
HRL

R O B O T N AV I G AT I O N

I N C L U T T E R E D E N V I R O N M E N T S

D I S S E RTAT I O N

zur Erlangung des Grades
Doktor der Naturwissenschaften (Dr. rer. nat.)

der Mathematisch-Naturwissenschaftlichen Fakultät
der Rheinischen Friedrich-Wilhelms-Universität Bonn

von
peter regier

aus
Semipalatinsk, Kasachstan

Bonn, September 2021

Angefertigt mit Genehmigung der
Mathematisch-Naturwissenschaftlichen Fakultät der
Rheinischen Friedrich-Wilhelms-Universität Bonn

Erste Gutachterin: Prof. Dr. Maren Bennewitz

Rheinische Friedrich-Wilhelms-Universität Bonn

Zweiter Gutachter: Prof. Dr. Jürgen Gall

Rheinische Friedrich-Wilhelms-Universität Bonn

Tag der Disputation: 22. Dezember 2021

Erscheinungsjahr: 2022

Dedicated to my children, without whom this thesis would have been
finished two years earlier. I love you with all my heart.

A B S T R A C T

Service robots are designed for non-industrial use to help people at
home and in public spaces. Today, service robots perform a variety of
tasks that range from distributing medical supply to clean the floor.
The wide range of possible application and the complexity of service
robots spark major research interest. The goal of the multidisciplinary
research is to increase the autonomy of service robots. The capability
to navigate in the environment is fundamental for service robots. In
this thesis, we present new approaches for robot navigation in chal-
lenging indoor scenarios with little space to maneuver, many objects,
and crowds of people. We collectively call such scenarios as ’cluttered’.
The presented contributions increase the efficiency of robot naviga-
tion and allow for new capabilities of the robot to solve challenging
problems. Initially, we introduce a method to incorporate clutter in
to the navigation process. We extend the state of the art navigation
cost function by considering the configuration and quantity of object
in the vicinity of the robot. The result is a foresighted robot naviga-
tion behavior, that leads around the clutter when it is beneficial for
the robot. The second approach predicts the time the robot needs to
complete a navigation task, based on a 2D path. The estimation of
time is an important feature for service robots to schedule their tasks,
e.g., guiding groups in a museum. Unfortunately, due to the lack of
a dynamic model the completion time is a priori unknown. There-
fore we train a regression model that reliably predicts the completion
time based on 2D path features. To achieve human-aware navigation
through pedestrian crowds, we apply the social force model (SFM) to
control the robot. Our new approach reduces the collision rate with
pedestrians of the SFM controlled robot, while maintaining similar
velocities. The method considers a set of motion commands and eval-
uates the outcome, by simulating the corresponding situation into the
future. Since such a omniscient robot control is not feasible to use
in a real world scenario, we train a network with the best evaluated
control command from the simulation. Our method outperforms the
standard control with the SFM and the network successfully mimics
the improved omniscient behavior, but considers information that is
available to the robot in a real world scenario. In the next approach,
the robot learns a navigation policy, through reinforcement learning
(RL). Self-learning approaches have the potential to reduce the amount
of parameter tuning, that is required to operate a robot. The endeavor
of tuning is time consuming and know-how-intensive. To reduce the
workload in this context, we successfully apply RL for the task of learn-
ing a navigation policy from scratch. The learned policy is capable to

iv

reach the target location faster than the state of the art approaches,
by optimizing the behavior when navigating close to obstacles. In
some situations efficient and collision-free navigation is not enough to
reach the goal, e.g., when the path is blocked by an object. To target
those scenarios, our final approach combines object classification, fast
2D grid-based path planning, manipulation, and footstep planning to
overcome objects by stepping over it or moving it to free the path to the
goal. Our method is able to run on a small humanoid robot and finds
paths through regions where traditional motion planning methods
are not able to calculate a solution or require substantially more time.
All navigation techniques presented in this thesis were thoroughly
evaluated in various experiments. Our approaches advance the state
of the art towards autonomous robot navigation in cluttered scenarios.

v

K U R Z FA S S U N G

Serviceroboter dienen der Nutzung zu Hause oder an öffentlichen
Plätzen und zeichnen sich durch ihre enormen Einsatzmöglichkeiten
aus. Schon heute helfen uns Roboter beim Staubsaugen oder Rasen-
mähen. Sie agieren als mobile Auskunftsplattform in Museen und
Einkaufszentren. Ihre Vielfältigkeit und die Komplexität der gestell-
ten Aufgaben wecken das Interesse von Wissenschaftlern weltweit.
Im Mittelpunkt der multidisziplinären Forschung steht die Autono-
mie der Robotern. Damit ein Roboter möglichst autonom mit seiner
Umwelt interagiert, ist die eigenständige Navigation fundamental. In
dieser Arbeit zeigen wir neue Methoden für die Roboternavigation in
problematischen Scenarien. Vor allem untersuchen wir das Naviga-
tionsverhalten von Robotern durch Menschenmengen und in engen
Umgebungen mit vielen Objekten auf dem Boden. Diese lassen nur
wenig Platz zum Manövrieren oder versperren den Weg zum Ziel-
punkt komplett. Im Folgenden kategorisieren wir solche Scenarien
als "cluttered"(Engl. für Gerümpel). In unserem ersten Beitrag erwei-
tern wir die Perzeption von Robotern, um explizit Objektgruppen
in der Umgebung während des Navigationsprozesses zu erkennen.
Das Ergebnis ist ein vorausschauendes Roboternavigationsverhalten,
das schwierig zu befahrende Bereiche umgeht, wenn somit das Ziel
schneller erreicht wird. Eine weitere wichtige Eigenschaft von Service-
robotern ist das Abschätzen der Fahrtdauer bis ein Ziel erreicht ist.
Die Fahrtdauerschätzung ist besonders wichtig bei der Zeitplanung
von sequentiellen Aufgabenstellungen, wie zum Beispiel der Muse-
umsführung und dem Medikamententransport in Krankenhäusern.
Normalerweise ist die Fahrtdauer während der Pfadplanungspha-
se unbekannt, aufgrund von Ungenauigkeiten in der Steuerung des
Roboters durch Schlupf der Räder und verrauschte Messungen der
Sensoren. In unserer Arbeit werden verschieden Regressionsmodelle
anhand von mehreren Pfadmerkmalen gelernt und verglichen. Die
Ergebnisse zeigen eine deutlich bessere Schätzung der Ankunftszeit
anhand der eingeführten Pfadmerkmale als die Schätzung, die nur auf
der Pfadlänge basiert. Ein weiterer Teil dieser Arbeit befasst sich mit
der Navigation von Robotern durch Menschenmengen. Wir präsen-
tieren eine Methode, die auf dem Social Force Modell (SFM) basiert.
Das SFM wird benutzt, um die Dynamiken, Interaktion und Verhalten
von Passanten zu simulieren. Es ist daher besonders gut geeignet, um
ein für den Menschen intuitives Navigationsverhalten des Roboters
zu realisieren. In unserer Arbeit verbessern wir das Verhalten des
Roboters, basierend auf dem SFM. Unsere Methode benutzt ein all-
wissendes Simulationsverfahren um einen Datensatz mit optimierten

vi

Steuerbefehlen aufzuzeichnen. Anschließend wird der Datensatz ge-
nutzt um ein neuronales Netz (NN) zu trainieren. Das trainierte NN
übernimmt die Steuerung des Roboters und kann durch die gesammel-
ten Daten aus der Simulation das Verhalten des Roboters hinsichtlich
der auftretenden Kollisionen mit Passanten verbessern. Des Weite-
ren ermöglicht das NN ein Betrieb mit Daten, die dem Roboter in
der realen Welt zur Verfügung stehen, und schließt somit die Lücke
zwischen den Simulator und der Realität. Im nächsten Arbeitsschritt
haben wir selbstlernende Methoden etabliert, um das so genannte
Tuning zu umgehen. In der Robotik erfordert das Parameter Tuning
Expertise und ist generell ein zeitaufwändiger und mühsamer Prozess.
Selbstlernende Methoden, wie das bestärkende Lernen, ermitteln die
beste Handlung für den jeweiligen Umgebungszustand durch eine
Versuch-Und-Irrtum Vorgehensweise. Somit optimieren diese selbstler-
nende Methoden, die notwendigen Parameter indirekt. Wir trainieren
das neuronale Netz, um die besten Geschwindigkeitsbefehle des Ro-
boters zu erlernen. Die Steuerung des Roboters durch das trainierte
Netzwerk erfordert kein Parameter Tuning und zeigt kürzere Fahrt-
zeiten auf als der Stand der Technik. In manchen Scenarien reicht
effektive und kollisionsfreie Navigation nicht aus, um das Fahrtziel
zu erreichen, wenn zum Beispiel der Weg durch ein Objekt versperrt
ist. Bisherige Verfahren scheitern in solchen Scenarien oder sie sind
nicht ausführbar auf einem mobilen Roboter in Echtzeit. Unsere Me-
thode vereint die Objekterkennung, die Robotermanipulation und die
Fußschrittplanung mit der zwei-dimensionalen Pfadplanung in einem
Navigationsverfahren, um genau solche Situationen zu bewältigen.
Somit ist es möglich eine schnelle zweidimensionale Pfadplanung mit
den notwendigen Aktionen des Roboters durchzuführen, um ein Ziel
zu erreichen. Alle vorgestellten Verfahren wurden eingehend expe-
rimentell evaluiert. Die vorliegende Arbeit erweitert den Stand der
Technik bezüglich der autonomen Roboternavigation in komplexen
und schwierigen Scenarien.

vii

A C K N O W L E D G M E N T S

As the famous African proverb says, "it takes a village to raise a child",
and, in my case, it took half of Europe to write this thesis.

I would like to express my gratitude to my supervisor and friend
Prof. Maren Bennewitz, for always believing in me. She made the
Humanoid Robots Lab my second home, by giving opportunity to
explore and develop my own ideas and providing guidance and
motivation when it was most needed. I am thankful for her help and
her crunch time ability, the whole team could rely on and many many
other things. I will always remember the good times after the work
was done and the countless valuable lessons in scientific writing and
presenting.

I am grateful I had the opportunity to travel around Europe and
work with so many remarkable people. I would like to thank Fed-
erico Boniardi from Freiburg, Richard Bormann from Stuttgart, and
Agostino Stilli from London for our discussions and our legendary
billiard sessions that made the project meetings so much more fun
to attend. My thanks also go to Khiet P. Truong, Jaebok Kim and
Cristina Zaga for the hospitality during my time in Twente. For their
hospitality in Innsbruck, I thank Philipp Zech and Cornelia Vidovic.
Many thanks to Thomas Bächle for the awesome cooperation in the
field of media studies, which extend my view on robots, sensors and
science in general. Probably one of the greatest and helpful colleagues
one could possibly imagine is Stefan Oßwald. I am thankful for all the
things I was able to learn from him and for all the help. I am grateful
I had the opportunity to build our lab from scratch and to be one of
the founding members of the lab together with Stefan and Philipp
Karkowski. I would like to thank Nils Dengler, Christopher Gebauer,
and especially Stefan Oßwald for proof reading this thesis. Many
thanks to my first supervisor Till Schmitte for sparking my curiosity
in science during my Bachelor studies and for inspiring me to take
this journey.

Finally I want to mention my family. Thank you for always support-
ing me and having so much patience with me. My parents and my
sister with her family are always there when the times got tough and
I am really grateful for that. Most importantly I want to express my
gratitude to my wife Friederike Regier. Her kindness, patience and
love keeps me always going. She is my world that gives meaning to
all the things I am doing.

viii

C O N T E N T S

1 introduction 1

1.1 Main contributions . 3

1.2 Publications . 5

1.3 Collaborations . 7

2 basic robotic concepts 9

2.1 Sensors . 9

2.2 Maps . 10

2.3 Navigation Scheme . 11

2.4 Global Path Planning . 11

2.5 Motion planning . 13

2.6 Machine Learning . 14

3 foresighted navigation through clutter 17

3.1 Introduction . 17

3.2 Related Work . 19

3.3 Cost Maps for Path Planning in Cluttered Environments 20

3.3.1 Standard Cost Function 21

3.3.2 Cost Function for Cluttered Environments . . . 21

3.4 Clutter Density and Cost Prediction 23

3.5 Experiments . 24

3.5.1 Path Planning and Trajectory Execution 24

3.5.2 Quantitative Evaluation 25

3.5.3 Qualitative Evaluation 27

3.5.4 Real-World Experiments 29

3.6 Conclusion . 30

4 predicting travel time from path characteristics 33

4.1 Introduction . 33

4.2 Related Work . 35

4.3 Predicting Travel Time from Path Characteristics 36

4.3.1 Features for Describing Path Characteristics . . 37

4.3.2 Prediction of Travel Time 39

4.3.3 Regression Models 39

4.4 Experiments . 39

4.4.1 Data Collection 39

4.4.2 Regression Results 41

4.4.3 Temporal Gain 44

4.5 Conclusion . 44

5 improving social navigation by supervised

learning 47

5.1 Introduction . 47

5.2 Related Work . 49

5.3 Social Force Model . 51

5.4 Pedestrian and Robot Motion 52

5.4.1 Robot Model . 52

5.5 Predictive Controller . 53

5.6 Training a Neural Network 54

5.7 Experiments . 56

5.7.1 Parameters and Setup 56

5.7.2 Average Number of Collisions for Different
Pedestrian Densities 57

ix

x contents

5.7.3 Average Completion Time for Different Pedestrian
Densities . 58

5.7.4 Qualitative Evaluation 58

5.8 Conclusion . 59

6 improving navigation by deep reinforcement

learning 61

6.1 Introduction . 61

6.2 Related Work . 63

6.3 Problem Description . 64

6.4 Neural Network Approximator for Local Navigation . 65

6.4.1 Observation Space 65

6.4.2 Reward . 66

6.4.3 Neural Network Structure 67

6.5 Experiments . 68

6.5.1 Training . 68

6.5.2 Evaluation . 69

6.5.3 Success Rate . 70

6.5.4 Completion Time 71

6.5.5 Real-World Experiment 72

6.6 Conclusion . 73

7 path and action planning to overcome impeding

objects 75

7.1 Introduction . 75

7.2 Related Work . 77

7.3 System Overview . 79

7.4 Semantic Segmentation 80

7.4.1 CNN-Based Semantic Segmentation 80

7.4.2 Data Collection 82

7.5 Path Planning Utilizing Obstacle Information 84

7.5.1 Actions for Object Classes 84

7.5.2 Action Costs . 85

7.5.3 Object Mapping 87

7.5.4 Path Planning . 89

7.5.5 Updating the Action 90

7.6 Experimental Evaluation 90

7.6.1 Classification Results 90

7.6.2 Real-World Experiments with a Nao Humanoid 92

7.6.3 Replanning Actions During Execution 93

7.6.4 Summary of the Experiments 95

7.6.5 Implementation Details 97

7.7 Classification errors . 97

7.8 Conclusion . 97

8 conclusion 99

8.1 Summary . 99

8.2 Outlook . 101

a appendix 103

acronyms 105

list of figures 107

list of tables 109

bibliography 111

1
I N T R O D U C T I O N

Daily, people perform dull and boring tasks, that range from cleaning
the house to running errands through crowds of people. Service
robots can potentially reduce the amount of work and time people
spend every day to accomplish these tasks, by either aiding humans
or acting completely autonomously. The current generations of robots
can accomplish a vast variety of jobs and be applied in different
scenarios. To illustrate, several successful robotic products are listed
in Fig. 1.1. The iRobot Roomba is a robotic vacuum cleaner, that
already helps millions of households to keep the floor clean. Toyota
developed the Human Support Robot (HSR) for scenarios at home, to
help handicapped or ill people. The MiR100 is delivering sterile and
medical goods in a hospital, during the COVID-19 pandemic. Finally,
the Nao humanoid robot is a multi-purpose platform, that can be used
for education, entertainment, and as in our case, for research purpose.
All mentioned examples require mobility of the robot and the ability to
navigate autonomously in the environment. Autonomous navigation
is the robot’s capability to reach a target location in the environment
with none or minimal human intervention. It is a multidisciplinary
field and includes localization, mapping, perception, object and human
detection, and motion and path planning.

Robots came a long way since George Devol and Joseph Engelberger
developed the first industrial robot in 1959 [1]. Today, more robots
are deployed than ever. The International Federation of Robotic [2]
reports a positive trend for the industry. In the past decade the stock of
operational industrial robots increased almost threefold from 1 million
units in 2009 to 2.7 million in 2019. In recent years, service robots
entered the market. Service robots are intended for non-industrial
use and are employed in households and public spaces. In 2019 23.2
million units were sold and the number is expected to rise to 53.3
million by the year 2023.

Notably, this bright economical prospects and the potential of nu-
merous new applications spark major research interest in the scientific
community. Today, teams of scholars can compete against each other
in many robot competitions, e.g., the RoboCup@Home league [3] and
The European Robotics League Consumer Service Robots competi-
tion [4]. Those events bolster the progress towards future service and
assistive technology for domestic applications. The goal is to test the
abilities and performance of service robots in non-standardized home
environments. The following examples show the achievements made
in the RoboCup@Home league since the start in 2006 till 2019 [5].

1

2 introduction

(a) Roomba vacuuming the floor. (b) HSR supporting people in need.

(c) MiR100 distributing sterile goods. (d) Nao picking up toys.

Figure 1.1: Robots operating in human environments. a)The iRobot Roomba
vacuum cleaner is widely used in many households (source:
[6]). b) Human Support Robot (HSR) designed by Toyota for
collaborative task in a household environment (source: [7]). c) The
MiR100 model developed by Mobile Industrial Robots is already
deployed in a hospital for automated logistic tasks (source: [2]). d)
The educational and research robot NAO from SoftBank Robotics
is also used for entertainment and information purposes (source:
[8]).

The robots competition task to navigate from one room to another
was first evaluated based on the collisions occurred with the environ-
ment. Later every collision meant the failing of the task. Nowadays
functional touching while navigating is even encouraged, e.g., to open
doors. Initially, object recognition was accomplished by attaching a
well recognizable marker to the object and is now realized without
markers by using color-segmentation and machine learning methods.
While the people recognition task in the past consisted of recognizing
a face in front of the robot, it is now evolved to state the gender and
the pose of a specific person within a crowd. The difficulty of the
manipulation task increased from grasping a simple box on the floor
to open a beer can and handing it to a person.

These examples show how constant research and development en-
ables a higher degree of autonomous behavior, and thus pave the way
for new robotic applications. Accordingly, our work aims at advancing
the state of the art navigation approaches towards a more foresighted
and autonomous behavior for service robots. We explore how robots

1.1 main contributions 3

can efficiently solve navigation tasks in human environments. More
precisely, we target overfilled areas with many objects on the floor
or narrow hallways with crowds of people and collectively designate
this characteristic as ’clutter’. To illustrate the required navigation
capabilities, let us assume a service robot, that assists a family. After
receiving a task of buying some groceries in the store the robot has
to traverse the living area, where objects are occupying the floor. It
has now to determine the best way to overcome the obstacles on its
way outside, by either getting around the clutter or manipulating the
objects to free the path. To deliver the groceries, the robot has to move
through human crowds, while being unobtrusive and human-friendly.
While doing so, the robot has to update the human at home about
the expected time of delivery of the groceries. Since the software to
accomplish all the aforementioned challenges has to run preferably on
a mobile platform, the algorithms have to be as efficient as possible
and real time capable. Furthermore the interfaces and software, to
operate the robot, should be usable by customers with any kind of
technological know-how.

This thesis presents approaches, to successfully accomplish the
outlined steps above. In summary, we present techniques to answer
the following questions:

• How can we improve the navigation of the robot in cluttered
environments, by considering the clutter distribution?

• How can we predict the robot’s travel time based on the global
path?

• How can we improve navigation through pedestrian crowds, by
using prediction and machine learning techniques?

• How can we optimize the navigation behavior of the robot near
obstacles with reinforcement learning?

• How can a robot efficiently reach a navigation goal, that is
blocked by obstacles?

1.1 main contributions

This thesis presents novel solutions to navigation problems in tough,
narrow, and cluttered environments, where there are many objects
lying on the floor or pedestrians crossing the robot paths. Our contri-
butions improve the state of the art robot navigation, by reaching faster
the goal location or having less collisions. All approaches consider
real world scenarios for potential service robots. More importantly,
the developed software is capable to run on a mobile robot with lim-
ited computational capabilities and narrow field of view (FOV). This
section provides an overview of the contributions.

4 introduction

The first contribution in Chapter 3 presents an approach to efficiently
navigate in cluttered environments, with many static objects on the
floor. We propose an extension of the standard navigation cost, that
influences the global path planning, to create faster routes to the goal.
The standard navigation cost function computes the navigation cost
based on the distance to the closest obstacle. Our approach, instead,
considers the complete object distribution in the vicinity of the robot
and allows to propagate the navigation cost into unexplored regions,
accounting for potential objects beyond the perceived area. The result
is a foresighted robot navigation behavior that leads around cluttered
areas when it is beneficial for the navigation task and performs equal
in the absence of clutter.

In Chapter 4, we introduce a method to predict travel time based on
global path characteristic. We compare different regression methods
to train an estimator with data gained from the simulation of the
actual path execution with a controller that is based on the dynamic
window approach (DWA). The prediction of the completion time, the
period the robot needs to complete a navigation task, is pivotal for
time-efficient planning in different scenarios, e.g., medical supply
distribution or rescue situation. All this tasks involve locomotion and
the travel time can make up a significant amount of the total task
completion time. Furthermore, when multiple path candidates are
present, the shortest path is not always the best choice as it may lead
through narrow gaps and it may be in general hard to follow due to
a lack of smoothness (Chapter 3). The assessment of an estimated
completion time is a much stronger selection criterion compared to
the bare path length, but due to the lack of a dynamic model in the
path computation phase the completion time is typically a priori not
known. We show that a non-linear regression model is well suited to
reliably predict the completion time of a navigation task from 2D path
features.

The third contributions focuses on navigation through pedestrian
crowds. A popular tool to simulate human motion and crowd be-
havior is the social force model (SFM). In Chapter 5, we apply the
SFM to control also the robot instead of the DWA, in order to achieve
human-aware navigation behavior. The robot’s objective is to reach
the target location with minimal collisions and as fast as possible,
while passing crowds of people. Our approach determines the best
acceleration command by simulating the pedestrians as well as the
robot motion forward into the future and evaluating the predicted sit-
uation. In this phase we collect the relevant environment data to train
a network controller to mimic the navigation policy achieved through
the omniscient simulation. In extensive experiments using different
pedestrian densities, we demonstrate that the controls generated by
the learned neural network lead to a significantly reduced number of
robot collisions with pedestrians compared to the results of the basic

1.2 publications 5

SFM controller, while achieving similar or even shorter completion
times.

In Chapter 6 we also apply a neural network, this time, to learn
a navigation policy by deep reinforcement learning (RL). RL applies
the trial-and-error principle to determine an optimal policy, that does
not need any tuning. Typical navigation systems require manual
parameter tuning to achieve a good navigation behavior. This tuning
takes a significant amount of time and profound knowledge about the
navigation software, the robot hardware, as well as the environment
conditions. Furthermore, the parameter setup is not optimal for
all situations, but rather aims for a good trade off between time
efficiency and safety. Our method combines path planning on a 2D
grid with reinforcement learning and does not need any supervision
(as opposed to the approach described in Chapter 5). The experiments
illustrate that our trained policy can be applied to solve complex
navigation tasks. Furthermore, the robot controlled by our learned
policy reaches the goal significantly faster compared to the DWA, by
closely bypassing obstacles and thus saving time.

So far, the thesis focuses on increasing the efficiency of the robot’s
navigation behavior assuming a free path to the goal. However, this
assumption is not necessary given in a cluttered environment, e.g.,
when objects block the path to the target location. In Chapter 7 we
present a solution for the blocked path scenario by combining fast
2D path planning with 3D footstep planning and object manipulation
actions, to overcome obstacles in obstructed regions. In our work we
classify the objects in the environment based on color images, to decide
whether the object can be pushed away, be carried aside, or in case
of a humanoid robot, can even be stepped over. Based on associated
actions, we compute the navigation cost and create a cost grid, to
perform efficient 2D path planning. The resulting path encodes the
necessary actions, that need to be carried out by the robot to reach
the goal. As the experiments demonstrate, using our convolutional
neural network (CNN) the robot can robustly classify the observed
obstacles into the different classes and decide on suitable actions to
find efficient solution paths. Our system finds paths also through
regions where traditional motion planning methods are not able to
calculate a solution or require substantially more time.

In summary, this thesis presents five contributions, that target diffi-
cult scenarios regarding robot navigation in clutter.

1.2 publications

Parts of this thesis have been published in international journals and
conference proceedings. The following list gives an overview about
the individual publications.

6 introduction

• Chapter 3

P. Regier, S. Oßwald, P. Karkowski, et al., “Foresighted naviga-
tion through cluttered environments,” in Proc. of the IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), 2016

• Chapter 4

P. Regier, M. Missura, and M. Bennewitz, “Predicting travel
time from path characteristics for wheeled robot navigation,” in
Proc. of the Europ. Conf. on Mobile Robotics (ECMR), 2017

• Chapter 5

P. Regier, I. Shareef, and M. Bennewitz, “Improving navigation
with the social force model by learning a neural network con-
troller in pedestrian crowds,” in Proc. of the Europ. Conf. on Mobile
Robotics (ECMR), 2019

• Chapter 6

P. Regier, L. Gesing, and M. Bennewitz, “Deep reinforcement
learning for navigation in cluttered environments,” in Proc. of the
Intl. Conf. on Machine Learning and Applications (CMLA), 2020

• Chapter 7r P. Regier, A. Milioto, P. Karkowski, et al., “Classifying ob-
stacles and exploiting knowledge about classes for efficient
humanoid navigation,” in Proc. of the IEEE-RAS Intl. Conf. on
Humanoid Robots (HUMANOIDS), 2018r P. Regier, A. Milioto, C. Stachniss, et al., “Classifying obsta-
cles and exploiting class information for humanoid navi-
gation through cluttered environments.,” The Int. Journal of
Humanoid Robotics (IJHR), 2020

publications not covered by this thesis

The following publications were written while employed as a research
associate, but are not covered by this thesis:

• T. C. Bächle, P. Regier, and M. Bennewitz, “Sensor und Sinnlichkeit.
Humanoide Roboter als selbstlernende soziale Interfaces und die
Oboloszenz des Impliziten,” Navigationen-Zeitschrift für Medien-
und Kulturwissenschaften, 2017

• J. Kim, I. H. Shareef, P. Regier, et al., “Automatic ranking of
engagement of a group of children „in the wild “using emotional
states and deep pose features,” in Proceedings of the workshop on
’Creating Meaning with Robot Assistants: The Gap Left by Smart
Devices’ at the IEEE-RAS International Conference on Humanoid
Robots (HUMANOIDS), 2017

1.3 collaborations 7

• C. Thimm, P. Regier, I. C. Cheng, et al., “Die Maschine als Part-
ner? Verbale und non-verbale Kommunikation mit einem hu-
manoiden Roboter,” in Die Maschine: Freund oder Feind? Springer,
2019

• T. C. Bächle, P. Regier, and M. Bennewitz, “Sensoren,” in Tech-
nikanthropologie, Nomos Verlagsgesellschaft mbH & Co. KG,
2020

1.3 collaborations

Parts of this thesis are the results of collaborative work with other
researchers, hence we consistently use “we” within this thesis. The
collaborations on the work in this thesis and my contributions are as
follows:

• Chapter 3: This work has been carried out along with Philipp
Karkowski and Stefan Oßwald. Philipp and Stefan helped with
the real-world experiments set up. Stefan was also closely in-
volved in the automation of the evaluation of the simulation
experiments.

