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Summary

In this thesis we use geometrical and string theoretic inspired methods to compute Feynman
integrals. We analyze the family of l-loop banana Feynman graphs which is a very prominent
and important infinite family of Feynman graphs. Using our methods we compute the
banana integrals to high loop order and also for generic masses which was not possible
before. We relate the abstract l-loop Feynman integral in D = 2 dimensions to geometric
period integrals of a (l − 1)-dimensional Calabi-Yau manifold Ml−1 such that the maximal
cut contours correspond to the integral homology Hl−1(Ml−1, Z).

The first part of the thesis introduces basic concepts of the theory of Feynman graph com-
putations. Different integral representations of Feynman diagrams and important structures
deduced therefrom are elucidated. In particular, integration by parts relations, relations
between different Feynman integrals and the concept of maximal cuts are introduced and
illustrated through examples. Secondly, fundamentals of differential equations and solution
techniques thereof are explained. Moreover, it is argued that Feynman integrals satisfy ho-
mogeneous differential equations which can actually be used to determine them. Properties
of these special differential equations are discussed. Additionally, we explain how they can
be solved with the Frobenius method. In a third review part the mathematics of Calabi-Yau
manifolds is mentioned, including their general structure as well as their properties. More
importantly, the consequences of these structures in the context of Feynman integral compu-
tations are stressed. For example, bilinear relations between Feynman integrals result from
Griffiths transversality between Calabi-Yau period integrals. Similarly, important structures
such as variations of (mixed) Hodge structures, the point of maximal unipotent monodromy,
the GKZ system and the Frobenius method for computing periods are discussed. We further
review basics of mirror symmetry and explain main concepts as the Γ̂-class.

In the second part we use all of the previously introduced structures and techniques to
solve the l-loop banana integral. First, we solve the equal-mass case. Using the bilinear rela-
tions between the maximal cuts of the banana graphs we can write down a very simple and
elegant solution of the whole banana integral valid to arbitrary loop order. This generalizes
the l ≤ 3 cases. Then we give two different Calabi-Yau geometries associated to the l-loop
banana diagram, namely a hypersurface and a complete intersection motive. Using the
GKZ system and the Frobenius method we are able to find the periods for both geometries.
We extend the GKZ system such that it also includes the contributions of the full Feynman
integral not just the maximal cuts. Then we can linearly combine all periods to obtain the
full integral. The subsequent chapter uses the techniques of the Γ̂-class to find the correct
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linear combination of periods for the full Feynman integral purely through geometrical
data at the point of maximal unipotent monodromy. This enables us to solve for the first
time the generic-mass banana integral for l ≥ 3 in D = 2 dimensions. Finally, the banana
graphs are solved in dimensional regularization, i.e. D = 2− 2ε dimensions. We first find
a hypergeometric series expansion of the banana integral which serves as a generalization
of the Γ̂-class to dimensional regularization. Furthermore, we present a technique to find
differential equations describing the hypergeometric expansion purely from combinatorics
such that one can analytically continue the integral in the whole parameter space.
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CHAPTER 1

Introduction

Many modern theories in physics are expressed in the language of quantum field theory. For
example, the fundamental forces like electromagnetism, the weak and the strong force are
described as a quantum field theory known as the Standard Model of particle physics. One
of the successes of quantum field theories is that they give precise theoretical predictions
for the scattering amplitudes of fundamental particles which can be tested in experiments.
The Standard Model of particle physics is a quantum field theory which has passed over
several decades many experimental checks. On the experimental side one uses for example
bigger and stronger particle colliders as the Large Hadron Collider to obtain more precision
on the experimental data but also to test the theory at different energy levels. But also the
theoretical side has to improve their predictions to compare theory and experiment more
accurately. A common technique is to use perturbative quantum field theory which allows
for explicit calculations though only giving an approximate prediction.

The cornerstone of perturbative quantum field theory is the computation of multi-loop
Feynman diagrams. To acquire the desired precision, high loop orders have to be reached.
This is only possible if one has a precise understanding of the mathematical structures
underlying Feynman integrals and additionally if efficient methods to evaluate them are
known and well under control. Since the last century many different techniques have been
developed to tackle the computation of these integrals. In recent years it has become clear
that there is a strong connection between the techniques from Feynman integrals and certain
branches of pure mathematics such as geometry, algebra and number theory. For instance, it
was shown that Feynman integrals are actually period integrals in the sense of Kontsevich
and Zagier [1] such that the physical parameters, i.e. the momenta and masses, can be seen
as the moduli of these periods. This observation opens a link between geometric periods of
algebraic varieties and abstract integrals related to Feynman graphs. As an example, periods
of algebraic varieties satisfy linear differential equations describing the variations of the
mixed Hodge structures of these varieties. Depending on the formulation of these equations
they are called Gauss-Manin connection or Picard-Fuchs differential ideal and they are well
known in mathematics for several decades or even centuries. But also Feynman integrals
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Chapter 1 Introduction

b t

Figure 1.1: A three loop contribution to Higgs production via gluon fusion with a bottom and a top
quark running in the loops (left panel). The scalar kite Feynman graph with two massless and three
propapagators of equal mass (right panel).

satisfy first-order differential equations as observed in [2–6]. From a geometric point of view
this is quite obvious because they are periods but from a purely physics perspective this was
a new and interesting observation [7, 8]. In this thesis I want to elaborate on this connection
and show many situations where geometry can give precise and often new predictions for
Feynman integrals. But also the other way is possible meaning that mathematics can learn
something from physics since the mathematics needed for multi-loop Feynman integral
computations is on the frontier of pure mathematics and by far fully developed.

The running example in my thesis will be the so-called family of banana graphs shown
in figure 2.2. On the first glance these diagrams do not look realistic and important at high
loop orders since the valence of their vertices is too high. But actually these graphs appear
almost everywhere as sub-topologies of any higher-loop process and are therefore necessary
in most computations of phenomenologically relevant processes. Using integration by parts
identities and in advance tensor reductions to obtain scalar Feynman integrals from tensor
ones one can show that banana graphs enter relevant Feynman integral computations. For
example, the two-loop banana graph appears as a building block for computing the so-called
kite diagram in figure 1.1 which is a two-loop correction to the electron self-energy [9]. The
next higher banana graph is a sub-topology of a three-loop correction for Higgs production
via gluon fusion, see also figure 1.1. Notice that here different masses of the banana integral
are necessary as well as for the three-loop correction to the ρ-parameter [10]. Even the
four-loop banana graph is relevant for calculating the anomalous magnetic moment of the
electron [11]. So we see that the role of this family of Feynman graphs is significant and
should not be underestimated. With the techniques I develop in this thesis it is possible to
compute for the first time these diagrams in the equal– as well as in the generic-mass case to
nearly arbitrary loop order. Besides the phenomenological implications of this there are also
new achievements in mathematics as a product of analyzing these Feynman integrals, e.g. a
novel Γ̂-class, new insights into higher dimensional Calabi-Yau manifolds, iterated integrals
of Calabi-Yau periods and many more.

One common strategy in the computation of Feynman integrals is to restrict the function
space of a given Feynman graph. Here one searches for the most generic set of functions
such that one can build the Feynman integral from them. The structure of Feynman integrals
is strongly determined from fundamental physical principles. For example, the branch
cut structure of Feynman graphs reflects the thresholds of the involved particles. This
severely restricts the possible functions appearing. It has been found that many Feynman
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integrals can be expressed through so-called multiple polylogarithms having the required
branching behavior. This is a class of functions introduced by Poincaré, Kummer and
Lappo-Danilevsky [12, 13] which has recently reappeared in both mathematics [14–16] and
physics [17–19]. But it turns out that the function space of polylogarithms is not large
enough to capture all Feynman integrals. Even the two-loop banana graph can not be
computed from this set of functions. In a fantastic paper [20] Bloch and Vanhove showed
that the generic-mass two-loop banana graph can be solved in terms of a so-called elliptic
dilogarithm, a generalization of the usual polylogarithms [21–23]. In the equal-mass case
one can use iterated integrals of Eisenstein series [24, 25]. With these kinds of functions
many multi-loop and massive Feynman graphs have been computed [10, 24–40]. But still the
theory of these functions has to be developed from a physics as well as from a mathematical,
in particular, numerical side [37, 41, 42].

In recent years examples of three-loop graphs were found which can not even been
computed with these additional functions. These are the three-loop generic-mass banana
graph [43–45] and the so-called train track graphs [46]. The period integrals appearing in the
corresponding Feynman integrals could be related to period integrals of K3 surfaces. These
geometric integrals are the natural extensions of the ones at lower loops. At two loops these
periods form the class of elliptic integrals which are known to the physics community since
the Kepler problem. At higher loops they correspond to Calabi-Yau period integrals which
are well studied objects in string theory. In this spirit one has to understand the structure
of higher dimensional Calabi-Yau periods to understand the Feynman integrals properly.
For the banana family I wanted to clarify this connection within my PhD projects [44, 45,
47] and collect the most important observations in my PhD thesis here. For this we used
methods from string theory, or more generally, geometry, such as the theory of periods of
algebraic varieties and mirror symmetry to compute the banana integrals.

