with rip-up
(according to Definition 5.2.5 and 5.2.4) if ripup allowed is true.

Proof. First, consider the case ripup allowed = false. Due to the assumption that there
are no restrictions between different layers, we need to check against shapes on the same
layer only. Let s ∈ S, t ∈ T ,DR ⊆ DR be the input of Algorithm 5.2.1 and let r ∈ R as
calculated in line 2 of Algorithm 5.2.1. Algorithm 5.2.1 checks correctly against all shapes
s′ in (SG \ISt)∪ASt such that r(s′)∩ r 6= ∅ with respect to all diff-net rules dr ∈ DR. It
remains to show that all other shapes do not need to be checked. Consider input shape s
and a shape s′ ∈ (SG \ ISt) ∪ ASt with r(s′) ∩ r = ∅. We can further assume l(s) = l(s′)
because of the assumption that there are no restrictions between shapes on different layers.
Let b as defined in line 1 of Algorithm 5.2.1. Lemma 5.2.6 (a) with so := s′ gives directly
∀dr ∈ DR : dr(s, s′) = true. Thus we do not need to check against s′ and Algorithm 5.2.1
works as desired.

Correctness of Algorithm 5.2.1 in the case ripup allowed = true follows from the fact
that the only difference to the case ripup allowed = false is that all shapes with shape
purpose wire are ignored. Precisely these are also excluded in Definition 5.2.4.

Algorithm 5.2.2 correctly checks if each shape of the stick is legal.

In this section, we have seen what kind of diff-net rules can be supported by Bonn-
RouteDetailed directly and why and how shapes and sticks can be checked for legality in
a straightforward way.

5.3 Optimized Diff-Net Rule Checking in BonnRouteDetailed

In this section, we present a more complex but highly optimized approach to check diff-net
rules used for run time critical code, such as the main path search of BonnRouteDetailed.



5.3. OPTIMIZED DIFF-NET RULE CHECKING IN BONNROUTEDETAILED 103

During path search, the vast majority of calls of the checking module are asking for
information about legality (with respect to some thread t) of wire sticks corresponding to
an edge of the track graph with a small number of different wire / via models colored by
the track color. Therefore, it is very beneficial if these frequent calls can be processed very
fast. Thus, BonnRouteDetailed uses an optimized data structure, called the fast grid, to
precompute and store information for these queries efficiently.

For a former similar approach, see [34], and [27] for aspects concerning its paralleliza-
tion. Our approach has a number of advantages over the version described in [34]. The
most important difference is that the approach in [34] makes the assumption that wires
in non-preferred direction are legal if both of their endpoints are. This was true in former
technologies but is more and more frequently violated in recent designs. In particular, the
optimized track patterns we describe in Chapter 4 always violate this assumption because
they do not contain tracks intersecting the power rails. Wires in non-preferred direction
crossing the power rails are never legal (apart from nets connecting to power of course), but
the two point-wise wires on their endpoints often are. Further, if optimized track patterns
contain fewer tracks than potentially possible between two power rails, the assumption of
[34] is also frequently violated. Our approach does not need such an assumption at all.
Another difference is that we implement our approach based on the grid data structure
described in Section 3.4, whereas [34] uses a fundamentally different approach to store
metal shapes. Unlike [34], we discuss the handling of colored wires and aspects of efficient
parallelization, incorporating our fast grid data structure in the parallelization framework
first described in [27]. To this end, we store more detailed information in the fast grid
(four states instead of three) and choose a different implementation (based on arrays of
arrays instead of binary search trees).

The basic concept works as follows: For each edge of the track graph, we precom-
pute and store information with which wire or via models the edge can be used thread-
independently (that means not taking into account the shapes in ASt and ISt).

We will now describe this data structure in detail and then design an algorithm for
computing thread-dependent legality from this precomputed thread-independent informa-
tion very fast. First, we formalize the track graph and related notation.

Definition 5.3.1. Let TRl (l ∈ Lwiring) be the tracks of a chip. For simplicity of
notation, we define: TR−2 := ∅ and TRlmax+2 := ∅. Then we define the track graph
G = (V,E) as follows:

V :=
⋃

l∈Lwiring

Vl

E :=
⋃

l∈Lvia

Ev
l ∪

⋃
l∈Lwiring

Ex
l ∪ E

y
l

where for l ∈ Lwiring define:

Vl :=

{
(x, y, l) : y ∈ TRl, x ∈ TRl−2 ∪ TRl+2 pref (l) = horizontal

(x, y, l) : x ∈ TRl, y ∈ TRl−2 ∪ TRl+2 pref (l) = vertical
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and:

Ey
l := {{(x, ymin, l), (x, ymax, l)} ∈ P2(V ) : ymin < ymax, @y′ : ymin < y′ < ymax,

(x, y′, l) ∈ V }

Ex
l := {{(xmin, y, l), (xmax, y, l)} ∈ P2(V ) : xmin < xmax,@x′ : xmin < x′ < xmax,

(x′, y, l) ∈ V }

For l ∈ Lvia define:

Ev
l := {{(x, y, l − 1), (x, y, l + 1)} : (x, y, l − 1), (x, y, l + 1) ∈ V }

For simplicity of notation, define:

Ev :=
⋃

l∈Lvia

Ev
l

Ew :=
⋃

l∈Lwiring

Ex
l ∪ E

y
l

Let e ∈ E, e = {(xmin, ymin, lmin), (xmax, ymax, lmax)}, xmin ≤ xmax, ymin ≤ ymax, lmin ≤
lmax. For e ∈ Ew we have lmin = lmax and can thus define l(e) := lmin. For e ∈ Ev we
have lmin + 2 = lmax, xmin = xmax and ymin = ymax and can thus define x(e) := xmin,
y(e) := ymin and l(e) := lmin + 1. For e ∈ Ew, define further r(e) ∈ Rstick by r(e) :=
[xmin, xmax]× [ymin, ymax].

The vertices of this track graph are the points where a track on some wiring layer
intersects a track on a neighboring wiring layer. The set of edges consists of three types of
edges: via edges, horizontal and vertical edges. Via edges connect vertices on neighboring
wiring layers (this means, we have a via edge wherever tracks on neighboring layers inter-
sect). Vertical and horizontal edges connect vertices on the same layer that differ only in
either x- or y-coordinate and do not have any vertex in between. Vertical and horizontal
edges are called wire edges. An illustration of the track graph can be found in Figure 5.5.

On colored layers, most wires are colored in a simple way. For each wire and via model
and each track, a preferred color is defined. Then almost all wires and vias are colored
by this preferred color. Only if local coloring problems arise (for example due to input
metal not following this coloring scheme), a small number of wires and vias are colored
differently. Therefore, the vast majority of legality queries during the path search uses the
preferred colors. In the fast grid, we store information only for the preferred colors to save
memory. The few queries that use non-preferred colors can be answered by calculating
legality from the grid.

To formalize this approach, we define for each edge and wire or via model the colors
used by the fast grid. In practice these will not depend on the individual edge but only
on the model and the track on which the edge is located on.
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Figure 5.5: Track graph for two wiring and one via layers. Tracks are marked by black
dotted lines, via edges and edges in x- and y-direction are drawn as green, cyan and orange
dashed arrows respectively. For each type, one exemplary edge is highlighted.

Definition 5.3.2. Let ew ∈ Ew and wm ∈ WM. Let fgc(ew, wm) ∈ COL be the color
used by the fast grid for the edge ew with wire model wm.

Let further ev ∈ Ev and vm ∈ VM. Let fgcb(ev, vm), fgcm(ev, vm) and fgct(ev, vm) ∈
COL the colors used by the fast grid for the edge ev with via model vm for the bottom,
middle and top shape.

For the fast grid, we define the wire stick corresponding to an edge of the track
graph in the following way:

Definition 5.3.3. Let ev ∈ Ev and vm ∈ VM. Define stick(ev, vm) ∈ VS :

stick(ev, vm) := (x(ev), y(ev), l(ev), vm, fgcb(ev, vm), fgcm(ev, vm), fgct(ev, vm))

Let further ew ∈ Ew and wm ∈ WM. Define stick(ew, wm) ∈ WS:

stick(ew, wm) := (r(ew), l(ew), wm, fgc(ew, wm))

Now, we continue to describe how we optimize diff-net rule checking in BonnRoute-
Detailed. In order to use precomputed information in the most efficient way, we do not
only precompute if a stick is legal (with respect to the current state of the chip and inde-
pendent of the threads) but also if this can possibly change in the future. There are four
alternatives. They correspond to three different types of shapes that can make a given
stick illegal (and the fact that it can also be legal of course). Some shapes can be removed
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from the chip (such as most shapes corresponding to wires). Some shapes can not be re-
moved, but they are not relevant in some cases (such as pin shapes, they are not relevant
when checking sticks of the same net that access them), we say they can be ignored. Some
shapes are always relevant and can not be modified (such as most blockages).

Definition 5.3.4. Define the set of possible extended legality states:

ELS := {legal, illegal by removable, illegal by ignorable, always illegal}

Legal means that something is currently legal. This can of course change when new
sticks are added to the chip. The second state, illegal by removable means that some-
thing is currently illegal, but every object that makes it illegal could be removed from
the chip. The third state illegal by ignorable means that something is illegal, everything
that makes it illegal can possibly be ignored (or removed from the chip) but not every-
thing that makes it illegal can be removed from the chip. The last state always illegal
means that something is always illegal and that can never change. To simplify notation,
define a total order on ELS by the following relations: legal < illegal by removable <
illegal by ignorable < always illegal. Furthermore, we define a function mapping a shape
purpose to the appropriate extended legality state:

Definition 5.3.5. Let msp : SP → ELS be defined by

msp(pin) := illegal by ignorable

msp(wire) := illegal by removable

msp(blockage) := always illegal

The intention of this definition is that the extended legality state of a shape is the
maximum over all shapes s′ that make it illegal of msp(sp(s′)).

Now we can define the extended legality state of a shape:

Definition 5.3.6. Let DR ⊆ DR be all diff-net rules of a chip. Define els : S → ELS by

els(s) :=

{
legal s legal

maxs′∈SG:∃dr∈DR:dr(s,s′)=falsemsp(sp(s
′)) s not legal

Remark. In practice, there are other reasons why a shape may be always illegal. For
example it is too close to the chip border, lies on a forbidden track or goes in the wrong
direction. For these cases, the shape can easily be marked as always forbidden. We omit
details here to simplify the notation.

Remark. In practice, sometimes wires are fixed on a chip, meaning that they may not
be modified. These can be treated like pins but for simplicity of notation we do assume
here that all wires may be modified.

We extend the definition of the extended legality state to sticks in the obvious way:

Definition 5.3.7. Let DR ⊆ DR be all diff-net rules of a chip. Define els : ST → ELS
by

els(st) := max{s ∈ shapes(st) : els(s)}
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On many chips, only very few wire and via models are used for most of the wiring
while the other wire and via models are used for very little wiring. We select a small set
of the most frequently used wire and via models to store precomputed information for
in order to reduce memory usage and optimize performance. If wire or via models are
used very often, the reduction in checking run time highly overcompensates the required
additional run time to compute and update the data. For rarely used wire and via models,
the overhead to store precomputed information is larger than the benefit in checking run
time. Thus we define on each wiring layer a set of wire models and on each via layer a set
of via models to store precomputed information for.

Definition 5.3.8. Let fgwm : Lwiring → P(WM) such that for l ∈ Lwiring, fgwm(l)
are the wire models on layer l for which fast grid information is stored. Let
fgvm : Lvia → P(VM) such that for l ∈ Lvia, fgvm(l) are the via models on layer l
for which fast grid information is stored.

Remark. In practice, the set of wire models used in preferred direction and in the other
direction differs on some layers. We omit this distinction to simplify the notation. It can
be incorporated into the algorithms in a straight-forward way.

Now we can define the information that we store in the fast grid (we call it the fast
grid information).

Definition 5.3.9. Let ew ∈ Ew and wm ∈ fgwm(l(ew)). Define fgi(ew, wm) ∈ ELS by:

fgi(ew, wm) := els(stick(ew, wm))

Let further ev ∈ Ev and vm ∈ fgvm(l(ev)). Define fgi(ev, vm) ∈ ELS by:

fgi(ev, vm) := els(stick(ev, vm))

For each edge in the track graph and each wire or via model that we consider for the
fast grid, the fast grid stores the extended legality information of the stick corresponding
to the edge (with the colors used for the fast grid).

If the considered wire or via model is clear from the context, we omit it and use terms
like the stick of an edge, the fast grid information of an edge and the shapes of an edge
(which are the shapes of the stick of the edge).

Remark. In practice, we store the fast grid information slightly differently. At each vertex
of the track graph, we store information for some adjacent edges. At a vertex, we store
information for the wire edges in positive x- and y-direction (in relation to the vertex). For
a via edge, we separate the information in two parts. At the top vertex we store extended
legality information for the top pad and at the bottom vertex we store extended legality
information for the bottom pad and the via middle shape. To get the full extended legality
information of the edge, we simply take the maximum of the two stored values.

For each track on each layer in each sub-grid we store a sorted array of maximum
intervals such that for all vertices in each interval the fast grid information is equal. In
this way, the fast grid information is effectively compressed. The fast grid information is
often constant for many consecutive vertices along a given track. This is the reason why
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we split via edges, the extended legality information for the bottom pad is often constant
in long intervals on the track on the lower layer of the via whereas the extended legality
information of the top pad is often constant in long intervals on the track on the higher
layer of the via which runs in orthogonal direction to the track on the lower layer. Therefore
the length of the intervals can be maximized by splitting via edges. The choice on which
layer we store the information for the via middle shapes is arbitrary. Figure 5.6 shows an
example of split fast grid information for vias and the combined legality information.

We chose an array rather than a balanced binary search tree to store the intervals.
Due to the constant maximum size of the array (because the sub-grids have a constant
maximum size) and the fact that changes to the data are much less frequent than queries,
an array results in better run time. Further, a balanced search tree has a considerable
memory overhead which an array does not have.

Remark. To further reduce memory consumption, BonnRouteDetailed uses a highly op-
timized handcrafted implementation of the fast grid that can only store data for a constant
number of wire / via models on each layer. We choose the wire / via models with the
highest estimated wiring length on each layer but only if they are used by at least some
percentage of the total wiring on the given layer. This has proven to be more efficient
than supporting an arbitrary number of wire / via models on most real-world instances.
On all layers of all our test instances, more than 99% of the wiring length consist of wires
for which precomputed information is available. See Section 6.3 for experimental results.

We will now describe in detail how the fast grid information can be computed and
kept up to date during detailed routing. We start with an empty chip, thus everything is
legal. We initialize fast grid information accordingly. Algorithm 5.3.1 formalizes this. It
takes as an additional argument a region that it should initialize. This can be set to the
whole chip area to initialize data for the whole chip but we will later reuse this function
to update some data locally and thus need this parameter.

Algorithm 5.3.1: InitializeEmptyFastGrid

Input: L ⊆ L, r ∈ R
1 foreach ew ∈ Ew such that l(ew) ∈ L and r(ew) ∩ r 6= ∅ do
2 foreach wm ∈ fgwm(l(ew)) do
3 fgi(ew, wm) := legal

4 foreach ev ∈ Ev such that l(ev) ∈ L and (x(ev), y(ev)) ∈ r do
5 foreach vm ∈ fgvm(l(ev)) do
6 fgi(ev, vm) := legal

Remark. Note that in practice some positions are blocked by the chip border or because
some wire and via models are not allowed at certain positions. We can easily adapt
Algorithm 5.3.1 to reflect these restrictions.

Remark. Note that in practice due to the way we store the fast grid information, in
Algorithm 5.3.1 it is not necessary to explicitly set the fast grid information for each edge,
but for the intersection of each track on each layer in each sub-grid with the given area
we set one interval with the corresponding information.
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(a) Legality of the bottom and middle shapes: 16 intervals (stored on the lower
layer).

(b) Legality of the top shapes: 23 intervals (stored on the upper layer).

(c) Legal via positions: 94 horizontal intervals or 108 vertical intervals.

Figure 5.6: Fast grid legality information for vias. Splitting the legality information for
vias into two parts and storing them separately results in significantly fewer intervals.
Blue rectangles are removable shapes. Gray rectangles are power rails. Orange rectangles
indicate vias between the two relevant layers. The small circles show the (partial) fast
grid information for via edges on the given layer for a single via model. Green indicates
legal, red indicates illegal by removable and black indicates illegal by ignorable.
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After initializing the empty chip, we iteratively add each metal shape to the fast grid
and update its values accordingly. When we add a shape, we find all edges of the track
graph where the new shape makes corresponding sticks illegal and update the stored
legality information there. As long as involved diff-net rules have small locality constants,
this can be implemented efficiently. Algorithm 5.3.2 gives a formal description of this
procedure. Note that Algorithm 5.3.2 also takes a region as an additional argument. It
only updates values of edges that intersect that region. This is later needed for efficiency
reasons. If there are no restrictions what to update, it can simply be set to the whole chip
area.