• Chapter 4: This approach was supervised additionally by Marcell
Missura. Marcell helped with fruitful discussions and ideas
during the development of the work.

• Chapter 5: This work was originally developed within the Mas-
ter’s thesis of Ibrahim Shareef. Ibrahim implemented the ap-
proach. I co-developed the idea, designed and performed the
experiments and evaluation.

• Chapter 6: This work was originally developed within the Mas-
ter’s thesis of Lukas Gesing. I developed the project idea and
supervised and advised Lukas during his work.

• Chapter 7: These two publications are the result of the coop-
eration with Andres Milioto. The project was supervised also
by Cyrill Stachniss. Andres contributed the Bonnet framework
for Semantic Segmentation in Robotics [9]. He performed the
training and evaluation for the object classification part in this
work and helped to integrate the Bonnet framework into the
navigation scheme.

2
B A S I C R O B O T I C C O N C E P T S

This chapter summarizes the basic navigation concepts for mobile
robots. We describe the deployed sensors and the navigation
scheme, that are subject of this research. Furthermore we explain
the environmental model, path and motion planning techniques,
which are the groundwork for the methods presented in this
thesis. We also recommend [10], for a more detailed analysis of
robotics concepts in general. This book introduces the reader to
the many techniques and algorithms in the field.

2.1 sensors

Robots rely on sensors to perceive the world analog to the human
senses. In our experiments, we deploy cameras and Light Detec-
tion and Ranging (LiDAR) sensors to perform mapping, localization,
obstacle detection, and object recognition.

Cameras are one of the most used sensors in robotics. In this context,
it is common to name the different types of cameras based on the
received sensor data. Accordingly, a RGB camera produces an array
of color pixels represented by the primary colors red, green, and
blue. In addition to the three color channels, a RGB-D (depth) camera
provides also a grayscale image, that can be converted into per-pixel
depth information. We use the depth information for localization
and the RGB data for object classification. Furthermore, a RGB-D
camera enables us to efficiently allocate color pixels to a location in
the environment. We use this advantage in Chapter 7 to first detect
and classify objects based on the color information and then use the
depth information to allocate the object in the map. In general RGB-D
sensors, such as the Intel RealSense Depth Camera D455 [11], are
very popular in robotics, due to their light weight and affordability.
However, it is not ideal to rely only on the RGB-D sensor, since the
accuracy and precision might drastically be diminished when working
under too much sunlight.

A LiDAR sensor is much better suited to perform localization,
due to its wide field of view (FOV) that can cover a huge area in
the environment. Additionally, the sparse data structure of a 2D
LiDAR sensor speeds up the localization in comparison to the dense
data of a depth image. LiDAR sensors in its simple form uses a
series of laser pulses and measures the time of flight (TOF) when
the corresponding signal returns back to its sender. The TOF is then

9

10 basic robotic concepts

scaled to determine the distance to an obstacle. LiDAR sensors have a
high precision, wide FOV, and approved safety (DIN EN ISO 13849)
that is important for collision avoidance. In this work, we utilize 2D
LiDAR sensors that perform measurements in one horizontal plane
for computational cheap and fast obstacle detection, mapping, and
localization (Chapter 3).

2.2 maps

To navigate successfully, many robotic applications require a map
to model the environment. Among the most popular maps used in
robotics are the feature-based maps and the grid maps [12]–[16].

The compact, but sparse, feature maps represent the location of
landmarks and other significant characteristic, e.g., distinctive objects
or shapes in the environments. Such type of maps are often used in
outdoor navigation, where the robot has to cover a huge operational
area. Due to the reduced feature representation of the environment,
it is possible to speed up the localization process significantly and
to store a huge mapped territory into memory space. However this
type of map will underperform in regions with only few features,
e.g., corridors and white walls in indoor environments. Moreover the
feature computation from the sensor data is often expensive and thus
hinders the real time capabilities of mobile robots [16].

A more suited representation of the environment, for indoor naviga-
tion and the developed approaches in this thesis, is the grid map. Grid
maps are a dense representation of the environment and are widely
used in robotics. The mapping approach divides the environment
into small fix square cells, containing information about their property.
Similar to the cameras (Sec. 2.1), we name the map based on the
contained information. For example, an occupancy map cell stores the
probability of being occupied by an obstacle. Based on the occupancy
map, robots can perform path planning, localization and collision
checks. However, considering only the occupancy state of the cell is
not enough for some navigation scenarios, when other factors need to
be taken into the account, e.g., social distance to pedestrians. Thus,
the common practice today is to apply navigation cost to every grid
cell, instead of the occupancy value. The cell navigation costs in the,
so called, costmap reflect the difficulty to traverse the corresponding
area in the environment.

Usually, those costs are determined by an objective function. De-
pending on the application, a navigation cost function can consider
several factors, e.g., ground conditions, distance to obstacles, and
social norms. However, a necessary step is the inflation of the map.
It describes the process of enlarging every single occupied cell in the
map by a certain amount, usually the robot radius. In robot naviga-
tion, it is common to reduce the robot footprint to a single cell. The

2.3 navigation scheme 11

footprint reduction facilitate collision checks and path planning, by
considering only one cell in the grid as the robot. However, to keep
the configuration of free and occupied space of the map accordingly
to the real world, the obstacles in the maps need to be inflated by the
same amount as the footprint was reduced. In Chapter 6, we show
how the inflation can be neglected by learning a navigation policy
with reinforcement learning.

2.3 navigation scheme

To generate a wide range of intelligent behaviors, the different robotic
modules for sensing, localization, planning, and motion execution
need to be integrated into one working unit accordingly to a scheme.
In this thesis we use a state of the art navigation scheme, that follows a
two-step approach (Fig. 2.1). Before the start of the navigation process,
we create a map of the environment with a simultaneous localization
and mapping (SLAM) method [17], [18]. The map represents the
robot’s prior knowledge of the environment and is updated based on
the on-board sensor information during the navigation process.

In the navigation scheme the first stage is dedicated to plan a
spatial global path through the environment from the position of
the robot to the goal location. Depending on the distance and the
environment this step is usually computationally expensive. Thus,
the global path planner operates in low frequency range of 0.5 to
2Hz. To smoothly follow the globally computed 2D path afterwards,
one typically employs a local reactive collision avoidance system that
efficiently generates motion commands for the robot [19]–[21]. It takes
into account the current sensor information and the subgoal provided
by the global planner module. Reactive collision avoidance modules
work with high frequency up to 50 Hz, to react to unforeseen events,
e.g., people crossing the robots path.

In the following sections, we introduce state of the art methods
to compute a global path on the grid map and subsequently motion
commands to follow the path. In our contributions we show how this
method can be improved and extended.

2.4 global path planning

A common approach to find a global path in the environment is to
apply graph traversal algorithms on a grid map. For that reason, the
grid map needs to be transformed into a graph, by considering every
grid cell as a graph node, that is connected with edges to the adjacent
cells.

In this thesis, we deployed the A* search [22], to find a path on
a grid map. The A* algorithm manages an Open list and a Closed

12 basic robotic concepts

Path planning

Motion planning

subgoal

motion
commands

robot

Map

Sensors

Figure 2.1: Two stage navigation approach. Before starting the navigation, the
robot requires a map of the environment, which is continuously
updated based on new sensor information. In the first stage, the
robot computes a path to a given target location by using the grid
map (Sec. 2.4). In the second phase, the robot extracts a subgoal
from the global path and determines the motion commands for
the next time step, to follow the path (Sec. 2.5).

list, to determine a minimum-cost path from a start node to a goal
node. At the beginning of the algorithm, the Closed list is empty and
the Open list is initialized with the start node. In every iteration the
algorithm expands the most promising node and moves it into the
Closed list, while its successor nodes are moved to the Open list. The
search is complete when the goal node is selected for expansion. The
expanding order of the nodes is based on the evaluation function
f (n) = g(n) + h(n), where g(n) is the best path cost currently known
from the start to node n, and h(n) is a heuristic, that estimates the cost
from node n to the goal. The heuristic function h(n) determines the
performance of A*, by directing the search towards the goal. h(n) is
called admissible, when it never overestimates h∗(n), that is the true
optimal cost from node n to the goal node. h(n) is consistent, when
h(n) ≤ ec(n, n′) + h(n′)∀n and n′, where ec(n, n′) is a function, that
returns the edge cost between the nodes n and n′. If h(n) is consistent,
then the cost of g(n) is guaranteed to be optimal and every node is
expanded only once. Note that consistency implies admissibility, and
non-admissibility implies inconsistency.

When the heuristic is not consistent, A* can potentially find a better
solution for an already expanded node. Then the new costs g(n) of
node n need to be propagated to its successors, by fetching the node
from the Closed list and register it, with the new updated cost, in the
Open list. In this case, it is possible a node will be expanded several

2.5 motion planning 13

Goal

Subgoal

Robot
Start

Figure 2.2: Example of the robot (magenta) planning a global path (green)
on the grid map from start (red) to the goal (yellow). While
following the path to the goal, the robot repeatedly computes
the trajectories (dashed blue lines) for a set of motion control
commands and chooses the best trajectory (solid blue line) based
on the surroundings. In this example, the best trajectory leads the
robot close to the subgoal (dark yellow), while keeping distance
to obstacles (gray).

times. In Appendix A, we list the general version of the algorithm for
non-admissible heuristic (Algorithm 2). To obtain the path after the
A* search is terminated, we need to backtrack the Parent map from the
goal node to the start node (Algorithm 1).

After the path computation, the robot needs to find the right se-
quence of robots velocity commands to follow the path to the goal. In
the next section we introduce a state of the art method to accomplish
this task.

2.5 motion planning

After the path computation, the robot has to compute a sequence of
motion commands, to navigate collision-free and as fast as possible
to the target location. Trajectory rollout (TR) [23] algorithms are
particularly good at achieving this task. TR algorithms sample motion
control commands and predict their out come into the future, while
considering the robot’s state of motion.

In more detail, the algorithm determines a set of motion control
commands, considering the robot’s acceleration and velocity limits,
as well as the robot’s current velocity. Then, the trajectory of the
robot is computed, for each control command in the set, assuming

14 basic robotic concepts

constant control parameters. Afterwards, every sampled trajectory is
evaluated by an objective function and the control commands of the
best trajectory are applied to the robot for the next time step. This
procedure is repeated every time step until the robot reaches the goal.

Several approaches, e.g., [21], [23] follow this pattern to achieve
reactive collision avoidance. The Robot Operating System (ROS) [24]
provides a tool set for all kinds of robotic application. This includes
the aforementioned approaches [25]. In practice, both approaches
show comparable results. We deployed the dynamic window ap-
proach (DWA) [21], because it showed slightly better performance in
cluttered environments. Initially, the DWA assumes a unicycle model
and samples linear and angular velocity control commands, but the
approach can easily be modified to fit other kinematic models. It
also works for holonomic robots by expanding the search and control
space and allowing linear motion to the side of the robot. Further-
more, some research [26] propose to apply acceleration commands to
control the robot. In this thesis however, we focus on the navigation
cost function and machine learning to improve the robots navigation.
Fig. 2.2 outlines the global path and motion planning on a grid map,
for a better understanding.

2.6 machine learning

The ability to learn allows robot to acquire new skills, to carry out
complex tasks, and to obtain problem solutions, that are difficult
to formulate. The goal of this section is to introduce the principles
and terminology of machine learning. A more detailed coverage of
machine learning methods in general can be found in [27]–[29].

When applying machine learning, we want to model the relationship

y = fM(x) (2.1)

between the input values x ∈ X and the output values y ∈ Y , where X
is the input space, Y is the target space, and fM is a mapping function.
The problem of estimating fM is called regression if Y is continuous
and the relationship between the input and output is deterministic. We
apply regression methods in Chapter 4 to estimate the completion time
of a navigation task based on path features. However, robots are often
influenced by noise and uncertainties, that introduces randomness to
the model. In that case, the output y becomes a random variable and
the dependency between input and output is given by the conditional
probability distribution

p(y|x), (2.2)

that defines the probabilities of occurrence for possible outcomes of y
given x. The problem of obtaining the probability distribution over

2.6 machine learning 15

a finite set of classes k of the target space Y = {1, . . . , k} is called
classification. Often we are interested only in the most likely class, i.e.,

ŷ = argmax
y∈Y

p(y|x). (2.3)

In this thesis, we deploy two types of learning, supervised learning
and reinforcement learning, to model the functionality between input
and output values. Supervised learning algorithms approximate the
target function based on a data set of labeled examples. Each example
contains the input vector and the desired output vector (label). During
the training the parameters of the model are tuned based on the
training set in the data set. The goal of the training is to create a
model that generalizes its responses and acts correctly for input data
not present in the training set, thus, after the training, the model is
evaluated based on a test set. Reinforcement learning (RL), instead,
tries to find the correct action of a robot for a specific situation, where
no labels of an optimal output are given. Hence, RL tries to find
the right policy through an trial-and-error process, where the robot’s
actions are rated by a reward feedback signal. While supervised
learning requires a teacher or examples in order to learn fM, RL
requires an agent, e.g., a robot that can perceive the state of the
environment and take actions to affect that state. Thus, supervised
learning can only learn the information contained in the data set, while
RL-agents can explore the state space to learn the correct behavior
based on the gathered experience. In the following, we chose the
learning methods based on the problem we are trying to solve. For
example, in Chapter 7 it is convenient to provide a data set with
examples of toy classes in an image, because it is an easy task for
humans to do. Accordingly, we chose supervised learning to solve this
task. While in Chapter 6, it is very difficult to implement a navigation
behavior that acts optimal near obstacles. Therefore, it is better to
apply RL, to let the robot learn the optimal navigation policy through
experience.

3
F O R E S I G H T E D N AV I G AT I O N
T H R O U G H C L U T T E R

In this chapter, we introduce an approach to efficient robot nav-
igation through cluttered indoor environments. We propose to
estimate local obstacle densities based on already detected objects
and use them to predict traversal costs corresponding to potential
obstacles in regions not yet observable by the robot’s sensors.
By taking into account the predicted costs for path planning,
the robot is then able to navigate in a more foresighted man-
ner and reduces the risk of getting stuck in cluttered regions.
We thoroughly evaluated our approach in simulated and real-
world experiments. As the experimental results demonstrate, our
method enables the robot to efficiently navigate through environ-
ments containing cluttered regions and achieves significantly
shorter completion times compared to a standard approach not
using any prediction.

3.1 introduction

Today, mobile robots are able to localize and navigate in laboratory
environments that are nicely tidied up, static, and have an accurate,
up-to-date world representation such as a floor plan or a pre-recorded
SLAM map. When robots step out of the laboratory, however, they
face an ever-changing world filled with piles of objects and moving
obstacles that are not contained in the static environment represen-
tation. In particular, service robots operating alongside humans in
daily-life domestic and office environments need to navigate efficiently
and robustly also through cluttered scenes, for example in children’s
rooms with toys scattered on the floor, in workshops with tools laying
around, or in storage rooms with piles of boxes.

Driving through clutter is challenging as it requires accurate sensing
of obstacles and precise motion execution. The robot has to drive
slower, turn frequently, replan a collision-free path when new obstacles
come into its field of view, backtrack and take a detour when it gets
stuck in a dead end, execute dangerous maneuvers such as driving
backwards, and may eventually even have to give up when it is unable
to find a suitable path back out of the cluttered area.

Hence, the shortest path planned on a given floor plan is not nec-
essarily the most efficient path, as taking a detour around cluttered
areas right from the beginning may be longer, but faster and safer to

17

18 foresighted navigation through clutter

execute. Consider, for example, the scene depicted in Fig. 3.1. If the
robot takes the green path, it can drive fast and steadily to the goal
without encountering obstacles, which is more efficient than taking
the red path and potentially getting stuck.

If the world was fully observable and the distribution of clutter was
known, the robot would be able to plan a path that is optimized for
efficiency by reasoning about safety distances, allowable velocities, and
probabilistic sensing and motion execution errors. While solving this
problem is already challenging, accurate planning is impossible when
the world is only partially observable. Due to limited sensor ranges
and occlusions from the robot’s point of view, the true distribution
of clutter is unknown to the robot, hence it cannot directly plan and
optimize the planned path for efficiency.

Traditional planners can only consider objects that are either reg-
istered in the given map of the environment, or have already been
observed by the sensors, so these planners would assign equal traver-
sal costs to all unobserved areas in the free space of the given map.
However, clutter is typically not spread uniformly. In a children’s
room, toys often come in piles. In a workshop, tools usually gather
around the workbench. In storage rooms, boxes are usually stacked in
heaps close to each other. Using knowledge about the distribution of
clutter allows for predicting cluttered areas in regions that the robot
has not yet observed, which enables the robot to plan its path in a
more foresighted manner.

In this chapter, we propose a method to predict the occurrence
of obstacles in the space outside the field of view from the informa-
tion about objects in already observed areas. By increasing the costs
for traveling through areas where obstacles are expected, we allow
a path planner to avoid cluttered areas, which leads to more fore-
sighted navigation. Since the world is only partially observable, there
is no guarantee that the predicted obstacles actually exist and that
the planned path is optimal with respect to efficiency, but it seems
reasonable to avoid difficult navigation challenges if easier and safer
options are available.

We implemented our system in the Robot Operating System (ROS) [24]
and thoroughly evaluated it both in simulated and real-world ex-
periments with a Robotino robot from Festo Didactics [30]. As the
experimental results demonstrate, our approach enables the robot to
react to unexpected objects in a foresighted manner and to navigate
efficiently. In comparative experiments with a traditional path planner,
our method achieves significantly shorter completion times in various
complex scenarios.

3.2 related work 19

Figure 3.1: A robot navigating through a cluttered environment has to choose
between different paths for navigating to a goal. While the red
path is shorter, it passes through a cluttered area, putting the
robot at risk of getting stuck. The green path is longer, but it
is safer. Our approach predicts traversal costs corresponding
to potential obstacles outside the field of view (FOV) based on
already detected objects. This enables the robot to choose more
promising paths that are likely to lead to a shorter completion
time.

3.2 related work

Lu et al. introduced the notion of layered costmaps and implemented
it in ROS [31]. Instead of maintaining a single costmap, the authors
proposed to split the information of the costmap into several layers
with different semantics. Each layer represents a different type of
obstacle or constraint, such as the static map, caution zones, and the
personal space of a human that the robot should not penetrate. This
concept has been widely used, such as for path planning or in order
to represent the exploration progress. Marder-Eppstein et al. [32]
suggested to exploit the costmap representation for navigating a PR2

robot through a cluttered real-world office environment containing
obstacles of varying shapes and sizes. While their navigation system
tries to navigate even through difficult obstacle fields, our approach
predicts the scene behind initially detected obstacles and considers
taking a detour right from the start if navigating through the clutter
does not look promising.

Hornung et al. [33] considered 3D environments containing a mod-
erate amount of cluttered objects. The focus was mainly on finding
collision-free upper body configurations of the robot for traversing
tight passages. For humanoid robots, cluttered environments are
particularly challenging as the robots have to adhere to balancing

20 foresighted navigation through clutter

constraints in addition to the navigation task. Hence, they have to
choose their footholds carefully when moving through cluttered areas.
Orthey and Stasse [34] as well as Maier et al. [35] proposed suitable
solutions for this task given observed obstacle locations.

Joho et al. [36] presented a technique using nonparametric Bayesian
models for learning exact geometric arrangements of objects from large
data sets. The authors showed that their unsupervised approach is able
to learn how to set the table. In a related approach, Sudderth et al. [37]
also reasoned about the number of objects and their spatial relation
for detecting items in visual scenes. While the authors are interested
in finding reproducible patterns in the geometric arrangements, we
cannot expect that there are typical structures that can be learned in
our scenario. Instead, we propose an efficient approach for predicting
traversal costs for unobserved parts of the environment based on
cluttered objects already observed.

Henry et al. [38] estimated the density of people in the environment
to learn human-like navigation behavior of the robot. When navigating
alongside humans in crowded environments such as pedestrian areas,
robots have to adapt to the habits of humans, for example with respect
to crowd flows or personal spaces of humans. While this approach
estimates the density and velocity of pedestrians to plan a path, that
mostly follows the flow of the crowd, our work aims at reaching the
goal as fast as possible, by executing a foresighted navigation behavior.

In particular, we focus on domestic and office environments. Based
on detected objects, we predict costs corresponding to potential obsta-
cles in close but not yet observed areas. By making detours around
regions that are likely too cluttered for the robot to easily pass through,
our robot avoids getting stuck and efficiently navigates to the goal.

3.3 cost maps for path planning in

cluttered environments

We assume that a 2D grid map containing the static obstacles in the
environment is given (Sec. 2.3). As the robot moves through the
environment, it updates the map continuously by marking cells as
occupied or free whenever previously unknown objects appear in the
robot’s field of view. The robot uses this map to localize itself and to
predict costs corresponding to potential cluttered objects in areas that
it has not yet observed with its sensors.

For path planning, we apply the same procedure as described in
Sec. 2.4. We assign a cost value to each grid cell and use an A*-based
planner to find the path with the lowest costs to the given goal location
of the robot. In the following, we describe a standard cost function
that considers a safety distance to all obstacles. Already, we briefly
outlined the practice of inflating obstacles in Sec. 2.2. In the next

3.3 cost maps for path planning in cluttered environments 21

section, we cover this concept in more detail, by focusing on the cost
function formulation. Afterwards, we introduce two extensions to
the standard cost function, by considering the clutter density and
configuration of the local surroundings.

3.3.1 Standard Cost Function

The standard cost function sets the costs of all occupied cells to infinity,
furthermore, occupied cells are inflated by a safety distance and their
neighbor cells get also assigned infinite costs. In that way, the robot
keeps a safety distance r to all obstacles. While this results in the
computation of collision-free paths, it may lead to undesirable behavior
as the shortest path from one room to another would often run close
to walls and door posts when entering a room. While some situations
require to squeeze through narrow passages or move close to obstacles,
the robot should generally prefer to maintain a certain clearance. A
commonly used approach to represent such a preference for open
space is to add costs to the regions adjacent to inflated obstacles that
decay exponentially with growing distance to the nearest obstacle.
This approach allows the planner to trade off between path length
and obstacle clearance. As this cost term quickly loses influence with
increasing distance, it only has to be computed for cells near obstacles
and can be neglected for cells further away.

Putting these cost terms together yields the following cost function:

Cbase =

0 if n = 0

∞ if ∃i : di < r

Cmax ·max
i

ek(r−di) otherwise

, (3.1)

where r is the robot’s safety distance, d1, . . . , dn are the distances to the
nearby obstacles, Cmax defines the highest traversable cost, and k is a
constant scaling factor controlling the decay of the costs. The red curve
in Fig. 3.2 illustrates this cost function in an example environment
with two obstacles.

3.3.2 Cost Function for Cluttered Environments

The cost function described in Eq. (3.1) takes only the nearest obstacle
into account and neglects all other obstacles. However, areas with
multiple obstacles close to each other are more challenging for the
robot, as locomotion in confined spaces is difficult and the sensor view
is often obstructed. Increasing factor k would incite the robot to keep
a larger distance to all obstacles irrespective of the amount of clutter,
leading to unnecessarily long detours around single, free-standing
objects. By contrast, we propose to introduce an additional cost term

22 foresighted navigation through clutter

co
st

s r

standard cost function
our approach

r

ob
st

ac
le

 2

sa
fe

ty
cl

ea
ra

nc
e

sa
fe

ty
cl

ea
ra

nc
e

Cmax
1

distance
ob

st
ac

le
 1

Figure 3.2: Cost function for a simple environment containing two obstacles.
The green and yellow curves represent the exponentially decaying
costs for obstacle 1 and 2, respectively. These costs encourage the
planner to keep a clearance to obstacles in addition to the safety
distance. While the standard approach takes the maximum of
those curves as the cost function (red), our approach combines
the curves according to Eq. (3.2), which leads to higher costs in
cluttered areas.

that reflects the amount of clutter in the local surroundings of each
grid cell.

The new cost function should meet these requirements:

• The cost value should increase exponentially with the number
of objects in the vicinity of the robot, so that the planner will
avoid cluttered regions.

• The cost function should have the same value range as the
original function Eq. (3.1).

• The cost function should approach zero as the distances go to
infinity.

• If there is only one object in the vicinity of the robot, then the
cost function should coincide with the original cost function
from Eq. (3.1).

The following cost function fulfills these requirements:

Cclut =

0 if n = 0

∞ if ∃i : di < r

Cmax ·min
{

1,
n
∏
i=1

(Ei + 1)− 1
}

otherwise

(3.2)

where Ei = ek·(r−di) is the same exponential decay function as used
above in Eq. (3.1). In this formula, we add 1 to Ei so that far-away
objects with Ei ≈ 0 turn into the neutral element in the multiplication.

3.4 clutter density and cost prediction 23

After the multiplication, we have to subtract 1 again so that the cost
function approaches 0 when the distances go to infinity.

In addition to the requirements defined above, the function also has
the following properties:

• The product can be computed incrementally as

Enew = (Eold + 1) · (Ej + 1)− 1 (3.3)

when a new object j is observed, which allows for efficient
implementation.

• In contrast to the original function Eq. (3.1), it is continuously
differentiable in the areas the robot can traverse, which is re-
quired by some planning algorithms. Like the original function,
it is not differentiable at the borders between free space and
obstacles.

Fig. 3.2 shows a comparison of the standard cost function (red) and
our approach (blue) in a simple environment containing two obstacles.

3.4 clutter density and cost prediction

The cost function defined in the section above can be applied to deter-
mine the costs in regions the robot has already observed. However, we
would like to also predict costs corresponding to potential objects in
adjacent regions that are not yet within the field of view or occluded
by other objects. To do so, we estimate local obstacle densities depend-
ing on the already observed objects and increase the traversal costs for
cells in close-by regions that are not yet visible.