In this approach as a first step one has to identify the geometry associated to the l-loop
banana diagram, which is a (l − 1)-dimensional Calabi-Yau manifold Ml−1. In D = 2
dimensions one can relate the maximal cuts of the banana graphs exactly to the periods of
these Calabi-Yau spaces. In fact, we will give two topologically different manifolds which
still describe the appropriate periods for the banana graphs. In more detail, the maximal
cuts are the periods of Ml−1 over cycles in integral homology Hl−1(Ml−1, Z). These can
be computed at the point of maximal unipotent monodromy (short MUM-point) using the
Picard-Fuchs differential ideal and the Frobenius method to obtain first a non-integer basis of
periods. Using the Γ̂-class this non-geometric basis can be related to the geometric, integral
basis of maximal cuts. This technique was developed in mirror symmetry [48, 49]. We show
that this method can be extended also for the full banana integral which is an open chain
integral on the Calabi-Yau Ml−1. This will lead us to a novel Γ̂-class for the Fano ambient
space Fl of Ml−1 which has now been proven in [50]. Finally, this determines completely the
full l-loop generic-mass and equal-mass banana Feynman integral in the large momentum
regime in D = 2 dimensions.

In another step we extend these results to dimensional regularization in D = 2 − 2ε

dimensions. This extension is inspired by the previous geometrical methods and shows
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Chapter 1 Introduction

that they are not only applicable and useful in D = 2 dimensions but also with generic
ε-dependence. Using a Mellin-Barnes integral representation of the l-loop banana integral
one can derive a generalized hypergeometric series representation charing similar features
than the Calabi-Yau periods. For instance, we can construct a differential ideal describing
these hypergeometric series such that they can be evaluated in the whole parameter space.
Furthermore, we show that this series expansion extends the asymptotic of the banana
integral to dimensional regularization which was previously described by the Γ̂-class for
vanishing ε. In the limit ε→ 0 we exactly reproduce the Calabi-Yau results.

Hopefully, we have already made clear that the connection between Feynman integral
computations and Calabi-Yau manifolds, or more general algebraic objects such as motives,
has to be extended and deepened. With this thesis I hope that I can introduce interesting
mathematics and therefrom insights and techniques for the Feynman integral community.
This shall motivate to proceed the interplay between the Feynman integral community,
string theorists and pure mathematicians.

My PhD thesis is roughly assembled in two parts including several chapters. The first part
contains the chapters 2 - 4 and also section 8.2 and gives a review of the necessary material
to understand this thesis. Chapters 5 - 9 show how the banana integrals can be calculated.

In more detail, chapter 2 is an introduction to the theory of Feynman integrals. Important
concepts such as Feynman graphs, integration by parts, different integral representations
and maximal cuts are introduced and exemplified with the banana diagrams. Afterwards in
chapter 3 general differential equational techniques are introduced which will be necessary
for the computations in the second part of the thesis. In particular, the Frobenius method
at the MUM-point is explained. The mathematics of Calabi-Yau manifolds is introduced in
chapter 4 and also important implications for Feynman integrals such as bilinear relations
coming from Griffiths transversality are discussed. Then all these methods are used in
chapter 5 to compute the equal-mass banana graphs. Chapters 6 and 7 give two different
Calabi-Yau geometries which both can be used to solve the generic-mass banana graphs. The
explicit Calabi-Yau periods and operators are written down (see also appendices A and B).
Mirror symmetry and together with the Γ̂-class are explained in chapter 8. The last chapter 9
deals with the banana integrals in dimensional regularization.
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CHAPTER 2

Basics of Feynman Graph Computations

In this chapter we introduce some important concepts relevant in the field of Feynman
graph computations. We define a Feynman graph and give different but equivalent integral
representations of it. The start of our discussion is the traditional and probably best known
one, namely the momentum space representation. But also other representations, in particu-
lar parametric ones, are discussed. We do not cover all possible representations known in
the area of Feynman graph computations but focus on special ones which can be used to
deduce important features of Feynman integrals, for instance the existence of integration by
parts identities, dimensional shift relations, relations to geometric objects, etc.. Furthermore,
the concept of cuts and specially of maximal cuts will be explained. All these concepts are
demonstrated with the so-called family of banana diagrams.

2.1 Feynman diagrams in quantum field theory

Quantum field theory is a model for the description of fundamental particles and their
behavior. For example, it describes the collision or scattering behavior of fundamental
particles in terms of cross sections or scattering amplitudes. These quantities can often not
be computed analytically in closed form. To circumvent this issue a common method is to
use perturbation theory. In this approach one expands the desired expression in a certain
small coupling constant. This should at least give an approximate, maybe not a convergent,
series expansion. This expansion can be graphically visualized by so-called Feynman graphs
which can be translated by knowing the Feynman rules to precise mathematical integral
expressions. By this approach there are in principle three steps necessary: First, one has
to identify all Feynman graphs relevant for the actual amplitude to be computed. Then,
secondly, one has to translate each diagram into an integral which afterwards has to be
evaluated. And lastly, one has to combine the results from all Feynman integrals correctly
to obtain the desired scattering amplitude. All three steps are difficulty in themselves and
many techniques [51] and references in there have been established in the last years or even
decades. In my thesis we want to focus on the second step the computation of Feynman
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Chapter 2 Basics of Feynman Graph Computations

integrals. Therefore, we want to first explain how one can construct the Feynman integral
from the graph and secondly which techniques can be used to evaluate it.

Scine we want to focus in this thesis on the concepts and the mathematical structures
behind Feynman integrals we only concentrate on scalar integrals. Of course, realistic
theories as QED or QCD also have non-scalar integrals but there are powerful techniques [52–
54] known for example as tensor reduction or Dirac algebra manipulations which reduce a
non-scalar integral to a scalar one. By this process one typically exhibits additional factors in
the numerator and/or higher powers in the propagators as given by the original non-scalar
integral. This is one reason why we generalize later the textbook definition of a Feynman
integral.

We emphasize the textbooks [55–58] as standard references for an introduction to quantum
field theory and in particular to Feynman graphs and integrals.

2.2 Feynman graphs

So let us start with the definition of a Feynman graph G. We define a Feynman graph G to be
a connected and oriented graph given by the following data:

• We have a set of vertices VG = {vi}i=1,...,v of length v = |VG|.

• Another set EG = {ei}i=1,...,n of length n = |EG| contains all internal edges of the graph
G, where each edge is incident to exactly two vertices in VG. We do not restrict the
maximum number of edges which are incident to the same vertex. For every edge ei
we associate a momentum1 qi ∈ R

D, where the dimension D can be arbitrary first, and a
mass mi such that m2

i is a positive real number. Additionally, we denote for every edge
ei an integer νi.

• The N external edges eext
i are contained in the set Eext

G = {eext
i }i=1,...,N . These are only

incident to a single vertex. An external edge eext
i comes also along with a momentum

pi ∈ R
D.

• Moreover, we assume momentum conservation at each vertex, i.e.
∑ej incident to vi

qj + ∑eext
j incident to vi

pj = 0 for all vi ∈ VG.

• We assume that all external momenta pi ∈ Eext
G are flowing inwards. Then over all

momentum conservation implies that ∑N
i=1 pi = 0.

Note that if νi = 0 for some edge ei of the graph G then the graph G is equivalent to the
graph G̃ which is obtained from G after contraction of the edge ei.

Due to momentum conservation at all vertices not all internal momenta qi are independent.
The number of independent internal momenta is defined as the loop number l sometimes

1 This can also mean that we take momenta in Minkowski space R
(1,D−1) with signature (+,−, . . . ,−).

6



2.3 Momentum space representation

Figure 2.1: Three examples of Feynman graphs having different characteristics as the loop number,
number of external particles, vertices, propagators and planarity.

also-called the first Betti number of the graph G which is related to the number of edges and
vertices by

l = n− v + 1 . (2.1)

Another characteristic of a Feynman graph is if it can be drawn on a plane without
crossings of some edges. In this case one talks about planar Feynman graphs, otherwise they
are called non-planar graphs.

To illustrate these definitions we have drawn some Feynman graphs in figure 2.1. Here
the first graph is called a one-loop box diagram. This is, of course, a planar graph as well as
the two-loop sunset graph shown as the second graph in figure 2.1. The last Feynman graph
is a non-planar three-loop box diagram.

2.3 Momentum space representation

Each Feynman graph encodes a precise mathematical prescription of an integral. So given a
Feynman graph G we can associate to it a Feynman integral by standard Feynman rules in
momentum space

IG
ν (s; D) :=

∫ ( l

∏
j=1

dDk j

iπD/2

) (
n

∏
i=1

1
Dνi

i

)
, (2.2)

where the propagators are defined by Di = q2
i −m2

i + i0+ with the i0+-prescription2 meaning
that we have assigned a small negative imaginary part to the masses m2

i . Here label the k j for
j = 1, . . . , l the independent loop momenta and D denotes again the space-time dimension
and is at this point arbitrary. The variable s collects all kinematic information which we
specify later. We have generalized here the standard textbook definition of a Feynman
integral by allowing for arbitrary integer powers νi ∈ Z of the propagators.

Notice that the internal momenta qi are due to momentum conservation linear combina-
tions of the external momenta pj and the loop momenta km. We can write this as

q = κk + ρp , (2.3)

2 Later we see that the i0+-prescription tells us how we have to analytically continue the Feynman integral
appropriate.
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Chapter 2 Basics of Feynman Graph Computations

with k = (k1, . . . , kl) and p = (p1, . . . , pN). The entries of the matrices κ and ρ take only
values in {−1, 0, 1} depending whether the corresponding momentum contributes to the
internal momentum qi.