Algorithm 5.3.2: FastGridAdd

Input: s ∈ S,DR ⊆ DR, L ⊆ L, ru ∈ R

1 L′ :=

{
{l(s)− 1, l(s), l(s) + 1} ∩ L l(s) ∈ Lwiring

{l(s)} l(s) ∈ Lvia
2 foreach l ∈ L ∩ L′ do
3 if l ∈ Lwiring then
4 foreach wm ∈ fgwm(l) do
5 b := bsc(s),sc(wm),l(DR)

6 r := (r(s) + [−b, b]× [−b, b] +mirror(r(wm))) ∩ ru
7 foreach ew ∈ Ew such that l(ew) = l and r(ew) ∩ r 6= ∅ do
8 if ∃dr ∈ DR : dr(s, shape(stick(ew, wm))) = false then
9 fgi(ew, wm) := max(fgi(ew, wm),msp(sp(s)))

10 else
11 foreach vm ∈ fgvm(l) do

12 scl(s)(vm) =


scb(vm) l = l(s) + 1

scm(vm) l = l(s)

sct(vm) l = l(s)− 1

13 rl(s)(vm) =


rb(vm) l = l(s) + 1

rm(vm) l = l(s)

rt(vm) l = l(s)− 1

14 b := bsc(s),scl(s)(vm),l(s)(DR)

15 r := (r(s) + [−b, b]× [−b, b] +mirror(rl(s)(vm))) ∩ ru
16 foreach ev ∈ Ev such that l(ev) = l and (x(ev), y(ev)) ∈ r do
17 if ∃dr ∈ DR : dr(s, shapel(s)(stick(ev, vm))) = false then

18 fgi(ev, vm) := max(fgi(ev, vm),msp(sp(s)))

Remark. As stated above, in line 8 and line 17 it suffices to consider all diff-net rules
that are relevant for the given shape classes, colors and layers of the shapes instead of all
diff-net rules.

Remark. In practice, in line 7 and line 16 of Algorithm 5.3.2 it is not necessary to consider
each edge in the track graph individually. Instead, for each track in preferred direction
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and each diff-net rule one can calculate in constant time the interval on this track that
is forbidden by the added shape and the given diff-net rule for a certain type of edge.
This interval can then be used to update the stored array of intervals with equal fast grid
information directly.

Lemma 5.3.10. Let s ∈ S, DR ⊆ DR, L ⊆ L and ru ∈ R. Let further ew ∈ Ew,
l(ew) ∈ L, r(ew) ∩ ru 6= ∅, wm ∈ fgwm(l(ew)), ev ∈ Ev, l(ev) ∈ L, (x(ev), y(ev)) ∈ ru,
vm ∈ fgvm(l(ev)). FastGridAdd updates fgi(ew, wm) and fgi(ev, vm) correctly if s is
added to SG. In particular, if L = L and ru = A, all precomputed checking information
is correctly updated.

Remark. In case that L in Lemma 5.3.10 and in the input of Algorithm 5.3.2 only contains
wiring or via layers, the algorithm only updates fast grid information on those wiring or
via layers. In this case via or wire edges ev or ew as in Lemma 5.3.10 do not exist and
the corresponding part of the lemma does not apply. The other part of the lemma is still
valid.

Proof. To prove the statement, we need to show that fgi is correctly updated for all
combinations of wire edges and wire models as well as all combinations of via edges and
via models. We do this in two steps. First, we show that if a combination of edge and
model is considered in line 8 or line 17, then the corresponding fast grid information is
correctly updated (a). Second, we show that in line 8 and 17 of Algorithm 5.3.2 all relevant
combinations of edge and model are considered (b).

a) To show that each considered combination of edge and model is correctly updated,
we first consider the definition of fgi , the fast grid information. The fast grid information
of an edge is the maximum of the extended legality states of all the shapes of the edge.
These extended legality states in turn are the maximum of msp(sp(s′)) over all s′ in the
grid such that s′ makes the shape of the edge illegal (or legal if no such shape exists).
So in other words, the fast grid information of the edge is the maximum of msp(sp(s′))
over all shapes s′ that make the stick of the edge illegal (or legal if the stick of the edge
is legal). Therefore, if a new shape s is added to the grid SG, the fast grid information of
any edge can only increase. More specifically, it will remain the same if the stick of the
edge is legal with respect to the new shape and it will become the maximum of its original
value and msp(sp(s)) if the stick of the edge is illegal with respect to s.

There is one more detail that we need to consider. Due to the assumption that there
are no restrictions between shapes on different layers, for an edge it suffices to check the
shape that is on the same layer as the new shape s (if it exists). All other shapes of the
edge are legal with respect to the new shape s anyway. This is exactly what is done in
lines 8, 9, 17 and 18 of Algorithm 5.3.2. If there is a diff-net rule that makes the shape
on l(s) of the edge illegal, update the stored fast grid information to the maximum of its
original value and msp(sp(s)).

b) Now we show that all relevant combinations of edge and model are considered in
line 8 and line 17 of Algorithm 5.3.2. First, we note that the correct set of layers is
considered. If the new shape is a shape on a via layer, then only legality of via edges on
the same layer can be affected. If s is a shape on a wiring layer, then legality of edges
on the same wiring layer and of via edges on adjacent via layers can be affected because
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exactly these edges have shapes on l(s). Therefore, the set L′ calculated in line 1 of
Algorithm 5.3.2 is the correct set of layers to consider edges on.

Next, we consider the update restrictions L and ru. If they are the whole set of layers
and the whole chip area, they have no effect and can be ignored. Otherwise, they restrict
the set of edges that are considered. More precisely, exactly all edges that are not on a
layer contained in L and all edges which do not intersect ru are omitted during the update.
This is consistent with the lemma, which only makes a statement about edges on a layer
contained in L and intersecting ru. Therefore, we can restrict ourselves to the case where
L = L and ru = A.

Next, we note that for each relevant layer, all via / wire models for which fast grid
information is stored on that layer are considered.

It remains to show that on each layer and for each wire / via model, edges in the
correct area are considered. Note that for an edge that is considered, only the shape on
the layer l(s) of the new shape is relevant. In line 12 and line 13 of Algorithm 5.3.2 the
shape class and the overhang of the shape over the stick of the considered edges is correctly
calculated. In line 5 and line 14, b is defined as the b of the diff-net rules with respect
to the shape class and layer of the new shape s and the shape class of the edges on layer
l(s). Lemma 5.2.6 (b) states that for the new shape s with shape class sc(s) and on layer
l(s), all shapes with the considered shape class outside of r(s) + [−b, b]× [−b, b] are legal
with respect to s and thus do no need to be considered. It follows that only edges which
intersect r(s)+[−b, b]×[−b, b]+mirror(r(wm)) or r(s)+[−b, b]×[−b, b]+mirror(rl(s)(vm))
respectively can be relevant when updating the fast grid information for the new shape s.
Therefore, Algorithm 5.3.2 updates all relevant edges, which concludes the proof.

When we remove a shape, more work has to be done. We can not simply update nearby
grid locations just by looking at the removed shape. We do not have the information if a
location that was previously forbidden by the removed shape is still forbidden by a different
shape or if it is now legal. Therefore, we first need to calculate the region that was affected
by the removed shape. We call this region the update area. Then we calculate the region,
called the collect area, where shapes can affect the update area. Then we find all shapes
in the collect area, re-initialize the fast grid data in the update area and recalculate the
values for the update area by re-adding each collected shape (and only updating values
inside the update area). Figure 5.7 illustrates the removal of a via shape.

This of course takes much more run time than adding a shape but shapes are added
much more often than removed. This procedure is described formally in Algorithm 5.3.3.
In practice, on our testbed, there are roughly eight times as many shapes added to the
fast grid as removed and the total run time for all remove operations is factor 1.5 larger
than the total run time for all add operations. Both run times are negligible compared to
the rest of the detailed router.
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Algorithm 5.3.3: FastGridRemove

Input: s ∈ S,DR ⊆ DR
1 if l(s) ∈ Lwiring then
2 Lupdate := {l(s)− 1, l(s), l(s) + 1} ∩ L
3 Lcollect := {l(s)− 2, . . . , l(s) + 2} ∩ L
4 rmax := bbox({r(wm) : wm ∈ fgwm(l(s))} ∪ {rb(vm) : vm ∈

fgvm(l(s) + 1)} ∪ {rt(vm) : vm ∈ fgvm(l(s)− 1)})
5 SCupdate := {sc(wm) : wm ∈ fgwm(l(s))} ∪ {scb(vm) : vm ∈

fgvm(l(s) + 1)} ∪ {sct(vm) : vm ∈ fgvm(l(s)− 1)}
6 else
7 Lupdate := {l(s)}
8 Lcollect := {l(s)− 1, l(s), l(s) + 1} ∩ L
9 rmax := bbox({rm(vm) : vm ∈ fgvm(l(s))})

10 SCupdate := {scm(vm) : vm ∈ fgvm(l(s))}
11 b := max{bsc(s),sc,l(s)(DR) : sc ∈ SCupdate}
12 rupdate := r(s) + [−b, b]× [−b, b] +mirror(rmax)
13 InitializeEmptyFastGrid(Lupdate,rupdate)
14 STupdate := {stick(e, vm) : e ∈ Ev, l(e) ∈ Lupdate, (x(e), y(e)) ∈ rupdate, vm ∈

fgvm(l(e))} ∪ {stick(e, wm) : e ∈ Ew, l(e) ∈ Lupdate, r(e) ∩ rupdate 6= ∅, wm ∈
fgwm(l(e))}

15 Supdate :=
⋃

st∈STupdate
{shapes(st)}

16 foreach l ∈ Lcollect do
17 rcollect := bbox({r(s′) + [−b, b]× [−b, b] : s′ ∈ Supdate, l(s′) = l, b = bsc(s′),l(DR)})
18 foreach s′ ∈ SG : l(s′) = l, r(s′) ∩ rcollect 6= ∅ do
19 FastGridAdd(s′, DR, Lupdate, rupdate)

Remark. In practice, we do not compute the sets STupdate and Supdate of sticks and shapes
explicitly. We only need them to determine the collect areas. Due to the regular structure
of the grid, the collect areas can easily be calculated without explicitly enumerating all
sticks and shapes in the update area.

Lemma 5.3.11. Algorithm 5.3.3 updates the precomputed checking information correctly.
More precisely: Let s ∈ S, DR ⊆ DR, ew ∈ Ew, wm ∈ fgwm(l(ew)), ev ∈ Ev,
vm ∈ fgvm(l(ev)). FastGridRemove updates fgi(ew, wm) and fgi(ev, vm) correctly if
s is removed from SG (assuming that in line 18 the removed shape is not in the grid
anymore).

Proof. Algorithm 5.3.3 works in two steps. First, it calculates an update area and update
layers such that the removed shape s can only influence the fast grid information of edges
that intersect the update area and lie on the update layers. It re-initializes all the fast
grid information in that area on these layers for an empty grid. Second, it determines the
set of collect layers and collect areas where shapes may influence fast grid information of
edges in the update area on the update layers. Then it calls FastGridAdd for all shapes
intersecting the collect areas on the collect layers but only updates fast grid information
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(a) Fast grid information before the shape marked in orange on a via layer is
removed.

(b) Fast grid information after the shape on a via layer is removed and the
update area is reinitialized. Shapes marked in orange need to be re-added to
the fast grid.

(c) Fast grid information after all relevant shapes have been re-added to the fast
grid.

Figure 5.7: Removal of a via shape on a via layer. This picture illustrates the different
steps of Algorithm 5.3.3. Blue rectangles are removable via shapes. The gray rectangle is a
blockage shape. The small circles show the fast grid information for via edges on the given
layer for a single via model. Green indicates legal, red indicates illegal by removable and
black indicates always illegal. The black rectangles in (b) indicate the update and the
collect area.
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inside the update area and on the update layers. Like this, all information inside the
update area on the update layers is correctly recomputed (because Algorithm 5.3.2 is
correct) and any other fast grid information is not changed (which is correct because it
is still valid). Now we prove that the first step (a) and the second step (b) are executed
correctly by the algorithm.

a) First, we prove that the update area and layers are calculated correctly. If the new
shape s is located on a via layer, it can only influence the fast grid information of via
edges on the same layer. If the new shape is located on a wiring layer, it can influence the
fast grid information on the same wiring layer and adjacent via layers. Therefore, Lupdate

is set correctly in line 2 and line 7.

In line 5 and line 10, the set SCupdate of all shape classes on layer l(s) of all fast
grid wire / via models is calculated. Lemma 5.2.6 (b) states that all shapes with shape
classes in SCupdate which do not intersect r(s) + [−b, b]× [−b, b] (with b as in line 11 of the
algorithm) are legal with respect to s. Because rmax (as calculated in line 4 and line 9) is
the maximum overhang of the shape over the stick of any fast grid model on layer l(s), it
follows that the extended legality state of all edges (with fast grid wire / via models and
the colors used by the fast grid) that do not intersect rupdate is not influenced by s. Thus
fast grid information outside rupdate or on any other layers than Lupdate does not need to
be recalculated. Hence the update area and layers are calculated correctly.

b) Now we prove that the collect layers and areas are calculated correctly. To update
the fast grid information of a wire edge, only shapes on the same layer are relevant. To
update the fast grid information of a via edge, shapes on the via layer and the two adjacent
wiring layers are relevant. Therefore, for each via layer in the set of layers to update Lupdate

also the two adjacent wiring layers have to be added to the set of layers to collect shapes
on Lcollect. Lcollect is correctly calculated in line 3 and line 8.

In line 14 and line 15 all sticks and shapes of all edges for which the fast grid information
needs to be updated are collected in the sets STupdate and Supdate. Because the fast grid
information of an edge depends only on the extended legality state of all its shapes, exactly
all shapes that can influence legality of any of the shapes in Supdate need to be re-added
to the fast grid.

Next, we note that in the loop in line 16, all layers on which shapes can be contained
in Supdate are traversed. According to Lemma 5.2.6 (a), in line 17 the bounding box of the
areas in which any shape can influence legality of any of the shapes in Supdate is computed.
In other words, all shapes outside the calculated region rcollect can not influence legality
of any of the shapes in Supdate and thus can not influence any of the fast grid information
that needs to be recomputed. Last, in line 18 and line 19, all shapes in the calculated
region are added to the fast grid, which concludes the proof.

Now we need a way to use the precomputed fast grid information to determine legality
of wire sticks during detailed routing. Note that the precomputed fast grid information is
thread-independent, meaning it does not reflect the thread specific shapes in ASt and ISt.
Therefore, when checking legality of a shape with respect to some thread t one can only
use fast grid information for locations where legality is not influenced by shapes in ASt
and ISt (either because there is no nearby shape in ASt and ISt or because legality is
already determined independently of ASt and ISt). The following two algorithms provide
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thread-dependent legality information for wires and vias based on the thread-independent
precomputed fast grid data. First, we describe an algorithm computing thread-dependent
legality information for vias and discuss it in detail.

Algorithm 5.3.4: LegalVia

Input: t ∈ T ,DR ⊆ DR, e ∈ Ev, vm ∈ VM, ripup allowed ∈ B
1 if vm ∈ fgvm(l(e)) then
2 fgi := fgi(e, vm)
3 S := shapes(stick(e, vm))
4 fgaa := true
5 fgai := true
6 foreach s ∈ S do

7 ba := max{bsc(s),sc,l(s)(DR) : sc ∈ SCAS l(s)t }
8 bi := max{bsc(s),sc,l(s)(DR) : sc ∈ SCIS l(s)t }
9 fgaa := fgaa ∧ ({s′ ∈ ASt : l(s′) =

l(s), r(s′) ∩ (r(s) + [−ba, ba]× [−ba, ba]) 6= ∅} = ∅)
10 fgai := fgai ∧ ({s′ ∈ ISt : l(s′) = l(s), r(s′) ∩ (r(s) + [−bi, bi]× [−bi, bi]) 6=

∅} = ∅)
11 if fgi = always illegal or (fgi = illegal by ignorable and fgai) or

(fgi = illegal by removable and fgai and not ripup allowed) then
12 return false

13 else if not ((fgi = legal and fgaa) or (ripup allowed and
fgi = illegal by removable and fgaa)) then

14 return StickLegal(stick(e, vm), t,DR, ripup allowed)

15 else
16 return true

17 else
18 return StickLegal(stick(e, vm), t,DR, ripup allowed)

Theorem 5.3.12. Let t ∈ T , DR ⊆ DR, e ∈ Ev, vm ∈ VM, ripup allowed ∈ B. Let
ripup allowed = false (ripup allowed = true).