To allow for efficient computation of the object density, we calculate
the observed occupation density inside a circle of radius Rj for each
cell ci within the prediction region. We perform this calculation for
M circles with different radii as shown in Fig. 3.3. The predicted
density ρi is then found by summing over all M density estimates,
weighted by an exponential factor that decreases with R,

ρi =
∑M

j=1 e−Rj o i, j
tj

∑M
j=1 e−Rj

, (3.4)

where tj is the total count of cells and oi, j is the count of occupied cells
around ci, both inside the circle with radius Rj. The cost Cpredict for
each cell ci is then defined as

Cpredict = α · ρi, (3.5)

where α has to be chosen such that clutter densities that raise naviga-
tion difficulties lead to predicted costs close to Cmax.

24 foresighted navigation through clutter

R1R2R3

visible
objects

FOV

ci

prediction
range

Figure 3.3: Our framework predicts an average clutter density for cells ci in
close but not yet observed areas by calculating densities within
the radii Rj around ci based on occupied cells corresponding to
non-static obstacles.

3.5 experiments

We implemented our approach in ROS and evaluated it both in sim-
ulation (Gazebo [39]) and in real-world experiments. The practical
experiments were performed using a Robotino robot from Festo Di-
dactics with an ASUS Xtion Pro Live fixed to the mounting tower for
obstacle detection and a Sick-S300 laser scanner mounted horizontally
above the ground for localization. For detecting objects, the robot uses
data from the RGB-D camera to build a point cloud of the environ-
ment. All points above the ground plane are considered as obstacles.
Points that cannot be explained by known obstacles contained in the
given environment representation are classified as corresponding to
cluttered objects. In our experiments, the prediction region is located
from 2.5 m up to 5 m around the front half of the robot. The radii of
the circles to compute the occupation density are 0.5 m, 1.0 m, and
1.5 m.

3.5.1 Path Planning and Trajectory Execution

We deploy the navigation setup described in Chapter 2, with a grid-
based A* planner to find a global plan using the extended costs of
Sec. 3.3.2 and Sec. 3.4. After the path planning the robot executes
the trajectory rollout procedure for motion planning (Sec. 2.5). As
mentioned before, the motion planner samples velocities in the robot’s
control space, simulates and evaluates the robot’s trajectory in a short
lookahead time frame, and sends the highest-rated velocity command
to the robot (see [21][23] for details). By sampling and evaluating
in the robot’s control space, the planner is able to adapt the robot’s
velocities to the constraints imposed by the environment, to follow the
path and subsequently reach the goal. However, the robot will drive

3.5 experiments 25

slower in cluttered areas as it has to respect acceleration limits when
turning or evading obstacles.

3.5.2 Quantitative Evaluation

We evaluated the impact of the amount of clutter on the completion
time in a series of simulation experiments with varying obstacle den-
sities for both the standard technique without modifications and our
approach with the modified cost function and prediction. We ran-
domly sampled objects within a rectangular area of size 23× 8 m2.
The clutter area is surrounded by free space leaving the robot the
possibility to drive around it. As clutter objects, we used boxes with
lengths varying from 0.3 to 1.2 m (see Fig. 3.6 for an example map).
For the sake of comparison, we define a parameter for the obstacle
density Dc in the clutter area as the average number of objects that
appear in a region of one square meter.

The task of the robot was to navigate to a goal point at a distance
of 28 m at the opposite end of the arena with the cluttered area in
between. In this scenario, the robot cannot get stuck in the clutter
area as there is always a possible path to the goal, the robot can
rotate on the spot and drive back the path that it came from, and
the simulator provides error-free sensor measurements. For each Dc,
we created 20 randomly cluttered environments with a variety of
objects. We averaged the results over two runs with different start
and goal positions for each generated environment and evaluated the
average travel time for reaching the goal. Fig. 3.4 shows the mean and
95% confidence interval of the overall traveling time in relation to the
density of the clutter region.

For the extreme values Dc = 0 and Dc → ∞, both approaches yield
the same behavior by definition: If no clutter obstacles are present,
both approaches will choose the shortest path without being impeded,
thus both the mean and variance of the travel time are low. As the
clutter density increases, the completion time generally increases as
the robot has to take longer paths to avoid obstacles. If the clutter is
too dense for the robot to fit through, then both approaches will plan
a detour around the whole area, again leading to similar completion
times. The approaches behave differently when the clutter is sparse
enough for the robot to drive through, but dense enough to impede
the robot, i.e., for values of Dc between 0.3 and 0.8. In this case, the
robot has to decide whether to drive through the clutter area or to
take a detour around it. Driving through the clutter leads to shorter
trajectories, but the robot has to drive slower near obstacles and the
risk of driving into a dead end and having to backtrack increases. As
the results show, our approach finds a good trade-off and achieves
shorter completion times in all cases. For the densities marked with (*)
and (**), the difference is statistically significant according to a paired

26 foresighted navigation through clutter

0.1 0.2 0.3
(*)

0.4
(*)

0.5 0.6
(*)

0.7
(**)

0.8
(*)

0.9
0

20

40

60

80

100

120

density [objects/m²]

our approach standard approach

ti
m

e
[s

]

Figure 3.4: Mean and 95% confidence interval of the traveling time in relation
to the amount of clutter. For low and high clutter densities, both
approaches behave similarly. In the middle range, our approach
leads to shorter completion times. For the densities marked with
(*) and (**), our approach performs significantly better than the
standard approach according to a paired t-test at the 0.05 and
0.001 level, respectively.

t-test at the 0.05 and 0.001 levels, respectively. For densities below
0.5, driving through the clutter is usually the favorable option, while
for densities above 0.5 taking a detour around groups of obstacles is
often faster. For densities around 0.5, the completion time strongly
depends on the geometrical distribution of the clutter, as dead ends
and maze-like structures occur frequently, making it hard to predict
which path will lead to the goal. Hence, both mean and variance
increase for both approaches. While our approach still performs better
on average, the difference is not statistically significant due to the high
variance. On average, updating the cost map after new sensor readings
takes 10.8± 4.0 ms for our approach compared to 5.9± 2.3 ms for the
standard approach.

To assess the contribution of the individual components, we report
the results in Fig. 3.5 separately for a planner using only the cost
function from Sec. 3.3.2 (green), a planner using only the prediction
method from Sec. 3.4 (yellow), and a planner using the combination
of both (blue). For better comparison, we normalized the times so that
the standard approach matches 100%.

The main effect of the cost function introduced in Sec. 3.3.2 is to
increase the costs for squeezing through narrow passages between
obstacles. Such navigation maneuvers slow down the robot and they
are risky, as sensing errors might lead to collisions or trap the robot in
situations where its planner cannot find a valid path anymore.As the
results from Fig. 3.5 show, the cost function on its own increases the
completion time compared to the standard approach for low clutter
densities, because the planner will keep a bigger distance to groups

3.5 experiments 27

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
70%

80%

90%

100%

110%

density [objects/m²]

our approach (combined) cost function only
prediction onlystandard approach

re
la

ti
ve

 tr
av

el
 ti

m
e

Figure 3.5: Average of the traveling time in comparison to the standard ap-
proach broken down by the individual components of our system.
Overall, the combination of our cost function and prediction per-
forms best. See Sec. 3.5.2 for a detailed discussion of the results.
Note that the vertical axis starts at 70% to improve readability.

of obstacles. In combination with the clutter prediction, however, it
decreases the completion time.

Overall, the combination of our cost function and the clutter pre-
diction performs best. In some cases, the prediction alone performs
marginally better than the combination, as the cost function increases
the clearance between the robot and groups of obstacles, leading to
slightly longer trajectories.

In the next section, we will discuss the influence of the individual
parts in more detail based on exemplary situations.

3.5.3 Qualitative Evaluation

Fig. 3.6 shows a typical simulation result. The task of the robot was to
navigate from the left side to the right side of the room. The center
of the room is filled with clutter objects that are not contained in the
robot’s map. In the depicted situation, the robot has traveled about
half the way to the goal. The standard approach without the modified
cost function and prediction (top) tries to follow the shortest path to
the goal, which leads the robot through dense clutter. As the robot
has to respect acceleration limits when turning and evading obstacles,
the robot has to slow down. It arrives at the goal after 102 s. Our
approach, by contrast, predicts that there are probably more objects
behind the obstacles that gradually appear in its field of view while
driving. The prediction and the modified cost function increase the
costs towards the center of the clutter area as well as in between the
objects, inciting the planner to choose the longer, but safer option of
making a detour around the obstructed area. Even though the traveled

28 foresighted navigation through clutter

start goal

B

A C

standard approach

0 15 30 45 60 75 90 105
0%

100%

time [s]

sp
ee

d
BA C

start goal

D E

our approach

0 15 30 45 60 75 90 105
0%

100%

time [s]

sp
ee

d

D E

Figure 3.6: Comparison of the two approaches on an example
map (Dc = 0.35) and velocity profiles in percent of the
maximum allowable speed. The standard approach (top) tries to
follow the shortest path to the goal, leading the robot through
dense clutter where the robot has to slow down to avoid
collisions. With our approach (bottom), the costs increase in
locations where clutter is predicted, driving the robot around the
clutter field and leading to a shorter completion time.

distance of our approach is 11% longer, the robot arrives at the goal
29% earlier after 72 s.

As our algorithm predicts clutter in regions that the robot has not
observed yet, it has to update the prediction, based on real measure-
ments, once the robot travels through previously unknown regions
and observes the actual scene. Fig. 3.6 also shows how the robot clears
the prediction for areas that it has observed as being free space, e.g.,
in the center top area.

Fig. 3.7 shows the effects of the individual components of our
system on a sample map. The standard approach loses time as it has
to slow down near obstacles. The prediction incites the planner to
drive around dense clutter, but it still drives through narrow passages.

3.5 experiments 29

start goal

our approach (combined): 65.9 s cost function only: 77.4 s

prediction only: 71.8 sstandard approach: 84.9 s

Figure 3.7: Comparison of the individual components of our system on an
example map (Dc = 0.25). The standard approach loses time
by squeezing through narrow gaps. The prediction incites the
planner to drive around dense clutter. The cost function prevents
the robot from driving through narrow passages. Our combined
approach leads to the shortest time.

our approach (combined): 106 s standard approach: 91.8 s

start goal

Figure 3.8: Our approach chooses the conservative option of driving around
the dense clutter in the center. The standard approach drives
through the narrow passage and arrives at the goal earlier.

In the combined approach, the cost function additionally prevents the
robot from entering cluttered regions through narrow passages, hence
the combined approach yields the shortest completion time.

In Fig. 3.8, our approach evades the dense region in the center of the
map and prefers the less dense area in the top. As there is no guarantee
that predicted obstacles exist, in this case the clutter avoiding strategy
leads to an unnecessary detour. On average, however, the advantages
of the prediction outweigh the risk of superfluous detours.

3.5.4 Real-World Experiments

We conducted real-world experiments using the Robotino robot in the
environment shown in Fig. 3.9. The environment is surrounded by

30 foresighted navigation through clutter

walls and contains additional walls separating a corridor and multiple
rooms. Additionally, we placed several obstacles on one side of the
environment. While the robot has access to a map containing the
walls, it does not know the amount or distribution of the clutter
objects beforehand.

The standard approach computed a full path through the cluttered
region, which is displayed on the left in Fig. 3.9. Although the robot
successfully navigated through the clutter, the robot needed to slow
down on several occasions to change its orientation and avoid colli-
sions leading to a total navigation time of 45.5 s.

Our approach started with a similar navigation plan, however, once
the robot discovered the nearby clutter at the start, the increased
predicted costs in the cluttered region immediately led to a replanned
path around the corridor. This path is shown on the right in Fig. 3.9.
While resulting in a longer path, the total travel time was only 34 s as
the robot was able to drive faster due to the free space on the right
corridor.

3.6 conclusion

In this work, we proposed a novel solution to efficient navigation
through environments containing areas with many cluttered objects.
Our approach predicts traversal costs resulting from potential obsta-
cles in regions that are not yet observable by the robot’s sensors. The
prediction is based on estimated obstacle densities from already de-
tected objects. By considering the predicted traversal costs directly for
path planning, the robot navigates foresightedly and avoids regions
that are likely to be too cluttered for the robot to easily pass through.

We implemented our system within ROS and represented the pre-
dicted traversal costs as a new cost map layer for path planning. As
we demonstrate in the experiments with a wheeled robot equipped
with a depth sensor, in several situations the resulting navigation
behavior significantly outperforms the one generated by a standard
path planner that only considers detected objects.

In next chapter we introduce a method to estimate the completion
time for wheeled robots based on path characteristic. The predictabil-
ity of the completion time is a necessary capability for service robots
to schedule their work in many situations. Furthermore, the infor-
mation about the completion time could prevent suboptimal cases as
depicted in Fig. 3.8, by comparing the two paths and following the
best estimated option.

3.6 conclusion 31

Figure 3.9: Experiment with the real Robotino traveling through a cluttered
scene. The standard approach computes a path through the
clutter, where the navigation is slowed down. Our approach
predicts higher traversal costs leading to an early replan around
the cluttered region. The displayed costmaps correspond to the
time after the robot has reached the corresponding goals.

4
P R E D I C T I N G T R AV E L T I M E F R O M
PAT H C H A R A C T E R I S T I C S

As the experiments in Chapter 3 clearly demonstrate, it is not
always the best option for the robot, to choose the shortest path
to follow. Since, the shortest path may lead the robot through
narrow gaps or be in general hard to execute due to a lack of
smoothness. The estimated completion time of a navigation task
is a much stronger selection criterion, but is typically a priori not
known. We introduce a novel approach to estimate the completion
time of a path based on simple, readily available features such
as the length, the smoothness, and the clearance of the path. To
this end, we apply non-linear regression and train an estimator
with data gained from the simulation of the actual path execution
with a controller that is based on the dynamic window approach
(DWA). As we show in the experiments, our method is able to
realistically estimate the completion time for 2D grid paths using
the learned predictor and highly outperforms a prediction that is
only based on path length.

4.1 introduction

Robots nowadays are facing the challenge of having to solve tasks
with ever increasing complexity. In several real world applications, the
predictability of the completion time of such tasks plays an important
role. Generally speaking, the prediction of the task completion time
is pivotal for all time-efficient planning scenarios. Such scenarios
include cooperative floor-cleaning and household tasks, long term
autonomous driving systems [40] that need to estimate their travel
time for a more efficient power supply management, and museum
tour-guide robots that have to schedule their guiding precisely in
order to guarantee sufficient entertainment of the visitors [41].

In Chapter 3 we illustrate scenarios, where several path options are
available. Whereby, the fastest option often differs from the shortest
or cost-minimal solution. Consider for example Fig. 4.1, where the
robot has two options to reach the goal location. The first option (red
path) contains narrow passages with several cluttered objects. The
second option (green path) traverses solely free space. Taking the red
path, the robot needs to drive slowly since it needs accurate sensing
and precise motion execution to avoid collisions. At very tight spots
the robot even has to stop frequently and rotate in order to adjust its

33

34 predicting travel time from path characteristics

Figure 4.1: Motivation of our approach. The robot can choose between two
options to reach the goal location. The shorter path (red) leads
through dense clutter where the robot needs to drive carefully and
needs accurate sensing and pose estimation to avoid collisions.
The second path (green) is longer but leads through wide free
space where the robot can drive with a faster velocity profile.
The presented approach learns to predict the travel time along
2D paths from training data to decide which path leads to the
fastest completion time.

heading. In contrast, the green path leads through free space where
the robot can drive with higher velocities. Thus, the robot is faced
with the question which route to choose to reach the goal location as
quickly as possible.

With two-stage navigation systems where a global path planner
is combined with a local motion controller (Chapter 3), the precise
outcome of the motion execution is typically difficult or impossible
to predict in advance, especially when traversing narrow or cluttered
passages. A reactive robot control system such as the dynamic win-
dow approach (DWA) (Sec. 2.5) can neither ensure a time-optimal
trajectory, nor control stability, nor convergence of the system [42].
Additionally, many sources of noise randomly influence the navigation
performance, e.g., the slippage of the wheels, noise in the sensor mea-
surements, and inaccuracies in the localization. The resolution of the
grid-based environment representation or the choice of the navigation
cost function can also influence the performance significantly.

In this work, we present a novel method to predict the travel time for
a mobile robot based on path features that are available ahead of the
execution time. This will allow the robot to evaluate different options
and choose the path that is predicted to be the most time-efficient.

4.2 related work 35

Given a 2D path in a grid representation of the environment, our
method predicts the completion time by means of regression analysis
based on general path characteristics such as its length, clearance,
and curvature. We extensively evaluated our method in various
environments of different complexity. As the experiments show, our
method is able to realistically estimate the completion time of 2D grid
paths and outperforms a prediction that is solely based on the path
length. To the best of our knowledge, this is the first approach that
can efficiently predict the completion time of navigation tasks without
applying computationally expensive calculations using an exact kino-
dynamic model of the robot.

4.2 related work

Navigation systems, as introduced in Chapter 2, assume that the time-
optimal trajectory lies close to the computed 2D path, which is often
the case but might not be true in the presence of many obstacles (Chap-
ter 3). In such cases it might actually be better to also take into account
different paths with fewer obstacles that need to be passed. Therefore,
we present a method that learns the time the robot needs to navigate
along a given 2D path based on path characteristics. Based on general
features of a 2D path, the robot can then estimate the completion time
it would need to follow the path towards the goal location and choose
the best option among different possibilities.

Murphy and Newman considered robots operating in large outdoor
environments and developed an approach to trade off the risk of plan-
ning a path with suboptimal length for planning time and plan over
probabilistic costmaps [43]. To create such a probabilistic costmap, one
typically needs a priori knowledge about the terrain such as an over-
head image of the environment. The work of Murphy and Newman
focuses on traversing special types of terrain, whereas our approach
is optimized for dealing with challenging indoor environments with
mainly flat floor where the terrain properties play a minor role for the
performance. Zhu and Qingbao proposed path planning based on a
genetic algorithm [44]. The authors introduced functions to describe
path characteristics that allow to choose an optimized path from a
given set. This approach does not consider the motion control system
of the robot. Philippsen [45] used probabilistic navigation functions
to trade off the risk of colliding with dynamic obstacles against the
length of a detour to avoid those. However, the approach requires
tuning and user-defined heuristics and does not involve a trained
model.

Lau et al. [42] developed an approach to time-optimal control from
sparse way points to the goal based on quintic Bézier splines. Starting
from a given straight-line path, the trajectory is optimized for smooth-
ness and time taking into account the constraints of the system. In

36 predicting travel time from path characteristics

this work, we consider general navigation in environments of different
complexity also containing highly cluttered and narrow passages. Our
goal is to estimate the travel time based on simple, readily available
features describing the path characteristics and in this way enable the
robot to choose the best option, i.e., the path assumed to lead fastest
to the goal using a standard DWA-based controller that generates
velocity commands in an efficient manner.

4.3 predicting travel time from path

characteristics

A two-layered approach (Sec. 2.5) can generate robust, collision-free
motion even in obstacle-laden environments. However, the highly
unpredictable nature of the DWA controller as well as the influence of
noisy perception and localization makes the estimation of the comple-
tion time of a motion task a difficult endeavor. The cheapest path in a
costmap is not always the best choice as it may lead through narrow
or cluttered passages and it may be in general hard to follow without
slowing down and rotating on the spot (Chapter 3).

To illustrate this, we performed two navigation experiments in a
large cluttered environment where the robot had the choice to drive
through or around the cluttered region. Fig. 4.2 shows this scenario
with the two paths and their corresponding velocity profiles. The red
profile in Fig. 4.2 shows that driving around a cluttered region allows
the robot to navigate at full speed and reach the goal in a shorter
time even though the total path length is longer. Driving through the
dense clutter, however, leads to higher localization errors due to more
frequent rotations, repeated velocity drops in order to avoid collisions
and on-spot rotations, which are necessary in regions with very little
space to navigate.

Thus, the estimated completion time is in many situations a much
stronger selection criterion than the path costs, but due to the lack of
a dynamic model in the path computation phase the completion time
is typically not known a priori. In the following, we introduce a novel
approach to estimate the completion time from path features to enable
the robot to choose the most promising path among different possible
routes through the environment.

In principle, the only way to predict the completion time is to
simulate the path execution and measure the time the robot takes to
navigate to the goal. Our idea is to apply a machine learning approach
and to train a predictor function for the execution time, based on a
small number of generic features that can be efficiently computed
from a given global 2D grid path.

4.3 predicting travel time from path characteristics 37

time [s]

0.6

0.0

0.2

0.4

ve
lo

ci
ty

 [
m

/s
]

0 10 20 30 40 50 60

velocity profile

3m

start goal

Figure 4.2: Example velocity profiles of a robot driving through and around
the cluttered region. Obstacles are displayed in gray. In order
to reach the goal, the robot has the choice to either navigate
through (blue path) or around (red path) the clutter. The cor-
responding velocity profiles are displayed to indicate common
navigation issues that arise from navigating close to multiple
obstacles. Considering the red profile, it is easy to see that the
robot can constantly drive close to the maximum velocity and,
thus, reaches the goal after only 34s with a traveled distance of
18.54m. The blue profile shows that constant speed drops occur,
which are necessary in order to avoid collisions. Additionally,
on-spot rotations are performed if too tight directional changes
are necessary. This leads to a lower traveled distance of 14.46m
while the execution time increased to 55.36s.

4.3.1 Features for Describing Path Characteristics

We define a path P = {p0, p2, . . . , pn} between the current position
of the robot and the goal location as a sequence of two-dimensional
coordinates (nodes) pi = (xi, yi) , i ∈ {0 . . . n}, as illustrated for an
example path in Fig. 4.3. A segment si of the path is then given by the
vector si+1 = pi+1 − pi. We found out that the length of the path, its
clearance, and smoothness are expressive features that can be used to
effectively estimate the time the robot needs to travel along the path
towards the goal location. These features are described in detail in the
following:

1. The total length of the path is given by the sum of the lengths of
each path segment:

Lp =
n

∑
i=1
|si| (4.1)

38 predicting travel time from path characteristics

Figure 4.3: Visualization of the features we use for path characterization.
The figure shows an example path from the robot’s current po-
sitions (gray circle) to the goal location through an environment
with three obstacles (yellow rectangles). The path consists of
three segments and two nodes. The angles α1,2, α2,3, and θ used
in Eq. (4.2) are also shown. The shortest distances between the
segments and the obstacle cells are illustrated as black dashed
lines and are used in Eq. (4.3).

2. The average smoothness of a path expresses its deviation from
being a straight line:

Sp =
θ + ∑n−1

j=1 αj,j+1

n
, (4.2)

where θ is the angle between the initial heading of the robot and
the first path segment, and αj,j+1 denotes the angle between two
path segments sj and sj+1. For example, α1,2 in Fig. 4.3 denotes
the angle between s1 and s2.

3. Finally, the average path clearance is computed as follows:

Cp =
∑n

i=1 max{Dmax − Dmin (si, cocc) , 0}
n

(4.3)

using the shortest distances Dmin (si, cocc) between each path
segment si and the occupied cells cocc closer than a threshold
Dmax > 0. We assume that obstacles with a distance greater
than Dmax have no effect on the task execution. The clearance is
illustrated in Fig. 4.3 as a dashed line from a path segment si to
its closest obstacle.

4.4 experiments 39

4.3.2 Prediction of Travel Time

Using the three path features defined above, we train a predictor
function

Tp = F
(

Lp, Sp, Cp
)

(4.4)

that estimates the expected path execution time Tp based on the total
length, average smoothness, and average clearance of the path. These
features are readily available before the actual path execution starts by
a local controller.

4.3.3 Regression Models

Regression is a common tool in statistical analysis to find relationships
among variables. The goal of the regression analysis is to find a
model that fits well the given data points and thus can be used for
prediction afterwards. Different models can map different types of
relationships between the variables. Linear regression, for example, is
a very fast algorithm, but can only model linear coherences. A special
case of linear regression is the simple linear regression that fits the data
with a simple regression line. Linear regression, in contrast, models
the relationship among several independent variables to predict the
requested dependent quantity. For systems with non-linear behavior,
linear predictors are often not sufficient. Better results can be achieved
with more advanced methods. Support vector machines, for example,
are kernel methods that map the data input into a high-dimensional
feature space using kernel functions. This kernel trick allows to detect
non-linear coherence in data sets.

To find the right regression approach for our problem, we evaluate
the simple linear regression, linear regression, and support vector
method for the task of completion time prediction based on the path
features length, smoothness, and clearance that are described above.

4.4 experiments

In this section, we discuss the data collection process, the regression
analysis, as well as the prediction results in different environments.

4.4.1 Data Collection

Our goal is to obtain a single regression model that covers as many
scenarios as possible. In order to gather data that is well distributed
over the feature space, we performed experiments on a variety of
maps such as the Willow office environment and artificially created
maps (see Fig. 4.4). One type of artificial maps we used are highly clut-
tered maps consisting of uniformly distributed or Gaussian distributed

40 predicting travel time from path characteristics

Figure 4.4: Maps used in the experiments. (a) Office environment created
by Willow Garage, (b) narrow maze-like environment, and (c)
cluttered environment with many randomly distributed obstacles.

pillars, where pillars are randomly generated in varying quantity of
75 pillars per hundred square meters, 50 pillars per hundred square
meters, and 25 pillars per hundred square meters with varying radii
from 20-60 cm according to the distribution used. Another type of
artificially created maps consist of narrow maze-like structures with a
corridor width between 0.6 m and 0.9 m. We generated three different
artificial maps of both types.

To collect training data, we used the Gazebo simulation environ-
ment [39] with a model of the omnidirectional Robotino robot by Festo
Didactics. We first compute a global path from the current position
of the robot to a goal position and then let the robot follow this path
with a DWA-controller. To obtain ground truth data, we measure the
task completion time when the position of the robot is close to the x-y-
coordinates of the goal position. The final heading is not considered.
In each experiment, the start position, the initial heading of the robot,
and the goal position were chosen randomly. We used an A*-planner
for computing the global path. The lengths of the grid-based paths
varied between 4 m and 50 m. The A*-planner and the DWA-controller
are implemented in the ROS navigation stack [24].

The choice of the parameters of the navigation systems has a pivotal
influence on the performance of the robot during the experiments. We
found the following parameters to work best in practice. We used a
resolution of 5 cm for the global costmaps of the environments and

4.4 experiments 41

1 cm for the local map. The frequency of the control loop was set
to 8 Hz and the size of the local costmap was chosen to be 1.5 m
× 1.5 m. The maximum linear velocity was set to 0.6 m/s and the
maximum rotational velocity was set 0.6 rad/s. The acceleration limits
for linear and rotational movement were set to 0.7 m/s2 and 0.7 rad/s2,
respectively. Naturally, the capabilities of the underlying physical
system are instilled into a trained regressor. A deviation from the
configuration parameters at a later time may work to some extent,
we have not evaluated this in our work so far, but in general it must
be assumed that the model is not transferable to a new system with
significantly different navigational capabilities. The training must be
performed for each individual combination of robot and navigation
software.