We consider the Feynman integral (2.2) as a function of the space-time dimension D, of
the masses m2

i and the external momenta pj. Due to Lorentz invariance the integral actually
depends only on the dot products between the independent external momenta3, i.e., one
can build (N−1)N

2 independent dot products of the form pj1 · pj2 . We call these parameters,
the masses and dot products, the scales of the Feynman integral, which we collect into the
vector s = (m2

1, . . . , m2
n, p1 · p1, p1 · p2, . . . , pN−1 · pN−1). The space spanned by the scales s is

called the kinematic space4 of the Feynman integral and sometimes one even considers the
complexified kinematic space by allowing complex values for the scales s.

Every Feynman integral has a well defined scaling dimension given by

dim(IG
ν ) =

lD
2
−

n

∑
i=1

νi , (2.4)

which states how a Feynman integral changes if the scales s are rescaled, i.e. pj → λ pj and
m2

i → λ2 m2
i . For the examples in figure 2.1 we have as scaling dimensions D/2− 4, D− 3

and 3D/2− 6 if we assume that all propagator powers νi are equal to one.
Due to the scaling behavior (2.4) we can actually reduce the number of parameters a

Feynman integral has by one simply by an appropriate rescaling of the parameters. Therefore,
the Feynman integral has in total only Nz = n + (N−1)N

2 − 1 parameters or moduli which we
represent by the vector z = (s1/sNz+1, . . . , sNz

/sNz+1) where as a possible choice we have
rescaled by the last scale sNz+1. In the following we assume that after such a rescaling the
Feynman integral (2.2) is only a function of these variables z and the dimension D.

2.3.1 Concept of dimensional regularization

It turns out that most of the Feynman integrals (2.2) are actually divergent, in particular
if they are evaluated in D = 4 dimensions. To deal with this problem and to give the
Feynman integral in D = 4 a meaningful result one has to regularize the integral. There are
many different techniques known, for example the introduction of a cut off parameter or
the Pauli-Villars regularization [56]. They have their own advantages and disadvantages as
the first ist not gauge invariant and the second not gauge covariant but on the other hand
quite simple in their definition and convenient in chiral problems, respectively. Here we
want to concentrate on another method namely dimensional regularization which has the big
advantage that it does not destroy the symmetries of the theory and can be applied generally

3 Due to overall energy-momentum conservation we have only N − 1 independent external momenta from
which we can compute independent dot products.

4 Sometimes we also call it the parameter space or moduli space in a geometric context.
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2.3 Momentum space representation

to the Feynman integrals we are considering in this thesis.
The idea of dimensional regularization is that one considers the dimension D to be an

arbitrary number, even a complex one. For generic complex values of D the Feynman
integral (2.2) is convergent and the result can be analytically continued to D = 4 dimensions.
Poles developed during the analytic continuation describe the divergencies. In this picture
the Feynman integral is considered to be a meromorphic function in the dimension D with
poles at most at integer values of D [59, 60]. Commonly, one writes the dimension as
D = D0 − 2ε with D0 a fixed non-negative integer and computes the Laurent expansion of
the Feynman integral in terms of the parameter ε

IG
ν (z; D) −→ IG

ν (z; D0 − 2ε) = ∑
k≥k0

IG
ν,k(z) εk . (2.5)

If k0 < 0 the Feynman integral has a highest pole of order k0 and is therefore divergent in D0
dimensions. The choice of D0 is in principle arbitrary but typically one takes four or two
dimensions, since in the latter Feynman integrals more often converge. Later we will see
why it is also important or useful to choose an even D0.

2.3.2 Integration by parts identities

One of the corner stones in Feynman integral computations is the existence und usage of
so-called integration by parts identities (or short IBP identities). Before we introduce these
relations and, in particular, show their significance we have to introduce some vocabulary.

Given a Feynman graph G we define its topology T as the set of Feynman graphs which
share the same propagators Di for i = 1, . . . , n but differ in their values of the exponents
νi. We are mostly interested in topologies of Feynman graphs which have an additional
property which describes that they are in some sense large enough or complete. For this
notion we first introduce the ring Rs of scalar products between loop momenta and also
external momenta involved in the Feynman graph G. Let again k = (k1, . . . , kl) be the
loop momenta and p = (p1, . . . , pN) be the external momenta were only N − 1 of them are
linearly independent due to overall energy-momentum conservation. We can put them into
the vector q = (k1, . . . , kl , p1, . . . , pN−1) of all independent momenta. Then we can form the
dot products

si,j = sj,i = qi · qj for i ≤ l and i ≤ j ≤ l + N − 1 , (2.6)

which are in total Ns = l(l+1)
2 + l(N − 1) different ones. Theses dot products do at least

involve one loop momentum and we collect them into the vector s = (si,j)i≤l, i≤j≤l+N−1. The
ringRs is now defined as the polynomial ring generated by these dot products

Rs = C[si,j, i ≤ l and i ≤ j ≤ l + N − 1] . (2.7)

9



Chapter 2 Basics of Feynman Graph Computations

There are certainly more dot products for l < i ≤ l + N − 1 which are purely consisting of
external momenta but these are part of the scales s or their rescaled versions z, see section
2.3, and are not considered here. On the other hand we have the topology T which gives us
a set of propagators Di for i = 1, . . . , n which are linear functions of the dot products

Di = Ai s+ bi , (2.8)

where bi are functions of the scales s. The entries of the matrices Ai take only values in
{0,±1,±2}. The propagators generate a subring in the ringRs

IT = 〈Di〉i=1,...,n ⊆ Rs , (2.9)

where the scales s are considered as parameters in these rings. We now say that the topology
T is complete if Rs = IT, i.e., we can express all dot products in terms of propagators.
Remark that obviously n = Ns for a complete topology. If the topology T is not complete
we can extend it by the inclusion of additional propagators Dn+j such that the whole set
{D1, . . . , Dn, Dn+1, . . . , DNs

} is linearly independent and therefore generates a complete
topology T̃. Different completions of the ideal T do in general produce different complete
topologies T̃ but they have a common intersection which is the only relevant part for the
graphs build from the topology T. Therefore, one can complete the topology T in different
ways but at the end this does not effect the set of IBP relations of T as long as the final set
of propagators is linearly independet. Also a different labeling of the propagators and the
internal loop momenta does not effect this. So we see that we can always extend a topology
T associated to a graph G to a complete topology T̃ such that T ⊆ T̃.

Every element in the topology T defines a point in a lattice Z
n by its integer exponents νi,

i = 1, . . . , n. In the topology T we want to group elements together which share the same
propagators but with possibly different exponents. These groups are called sectors. It turns
out that elements in the same sector share similar features as we will see later. To define a
sector we consider the Heaviside step function

Θ(x) =
{

1, if x > 0 ,
0, if x ≤ 0 ,

(2.10)

which we can let act on the lattice Z
n and then by extension also on the topology T by the

map ϑ : Z
n → {0, 1}n defined as

ϑ(ν) = (Θ(νi))1≤i≤n (2.11)

for a vector ν = (ν1, . . . , νn) build from the exponents of the propagators. Then we say that Iv
and Iv′ belong to the same sector if ϑ(ν) = ϑ(ν′). A sector can be labeled by a cornerpoint of a
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2.3 Momentum space representation

sector which is a vector νc = (νc
1, . . . , νc

n) with νc
i ∈ {0, 1} for all i = 1, . . . , n. Moreover, there

is a natural partial order on sectors given by ϑ(ν) ≤ ϑ(ν′) if and only if Θ(ν′i )−Θ(νi) ≥ 0
for all 1 ≤ i ≤ n.

Now there exist relations between the elements of the lattice Z
n or in other words between

different Feynman integrals in the topology T. These relations are known as IBP identities
and can be derived form the fact that in dimensional regularization total derivates of a
Feynman integral vanish

0 =
∫ dDk

iπD/2
∂

∂kµ

(
qµ

n

∏
i=1

1
Dνi

i

)
, (2.12)

where qµ is a linear combination of the external momenta p and the loop momentum kµ. For
simplicity we have here only written down the IBP relation for one-loop but, of course, for
the higher loop case the same is true for every loop integration and any total derivative.
Equation (2.12) can be proven using the Lorentz invariance of the Feynman integral, see [61–
63]. One strength of the IBP relations is that they can be written down easily. Moreover, they
give exact relations between Feynman integrals in dimensional regularization.

To see that the IBP identities give relations between different elements in a topology we
make the following small calculation. Let us consider the one-loop equal-mass banana
integral5 also-called bubble integral

IBub
ν1,ν2

=
∫ dk

iπD/2
1

Dν1
1

1
Dν2

2
=
∫ dk

iπD/2
1

(k2 −m2)ν1

1

((p− k)2 −m2)ν2
. (2.13)

The corresponding topology TBub is complete, since we have two propagators and two dot
products k2 and k · p. To see that the IBP identities give relations between different elements
in TBub we consider the sector (0, ν2) as an example. We use eq. (2.12) with qµ = pµ and find

pµ ∂

∂kµ
1

Dν2
2

= 2ν2
p2 − k · p

Dν2+1
2

= 2ν2

1
2 p2 + 1

2 ((p− k)2 −m2)− 1
2 (k

2 −m2)

Dν2+1
2

= ν2
p2 + D2 − D1

Dν2+1
2

,

(2.14)

such that we obtain after integrating (2.14) the following relation between different members
of the topology TBub

IBub
0,ν2

= IBub
−1,ν2+1 − p2 IBub

0,ν2+1 . (2.15)

The crucial step in this computation is the second identity in eq. (2.14) where we could
replace the two dot products p2 and k · p through the propagators D1 and D2 which is in

5 The corresponding Feynman graph looks like the middle diagram in figure 2.1 where the middle propagator
is absent.
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Chapter 2 Basics of Feynman Graph Computations

general only possible in a complete topology. Furthermore, we see that also propagators
in the numerator can show up. Although we have not done this small computation for the
generic element (ν1, ν2) in TBub we can still see that in (2.15) different elements in TBub are
related. Another IBP relation for the bubble integral can be found if one uses qµ = kµ in eq.
(2.12). Then both IBP relations generate all relations on the topology TBub.