Then LegalVia(t,DR, e, vm, ripup allowed) = true if and only if stick(e, vm) is
legalt (with rip-up).

Proof. First, we note that if vm /∈ fgvm(l(e)), the theorem follows from Theorem 5.2.7.
Therefore we can restrict to the case that vm ∈ fgvm(l(e)).

On a high level, Algorithm 5.3.4 works as follows: First, it queries the precomputed
fast grid information (a). This is not necessarily sufficient, because the precomputed fast
grid information is thread-independent and the query is supposed to answer the question
of legality with respect to thread t. Therefore, the algorithm checks if there are any
temporary shapes of thread t in ASt or ISt that can potentially influence legality of the
queried edge (b). Last, it is carefully decided if the precomputed checking information
is valid or if a query to StickLegal needs to be made and the corresponding result is
returned (c).
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a) In line 2 the precomputed fast grid information is queried. By definition, this value
is the extended legality state of e if ASt and ISt are empty.

b) Next, ASt and ISt need to be taken into account. The algorithm iterates over all
shapes s of stick(e, vm) and calculates the maximum distance where any shape in ASt
and ISt can influence the legality of s (taking into account the shape class of s and the set
of shape classes currently present in ASt and ISt). It stores in fgaa and fgai if any shape
in ASt and ISt is close enough to s that it can influence legality of s. This is calculated
correctly by Lemma 5.2.6 (b). Therefore, after the loop beginning in line 6 is complete,
fgaa and fgai store correctly, if any shape in ASt and ISt can influence legality of any
shape in S.

c) Last, we need to verify that the correct return value is determined based on the
information computed in lines 2 to 10 (or that StickLegal is called when it is necessary).
First, consider the three cases in line 11 in which the algorithm returns false in line 12. If
fgi = always illegal ASt and ASt do not matter at all, the edge e is illegal in any case.
If fgi = illegal by ignorable, e is illegal by something that could be ignored (but not be
ripped-up) by the current thread t, but because fgai = true we know that we have checked
that this is not the case, there is nothing close enough that is currently ignored. Thus
the precomputed fast grid information is still valid and we can also return false. If fgi =
illegal by removable, e is illegal by something that can be removed. Because everything
that can be removed also can be ignored (by definition), it could be ignored. Because
fgai = true we know that this is not the case. If we further have ripup allowed = false
we can again return false (otherwise the answer might be true or false depending on the
state of ASt).

Second, if the algorithm calls StickLegal in line 14, the result is trivially correct by
Theorem 5.2.7.

Third we need to consider the two cases when the condition in line 13 is false and the
algorithm returns true in line 16. If fgi = legal and fgaa = true, the precomputed fast grid
information means that without considering ASt and ISt e is legal and fgaa = true means
that considering the shapes in ASt does not change that. Thus it is correct to return true.
If ripup allowed = true and fgi = illegal by removable and fgaa = true, fgaa = true
means that no additional shapes in ASt influence legality of e. fgi = illegal by removable
means that any shape that makes e illegal can be ripped up. Because we also have
ripup allowed = true, it is safe to return true. Thus in each case the algorithm returns
the correct value and the proof is complete.

Next, for the sake of completeness, we present an algorithm computing thread-dependent
legality information for wires. It is very similar to the algorithm for vias. Therefore, we
do not discuss it in detail.
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Algorithm 5.3.5: LegalWire

Input: t ∈ T ,DR ⊆ DR, e ∈ Ew, wm ∈ WM, ripup allowed ∈ B
1 if wm ∈ fgwm(l(e)) then
2 fgi := fgi(e, wm)
3 r := r(shape(stick(e, wm)))

4 ba := max{bsc(wm),sc,l(e)(DR) : sc ∈ SCAS l(e)t }
5 bi := max{bsc(wm),sc,l(e)(DR) : sc ∈ SCIS l(e)t }
6 fgaa := ({s ∈ ASt : l(s) = l(e), r(s) ∩ (r + [−ba, ba]× [−ba, ba]) 6= ∅} = ∅)
7 fgai := ({s ∈ ISt : l(s) = l(e), r(s) ∩ (r + [−bi, bi]× [−bi, bi]) 6= ∅} = ∅)
8 if fgi = always illegal or (fgi = illegal by ignorable and fgai) or

(fgi = illegal by removable and fgai and not ripup allowed) then
9 return false

10 else if not ((fgi = legal and fgaa) or (ripup allowed and
fgi = illegal by removable and fgaa)) then

11 return StickLegal(stick(e, wm), t,DR, ripup allowed)

12 else
13 return true

14 else
15 return StickLegal(stick(e, wm), t,DR, ripup allowed)

Theorem 5.3.13. Let t ∈ T , DR ⊆ DR, e ∈ Ew, wm ∈ WM, ripup allowed ∈ B. Let
ripup allowed = false (ripup allowed = true).

Then LegalWire(t,DR, e, wm, ripup allowed) = true if and only if stick(e, wm) is
legalt (with rip-up).

Proof. The proof is analogous to the proof of Theorem 5.3.12 if one considers that a wire
edge has only one corresponding shape instead of the three that a via edge has.

Remark. Algorithms 5.3.4 and 5.3.5 only compute legality information for wires and vias
colored by the colors used by the fast grid. If a different color needs to be used, the legality
information can easily be computed by StickLegal from the grid.

Remark. In case of rip-up it might be useful if costs of a node depend on the set of
shapes that need to be ripped-up. Algorithms 5.3.5 and 5.3.4 can be modified such that
they also output the set of shapes that need to be ripped-up to make a stick or shape legalt.
However, in this case StickLegal needs to be called also if the precomputed checking
data could be used and indicates that something is legal with rip-up to determine the
correct set of shapes. This leads to some increase in run time. Precomputing and storing
the sets of shapes that need to be ripped-up unfortunately would use too much memory
to be feasible.

Remark. In practice, our optimized diff-net rule checking works slightly differently. In-
stead of having two individual functions querying data for individual wires and vias sepa-
rately (like Algorithm 5.3.4 and 5.3.5) we use one function querying all legality information
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for a set of relevant wire and via models at a given vertex at once. This has several ad-
vantages. First, the path search needs information for all adjacent edges of a given vertex
for all wire and via models relevant for the current net anyway. Querying all necessary
information at once saves the overhead of finding the interval in the array multiple times
instead of only once. Also, the queries to the temporary additional and temporary ignored
shapes also have to be done only once. Further, when computing legality information for
the path search algorithm, we compute an interval in preferred direction for which the
legality information is constant. Due to the fact that in most cases the path search al-
gorithm labels multiple consecutive vertices on a track, this improves the run time of the
path search because computing legality information for multiple vertices once is faster
than computing it for each node individually. The path search then stores the returned
legality information for all vertices that it is valid for instead of querying it for each vertex.

Taking the maximum interval with identical information stored in the fast grid to
determine the interval returned has some disadvantages in some cases. If the fast grid
information for all relevant wire and via models can be used directly, it is beneficial to
return an interval as long as possible. However, the longer the interval considered, the
smaller is the chance that its legality is not influenced by the temporary additional and
ignored shapes. Additionally, the longer the considered interval, the more expensive is
querying the temporary additional and ignored shapes. Further, if the fast grid information
can not be used for some reason, querying the grid is more expensive for a longer interval.
Therefore we use the following strategy in practice: We take the interval stored in the fast
grid, but cut it off max length vertices before and after the query location. If the fast
grid information can not be used but the grid has to be queried, we restrict the interval
to contain only a single vertex, the query location, to avoid querying the grid more than
necessary. Experimental results show that 20 is a suitable choice for max length (see
Section 6.3).

In this section we have seen how to efficiently define and store precomputed checking
information, how to update it and how it can be used to implement a highly optimized
interface for a fast path search algorithm. In the next chapter we prove our claims about
practical performance by showing experimental results.
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Chapter 6

Experimental Results

In this chapter, we present experimental results on a large set of real-world instances for the
main concepts presented in Chapter 4 and Chapter 5 as well as parallelization speedups.
In Section 6.1 we describe our testbed, metrics and methodology. In Section 6.2 and
Section 6.3 we describe results for our automated track pattern generation and our efficient
diff-net rule checking respectively. Our automated soft track pattern generation improves
almost all metrics significantly and our optimized diff-net rule checking improves overall
run time by more than a factor two. Furthermore, in Section 6.4 we present experimental
results with different numbers of used threads showing excellent parallelization speedups
of BonnRouteDetailed with our algorithms.

6.1 Testbed, Setup and Metrics

In this section, we describe our set of test instances as well as our experimental setup and
metrics. All tests were done on two identical machines running CentOS 7 linux and having
two 32-core AMD EPIC 7601 processors running at 2.2 GHz with 512 GB of RAM. AMD
core performance boost was switched off so that all cores run at the same frequency for
the parallelization experiments no matter how many cores are used. All experiments use
exactly the same chip data and a fixed global routing as input. For the tests in Section 6.2
and 6.3, we ran all four tested versions at the same time on the same machine with 16
threads each. For the parallelization tests in Section 6.4, we ran each instance with each
number of threads separately while nothing else was running on the machine. We used
the same code for running single- and multi-threaded, but also measured an optimized
single-threaded version which did not contain any locks or other parallelization utilities.
As proposed in [24], we always report absolute run times as well as relative speed-ups.
We define the average speed-up as the speed-up of the sum of the run times rather than
some mean of the individual speed-ups. Observed speedups in this setting are typically
worse than speedups observed in real productive runs, because in practice, single-threaded
runs would not be run alone on a machine but load on machines would automatically be
balanced, reducing performance of single-threaded runs. The theoretical limit on the
speedup (the number of threads) is not achievable in this setting, because cache and other
resources on the machine are shared between all threads and do not scale with the number
of threads.
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We use a large number of different instances from 14nm and 7nm technology with
different sizes, levels of congestion and levels of maturity to test our algorithms. Further-
more, we validate some of our results on a set of newer 7nm instances. We did not use any
of these verification testcases to tune our algorithms. They only became available after we
had finished our implementation and tuning. All our test instances are real-world designs
provided by our cooperation partner IBM. Our main testbed is shown in Table 6.1 and
includes 60 instances in total, of which 39 are manufactured in 14nm technology and 21 in
7nm technology. The portion of non-default wires is measured after detailed routing and
includes any wire with a non-default width or any non-default spacing to any other wire.
Such wires are typically used for timing reasons and make detailed routing considerably
harder. The portion of nets assigned to wide layers means the portion of all nets that are
supposed to be routed mainly on layers with default wires wider than the default wires
on the lowest routing layer. This figure is a rough indicator of how many nets have some
timing criticality.

Instances range from very small RLMs to huge instances with millions of nets and
many routing layers. In total, our test instances have 18 367 089 nets, ranging from 713 to
2 089 586 nets. They have between 5 and 16 routing layers and areas from 0.00031 mm2

to over 2 mm2. They range from timing-wise completely uncritical instances with almost
only default wires to very critical and complex instances with over 25% wide wires and
a high percentage of nets assigned to the upper layers for routing. Routing congestion
ranges from completely uncritical to highly congested. Figure 6.1 shows two congestion
maps of a critical and an easy instance. Most of our 14nm testbed is in a very mature
state, especially the instances RLM-14-A and RLM-14-B, but also the instances L-14-A
and L-14-C. The instances L-14-B are a little less clean, but still much cleaner than most
of the 7nm instances. The 7nm instances come from very early phases of the design cycle
and thus show many more design problems such as overcongested areas, inaccessible pins
and other design errors. Due to the fact that we used some of the instances in our main
testbed also for tuning parts of our algorithms and the circumstance that by the time
we were done executing tests on our main testbed newer and much cleaner 7nm testcases
were available, we further test on a smaller testbed of 22 much more mature 7nm instances
shown in Table 6.2. For these tests, we used the same version of the algorithms described in
Chapter 4 and 5 but a slightly newer version of other parts of BonnRouteDetailed. These
verification testcases also include a wide variety of instances, ranging from 733 to 1 735 036
nets and from 8 to 16 routing layers. They were captured late in the design flow and thus
include very few design problems. Some techniques to avoid design rule violations inside
BonnRouteDetailed that are not discussed in detail in this thesis have been improved in
the meantime, thus in these tests comparatively few design rule violations remain.

For our tests we measure a number of metrics, which we briefly describe now. First is
the total run time of BonnRouteDetailed because that is of key interest to the designers
using our tools. The faster tools run, the faster chips can be designed. We also measure
the run time of the main detailed routing step (without several loading, pre- and post-
processing steps) separately, because that is the part of BonnRouteDetailed that is effected
by our changes. Second, we measure total memory consumption. This is less important
than run time, because less memory consumption does not directly translate into increased
productivity, but too high memory consumption is problematic if there are not enough
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Instance Technology Number Chip Area Number of Portion of Portion of
of (mm2) Wiring Non-Default Nets Assigned

Nets Layers Wires to Wide Layers
RLM-14-A-1 14nm 1 807 0.00170 5 8.16% 5.09%
RLM-14-A-2 14nm 12 817 0.01156 5 3.79% 1.01%
RLM-14-A-3 14nm 25 038 0.02015 7 7.02% 2.79%
RLM-14-A-4 14nm 30 753 0.17003 7 11.58% 13.45%
RLM-14-A-5 14nm 40 981 0.02831 8 1.47% 7.53%
RLM-14-A-6 14nm 56 459 0.03828 9 5.76% 4.72%
RLM-14-A-7 14nm 65 989 0.24946 7 7.88% 7.68%
RLM-14-A-8 14nm 73 729 0.04542 7 6.98% 3.46%
RLM-14-A-9 14nm 79 833 0.09269 7 8.37% 6.25%
RLM-14-A-10 14nm 84 255 0.12845 7 7.04% 5.14%
RLM-14-A-11 14nm 139 278 0.16767 8 7.97% 4.89%
RLM-14-A-12 14nm 142 243 0.23446 13 6.75% 11.43%
RLM-14-A-13 14nm 185 697 0.11608 8 3.76% 5.39%
RLM-14-A-14 14nm 216 422 0.38358 7 5.92% 4.57%
RLM-14-A-15 14nm 367 214 0.38287 9 5.02% 9.45%
RLM-14-B-1 14nm 11 042 0.00931 5 8.64% 3.35%
RLM-14-B-2 14nm 13 256 0.02760 7 3.58% 5.79%
RLM-14-B-3 14nm 18 799 0.01887 7 22.19% 9.53%
RLM-14-B-4 14nm 20 243 0.01908 5 18.03% 6.16%
RLM-14-B-5 14nm 23 637 0.02713 7 14.00% 9.76%
RLM-14-B-6 14nm 29 330 0.02202 7 10.89% 8.08%
RLM-14-B-7 14nm 33 878 0.03043 7 10.78% 5.49%
RLM-14-B-8 14nm 35 779 0.02591 7 11.79% 7.44%
RLM-14-B-9 14nm 39 558 0.04234 5 7.10% 2.37%
RLM-14-B-10 14nm 61 537 0.04622 9 1.55% 9.66%
RLM-14-B-11 14nm 52 819 0.04813 7 14.99% 10.71%
RLM-14-B-12 14nm 55 328 0.05308 7 14.50% 8.12%
RLM-14-B-13 14nm 72 995 0.05190 9 10.81% 11.05%
RLM-14-B-14 14nm 105 645 0.08061 7 6.58% 3.29%

L-14-A-1 14nm 421 316 0.89129 15 26.48% 17.65%
L-14-A-2 14nm 1 778 320 2.00383 15 17.10% 13.17%
L-14-A-3 14nm 1 580 264 1.59441 15 18.66% 8.94%
L-14-B-1 14nm 1 190 206 1.43917 15 9.01% 7.98%
L-14-B-2 14nm 1 310 380 1.57811 15 12.00% 8.18%
L-14-B-3 14nm 1 610 456 1.51498 15 9.56% 7.55%
L-14-B-4 14nm 1 603 682 1.53260 15 8.04% 6.79%
L-14-C-1 14nm 332 538 0.34351 10 6.74% 5.26%
L-14-C-2 14nm 442 007 0.77175 13 3.90% 4.31%
L-14-C-3 14nm 456 862 0.39919 13 14.18% 7.59%

L-7-1 7nm 354 195 0.10331 12 8.54% 13.13%
L-7-2 7nm 761 252 0.31134 16 8.41% 7.68%
L-7-3 7nm 251 436 0.08152 10 12.36% 11.11%
L-7-4 7nm 281 655 0.09316 14 13.02% 12.84%
L-7-5 7nm 2 089 586 1.20538 16 10.42% 14.14%

RLM-7-A-1 7nm 5 976 0.00932 14 12.22% 17.96%
RLM-7-A-2 7nm 8 584 0.00206 8 4.87% 2.55%
RLM-7-A-3 7nm 12 414 0.01031 10 7.55% 5.03%
RLM-7-A-4 7nm 20 584 0.01143 14 12.60% 11.42%
RLM-7-A-5 7nm 16 477 0.00370 8 5.74% 3.31%
RLM-7-A-6 7nm 17 797 0.00756 9 7.91% 9.44%
RLM-7-A-7 7nm 20 205 0.00482 10 11.38% 5.92%
RLM-7-A-8 7nm 54 302 0.01674 8 19.72% 9.52%
RLM-7-A-9 7nm 125 735 0.03024 12 8.46% 4.15%
RLM-7-A-10 7nm 136 485 0.06033 10 11.68% 6.21%
RLM-7-A-11 7nm 195 895 0.07505 10 9.18% 5.52%
RLM-7-A-12 7nm 259 180 0.17650 10 8.12% 5.15%
RLM-7-A-13 7nm 713 0.00031 8 37.48% 26.37%
RLM-7-A-14 7nm 260 924 0.09465 10 7.85% 8.51%
RLM-7-A-15 7nm 295 835 0.15734 15 11.53% 15.23%
RLM-7-A-16 7nm 375 467 0.08266 10 9.19% 10.31%

Table 6.1: Test instances.
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(a) Global routing congestion map of L-14-A-2.