We created two data sets with each containing 5500 navigation tasks.
The first data set was gathered without any sources of noise, i.e., no
noise in the sensors and without slippage of the wheels. In particular
this also includes a perfect localization. Naturally, this model is not
entirely realistic, but it helps to analyze the data with respect to the
correlation of the features with the estimate. The second data set was
collected from experiments with a localization system that adds noise
to the simulation due to faulty pose estimates. Note that in the second
data set, the sensors and motion itself are still noise-free. Using these
two data sets, we can evaluate our model with noise in comparison
to noise-free results and also see how much the noise in the system
affects the navigation performance.

4.4.2 Regression Results

In this section, we present the results of our regression analysis. For
every data set, we learned an estimator for each of the different ap-
proaches. We used a simple linear regression (SLR) method based on
the path length alone as computed in Eq. (4.1), a linear regression (LR)
model which considers all the features mentioned above (see Sec. 4.3.1),
and we trained a support vector machine for regression (SVR), also
using all features. For training and testing we used WEKA, a well-
established data mining software [46]. To evaluate the different regres-
sion models, we performed a 10-fold cross validation on the data set,
i.e., during one validation run, 90% of the data set is used for training
and the other 10% for testing this specific model. In the next validation
round, another subset of 10% is used for testing and we repeated this
process 10 times until every subset of the data set has been tested. We
computed the average of the root mean square errors (RMSE) of every
ten testing runs. As a reference, we additionally computed the RMSE
of the constant average estimator over the entire data set.

It is not sufficient to assume a linear distribution, because, in the
presence of clutter and narrow gaps, our navigation system exhibits

42 predicting travel time from path characteristics

 0

 50

 100

 150

 200

 250

 5 10 15 20 25 30 35 40 45 50

tim
e[

s]

length[m]

Figure 4.5: Completion time of the simulated execution of the generated
paths in the three environments (yellow) over path length. With
increasing length, the data spreads broader around the regression
line (blue). These results were obtained from the experiments
with noisy localization.

a highly non-linear behavior. Nevertheless, linear models are easy to
fit and fast to compute and thus serve as a good reference. Fig. 4.5
illustrates the completion time of every run in the data set over the
path length (computed according to Eq. (4.1)). Note that the spread
of the data points (yellow) around the linear regression line (blue)
increases with path length.

The regression results depicted in Fig. 4.6 show that the features
introduced in Sec. 4.3 have a substantial influence on the time esti-
mation, as we can see a 14% improvement for both data sets of the
LR compared to SLR. A further reduction of the prediction error can
be achieved using the non-linear model. Using the SVR results in a
RMSE that is further reduced by 15% compared to the LR for the data
set with perfect localization and 22% for noisy localization. These
results support that the system behaves highly non-linear and a lin-
ear regression method is not sufficient if a more accurate estimate is
desired.

Comparing both data sets against each other, we can clearly see
the influence of the noisy localization which is close to real-world
runs. The results also show that some of the noise can be estimated
by our approach, since the error reduction from LR to SVR is larger
for noisy compared to perfect localization. This improvement stems
from the fact that a much higher localization error correlates with
certain non-linear behaviors, e.g., rotating fast on the spot or traversing
monotone environments with only few features. Thus, the non-linear
SVR method is best suited for real-world scenarios.

4.4 experiments 43

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

Avg SLR LR SVR

R
o

o
t

M
ea

n
 S

q
u

ar
e

E
rr

o
r

[s
]

perfect localization
noisy localization

Figure 4.6: Comparison of four different regression methods for perfect (red)
and noisy (blue) localization. The regression methods are the
constant average estimate (Avg), a simple linear estimate (SLR)
based on path length only, linear regression (LR) using all fea-
tures, and support vector machine regression (SVR) also using
all features. As can be seen, the SVR has the smallest RMSE
of all approaches. This non-linear model seems to be the best
approximation for our robot and controller setup. Furthermore,
we see a clear improvement of the LR model in comparison to
SLR with the additional independent features.

The evaluation shown in Fig. 4.6 is well suited for a comparison of
the different regression approaches. Additionally, we are interested in
the relative root mean square error of the estimate, which is defined
as follows:

σest =

√√√√∑N
i=1

(Yi−Y′i)
2

Y2
i

N
, (4.5)

where Yi is the completion time of experiment i, Y′i is the correspond-
ing estimated value, and N is the number of experiments in a set. As
we evaluated a wide variety of scenarios which contained both very
short and very long paths, σest is a better measurement of the relative
deviation per experiment, as we first scale every separate squared
error by the corresponding completion time. We computed the values
of Eq. (4.5) for both the LR and SVR due to the superior performance
compared to SLR. For the LR and SVR, σest evaluates to 0.32 and 0.13,
respectively. These results show that the use of SVR not only highly
decreases the average deviation, but also shows an improved estimate
for the whole spectrum of path lengths. As these results show, our

44 predicting travel time from path characteristics

1m

start goal

Figure 4.7: An environment with two rooms and a corridor, that was not
used for the training data, with three different path options to
get from the start to the goal. The longest path (red) leads the
robot through wide free-space area. The shortest path (blue)
guides the robot through narrow space between obstacles. An
alternative path (yellow) leads partly through the narrow passages
and through wide-space. The evaluation of the path is shown in
Tab. 4.1.

approach is able to predict the path completion time with an error of
only 13% in average.

4.4.3 Temporal Gain

To demonstrate the temporal gain when applying our prediction, we
performed an experiment on a completely new map (see Fig. 4.7). In
this experiment, three different path choices to navigate from start
to the goal location exist. The first option is the shortest path (blue),
which leads through narrow areas. The red path is the longest, but it
is smooth and has a high clearance to obstacles. The third alternative
consists of segments of the other two paths. Based on the completion
time predicted by our approach, the longest path is chosen as the
fastest option followed by the shortest path. The third path is the
slowest according to our prediction. By executing all three options in
simulation, the actual completion time in Tab. 4.1 confirms the predic-
tion and the path choice. The actual temporal gain when executing the
red path in comparison to the execution of the shortest path amounts
to 6 s, which is 9.8% of the travel time.

4.5 conclusion

In this work, we presented a technique to estimate the completion
time for 2D grid paths. The completion time is in general not known
in advance as it strongly depends on the capabilities of the underlying
motion controller. Through a low-dimensional categorization of the

4.5 conclusion 45

Table 4.1: Evaluation of the paths shown in Fig. 4.7

red yellow blue

length 28.5145 m 26.0843 m 20.9335 m

clearance 0.2685 0.4401 0.5131

smoothness 0.0137 0.0457 0.0483

prediction time 47.373 s 58.756 s 50.392 s

completion time 55.512 s 63.751 s 61.511 s

paths using three generic features—their length, smoothness, and
clearance—and the simulation of a large variety of motion tasks on
different types of maps, we were able to regress an estimator that
predicts the path completion time with a low error of around 10%
before motion execution starts. Naturally, as the completion time
depends strongly on the navigation performance of the robot, it needs
to be trained individually for a specific hardware and motion controller
combination.

In the next chapter, we will also use supervised learning, to train a
neural network motion controller for navigation in pedestrian crowds.
Predicting the completion time of navigation paths works well in semi-
dynamic environments, where we can assume the robots trajectory
taken to the goal is similar to the path computed at the beginning.
However, this assumption is inaccurate when navigating through
crowds of pedestrians, where every potential obstacle is also moving
to its own destination. In these scenarios it is impossible to predict
the final trajectory of the robot, since the surroundings of the robot
drastically change for every time step. Reaching the goal, avoiding the
incoming pedestrians, and considering the social distance to people
are factors of more significance for the navigation performance in the
next chapter.

5
I M P R O V I N G S O C I A L N AV I G AT I O N
B Y S U P E RV I S E D L E A R N I N G

In this chapter, we present a novel, efficient approach to improve
the acceleration commands computed by the popular social force
model (SFM) for navigation through pedestrian crowds. Our
method consists of two stages. In the first phase, we collect
training data with a simulated approach. In this step, we modify
the steering acceleration commands from the SFM according to
a set of discrete alterations and simulate the motion of the robot
as well as the pedestrians into the future for each alteration. We
rate each resulting trajectory based on an objective function and
apply the best steering command to the robot. While control-
ling the robot in such way, we collect for every time step the
input and output training data. In the second stage, we then
train a neural network given the collected training data. We
use the best acceleration values experienced in the first phase as
target values for the neural network and define simple input fea-
tures describing the local surrounding of the robot. In extensive
simulation experiments using different pedestrian densities, we
demonstrate that the controls generated by the learned neural
network lead to a significantly reduced number of collisions with
pedestrians compared to the results of the basic SFM controller,
while achieving similar or even shorter completion times.

5.1 introduction

The ability to navigate through crowds of people is essential for all ser-
vice robots operating in human populated environments such as office
corridors, hospitals, or shopping malls. However, generating motion
commands for navigation among people is a complex task (see Fig. 5.1).
To be able to anticipate and avoid collisions, the motion of people
needs to be taken into account.

A popular approach to model human-aware navigation is the so-
cial force model (SFM) [47], which drives individuals through the
combination of repulsive and attractive virtual forces called “social
forces”. However, such virtual force field methods have limitations,
since mobile robots controlled by using force fields can be trapped
in local minima and show oscillation behavior in narrow spaces. In
addition, encountering dense crowds of pedestrians can lead to a high
number of collisions[48], [49].

47

48 improving social navigation by supervised learning

Figure 5.1: Example of a robot navigating through environment populated
by humans. To avoid collisions and efficiently reach the goal,
the robot has to decide on its control commands. We propose
to use a neural network in combination with the popular social
force model (SFM) to generate acceleration commands, based on
features describing the configuration of the humans in the robot’s
vicinity.

We therefore propose a two-stage approach to improve the controls
generated by a SFM based controller to realize efficient and collision-
free robot navigation through pedestrian crowds. The idea of the first
phase is to improve the SFM based robot navigation. To do so, we
simulate the positions of the robot as well as of the pedestrians in the
robot’s local environment a few time steps into the future. We hereby
assume the positions and velocities of the pedestrians to be known. For
the robot’s control, we consider a discrete set of incremental alterations
of the accelerations commands generated by the SFM based controller.
Based on the prediction for a given steering command, our system
then evaluates the surroundings of the robot, i.e., the number of
pedestrians in the robot’s vicinity and the distance to its navigation
goal. The best result of the acceleration values is chosen as the control
command to be executed by the robot. With this predictive controller,
the robot navigation behavior can be substantially improved since it
forecasts the situation and reacts accordingly.

However, the simulated prediction is computationally expensive
and, furthermore, a real robot will not have knowledge about the ve-
locity and the target destination of all surrounding people. Therefore,
we propose to train in a second step a neural network (NN) based
on simple features describing the configuration of the pedestrians in
the robot’s vicinity and the output of the predictive controller. The
NN combined with the SFM can then be used for safe and efficient
navigation through dense crowds.

As we show in extensive simulation experiments with different
densities of pedestrians, the controls generated by the NN lead to a

5.2 related work 49

significantly reduced collision rate of the robot with pedestrians in
comparison to the basic SFM controller. Furthermore, the experiments
demonstrate that a robot controlled by the NN achieves a speed that
is comparable to the one generated by the SFM controller.

The contribution of our work is a controller that is learned in a
supervised manner based on simple features describing the pedestrian
state around the robot. To generate the training data, we predict the
state of the local environment by simulating forward the motions of
pedestrians and the robot.

5.2 related work

A navigation approach that uses the SFM was presented by Fer-
rer et al. [50]. The authors introduced a metric computed as the
weighted sum of the robot’s social forces and determined the weights
of the different forces using a Markov Chain Monte Carlo Metropolis-
Hastings algorithm. In [51], Ferrer et al. extend the capabilities
of the robot in context of social navigation through additional cate-
gories of forces to accompany people side by side. Our approach, in
contrast, learns to improve the acceleration commands of the robot
provided by the SFM depending on the current situation regarding the
completion time of the navigation task. Cao et al. [52] perform path
planning through crowds using first Voronoi diagrams and Delaunay
triangulation to segment the environment and later search for a path
through pedestrians within a defined dynamic channel. A great idea
is presented by Chen et al.[53] to consider human-robot as well as
human-human interaction while navigating using a reinforcement
learning approach. Unfortunately, it is not mentioned how to incor-
porate static obstacles within the framework. Also the training and
performance of the network was tested only in a circle scenario, where
all the participants are placed on a circle line and have to reach the
opposite site. It is not clear how the learned behavior would adapt to
general scenarios.

Inverse reinforcement learning (IRL) has been the most widely-used
approach applied to achieving social navigation. Henry et al. [38]
utilized IRL to teach a path planner on a 2D grid from example traces
of pedestrians. The authors note that a robot agent in such a context
would have limited knowledge of its environment and therefore es-
timate the density and flow of pedestrians around it using Gaussian
processes. Gaussian Processes have also been utilized for modeling
pedestrian motion by Vemula et al. [54]. The authors used real hu-
man trajectory data to train their model and propose to discretize
each agent’s neighborhood and construct an occupancy grid per agent
containing all information of its neighbors. This approach is able to
predict future trajectories of observed pedestrians using a Monte Carlo
sampling approach as well as to compute the path of a robot through

50 improving social navigation by supervised learning

a dense crowd. Kuderer et al. [55] and Vasquez [56] used maximum-
entropy IRL to learn a behavior model of pedestrians in order to
generate socially compliant trajectories. In the work of Vasquez [56],
the speed and orientation of the pedestrians in relation to the robot
are used as observations for the robot. However, IRL is typically
computationally expensive leading to long training times and requires
a large training set in order to learn the reward function.

Kim and Pineau [57] proposed to use maximum mean discrepancy
as a query metric to determine how far an observation is from the
distribution of the training data up to that point. Teaching values
are requested only if this metric is above a certain threshold. This
approach produces safe trajectories, however, it is rather computation-
ally expensive to train. Recently, Tai et al. [58] presented generative
adversarial imitation learning that directly learns a policy from expert
demonstrations using the so-called trust-region policy optimization
without going through the intermediate step of learning a reward
function and without needing a map of the environment. The authors
make use of the SFM and generate a large set of training examples
in order to train their model based on raw depth data. So far, the
approach has been only applied to specific basic navigation scenarios.

Recently, long short-term memory (LSTM) have become popular for
motion prediction. For example, Everett et al. [59] consider motion
planning for a group of robots. The authors defined a reward function
based on velocity, change in heading direction, and distances to the
goal as well as the closest other agent. They use a LSTM cell at
the input layer where each agent in the environment subsequently
feeds the cell its own state at every decision step. By considering the
information of all agents about the state, the LSTM contains a fixed-
length, encoded state of the world for the current decision step. The
authors then apply reinforcement learning to generate the navigation
policy. As each learning episode contains information from several
agents the learning is accelerated. However, the requirement of this
method to have global knowledge about the states of all agents limits
its applicability in a real-world scenario.

Pfeiffer et al. [60] use LSTM neural networks to predict the motion
of humans, in this case taking explicitly into account static obstacles to
improve the prediction in cluttered environments. Also Alahi et al. [61]
proposed an LSTM for modeling human motions in crowds. The focus
in this approach was on trajectory prediction without hand-crafted
functions. A Bayesian generative model was developed by Blaiotta [62]
to predict multi-agent dynamics. It would be interesting to investi-
gate those recently presented capable prediction methods in context
of robot navigation. However, considering the many possibilities to
integrate a prediction method into the navigation process, many ques-
tion still remain open in that area of research. In this work, we favor

5.3 social force model 51

the SFM because of the intuitive nature, the simplicity, and straight
forward applicability for robot control.

5.3 social force model

In the following, we first introduce the social force model (SFM) [47],
[63], [64], which is the basis of our approach. The SFM models human
motion as the sum of three different social forces:

• The desired force ~f 0
i reflecting the desire of pedestrian i to reach

a particular destination at a particular speed,

• The obstacle force ~f wall
i as repulsive force between static obstacles

and pedestrian i,

• The social interaction force ~fij as repulsive force between pedestri-
ans i and j.

The desired force ~f 0
i is defined as

~f 0
i =

∂~v 0
i

∂t
= v0

i~e
0
i −~vi(t) , (5.1)

where ~vi is the current velocity of pedestrian i, ~e 0
i is a unit vector

pointing from the pedestrian to the goal and v0
i is the desired speed.

The obstacle force ~f wall
i decays with the distance dw between the

pedestrian and a static obstacle:

~f wall
i (dw) = e

−dw
0.2 (5.2)

The social interaction force is defined as the sum of two components:
fv that describes the deceleration along the interaction direction ~tij
and fθ that describes the directional changes along ~nij.

The interaction direction is given by

~tij =
λ(~vi −~vj) +~eij∥∥λ(~vi −~vj) +~eij

∥∥ , (5.3)

where ~vi −~vj is the relative motion between the pedestrians, ~eij the
unit vector pointing from pedestrian i to j and λ is the relative weight
of the two directions.

Let ~nij be the normal vector of~tij, oriented to the left. The forces fv

and fθ are defined as

fv(dij, θij) = −Ae
−dij

B−(n′Bθij)
2

(5.4)

and

fθ(dij, θij) = −AKe
−dij

B−(nBθij)
2

, (5.5)

52 improving social navigation by supervised learning

where dij denotes the distance between two pedestrians i and j and
θij is the angle between~tij and ~eij. The parameter K is the sign of the
angle θij and B is modeled as

B = γ||λ(~vi −~vj) +~eij|| . (5.6)

The social interaction force ~fij can now be defined by combining the
Equations 5.4 and 5.5:

~fij(dij, θij) = −Ae
dij
B [e−(n

′Bθij)
2~tij + Ke−(nBθij)

2
~nij] (5.7)

Moussaïd [63] defined the parameters A, B, n, n′, γ, λ by fitting the
function in Eq. (5.7) to real-world data of pedestrian behavior. The
complete equation of motion for a pedestrian, which determines how
its velocity changes per unit time, is then defined as the sum of the
three forces:

∂~vi

∂t
= ~f 0

i + ~f wall
i + ∑

j

~fij (5.8)

5.4 pedestrian and robot motion

Since the SFM robot control can still lead to collisions, especially in
scenarios with dense crowds of pedestrians, we propose to train a
neural network that outputs improved acceleration commands. To
learn the NN, we use a simulator that models the pedestrians and
robot motion according to the SFM. However, we modify Eq. (5.8),
that determines the pedestrian and robot motion, by applying weights
Fd f , Fof , Fsf to each component:

∂~vi

∂t
= Fdf ~f 0

i + Fof ~f wall
i + Fsf ∑

j

~fij (5.9)

By tuning the weights, we make sure that all our experiments show
reasonable behavior of the pedestrians without lumping groups or
traffic jam effects.

5.4.1 Robot Model

We assume a non-holonomic robot and define the robot state as tuple
of the global xy-position and orientation θ. The robot control is
determined by vx and vθ , which are its linear velocity in the heading
direction and the angular velocity around the vertical axis, respectively.
Thus, the trajectories for any constant velocity have a curvature with
the radius r = vx/vθ and the new state of the robot at time step t + ∆t
is determined as:x(t + ∆t)

y(t + ∆t)

θ(t + ∆t)

 =

x + r
(
sin(θ + ∆t · vθ)− sin(θ)

)
y + r

(
cos(θ + ∆t · vθ)− cos(θ)

)
θ + vθ∆t

 (5.10)

5.5 predictive controller 53

The velocities are clamped to reasonable values, i.e., |vx| ≤ 1.0 m/s
and |vθ | ≤ 1.0 rad/s. Given the linear and angular accelerations ax

and aθ we can compute the robot’s velocities as

vx = vx
r + ax · ∆t (5.11)

vθ = vθ
r + aθ · ∆t (5.12)

In our simulation, we determine aθ based on the resulting social force
vector and the robot orientation, and the robot rotational velocity.

aθ = Kp ·
∆α

(∆t)2 + Kd ·
−vθ

∆t
(5.13)

where Kp and Kd denote the coefficients and ∆α is the angle between
the social force vector and the heading direction of the robot. To
compute the linear acceleration ax, we project the social force vector
onto the heading direction of the robot and take the magnitude of
the new vector as value for ax, if ∆α is less than or equal to 70◦. That
means, we only apply forward acceleration when the social force
vector is within the field of view of the robot, whereby ∆α = 0 means
the maximal acceleration. In case ∆α is greater than 70◦, we set ax to
the maximum possible negative value to slow down or stop the robot.

5.5 predictive controller

We developed a predictive controller that aims at improving the com-
puted SFM commands. The predictive controller considers a set of
adjustment values of the acceleration commands generated by the
SFM controller and simulates the pedestrians as well as robot motion
some time steps into the future, evaluates the resulting configura-
tion based on an objective function, and chooses the best result. The
best acceleration values are then used as teacher values of the neural
network described in the next section.

In more detail, the predictive controller has knowledge about the po-
sitions and velocities of the pedestrians within a certain range around
the robot and tries to improve the acceleration commands computed
by the SFM controller at every time step by considering a set of adjust-
ments, defined as the tuple of linear acceleration adjustment δax and
angular acceleration adjustment δaθ from a set of discrete possible ad-
justments tuples. The predictive controller then simulates the motion
of the pedestrians as well as the robot for each considered adjustment
for time ∆t into the future and evaluates the resulting configuration
with the following objective function

Ω(δax, δaθ) = (5.14)

−αdG(δax, δaθ)− βped(δax, δaθ)− γcol(δax, δaθ),

54 improving social navigation by supervised learning

Figure 5.2: Overview of the predictive controller that outputs the best acceler-
ation adjustment adj∗ = {δax∗, δaθ∗} for the calculated SFM com-
mand. The objective function Ω takes into account the progress
towards the goal dG and the resulting number of pedestrians
within a certain range ped. See text for a detailed explanation.

where dG(δax, δaθ) is the resulting Euclidean distance from the robot to
its goal, ped(δax, δaθ) is the number of pedestrians that are predicted
to be in a 3 m radius around the robot, col(δax, δaθ) is the number of
collisions encountered during the simulation step, and α, β, and γ are
weights.

The tuple adj∗ = {δax∗, δaθ∗} that achieves the highest evaluation is
then added to the acceleration values returned by the SFM and chosen
as the command to be executed by the robot. Fig. 5.2 illustrates the
different components of the predictive controller.

5.6 training a neural network

The predictive controller introduced in the previous section makes ob-
servations from its simulated environment which cannot be obtained
in the real world. In addition, the calculations are too expensive to be
computed on board and in real-time. We therefore propose to learn
a neural network that can subsequently be used for a real robot to
generate improved acceleration commands based on the SFM. The
output of the predictive controller is hereby used as the training data.

We generated a training set by running our simulator and recording
at each time step a set of features describing the situation and the
adjustment tuple from the predictive controller. The final training
set contained approximately 300,000 data pairs of features and ac-
celeration adjustments and was collected with different densities of
pedestrians.

5.6 training a neural network 55

Figure 5.3: The features used as input to the neural network are the robot’s
observations of the pedestrians within its field of view. The
robot’s sensor field is divided into seven zones. The feature vector
consists of the distance to the closest pedestrian per zone, as well
as the number of pedestrians per zone. In this example, the vector
would be as follows: [(0,0),(0,0),(d3,2),(0,0),(d5,3),(0,0),(d7,2)]

Figure 5.4: The neural network architecture used for the robot controller (in-
put layer in blue, layers of linear neurons in yellow, and layers of
sigmoid neurons in purple).

Since typically the velocity of the people cannot be reliably observed,
we use a different set of features to describe the configurations of
pedestrians around the robot based on the available information. In
particular, we define a field of view in front of the robot with an
opening angle of 140◦ with a 3 m radius and divide this area into
seven equally sized angular zones as depicted in Fig. 5.3. For each
of these zones, we determine the distance of the robot to the nearest
pedestrian as well as the number of pedestrians currently within
the area. We use this information to describe the local environment
around the robot during training and application of the NN.

As a result, the input dimension of the neural network is 16 (2
features for each of the 7 zones and the linear and angular SFM
acceleration) and the output, corresponding to the acceleration values
δax∗, δaθ∗ given by the predictive controller, has a dimension of 2. An
example how the feature vector is computed is provided in Fig. 5.3.

We used the mean-square error as a loss function and optimized
training using RMSProp [65]. The network as depicted in Fig. 5.4
achieved the best validation loss rates for all architectures we evalu-

56 improving social navigation by supervised learning

ated, with an overall training time of only 10 minutes with an Intel
Core i5 CPU for 300.000 collected data points.

The weights of the neural network are initialized with the Glorot
normalization [66]. The output layer of the neural network has two
linear neurons corresponding to δax or δaθ . Note that in general it
might also be possible to train absolute velocities which, however,
would require a much larger data set for training and a more complex
network architecture.

5.7 experiments

We performed extensive experiments in simulation to evaluate the
performance of the neural network controller in comparison to the
basic SFM and the predictive controller in terms of number of collisions
and completion time of the navigation task.

5.7.1 Parameters and Setup

For the SFM we used the following parameters: A = 1.0, n = 2, n′ = 3
in Eq. (5.7). The desired velocity was set to v0

i = 0.8 m/s and the
parameters of Eq. (5.9) were set to Fsf = 2.1, Fdf = 1.0, Fof = 1.0.

For the predictive controller, we experimentally determined the
range of δax, δaθ ∈ [−0.3,−0.2,−0.05, 0.0, 0.05, 0.2, 0.3] for the adjust-
ment values of the predictive controller and thus considered 49 ad-
justment tuples. For the objective function in Eq. (5.14), we chose
α = 5, β = 1, γ = 6. These values showed the best performance for
the predictive controller. The prediction time was set to ∆t = 0.4 s and
the simulated environment ran with a frequency of 10Hz.

Our experimental environment consists of a corridor with a width
of 10 m, bounded by two parallel walls. The robot’s starting and goal
position across all runs was the same with a distance of 21 m between
these two points. We performed the evaluation for six different pedes-
trian densities. For each run, we distributed the pedestrians equally
at either end of the corridor and randomly initialized their position
in a certain region (Fig. 5.5). The goal positions of the pedestrians
are randomly sampled along the width of the corridor at the opposite
end.

For each of the six density groups we performed 50 runs using
the SFM controller, the predictive controller, and the neural network
controller in combination with the SFM.

5.7 experiments 57

goal

robot

t = 0.0s

t = 5.0s goal

t = 8.0s goal

t = 14.5s goal

Figure 5.5: Experimental setup with 50 pedestrians (black) and a corridor
size of 50x10 meters. The pedestrians on the left side have to
reach the right end of the corridor and vice versa. The robot
(magenta) starts in the middle of the corridor and has to reach
the goal on the right (green). The resulting trajectory is illustrated
for five seconds before and after each shown time step.