So we see from the last calculation the importance to have a topology T which is complete
to guarantee that the IBP identities give back only elements again living in T. In general, we
see that the IBP identities yield recursive relations on the lattice Z

n.
It turns out that using all IBP identities, i.e., by solving the recursive relations, one can

reduce the infinite number of elements in the topology T to a finite set of elements [64–66].
These elements form a basis of Feynman integrals corresponding to the topology T and are
named master integrals. A priori, there does not exist a preferred choice of a set of master
integrals. Notice that through the master integrals a generic element in the topology T can
be written as a linear combination of the former where the coefficients are still polynomials
or rational functions in the scales s or their rescaled ones z and the dimension D.

The strategy is in principle the following: Given a Feynman graph G one first has to
check whether its topology T is complete or not. If not one has to extend with appropriate
additional propagators. Then one analysis the IBP identities and can solve the resulting
recursive relations. From this one can pick out a set of master integrals such that a generic
element in the topology T is related to the master integrals and can be computed from them.
The master integrals themselves can directly not be computed only from the IBP relations.
For example, one can compute them from differential equations where we give in the next
chapters different techniques how these can be obtained and solved. If the master integrals
together with the appropriate recursive relations are known and under control every element
in the topology T can be evaluated. This would be the ideal approach to compute a given
Feynman integral or even better its whole topology. But unfortunately, there is not a general
method known which does all these steps at least in a reasonable amount of time.

2.3.3 Master integrals for the banana graphs

In this thesis we will mostly consider the so-called banana Feynman graphs. This is a family
of l-loop Feynman graphs shown in figure 2.2. In the middle of figure 2.1 we have already

p2 p2

m1

m2

m3

ml+1

Figure 2.2: The l-loop banana graph with external momentum p and internal masses mi.
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2.3 Momentum space representation

seen the two-loop banana graph which is also known as the sunset graph. The one-loop
banana graph is the bubble graph we considered in the previous subsection. We consider
the banana integrals in dimensional regularization in D = 2− 2ε dimensions. They have at
l-loop l + 1 propagators which are given by

Dj = k2
j −m2

j , 1 ≤ j ≤ l ,

Dl+1 = (k1 + . . . + kl − p)2 −m2
l+1 .

(2.16)

As we have explained in the last sections these Feynman integrals depend on the scales
s = (p2, m2

1, . . . , m2
l+1) or after a suitable rescaling (see eq. (2.4)) on the ratios of scales

z = (m2
1/p2, . . . , m2

l+1/p2). In total there are 2l+1 − 1 master integrals which are dis-
tributed among l + 2 sectors. These sectors are divided in l + 1 sectors of the form ϑ(ν) =

(1, . . . , 1, 0, 1, . . . , 1) which give rise to a l-loop tadpole integral. For 1 ≤ i ≤ l + 1 we define:

Jl,i(z; ε) =
(−1)l+1

Γ(1 + lε)
(p2)lεεl IBan

1,...,1,0,1,...,1(x; 2− 2ε) = −Γ(1 + ε)l

Γ(1 + lε)

l+1

∏
j=1
j 6=i

z−ε
j . (2.17)

The sector (1, . . . , 1) adds 2l+1 − l − 2 master integrals, one for each k ∈ {0, 1}l+1 with
1 ≤ |k| ≤ l − 1 and |k| = ∑l+1

j=1 k j :

Jl,0(z; ε) =
(−1)l+1

Γ(1 + lε)
(p2)1+lε IBan

1,...,1(x; 2− 2ε)

Jl,k(z; ε) = (1 + 2ε) · · · (1 + |k|ε) ∂k
z Jl,0(z; ε) ,

(2.18)

with ∂k
z =: ∏l+1

i=1 ∂ki
zi

. We have explicitly checked for the first few loop orders that these
integrals form a basis of master integrals. Moreover, it matches with the results of ref. [67].
Note that the number M of master integrals may change discontinuously in the limit where
some scales vanish or become equal. In the equal-mass case, i.e., m2

i =: m2 for 1 ≤ i ≤ l + 1,
the symmetry implies that there are only l + 1 master integrals, which can be chosen as:

Jl,0(z; ε) =
(−1)l+1

Γ(1 + lε)
(m2)lεεl IBan

1,...,1,0(p2, m2; 2− 2ε) = −Γ(1 + ε)l

Γ(1 + lε)
,

Jl,1(z; ε) =
(−1)l+1

Γ(1 + lε)
(m2)1+lε IBan

1,...,1(p2, m2; 2− 2ε) ,

Jl,k(z; ε) = (1 + 2ε) · · · (1 + kε) ∂k−1
z Jl,1(z; ε) , for 2 ≤ k ≤ l ,

(2.19)

where we defined z := m2

p2 .

We note that the number of master integrals changes also discontinuously when ε takes
special values. In particular, in the generic-mass case, for ε = 0 we have only 2l+1 − ( l+2

b l+2
2 c

)
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Chapter 2 Basics of Feynman Graph Computations

independent master integrals instead of 2l+1− (l + 1)− 1 in the sector (1, . . . , 1). We note that
this corresponds to the even primitive vertical cohomology Hk,k

vert(W
CI
l−1) for k = 0, . . . , l − 1

of WCI
l−1 given in eq. (7.5), or the horizontal middle cohomology Hl−1

hor (MCI
l−1) of its mirror

MCI
l−1 (see section 4 for an introduction to Calabi-Yau periods and their corresponding

mathematics). Similar to eq. (2.18), in the latter picture the derivatives with respect to the zi
for i = 1, . . . , l + 1 generate the cohomology groups in Hl−1−k,k

hor (MCI
l−1), k = 0, . . . , l − 1, see

also eq. (4.15). However, keeping in mind the linear dependencies of these derivatives in the
cohomology of MCI

l−1, one finds that there are less independent elements and one finds as
many elements as given in eq. (7.15).

2.4 Symanzik representation and graph polynomials

Let us now introduce another representation of a Feynman graph, namely the so-called
Symanzik oder graph polynomial representation. A good review and introduction to this
concept are [55, 68]. The starting point is the introduction of Feynman parameters xi for
every propagator which can be done in the most generic situation with the following relation

n

∏
i=1

1
Dνi

i
=

Γ(ν)
∏n

i=1 Γ(νi)

∫ ∞

0
dnx

(
n

∏
i=1

xνi−1
i

)
δ

(
1−

n

∑
i=1

xi

)
1(

∑n
i=1 xiDi

)νi
. (2.20)

Now we can first perform the integration over the l D-dimensional loop momenta ki. This is a
tedious task and the details of this computation can be found for example in [55, 60]. The idea
behind this computation is that one uses the translational invariance of the loop integrations
to shift the loop momenta ki such that they complete the square in the denominator of (2.20).
Then the resulting integrals can be performed. The final expression can be written down
in a compact form if we introduce some notation. The Feynman parameters and the loop
momenta are related by

−
n

∑
i=1

xiDi = −kTMk + 2Qk + J , (2.21)

where the l × l matrix M has as entries polynomials in the Feynman parameters xi and the
vector Q is a polynomial in xi and the external momenta pi. From these terms we can build
the so-called graph or first and second Symanzik polynomials

U = det(M) and F = det(M)(J + QTM−1Q) . (2.22)

With U and F we can finally write the Symanzik integral representation of the Feynman
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2.4 Symanzik representation and graph polynomials

graph

IG
ν (s; D) = (−1)n Γ(ν− lD/2)

∏n
i=1 Γ(νi)

∫ ∞

0
dnx

(
n

∏
i=1

xνi−1
i

)
δ

(
1−

n

∑
i=1

xi

)
U ν−(l+1)D/2

F ν−lD/2 (2.23)

with ν = ∑l+1
i=1 νi.

Before we continue let us make some important remarks about the graph polynomials
in eq. (2.22). Some of the facts about the graph polynomials will become more clear from a
different definition we make in the next subsection as from the definition in eq. (2.22). First
of all, the graph polynomials U and F are both homogeneous polynomials in the Feynman
parameters xi. More precisely, U is of homogeneous degree l and depends only linearly
on each xi whereas F is of degree l + 1 and only linear in xi if all internal masses are set
to zero. Secondly, it is remarkable that the U polynomial has neither a dependence on the
internal masses nor the external momenta. Each monomial entering in U has actually +1 as
coefficient. All the kinematic dependence is packaged in the F polynomial. In other words,
if for a given Feynman integral the dependence of the F polynomial drops out in eq. (2.23)
then the Feynman integral has no non-trivial dependence on the kinematics. Moreover, it is
interesting that the dimension D where the Feynman integral is evaluated does only enter
via the exponents of the graph polynomials and the gamma factors but not in the definition
of U and F .

The F polynomial has in general positive and negative coefficients in front of each
monomial which are in general actually polynomials in the kinematics. A region in the
kinematic space where all dot products of external particles are negative or zero and the
internal masses are chosen positive or zero is called euclidean region. From eq. (2.23) it is
pretty obvious that the Feynman integral IG

ν is real along such a region in the kinematic space.
Outside of this region the +i0+ prescription is important to guarantee the convergence of
the Feynman integral. Notice that the euclidean region is generically not the same as the
physical region where dot products of external momenta are typically positive. Furthermore,
for non-planar diagrams with non-vanishing dot products and masses sometimes there does
even not exist a euclidean region and the integral is then generically complex.