(b) Global routing congestion map of L-14-C-1.

Figure 6.1: Sample congestion maps. White and green areas are completely uncongested,
yellow areas are denser, orange and red areas are congested and purple indicates over-
congestion. L-14-A-2 has large regions with high congestion and even some over-congested
hotspots whereas L-14-C-1 is completely uncongested.
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Instance Technology Number Chip Area Number of Portion of Portion of
of (mm2) Wiring Non-Default Nets Assigned

Nets Layers Wires to Wide Layers
L-7n-1 7nm 373 431 0.40578 16 11.46% 14.66%
L-7n-2 7nm 625 111 0.47298 16 12.73% 13.17%
L-7n-3 7nm 646 633 0.36118 16 12.50% 12.03%
L-7n-4 7nm 805 244 0.34399 16 11.36% 13.19%
L-7n-5 7nm 1 044 976 0.36182 16 12.14% 14.26%
L-7n-6 7nm 1 170 967 0.46358 16 8.86% 12.55%
L-7n-7 7nm 1 206 790 0.63733 16 9.63% 14.95%
L-7n-8 7nm 1 735 036 1.20538 16 12.34% 15.82%

RLM-7n-A-1 7nm 733 0.00031 8 20.79% 10.50%
RLM-7n-A-2 7nm 6 076 0.00967 14 7.31% 13.35%
RLM-7n-A-3 7nm 11 456 0.01031 10 4.87% 2.90%
RLM-7n-A-4 7nm 15 411 0.00430 8 3.36% 2.80%
RLM-7n-A-5 7nm 18 556 0.00555 8 13.93% 8.20%
RLM-7n-A-6 7nm 20 808 0.00876 9 7.35% 7.17%
RLM-7n-A-7 7nm 56 721 0.01674 8 17.21% 5.77%
RLM-7n-A-8 7nm 115 652 0.03024 12 4.13% 3.22%
RLM-7n-A-9 7nm 136 479 0.06033 10 11.46% 5.51%
RLM-7n-A-10 7nm 199 445 0.07505 10 9.37% 4.28%
RLM-7n-A-11 7nm 236 442 0.17650 10 6.15% 5.20%
RLM-7n-A-12 7nm 247 082 0.09465 10 7.34% 8.83%
RLM-7n-A-13 7nm 152 363 0.13733 10 7.96% 8.80%
RLM-7n-A-14 7nm 382 578 0.08266 10 5.50% 6.43%

Table 6.2: Newer test instances used to verify results.

machines with sufficient memory available. We also measure wire length and the number
of vias because these metrics are a good indicator of routing efficiency, power consumption
and timing behavior. Typically, high wire length and many vias lead to high congestion,
high power consumption and bad timing. Furthermore, because we can not measure
timing characteristics directly due to technical reasons, we measure the occurrence of a
number of timing-wire undesirable configurations. Most importantly, so-called scenic nets
or scenics [4]. We call a net scenic, if its wiring is at least 25 µm long and at least 25%,
50% or 100% respectively longer than the length of an approximately minimum Steiner
tree. See Figure 6.2 for an example of a scenic net. Scenic nets have a high probability to
show bad timing behavior because additional wire length often introduces higher delays.
Furthermore we measure the number of layer and taper fuses in the computed routing (see
Section 3.12 for a definition of layer and taper fuses).

We measure the number of remaining design rule violations after detailed routing. We
briefly explain the most important classes of design rule violations. The most impor-
tant design rule violation is a short, two shapes of different nets that touch each other,
leading to an electrical short (Figure 6.3(a)). Similarly important are diff-net spacing vi-
olations, which occur if shapes from different nets do not touch but are too close together
(Figure 6.3(b)). Such shapes have a high probability to be connected electrically by the
inaccuracies of the physical production process. The next class of design rule violations are
so-called same-net spacing violations (Figure 6.3(c)). For technical reasons, also shapes
of the same net have to abide certain distance rules in many cases. These errors are not
as important as diff-net spacing violations, because they usually can be fixed more eas-
ily in a post-processing step. Another very important class of design rules are so-called
rectangular shapes constraints (Figure 6.3(d)). In certain technologies, on some layers
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Figure 6.2: Scenic net. Detailed wires are drawn in blue and global wires in red. The sink
pins are drawn in cyan and the source pin is marked in magenta.

only rectangular shapes can be produced and each non-rectangular shape constitutes a
design rule violation which is often hard to fix later on. The last very important class of
design rule violations are so-called minimum area violations (Figure 6.3(e)). Shapes on
each routing layer need to have at least a certain area. These errors by definition require
additional routing space to be fixed and thus are hard to fix late in the flow. Furthermore,
we report two less important but very common error classes individually, namely minimum
edge length and via extension errors. In most technologies, there are certain restrictions
on short metal edges (Figure 6.3(f)) and via middle shapes require certain metal areas on
the neighboring wiring layers (Figure 6.3(g)). Violations of these rules are called minimum
edge length errors and via extension errors. Such errors are usually comparatively easy
to fix after routing because they only require very local modifications in a single net. We
summarize all remaining design rule violations under other.

6.2 Computing Track Patterns

In this section, we present experimental results for the techniques developed in Chapter 4.
We tested four different versions. All tested versions obey the same hard track patterns
for some wire models and only differ in the usage of different soft track patterns for wire
models that do not need to obey a hard track pattern. The first version, our baseline,
is the version that was previously used by BonnRouteDetailed in practice. It contained
optimal track patterns for the default wire model on each layer plus some hand-crafted
track patterns for some frequent wire models. All other wire models were allowed to use
the union of all defined track patterns. In the tables we denote this version by “old”. The
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(a) Shorts. Shapes of different nets intersect. (b) Diff-net spacing violations. Shapes of dif-
ferent nets are too close to each other but do
not intersect.

(c) Same-net spacing violations. Different
shapes of the same net are too close to each
other but do not intersect. In this case the
via middle shapes are too close.

(d) Rectangular shape constraints. Some-
times non-rectangular metal components are
forbidden.

(e) Minimum area violation. All metal com-
ponents must have at least some given area.

(f) Minimum edge length errors. Two adja-
cent short edges are forbidden.

(g) Via extension errors. The metal on a
routing layer needs to extend a certain dis-
tance over the projection of the middle shape
in each direction.

Figure 6.3: Important classes of design rule violations. Blue and green indicate metal
shapes on a routing layer (of different nets). Orange indicates via shapes. Red marks
indicate the violations.
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second version is the most simple version we could come up with, computing an optimal
track pattern (TP3) for the default wire model on each layer and using that track pattern
for each wire model (denoted by “default tp”). The third version computes an optimal
track pattern (TP3) for each wire model individually (“opt sep”). The fourth version uses
our algorithm described in Section 4.3 including the modifications discussed in Section 4.4
(“opt”).

When analyzing the results in this section one should be aware of some facts. First,
on many layers, especially on the lower ones, there are hard track patterns given that
need to be obeyed by all versions of BonnRouteDetailed. Further, especially on smaller
instances, but also on some large ones, only a very limited set of different wire models
is used and for some of them there is a unique clearly optimal track pattern that is
computed by all four versions. This is partially due to the fact that the choice of wire
models and the design of the instances (e.g. power rails) was tuned for the existing tools
including BonnRouteDetailed, often discarding wire models that were not handled well
by the routing tools. Therefore, especially on smaller instances, there is little freedom to
optimize track patterns at all. Due to the reasons stated above, one can expect even greater
benefits once instances are tuned to the new optimized track patterns. Unfortunately, the
design even of a single very large scale integrated circuit is so complex that the effort to
execute the whole physical design process twice with different track patterns is too large to
be feasible. Therefore we restrict ourselves to routing results on existing designs with the
different soft track pattern versions, even if our new optimized track patterns could give
even better results if the choice of wire models and other features were retuned to the new
behavior of BonnRouteDetailed. Furthermore, we need to mention that the 7nm instances
in our main testbed are mostly in a very early design stage, thus having comparatively
many design problems such as overcongested areas or illegal pins. Additionally, the 7nm
instances have comparatively few non-default wire models (the large 7nm designs all have
less than 14% of non-default wire models whereas some of the large 14nm designs have over
25%) and on 7nm there are more layers with hard track patterns than on 14nm. Therefore
the 14nm instances have a higher potential for optimizing the soft track patterns whereas
the 7nm instances have more design rule violations.

First, we discuss the run time of our algorithm itself, which is negligible. The longest
run time occurs on instance L-14-A-2 where it runs slightly over one minute. On all
other instances it runs faster than one minute and on most instances it runs in under ten
seconds. These run times are negligible in comparison to the total run time of detailed
routing which even with the best version takes almost ten hours on some instances.

Now, we discuss routing results with the four versions of soft track patterns described
above. Tables 6.3 and 6.4 show overall routing results on the 14nm and 7nm instances of
our main testbed respectively.

Both for the 14nm as well as for the 7nm instances, all major metrics improve in the
“opt” version. Run time reduces by 40% and 33% respectively. Memory consumption
also shows a minor decrease. The number of vias decreases by over 1% and over 0.5%
respectively and also wire length decreases by 0.3% and 0.2%. The number of scenics
decreases by roughly 10% and 4% respectively. On 14nm, the number of layer fuses is
reduced by almost 50%, on 7nm they decrease by around 15%. The number of taper fuses
decreases by 4% on 14nm and by 14% on 7nm. As expected, the improvements are larger



6.2. COMPUTING TRACK PATTERNS 129

Version Run Time Memory Vias Wire Scenics Layer Taper

(hh:mm:ss) (GB) (106) Length 25 50 100 Fuses Fuses
(m)

sum RLM-14-A
old 5:39:19 136.4 13.4 30.7 12 605 2 343 173 79 723

default tp 5:13:09 132.8 13.4 30.6 12 348 2 313 178 79 435
opt sep 5:21:29 135.2 13.4 30.6 12 390 2 317 182 68 1 378

opt 5:20:59 134.5 13.4 30.6 12 394 2 322 174 59 551

sum RLM-14-B
old 1:23:28 67.7 4.7 7.5 3 585 509 79 22 254

default tp 1:33:14 66.5 4.7 7.5 3 554 552 102 60 267
opt sep 1:29:26 65.9 4.7 7.5 3 593 527 81 30 285

opt 1:28:00 66.3 4.7 7.5 3 563 509 79 30 242

L-14-A-1
old 3:30:56 32.7 3.6 11.8 2 136 544 172 147 2 713

default tp 2:27:52 29.3 3.6 11.8 2 201 562 175 146 2 953
opt sep 2:32:21 31.9 3.6 11.8 2 072 509 157 75 3 048

opt 1:35:55 29.5 3.6 11.8 2 127 513 165 66 2 919

L-14-A-2
old 19:56:18 92.2 16.9 41.4 13 883 2 100 232 677 4 961

default tp 14:54:25 88.2 16.8 41.4 13 954 2 154 253 781 5 398
opt sep 10:52:27 93.1 16.7 41.2 11 559 1 692 166 284 4 961

opt 7:57:49 89.3 16.6 41.2 10 773 1 610 156 179 4 992

L-14-A-3
old 6:04:31 77.1 13.4 25.3 7 842 949 110 519 2 173

default tp 4:24:36 74.0 13.4 25.3 8 350 979 120 442 2 228
opt sep 4:57:42 76.8 13.3 25.3 7 871 913 126 399 2 739

opt 4:36:51 74.5 13.3 25.3 7 741 891 122 391 2 304

L-14-B-1
old 9:37:00 67.0 12.4 25.7 8 464 859 31 361 2 354

default tp 6:52:10 64.1 12.3 25.6 8 138 886 54 529 2 186
opt sep 6:19:34 67.4 12.2 25.6 7 672 768 29 187 2 675

opt 5:32:42 64.5 12.2 25.6 7 374 699 34 165 2 203

L-14-B-2
old 7:40:51 72.9 13.6 31.5 8 676 859 45 62 2 797

default tp 5:25:13 69.7 13.4 31.5 8 326 838 42 59 2 571
opt sep 5:43:27 73.5 13.4 31.4 7 888 765 38 67 2 806

opt 5:18:10 70.2 13.4 31.4 7 685 742 35 39 2 604

L-14-B-3
old 18:06:29 82.7 17.0 32.0 19 019 2 620 199 375 5 727

default tp 12:12:30 80.4 16.8 31.9 18 574 2 570 188 323 5 616
opt sep 12:55:05 85.8 16.8 31.9 17 418 2 283 161 197 6 121

opt 9:54:15 80.4 16.7 31.8 16 713 2 148 141 173 5 525

L-14-B-4
old 14:07:26 83.7 16.9 29.9 17 205 1 905 105 348 4 030

default tp 11:07:55 80.2 16.7 29.8 16 622 1 870 105 364 3 793
opt sep 11:00:29 84.1 16.7 29.8 15 760 1 697 84 219 4 524

opt 9:31:57 80.8 16.7 29.8 15 323 1 590 89 189 3 700

L-14-C-1
old 1:04:22 27.2 3.1 6.3 1 285 136 1 3 131

default tp 1:02:24 26.2 3.0 6.3 1 230 131 2 0 120
opt sep 58:15 27.0 3.0 6.3 1 248 123 3 2 136

opt 1:04:19 26.0 3.0 6.3 1 232 133 7 6 126

L-14-C-2
old 3:15:00 33.0 4.6 10.6 1 800 306 4 23 499

default tp 2:01:16 32.1 4.6 10.6 1 666 266 1 30 472
opt sep 2:24:13 33.1 4.6 10.6 1 691 284 2 36 543

opt 2:13:02 30.9 4.6 10.6 1 697 281 0 31 478

L-14-C-3
old 4:23:48 33.0 4.7 9.9 3 899 753 190 187 1 586

default tp 2:49:21 32.2 4.6 9.9 3 741 691 188 115 1 156
opt sep 3:39:50 32.4 4.6 9.9 3 944 765 195 139 1 676

opt 2:38:36 32.4 4.6 9.9 3 656 689 182 124 1 197

total sum
old 94:49:28 805.6 124.2 262.6 100 399 13 883 1 341 2 803 27 948

default tp 70:04:05 775.7 123.3 262.3 98 704 13 812 1 408 2 928 27 195
-26.11% -3.71% -0.74% -0.10% -1.69% -0.51% 5.00% 4.46% -2.69%

opt sep 68:14:18 806.2 123.0 261.9 93 106 12 643 1 224 1 703 30 892
-28.04% 0.07% -0.96% -0.27% -7.26% -8.93% -8.72% -39.24% 10.53%

opt 57:12:35 779.2 122.8 261.7 90 278 12 127 1 184 1 452 26 841
-39.67% -3.27% -1.16% -0.34% -10.08% -12.65% -11.71% -48.20% -3.96%

Table 6.3: Routing results for different soft track patterns used in BonnRouteDetailed for
14nm instances.
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Version Run Time Memory Vias Wire Scenics Layer Taper
(hh:mm:ss) (GB) (106) Length 25 50 100 Fuses Fuses

(m)