5.7.2 Average Number of Collisions for Different Pedestrian
Densities

We first evaluated the average number of collisions between the robot
and pedestrians for all three controllers. We hereby assume a collision
to happen when the outer boundaries of the robot and a pedestrian
come into contact, where both radii were set to 0.2 m. The results
depicted in Fig. 5.6 show that both, the predictive controller and the
neural network controller achieve a substantially reduced collision rate
for all densities compared to the basic SFM controller. Over all runs,
the NN controller shows a reduction of 31% in the number of collisions
compared to the SFM controller. Most importantly, we show that the
NN controller achieves a performance comparable with the predictive
controller, even if it uses simple features instead of the complete

58 improving social navigation by supervised learning

10 20 30 40 50 60
Pedestrians

0

10

20

30

40

50

60

C
o
lli
si
o
n
s

10

29

50

39

53

62

4

17

22

30

41

52

5

19 18

34
36

54

SFM

PC

NN

Figure 5.6: Average number of collisions per run for the basic SFM con-
troller (SFM), the predictive controller (PC), and the neural net-
work (NN) for different pedestrian densities. Both, the predictive
controller and the neural network considerably outperform the
basic SFM for all densities.

information from the simulation. As these results demonstrate, the
NN successfully imitates our predictive controller and substantially
improves the SFM commands.

5.7.3 Average Completion Time for Different Pedestrian Densities

Furthermore, we compared the completion time of the robot when
controlled by the SFM controller, the predictive controller and the
neural network to navigate through different pedestrian densities.

The results illustrated in Fig. 5.7 show that the NN controller
achieves a completion time that is comparable to the one of the
PC controller on average and outperforms the SFM controller up
to 50 pedestrians. The evaluation confirms again that our NN is able
to imitate the behavior of the predictive controller. For 60 pedestri-
ans the completion time of the NN approach is higher than the time
of both, the SFM and the PC controller, suggesting that additional
training for very dense crowds is needed.

5.7.4 Qualitative Evaluation

Fig. 5.5 shows how the robot navigates through a pedestrian crowd of
50 people towards its goal location (green). The magenta line illustrates
the robot trajectory five seconds before and after the current time step.
As can be seen, the robot moves smoothly through the pedestrians by
applying the acceleration adjustments of the NN. The reduced number

5.8 conclusion 59

10 20 30 40 50 60

Pedestrians

0

10

20

30

40

50

T
im

e

26

33

36
39

44

51

25

30

33

39

42

46

26

30

33

39

42

53SFM

PC

NN

Figure 5.7: Average completion time for the SFM controller, predictive con-
troller (PC), and the neural network (NN) for different pedes-
trian densities. As can be seen, there is no significant difference
between the three controllers up to 50 pedestrians even if the
NN and PC controller manage better to avoid collisions with
pedestrians (as shown in Fig. 5.6). Only for 60 pedestrians the
completion time of the NN controller is larger than the time of the
PC controller, suggesting that additional training for very dense
crowds is needed. These results demonstrate that the behavior
of the predictive controller can be mimicked successfully by the
NN controller, which is not using the omniscient simulation for
improving control commands.

of collisions of the NN controller results from foresighted behavior in
terms of early evasive actions into areas with only few pedestrians (see
the example Fig. 5.8).

5.8 conclusion

In this work, we proposed a novel robot controller based on a neural
network to improve the navigation behavior of a robot steered by
the popular social force model (SFM). To train the neural network,
we developed a predictive controller that uses information about the
positions and velocities of pedestrians within the vicinity of the robot
and simulates their motions a few time steps ahead. For the robot’s
motions, the predictive controller evaluates a set of incremental adjust-
ments of the SFM computed acceleration commands and determines
the best result based on the number of close pedestrians and the
progress towards the navigation goal. The best acceleration adjust-
ments values are then used as target values for the neural network.
As input, we use simple features describing the configuration of the
pedestrians in the robot’s vicinity.

60 improving social navigation by supervised learning

goal

Figure 5.8: Qualitative comparison of the NN controller and the SFM con-
troller for the same pedestrians configuration. The NN controlled
robot initiates the evasive action earlier (magenta) than the SFM
controlled robot (blue).

The learned network can be efficiently applied on a robot in combi-
nation with an SFM based controller and uses only features that can
be derived from real observations. As our simulation experimental
results with different pedestrian densities show, the motion commands
generated by the predictive controller as well as by the neural network
lead to a significantly reduced collision rate in comparison to the basic
SFM controller while maintaining a comparable velocity.

For the presented approach in this chapter, we chose supervised
learning to train a neural network. However, a great deal of work was
previously necessary to tune all the parameters of the SFM model [63].
The tuning of system parameters is a common necessity for almost all
mobile robots, that is time consuming and know-how-intensive. To
circumvent the requirements of tuning, we solve the navigation task in
Chapter 6 with methods of reinforcement learning (RL). RL deploys a
reward function to train a network based on trial-and-error procedure,
instead of using teaching examples from the predictive controller as in
this approach. We will show in Chapter 6 how a policy can be learned
completely autonomously for static environments based on robot’s
experience.

6
I M P R O V I N G N AV I G AT I O N B Y D E E P
R E I N F O R C E M E N T L E A R N I N G

Most approaches to collision-free and efficient navigation with
wheeled robots require parameter tuning by experts to obtain
good navigation behavior. In this chapter, we aim at learning an
optimal navigation policy by deep reinforcement learning to over-
come this manual parameter tuning. Our approach uses proximal
policy optimization to train the policy and achieve collision-free
and goal-directed behavior. The output of the learned network
are the robot’s translational and angular velocities for the next
time step. Our method combines path planning on a 2D grid
with reinforcement learning and does not need any supervision.
Our network is first trained in a simple environment and then
transferred to scenarios of increasing complexity. The experi-
ments illustrate that the learned policy can be applied to solve
complex navigation tasks.

6.1 introduction

To fulfill the prerequisite for mobile robot applications of collision-
free navigation, typical solutions apply a two-stage approach as we
discussed in Chapter 2. As stated before, the goal of the first stage
is to compute a 2D path on a cost grid. In the second stage, the
robot uses a low-level motion controller for path tracking and collision
avoidance. The low-level controller hereby determines the motion
commands for the current time step taking into account the global path
and the current robot state as well as the local environment. Typical
navigation systems require manual parameter tuning to achieve a good
navigation behavior. This tuning requires a significant amount of time
and profound knowledge about the navigation software, the robot
hardware, as well as the environment conditions, and is a difficult
task due to the trade off between time efficiency and safety.

In this work, we present a self-learned navigation controller real-
izing collision avoidance and goal-directed behavior. Our approach
combines grid-based planning with reinforcement learning (RL) and
applies proximal policy optimization (PPO) [67] for the learning task.
Our framework hereby uses a global planner to obtain a 2D path from
the current robot pose to the global goal. The input of the network
consists of the robot’s translational and angular velocities, local goals
determined from the global path, and a patch of the occupancy grid

61

62 improving navigation by deep reinforcement learning

subgoals

local map

global
path

goal

local map

subgoals

velocities:

neural

network

Figure 6.1: Visualization of our approach, which relies on a global path that
is recalculated on a 2D occupancy grid every time step. We
use subgoals on the path as part of our observation space and
input to a neural network. Additionally, we use a local grid
map centered around the robot and the current translational and
angular velocities vt−1 and ωt−1 as network input. We train the
network to learn a navigation policy that outputs the velocity
commands vt and ωt for the next time step.

map containing the obstacles in the robot’s vicinity. The outputs are
the robot’s velocity commands for the next time step. Fig. 6.1 shows
an example situation and a visualization of our approach.

To the best of our knowledge, we present the first solution that
integrates global path planning with deep RL to reach a global goal
in the environment. Our framework thereby learns the appropriate
distance to obstacles and performs regular recomputation of the global
path. As a result, no parameter tuning of the navigation controller and
inflation (Sec. 2.2) of the objects in the map is needed to find the best
trade-off between completion time and safety distance to obstacles.
When the global path leads through narrow passages, where collisions
are likely to occur, our system learns to drive around those narrow
regions.

We integrated our learned navigation policy as a collision avoidance
module that can be used with the Robot Operating System (ROS) [24]

6.2 related work 63

navigation stack [24]. We thoroughly evaluated our approach in simu-
lation and in a real-world experiment and compared the performance
with the dynamic window approach (DWA) (Sec. 2.5), which is used
in ROS and which is still one of the most popular navigation schemes.
As the experimental results show, the robot steered by our learned
policy reaches the goal significantly faster than using the DWA. Fur-
thermore, we show that the policy, which is initially trained only on a
simple environment, can be transferred to environments of increasing
complexity.

6.2 related work

In the last few years, several learning approaches for mobile robot navi-
gation have been presented. Sergeant et al. [68] proposed to use a state
representation based on laser range data and learned translational and
angular velocity commands for local obstacle avoidance. The authors
trained an autoencoder neural network with human-controlled action
commands. Pfeiffer et al. [69] presented an end-to-end navigation sys-
tem learned for simple maps using 2D laser data as input, the velocity
commands as output, and a 2D path as teacher. The authors later
extended the work by applying subsequent RL training to the learned
model [70], thus reducing the training time of RL and avoiding overfit-
ting of the imitation model. Liu et al. [71] used a local occupancy map
as state representation to learn a navigation policy using a variant
of the value iteration networks. Tai et al. [58] proposed generative
adversarial imitation learning to achieve socially complaint navigation.
The authors use depth data to train the network and the social force
model to generate a large set of training data. Pokle et al. [72] de-
signed a local controller to determine the robot’s velocity commands
and predicting a local motion plan, while considering the trajectories
of surrounding humans. These supervised learning methods all de-
pend on the teacher, e.g., controls provided by humans, a global path
planner, or a well-tuned optimization, while the goal of our work is to
enable the robot to learn by itself while navigating in the environment.

Gupta et al. [73] investigated a mapping and planning navigation
network based on visual data that encodes the robot’s observations
into a birds-eye view of the environment, which makes the method lim-
ited to known scenarios. Also the approach presented by Hsu et al. [74]
was developed for known environments. A CNN processes image data
and generates discrete actions to move the robot towards a global goal
pose. In contrast to that, we use a binary occupancy grid map as repre-
sentation, which makes the learned policy applicable to environments
not seen in the training data.

Chen et al. [75] deployed also PPO for deep RL as we do. The
authors rely on height-map observations as state representation for a
wheel-legged robot. Due to a high-dimensional robot state, the authors

64 improving navigation by deep reinforcement learning

discretize the action space and use a set of navigation behaviors to
deal with obstacles of certain, given shapes.

Tai et al. [76] presented a method that utilizes the robot’s velocities
and target positions as state representation for an actor-critic RL
approach. The authors developed a local controller relying on sparse
laser-range measurements and trained a mapless motion planner.
Fan et al. [77] proposed to use a set of subsequent laser scans and
apply PPO to learn movement commands for navigation through
crowds. Those approaches do not consider global path planning as
they are designed for local navigation.

Chiang et al. [78] applied AutoRL to learn two different navigation
behaviors, i.e., path following and driving to a global goal location.
The authors do not combine learning with global path planning but
use the global goal coordinate as input to the network. In our ex-
periments, the robot got stuck in local minima while using only the
global goal as input. Therefore, we use a subgoal on the regularly
recomputed global path as additional input.

6.3 problem description

We consider a robot moving according to the unicycle model that
has to reach a goal location by executing translational and angular
velocities. A path planner computes the 2D path to the goal on a
global grid map at every time step using the estimated robot pose
from a localization system. The RL learning task is to determine the
velocity commands for each time step to navigate collision-free and as
fast as possible to the goal.

We model the problem as a partially observable Markov decision
process (POMDP) defined as the tuple (S ,O,A, T ,R, γ). Here, s ∈
S corresponds to the state of the environment including the robot.
The state of the environment changes based on the robot’s actions
a ∈ A, which are in our case the translational and angular velocity
commands (v, ω), and according to the transition probability T (s′|s, a).
The agent cannot determine the state s but has to rely on observations
O(o|s′, a). After every state transition the robot receives a reward
R(s, a).

The actor critic approaches approximate the value function (critic)
to be able to update the policy (actor) itself. We use a deep neural
network as non-linear function approximator to evaluate the state
value function Vπ, which determines the expected return for state s
when following the policy π. The goal of RL is to find a stochastic
policy πθ(at|ot) that maximizes the expected reward

max E

(
T

∑
k=0

γkR(sk, ak)

)
,

6.4 neural network approximator for local navigation 65

where θ is the set of parameters that specify the function approximator,
T is the final time step, and γ is the discount factor.

The critic network is updated based on the advantage value

At = A(ot, at) = Qπθ (ot, at)−Vπθ (ot). (6.1)

where Qπθ (ot, at) = rt + γVπθ (o′t). Here rt is the immediate reward at
time t and Vπθ (o′t) is the expected return for the observation o′t. The
actor network uses the policy gradient (PG) method to update the
network weights θ in order to maximize

max E(log πθ(at|ot)At). (6.2)

Proximal policy optimization (PPO) [67] substitutes the log πθ term for
the policy probability ratio Ψ = πθ/πθold

, to achieve stability. To avoid
large policy updates that can impede and reset the training process,
the probability ratio is constrained to the range of [1− ε, 1 + ε] via
the clip function

ηCLIP(θ) = Et [min (ΨAt, clip (Ψ, 1− ε, 1 + ε)At)] . (6.3)

6.4 neural network approximator for

local navigation

To learn the navigation strategy that takes into account the global path
to the goal and the obstacles in the robot’s vicinity, we train a deep
neural network approximator that provides the robot’s translational
and angular velocities. The architecture of this network is described
in the following.

6.4.1 Observation Space

The observation space consists of three components. The first com-
ponent is ov = (vt−1, ωt−1) with vt−1 and ωt−1 as the robot’s current
translational and angular velocities computed at the previous time
step. The second component is om, which corresponds to the 3 m× 3 m
patch of the 2D occupancy grid map around the robot (see Fig. 6.2).
As resolution of the map we use 0.05 m, thus the grid patch size has a
dimension of 60× 60 cells.

Additionally, we use a representation of local 2D subgoals in the
observation. The subgoal at the current time step is calculated as
the position on the global path that is 1m away from the robot and
stored in map coordinates. At time step t, we transform the global
coordinates of the subgoals stored at time steps t− 1 and t− 5 into
the robot frame to get their relative positions, which serve as third
observation component og = (px

−5, py
−5, px

−1, py
−1). The representation

of the local goal px
−1, py

−1 indicates the robot’s progress that was made

66 improving navigation by deep reinforcement learning

10 m

10
m

goal

60 px

6
0

p
x

10 m

10
m

goal

60 px

6
0

p
x

10 m

10
m

goal

60 px

6
0

p
x

Figure 6.2: Binary image representation used as input to the network. A
3 m× 3 m patch (dashed green) around the robot’s pose is cropped
from the global occupancy grid map. The robot is at the center of
the resulting egocentric image and the viewing direction is to the
right side. The global path (red) is computed with the A* search
in a binary global map. Interpolated values in the cropped image
resulting from the rotation are set to occupied as well as regions
outside the boundaries of the global map.

towards the goal since the previous time step and is used for the
reward calculation. By adding a second subgoal to the observation
space O, we noticed an improvement of the navigation policy and
speed up of the training. As already noted by Kulhánek et al. [79],
using information of previous observations helps the system to infer
the real state s ∈ S of the environment. To summarize, an observation
is defined as o = (og, ov, om).

6.4.2 Reward

Our reward function considers task completion, the duration, and the
progress towards the goal

R(s, a) = Rfin(s, a) +Rfix +Rdist(s, a). (6.4)

A navigation task ends if the robot arrives at the goal, a collision
occurs, or a maximum number of time steps is reached. Accordingly,
the reward Rfin(s, a) is defined as follows:

Rfin(s, a) =

b if the goal was reached

−c if a collision occurred

0 otherwise

(6.5)

6.4 neural network approximator for local navigation 67

Rfin(s, a) is a large positive value if the distance to the final goal is less
than 0.3 m, a large negative value if the distance between the robot and
the nearest obstacle is less than 0.3 m, meaning a collision is occurred,
and zero otherwise.
Rfix is a fixed negative reward, that penalizes each action to force

the robot to finish an episode as fast as possible.
To speed up the training, we use a third reward component

Rdist(s, a) = α · D(s,a), (6.6)

where D(s, a) is the function computing the distance between the
robot and subgoal (px

−1, py
−1) and α is a scaling factor.

6.4.3 Neural Network Structure

Our observation space as described in Sec. 6.4.1 is divided based on the
representation of the data. Typically, the obstacle grid around the robot
is represented as a binary image, while the rest of the observation
space provides information about the different components of the
robot state. Thus, we propose a network architecture that consist of
two branches that split the observation space into scalar values and
the binary grid patch (left part of Fig. 6.3). The scalar branch of the
network is a single, fully connected neural network layer (green layer
in the upper branch in Fig. 6.3) and encodes the subgoals and robot
velocities into a high dimensional feature space to process them in the
following layers.

The grid patch is processed by separate convolutional neural net-
work (CNN) layers (lower branch in Fig. 6.3), that are well suited for
processing 2D data structure, e.g., images. The layers can identify
2D relationships between pixel values and encode obstacles in the
robot’s vicinity. Max-pooling layers after the first two CNNs reduce
the shape and compress the information. This layered design is in-
spired by the network composition of the well-known VGG-networks
for image recognition [80]. The 3D output of the last max-pooling layer
is flattened and reduced to a one-dimensional output with another
dense layer (shown in blue). Then, we concatenate the outputs of
both branches (blue and green) and process them together in an fully
connected layer. Finally, we normalize the output, which is a standard
technique [81].

The actor and critic estimators share the same connected layers. We
found out that the parameter sharing between the actor and critic
improves the learning speed, because there are fewer parameters to
learn. For the value function estimator vθ(ot), the shared network
output is inserted into a last dense layer to get a single real num-
ber which represents the critic value. The final output of the actor
network is the policy π(a|o) modeled by the two Gaussian distribu-
tions N (µtrans; σtrans) and N (µang; σang). The two mean values are

68 improving navigation by deep reinforcement learning

Input Network Output

Scalars

Grid patch

pxt−5 p
y
t−5 p

x
t−1 p

y
t−1 vt−1 ωt−1

60 px

60 px

Input
(60,60,1)

conv
(58,58,64)

conv
(56,56,64)

pool
(28,28,64)

conv
(26,26,32)

conv
(24,24,16)

pool
(24,24,16)

dense
(1000)

Input
(6) dense

(1000)

concat
dense
(1000)

Critic

dense(1)

= vθ(o)

Actor

dense(2)

= µ

dense(2)

= σ

at =(vt, ωt) ∼ πθ

πθ = N (µ;σ)
Policy

Figure 6.3: Network structure of the actor-critic scheme. The input consists
of scalar values and the grid patch. The scalar values are fed into
a single, fully connected dense layer. The binary image of the
grid patch (see also Fig. 6.2) is handled by multiple CNN layers
to distinguish obstacle configurations. Then, both branches are
concatenated and assembled in a further dense layer. Finally, the
critic value vθ(o) corresponding to the value function estimator is
computed by a last layer. The policy distribution π is calculated
by the mean and standard deviation of two normal distributions
from which vt and ωt are sampled.

shrunk with an tanh activation function. This scaling forces the val-
ues to stay between the desired velocity limits ([0 : 0.7] m/s and
[−0.7 : 0.7] rad/s). The σ values are the standard deviations of the
normal distributions. We apply a sigmoid activation function scaled
with 0.5 to guarantee that the bandwidths of the normal distributions
do not massively grow.

6.5 experiments

The implementation of our framework is based on several compo-
nents. As communication backbone, we used ROS and for the RL
approach, we created a simulation environment with Gazebo [39]. We
implemented the RL in Python with the Tensorflow library [82]. As
mobile platform, we use the Robotino robot by Festo [30].

6.5.1 Training

To train the neural network and learn a policy to follow a global path
and reach a goal without collisions, we used a simple environment (see
Env1 in Fig. 6.4). During the training, we sampled the start and goal
positions randomly across the free space, where we chose start-goal
configurations with a short Euclidean distance at the beginning and
later increased the distance for more challenging scenarios. This helps
the robot initially to reach preferable states and learn basic navigation
in free space, while longer start-goal configurations force the robot to
deal with obstacles, as suggested in [83].

6.5 experiments 69

Env1 Env2 Env3 Env4 Env5 Env6

2.5m

Figure 6.4: Environments used for training and evaluation. The policy was
initially trained only in Env1 and evaluated in all other envi-
ronments. Afterwards, we used further episodes from Env6 to
improve the navigation behavior in highly cluttered scenes as in
Env5 and Env6. The evaluation results are depicted in Tab. 6.1
and Fig. 6.6.

We used four simultaneously operating robots to ensure our col-
lected data is independent and identically distributed. Each robot
was given different start and goal configurations. Every episode was
limited to 1000 time steps, the batch size was 32 and the entire training
involved 106 episodes. In Eq. (6.5), we set the final reward b to 10, c
to 50, rfix in Eq. (6.4) to −0.1, and α in Eq. (6.6) had value of 10, as
experimentally determined. The controller run with a frequency of
10 Hz during training and testing. The overall training time was about
24 hours using a Nvidia GeForce GTX 1080.

6.5.2 Evaluation

After training, we performed experiments in different environments to
evaluate the policy learned in Env1 in terms of number of successful
runs, which means that the robot reached the goal without collisions,
and completion time, both in comparison to the standard ROS nav-
igation stack. The latter uses the DWA [21] to calculate the robot’s
velocity commands. We configured the DWA with similar restrictions
to guarantee similar conditions in terms of acceleration and velocity
limits and application of the unicycle robot control. The translational
velocity was limited between 0 and 0.7m/s and the angular velocity
between −0.7 rad/s and 0.7 rad/s. The acceleration limits for transla-
tional and angular steering were set to 1 m/s2 and 1 rad/s2 for both
approaches.

The DWA approach needs an inflation radius around obstacles in the
2D grid map (Sec. 2.2). This corresponds to a general safety distance
to prevent collisions that could result, e.g., from the discretization of
the environment. The inflation parameters usually need to be tuned
to achieve a good trade-off between safety and time performance
(Sec. 3.3.1). One advantage of our approach is that it works on a
binary map of the environment without any inflation. Our approach

70 improving navigation by deep reinforcement learning

Env1 Env2 Env3 Env4 Env5 Env6 Env5* Env6*

1.0 1.0 0.99 0.99 0.75 0.22 1.0 0.84

Table 6.1: Success rate of the trained policy. The evaluation consists of
400 runs for each of the environments shown in Fig. 6.4. A success-
ful run means that the robot reaches the goal within a certain time
limit without any collision. To improve performance in Env5 and
Env6, we continued to train the policy on Env6. As shown in the
last two columns (Env5* and Env6*), the results of the re-trained
policy were seriously better.

directly learns the appropriate distance to obstacles depending on
their local configuration.

Fig. 6.4 depicts the environments we used in the evaluation. Each
map introduces a further level of difficulty. Env2 is similar to the
training environment Env1 but the length of the room is doubled and
an additional obstacle occurs in the center. The large walls of Env3

can lead the robot into local minima if no global path is used. This
map is well suited to test the performance of the learned policy in
terms of a reduced completion time while avoiding collisions since fast
movements on circular arcs around the obstacle corners are needed to
achieve a good navigation behavior. Env4 introduces round obstacle
shapes not experienced before. Env5 and Env6 consists of several
regions with a high obstacle density. In those maps, it is not always
possible to follow the global path computed on a map without obstacle
inflation, since the path might lead through regions with very close
obstacles. Thus, the robot has to learn to bypass the corresponding
region by moving away from the global path.

6.5.3 Success Rate

For each environment in Fig. 6.4, we performed 400 runs with the DWA
and with our trained policy. The robot’s start and goal configurations
were sampled randomly for each run but were the same for the two
approaches. The DWA controller was able to reach all goals in all
environments without any collisions. The success rates of our trained
policy are listed in Tab. 6.1. Our approach performs equally well in
Env1 to Env4. In Env5 and Env6 the performance decreases due to an
insufficient generalization resulting from Env1, that leads to increased
collision rates. We discovered that situations in which the robot has to
depart from the global path did not occur in Env1 and, thus, the robot
could not learn a suitable strategy to handle those situations.

To overcome this limitation, we continued the training process with
the so far learned policy parameters θ on Env6. After only 8000 further
trained episodes (which corresponds to not even 1% of the initial size

6.5 experiments 71

a) b)

Figure 6.5: Performance improvement in Env6. (a) Collisions in Env6 with
the policy trained on Env1. (b) The policy resulting from the
additional training in Env6 shows much fewer collisions.

of the training set), the performance improved significantly and the
results are shown in the last two columns of Tab. 6.1. In Env5 we
could achieve a success rate of 100% with the newly learned policy
and in Env6 the robot now reached the goal in 84% of all runs (the
results are denoted as Env5* and Env6* in Tab. 6.1).

The left image of Fig. 6.5 visualizes for Env6 the positions where
the robot collided with obstacles when following the policy learned
on Env1. The right image of Fig. 6.5 shows the collisions after further
training on Env6. As can be seen, fewer collisions appear in regions
with high obstacle density. The reason is that the robot learned when
it is beneficial not to follow the global path into narrow space but
rather drive around depending on the obstacle configuration.

6.5.4 Completion Time

Next, we evaluated the completion time of the navigation tasks when
using the standard DWA approach and our learned policy. Fig. 6.6
shows the average completion time for the runs from Sec. 6.5.3 that
were successfully completed by both approaches. Our approach is 16%
faster on average over all evaluated runs. The difference is statistically
significant in Env3, Env4, and Env5 according to a paired t-test at the
0.05 level. One reason for the faster performance is that the robot
learns the best distance to obstacles, which reduces the trajectory
length and leads to time savings, especially in Env3 where our policy
performs 26% faster than the DWA.

72 improving navigation by deep reinforcement learning

Figure 6.6: Average completion time for the DWA and our learned policy. The
box height shows the average completion time and the whiskers
illustrate the standard deviation. As can be seen, our trained
policy outperforms the DWA in each environment. The difference
is statistically significant in Env3, Env4, and Env5 according to a
paired t-test at the 0.05 level.

6.5.5 Real-World Experiment

Finally, we applied our learned policy on a real robot and compared
the performance to the DWA. In the experiment, the robot had to
enter an office from the corridor and navigate around an obstacle to
reach the global goal (see Fig. 6.7) by following subgoals on the path.
An occupancy grid of the environment was mapped before and we
applied Monte Carlo localization [84] to obtain the robot pose.

For the evaluation, we performed 10 experiments with similar start
and goal configurations for both the standard DWA approach and our
trained policy. With both approaches, the robot reached the goal in
each run. The DWA approach needed 28.2 s on average to reach the
goal location while our approach had a reduced average completion
time of 25.5 s. The difference was statistically significant according to
a paired t-test at the 0.05 level.

Our approach saves time by driving closer around obstacles while
the standard DWA takes into account a general inflation radius around
obstacles.

6.6 conclusion 73

Figure 6.7: Real-world experiment. The robot entered the office from the left.
Based on our learned navigation policy, the robot chooses the
best translational and angular velocities to reach the global goal
quickly while avoiding the obstacle in the center.