Before we give an example let us make another comment about the Symanzik integral
representation. Observe that the integral (2.23) is invariant under rescaling of the coordinates,
i.e. (x1, . . . , xn) 7→ (λx1, . . . , λxn). Therefore, we can also write it down as an integral in
projective space

IG
ν (x; D) = (−1)n Γ(ν− lD/2)

∏n
i=1 Γ(νi)

∫
σn−1

(
n

∏
i=1

xνi−1
i

)
U ν−(l+1)D/2

F ν−lD/2 µn−1 , (2.24)

with the holomorphic (n− 1)-dimensional measure µn−1 of projective space P
n−1 defined
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by

µn−1 =
n

∑
k=1

(−1)k+1xk dx1 ∧ . . . ∧ d̂xk ∧ . . . ∧ dxn (2.25)

and the (n− 1)-real-dimensional integration domain σn−1 given by

σn−1 = {[x1 : . . . : xn] ∈ P
n−1|xi ∈ R≥0 for all 1 ≤ i ≤ n} . (2.26)

As usual, the hat indicates the omission of a differential. This representation (2.24) was the
starting point for us in the works [44, 45, 47] to relate Feynman integrals to geometric or
so-called period integrals as we will also show in this thesis later.

Before we make some examples we turn to the next subsection where we show another
method to compute the graph polynomials U and F .

2.4.1 Some graph theory

In the previous section we have seen that the graph polynomials U and F can be computed
from (2.22) together with the relation in (2.21). Here we want to present another possibility
namely to use techniques from graph theory to compute them. We follow quite closely the
excellent work of [68] on this topic.

So let G be as in the previous sections a graph with n edges, v vertices and N external
lines. They are related to the loop number l through eq. (2.1). We define a spanning tree T of
the graph G to be a sub-graph of G such that:

• T contains all vertices of G,

• the loop number of T is zero,

• T is connected.

This means that we can construct T out of G if we delete l edges. A graph G has in general
many different spanning trees.

By neglecting the last property in the definition of a spanning tree we get the definition of
a spanning forest, i.e., a spanning forest F of G is a sub-graph of the later such that

• F contains all vertices of G,

• the loop number of F is zero.

We see that F can have many components. If it has k connected components then it is called
a spanning k-forest. Obviously, a spanning tree is a spanning one-forest. F is constructed
from G if we delete l + k− 1 edges.

Some further notations are necessary. By T we denote the set of spanning trees of a given
graph G and by Tk the set of spanning k-forests of G. So obviously, we have T = T1. An
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2.4 Symanzik representation and graph polynomials

element in Tk is given by a collection of connected components (T1, . . . , Tk). Moreover, we
can associate to a component Ti the set of external momenta attached to it, which we denote
by PTi

.
With all these definitions we can now give the graph theoretic definition of the Symanzik

polynomials
U = ∑

T∈T
∏
ei /∈T

xi ,

F = F0 + U
n

∑
i=1

m2
i xi ,

F0 = ∑
(T1,T2)∈T2

(−s(T1, T2))

(
∏

ei /∈(T1,T2)

xi

) (2.27)

with the short hand notation for squares of external momenta

s(T1, T2) = −

 ∑
pi∈PT1

pi

 ·
 ∑

pj∈PT2

pj

 . (2.28)

We see that the sums in the definitions of U and F run over spanning trees and two-forests,
respectively. Therefore, we can easily see that the U polynomial is of homogeneous degree l
since we have to delete l edges to obtain a spanning forest. Similarly, the degree of F is l + 1
since we have to delete l + 1 edges. Since we can delete an edge only ones it is also clear that
U and F0 are linear in each Feynman parameter xi. Moreover, we easily see that U has only
positive monomials and F can have monomials with positiv and negative sign. This agrees
or even justifies the remarks made after eq. (2.23).

So now let us make an example to explain and visualize our definitions. We consider again
the l-loop banana family already introduced in subsection 2.3.3. These graphs are shown in
figure 2.2 and 2.3. We want to use the above introduced graph theory to compute the two

Figure 2.3: The left Feynman diagram is the l-loop banana graph. In the middle a generic spanning
tree for the l-loop banana graph is shown. On the right there is the unique spanning two-forest for
the banana graph drawn. The crossed edges are the deleted edges.

graph polynomials for the l-loop banana graph. To compute the U polynomial we have to
find all possible spanning forests, i.e., we have to delete l edges such that after deletion all
vertices of the original banana graph are connected without a loop. This is combinatorially
quite simple because we have to delete all edges up to one. There are l + 1 possibilities to do
that. A generic spanning forest is shown in the middle of figure 2.3 and the UBan

l polynomial

17



Chapter 2 Basics of Feynman Graph Computations

is the sum of the product of the deleted edge variables, i.e.

UBan
l =

l+1

∑
i=1

x1 · · · xi−1 x̂i xi+1 · · · xl+1 =

(
l+1

∑
i=1

1
xi

)
l+1

∏
i=1

xi , (2.29)

where the ˆ means omission of the corresponding variable. For the FBan
l polynomial we

have to find all spanning two-forests which is again not too hard because there is only one
possibility namely to cut all edges. This is shown on the right graph in figure 2.3. Moreover,
we call the external momenta of the banana graphs p and −p, respectively. So we find

FBan
l = −p2

l+1

∏
i=1

xi + U
Ban
l

l+1

∑
i=1

m2
i xi =

(
−p2 +

(
l+1

∑
i=1

1
xi

)(
l+1

∑
i=1

m2
i xi

))
l+1

∏
i=1

xi . (2.30)

As a small check we see that the degrees of the monomials and their signs in (2.29) and (2.30)
match with the expectations. So finally, we can write down the Symanzik representation
(2.24) of the l-loop banana integral

IBan
ν (p2, m2; D) = (−1)l+1 Γ(ν− lD/2)

∏l+1
i=1 Γ(νi)

∫
σl

(
l+1

∏
i=1

x1+νi
i

)
U ν−(l+1) D

2

F ν−l D
2

µl , (2.31)

where we dropped the sub– and superscripts of the graph polynomials for clarity. Later in
the thesis we will see that this representation of the banana graph is the starting point to
relate it to a geometry.

2.5 Schwinger representation

Another parametric integral representation of a Feynman graph G is given by the so-called
Schwinger representation which again uses the graph polynomials U and F from (2.22) or
(2.27). One can derive this representation by first noticing the so-called Schwinger trick

Dνi
i =

1

(q2
i −m2

i + i0+)νi
=

1
Γ(νi)

∫ ∞

0
dxi xνi−1

i e−xi(q
2
i−m2

i +i0+) , (2.32)

which expresses a propagator Di as an integral over the Schwinger parameter xi. Plugging
this relation into the general momentum space representation (2.2) and performing, similarly
as for the Symanzik representation, first the Gaussian integrals over the loop momenta ki
one obtains the Schwinger representation

IG
ν (s; D) = (−1)νe−i π

2 (ν−l D
2 )
∫ ∞

0
dnx

n

∏
i=1

xνi−1
i

Γ(νi)
U−D/2eiF/U (2.33)

18



2.5 Schwinger representation

with the same graph polynomials U ,F as in the Symanzik representation.
For the banana integral (2.31) one can check, for example with numerical integration, that

both integral representation agree.

2.5.1 Dimensional shift relations

From the Schwinger representation we can deduce a very interesting and important property
of Feynman integrals, namely that one can relate the result of a Feynman integral in D
dimensions to D± 2 dimensions, in particular in dimensional regularization. This is known
under the name dimensional shift relations [69]. To see this we first notice the following relation

U (∂m2
i
) ei ∑n

i=1 m2
i xi = il U (xi) ei ∑n

i=1 m2
i xi , (2.34)

where by U(∂m2
i
) we mean that we take the U polynomial and replace the Schwinger

parameter xi by derivatives with respect to m2
i . With this relation it is easy to see that the

following is true
U (∂m2

i
) IG

ν (s; D) = (−1)l IG
ν (s; D− 2) . (2.35)

We can interpret relation (2.35) as follows: Assume that we know the master integral
IG
ν (s; D) and the rest of the master integrals in D dimensions but we want to compute IG

ν

in D− 2 dimensions. First, we can perform the derivatives U (∂m2
i
) which in general will

not give back master integrals. But in a second step we can use the master integrals of
the graph G in D dimensions to express the result after differentiation purely in terms of
master integrals which were assumed to be known in D dimensions. Thus, we obtained a
relation between the master integrals in D dimensions and the desired integral IG

ν in D− 2
dimensions.

To be honest, this relation is first of all only valid in the generic mass case. But in the case
of equal or even vanishing masses one can first perform the derivate operation and later one
sets the masses equal or to zero. The reduction to the master integrals is in this limit often
simpler compared to the generic mass case.

Furthermore, notice that a similar relation as in eq. (2.35) exists and relates by the same
reasoning the result in D − 2 dimensions, which is now assumed to be known, to the D-
dimensional one. So generically, one can relate the master integrals in D dimensions to the
ones in D− 2 dimensions. This means that one can in some sense start the computation of a
given Feynman graph in a preferred dimension if it is an even integer away from the desired
dimension. Often this allows one to start in a dimension where the Feynman integral is
actually convergent and the divergency in the preferred dimension results only through the
dimensional shift relation (2.35). As a caveat one has to do this in dimensional regularization
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Chapter 2 Basics of Feynman Graph Computations

since it can happen that the number of master integrals in exactly D = 2 and D = 4 can be
different so one can not relate them completely. We will see later that this is the case for
the l-loop banana integral where in D = 2 dimensions one has muss less master integrals
compared to D = 4, see the remark at the end of subsection 2.3.3. But in dimensional
regularization the number of master integrals is the same and one can use the dimensional
shift relations for all master integrals.