L-7-1
old 1:03:48 20.1 3.9 3.3 1 332 87 0 47 549

default tp 49:38 20.0 3.9 3.3 1 269 81 0 45 550
opt sep 49:06 20.0 3.9 3.3 1 264 73 1 45 607

opt 51:28 20.0 3.9 3.3 1 301 78 1 42 329

L-7-2
old 2:19:57 40.4 7.4 6.3 1 524 332 2 510 653

default tp 1:36:58 39.0 7.4 6.3 1 534 327 0 513 641
opt sep 1:31:22 39.7 7.4 6.3 1 529 326 0 501 638

opt 1:28:43 39.3 7.4 6.3 1 556 337 1 489 528

L-7-3
old 8:17:32 17.5 3.3 2.8 5 698 1 607 241 6 538 1 450

default tp 7:35:03 16.9 3.3 2.8 5 701 1 596 233 6 801 1 471
opt sep 6:39:14 17.0 3.3 2.8 5 541 1 477 221 6 194 1 444

opt 6:19:30 17.0 3.3 2.8 5 413 1 480 200 5 864 1 456

L-7-4
old 19:42:27 22.6 4.1 3.6 13 169 4 015 577 9 170 2 887

default tp 12:49:30 21.1 4.1 3.6 12 957 3 830 545 8 187 2 821
opt sep 12:43:36 21.3 4.1 3.6 12 754 3 864 540 7 712 2 860

opt 11:06:34 21.1 4.0 3.5 12 602 3 682 518 7 286 2 823

L-7-5
old 13:38:55 123.2 24.8 29.9 31 179 8 959 1 698 1 136 5 464

default tp 10:38:46 121.0 24.6 29.8 30 675 8 888 1 710 999 5 366
opt sep 9:53:14 124.5 24.6 29.8 30 434 8 816 1 705 897 5 808

opt 9:09:18 122.0 24.6 29.8 30 221 8 784 1 677 979 3 703

sum RLM-7-A
old 6:14:30 134.6 19.9 17.9 10 939 2 192 186 1 936 4 466

default tp 5:06:15 130.5 19.9 17.9 10 815 2 099 180 1 797 4 489
opt sep 5:15:10 132.7 19.9 17.9 10 769 2 135 178 1 745 4 451

opt 5:17:51 130.4 19.9 17.9 10 723 2 106 177 1 721 4 459

total sum
old 51:17:09 358.4 63.3 63.7 63 841 17 192 2 704 19 337 15 469

default tp 38:36:10 348.4 63.0 63.6 62 951 16 821 2 668 18 342 15 338
-24.73% -2.79% -0.44% -0.15% -1.39% -2.16% -1.33% -5.15% -0.85%

opt sep 36:51:42 355.2 63.0 63.6 62 291 16 691 2 645 17 094 15 808
-28.13% -0.89% -0.48% -0.19% -2.43% -2.91% -2.18% -11.60% 2.19%

opt 34:13:24 349.9 63.0 63.6 61 816 16 467 2 574 16 381 13 298
-33.27% -2.37% -0.53% -0.22% -3.17% -4.22% -4.81% -15.29% -14.03%

Table 6.4: Routing results for different soft track patterns used in BonnRouteDetailed for
7nm instances.
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for 14nm instances than for 7nm instances with the exception of the number of taper
fuses. Overall, experimental results show a very significant improvement in run time as
well as some improvements in the metrics relevant for timing behavior. It is surprising that
already the most simple version “default tp” is better than the baseline in most metrics.
Even this version improves run time by 26% and 24% respectively. It also shows some
benefits in number of vias and wire length but increases the number of scenics 100 and
the number of layer fuses on 14nm instances slightly. The version “opt sep” is a little bit
better than “default tp” but not as good as “opt”. It decreases run time by 28% on both
technologies and shows improvements in most metrics, in particular it already decreases
the number of layer fuses on 14nm instances by almost 40%. However, it increases the
number of taper fuses by more than 10% and 2% respectively.

If we look at individual instances in more detail, it becomes clear that the improvements
differ very much on different instances. On the small 14nm instances RLM-14-A and RLM-
14-B, as well as on L-14-C-1 run time stays roughly the same with all tested versions. On
the other hand, on some of the large 14nm designs we see drastic decreases in run time, for
example on L-14-A-2 run time reduces from 20 hours to 8 hours, a reduction of 60%. On
7nm, the effect is similar; improvements are much higher on some of the larger designs.
This is due to the fact that on larger designs there is usually a higher fraction of wire
length on layers without hard track patterns (because larger designs include higher layers
which have no hard track patterns) and thus more room for optimization by our algorithm.
Especially L-14-A-2 has an unusually diverse mixture of non-default wire models on some
layers.

Next, we look at the remaining design rule violations after BonnRouteDetailed. Ta-
ble 6.5 and 6.6 show the number of the most important design rule violations remaining
after BonnRouteDetailed.

We can see that the number of design rule violations remaining after BonnRoute-
Detailed decreases significantly in the “opt” version both on 14nm and on 7nm. Design
rule violations of each category apart from diff-net spacing violations on 14nm and rect-
angular shape constraint violations on 7nm are significantly reduced. On 14nm, there are
9% less shorts, 26% less same-net spacing violations, 35% less min area errors and almost
10% less rectangular shape constraint violations. Minimum edge length errors are reduced
by almost 50% and via extension errors are reduced by 16%. On 7nm, due to the fact
that the designs are less clean, there are many more shorts and diff-net spacing violations
to begin with. Consequently there is also much more room for improvements and shorts
are reduced by 24% and diff-net spacing violations by 20%. Same net spacing violations
are reduced by 18% and min area violations by 9%. Furthermore, minimum edge length
violations are reduced by 26% and via extension errors by 15%. Overall, these are very
significant reductions in many important error classes greatly improving the quality of
BonnRouteDetailed.

If we look at the other versions, on 7nm all versions consistently improve all error
classes except for rectangular shape constraints. In each error class, the improvement is
smallest with “default” tp and largest with “opt”. On 14nm, “default tp” shows 24%
more shorts and 4% more diff-net spacing violations than the baseline run and “opt sep”
produces 16% more diff-net spacing violations and 3% more rectangular shape constraint
violations than the baseline run. Overall the “opt” run is clearly superior. Therefore we
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Version Shorts Diff Same Rectangular Minimum Minimum Via Other
Net Net Shape Area Edge Extension

Spacing Spacing Constraint Length

sum RLM-14-A
old 120 1 532 2 388 958 24 690 1 399 4 752

default tp 103 1 382 1 983 863 23 529 1 181 4 457
opt sep 140 1 755 2 018 1 142 20 566 1 686 3 277

opt 116 1 533 1 950 804 25 440 1 175 4 021

sum RLM-14-B
old 84 341 670 202 5 194 262 258

default tp 185 446 651 204 4 296 350 274
opt sep 89 364 618 208 2 152 322 277

opt 73 329 608 204 5 234 269 262

L-14-A-1
old 357 1 478 1 635 294 20 1 237 1 932 824

default tp 460 1 604 1 370 292 12 795 1 849 668
opt sep 53 1 004 1 303 319 13 849 1 700 819

opt 131 1 185 1 134 308 4 799 1 657 665

L-14-A-2
old 278 3 236 7 340 508 49 7 283 4 009 2 178

default tp 627 3 125 4 455 407 37 3 898 2 636 1 432
opt sep 153 2 501 3 853 393 28 3 185 2 231 1 510

opt 131 2 297 3 558 388 19 3 716 1 936 1 297

L-14-A-3
old 100 1 519 1 717 208 13 2 279 1 005 282

default tp 62 1 186 1 326 180 5 1 434 722 369
opt sep 15 1 412 1 499 186 14 1 544 639 359

opt 36 1 517 1 172 180 15 1 379 704 300

L-14-B-1
old 1 294 3 141 3 382 203 190 3 567 2 010 1 304

default tp 1 484 3 210 3 166 202 144 1 781 2 173 983
opt sep 1 143 3 047 3 610 216 158 1 878 1 836 1 123

opt 1 119 2 548 2 916 200 150 1 687 1 655 1 019

L-14-B-2
old 80 8 698 2 959 232 22 3 132 590 369

default tp 164 8 175 2 172 246 8 1 417 515 275
opt sep 167 8 713 2 318 248 12 1 498 601 374

opt 132 8 123 1 840 244 11 1 333 496 286

L-14-B-3
old 1 030 6 798 6 526 291 90 6 292 11 629 1 283

default tp 1 099 8 975 5 922 253 63 3 142 10 838 778
opt sep 1 034 12 150 6 514 268 72 3 497 11 212 880

opt 909 9 474 5 247 267 52 2 958 10 351 662

L-14-B-4
old 1 891 4 063 6 125 289 108 5 792 11 597 1 118

default tp 2 413 4 170 5 710 298 63 3 026 11 195 794
opt sep 2 010 4 624 6 571 298 75 3 367 11 090 876

opt 2 133 3 972 5 403 285 56 3 032 10 680 717

L-14-C-1
old 19 470 414 63 5 53 75 26

default tp 28 500 417 63 4 64 77 36
opt sep 19 462 415 61 6 106 150 45

opt 45 505 387 56 2 56 66 29

L-14-C-2
old 185 548 693 29 12 312 297 60

default tp 130 434 485 21 14 111 194 37
opt sep 133 517 518 26 11 112 266 46

opt 179 560 556 22 8 126 221 47

L-14-C-3
old 117 767 1 515 169 12 1 149 550 740

default tp 114 689 1 130 166 6 604 451 695
opt sep 175 1 170 1 323 170 14 890 583 614

opt 60 339 1 189 164 10 704 413 608

total sum
old 5 555 32 591 35 364 3 446 550 31 980 35 355 13 194

default tp 6 869 33 896 28 787 3 195 383 17 097 32 181 10 798
23.65% 4.00% -18.60% -7.28% -30.36% -46.54% -8.98% -18.16%

opt sep 5 131 37 719 30 560 3 535 425 17 644 32 316 10 200
-7.63% 15.73% -13.58% 2.58% -22.73% -44.83% -8.60% -22.69%

opt 5 064 32 382 25 960 3 122 357 16 464 29 623 9 913
-8.84% -0.64% -26.59% -9.40% -35.09% -48.52% -16.21% -24.87%

Table 6.5: Remaining design rule violations for different soft track patterns used in Bonn-
RouteDetailed for 14nm instances.
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Version Shorts Diff Same Rectangular Minimum Minimum Via Other
Net Net Shape Area Edge Extension

Spacing Spacing Constraint Length

L-7-1
old 2 904 3 225 1 063 901 110 1 884 3 317 1 031

default tp 2 796 3 134 809 899 106 1 530 3 294 975
opt sep 2 974 3 357 833 909 123 1 413 3 099 942

opt 2 810 3 358 776 904 122 1 176 3 072 893

L-7-2
old 1 477 2 063 1 001 21 32 1 771 1 606 987

default tp 1 407 1 972 732 21 32 1 393 1 502 955
opt sep 1 346 1 899 816 23 19 1 212 1 293 786

opt 1 465 1 965 793 21 25 1 114 1 250 815

L-7-3
old 23 213 43 977 3 940 11 346 4 719 6 698 3 521

default tp 21 569 42 295 3 805 5 369 4 444 6 285 3 588
opt sep 18 521 36 141 3 524 19 294 3 814 5 494 3 236

opt 18 117 35 281 3 440 6 273 3 872 5 439 3 255

L-7-4
old 19 346 46 792 5 644 20 446 7 163 7 189 5 010

default tp 15 086 38 795 5 138 17 401 6 073 6 345 4 870
opt sep 15 105 37 651 4 816 26 393 5 750 6 205 4 659

opt 13 337 34 441 4 475 23 337 5 404 5 797 4 417

L-7-5
old 2 657 12 577 7 532 209 402 13 028 11 780 6 225

default tp 1 800 10 654 6 218 211 362 10 713 11 545 6 401
opt sep 1 953 10 483 6 394 192 378 10 019 10 768 5 821

opt 1 863 11 004 5 759 204 422 8 969 10 264 5 597

sum RLM-7-A
old 917 4 518 4 390 25 766 5 728 2 970 3 618

default tp 736 4 009 4 287 25 745 4 991 2 815 3 874
opt sep 768 4 232 4 194 28 755 4 914 2 898 3 698

opt 662 4 000 4 203 36 744 4 960 2 811 3 688

total sum
old 50 514 113 152 23 570 1 187 2 102 34 293 33 560 20 392

default tp 43 394 100 859 20 989 1 178 2 015 29 144 31 786 20 663
-14.10% -10.86% -10.95% -0.76% -4.14% -15.01% -5.29% 1.33%

opt sep 40 667 93 763 20 577 1 197 1 962 27 122 29 757 19 142
-19.49% -17.14% -12.70% 0.84% -6.66% -20.91% -11.33% -6.13%

opt 38 254 90 049 19 446 1 194 1 923 25 495 28 633 18 665
-24.27% -20.42% -17.50% 0.59% -8.52% -25.66% -14.68% -8.47%

Table 6.6: Remaining design rule violations for different soft track patterns used in Bonn-
RouteDetailed for 7nm instances.
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use the “opt” version in practice and for all other tests.

Due to the fact that the 7nm instances in our main testbed are relatively unclean and
due to the fact that the results vary very much between different instances, we reran all
four versions with a newer version of other parts of BonnRouteDetailed on a set of newer
and largely clean 7nm instances. This way we can verify that our results are not biased
by overfitting to the test instances we used both for tuning and evaluation. Furthermore,
it is interesting to evaluate more mature 7nm designs. Results can be found in Table 6.7
and Table 6.8. Note that the newer 7nm instances have a lot fewer remaining design rule
violations which is both due to the fact that the instances are cleaner and that the abilities
of BonnRouteDetailed to obey design rules have been significantly improved.

Overall routing results for the newer 7nm instances look similar to the results for the
older 7nm instances. Runtime decreases similarly, the decrease in number of vias and wire
length is slightly smaller, improvements in scenics are comparable. Layer fuses decrease
more significantly by 23% instead of by 15% but taper fuses do not decrease. On both
7nm testbeds there are significant improvements, but less than on the 14nm instances.
This is likely due to the fact that there are more layers in 14nm where track patterns can
be optimized freely than in 7nm.

Looking at the remaining design rule violations, one first notes that the total number
of remaining design rule violations is significantly smaller on the newer 7nm instances
than both on the older 7nm and the 14nm instances. This is due to the newer version
of design rule violation avoiding routines in BonnRouteDetailed and to the cleaner state
of the instances. When looking at the relative numbers, improvements in design rule
violations are better on the newer 7nm instances than both on the older 7nm instances
and on the 14nm instances. Shorts and diff-net spacing violations decrease by roughly
30%, same-net spacing violations even decrease by 80%. Minimum edge length violations
decrease by 64% and via extension errors decrease by over 40%. The other error classes
decrease to a lesser extent.

Concluding, these results confirm the results on our main testbed. Improvements in
run time and overall routing results are smaller in 7nm because there are less layers to
optimize but still significant. Improvements in remaining design rule violations are larger
on cleaner instances. There are still larger benefits, including in timing, to be expected
once all other components of the chip design flow (such as the choice of the used wire
models) are fully adapted to our changes.