6.6 conclusion

In this work, we proposed a new approach to learn a navigation policy
for wheeled robots in an unsupervised manner. We use proximal
policy optimization for reinforcement learning to train a network that
provides the robot’s translational and angular velocity commands
for the next time step. Our solution combines global path planning
with deep RL to navigate collision-free and reach a global goal in the
environment.

Our policy was first trained in a simple environment and subse-
quently evaluated in environments with increasing complexity. The ex-
perimental results demonstrate that our network successfully learned
collision-free, goal-directed behavior also in cluttered environments.
Furthermore, we compared the performance of our trained policy
to the popular dynamic window approach (DWA) with respect to
completion time of navigation tasks. On average, the robot controlled
by our learned policy completed the tasks 16% faster than the DWA
of ROS. In our real-world experiment, we experienced similar results,
i.e., the robot performs 10% faster than the DWA using our navigation
policy. Our learned strategy safes time by keeping a closer distance
to obstacles and choosing appropriate velocities. This is a direct re-
sult of the optimization of the motion commands based on the local
configuration of the obstacles without any parameter tuning for the
navigation controller.

74 improving navigation by deep reinforcement learning

So far, all presented approaches improve the navigation in clutter
regarding the completion time and collisions. However, those systems
can only operate in situations, where a obstacle-free path leads to the
goal. When the route to the goal is blocked by an object, then the
robot cannot complete the navigation task and reach its goal. Thus,
it is required to incorporate robot actions into the navigation scheme,
to provide the necessary capacities to overcome impeding objects. In
Chapter 7, we present a new navigation approach, that involves phases
of manipulation to free the path to the goal and footstep planning to
step over objects in an efficient manner.

7
PAT H A N D A C T I O N P L A N N I N G T O
O V E R C O M E I M P E D I N G O B J E C T S

Humanoid robots are often supposed to share their workspace
with humans and thus have to deal with objects used by humans
in their everyday life. Furthermore, they have the potential to
execute complex navigation tasks and even overcome impeding
scenarios by performing manipulation or advanced footstep plan-
ning. However, the robot’s high degrees of freedom hinders the
real-time computation of motion commands, e.g., the trajectories
of the joints and the footstep sequence. In this chapter, we present
our novel approach to humanoid navigation through cluttered
environments, which exploits knowledge about different obstacle
classes to decide how to deal with obstacles and selects appro-
priate robot actions. To classify objects from RGB images and
decide whether an obstacle can be overcome by the robot with a
corresponding action, e.g., by pushing or carrying it aside or step-
ping over or onto it, we train and exploit a convolutional neural
network (CNN). Based on associated action costs, we compute a
cost grid containing newly observed objects in addition to static
obstacles on which a 2D path can be efficiently planned. This
path encodes the necessary actions that need to be carried out
by the robot to reach the goal. As the experiments demonstrate,
using our CNN the robot can robustly classify the observed ob-
stacles into the different classes and decide on suitable actions to
find efficient solution paths. Our system finds paths also through
regions where traditional motion planning methods are not able
to calculate a solution or require substantially more time.

7.1 introduction

As humanoid robots are designed to work in human environments,
one of the tasks that need to be solved consists of navigating through
a cluttered environment where stepping over or onto obstacles or
moving an object out of the way might be necessary. Thus, they must
be able to avoid or to deal with different types of objects located at
random places in the environment. Finding suitable robot motions
in environments cluttered with objects imposes a high level of com-
plexity to the motion planning problem and is difficult to solve in a
computationally efficient manner.

75

76 path and action planning to overcome impeding objects

Figure 7.1: Application example, in which the path of the robot is blocked.
Based on classified non-static obstacles (in this case a stuffed
toy and toy blocks) and their associated actions and costs, our
system computes a cost grid on which a 2D path can be efficiently
computed. The path also encodes the actions that need to be
executed by the robot during navigation to reach the goal. As can
be seen, the robot moves the stuffed toy aside to clear its path
and can then continue walking along the 2D path.

Common approaches to humanoid navigation in complex envi-
ronments involve whole-body motion planning and multi-contact
planning [85], [86]. These approaches usually take several seconds
up to minutes to compute a solution. This may prevent the use on a
mobile platform or limits its ability to operate in a reactive way. To
limit the computational load, other frameworks employ footstep plan-
ning [87]–[90] to avoid computing whole-body motion plans. However,
if a blocking object needs to be moved aside to reach the goal location,
they often do not yield a solution and thus result in a navigation
failure.

In this work, we combine the advantages of the existing planning ap-
proaches by exploiting semantic information about objects. We present
a novel approach to humanoid navigation that combines fast 2D path
planning with 3D footstep planning and object manipulation actions
in obstructed regions of the path. We consider an indoor environment
from which the robot creates a 2D grid map with static obstacles in
the absence of clutter using a standard mapping approach [17].

7.2 related work 77

During navigation, the robot adds information about objects of
different classes perceived with its camera to the map. We hereby use
a convolutional neural network to classify the objects and to decide
whether an obstacle can be stepped over or stepped onto, or moved
out of the way by pushing or carrying it aside. For the classification
task, we use our recently developed real-time CNNs [9] that are
capable of segmenting RGB images to detect given object classes.
This framework provides reliable information about specific object
types and their pixel-wise masks (e.g., books, boxes, toys etc.). We
map that information about the object classes to appropriate action
types, which allow the robot to navigate across the corresponding
area. Our approach adds associated stepping and manipulation costs
to a 2D map that is used for path planning. In this way, we greatly
simplify the full planning problem, as we split the whole plan into
several parts, while each part is solved individually. Fig. 7.1 illustrates
a motivating example, where the robot can only reach its goal by
manipulating an object. According to the resulting cost map after
classifying the obstacles, our planner chooses a path where the robot
needs to move the stuffed toy aside.

We implemented our framework in ROS and tested it in various
experiments with a Nao and REEM-C humanoid. As the experimental
results illustrate, the robot can robustly classify the observed obsta-
cles into different classes and use this information to efficiently find
solution paths through passages where objects are blocking the path.
The underlying architectures used to extract the semantics from the
environment were carefully tailored to this task in order to achieve
efficient inference, which allows our approach to run on our small
Nao humanoid.

7.2 related work

Stilman and Kuffner were the first who considered navigation amongst
movable objects where the robot can move objects aside if necessary
to reach the goal location [91]. The idea of their approach is to decom-
pose the environment representation into disjunct regions and search
for obstacle motions that connect two disjoint regions allowing the
robot to transition between them. Stilman et al. employed the frame-
work on a real humanoid to navigate through an environment with
movable chairs and tables [92] where the world state was observed by
an external motion capture system. In contrast to this approach, we
perform fast planning on a cost grid based on a 2D map, which can be
easily obtained by using standard mapping algorithms [17]. Further-
more, we classify objects perceived by the robot and encode different
actions associated to the object classes directly in the navigation costs
contained in the cost grid. In this way, we combine the planning on a
2D cost grid with local 3D footstep planning and object manipulation.

78 path and action planning to overcome impeding objects

A variant of the humanoid locomotion problem, in which the robot
can utilize objects to get to locations that are otherwise out of reach
for the robot, was approached by Levihn et al. [93]. The authors
introduced the concept of relaxed-constrained planning where the
planner is allowed to violate certain constraints. The violation is then
locally resolved by using suitable objects, e.g., to overcome a high step
height.

The task of collecting objects and delivering them to designated
places while clearing cluttered obstacles out of the robot’s way, was
addressed by Hornung et al. [94]. The authors proposed to apply
a high-level planner with integrated perception, world modeling,
action planning, navigation, and mobile manipulation. Our navigation
framework is orthogonal to that approach and could be integrated
into such a higher level task planning framework.

Grey et al. recently presented an approach that uses so-called ran-
domized possibility graphs to traverse environments with arbitrary
obstacles, in which footstep as well as whole-body motion planning
is required [85]. The authors distinguish between passages that are
definitely passable by the robot and ones that are definitely impossible
to be passed by using approximations of the constraint manifold. So
far, their approach has only been tested in simulation with no per-
ception involved. Lin and Berenson considered navigation in uneven
terrain using contact planning of palm and foot locations and learned
estimates about the traversability of regions [86]. The idea of this
approach is to use the learned traversability estimates as a measure
how quickly the planner can generate feasible contact sequences. This
measure is used in the heuristic function of the contact space plan-
ner to guide the search to areas with more contactable regions. In
the follow up work [95], the authors speed up the planning by ap-
plying fast discrete footstep planning for easy parts of the path and
only using the advanced but slow contact space planning method for
regions that are difficult to traverse. Dornbush et al. recently devel-
oped a planning framework that considers adaptive dimensionality
by determining which planning dimensions are relevant in each re-
gion of the environment [96]. Their idea was to plan with multiple
low-dimensional planning representations simultaneously within a
multi-heuristic search. While these approaches also aim at speeding
up the search for viable solutions paths, the authors do not consider
perception and do not take into account the possibility of actively
modifying the environment.

The method proposed by Kaiser et al. extracts affordances of geomet-
ric primitives to support the planning of whole-body locomotion and
manipulation actions [97]. Navigation through cluttered passages has
not been considered in their scenario. Subsequently, Wang et al. [98]
applied the ideas of Kaiser to the blocked path scenario as in our work.
However, their approach does not integrate navigation cost into the

7.3 system overview 79

path
planning

semantic
segmentation

static
2D map

object
mapping

segmented
point cloud

classified
RGB image

2D object-
costmap

path and
req. actions

RGB image depth image

RGB-D sensor

plan
execution

Figure 7.2: Overview of our framework. The different components are sum-
marized in Sec. 7.3.

action planning and only considers replanning when the object can
not be moved to free the path. Thus, the method provides no criteria
for assessment of different solutions to plan a optimal path containing
the best actions.

Although some of the above mentioned approaches provide a ro-
bust way to plan through environments containing cluttered regions,
they neglect the semantics of the objects. Semantic information, how-
ever, can be effectively exploited for humanoid navigation. Current
advances in computer vision using deep CNNs to extract semantics
of the environment [99]–[101] have made it possible to infer the se-
mantic classes of objects in cluttered scenes with high accuracy. Such
approaches allow us to map each object class to a different action type
that we can use for planning in an efficient way. Running our classifier
in a fast manner is necessary to avoid adding a large computational
overhead to our approach. Thus, we build on top of recent work
focusing on real-time CNNs [9], [102]–[105]. Since training deep CNN
models is a data intensive task, we present a way to alleviate this by
generating a large-scale data set of our interest clutter classes with
minimal effort in a semi-autonomous way by crawling images from
the Internet.

7.3 system overview

Before we describe our approach in detail, we present an overview
of the individual components, which are also illustrated in Fig. 7.2.
Starting with the raw perceived RGB-D image data, we extract the
RGB image for semantic segmentation, to mark the different pixels
of objects in the image. The semantically segmented image is then

80 path and action planning to overcome impeding objects

provided to the object mapping, which additionally uses 3D point
cloud data from the input depth image aligned with the RGB data, and
a 2D grid representation of static obstacles in the environment. This
static 2D map is constructed using a standard mapping system [17] in
the absence of further objects. The output of our object mapping is a
2D cost grid, encoding static obstacles as well as the newly detected
and classified objects, on which the path planning takes place. The ex-
ecution of the computed path, which comprises actions corresponding
to the detected objects, is done by the plan execution. The plan exe-
cution additionally uses the segmented point cloud when necessary,
while invoking the required object actions.

During navigation, our system continuously updates the repre-
sentation of the environment with information about newly sensed
obstacles that might be blocking the way of the robot and replans the
robot’s path toward the goal if necessary.

7.4 semantic segmentation

The first key step for our approach is the extraction of the semantics of
objects in the robot surroundings. Then our approach aims at inferring
possible robot actions from the objects in the environment in real-time.
This requires a visual classifier that can recognize individual objects
accurately from a dictionary of possible classes, while still running
fast on a power- and payload-constrained machine such as a small
humanoid robot. The state of the art in object detection and semantic
segmentation using CNNs makes the accuracy of such algorithms
acceptable for this approach to be feasible, but most CNN pipelines
are computationally intensive and require large amounts of training
data. In order to make the approach applicable on our robot, we rely
on a lightweight architecture to achieve a good runtime vs. accuracy
trade-off. To approach the amount of training data needed, we use
pre-trained models from Bonnet’s library [9], which already provides
useful features in the convolutional layers and we create a large data
set by mixing images recorded by ourselves and a huge amount of
scavenged data from the Internet for refining the pre-trained models.

We opt in favor of a semantic segmentation pipeline, which maps
each pixel of the robot’s camera images into one of the eight classes:
“balls”, “books”, “boxes”, “cars”, “dolls”, “stuffed toys”, “toy blocks”, and
“background”, so that each class has at least one navigation action
assigned to it. Note that our approach is not limited to these classes
and could easily be extended.

7.4.1 CNN-Based Semantic Segmentation

Fig. 7.3 shows a diagram of the encoder-decoder CNN architecture
used in our approach that is build using Bonnet [9]. The chosen ar-

7.4 semantic segmentation 81

Figure 7.3: Top: encoder-decoder semantic segmentation CNN based on the
non-bottleneck concept behind ERFNet[104] inferring an image
from our data set. Bottom, left to right: original RGB image,
prediction from CNN, and alpha blend for visual qualitative
performance assessment. Best viewed in color.

chitecture is based on ERFNet [104], which proposes to change each
computational bottleneck introduced in ResNet [100] and ENet [103]
with a “separable non-bottleneck" of a variable receptive field. This
module uses a set of separable filters of sizes [1× 3] and [3× 1] and
different dilation rates d, which makes each layer effectively wider
without increasing computational cost, allowing the network to be
more descriptive without affecting runtime. The choice of using dif-
ferent dilation rates allows the network to have a bigger equivalent
receptive field in the image space, capturing long-range dependencies,
which is key for big objects. By using a model with these properties,
and adjusting the number and width of the layers to fit our data, we
can achieve a model that is descriptive enough to provide us with
accurate semantic labels while running in real time. In order to achieve
even further efficiency in inference to allow the approach to run in a
resource constrained platform such as a small humanoid, we exploit
TensorRT [106] acceleration of our neural network. For this reason,
the used ERFNet backbone needed to be modified to fit all supported
operators. At the time of writing, there is no efficient support of di-
lated convolutions within TensorRT, so in order to efficiently infer full
semantic segmentation with our proposed architecture, each [1× 3]
and [3× 1] dilated convolution was replaced by a dense convolution
of [1× [3 + 2× d]] and [[3 + 2× d]× 1]. We observed no drop in
performance from this modification, and even though more opera-
tions are needed for this, the acceleration obtained by the inference
optimization provided in TensorRT was superior.

82 path and action planning to overcome impeding objects

We start from a pre-trained encoder using this modified architecture,
which was trained with the COCO data set [107] and therefore pro-
vides rich features even before the semantic segmentation task-specific
training. We attach a small decoder that is trained from scratch using
random weights and fine-tune the model training end-to-end using
back-propagation and a pixel-wise cross-entropy loss of the form

Lsemantic = −
C

∑
c=1

wc yc log
(
ŷc
)

(7.1)

wc =
1

log (fc + ε)
with fc =

1
P

P

∑
p=1

1 if p = c

0 if p 6= c ,
(7.2)

where wc penalizes class c according to the inverse of its frequency
in the ground truth, bounded by a parameter ε which is selected by
cross-validation and is set to 1.02 in all our experiments.

The training was performed with a data set of 5,000 images contain-
ing roughly 20,000 toy instances with their respective dense masks,
which we explain in the following section. The retraining was per-
formed by minimizing Eq. (7.1) through stochastic gradient descent
using the Adam optimizer, with a batch size of 36, a batch normal-
ization momentum of 0.99, and an initial learning rate of 10−4. The
learning rate is then halved every 50 epochs, training for 200 epochs
over the whole data. We used a channel dropout rate of 10% in
the layer before the linear classifier, and a weight decay of 10−5 for
regularization during training, and use the model with the best vali-
dation error measured after each epoch, a practice commonly called
early-stopping.

7.4.2 Data Collection

As previously stated, training deep CNNs requires a large amount
of labeled training data to obtain the accuracy required to run other
approaches on top of the obtained semantics. This effect is particularly
magnified when using a semantic segmentation pipeline, because a
holistic knowledge of what each image contains is not enough, and
labels are required at a pixel level, increasing the effort required to
label each image considerably. Even though using pre-trained model
helps to reduce the amount of required labeled data, a particular case
which makes the training more data-hungry is having low inter-class
distances, like in our case (see Fig. 7.4). To resolve this problem, we
collected a data set with 1,000 objects focusing on the hard examples
of inter-class distance, i.e., focusing mostly on labeling objects whose
appearance is similar, but which have a different semantic label. This
is done to train CNN features that are sensitive enough to allow the

7.4 semantic segmentation 83

Books Dolls Cars

Boxes Stuffed Toys Toy blocks

Figure 7.4: Examples of pairs of classes with low inter-class distance, chal-
lenging for the CNN, but important for our approach due to
different associated object interactions.

Figure 7.5: Examples of backgrounds used to generate the synthetic training
images. Backgrounds were also crawled from the internet, with
queries designed to match viewpoints of places where the robot
is likely to operate, such as home and school environments.

classifier to fit the classification hyper plane effectively. To generate a
data set for semantic segmentation, we need pixel-wise masks for each
individual object. Since such a labeling is expensive, we collected the
data with an RGB-D camera and segmented the objects in the depth
channel to obtain the ground-truth mask before feeding them to the
CNN as a 3-channel RGB-only image.

To scale up the data set and make it an order of magnitude bigger,
we wrote a script to automatically download images from the Internet
with properly formatted queries returning images fulfilling the follow-
ing conditions: (i) the image contains only one of the desired classes
in the dictionary, and (ii) the image contains either an alpha channel
making the background transparent or has a blank background. Un-
der these restrictions, the script returns roughly 25,000 images using
Google Images [108]. We further reduce it to roughly 20,000 images
after six hours of supervised cleaning by a human. The supervision
consists of navigating quickly through the crawled images and iden-
tifying objects that either do not belong to the specific class we are
interested in, or whose alpha channel does not fit the object boundary.
For our CNN to be usable in realistic environments, the last step in this
data set generation method is to generate 5,000 clutter images from

84 path and action planning to overcome impeding objects

Figure 7.6: Examples of generated clutter images with added background.
Left: RGB image, right: ground truth. Best viewed in color.

our raw data, containing one of 300 different backgrounds (Fig. 7.5)
and any number of random objects from the database from 0 to 20

objects per image. This can be considered as “synthetic" data, but it is
a step closer to the real world, because the images are of real-world
objects (Fig. 7.6).

7.5 path planning utilizing obstacle

information

In this section, we describe our method for exploiting the semantic
information about detected and segmented objects during path and
action planning.

7.5.1 Actions for Object Classes

We assume that an expert user assigns for the individual object classes
possible actions defining how the robot can overcome such obstacles
when necessary. The possible actions for the object types inherently
depend on the specific robot that is being deployed. As an example,
Tab. 7.1 shows the actions associated with the object classes for a Nao
robot. Note that for some object classes several actions are possible,
in which case our system selects the least cost action to deal with the

7.5 path planning utilizing obstacle information 85

Table 7.1: Example assignment of possible actions to object classes. The
actions are chosen by an expert user according to the robotic
hardware, in this case a Nao robot.

Object class Possible actions

balls push, step over, pick up

cars, toy blocks step over, pick up

stuffed toys, dolls pick up

boxes, books step onto

objects on its path. The robot furthermore analyzes the point cloud of
the object to decide if an action may not be executable, for example
because the object is to high to be stepped over. Those aspects are
described in more detail in Sec. 7.5.3.

For our scenario, we currently use the following actions:

standard walking in case of no objects: If the path does not contain
any objects, the robot’s walking controller follows a 2D path.

push: If an object needs to be pushed away, the robot follows the
2D path to the last free grid cell on the path and starts the
pushing action. Thus, the robot senses the object locally using
the segmented point cloud, moves to a target position relative
to the object, and pushes the object out of its way in forward
direction. The push action is illustrated in Fig. 7.7).

step over and step onto: If the robot needs to traverse an area with
objects that need to be stepped over or onto, the robot applies
footstep planning in the corresponding region on a height map
computed from the point cloud using our previous work [109].
Fig. 7.8 shows the maximum height of a box the Nao can over-
come.

pick up: If the robot needs to pick up an object and move it out of
the way, the robot again follows the 2D path to the last free cell
on the path in front of the object and then identifies the object
in the segmented point cloud, finds the target position relative
to the object, grabs it, rotates 180◦, and puts the object onto the
ground, and rotates back 180◦ . The pickup action is depicted in
Fig. 7.9.

7.5.2 Action Costs

We define the costs of an action according to the time the robot needs
to perform the action. To determine the execution time, we designed

86 path and action planning to overcome impeding objects

Figure 7.7: Pushing: In our implementation, the push action includes track-
ing the ball locally, positioning relative to the object, and kicking
it in the forward direction.

Figure 7.8: Stepping onto: The step onto action includes stepping onto the
object and also stepping down according to a footstep plan.

an experiment in which the Nao robot had to reach a goal one meter
in front of it. The experimental setup of the actions is illustrated in
Fig. 7.10. We measured the time it took the robot to reach the goal
by just walking to the target location and by additionally pushing an
object out of the way, stepping onto or over objects, and picking up an
object. For each case, we performed ten experiments and selected the
average execution time as the cost used for the planner. The averaged
times of the experiments are provided in Tab. 7.2. Since the walking is
subject to errors induced by the action itself, e.g., shaky walking start

Table 7.2: Execution times of actions.

Action type Mean execution time [s]

walk 12

push 25

pick up 55

step over 40

step onto 61

7.5 path planning utilizing obstacle information 87

Figure 7.9: Picking up: The pick up action includes the tracking of the object
locally, positioning relative to the object, executing the grabbing,
performing a 180◦ turn, dropping the object, and rotating back
180◦.

walk push pick up step onto

Figure 7.10: Experimental setup to determine the costs of actions according
to the completion time. See Sec. 7.5.2 for a detailed explanation.

after the push action or the difference of the orientation to the goal
after the pick up action, it was important to let the Nao robot walk
before and after the corresponding action execution to measure the
influence of small uncertainties on the time performance.

Other factors, e.g., energy consumption or risk of failure, can be con-
sidered as well for the cost computation and added to the determined
cost.

7.5.3 Object Mapping

In this subsection, we describe how to map objects detected in the
environment using RGB-D data onto the cost grid used for planning.
We use the semantic segmentation described in Sec. 7.4 and combine
it with the depth information of the RGB-D image to get a segmented
point cloud of the corresponding objects (see Fig. 7.11). Afterwards, we
project the segmented point cloud onto a 2D grid map representation
of the environment containing inflated static obstacles as illustrated
in Fig. 7.12a. Inflating all objects with the robot radius is a general
concept to prevent the robot from colliding with obstacles in case of

88 path and action planning to overcome impeding objects

Figure 7.11: Data processing for the RGB-D data. a) The original RGB image
containing a doll and toy blocks between two walls. b) Semantic
segmentation results using the Bonnet framework. c) Segmented
point cloud of the corresponding objects, using the depth image
to get the spatial information of each marked pixel.

slight localization errors (Sec. 2.2). We maintain an object database
that contains the information about objects in form of object ID, object
class, and the set of corresponding 2D grid cells. Note that obstacles
that cannot be classified by the CNN and, thus, are considered as
background are mapped as static and are not stored in the database
of objects that can be manipulated.

Our approach uses a 2D cost grid map for path planning that
encodes, in addition to the static obstacles, the costs of the actions cor-
responding to the observed objects, which are estimated as described
in the previous subsection (Sec. 7.5.2).

To choose the action for an object, we consider the segmented point
cloud to exclude some possible actions listed in Tab. 7.1 that are
predicted to be not executable by the robot depending on the size of
the object. We then assign the cheapest action of the remaining actions
to each object and, thus, to the cost map. For example, a small ball
can either be pushed away (cheapest action), stepped over, or the ball
can be picked up in order to free the path, while for a big ball, e.g.,
a basket ball, neither action would be expected to be executable so
that the object would be marked as static in the map. The applied
heuristics to suggest a viable action for the Nao humanoid are listed
in Tab. 7.3. In general more advance operations for analyzing the
geometry of the segmented object could be performed. However, this
leads to a trade-off between the accuracy of the suggested action and
the time performance of the planning framework.

In Fig. 7.12b, the cost value is represented by the gray level of
the object border cells. Hereby, the costs of the overlapping border
areas between the inflated segmented objects are the sum of the
corresponding action costs of both/multiple objects, which means
that in these regions several object actions will be necessary. In this
example, the path leads across the toy block. From Tab. 7.1, our
planner can chose between the step over and the pick up action and
decides to step over the block since this is the cheaper action.

7.5 path planning utilizing obstacle information 89

step over

Figure 7.12: a) Visualization of the projection of the objects onto a 2D grid. In-
flated static obstacles are represented as black cells and cells with
detected objects from the segmented point cloud (see Fig. 7.11c)
are color coded. Yellow cells correspond to the doll, brown cells
to the toy blocks. b) Resulting 2D cost map for planning with
the costs of the object actions encoded in the border cells of the
objects. The border cells of the toy blocks (light gray), which can
be stepped over, have lower cost than the cells corresponding to
the doll (dark gray), which needs to be moved away so that the
computed path contains the action to step over the blocks. The
overlapping border cells of the inflated objects are the sum of
their action costs.

Table 7.3: Heuristics for the viable actions of the Nao robot.

Action type Geometric object features

push maximum height < 20 cm

pick up longitudinal axis < 30 cm

step onto maximum height < 7 cm

step over maximum height < 6 cm and transverse axis < 5 cm

Note that our system pauses the mapping while the robot executes
a push, step, or pick up action to free as much resources as possible
to perform the action. Thus, no object tracking takes place during that
time.

7.5.4 Path Planning

Since the cost map contains the information about all obstacles, i.e,
static and not static, and encodes the potential object actions and
their associated costs, we can efficiently use A* search [22] with the
Euclidean distance as the heuristic function to find a path for the
robot on the cost grid. If the path leads through any object area, the
corresponding class and, thus, the possible actions can be derived from
the object database. In the example shown in Fig. 7.11 and Fig. 7.12,

90 path and action planning to overcome impeding objects

our approach computes the green path with the action to step over
the toy blocks.

7.5.5 Updating the Action

Note that the path planner generally provides only suggestions regard-
ing the action types. Should the execution module not find a solution
for a proposed action, e.g., due to object-environment configuration or
classification errors, the action would be changed for the correspond-
ing object such that our planner would seek a different solution on the
updated cost grid. This can also happen in case the footstep planner
does not find a sequence of valid footholds for a region containing
objects to be stepped over or onto, see Sec. 7.6.3 for an example.