We have so far seen two different types of linear relations between Feynman integrals.
First, we have seen IBP relations and now as a second type of linear relations the dimensional
shift relations. Actually, it is conjectured that these are the only linear relations between
Feynman integrals. For fixed dimension D the IBP relations alone even generate all linear
relations between Feynman integrals. To the author there is now proof of this conjecture
known but as it is with other important statements in the Feynman graph business it is
strongly believed that this is true and no counterexamples are known. Hence, other relations
coming for instance from Lorentz invariance are only linear combinations of the IBP and
dimensional shift relations.

2.6 Baikov representation

As a last representation we want to introduce the so-called Baikov representation. In the
Symanzik representation we had a quite simple form of the integration contour namely
a (n − 1)-dimensional simplex σn−1. In contrast, the integrand was quite complicated
involving a fraction of the graph polynomials U and F raised to some power depending
on the dimension D. In the Baikov representation we somehow change the perspective and
give the integrand a relatively simple form whereas the integration contour is quite involved.
This is done by changing the integration over the loop momenta to an integration over the
independent dot products of loop momenta which we collected in the vector s. As a very
good reference and foundation of our discussion about the Baikov representation we refer to
[63, 70], the lecture notes [71] and to the older works [72, 73].

So let us be more concrete. Again we have a graph G with propagators Di for i = 1, . . . , n
which gives rise to the complete topology T. The independent dot products of loop momenta
are collected in s as explained around eq. (2.6). Here it is once again important that we really
have a complete topology, i.e., we have the same number of propagators as independent
dot products n = Ns. If not one has to extend the set of propagators as described after
eq. (2.9). The dot products s shall now be used as the integration variables in the Baikov
representation6. To be more precise, at the end we do not directly want the si,j as integration
variables but instead the propagators Di. Remember that the Di are linear functions of the
dot products as can be seen from eq. (2.8). Therefore, we we have to solve equation (2.8)
for the si,j. This will only work if we have a complete topology T, as we have assumed, i.e.
n = Ns. In this case we can invert equation (2.8) and use the propagators Di for i = 1, . . . , n

6 Do not interchange them with the scales s which are also build from dot products but purely from external
momenta. They are the parameters of the final integrals not their integration variables.

20



2.6 Baikov representation

as integration variables which we then call again xi similarly as the integration variables in
the other Feynman integral representations.

The actual change of variables from k1, . . . , kl to the s parameters is as for the other
representations quite complicated and a lot of book keeping is needed. For details of
this computation we refer to [63]. The idea of the computation is that one splits the ith

loop integration over ki into a parallel and transverse part corresponding to the subspace
spanned by the momenta ki+1, . . . , kl , p1, . . . , pN−1. Then parts of this integral can explicitly
be performed. Finally, if the involved changes of variables are correctly performed one
arrives at

IG
ν (s; D) = C

∫ dx1 . . . dxn

xν1
1 . . . xνn

n
P(x1, . . . , xn)

D−l−N
2 , (2.36)

where the normalization C is given by

C =
π−l(l−1)/4−l N−1

2

∏l
k=1 Γ

(
d−l−N+k+1

2

)G(p1, . . . , pN−1)
(N−D)/2 J (2.37)

with J being the Jacobian going from the si,j variables to the propagators Di and the Baikov
polynomial P is defined by

P(x1, . . . , xn) = G(k1, . . . , kl , p1, . . . , pN−1)|si,j=sj,i=si,j(xk)
, (2.38)

meaning that we have expressed the dot products through the propagators xk by inverting eq.
(2.8). In these definitions we used the Gram determinant G which is given for m momenta
q1, . . . , qm by

G(q1, . . . , qm) = det(qi · qj) . (2.39)

So far we have not specified the integration region in the Baikov representation (2.36) of
a Feynman graph. This is in general very complicated and different ways of defining the
integration range are known in the literature, see [63, 72, 73]. One way is that the boundary
of the integration region in (2.36) is given by the vanishing locus of the Baikov polynomial.
This locus is for most cases not analytically computable and obey a too complicated structure
which is why the Baikov representation is not used for actual computations of the whole
Feynman integral. But this is not really a big problem since many other properties of the
Feynman integral, as we see in the following, can be derived from the Baikov representation
without knowledge of the exact integration region.

Before we state these properties we make a short remark. The changes of variables
involved in the derivation of the Baikov representation for multi-loop and multi-external
particle graphs are getting fast very difficult. Fortunately, there is a good mathematica
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code available with the paper [70] in which one has only to give a complete set of propagators
to receive the Baikov representation. In the example of the two-loop banana graph below we
used this program to obtain the Baikov representation without going through the tedious
changes of variables.

In the Baikov representation it is as in the standard momentum space representation or in
the Schwinger representation possible to derive the integration by parts relations and the
dimensional shift relations, respectively. For the first, one observes that the generators of the
IBP relations can be found from requiring that they annihilate the Baikov polynomial. For the
later, one notices that the Baikov representation in D + 2 can be related to the D-dimensional

one since P
(D+2)−l−N

2 = P
D−l−N

2 P and the second P factor then changes the exponents νi of the
xi integration variables. These can then be related to the master integrals in D dimensions
such that the (D + 2)-dimensional integral is expressed purely through D-dimensional
master integrals. Since we have discussed theses properties of Feynman integrals already in
the previous sections we do not focus here again on them but refer to [70, 71] for more details.
However, there is an additional feature we have not discussed so far. This is the so-called
maximal cut of a Feynman graph which can be defined and computed quite generically
in the Baikov representation. Since this is a very important and often not clearly defined
concept in the Feynman graph literature we dedicate to it the subsequent section.

So let us make an example. We consider again the banana graphs and focus on the
equal-mass two-loop sunset graph for simplicity (figure 2.1 middle graph). We can use
the mathematica code from [70] to generate the Baikov representation. Since the sunset
topology is not complete we have to extend it with two additional propagators. We made
the following choice of propagators

D1 = k2
1 −m2 D2 = k2

2 −m2 D3 = (p− k1 − k2)
2 −m2

D4 = (p− k1)
2 D5 = (p− k2)

2 (2.40)

such that we find for the Baikov polynomial

PBan
2 (x1, . . . , x5) = (m− p)p2(m + p)(3m2 + p2)− p2x2

1 + 2m2 p2x2 − 2p4x2 − p2x2
2

+ 2m2 p2x3 + 2p4x3 + 2p2x2x3 − p2x2
3 + 4m2 p2x4 + 4p4x4 + 4p2x2x4 − 4p2x3x4 − 4m2x2

4

− 4p2x2
4 − 4x2x2

4 + 4(m2 + p2 + x2 − x3 − 2x4)(p2 − x4)x5 − 4(m2 + p2 − 2x4)x2
5

+ 2x1

(
(m− p)p2(m + p) + p2x2 + p2x3 + 2

(
p2 − x5

)
(x4 + x5)

)
.

(2.41)

The Baikov polynomial PBan is of multi-degree three and in principle we could find closed
analytic expressions for its root and therefore also for the exact integration range. But
this would involve very complicated root expressions which are hard to handle and other
Feynman integral representations would be superior. As said this is a common problem
with the Baikov representation but we will see in the next section that we can still deduce an
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2.7 Maximal cuts of Feynman integrals

important quantity, the maximal cut, from the Baikov representation of the banana integral.

2.7 Maximal cuts of Feynman integrals

The concept of maximal cut integrals goes back till the analytic S-matrix theory. Cut integrals
were originally defined by replacing a certain subset of the propagators q2

i − m2
i for i =

1, . . . , nc ≤ n of a given Feynman integral by delta distributions δ(q2
i − m2

i ) or in more
physical words these propagators were set on-shell. Maximal then means that we do this
replacement for every propagator appearing in a given Feynman graph. This should first of
all simplify the computation of the integral but still give parts of the information about the
full Feynman integral, for example, of the kind of singularities and functions involved. In
particular, maximal cut integrals satisfy the homogeneous differential equation of the full
Feynman integral. The argument for this is the following: First of all, the delta distributions
should be considered as computing residues around the propagators q2

i −m2
i = 0 which is

slightly more general than the strict delta function prescription. So if we let the homogeneous
differential equation of the full Feynman integral let act on the differential form of the
maximal cut we first get also inhomogeneous contributions. These inhomogeneous terms
correspond to subtolopogies which have less propagators. If we know perform all residues
for the maximal cut each subtopology has at least a single residue which gets zero simply
because the corresponding propagator does not show up in the subtopology. Therefore, all
subtopologies vanish and the maximal cut satisfies the homogeneous differential equation
of the full integral. We refer to the references [74–77] for more details and also to a modern
view.