6.3 Checking Diff-Net Rules

In this section, we present experimental results for the techniques described in Chapter 5.
We have tested four different versions. The first version does not precompute and store
legality information in the fast grid. Instead, it recomputes legality information on the fly
each time it is needed. The fast grid stores and reports legality information for intervals
rather than single points. Therefore, we have tested whether it is also beneficial if the
version without fast grid calculates legality information for a whole interval at a time.
Results show that the lowest run times were achieved when computing legality information
for single points rather than intervals. For short intervals (ten points of interest around the
query location), small increases in run time were observed (+2%) and for longer intervals
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Version Run Time Memory Vias Wire Scenics Layer Taper

(hh:mm:ss) (GB) (106) Length 25 50 100 Fuses Fuses
(m)

L-7n-1
old 1:54:17 28.0 4.1 6.5 3 707 1 017 73 131 1 925

default tp 1:18:39 26.8 4.1 6.5 3 731 1 013 69 75 1 940
opt sep 1:17:26 27.7 4.1 6.5 3 613 1 000 69 99 1 895

opt 1:16:08 27.0 4.1 6.5 3 579 1 000 67 119 1 911

L-7n-2
old 2:54:49 36.5 6.6 9.9 4 110 1 007 44 153 2 900

default tp 2:01:56 35.4 6.6 9.9 3 985 1 009 37 122 2 952
opt sep 2:18:24 37.2 6.6 9.9 3 981 999 37 120 2 849

opt 1:59:57 35.7 6.6 9.9 3 941 997 38 129 2 898

L-7n-3
old 3:31:54 35.6 6.9 10.0 3 719 438 23 125 2 058

default tp 2:45:01 34.5 6.9 10.0 3 690 430 23 130 2 084
opt sep 2:41:00 35.7 6.9 10.0 3 682 432 24 134 1 982

opt 2:33:12 34.2 6.9 10.0 3 657 425 23 83 2 015

L-7n-4
old 4:39:17 41.0 9.4 12.0 8 910 1 220 47 1 067 3 003

default tp 3:19:05 39.7 9.4 12.0 8 681 1 219 50 914 3 012
opt sep 3:22:39 40.9 9.4 12.0 8 558 1 211 48 836 2 944

opt 3:02:08 39.5 9.4 12.0 8 561 1 191 46 848 2 938

L-7n-5
old 6:23:14 50.6 11.0 14.7 10 661 1 692 50 1 572 3 872

default tp 3:54:38 47.2 10.9 14.6 10 338 1 632 55 1 313 3 901
opt sep 3:54:03 48.1 10.9 14.6 10 119 1 619 51 1 157 3 831

opt 3:36:24 47.2 10.9 14.6 10 164 1 572 39 1 179 3 885

L-7n-6
old 5:26:09 54.5 13.6 15.2 16 248 2 823 147 1 708 3 254

default tp 4:05:38 52.8 13.6 15.2 15 972 2 770 150 1 359 3 301
opt sep 4:01:46 53.8 13.6 15.1 15 670 2 708 149 1 349 3 199

opt 3:45:32 52.9 13.6 15.1 15 655 2 681 140 1 353 3 225

L-7n-7
old 8:27:47 62.5 13.7 20.9 13 305 3 023 347 855 6 012

default tp 5:43:15 60.5 13.7 20.9 13 055 2 983 357 744 6 030
opt sep 5:38:13 61.8 13.7 20.9 13 018 2 942 343 694 5 931

opt 4:59:01 59.7 13.7 20.9 12 932 2 933 325 595 5 965

L-7n-8
old 9:24:31 87.1 18.9 28.7 25 864 7 209 896 1 091 9 705

default tp 7:22:56 84.9 18.8 28.7 25 744 7 236 869 1 032 9 686
opt sep 7:09:36 87.4 18.8 28.6 25 288 7 103 848 857 9 563

opt 6:36:58 83.8 18.8 28.6 25 306 7 026 842 869 9 648

sum RLM-7n-A
old 3:35:39 97.2 15.5 15.5 7 781 1 659 206 71 995

default tp 3:09:18 96.5 15.4 15.4 7 726 1 635 191 58 1 000
opt sep 3:14:07 98.5 15.4 15.4 7 703 1 605 189 51 959

opt 3:08:44 97.0 15.4 15.4 7 703 1 630 194 41 968

total sum
old 46:17:37 493.0 99.7 133.3 94 305 20 088 1 833 6 773 33 724

default tp 33:40:26 478.4 99.4 133.1 92 922 19 927 1 801 5 747 33 906
-27.26% -2.97% -0.22% -0.09% -1.47% -0.80% -1.75% -15.15% 0.54%

opt sep 33:37:14 491.1 99.3 133.0 91 632 19 619 1 758 5 297 33 153
-27.38% -0.38% -0.31% -0.16% -2.83% -2.33% -4.09% -21.79% -1.69%

opt 30:58:04 476.9 99.3 133.0 91 498 19 455 1 714 5 216 33 453
-33.11% -3.26% -0.36% -0.20% -2.98% -3.15% -6.49% -22.99% -0.80%

Table 6.7: Routing results for different soft track patterns used in BonnRouteDetailed for
newer 7nm instances.
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Version Shorts Diff Same Rectangular Minimum Minimum Via Other
Net Net Shape Area Edge Extension

Spacing Spacing Constraint Length

L-7n-1
old 8 40 213 5 1 38 24 16

default tp 18 49 43 2 2 13 4 26
opt sep 1 19 35 4 1 18 6 22

opt 0 28 31 5 2 11 7 21

L-7n-2
old 8 40 208 5 9 35 35 55

default tp 36 83 76 7 12 26 31 56
opt sep 12 63 55 10 7 43 22 48

opt 6 35 68 6 2 25 27 43

L-7n-3
old 23 103 186 11 3 36 13 65

default tp 27 118 84 17 8 54 16 64
opt sep 14 87 70 13 6 115 11 47

opt 24 102 72 21 10 39 10 47

L-7n-4
old 62 231 261 19 14 78 62 42

default tp 68 164 77 14 19 42 39 54
opt sep 64 192 82 9 12 78 41 36

opt 40 100 68 14 15 31 35 33

L-7n-5
old 20 111 700 5 16 118 66 51

default tp 25 77 88 9 16 35 43 59
opt sep 24 104 81 4 7 53 51 45

opt 32 101 79 4 12 26 47 43

L-7n-6
old 14 92 379 13 9 66 47 30

default tp 32 187 89 19 13 27 40 49
opt sep 17 48 29 8 9 20 22 28

opt 14 61 32 9 9 18 25 30

L-7n-7
old 84 301 426 17 15 118 55 81

default tp 83 325 108 18 9 48 59 82
opt sep 53 224 77 27 15 63 37 82

opt 30 104 59 16 13 33 28 78

L-7n-8
old 112 280 872 25 30 112 98 48

default tp 73 280 277 28 37 33 58 66
opt sep 41 125 234 22 28 56 48 53

opt 75 181 225 29 25 33 47 56

sum RLM-7n-A
old 86 339 252 30 15 49 18 32

default tp 71 342 61 29 14 23 17 36
opt sep 94 330 63 20 16 19 43 22

opt 80 341 51 24 13 18 20 27

total sum
old 417 1 537 3 497 130 112 650 418 420

default tp 433 1 625 903 143 130 301 307 492
3.84% 5.73% -74.18% 10.00% 16.07% -53.69% -26.56% 17.14%

opt sep 320 1 192 726 117 101 465 281 383
-23.26% -22.45% -79.24% -10.00% -9.82% -28.46% -32.78% -8.81%

opt 301 1 053 685 128 101 234 246 378
-27.82% -31.49% -80.41% -1.54% -9.82% -64.00% -41.15% -10.00%

Table 6.8: Remaining design rule violations for different soft track patterns used in Bonn-
RouteDetailed for newer 7nm instances.
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Instance Total Run Time of BonnRouteDetailed (hh:mm:ss (Speedup))
No Fast Grid Fast Grid (Two States) Fast Grid (Three States) Full Fast Grid

sum RLM-14-A 13:58:04 6:01:17 (2.3) 5:36:57 (2.5) 5:33:46 (2.5)
sum RLM-14-B 3:28:12 1:29:55 (2.3) 1:24:19 (2.5) 1:24:48 (2.5)

L-14-A-1 4:13:01 2:05:22 (2.0) 1:53:05 (2.2) 1:53:45 (2.2)
L-14-A-2 18:40:07 8:30:11 (2.2) 7:48:55 (2.4) 8:25:05 (2.2)
L-14-A-3 9:07:59 4:35:53 (2.0) 4:07:43 (2.2) 4:34:45 (2.0)
L-14-B-1 11:22:31 5:21:57 (2.1) 5:08:42 (2.2) 5:30:52 (2.1)
L-14-B-2 10:53:19 5:42:04 (1.9) 5:39:58 (1.9) 5:27:54 (2.0)
L-14-B-3 24:27:07 12:28:02 (2.0) 11:14:37 (2.2) 11:03:43 (2.2)
L-14-B-4 21:07:31 11:32:56 (1.8) 10:25:03 (2.0) 10:09:10 (2.1)
L-14-C-1 2:21:07 1:06:48 (2.1) 58:32 (2.4) 1:01:49 (2.3)
L-14-C-2 4:43:25 2:32:22 (1.9) 2:07:28 (2.2) 2:13:57 (2.1)
L-14-C-3 6:37:02 3:26:20 (1.9) 2:54:12 (2.3) 2:50:00 (2.3)

sum 14nm 130:59:25 64:53:07 (2.0) 59:19:31 (2.2) 60:09:34 (2.2)
L-7-1 2:06:14 58:01 (2.2) 49:51 (2.5) 48:54 (2.6)
L-7-2 3:03:05 1:36:07 (1.9) 1:28:57 (2.1) 1:34:50 (1.9)
L-7-3 12:59:30 7:15:53 (1.8) 6:16:30 (2.1) 6:35:51 (2.0)
L-7-4 28:47:25 13:44:39 (2.1) 13:02:33 (2.2) 12:21:30 (2.3)
L-7-5 19:18:35 10:41:32 (1.8) 10:59:11 (1.8) 9:27:19 (2.0)

sum RLM-7-A 11:34:12 5:34:12 (2.1) 5:19:23 (2.2) 5:16:07 (2.2)
sum 7nm 77:49:01 39:50:24 (2.0) 37:56:25 (2.1) 36:04:31 (2.2)

total sum 208:48:26 104:43:31 (2.0) 97:15:56 (2.1) 96:14:05 (2.2)

Table 6.9: Total run time of BonnRouteDetailed and speedup in relation to the version
without fast grid.

run time increased more drastically (for 20 points of interest in both directions, +25% and
for 50 points of interests run time roughly doubled). Therefore we use a version without
fast grid and with computing checking information for single points rather than intervals
as baseline.

Similar tests were done for the fast grid, showing that cutting-off the interval around the
query location at 20 points of interest in both directions yields the best results, although
differences were much smaller in this case. Other cut-off values between 10 and 50 yield
only slightly larger run times and even computing legality information for single points
results in a moderate increase in run time of roughly 20%. Therefore we choose 20 as the
best value for the parameter max length introduced in Section 5.3.

We tested three different versions of the fast grid. The full version which stores one of
four different states as described in Chapter 5 as well as two intermediate versions storing
two and three states respectively. The version storing two states can only distinguish if
some wire model at some location is currently allowed or potentially forbidden. It does
not store if something is forbidden by a blockage or forbidden by something that might
be ripped-up or might be currently ignored. Therefore, only one bit of memory is needed
to store the state but more additional queries to the grid need to be made. The version
storing three states distinguishes if something is allowed, always forbidden (because it is
illegal due to a blockage) or potentially forbidden. It does not distinguish between objects
that can be ripped-up and objects that can only be ignored but not ripped-up. This
version uses two bits of memory for the state of each interval but potentially has to store
less intervals thus still saving some memory. On the other hand, some additional queries
to the grid need to be made.

Table 6.9 shows the total run time of BonnRouteDetailed with the four versions de-
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Instance Run Time of Main Detailed Routing Step (hh:mm:ss (Speedup))
No Fast Grid Fast Grid (Two States) Fast Grid (Three States) Full Fast Grid

sum RLM-14-A 12:53:19 4:46:53 (2.7) 4:23:42 (2.9) 4:23:20 (2.9)
sum RLM-14-B 3:04:40 1:06:02 (2.8) 1:00:04 (3.1) 1:00:04 (3.1)

L-14-A-1 3:57:19 1:46:46 (2.2) 1:34:50 (2.5) 1:34:07 (2.5)
L-14-A-2 17:24:46 7:09:09 (2.4) 6:30:31 (2.7) 7:01:05 (2.5)
L-14-A-3 8:07:27 3:32:41 (2.3) 3:09:33 (2.6) 3:31:10 (2.3)
L-14-B-1 10:33:07 4:28:59 (2.4) 4:16:45 (2.5) 4:35:36 (2.3)
L-14-B-2 9:57:43 4:39:28 (2.1) 4:38:04 (2.1) 4:28:04 (2.2)
L-14-B-3 22:58:51 10:43:49 (2.1) 9:32:18 (2.4) 9:25:23 (2.4)
L-14-B-4 19:40:15 9:41:18 (2.0) 8:48:18 (2.2) 8:34:41 (2.3)
L-14-C-1 2:00:17 46:53 (2.6) 37:51 (3.2) 39:39 (3.0)
L-14-C-2 4:16:10 1:59:46 (2.1) 1:40:38 (2.5) 1:43:56 (2.5)
L-14-C-3 6:10:42 2:57:27 (2.1) 2:27:42 (2.5) 2:23:16 (2.6)

sum 14nm 121:04:36 53:39:11 (2.3) 48:40:16 (2.5) 49:20:21 (2.5)
L-7-1 1:56:18 47:06 (2.5) 39:31 (2.9) 38:31 (3.0)
L-7-2 2:42:58 1:15:03 (2.2) 1:07:20 (2.4) 1:13:13 (2.2)
L-7-3 12:52:15 7:07:44 (1.8) 6:08:51 (2.1) 6:28:04 (2.0)
L-7-4 28:38:19 13:35:11 (2.1) 12:52:58 (2.2) 12:12:14 (2.3)
L-7-5 18:14:25 9:30:19 (1.9) 9:46:05 (1.9) 8:17:33 (2.2)

sum RLM-7-A 10:42:38 4:39:06 (2.3) 4:26:02 (2.4) 4:22:35 (2.4)
sum 7nm 75:06:53 36:54:29 (2.0) 35:00:47 (2.1) 33:12:10 (2.3)

total sum 196:11:29 90:33:40 (2.2) 83:41:03 (2.3) 82:32:31 (2.4)

Table 6.10: Run time of main detailed routing step and speedup in relation to the version
without fast grid.

scribed above and Table 6.10 shows the run time of the main detailed routing step of
BonnRouteDetailed which is the only step that uses the precomputed legality information
stored in the fast grid. The total run time of BonnRouteDetailed decreases by a factor
of 2.0, 2.1 and 2.2 respectively with the versions with two, three and four states stored
in the fast grid. For the larger 14nm instances, the decrease in run time is similar, it is
between factor 2.0 and 2.3 for each instance. On the smaller 14nm instances, the decrease
is a little bit higher (factor 2.5 on average). For the larger 7nm instances, the decrease is
mostly between factor 1.9 and 2.3 with one exception, instance L-7-1 for which run time
reduces by a factor of 2.6.

The versions with only two or three states show similar but slightly smaller reductions
in run time. If only the main detailed routing step is considered, the speedup is slightly
larger, with the full fast grid it then ranges between factor 2.0 and 3.1 with an average
of 2.4. The two versions with only two and three states achieve an average run time
improvement of factor 2.2 and 2.3 respectively.

Table 6.11 shows the memory consumption of BonnRouteDetailed. Total memory of
BonnRouteDetailed only increases very moderately, by about 8% on average with the full
fast grid version and slightly less with the other versions. This is due to the fact that the
implementation of the fast grid is very efficient and a large fraction of the total memory
used by BonnRouteDetailed is used by other parts such as the net data structure and the
path search.

All other important metrics like wire length, number of vias, timing behavior and
number of remaining design rule violations are not affected by these changes, because this
technique only reduces run time but does not change the routing result at all. In total, we
gain more than a factor of two in run time for very little additional memory consumption
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Instance Total Memory Usage of BonnRouteDetailed (GB)
No Fast Grid Fast Grid (Two States) Fast Grid (Three States) Full Fast Grid

sum RLM-14-A 127.7 132.6 (+4%) 133.4 (+4%) 134.5 (+5%)
sum RLM-14-B 65.6 65.4 (-0%) 67.6 (+3%) 66.6 (+1%)

L-14-A-1 27.5 30.1 (+9%) 29.5 (+7%) 30.3 (+10%)
L-14-A-2 79.0 87.9 (+11%) 89.2 (+13%) 89.4 (+13%)
L-14-A-3 66.6 73.7 (+11%) 74.4 (+12%) 75.0 (+13%)
L-14-B-1 57.4 63.4 (+10%) 64.2 (+12%) 64.6 (+12%)
L-14-B-2 62.8 69.4 (+11%) 70.0 (+12%) 70.5 (+12%)
L-14-B-3 72.8 79.3 (+9%) 80.9 (+11%) 80.9 (+11%)
L-14-B-4 73.2 79.2 (+8%) 80.5 (+10%) 80.5 (+10%)
L-14-C-1 25.1 27.0 (+8%) 26.6 (+6%) 26.6 (+6%)
L-14-C-2 31.5 31.1 (-1%) 31.5 (-0%) 31.4 (-0%)
L-14-C-3 30.4 31.5 (+4%) 31.8 (+4%) 31.4 (+3%)

sum 14nm 719.8 770.8 (+7%) 779.6 (+8%) 781.7 (+9%)
L-7-1 18.9 19.7 (+4%) 19.8 (+5%) 19.8 (+5%)
L-7-2 36.5 39.0 (+7%) 39.4 (+8%) 39.4 (+8%)
L-7-3 16.5 16.6 (+1%) 17.0 (+3%) 16.9 (+2%)
L-7-4 20.7 20.9 (+1%) 21.2 (+3%) 21.1 (+2%)
L-7-5 109.8 120.6 (+10%) 121.7 (+11%) 121.8 (+11%)

sum RLM-7-A 125.5 132.1 (+5%) 131.1 (+5%) 131.1 (+5%)
sum 7nm 327.8 349.1 (+6%) 350.2 (+7%) 350.1 (+7%)

total sum 1047.7 1119.8 (+7%) 1129.8 (+8%) 1131.8 (+8%)

Table 6.11: Total memory usage of BonnRouteDetailed with different version of the fast
grid.

and identical results in all other metrics. Therefore we use the full fast grid in practice
and for all other tests.