7.6 experimental evaluation

In this section, we present experiments to evaluate the performance
of the CNN-based classification framework for the navigation task at
hand (Sec. 7.6.1) and to demonstrate the capabilities of our system
with respect to efficient planning and navigation in various real-world
experiments with a Nao humanoid (Sec. 7.6.2). Additionally, we per-
formed experiments with the REEM-C [110] humanoid (Sec. 7.6.3) in
simulation to show a generalization of our approach to other robot
platforms that are able to perform more advanced actions. For step
over heuristic of the REEM-C, we set the maximum height and trans-
verse axis to 15 cm and 10 cm, respectively. For the pick up action,
we designed a one-handed grab procedure and determined 10 cm as
maximum value for both minor axes of the object. Throughout this
section, the illustrated grid maps are similar to Fig. 7.12a, i.e., they
show the inflated object classes (rather than the actual costs) for better
visualization. The resolution of the grid maps was set to 5 cm for all
experiments. The inflation radius was chosen as half the shoulder
width of the considered humanoid (15 cm for the Nao and 25 cm for
the REEM-C).

7.6.1 Classification Results

The first set of experiments is designed to show that our semantic
segmentation approach is applicable on mobile robot platforms in
terms of accuracy, runtime, and computational resources. As detailed
in Sec. 7.4.2, we train a semantic segmentation CNN with 5,000 images,
generated from a database of 20,000 different object instances, and
over 300 backgrounds. The network is then evaluated on a test set
containing 1,000 real-world images collected in our lab and pixel-wise
annotated. Semantic segmentation approaches which assign a label to

7.6 experimental evaluation 91

Table 7.4: Classification metrics on validation set for different input image
resolutions.

Resolution mAP
Per-class AP

mIoU
Ball Books Boxes Cars Dolls Stuffed toys Toy blocks

320× 240 0.792 0.908 0.747 0.733 0.768 0.801 0.828 0.759 0.585

640× 480 0.875 0.946 0.878 0.876 0.847 0.874 0.874 0.831 0.715

each pixel in an image are typically evaluated using the mean Jaccard
index, also called mean intersection over union (mIoU), defined as

mIoU =
1
C

C

∑
i=1

tpi
tpi + fpi + fni

, (7.3)

where C is the number of classes, and tp, fp, and fn are the pixel-
wise number of true positives, false positives, and false negatives
per-class, respectively. For approaches that in the end work on objects,
a commonly used measure is the mean average precision (mAP):

mAP =
1
C

C

∑
i=1

1
11 ∑

r∈{0,0.1,...,1}
pi(r), (7.4)

where r corresponds to a value of recall in the precision-recall curve for
each class, and pi(r) is the value of precision corresponding to recall
r for class i. Predicted instances are defined as a positive detection
when they have more than 50% IoU overlap with the ground truth
mask.

In our experiments, we found that the quality of the classification
depends mostly on the size of the input images, and therefore report
in Tab. 7.4 the results for two resolutions of the used sensor (ASUS
Xtion PRO). For a resolution of 320× 240, we achieve a mAP over all
classes of 0.79 and for 640× 480 the mAP increases to 0.88. These
results are encouraging since they show that starting from pre-trained
weights, a network can be trained solely on images crawled from the
Internet and few hours of human supervision to clean the data set
from improper objects present in the query results and wrong masks
in the alpha channel. The limitations of off-line batch training in terms
of labeled data collection and pre-definition of the classes are hard to
circumvent and currently an open research area in computer vision.

As with the accuracy of the model, the runtime of the CNN is
also highly dependent on the input resolution. In Tab. 7.5, we show
the runtime of the model in different hardware and using differ-
ent resolutions. The results show that the approach is usable also
in resource-constrained hardware, such as the NVIDIA Jetson TX2,
where we achieve a framerate of 4 Hz-11 Hz depending on the image
resolution.

92 path and action planning to overcome impeding objects

Table 7.5: Runtime for segmentation at different image resolutions.

Resolution
Runtime

GTX1080Ti Jetson TX2

320× 240 10 ms (100 FPS) 89 ms (11 FPS)

640× 480 33 ms (30 FPS) 245 ms (4 FPS)

7.6.2 Real-World Experiments with a Nao Humanoid

The second set of experiments is designed to show the behavior of our
planning framework in different real-world navigation scenarios. The
experiments demonstrate the advantages of our method in comparison
to pure footstep or whole-body-motion planning systems, as these
approaches are not capable of finding a solution to the goal when
manipulation actions are required.

We equipped the Nao robot with a ASUS Xtion PRO to show the
full capability of our navigation framework. For 6D localization we
apply Monte Carlo localization as developed by Hornung et al. [111]
and extended by Maier et al. [112] for depth camera data.

7.6.2.1 Path Planning with Manipulation Actions

In the situation depicted in Fig. 7.13a, the robot detected a box and
a ball that obstructed the way. To reach the goal location, the robot
could either push the ball aside or step onto the box before continuing
walking. Based on the computed cost map our planner found a path
across the ball. The robot followed the path to the vicinity of the ball
and then performed a push action (see Fig. 7.13b). After pushing
the ball aside, the path to the goal was free and the robot continued
walking (see Fig. 7.13c.)

7.6.2.2 Replanning the Path During Execution

The next two experiments are designed to show the replanning capa-
bilities of our framework when the current 2D path does not appear
to be optimal anymore according to an updated cost map.

In the first experiment shown in Fig. 7.14, our robot first detected
only a single row of blocks and the stuffed toy blocking the way to
the goal. Accordingly, stepping over the two detected blocks was the
cheaper solution compared to picking up the stuffed toy and putting
it aside. While following the path and updating the cost map, the
robot subsequently encountered more blocks, so that cheapest path
was now leading through the stuffed toy and the plan was changed to
include the action to pick up the stuffed toy. Thus, the robot followed
the path to the last free cell in front of the object and then executed

7.6 experimental evaluation 93

a)

b)

c)

ACTION:
push

goal

balls
boxes

Figure 7.13: Path planning with manipulation actions: Experiment with a
Nao robot (left) and segmented objects with inflation radius
projected onto the grid map (right). Left: a) The robot detects the
box and the ball on its way to the goal and decides to push the
ball in order to clear the path, since this is the cheapest path on
the corresponding cost map. b) After the robot has followed the
path close to the object, it performs the pushing action. c) The
robot continues walking along the path, which does not contain
any further objects.

the pick up action, before it followed the remaining path to reach the
goal. A video of this experiment is available online1.

The next experiment in Fig. 7.15 shows a scenario with two different
routes to the goal. Since the balls were too large for the Nao to step
over them (Fig. 7.15a), the robot could either push the balls out of
the way, pick them up, or take a detour around the large central
obstacle. In this case, our planner found a path that included the
detour, since interacting with multiple objects had higher associated
costs. In Fig. 7.15b another obstructing object, in this case a stuffed
toy, was detected, where our planner decided based on the updated
cost map to perform a pick up action to clear the path.

7.6.3 Replanning Actions During Execution

The final experiment demonstrates the capabilities of our planning
system to replan the action for an object during execution. In this
scenario (Fig. 7.16), the robot had to cross a narrow passage with
several blocks. The initial plan contained step over actions over two
blocks in the middle. However, after approaching the blocks and
initiating footstep planning for the step over action, our footstep
planner [109] could not find a sequence of valid footholds in order to
reach the subgoal and failed. According to the failed action, the cost
map was updated with the new action pick up for the first block on the

1 https://youtu.be/WO94iXT3V1I

https://youtu.be/WO94iXT3V1I

94 path and action planning to overcome impeding objects

executing the pickup action

followed by replanning

b)

c)

d)

a)

Figure 7.14: Replanning the path on an updated cost grid during execution.
a) In this case, the robot initially observes only two toy blocks
at the foremost row and the stuffed animal in its field of view.
The cheapest solution computed by our planner on the corre-
sponding cost grid leads through the toy blocks, which require
footstep planning. b) While moving forward, the robot detects
further toy blocks and computes a new path on the updated cost
grid. Now the path leads through the stuffed animal, suggesting
a pick up action. This solution is cheaper since it contains one
manipulation action rather than several step over actions. c) The
robot executes the pickup action and puts the object aside. d)
Afterwards our planner updates the cost map and replans the
path. The robot can now simply follow the path to its goal.

7.6 experimental evaluation 95

Figure 7.15: Replanning the path during execution: Nao humanoid and
segmented objects with inflation radius projected onto the grid
map. a) The robot perceives seven objects classified as balls in its
way and decides to take the detour around the L-shaped static
obstacle since this appears to be the cheapest solution according
to the cost map. b) On its way to the goal, the robot detects a
further object (in this case a stuffed toy). Our framework now
decides to pick up the object to reach the goal location.

path. Replanning on the updated map lead to a solution containing
the same objects but with another action for the first object. The robot
had to pickup the first block on the path and step over the second one.
After performing the pick up action and replacing the block, the path
planner found a valid sequence of steps to cross the region.

7.6.4 Summary of the Experiments

In sum, our experimental evaluation shows that semantic information
about objects can help humanoid navigation to efficiently plan and
effectively execute navigation actions that include handling objects.
We demonstrate with our experiments that state of the art semantic
segmentation CNNs such as Bonnet [9] are well-suited to solve the
associated perception problem of classifying the individual objects
in the vicinity of the robot. Based on this information, the robot
can combine 2D planning, footstep planning, and an effective object-
dependent action selection approach. As a result of that, complex
to compute complete whole-body plans or higher-level action plans
provided by a symbolic action planner can be avoided. With our

96 path and action planning to overcome impeding objects

follow path

follow path

a)

goal

step over

follow path

b)

goal

step over

pick up

c)

goal

step over

Figure 7.16: Replanning actions during execution: Experiment with a REEM-
C[110] robot in simulation. a) Initially, our planner computes a
path that suggests to perform the step over actions over the two
blocks to be computed with a footstep planning algorithm (be-
tween the two blue circles). b) However, due to the configuration
of the blocks, the footstep planner could not find a valid footstep
plan. Therefore, our planner selects an alternative action for
the first object on the 2D path. Based on the action table, our
framework decides to pick up the first object and recomputes the
plan. c) After the robot has picked up and moved the object out
of the way, the footstep planner finds a path over the remaining
region.

7.7 classification errors 97

framework, the robot can perform planning of complex navigation
tasks online, in simulation as well as in the real world. Our experi-
ments demonstrate this for the computation of new plans as well as for
online replanning. The combined maximum runtime of the mapping
and planning step is 0.2 s for a reasonable number of objects (two to
five) on an Intel Core i7-4710MQ, without the object classification and
segmentation, which runs in another thread with 5 Hz.

7.6.5 Implementation Details

For our experimental setup, we use the Robot Operating System [24] (ROS)
as a communication backbone between the different framework com-
ponents. For the experiments with the Nao robot, we used the ROS
packages [113] that contain the drivers for communication with the
NaoQI API [114], the robot model, and the walking module. For
localization, we also used ROS packages for Monte Carlo localization
using Octomap as environment representation [115]–[117].

The experiments with the REEM-C were simulated in Gazebo [39]
and visualized with RViz [118]. We integrated our footstep execution
with the PAL Robotics repositories [119], [120] available on GitHub
that provide the robot model and the communication interface.

7.7 classification errors

Wrong object classification of the CNN or non-executable actions
caused by wrong heuristics for action execution can of course happen.
In these cases, the map and the path will be updated when new
information becomes available. As a result, the robot’s path might not
be the optimal one. We experienced the following classification errors
in our experiments:

• A single object was perceived as two objects of different classes,
especially when detected at the border of the field of view of the
sensor, because the object was only partially perceived and/or
pixels further away from the robot cover a bigger surface of the
environment and thus provide less information for the CNN.

• False positive object detection of the background.

In most cases, the error was compensated by the next sensor measure-
ment and the map as well as the path were updated accordingly.

7.8 conclusion

In this work, we presented a novel framework for humanoid motion
planning that exploits the knowledge about obstacle classes during the

98 path and action planning to overcome impeding objects

planning process for fast planning and efficient humanoid navigation.
As one central contribution we propose to train a convolutional neural
network to distinguish between different object classes and use this
information to construct a cost grid during navigation. The cost grid
represents the static obstacles in the environment as well as the costs
of actions that need to be carried out by the robot to cross cluttered
regions. These cluttered regions typically contain obstacles that can
be overcome by the robot, i.e., by actions such as stepping over or
onto, pushing, or picking up. The robot then uses the cost grid for
efficiently planning its path to the goal location and the 2D path
implicitly contains all necessary actions to be executed by the robot.
Should replanning be necessary during the execution due to failed
actions, the cost grid is updated with the costs of alternative actions
and the path is replanned.

As we showed in various experiments, the trained neural network
is able to robustly distinguish between the different obstacle classes
and thus provides relevant information to the robot’s planner. We
demonstrated that a humanoid robot can exploit the knowledge about
classified obstacles during navigation and efficiently find solution
paths that contain appropriate actions to deal with the obstructing
objects. Furthermore, we showed that in case the current solution
cannot successfully be executed, the robot invokes replanning and our
system provides an alternative path.

8
C O N C L U S I O N

8.1 summary

In this thesis, we presented new contributions to the field of robot
navigation. Especially, we investigated challenging real-world scenar-
ios with little space to maneuver, crowds of people, and impeding
objects. Our developed approaches focus on mobile robot systems
with constrained computation power and limited field of view. The
proposed contributions enhance the robot navigation by expanding
the environment model, using machine learning to design powerful
function approximators, and integrating robot actions into the plan-
ning process. As a result the robot navigation improved by arriving
faster at the goal and having less collisions.

First, we introduced a method to incorporate the clutter object
distribution into the navigation cost function. The new costs predict
the occurrence of objects in not detected areas based on the objects
in the vicinity of the robot. By integrating the new navigation costs
into the grid mapping model, the robot is able to act foresightedly
and avoid areas with high densities of objects. As a consequence, the
robot is able to drive faster and reaches the goal quicker compared to
a standard path planner that only considers detected objects.

The second contribution provides a method to estimate the arrival
time of the robot at the goal from a 2D grid path. The estimation of the
completion time is vital for real-world scenarios, where time-efficient
planning is needed. Those application range from floor-cleaning and
household robots to autonomous food delivery vehicles. Moreover,
the implemented method allows to choose a path, when several path
options are available, since the completion time is a more relevant
criterion than, e.g., the length of the path. The completion time is
not known in the planning phase, due to the inaccuracies of the
motion execution, e.g., slippage of the wheels, noise in the sensor
measurements, and errors in the localization. Therefore, we trained a
non-linear regression estimator, that shows reliable prediction of the
completion time.

In the third contribution, we coped with navigation through pedes-
trian crowds. The approach improves the robot motion commands
determined by the popular social force model (SFM). The SFM is
used to simulate crowd dynamics and is very well suited to achieve
human-aware navigation behavior of the robot. To improve the steer-
ing in terms of collision and the completion time, we used supervised
learning to train a network that adjust the original robots commands.

99

100 conclusion

We generated the training data by designing a predictive controller
that simulates the crowd and robot movement into the future and
evaluates the given situation for all given incremental acceleration
adjustments. The best command is then used as a learning example
to train a network. We show in our experiments that the learned
network controller as well as the predictive controller significantly
reduce the collision rate in comparison to the basic SFM controller
while maintaining a comparable velocity.

The fourth contribution also deploys machine learning techniques
to realize goal-oriented and collision free navigation. This time, we
apply reinforcement learning to obtain a self-learned navigation policy.
Self-learning approaches optimize the navigation behavior through a
trial-and-error procedure, thus no parameter tuning of the navigation
system is required. We trained a network that provides the robot’s
translational and angular velocity commands for the next time step in
a simple environment. To evaluate the learned navigation policy, we
tested the robots in more complex environments, unknown during the
training phase. Furthermore, we compared the performance of our
trained policy to the popular dynamic window approach (DWA) with
respect to completion time of navigation tasks. The results show, that
our learned policy completed the navigation tasks faster on average
than the DWA of ROS. The policy gains the time advantage by keeping
a closer distance to obstacles and maintaining appropriate velocities.

Lastly, we integrated path planning, object recognition, footstep
planning and manipulation actions into a single navigation scheme.
The central idea of the approach is to classify the perceived objects
by a CNN and subsequently assign actions to every object class. To
efficiently overcome the impeding object, we determine the navigation
cost for every action and choose the cheapest applicable action accord-
ing to the object class. By integrating the action costs into the grid map,
the robot is able to plan a path, that encodes the necessary actions
to perform to reach the goal. Our experiments show the network
can successfully classify the detected objects and provide the robot
with the necessary information. As a result, the robot can exploit the
knowledge about classified obstacles during navigation and efficiently
find solution paths that contain appropriate actions to deal with the
obstructing objects. Similar state of the art systems, in contrast, fail to
reach the goal in comparable scenarios or require significantly more
time.

In conclusion, the developed approaches in this thesis could solve
the following research questions:

• How can we improve the navigation of the robot in cluttered
environments, by considering the clutter distribution in the
vicinity of the robot?

• How can we predict the robot’s completion time of a navigation
task based on path features?

8.2 outlook 101

• How can we improve navigation with the social force model
through pedestrian crowds, by using prediction and machine
learning techniques?

• How can we optimize the navigation behavior of the robot near
obstacles with reinforcement learning?

• How can a robot efficiently reach a navigation goal, that is
blocked by obstacles?

The presented ideas in this thesis contribute to the progress in robotic
development for a more autonomous robot navigation, that can be
operated by a non-expert user and can handle complex scenarios in
cluttered environments.

8.2 outlook

At the end of this work, we want to outline several extensions and open
research questions for future investigation. As mentioned previously,
the time estimation method from Chapter 4 can be integrated with the
approach of Chapter 3 and thus improve the navigation performance
by providing valid information about the completion time. The idea
is to determine two path options by using different navigation cost
functions, e.g., the standard cost function and our extended clutter
navigation cost function. By estimating the time of both paths, the
robot could decide which option is the most promising and follow the
best guess. We think that it could greatly improve the completion time
and avoid cases where our approach was slower than the standard
approach (Fig. 3.8).

With regards to Chapter 7, the presented navigation scheme uses a
pipeline, where a network provides information about object classes
in the environment of the robot. To receive the information of the
required actions, we perform a hand-designed mapping from object
class to possible robot actions (Tab. 7.1). Our approach would greatly
benefit if we determined the actions of objects directly by using a
neural network that can predict affordances [121]. In this context,
we understand affordances as the perceived actions of an object in a
specific environmental state. For example, a robot could push (action)
a toy car (object), but only if the wheels of the car are placed on the
ground and the pushing direction is not blocked by another object.
The detection of affordances could reduce the amount of engineering
required to identify the actions of objects and also reduce false action
suggestion of our planner that are only noticed during execution. In
the last years, progress has been made that shows the potential of
such approaches [122]–[125]. However, the mentioned publications
cover only specific scenarios and it is not trivial to apply the presented
solutions to the general case. In our trials we discovered insufficient

102 conclusion

results regarding the estimation of the affordances, because the net-
work does not only have to reason about the object, but also about
its relation to the environment, which introduces several degrees of
complexity to the task of classification.

Furthermore, we envision several extensions and advanced robot
capabilities for our approach in Chapter 7: The robot should be able
to simultaneously tidy up the environment by placing the impeding
object at the intended location in the environment. Considering this
extended scenario, the robot needs to keep track of the object it dis-
covers and also the object purpose and the location where the object
ideally should be placed. Erol et al. [126], presented an object tracking
system for applications in home environments. The work describes
in detail the robotic components to track objects in the environment
with a human-robot interaction system. Similar approaches could be
integrated into the constraint planning approach of Chapter 7 and
expand further the capabilities of our work.

In this thesis we integrated a decision-making process of the robot
into the navigation scheme (Fig. 2.1), to, e.g., choose a robot action
when the path to the goal is blocked by an object. In Chapter 3 the
decision making process is implied into the navigation cost function
and allows for a foresighted navigation behavior. However, an open
research question in robotics remains, how to implement reasoning in a
scalable and domain independent manner. John McCarthy and Patrick
J. Hayes [127] developed one of the first knowledge representations
for artificial intelligence in the 1960s. The work was the starting
point of many discussion of how to represent rational assumptions
and common sense of humans, but no ground-breaking solution has
emerged yet. We think that major progress in cognitive robotics could
be achieved with new theories and algorithms, that enable high-level
reasoning, can deal with uncertainties, and allow for greater degree of
abstraction to cope with the vast amount of diverse information. The
new generation of robot will then be able to make rational decisions,
plan for complex tasks and flexibly react to situations, that were not
experienced before.

A
A P P E N D I X

Algorithm 1 Reconstruct path

1: procedure reconstruct_path(P, sn, gn)

2: Path← ∅

3: ncurrent ← gn

4: while ncurrent 6= sn do

5: Path← [Path, ncurrent]

6: ncurrent ← P[ncurrent]

7: end while

8: return Path

9: end procedure

103

104 appendix

Algorithm 2 A* graph traversal

1: procedure A_STAR(sn, gn)

2: g(sn)← 0

3: f (sn)← g(sn) + h(sn)

4: Open list: O← {sn}
5: Closed list C ← ∅

6: Parent map: P← ∅

7: while O is not empty do

8: ncurrent ← the node in O having the lowest f-value

9: C ← [C, ncurrent]

10: if ncurrent == gn then

11: Goal node reached.

12: end if

13: for n′neighbor ∈ neighborhood(ncurrent) do

14: g(n′neighbor)← g(ncurrent) + ec(ncurrent, nneighbor)

15: Compute h(nneighbor), f (nneighbor)

16: if nneighbor ∈ C and cost < g(nneighbor) then

17: remove nneighbor from C

18: end if

19: if nneighbor ∈ O and cost < g(nneighbor) then

20: remove nneighbor from O

21: end if

22: if nneighbor /∈ O and nneighbor /∈ C then

23: O← [O, nneighbor]

24: g(nneighbor) = g(n′neighbor)

25: P[nneighbor] = ncurrent

26: end if

27: end for

28: end while

29: Return P

30: end procedure

105

106 acronyms

A C R O N Y M S

API Application Programming Interface

CNN Convolutional Neural Network

COCO Common Objects in Context

COVID Coronavirus Disease

CPU Central Processing Unit

DWA Dynamic Window Approach

FOV Field Of View

FPS Frames Per Second

HSR Human Support Robot

IRL Inverse Reinforcement Learning

ISO International Organization for Standardization

LR Linear Regression

LSTM Long Short-Term Memory

NN Neural Network

PC Predictive Controller

PG Policy Gradient

POMDP Partially Observable Markov Decision Process

RGB Red Green Blue (color space)

RGB-D Red Green Blue and Depth (color space)

RL Reinforcement Learning

RMSE Root Mean Square Error

ROS Robot Operating System

SFM Social Force Model

SLAM Simultaneous Localization And Mapping

SLR Simple Linear Regression

SVR Support Vector Regression

TOF Time Of Flight

VGG Vickrey-Clarke-Groves

WEKA Waikato Environment for Knowledge Analysis

L I S T O F F I G U R E S

Figure 1.1 Robots operating in human environments. . . 2

Figure 2.1 Two stage navigation approach. 12

Figure 2.2 Path and motion planning. 13

Figure 3.1 A robot chooses between different paths. . . . 19

Figure 3.2 The navigation cost function. 22

Figure 3.3 Navigation cost prediction into not yet observed
areas. 24

Figure 3.4 Traveling time in relation to clutter. 26

Figure 3.5 Average of the traveling time. 27

Figure 3.6 Velocity profiles comparison of the two
approaches. 28

Figure 3.7 Comparison of the individual navigation cost
components. 29

Figure 3.8 Example case of our approach in comparison to the
standard approach. 29

Figure 3.9 Robotino traveling through clutter in a real-world
experiment. 31

Figure 4.1 Motivation of our approach. 34

Figure 4.2 Velocity profiles of a robot driving through and
around clutter. 37

Figure 4.3 Path features for completion time. 38

Figure 4.4 Maps used in the experiments for time
prediction. 40

Figure 4.5 Completion time of the simulated execution. . 42

Figure 4.6 Comparison of four different regression methods. 43

Figure 4.7 Time prediction experiment in an environment
with two room and a corridor. 44

Figure 5.1 Example of a robot navigating through
environment populated by humans. 48

Figure 5.2 Overview of the predictive controller that outputs
the best acceleration adjustment. 54

Figure 5.3 The features used as input to the neural network. 55

Figure 5.4 The neural network architecture for the robot
controller. 55

Figure 5.5 Experimental setup with 50 pedestrians. 57

Figure 5.6 Average number of collisions. 58

Figure 5.7 Average completion time for the SFM controller,
predictive controller, and the neural network. . 59

Figure 5.8 Qualitative comparison of the NN controller and
the SFM controller. 60

Figure 6.1 Navigation scheme for our reinforcement learning
approach. 62

Figure 6.2 Binary image representation used as input to the
network. 66

Figure 6.3 Neural Network design of actor-critic scheme. 68

107

108 list of figures

Figure 6.4 Environments used for training and evaluation. 69

Figure 6.5 Performance improvement after additional
training. 71

Figure 6.6 Average completion time for the DWA and our
learned policy. 72

Figure 6.7 Real-world experiment with the learned navigation
policy. 73

Figure 7.1 Application example of a blocked path. 76

Figure 7.2 Overview of our framework. 79

Figure 7.3 Encoder-decoder semantic segmentation CNN. 81

Figure 7.4 Examples of pairs of classes with low inter-class
distance. 83

Figure 7.5 Examples of backgrounds used to generate the
synthetic training images. 83

Figure 7.6 Examples of generated clutter images with added
background. 84

Figure 7.7 Pushing action. 86

Figure 7.8 Stepping onto action. 86

Figure 7.9 Picking up action. 87

Figure 7.10 Experimental setup to determine the costs of
actions according to the completion time. . . . 87

Figure 7.11 Data processing for the RGB-D data. 88

Figure 7.12 Projection of the objects onto a 2D grid. 89

Figure 7.13 Path planning with manipulation actions. . . . 93

Figure 7.14 Replanning the path on an updated cost grid
during execution. 94

Figure 7.15 Replanning the path during execution. 95

Figure 7.16 Replanning actions during execution. 96

L I S T O F TA B L E S

Table 4.1 Path evaluation. 45

Table 6.1 Success rate of the trained policy. 70

Table 7.1 Example assignment of possible actions to object
classes. 85

Table 7.2 Execution times of actions. 86

Table 7.3 Heuristics for the viable actions of the Nao robot. 89

Table 7.4 Classification metrics on validation set for different
input image resolutions. 91

Table 7.5 Runtime for segmentation at different image
resolutions. 92

109

B I B L I O G R A P H Y

[1] A Gasparetto and L Scalera, “From the unimate to the delta
robot: The early decades of industrial robotics,” in Explorations
in the History and Heritage of Machines and Mechanisms, Springer,
2019.

[2] International Federation of Robotics (IFR).
[Online]. Available: http://www.ifr.org
Accessed on Mar. 2021.

[3] RoboCup@Home.
[Online]. Available: https://athome.robocup.org/
Accessed on Mar. 2021.

[4] European Robotics League.
[Online]. Available: https://www.eu-robotics.net/robotics_
league/

Accessed on Mar. 2021.