As already mentioned the strict definition via delta distributions is too restrictive or not
adequate for the desired purposes. As the basic property of a maximal cut one really wants
that it satisfies the homogeneous differential equation associated to the full integral. For
example, for the box diagram the delta functions do not have a support in the reals and
therefore the maximal cut would simply be vanishing. So to generalize the notion of a
maximal cut one attempt is that a maximal cut is defined in the momentum representation
as a cycle which encircles all the singularities of the propagators Di = q2

i − m2
i = 0 for

i = 1, . . . , n. There can in general be different such cycles but they have to be chosen
such that total derivatives rising up during the integration by parts process still vanish
on the maximal cut cycles. These total derivatives would correspond to subtopologies of
the Feynman graph. These subtopologies life in a subsector of the Feynman graph since
they have less propagators than the original one. Therefore, they would only enter the
differential equation of the full Feynman graph as inhomogeneities which should vanish
per definition for the maximal cuts. Thus, one has to guarantee that the cycles chosen for
the maximal cut are such that if one integrates the subtopologies over them they vanish.
For some examples [74] it was possible to construct these cycles with the correct properties
explicitly and compute their corresponding maximal cuts. Unfortunately, for an arbitrary
Feynman integral there is yet no general rigorous definition of a maximal cut known in the
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literature, at least not known to the author.
In this thesis we give two different definitions or concepts of a maximal cut integral which

we believe are equivalent but we have no proof for it so far. The first definition starts also
with the equations Di = 0 for i = 1, . . . , n. These equations which we assume are generic are
considered to be relations in the lD-dimensional space of loop momenta cutting out a lD− n
variety V. One can now look at the different lD− n dimensional cycles Γi of this variety V.
These are classified by the homology group HlD−n(V). A maximal cut is then an integral as
in eq. (2.2) but with integration domain Γi

MG,Γk
ν (s; D) :=

∫
Γk

(
l

∏
j=1

dDk j

iπD/2

) (
n

∏
i=1

1
Dνe

e

)
for k = 1, . . . , dim(HlD−n(V)) . (2.42)

The other definition starts with the Baikov polynomial P of a given graph G. Here the
definition of the variety V, which we think is equivalent and therefore we take the same
letters here, is given by the constraints P = 0 and the first n propagators set to zero, i.e.
xi = 0 for i = 1, . . . , n. For a graph G having Ns propagators, i.e., it gives directly rise to a
complete topology T, we would set all propagators xi to zero and the Baikov polynomial P
would be trivial. Then the resulting variety V would be trivial and the maximal cut is an
algebraic function. For other graphs G we obtain a (Ns − n− 1)-dimensional variety for
which we can again consider (Ns − n− 1)-dimensional cycles Γi

7. Then the complicated
domain of integration in the Baikov representation8 is replaced by the cycle Γi

MG,Γk
ν (x; D) :=

∫
Γk

dxn+1 . . . dxNs
P(0, . . . , 0, xn+1, . . . , xNs

)
d−l−N

2 . (2.43)

From both definitions it is absolutely not clear that they give rise to the same notion of a
maximal cut integral. Also it is not clear that within a definition of a maximal cut a change
in the choice of loop momenta does not effect the definition of the variety V and therefore
also of the cycles Γi. But to make our definitions at least plausible and meaningful we give
later the example of the banana graphs where we can explicitly compute the maximal cut
integrals. For l > 3 these maximal cuts where were not been computed and understood so
far.

Before that we want to point out some confusion or unclearness in the literature. In some
references the usage of delta functions to indicate the maximal cut is still common but often
with knowing that a generalized residue integral is meant. Moreover, sometimes people are
talking about the maximal cut integral while many Feynman integrals have more than a

7 Notice that although we have used the same notation for the cycles in both of our definitions of a maximal cut
they are not necessary the same. We still use here the same notation to show that at the end they should give
rise to the same definition of maximal cut integrals.

8 The maximal cut integrals have an ambiguity in their normalization. A priori there does not exist a preferred
normalization. We have chosen a normalization to simplify and shorten the formulas.
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single maximal cut. This, let us say special, maximal cut is defined as a (n− 1)-dimensional
torus integral in the Symanzik representation (2.24)

M̃G
ν (x; D) = (−1)n Γ(ν− lD/2)

∏n
i=1 Γ(νi)

∫
Tn−1

(
n

∏
i=1

xνi−1
i

)
U ν−(l+1)D/2

F ν−lD/2 µn−1 . (2.44)

To be more precise, this is in general only a single maximal cut and others can exist. The
only advantage of this particular maximal cut is that the cycle Tn−1 can be written down
for every Feynman integral. This integral, as we will see later for banana graphs, can be
evaluated with known techniques if the external momenta and internal masses are in the
right parameter range. It is not clear in general that this integral can easily be computed
but if, it can give us some information, in particular about the geometry of the maximal cut
integrals.

Now we can come back to the example of the sunset from the end of section 2.6. In (2.41)
we have already found the Baikov polynomial. For the maximal cuts of the sunset graph we
have to compute the residues around the first three propagators. This is quite simple and
one only has to set x1 = x2 = x3 = 0 and obtains

Pmax, Ban
3 (X, Y) :=PBan

2 (0, 0, 0, X, Y) = 3m4 p2 −
(

p2 − 2X
) (

p2 − 2Y
) (

p2 − 2(X + Y)
)

− 2m2
(

p4 − 2p2(X + Y) + 2
(

X2 + XY + Y2
))

,
(2.45)

where we have conveniently used X, Y as final integration variables. The polynomial
Pmax, Ban

3 (X, Y) = 0 defines an elliptic curve in P
2. This is the maximal cut geometry VBan

2
which in the case of an elliptic curve has two independent cycles since H1(V) = 2. Therefore,
we have two different maximal cut integrals which, for example, can be chosen as

MBan, Γa
1,1,1 =

∫
Γa

dXdY
1

Pmax, Ban
3 (X, Y)

MBan, Γa
1,1,1 =

∫
Γb

dXdY
1

Pmax, Ban
3 (X, Y)

(2.46)

with Γa, Γb a basis of H1(V
Ban
2 ), i.e. the A– and B-cycle of an elliptic curve.

Before we move on let us make some further comments about the elliptic curve defined
by Pmax, Ban

3 (X, Y) = 0 in the sunset case. From the Symanzik representation (2.29) - (2.31)
we can also associate an elliptic curve to the sunset graph. Here we simply take the second
graph polynomial FBan

2 as defining equation. In affine coordinates, i.e. x3 = 1, we get again
a cubic polynomial but different to the one in eq. (2.45). But as it turns out both lead to
the same elliptic curve up to isogeny. This means that one can compute the τ-parameter
which is given as the ratio of both maximal cut integrals and finds that the one coming from

25



Chapter 2 Basics of Feynman Graph Computations

the Symanzik representation is the squared of the Baikov one. We recommend also [24,
78] for more details about this observation and the later chapters of this thesis of how one
can compute the maximal cuts of the banana graphs and the corresponding τ-parameter or
Kähler paramters ti.

2.8 Discontinuities, Cut Feynman integrals and the Optical theorem

In the previous section we have introduced the concept of a maximal cut integral. Obviously,
one can also study less cut Feynman diagrams. The basic idea behind the cutting of Feynman
integrals is that a cut diagram is much easier to compute than the full Feynman integral
but still gives important information about the whole graph. The incorporation of a delta
function or better a residue computation reduces the necessary integration processes. So
cutting more and more up to the maximal cut should in principle simplify the computation.
Similar as for the maximal cut the rules for computing cut Feynman integrals are not
developed as good as for calculating the full Feynman integral. In particular, subtleties
concerning the precise definition of the integration range, i.e. the choice of cycle as for the
maximal cut, which depends also on the given integral representation have to be rigorously
defined which is as far as the author knows not done in the literature for generic loop order.

Another reason for computing cut diagrams is that by the optical theorem they can be
related to the discontinuities of the full Feynman integral. From a physics point of view
these discontinuities show up if particles can go on-shell. Let s be a variable of the Feynman
integral I, e.g. a Mandelstam invariant, then we define the discontinuity

Discs(I(s± i0)) = lim
δ→0
{I(s± iδ)− I(s∓ iδ)} . (2.47)

If there is no branch for a considered kinematic region or the integral I does not depend on
the variable s then of course the discontinuity is zero. On the other hand we can also define a
cut Feynman integral in the variable s. By this we consider the sum of all cut diagrams which
are obtained by cutting the original Feynman graph into two pieces such that the momentum
transfer q from one piece of the cut diagram to the other is given by the Mandelstam variable
s = q2. In our example of the banana family (see figure 2.3) we see that there is only a
single cut diagram for the cut in the momentum variable p2 which is additionally a maximal
cut. For this example we will see later in this thesis that a particular maximal cut of the
banana integral is the discontinuity of the whole integral as expected. In general all cut
diagrams corresponding to the variable s contribute to the discontinuity. How they have to
be add up precisely and how each individual cut integral has to be evaluated is in general
not rigorously described in the literature. A good introduction to theses concepts is given
in [79, 80] where in [80] all examples could be expressed through multiple polylogarithms.
How the definition and computation of cut integrals which contain elliptic or even more
complicated functions has to be extended is so far not known completely at least not for
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the author. For the banana integrals we will later generalize the definitions known in the
literature such that we can also describe or interpret non-maximal cut integrals. This will
clarify at least for the banana integrals the role of the discontinuity, the maximal cuts and
the non-maximal cuts.

Finally, let us make another short remark about the usefulness of cut diagrams. There are
attempts [80] which try to reconstruct the full Feynman integral from the knowledge of all cut
integrals using dispersion relations. For so-called single unitarity cuts dispersion relations
are known and the cut result can be uplifted to the whole integral. In the general situation of
multi unitarity cuts the knowledge or even the existence of the dispersion relations is not
given so far.
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CHAPTER 3

Differential Equational Approach to Feynman
Integrals

In most of the cases it is not possible to compute multi-loop Feynman integrals directly
by using known integral identities. So instead of trying to evaluate the Feynman integral
directly one possible and often applied method is to use differential equations. Every
Feynman integral satisfies differential equations and together with an appropriate boundary
condition one can reconstruct a given Feynman integral from the basis of solutions to
these differential equations. In this chapter we will first explain how one can derive these
differential equations and how they can be solved. There are in principle two different ways
of writing down the differential equations of a Feynman graph, a first-order linear system or
a single higher-order equation. For both ways we show solution strategies. These methods
are explained for the single- and multi-parameter case.