Note that in [34], a similar approach was proposed. [34] reports better speedups on
their testbed than we do on ours. However there are some fundamental differences. First,
the approach in [34] relies on some assumptions regarding the legality of jogs simplifying
the problem whereas we solve it exactly. These assumptions have largely been fulfilled in
former technologies but can not be assumed anymore on instances manufactured in recent
technologies. Second, we completely re-implemented the simple diff-net rule checking
used inside BonnRouteDetailed and largely improved its run time, thus speeding up the
baseline. Third, we use a completely different testbed than [34] and also other parts of
BonnRouteDetailed have substantially changed in the meantime. More run time is spent
in parts that are independent of the fast grid. Thus the possible speedup by using the fast
grid is smaller.

We did not rerun these experiments on the newer 7nm instances, as these results are
very stable across different instances and as it would be technically non-trivial to port
the implementation of the intermediate versions to the newest version of other parts of
BonnRouteDetailed needed for the newer instances.

6.4 Parallelization

In this section, we present results of BonnRouteDetailed running with different numbers
of threads. Total run time of these experiments is very high, so we only present results of
BonnRouteDetailed using the best versions of the algorithms described in Chapter 4 and
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Chapter 5. Our algorithms run within the parallelization framework initially developed in
[27]. Note that unlike in [27], we run BonnRouteDetailed with each number of threads on
the machine while nothing else is running. Therefore, our speedups are more reliable, but
should on average also be smaller compared to [27]. Further note that since [27] additional
steps of BonnRouteDetailed have been parallelized and that instances tested in [27] and
our testbed can not be compared.

First, we briefly discuss our testbed. Due to the high run times, we chose a few
representative instances from each technology for our parallelization experiments. We
further reran with a newer version of other parts of BonnRouteDetailed on some newer
7nm instances to assess if parallelization speedup is influenced by technology or by the
state of the instances. We only use medium size or large instances for parallelization
experiments, because run times on small instances are small and thus less interesting.
We chose RLM-14-A-11, L-14-A-1, L-14-A-2 and L-14-A-3 from the 14nm testcases. This
includes the largest 14nm instance that we have (L-14-A-2) and the instances L-14-A are
the cleanest large 14nm instances available. We added RLM-14-A-11 as an example of
an easy and clean instance. From the main 7nm testbed, we chose L-7-1, L-7-2 and L-7-
5. These are the three largest instances of the set L-7, again inlcuding the largest 7nm
instance available. From the newer 7nm instances, we chose L-7n-2, L-7n-6 and L-7n-
7. We did not include the largest instance here due to run time reasons, but included
the second and third largest instances available as well as a smaller one. Most of these
instances are congested, but not over-congested. L-7n-2, L-14-A-1, RLM-14-A-11 and L-7-
2 however are generally uncongested. L-14-A-1 and L-14-A-2 have some smaller hotspots
with over-congestion.

We run the same code multi-threaded and single-threaded, in particular locking and
collision detection is enabled also single-threaded. This simplifies the implementation and
makes debugging easier because the same code is used in a single-threaded debug run as
in a multi-threaded production run. In practice, BonnRouteDetailed is almost always run
multi-threaded anyway. Further, we made a single-threaded test run on our parallelization
testbed, disabling locking and collision detection. Run time improved only very slightly
by less than four percent.

Total run times of BonnRouteDetailed with up to 64 threads can be found in Ta-
ble 6.12(a). Up to 16 threads, multi-threaded run times are very good. With 4 threads,
we achieve a speedup of factor 3.6 on average, with 16 threads of 12.6. With 32 threads
there is still a speedup of 19.1 and of 24.1 with 64 threads. The 14nm instances con-
sistently achieve higher speedups than 7nm instances. For example, with 64 threads, the
average speedup for 14nm instances is 31.1 but only 18.0 for 7nm instances. Less congested
instances parallelize worse than congested instances. When looking only at the main de-
tailed routing step, the results are even more impressive. Table 6.12(b) shows run times
of the main detailed routing step of BonnRouteDetailed. With 64 threads, we achieve an
average speedup of factor 31.2. Again, 14nm instances achieve higher speedups (factor
40.0 on average) than 7nm instances (factor 23.8 on average). Especially for 14nm in-
stances, speedups with up to 16 threads are very close to optimal (14nm instances achieve
an average speedup of 15.8 with 16 threads). The speedup of L-14-A-1 with 16 threads is
slightly higher than the number of threads. This is due to the nondeterminism involved.

Note that the parallelization in BonnRouteDetailed does not depend on the number
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Instance Total Run Time of BonnRouteDetailed (hh:mm:ss (Speedup))
1 Thread 2 Threads 4 Threads 8 Threads 16 Threads 32 Threads 64 Threads

RLM-14-A-11 3:45:01 1:59:17 (1.9) 1:01:18 (3.7) 34:36 (6.5) 17:42 (12.7) 12:06 (18.6) 11:26 (19.7)
L-14-A-1 20:49:01 11:34:15 (1.8) 5:39:13 (3.7) 3:24:54 (6.1) 1:26:21 (14.5) 59:53 (20.9) 56:22 (22.2)
L-14-A-2 92:22:49 48:27:54 (1.9) 24:36:41 (3.8) 13:01:41 (7.1) 6:12:40 (14.9) 4:02:17 (22.9) 2:32:34 (36.3)
L-14-A-3 49:39:52 26:24:32 (1.9) 13:11:12 (3.8) 7:21:57 (6.7) 3:36:44 (13.7) 2:19:23 (21.4) 1:40:34 (29.6)

sum 14nm 166:36:43 88:25:58 (1.9) 44:28:24 (3.7) 24:23:08 (6.8) 11:33:27 (14.4) 7:33:39 (22.0) 5:20:56 (31.1)
L-7-1 8:25:29 4:24:45 (1.9) 2:21:19 (3.6) 1:21:21 (6.2) 46:39 (10.8) 30:45 (16.4) 24:30 (20.6)
L-7-2 14:03:56 7:26:45 (1.9) 4:29:28 (3.1) 2:49:48 (5.0) 1:28:35 (9.5) 1:01:10 (13.8) 1:01:05 (13.8)
L-7-5 87:24:48 46:04:47 (1.9) 25:05:28 (3.5) 15:58:56 (5.5) 8:11:13 (10.7) 5:24:55 (16.1) 4:40:43 (18.7)

sum 7nm 109:54:13 57:56:17 (1.9) 31:56:15 (3.4) 20:10:05 (5.4) 10:26:27 (10.5) 6:56:50 (15.8) 6:06:18 (18.0)

total sum 276:30:56 146:22:15 (1.9) 76:24:39 (3.6) 44:33:13 (6.2) 21:59:54 (12.6) 14:30:29 (19.1) 11:27:14 (24.1)

(a) Total run time of BonnRouteDetailed and speedup in relation to one thread.

Instance Run Time of Main Detailed Routing Step (hh:mm:ss (Speedup))
1 Thread 2 Threads 4 Threads 8 Threads 16 Threads 32 Threads 64 Threads

RLM-14-A-11 2:31:47 1:21:31 (1.9) 40:41 (3.7) 22:04 (6.9) 10:12 (14.9) 6:37 (22.9) 5:58 (25.4)
L-14-A-1 18:30:17 10:18:23 (1.8) 4:57:34 (3.7) 2:58:12 (6.2) 1:09:03 (16.1) 45:44 (24.3) 43:22 (25.6)
L-14-A-2 79:39:00 42:24:11 (1.9) 21:27:04 (3.7) 11:02:07 (7.2) 4:59:25 (16.0) 3:04:23 (25.9) 1:43:15 (46.3)
L-14-A-3 41:03:54 21:41:33 (1.9) 10:41:11 (3.8) 5:54:02 (7.0) 2:38:07 (15.6) 1:33:12 (26.4) 1:00:14 (40.9)

sum 14nm 141:44:58 75:45:38 (1.9) 37:46:30 (3.8) 20:16:25 (7.0) 8:56:47 (15.8) 5:29:56 (25.8) 3:32:49 (40.0)
L-7-1 7:21:47 3:48:46 (1.9) 2:00:04 (3.7) 1:07:10 (6.6) 36:25 (12.1) 21:33 (20.5) 13:04 (33.8)
L-7-2 11:49:09 6:12:00 (1.9) 3:44:28 (3.2) 2:20:11 (5.1) 1:07:33 (10.5) 41:27 (17.1) 35:59 (19.7)
L-7-5 80:51:47 42:20:06 (1.9) 22:52:37 (3.5) 14:28:10 (5.6) 7:03:51 (11.4) 4:18:41 (18.8) 3:22:59 (23.9)

sum 7nm 100:02:43 52:20:52 (1.9) 28:37:09 (3.5) 17:55:31 (5.6) 8:47:49 (11.4) 5:21:41 (18.7) 4:12:02 (23.8)

total sum 241:47:41 128:06:30 (1.9) 66:23:39 (3.6) 38:11:56 (6.3) 17:44:36 (13.6) 10:51:37 (22.3) 7:44:51 (31.2)

(b) Run time of main detailed routing step of BonnRouteDetailed and speedup in relation to one thread.

Table 6.12: Run time with different numbers of threads.
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of threads to be a power of two in any way. With 63 threads we achieve roughly the same
speedup of the total BonnRouteDetailed run time than with 64 threads (factor 24.3 on
average on all instances, 31.8 and 17.9 on 14nm and 7nm instances respectively) and with
48 threads we achieve a factor 22.8 on average (28.5 and 17.5 on 14nm and 7nm instances
respectively).

Memory usage naturally increases with the number of threads, but only moderately.
With 8 threads, BonnRouteDetailed uses 9% additional memory, with 16 threads 14%.
With 32 threads, 22% of additional memory are needed and even with 64 threads, only
41% of additional memory are required.

Table 6.13 shows routing results for different number of threads. Table 6.13(a) shows
key statistics such as number of vias, wire length and some timing related key figures.
There are always some fluctuations in these numbers due to non-determinism, but there
are no significant changes in any of these numbers. Some of them tend to become even
slightly better with more threads, and certainly not worse. Table 6.13(b) shows remaining
design rule violations with different number of threads. There is a slight increase in diff-
net spacing violations and shorts with more threads. With 64 threads, shorts increase by
almost 5% and diff-net spacing violations by about 4% compared to the single-threaded
run. The other error classes show no clear trend, there are some fluctuations but nothing
significant. Overall, there is only a very slight degradation of results with 64 threads
compared to one thread (and even less with fewer threads).

Due to the fact that the 7nm instances in our main testbed parallelize so much worse
than the more mature 14nm instances, we also reran these experiments on some of the
newer 7nm instances. The results can be found in Table 6.14(a) for the total BonnRoute-
Detailed run time and in Table 6.14(b) for the main detailed routing step. Both for the
total run time and for the main detailed routing step, the newer 7nm instances parallelize
better than the older 7nm instances but worse than the 14nm instances. This to some ex-
tent supports our expectation that more mature, less unclean instances parallelize better.
However, there is still a gap between the mostly clean 7nm and the 14nm instances which
might be the subject of future research.

Overall, BonnRouteDetailed achieves very good parallel speedups with our algorithms
with almost identical results even with 64 threads.
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Number Vias Wire Scenics Layer Taper
of (106) Length 25 50 100 Fuses Fuses

Threads (m)
1 70.5 120.0 54 281 12 324 2 153 2 116 14 889
2 70.5 120.0 54 295 12 322 2 131 2 173 14 859

-0.00% -0.00% 0.03% -0.02% -1.02% 2.69% -0.20%
4 70.5 120.0 54 203 12 259 2 109 2 131 14 746

-0.00% -0.00% -0.14% -0.53% -2.04% 0.71% -0.96%
8 70.5 120.0 54 340 12 333 2 137 2 157 14 792

-0.00% -0.00% 0.11% 0.07% -0.74% 1.94% -0.65%
16 70.5 120.0 54 331 12 283 2 137 2 071 14 826

-0.02% -0.00% 0.09% -0.33% -0.74% -2.13% -0.42%
32 70.5 120.0 54 197 12 284 2 115 2 082 14 683

-0.01% -0.01% -0.15% -0.32% -1.76% -1.61% -1.38%
48 70.5 120.0 54 067 12 246 2 159 2 118 14 870

-0.01% -0.01% -0.39% -0.63% 0.28% 0.09% -0.13%
63 70.5 120.0 54 104 12 332 2 119 2 113 14 825

-0.02% -0.01% -0.33% 0.06% -1.58% -0.14% -0.43%
64 70.5 120.0 54 182 12 263 2 130 2 064 14 758

-0.01% -0.01% -0.18% -0.49% -1.07% -2.46% -0.88%

(a) General results.

Number Shorts Diff Same Rectangular Minimum Minimum Via Other
of Net Net Shape Area Edge Extension

Threads Spacing Spacing Constraint Length
1 6 419 20 995 13 706 2 027 595 17 099 18 917 10 085
2 6 545 21 144 13 679 2 030 611 17 099 18 963 10 054

1.96% 0.71% -0.20% 0.15% 2.69% 0.00% 0.24% -0.31%
4 6 331 21 075 13 546 2 038 581 17 071 18 957 10 081

-1.37% 0.38% -1.17% 0.54% -2.35% -0.16% 0.21% -0.04%
8 6 564 21 573 13 663 2 006 595 17 118 18 998 10 138

2.26% 2.75% -0.31% -1.04% 0.00% 0.11% 0.43% 0.53%
16 6 473 21 462 13 705 2 064 628 17 317 18 930 10 049

0.84% 2.22% -0.01% 1.83% 5.55% 1.27% 0.07% -0.36%
32 6 691 21 845 13 598 2 014 601 17 192 19 039 10 118

4.24% 4.05% -0.79% -0.64% 1.01% 0.54% 0.64% 0.33%
48 6 401 21 423 13 479 2 025 606 16 968 18 878 10 115

-0.28% 2.04% -1.66% -0.10% 1.85% -0.77% -0.21% 0.30%
63 6 795 21 496 13 513 1 999 589 17 183 18 886 10 134

5.86% 2.39% -1.41% -1.38% -1.01% 0.49% -0.16% 0.49%
64 6 726 21 785 13 632 1 999 565 17 293 18 949 10 223

4.78% 3.76% -0.54% -1.38% -5.04% 1.13% 0.17% 1.37%

(b) Remaining design rule violations.

Table 6.13: Routing results with different numbers of threads (summed over all instances).
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Instance Total Run Time of BonnRouteDetailed (hh:mm:ss (Speedup))
1 Thread 2 Threads 4 Threads 8 Threads 16 Threads 32 Threads 64 Threads

L-7n-2 20:07:01 11:05:58 (1.8) 5:50:58 (3.4) 3:03:57 (6.6) 1:45:07 (11.5) 1:16:38 (15.8) 1:03:33 (19.0)
L-7n-6 40:10:11 20:34:21 (2.0) 10:53:33 (3.7) 5:46:33 (7.0) 3:09:03 (12.7) 2:15:43 (17.8) 1:49:04 (22.1)
L-7n-7 52:40:53 28:49:03 (1.8) 14:56:34 (3.5) 7:54:01 (6.7) 4:29:35 (11.7) 3:05:22 (17.1) 2:26:20 (21.6)

total sum 112:58:05 60:29:22 (1.9) 31:41:05 (3.6) 16:44:31 (6.7) 9:23:45 (12.0) 6:37:43 (17.0) 5:18:57 (21.3)

(a) Total run time of BonnRouteDetailed and speedup in relation to one thread.

Instance Run Time of Main Detailed Routing Step (hh:mm:ss (Speedup))
1 Thread 2 Threads 4 Threads 8 Threads 16 Threads 32 Threads 64 Threads

L-7n-2 17:21:51 9:30:08 (1.8) 4:54:15 (3.5) 2:28:05 (7.0) 1:18:27 (13.3) 52:04 (20.0) 36:15 (28.7)
L-7n-6 35:09:45 17:47:25 (2.0) 9:15:48 (3.8) 4:44:37 (7.4) 2:24:31 (14.6) 1:32:41 (22.8) 57:02 (37.0)
L-7n-7 47:35:17 25:51:59 (1.8) 13:10:19 (3.6) 6:45:28 (7.0) 3:37:03 (13.2) 2:18:30 (20.6) 1:31:56 (31.1)

total sum 100:06:53 53:09:32 (1.9) 27:20:22 (3.7) 13:58:10 (7.2) 7:20:01 (13.7) 4:43:15 (21.2) 3:05:13 (32.4)

(b) Run time of main detailed routing step of BonnRouteDetailed and speedup in relation to one thread.