[5] M. Matamoros, S. Viktor, and D. Paulus, “Trends, challenges
and adopted strategies in robocup@ home,” in Proc. of the
IEEE Intl. Conf. on Autonomous Robot Systems and Competitions
(ICARSC), IEEE, 2019.

[6] iRobot Corporation.
[Online]. Available: http://www.irobot.com
Accessed on Mar. 2021.

[7] Toyota.
[Online]. Available: https://global.toyota/
Accessed on Mar. 2021.

[8] SQUIRREL Clearing Clutter Bit by Bit.
[Online]. Available: http://www.squirrel-project.eu
Accessed on Mar. 2021.

[9] A. Milioto and C. Stachniss, “Bonnet: An Open-Source Training
and Deployment Framework for Semantic Segmentation in
Robotics using CNNs,” in Proc. of the IEEE Intl. Conf. on Robotics
& Automation (ICRA), 2019.

[10] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. MIT
Press, 2005.

[11] Intel RealSense Depth Camera.
[Online]. Available: https://www.intelrealsense.com/depth-
camera-d455/

Accessed on Mar. 2021.

111

http://www.ifr.org
https://athome.robocup.org/
https://www.eu-robotics.net/robotics_league/
https://www.eu-robotics.net/robotics_league/
http://www.irobot.com
https://global.toyota/
http://www.squirrel-project.eu
https://www.intelrealsense.com/depth-camera-d455/
https://www.intelrealsense.com/depth-camera-d455/

112 bibliography

[12] S. Yu, C. Fu, A. K. Gostar, and M. Hu, “A review on map-
merging methods for typical map types in multiple-ground-
robot slam solutions,” Sensors, 2020.

[13] J. Guivant, E. Nebot, J. Nieto, and F. Masson, “Navigation and
mapping in large unstructured environments,” Intl. Journal of
Robotics Research (IJRR), 2004.

[14] I. Andersone, “Heterogeneous map merging: State of the art,”
Robotics, 2019.

[15] W. Rone and P. Ben-Tzvi, “Mapping, localization and motion
planning in mobile multi-robotic systems,” Robotica, 2013.

[16] K. Yousif, A. Bab-Hadiashar, and R. Hoseinnezhad, “An
overview to visual odometry and visual slam: Applications to
mobile robotics,” Intelligent Industrial Systems, 2015.

[17] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques
for grid mapping with rao-blackwellized particle filters,” IEEE
Trans. on Robotics (TRO), 2007.

[18] G. Grisettiyz, C. Stachniss, and W. Burgard, “Improving grid-
based slam with rao-blackwellized particle filters by adap-
tive proposals and selective resampling,” in Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), 2005.

[19] J. Minguez and L. Montano, “Nearness diagram (ND) navi-
gation: Collision avoidance in troublesome scenarios,” IEEE
Trans. on Robotics (TRO), 2004.

[20] O. Brock and O. Khatib, “High-speed navigation using the
global dynamic window approach,” in Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), 1999.

[21] D. Fox, W. Burgard, and S. Thrun, “The dynamic window
approach to collision avoidance,” IEEE Robotics and Automation
Magazine (RAM), 1997.

[22] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE Trans. on
Systems Science and Cybernetics (SSC), 1968.

[23] B. P. Gerkey and K. Konolige, “Planning and control in unstruc-
tured terrain,” in Proc. of the ICRA Workshop on Path Planning
on Costmaps, 2008.

[24] M. Quigley, K. Conley, B. Gerkey, et al., “ROS: An open-source
robot operating system,” in Proc. of the ICRA Workshop on Open
Source Software, 2009.

[25] ROS Local Planner.
[Online]. Available: http : / / wiki . ros . org / base _ local _

planner

Accessed on Mar. 2021.

http://wiki.ros.org/base_local_planner
http://wiki.ros.org/base_local_planner

bibliography 113

[26] M. Missura and M. Bennewitz, “Predictive collision avoid-
ance for the dynamic window approach,” in Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), 2019.

[27] C. M. Bishop, Pattern recognition and machine learning. Springer,
2006.

[28] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep
learning. MIT press Cambridge, 2016.

[29] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduc-
tion. MIT press, 2018.

[30] M. B. Ralph-Christoph Weber, Robotino manual, Festo Didactic
GmbH & Co. KG, Denkendorf, Germany, 2010.
[Online]. Available: https://www.festo-didactic.com/ov3/
media/customers/1100/544305_robotino_deen.pdf

Accessed on Mar. 2021.

[31] D. Lu, D. Hershberger, and W. Smart, “Layered costmaps
for context-sensitive navigation,” in Proc. of the IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), 2014.

[32] E. Marder-Eppstein, E. Berger, T. Foote, et al., “The office
marathon: Robust navigation in an indoor office environment,”
in Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA),
2010.

[33] A. Hornung, M. Phillips, E. G. Jones, et al., “Navigation in three-
dimensional cluttered environments for mobile manipulation,”
in Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA),
2012.

[34] A. Orthey and O. Stasse, “Towards reactive whole-body motion
planning in cluttered environments by precomputing feasible
motion spaces,” in Proc. of the IEEE-RAS Intl. Conf. on Humanoid
Robots (HUMANOIDS), 2013.

[35] D. Maier, C. Lutz, and M. Bennewitz, “Integrated perception,
mapping, and footstep planning for humanoid navigation
among 3D obstacles,” in Proc. of the IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS), 2013.

[36] D. Joho, G. Tipaldi, N. Engelhard, et al., “Nonparametric
Bayesian models for unsupervised scene analysis and recon-
struction,” in Proc. of Robotics: Science and Systems (RSS), 2012.

[37] E. B. Sudderth, A. Torralba, W. T. Freeman, and A. S. Willsky,
“Describing visual scenes using transformed objects and parts,”
Int. Journal of Computer Vision, 2008.

[38] P. Henry, C. Vollmer, B. Ferris, and D. Fox, “Learning to nav-
igate through crowded environments,” in Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), 2010.

https://www.festo-didactic.com/ov3/media/customers/1100/544305_robotino_deen.pdf
https://www.festo-didactic.com/ov3/media/customers/1100/544305_robotino_deen.pdf

114 bibliography

[39] N. Koenig and A. Howard, “Design and use paradigms for
Gazebo, an open-source multi-robot simulator,” in Proc. of the
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS),
2004.

[40] M. Buehler, K. Iagnemma, and S. Singh, The DARPA Urban
Challenge: Autonomous vehicles in city traffic. Springer, 2009.

[41] S. Thrun, M. Bennewitz, W. Burgard, et al., “Minerva: A second-
generation museum tour-guide robot,” in Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), 1999.

[42] B. Lau, C. Sprunk, and W. Burgard, “Kinodynamic motion plan-
ning for mobile robots using splines,” in Proc. of the IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), 2009.

[43] L. Murphy and P. Newman, “Risky planning on probabilistic
costmaps for path planning in outdoor environments,” IEEE
Trans. on Robotics (TRO), 2013.

[44] H. Jun and Z. Qingbao, “Multi-objective mobile robot path
planning based on improved genetic algorithm,” in Proc. of the
Intl. Conf. on Intelligent Computation Technology and Automation
(ICICTA), 2010.

[45] R. Philippsen, S. Kolski, K. Macek, and B. Jensen, “Mobile
robot planning in dynamic environments and on growable
costmaps,” in Workshop on Planning with Cost Maps at the IEEE
Intl. Conf. on Robotics and Automation, 2008.

[46] M. Hall, E. Frank, G. Holmes, et al., “The weka data mining
software: An update,” ACM SIGKDD explorations newsletter,
2009.

[47] D. Helbing and P. Molnar, “Social force model for pedestrian
dynamics,” Physical review E, 1995.

[48] F. Farina, D. Fontanelli, A. Garulli, et al., “Walking ahead: The
headed social force model,” PLOS ONE, 2017.

[49] F. Zanlungo, T. Ikeda, and T. Kanda, “Social force model with
explicit collision prediction,” EPL (Europhysics Letters), 2011.

[50] G. Ferrer, A. Garrell, and A. Sanfeliu, “Social-aware robot navi-
gation in urban environments,” in Proc. of the Europ. Conf. on
Mobile Robotics (ECMR), 2013.

[51] G. Ferrer, A. G. Zulueta, F. H. Cotarelo, and A. Sanfeliu, “Robot
social-aware navigation framework to accompany people walk-
ing side-by-side,” Autonomous Robots, 2017.

[52] C. Cao, P. Trautman, and S. Iba, “Dynamic channel: A plan-
ning framework for crowd navigation,” in Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), 2019.

bibliography 115

[53] C. Chen, Y. Liu, S. Kreiss, and A. Alahi, “Crowd-robot inter-
action: Crowd-aware robot navigation with attention-based
deep reinforcement learning,” in Proc. of the IEEE Intl. Conf. on
Robotics & Automation (ICRA), 2019.

[54] A. Vemula, K. Muelling, and J. Oh, “Modeling cooperative navi-
gation in dense human crowds,” in Proc. of the IEEE Intl. Conf. on
Robotics & Automation (ICRA), 2017.

[55] M. Kuderer, H. Kretzschmar, C. Sprunk, and W. Burgard,
“Feature-based prediction of trajectories for socially compli-
ant navigation.,” in Robotics: Science and Systems, 2012.

[56] D. Vasquez, B. Okal, and K. O. Arras, “Inverse reinforce-
ment learning algorithms and features for robot navigation in
crowds: An experimental comparison,” in Proc. of the IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), 2014.

[57] B. Kim and J. Pineau, “Socially adaptive path planning in
human environments using inverse reinforcement learning,”
Intl. Journal of Social Robotics, 2016.

[58] L. Tai, J. Zhang, M. Liu, and W. Burgard, “Socially compliant
navigation through raw depth inputs with generative adversar-
ial imitation learning,” in Proc. of the IEEE Intl. Conf. on Robotics
& Automation (ICRA), 2018.

[59] M. Everett, Y. F. Chen, and J. P. How, “Motion planning among
dynamic, decision-making agents with deep reinforcement
learning,” in Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots
and Systems (IROS), 2018.

[60] M. Pfeiffer, G. Paolo, H. Sommer, et al., “A data-driven model
for interaction-aware pedestrian motion prediction in object
cluttered environments,” in Proc. of the IEEE Intl. Conf. on
Robotics & Automation (ICRA), 2018.

[61] A. Alahi, K. Goel, V. Ramanathan, et al., “Social LSTM: Human
trajectory prediction in crowded spaces,” in Proc. of the Conf. on
Computer Vision and Pattern Recognition (CVPR), 2016.

[62] C. Blaiotta, “Learning generative socially aware models of
pedestrian motion,” IEEE Robotics and Automation Letters (RA-
L), 2019.

[63] M. Moussaïd, D. Helbing, S. Garnier, et al., “Experimental study
of the behavioural mechanisms underlying self-organization in
human crowds,” Proc. of the Royal Society of London B: Biological
Sciences, 2009.

[64] M. Moussaïd, N. Perozo, S. Garnier, et al., “The walking be-
haviour of pedestrian social groups and its impact on crowd
dynamics,” PLOS ONE, 2010.

116 bibliography

[65] G. Hinton, N. Srivastava, and K. Swersky, “Neural networks for
machine learning lecture 6a overview of mini-batch gradient
descent,” Cited on, 2012.

[66] X. Glorot and Y. Bengio, “Understanding the difficulty of train-
ing deep feedforward neural networks,” in Proceedings of the
Int. Conf. on Artificial Intelligence and Statistics, 2010.

[67] J. Schulman, F. Wolski, P. Dhariwal, et al., “Proximal policy
optimization algorithms,” arXiv preprint, 2017.

[68] J. Sergeant, N. Sünderhauf, M. Milford, and B. Upcroft, “Mul-
timodal deep autoencoders for control of a mobile robot,” in
Proc. of the Australasian Conf. on Robotics and Automation (ACRA),
2015.

[69] M. Pfeiffer, M. Schaeuble, J. Nieto, et al., “From perception
to decision: A data-driven approach to end-to-end motion
planning for autonomous ground robots,” in Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), 2017.

[70] M. Pfeiffer, S. Shukla, M. Turchetta, et al., “Reinforced imita-
tion: Sample efficient deep reinforcement learning for mapless
navigation by leveraging prior demonstrations,” IEEE Robotics
and Automation Letters (RA-L), 2018.

[71] Y. Liu, A. Xu, and Z. Chen, “Map-based deep imitation learning
for obstacle avoidance,” in Proc. of the IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS), 2018.

[72] A. Pokle, R. Martin-Martin, P. Goebel, et al., “Deep local trajec-
tory replanning and control for robot navigation,” in Proc. of
the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2019.

[73] S. Gupta, J. Davidson, S. Levine, et al., “Cognitive mapping and
planning for visual navigation,” in Proc. of the Conf. on Computer
Vision and Pattern Recognition (CVPR), 2017.

[74] S.-H. Hsu, S.-H. Chan, P.-T. Wu, et al., “Distributed deep rein-
forcement learning based indoor visual navigation,” in Proc. of
the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS),
2018.

[75] X. Chen, A. Ghadirzadeh, J. Folkesson, et al., “Deep reinforce-
ment learning to acquire navigation skills for wheel-legged
robots in complex environments,” in Proc. of the IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), 2018.

[76] L. Tai, G. Paolo, and M. Liu, “Virtual-to-real deep reinforcement
learning: Continuous control of mobile robots for mapless
navigation,” in Proc. of the IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS), 2017.

bibliography 117

[77] T. Fan, X. Cheng, J. Pan, et al., “Crowdmove: Autonomous
mapless navigation in crowded scenarios,” in Proc. of the IROS
Workshop on From freezing to jostling robots: Current challenges and
new paradigms for safe robot navigation in dense crowds, 2018.

[78] H. L. Chiang, A. Faust, M. Fiser, and A. Francis, “Learning
navigation behaviors end-to-end with AutoRL,” IEEE Robotics
and Automation Letters (RA-L), 2019.

[79] J. Kulhánek, E. Derner, T. de Bruin, and R. Babuška, “Vision-
based navigation using deep reinforcement learning,” in Proc. of
the Europ. Conf. on Mobile Robotics (ECMR), 2019.

[80] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” in Proc. of the
Intl. Conf. on Learning Representations (ICLR), 2015.

[81] J. Lei Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,”
arXiv preprint, 2016.

[82] M. Abadi, A. Agarwal, P. Barham, et al., “TensorFlow: Large-
scale machine learning on heterogeneous systems,” arXiv
preprint, 2016.

[83] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Cur-
riculum learning,” in Proc. of the Intl. Conf. on Machine Learn-
ing (ICML), 2009.

[84] D. Fox, W. Burgard, F. Dellaert, and S. Thrun, “Monte Carlo
localization: Efficient position estimation for mobile robots,”
Proc. of the Conference on Advancements of Artificial Intelligence
(AAAI), 1999.

[85] M. Grey, A. Ames, and C. Liu, “Footstep and motion plan-
ning in semi-unstructured environments using randomized
possibility graphs,” in Proc. of the IEEE Intl. Conf. on Robotics &
Automation (ICRA), 2017.

[86] Y. Lin and D. Berenson, “Humanoid navigation in uneven
terrain using learned estimates of traversability,” in Proc. of the
IEEE-RAS Intl. Conf. on Humanoid Robots (HUMANOIDS), 2017.

[87] R. Deits and R. Tedrake, “Footstep planning on uneven terrain
with mixed-integer convex optimization,” in Proc. of the IEEE-
RAS Intl. Conf. on Humanoid Robots (HUMANOIDS), 2014.

[88] M. Fallon, P. Marion, R. Deits, et al., “Continuous humanoid
locomotion over uneven terrain using stereo fusion,” in Proc. of
the IEEE-RAS Intl. Conf. on Humanoid Robots (HUMANOIDS),
2015.

[89] A. Hildebrandt, M. Klischat, D. Wahrmann, et al., “Real-time
path planning in unknown environments for bipedal robots,”
IEEE Robotics and Automation Letters (RA-L), 2017.

118 bibliography

[90] D. Wahrmann, A.-C. Hildebrandt, T. Bates, et al., “Vision-based
3d modeling of unknown dynamic environments for real-time
humanoid navigation,” The Int. Journal of Humanoid Robotics
(IJHR), 2019.

[91] M. Stilman and J. Kuffner, “Navigation among movable obsta-
cles: Real-time reasoning in complex environments,” Intl. Jour-
nal of Robotics Research (IJRR), 2005.

[92] M. Stilman, K. Nishiwaki, S. Kagami, and J. Kuffner, “Planning
and executing navigation among movable obstacles,” in Proc. of
the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS),
2006.

[93] M. Levihn, K. Nishiwaki, S. Kagami, and M. Stilman, “Au-
tonomous environment manipulation to assist humanoid loco-
motion,” in Proc. of the IEEE Intl. Conf. on Robotics & Automation
(ICRA), 2014.

[94] A. Hornung, S. Boettcher, C. Dornhege, et al., “Mobile manipu-
lation in cluttered environments with humanoids: Integrated
perception, task planning, and action execution,” in Proc. of the
IEEE-RAS Intl. Conf. on Humanoid Robots (HUMANOIDS), 2014.

[95] Y.-C. Lin and D. Berenson, “Humanoid navigation planning
in large unstructured environments using traversability-based
segmentation,” in Proc. of the IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS), 2018.

[96] A. Dornbush, K. Vijayakumar, S. Bardapurkar, et al., “A single-
planner approach to multi-modal humanoid mobility,” in
Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA),
2018.

[97] P. Kaiser, D. Gonzalez-Aguirre, F. Schueltje, et al., “Extract-
ing whole-body affordances from multimodal exploration,”
in Proc. of the IEEE-RAS Intl. Conf. on Humanoid Robots (HU-
MANOIDS), 2014.

[98] M. Wang, R. Luo, A. Ö. Önol, and T. Padir, “Affordance-based
mobile robot navigation among movable obstacles,” in Proc. of
the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS),
2020.

[99] L. Chen, G. Papandreou, I. Kokkinos, et al., “Deeplab: Seman-
tic image segmentation with deep convolutional nets, atrous
convolution, and fully connected crfs,” IEEE Trans. on Pattern
Analalysis and Machine Intelligence (TPAMI), 2018.

[100] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning
for Image Recognition,” in Proc. of the Conf. on Computer Vision
and Pattern Recognition (CVPR), 2016.

bibliography 119

[101] H. Zhao, J. Shi, X. Qi, et al., “Pyramid scene parsing network,”
Proc. of the Conf. on Computer Vision and Pattern Recognition
(CVPR), 2017.

[102] A. Milioto, P. Lottes, and C. Stachniss, “Real-time semantic
segmentation of crop and weed for precision agriculture robots
leveraging background knowledge in CNNs,” in Proc. of the
IEEE Intl. Conf. on Robotics & Automation (ICRA), 2018.

[103] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello, “ENet:
Deep neural network architecture for real-time semantic seg-
mentation,” arXiv preprint, 2016.

[104] E. Romera, J. Alvarez, L. Bergasa, and R. Arroyo, “ERFNet:
Efficient residual factorized convnet for real-time semantic
segmentation,” IEEE Trans. on Intelligent Transportation Systems
(ITS), 2018.

[105] M. Sandler, A. Howard, M. Zhu, et al., “MobileNetV2: Inverted
Residuals and Linear Bottlenecks,” Proc. of the Conf. on Computer
Vision and Pattern Recognition (CVPR), 2018.

[106] NVIDIA TensorRT. Programmable Inference Accelerator.
[Online]. Available: https://developer.nvidia.com/tensorrt
Accessed on Mar. 2021.

[107] T. Lin, M. Maire, S. Belongie, et al., “Microsoft COCO: Common
objects in context,” Proc. of the Europ. Conf. on Computer Vision
(ECCV), 2014.

[108] Google.
[Online]. Available: https://images.google.com/
Accessed on May 2021.

[109] P. Karkowski, S. Oßwald, and M. Bennewitz, “Real-time foot-
step planning in 3D environments,” in Proc. of the IEEE-RAS
Intl. Conf. on Humanoid Robots (HUMANOIDS), 2016.

[110] REEM-C. A biped humanoid robot.
[Online]. Available: https://pal-robotics.com/robots/reem-
c

Accessed on Mar. 2021.

[111] A. Hornung, K. M. Wurm, and M. Bennewitz, “Humanoid
robot localization in complex indoor environments.,” in Proc. of
the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS),
2010.

[112] D. Maier, A. Hornung, and M. Bennewitz, “Real-time nav-
igation in 3D environments based on depth camera data,”
in Proc. of the IEEE-RAS Intl. Conf. on Humanoid Robots (HU-
MANOIDS), 2012.

https://developer.nvidia.com/tensorrt
https://images.google.com/
https://pal-robotics.com/robots/reem-c
https://pal-robotics.com/robots/reem-c

120 bibliography

[113] ROS: Aldebaran Nao.
[Online]. Available: https://wiki.ros.org/nao
Accessed on Mar. 2021.

[114] NAOqi API.
[Online]. Available: https://doc.aldebaran.com/2-1/naoqi/
index.html

Accessed on Mar. 2021.

[115] ROS: Humanoid localization.
[Online]. Available: https : / / wiki . ros . org / humanoid _

localization

Accessed on Mar. 2021.

[116] ROS: OpenNI.
[Online]. Available: https://wiki.ros.org/openni2_launch
Accessed on Mar. 2021.

[117] ROS: Octomap.
[Online]. Available: https://wiki.ros.org/octomap
Accessed on Mar. 2021.

[118] ROS: RViz.
[Online]. Available: https://wiki.ros.org/rviz
Accessed on Mar. 2021.

[119] PAL Robotics.
[Online]. Available: https://pal-robotics.com
Accessed on Mar. 2021.

[120] GitHub: PAL Robotics.
[Online]. Available: https://github.com/pal-robotics
Accessed on Mar. 2021.

[121] P. Zech, S. Haller, S. R. Lakani, et al., “Computational models
of affordance in robotics: A taxonomy and systematic classifi-
cation,” Adaptive Behavior, 2017.

[122] J. Sawatzky, A. Srikantha, and J. Gall, “Weakly supervised
affordance detection,” in Proc. of the Conf. on Computer Vision
and Pattern Recognition (CVPR), 2017.

[123] A. Nguyen, D. Kanoulas, D. G. Caldwell, and N. G. Tsagarakis,
“Detecting object affordances with convolutional neural net-
works,” in Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots
and Systems (IROS), 2016.

[124] A. Roy and S. Todorovic, “A multi-scale cnn for affordance
segmentation in rgb images,” in Proc. of the Europ. Conf. on
Computer Vision (ECCV), Springer, 2016.

[125] T. Luddecke and F. Worgotter, “Learning to segment affor-
dances,” in Proc. of the IEEE Intl. Conf. on Computer Vision (ICCV),
2017.

https://wiki.ros.org/nao
https://doc.aldebaran.com/2-1/naoqi/index.html
https://doc.aldebaran.com/2-1/naoqi/index.html
https://wiki.ros.org/humanoid_localization
https://wiki.ros.org/humanoid_localization
https://wiki.ros.org/openni2_launch
https://wiki.ros.org/octomap
https://wiki.ros.org/rviz
https://pal-robotics.com
https://github.com/pal-robotics

bibliography 121

[126] B. A. Erol, A. Majumdar, J. Lwowski, et al., “Improved deep
neural network object tracking system for applications in home
robotics,” in Computational Intelligence for Pattern Recognition,
Springer, 2018.

[127] J. McCarthy and P. J. Hayes, “Some philosophical problems
from the standpoint of artificial intelligence,” in Machine In-
telligence 4, reprinted in McC90, Edinburgh University Press,
1969.

	Abstract
	Kurzfassung
	Acknowledgments
	Contents
	1 Introduction
	1.1 Main contributions
	1.2 Publications
	1.3 Collaborations

	2 Basic robotic concepts
	2.1 Sensors
	2.2 Maps
	2.3 Navigation Scheme
	2.4 Global Path Planning
	2.5 Motion planning
	2.6 Machine Learning

	3 Foresighted Navigation Through Clutter
	3.1 Introduction
	3.2 Related Work
	3.3 Cost Maps for Path Planning in Cluttered Environments
	3.3.1 Standard Cost Function
	3.3.2 Cost Function for Cluttered Environments

	3.4 Clutter Density and Cost Prediction
	3.5 Experiments
	3.5.1 Path Planning and Trajectory Execution
	3.5.2 Quantitative Evaluation
	3.5.3 Qualitative Evaluation
	3.5.4 Real-World Experiments

	3.6 Conclusion

	4 Predicting Travel Time from Path Characteristics
	4.1 Introduction
	4.2 Related Work
	4.3 Predicting Travel Time from Path Characteristics
	4.3.1 Features for Describing Path Characteristics
	4.3.2 Prediction of Travel Time
	4.3.3 Regression Models

	4.4 Experiments
	4.4.1 Data Collection
	4.4.2 Regression Results
	4.4.3 Temporal Gain

	4.5 Conclusion

	5 Improving Social Navigation by Supervised Learning
	5.1 Introduction
	5.2 Related Work
	5.3 Social Force Model
	5.4 Pedestrian and Robot Motion
	5.4.1 Robot Model

	5.5 Predictive Controller
	5.6 Training a Neural Network
	5.7 Experiments
	5.7.1 Parameters and Setup
	5.7.2 Average Number of Collisions for Different Pedestrian Densities
	5.7.3 Average Completion Time for Different Pedestrian Densities
	5.7.4 Qualitative Evaluation

	5.8 Conclusion

	6 Improving Navigation by Deep Reinforcement Learning
	6.1 Introduction
	6.2 Related Work
	6.3 Problem Description
	6.4 Neural Network Approximator for Local Navigation
	6.4.1 Observation Space
	6.4.2 Reward
	6.4.3 Neural Network Structure

	6.5 Experiments
	6.5.1 Training
	6.5.2 Evaluation
	6.5.3 Success Rate
	6.5.4 Completion Time
	6.5.5 Real-World Experiment

	6.6 Conclusion

	7 Path and action planning to overcome impeding objects
	7.1 Introduction
	7.2 Related Work
	7.3 System Overview
	7.4 Semantic Segmentation
	7.4.1 CNN-Based Semantic Segmentation
	7.4.2 Data Collection

	7.5 Path Planning Utilizing Obstacle Information
	7.5.1 Actions for Object Classes
	7.5.2 Action Costs
	7.5.3 Object Mapping
	7.5.4 Path Planning
	7.5.5 Updating the Action

	7.6 Experimental Evaluation
	7.6.1 Classification Results
	7.6.2 Real-World Experiments with a Nao Humanoid
	7.6.3 Replanning Actions During Execution
	7.6.4 Summary of the Experiments
	7.6.5 Implementation Details

	7.7 Classification errors
	7.8 Conclusion

	8 Conclusion
	8.1 Summary
	8.2 Outlook

	A Appendix
	 Acronyms
	 List of Figures
	 List of Tables
	 Bibliography