Table 6.14: Run time with different numbers of threads on newer 7nm instances.



Summary

The subject of this thesis is detailed routing of very large scale integrated (VLSI) circuits.
This task is very challenging due to the enormous instance sizes as well as the theoretical
hardness of the problem. Large instances can include several million nets which are to be
packed into a graph with hundreds of billions of nodes. Even much simpler sub-problems
like finding a minimum length Steiner tree or the vertex disjoint path problem on grid
graphs are NP-hard. Furthermore, complex design rules and other side constraints need
to be obeyed.

We improve main components of BonnRouteDetailed, the detailed routing tool de-
veloped at the Research Institute for Discrete Mathematics at the University of Bonn in
a cooperation with IBM. It has been and is used by IBM to successfully develop some
of the most complex and powerful processor chips of the world. We give a comprehen-
sive overview of BonnRouteDetailed and briefly describe the most important parts of this
state-of-the-art detailed routing tool.

In this thesis we describe two key contributions in detail. First, we discuss the problem
of generating soft track patterns automatically. We discuss different objectives and com-
bine them into a simple and effective objective function. We present an efficient algorithm
computing optimal solutions for up to three track patterns and describe how it can be
used to compute high-quality soft track patterns for BonnRouteDetailed.

Second, we develop an axiomatic description of diff-net rules and derive important
properties. We use this theoretical foundation to describe diff-net rules that can be effec-
tively handled by our routing tool. We develop an efficient algorithm for checking such
diff-net rules and present a highly optimized implementation inside the parallelization
framework of BonnRouteDetailed.

Last but not least, we present excellent experimental results with both our novel au-
tomatic soft track pattern generation as well as our fast implementation of diff-net rules
inside BonnRouteDetailed. Our automatic soft track patterns generation does not only
save the time to manually provide hard-coded soft track pattern and make the detailed
routing flow much more robust, they also lead to clearly superior results. Run time is
reduced by 40% and 33% on 14nm and 7nm instances respectively. Almost all metrics
to measure the quality of results improve significantly. Wire length and number of vias
decrease, there are fewer scenics and fewer layer and taper fuses. Also, the number of
remaining design rule violations decreases substantially.

Our efficient diff-net rule checking implementation speeds up the total run time of
BonnRouteDetailed by more than a factor 2. Furthermore, unlike the previous approach,
BonnRouteDetailed is now able to check many diff-net rules exactly. Parallelization of
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this implementation is very good, the main routing step of BonnRouteDetailed achieves a
speedup of factor 40 with 64 threads on 14nm instances and a speedup of factor 32 with
64 threads on newer 7nm instances.

Together, our contributions substantially improve the run time of BonnRouteDetailed
as well as the quality of routing solutions computed by BonnRouteDetailed and in partic-
ular improve its ability do deal with complex diff-net rules exactly as well as pack wires
of different widths efficiently.



Glossary

A

A The chip area. (Page 6.)

applies(s1, s2, l, sc1, sc2, cd, sp1, sp2) A helper function returning if the two given shapes
s1 and s2 have the given layer l, shape classes sc1 and sc2, color dependency cd and
shape purposes sp1 and sp2. (Page 94.)

ASt Data structure to store temporary additional shapes for thread t. (Pages 31, 98.)

attr(s) The attributes of a shape s. These include the layer, shape class, color and the
shape purpose. (Page 7.)

B

b̄rel(cand) Average relative number of blocked tracks of a track pattern candidate cand.
(Page 55.)

b̄rel(wm1, T1, wm2, T2) Average relative number of tracks of wire model wm2 with track
pattern T2 that are blocked by a track of wire model wm1 with track pattern T1.
(Page 55.)

bbox(R) The bounding box of a set of rectangles R. (Page 6.)

b(DR) The maximum of b(dr) over all distance rules dr in DR. (Page 88.)

b(dr) The locality constant of a diff-net rule dr is the smallest integer b such that for any
two shapes s1, s2 with dmax(s1, s2) > b it returns true. (Page 88.)

bmin(wm1, wm2) Minimum number of tracks of wire model wm2 that a track of wire model
wm1 can block if the tracks of wire model wm2 are packed densest possible (without
regard of the power rails). (Page 52.)

b̄prel(cand) Modified version of b̄rel(cand) for partial candidates, dividing by the desired
total numbers of tracks instead of the current numbers. (Page 62.)

bsc1,sc2,l(DR) The maximum of bsc1,sc2,l(dr) over all distance rules dr in DR. (Page 88.)

bsc1,sc2,l(dr) The same as b(dr) but only shapes on layer l and for the first and second
shape only shapes with shape class sc1 and sc2 respectively are considered. (Page
88.)
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bsc,l(DR) The maximum of bsc,l(dr) over all distance rules dr in DR. (Page 88.)

bsc,l(dr) The same as b(dr) but only shapes on layer l and for the first shape only shapes
with shape class sc are considered. (Page 88.)

b̃min(wm1, wm2) Modified version of bmin(wm1, wm2) which is strictly greater than zero.
(Page 54.)

b(wm1, T1, wm2, T2) Sum of the number of tracks that are blocked by all tracks in T1 of
wire model wm1 with regard to wire model wm2 and track pattern T2. (Page 54.)

b(wm1, t, wm2, T2) Number of tracks that track t of wire model wm1 blocks with regard
to wire model wm2 and track pattern T2. (Page 54.)

C

c2cpd(s1, s2) The center to center diff-net rule requiring the centers of two shapes to be at
least d apart measured in the p-norm. This diff-net rule is not monotone. (Page 96.)

CAND(c) Set of (partial) track pattern candidates considered at coordinate c. The con-
tained track pattern candidates contain tracks up to c. (Page 56.)

CD The set of all color dependencies. Diff-net rules can depend on the fact that both
shapes have the same, a different or arbitrary colors. (Page 94.)

χwm1,wm2(t1, t2) Function indicating if two tracks t1 and t2 of two wire models wm1 and
wm2 block each other. If they do, returns 1, and 0 otherwise. (Page 54.)

COL The set of all colors. (Page 6.)

consistent A diff-net rule is consistent if whenever some shape is illegal with respect to
another shape and it can be split into parts then at least one part is also illegal.
(Page 89.)

D

diff-net rule A function taking two shapes and returning a Boolean value such that the
function is symmetric, local and invariant under translation. (Page 89.)

distpd(s1, s2) The diff-net rule requiring that shapes have at least distance d measured by
the p-norm. (Page 92.)

DR The set of all diff-net rules on the given chip. (Page 100.)

DR The set of all diff-net rules. (Page 89.)

E

ELS The set of all extended legality states. (Page 106.)
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els(s) The extended legality state of shape s. s can be legal, blocked by something that is
removable, blocked by something that is ignorable or unconditionally illegal. (Page
106.)

els(st) The extended legality state of stick st. st can be legal, blocked by something
that is removable, blocked by something that is ignorable or unconditionally illegal.
(Page 106.)

Ev All via edges of the track graph. (Page 104.)

Ew All wire edges (in x- or y-direction) of the track graph. (Page 104.)

F

fast grid Data structure inside BonnRouteDetailed caching legality information for most
frequently used wire and via models. (Pages 10, 18.)

fgc(ew, wm) The color used by the fast grid for the wire edge ew with wire model wm.
(Page 105.)

fgcb(ev, vm) The color used by the fast grid for the bottom shape of the via edge ev with
via model vm. (Page 105.)

fgcm(ev, vm) The color used by the fast grid for the middle shape of the via edge ev with
via model vm. (Page 105.)

fgct(ev, vm) The color used by the fast grid for the top shape of the via edge ev with via
model vm. (Page 105.)

fgi(ev, vm) The extended legality information stored in the fast grid for via edge ev and
via model vm. (Page 107.)

fgi(ew, wm) The extended legality information stored in the fast grid for wire edge ew and
wire model wm. (Page 107.)

fgvm(l) The set of via models for which fast grid information is stored on layer l. (Page
107.)

fgwm(l) The set of wire models for which fast grid information is stored on layer l. (Page
107.)

FINAL Set of final track pattern candidates (no track can be added anymore to any wire
model). (Page 56.)

f(wm) Estimated relative frequency of wire model wm. (Page 43.)

G

grid Data structure to store all shapes of a chip in BonnRouteDetailed. Allows efficient
parallel geometric queries and parallel updates. (Pages 9, 16.)
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G = (V,E) The track graph. (Page 103.)

H

hard track pattern Track pattern that is mandatory. (Pages 9, 41.)

homogeneous A set of shapes is called homogeneous if all shapes have the same at-
tributes. (Page 7.)

hora,d(s1, s2) The horizontal diff-net rule requiring that shapes have distance at least d in
x-direction if they have run-length at least a in y-direction. (Page 93.)

I

invariant under representation A diff-net rule is invariant under representation if
changing the representation of some metal area by shapes does not influence the
result with respect to other shapes. (Page 89.)

invariant under translation A function taking two shapes and returning a Boolean
value is invariant under translation if moving both shapes equally does not change
the result. (Page 88.)

ISt Data structure to store shapes temporarily ignored by thread t. (Pages 31, 98.)

L

L The set of all layers. (Page 5.)

layer fuse Timing-wise undesirable configuration when an intermediate piece of wire is
on a low layer. (Page 38.)

local A function taking two shapes and returning a Boolean value is local if for far enough
shapes it always returns true. (Page 88.)

lt(T ) Last track of a track pattern candidate T for some wire model. (Page 54.)

Lvia The set of all via layers. (Page 5.)

Lwiring The set of all wiring layers. (Page 5.)

M

monotone A diff-net rule is monotone if whenever a shape is legal with regard to another
shape then so is any subshape. (Page 89.)

msp A function mapping a shape purpose to the resulting extended legality state if some-
thing is blocked by a shape with the given shape purpose. (Page 106.)

N
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n(T ) Number of tracks of a track pattern candidate T for some wire model. (Page 54.)

nt(wm) Number of tracks to be computed for wire model wm. (Page 62.)

n(wm) Number of tracks of wire model wm that fit between two consecutive power rails.
(Page 45.)

O

obj(cand) Objective function of a track pattern candidate cand. (Page 55.)

on(cand) Term of the objective function regarding number of tracks of a track pattern
candidate cand. (Page 55.)

P

p Power rail pitch. (Page 42.)

pin fuse Timing-wise undesirable configuration using another pin as a part of the con-
nection of some pin to the electrical source. (Page 38.)

pref (l) The preferred direction of layer l. (Page 5.)

R

R The set of all closed, two-dimensional, axis-parallel rectangles. (Page 6.)

R0 The set of all closed, two-dimensional, axis-parallel rectangles containing (0, 0). (Page
6.)

Rstick The set of all zero- or one-dimensional rectangles. (Page 6.)

run length(s1, s2) The maximum of the run length in x and y direction. (Page 92.)

run lengthx(s1, s2) The length of the intersection of the projections of the shapes s1 and
s2 onto the x-axis or −1 times the distance between the projections. (Page 92.)

run lengthy(s1, s2) The length of the intersection of the projections of the shapes s1 and
s2 onto the y-axis or −1 times the distance between the projections. (Page 92.)

S

S The set of all shapes. (Page 7.)

Sb The set of all blockage shapes. (Page 7.)

s̄p(wm) Simplified spacing between the stick of a wire running in preferred direction of
wire model wm and a power rail. (Page 44.)

s̄(wm1, wm2) Simplified spacing between the sticks of two wires running in preferred di-
rection of wire models wm1 and wm2 used for soft track pattern calculation. (Page
44.)
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SC The set of all shape classes. (Page 6.)

SCAS lt The set of shape classes of all additional shapes on layer l of thread t. (Page 98.)

SCIS lt The set of shape classes of all ignored shapes on layer l of thread t. (Page 98.)

SCo The set of shape classes which are used for shapes on wiring layers. (Page 6.)

SCv The set of all shape classes which are exclusively used for via middle shapes. (Page
6.)

SG The set of shapes that are currently stored in the grid. (Page 97.)

shape class Inside BonnRouteDetailed, every shape is assigned a shape class encoding
its distance rule requirements. (Pages 6, 10, 23.)

slack(Twm, c) Slack of a (partial) track pattern candidate Twm for some wire model wm
and some current coordinate c. (Page 57.)

slack(wm) Additional space between two consecutive power rails that can not be used to
place wires of wire model wm. (Page 46.)

s legal Shape s is legal if it fulfills all diff-net rules to all shapes in the grid. (Page 98.)

s legalt Shape s is legal with respect to thread t if it fulfills all diff-net rules to all shapes
in the grid, without shapes ignored by thread t and also to all additional shapes of
thread t. (Page 98.)

s legalt with rip-up Shape s is legal with rip-up with respect to thread t if it is legal
with respect to thread t if all wire shapes are ignored. (Page 98.)

s legal with rip-up Shape s is legal with rip-up if it is legal if all wire shapes are ignored.
(Page 98.)

soft track pattern Track pattern which is not mandatory but used as a recommendation
for efficient detailed routing. (Pages 9, 41.)

SP The set of shape purposes. Shapes can be used as wires, blockages or pins. (Page 6.)

Sp The set of all pin shapes. (Page 7.)

sp(wm) Simplified spacing between the shape of a wire running in preferred direction of
wire model wm and a power rail. (Page 43.)

ST The set of all stick figures or short sticks. (Page 8.)

stick(ev, vm) The stick corresponding to via edge ev with via model vm and the corre-
sponding fast grid colors. (Page 105.)

stick(ew, wm) The stick corresponding to wire edge ew with wire model wm and the
corresponding fast grid color. (Page 105.)

st legal Stick st is legal if all its shapes are. (Page 98.)
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st legalt Stick st is legal with respect to thread t if all its shapes are. (Page 98.)

st legalt with rip-up Stick st is legal with rip-up with respect to thread t if all its shapes
are. (Page 99.)

st legal with rip-up Stick st is legal with rip-up if all its shapes are. (Page 99.)

Sw The set of all wire shapes. (Page 7.)

s(wm1, wm2) Simplified spacing between the shapes of two wires running in preferred
direction of wire models wm1 and wm2 used for soft track pattern calculation. (Page
43.)

symmetric A function taking two shapes and returning a Boolean value is symmetric if
the order of its arguments does not matter. (Page 88.)

T

T The set of all threads. (Page 8.)

taper fuse Timing-wise undesirable configuration switching back and forth between thin
and wide wire models. (Page 38.)

tf First possible position to place a track for any wire model. (Page 56.)

tf (wm) First possible position to place a track for wire model wm. (Page 52.)

ti(T ) i-th track of a track pattern candidate T for some wire model. (Page 54.)

tl Last possible position to place a track for any wire model. (Page 56.)

tl(wm) Last possible position to place a track for wire model wm. (Page 52.)

T PC Set of all track pattern candidates (each track pattern candidate consists of a set of
tracks for each wire model). (Page 54.)

T PC1 Set of all track pattern candidates that lose at most one track for each wire model.
(Page 56.)

T PCwm Set of all track pattern candidates for wire model wm. (Page 54.)

T R The set of all sets of tracks. (Page 8.)

TRl Tracks of the given chip on layer l. (Page 103.)

Twm Given track pattern for wire model wm ∈ T PCwm. (Page 54.)

Twm(cand) Tracks for wire model wm of track pattern candidate cand. (Page 54.)

V

vera,d(s1, s2) The vertical diff-net rule requiring that shapes have distance at least d in
y-direction if they have run-length at least a in x-direction. (Page 93.)
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via stick figure A via stick figure or short via stick represents a via connecting two
neighboring wiring layers. (Page 8.)

VM The set of all via models. (Page 7.)

VS The set of all via stick figures. (Page 8.)

W

wire stick figure A wire stick figure or short wire stick represents an axis parallel seg-
ment of a wire on a given layer. (Page 7.)

WM Set of wire models relevant for track pattern calculation. (Page 42.)

WM i Set of wire models with given track pattern to be considered in objective function
for track pattern calculation. (Page 42.)

WM The set of all wire models. (Page 7.)

WM o Set of wire models to be optimized for track pattern calculation. (Page 42.)

wn A parameter governing the tradeoff between maximizing the number of tracks for each
wire model and minimizing the dependency between different tracks. (Page 55.)

wp Power rail width. (Page 42.)

WS The set of all wire stick figures. (Page 7.)

w(wm) Width of the wire model wm. (Page 43.)
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