This chapter follows in parts my third publication [47] and in there the second section.

3.1 Differential equations for Feynman integrals

So let G be a Feynman graph we want to compute and T the corresponding topology.
Assume that we have already solved the IBP relations such that we have identified a certain
set of master integrals which we collect into the vector I(s; D) = (I1(s; D), . . . , IM(s; D))T,
where M denotes the number of master integrals. Moreover, we know from the IBP relations
how we can express a generic element in the topology T of G in terms of the master integrals
I(s; D).

The strategy now is similar as for the derivation of the IBP relations itself. By taking
a derivative with respect to an external momentum pi one obtains back elements in the
topology T but with shifted exponents compared to the original one. In a second step one
can use the IBP relations to relate these integrals back to the master integrals. By this one
has obtained a differential relation between the master integrals. The same can be repeated for
all external momenta pi and also for the internal masses m2

i to find a whole set of differential
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equations which now describes the whole master integrals.
As we have seen in the last chapter a Feynman integral does only depend via Lorentz

invariant scalar products on the external momenta pi. Moreover, one has to take care that
the external momenta fulfill momentum conservation which gives additional constraints.
One has even a rescaling degree of freedom such that the true parameters of the Feynman
integral are not the scales s directly but only the dimensionless ratios zi = si/s1 for i =
2, 3, . . . , Ns = #s, where as a choice we have rescaled by s1. So at the end the differential
equations should be expressed through the parameters z as we will do later.

There are many computer programs, for example FIRE, Reduce, LiteRed and others,
known in the literature which do exactly the steps described. They first solve the IBP
relations and identify a set of master integrals and then they compute derivatives with
respect to the parameters and relate them to the master integrals back. For low loop orders
and not to many scales these programs work quite well and produce the desired differential
equations. For high loop orders as for example the three-loop banana integral with generic
masses these programs do not terminate in a feasible amount of time which is why we will
explain later our methods of finding and solving differential equations for Feynman graphs,
in particular for the banana family.

3.2 Gauss-Manin type differential equations

Having so far explained how in principle one can compute differential equations for Feyn-
man integrals let us now, first, analyze these differential equations in general by presenting
some properties of them and, second, explain how we can solve them.

With the vector I(s; D) of master integrals we can write down the differential equations
from the previous section as a system of first-order linear differential equations [2, 3, 6, 81,
82]

dI(s; D) = A(s; D) I(s; D) , (3.1)

where the total differential is given by d = ∑Ns
k=1 dsk∂sk

and A(s; D) is a matrix of rational
one-forms. The entries are rational functions of s because by the IBP relations only rational
functions can appear. This set of first-order differential equations is also known as the
Gauss-Manin system for the family of Feynman integrals under consideration. Indeed, from a
geometrical point of view, we can interpret the M-dimensional vector space spanned by the
family of Feynman integrals as a rank M vector bundle over the base defined by the scales s.
On this vector bundle there exists a flat connection called the Gauss-Manin connection and the
matrix A(s; D) is the corresponding connection one-form. The flatness property can be seen
from the following argument. From the integrability condition d2 I = 0 we find

0 = d2 I = (dA)I −A∧ dI = (dA)I −A∧AI (3.2)
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3.2 Gauss-Manin type differential equations

by using eq. (3.1) for the last equality. This means that the curvature dA−A ∧A has to
vanish so the connection is flat.

The choice of a set of master integrals is, of course, not unique. One can perform a gauge
transformation to obtain another set of master integrals. So let M(s; D) be an invertible matrix.
Then a new set of master integrals is given by

I(s; D) = M(s; D)J(z; D) with

dJ(z; D) = Ã(z; D)J(z; D)
(3.3)

and the new connection one-form Ã(z; D) is related to the old one by

Ã(z; D) = M(s; D)−1 (A(s; D)M(s; D)− dM(s; D)) . (3.4)

Here we have also transformed to the dimensionless variables z. One tries to use the matrix
M(s; D) sucht that the new differential equation is as simple as possible. It was argued
in [83] that it is always possible to change basis to a so-called ε-regular basis, where the master
integrals Ji(z; D0 − 2ε) are finite and non-zero as ε→ 0 (see also ref. [84] for a closely related
concept). It is easy to see that in this case also the matrix Ã(z; D0 − 2ε) remains regular as
ε → 0, and we define A0(z) := limε→0 Ã(z; D0 − 2ε). In the following we assume A0(z) is
finite, though we may allow bases that are not necessarily ε-regular, i.e., they can possibly
start with O(ε) and can therefore vanish as ε→ 0.

There is one special form of the Gauss-Manin system which can be solved in general. This
form is known as the canonical form introduced by Henn [6]. One can bring the Gauss-Manin
system (3.1) into this form if one can find a matrix M(s; D) that is rational in D and algebraic
in s such that Ã(z; D0 − 2ε) = εA1(z). The the Gauss-Manin system can be solved by a
path-ordered exponential

J(z; D) = P exp
(

ε
∫ z

z0

A1(z
′)

)
J(z0; D) , (3.5)

where the integral is over a path from the point z0 to the point z. The big advantage of
this representation is that one can compute the path-ordered exponential by expanding
around ε = 0. The expansion can be truncated easily after a few terms. The coefficient εk

will involve iterated integrals over algebraic one-forms. The same conclusion holds if we
can find M(s; D) such that A0(z) = 0, although the system may not be strictly speaking in
canonical form.

If one cannot find such a transformation1 M(s; D) to bring the Gauss-Manin system to
canonical form we can still find a transformation which sorts the master integrals by the

1 However, canonical form may be reached by a transcendental rotation M(s; D), see [29–31, 35, 85].
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partial order on the sectors, i.e.

J(z; D) = (J1(z; D)T, . . . , Jr(z; D)T)T , (3.6)

such that the master integrals in Jk(z; D) are in the same sector and thus have the same
propagators. Such a rotation can always be found und then the connection one-form Ã(z; D)

is block-triangluar. In each sector the master integrals Jk(z; D) satisfy an inhomogeneous
differential equation of the form

dJk(z; D) = Bk(z; D) Jk(z; D) + Nk(z; D) for 1 ≤ k ≤ r . (3.7)

Here the inhomogeneity Nk(z; D) collects contributions form Feynman integrals from lower
sectors, which we assume are known. The maximal cuts of Jk(z; D) satisfy the homogeneous
equation of (3.7). They are obtained from residues around the propagators as explained in
section 2.7. If the basis J(z; D) is ε-regular, then so are Bk(z; D) and Nk(z; D). We define
Bk,0(z) := limε→0 Bk(z, D0 − 2ε).

Now, assume that we have found the general solution of the homogeneous equation for
ε = 0. If Jk(z; D) has Mk elements, this general solution can be conveniently cast in the form
of an (Mk ×Mk)-matrix Wk(z) which we call the Wronskian. The Wronskian is governed by
the homogeneous equation

dWk(z) = B0,k(z)Wk(z) . (3.8)

Since the columns of Wk(z) form a basis for the solution space, this matrix must have full
rank for generic values of z. Define

Lk(z; D) = Wk(z)
−1 Jk(z; D) (3.9)

such that we obtain the equation

dLk(z; D) = B̃k(z; D) Lk(z; D) + Ñk(z; D) (3.10)

with
B̃k(z; D) = Wk(z)

−1 (Bk(z; D)− Bk,0(z)
)

Wk(z) ,

Ñk(z; D) = W−1
k Nk(z; D) .

(3.11)

Notice that by construction we have limε→0 B̃k(Z; D0). Hence, we can solve the Gauss-Manin
system in eq. (3.10) order-by-order in ε. Since Lk and Nk must be regular for ε → 0, they
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3.3 Picard-Fuchs type differential equations

admit a Taylor expansion

Lk(z; D0 − 2ε) =
∞

∑
j=0

εjL(j)
k (z) and Ñk(z; D0 − 2ε) =

∞

∑
j=0

εjÑ(j)
k (z) . (3.12)

In particular, the leading order in ε leads to the equation

dL(0)
k (z) = Ñ(0)

k (z) , (3.13)

which can easily be solved by quadrature

L(0)
k (z) = L(0)

k (z0) +
∫ z

z0

Ñ(0)
k (z′) . (3.14)

We can iteratively solve eq. (3.10) order by order in ε by inserting this solution into its ε-
expansion. This strategy was successfully applied to several complicated Feynman integrals
for which no canonical form can be reached via an algebraic transformation matrix M(s; D),
see also [83, 86–92].

3.3 Picard-Fuchs type differential equations

Instead of solving the system of first-order differential equations for the vector I(s; D) of
master integrals, it is also possible to consider an inhomogeneous higher-order differential
equation satisfied by each master integral:

Lk,D Ik(s; D) = Rk(s; D) , (3.15)

where the inhomogeneity Rk(s; D) is related to master integrals from lower sectors, and the
differential operator Lk,D has the form

Lk,D = ∑
j1,...,jNs

≥0
Qk,j1 ...jNs

(s; D) ∂j1
s1

. . . ∂jm
sNs

, (3.16)

where Qk,j1 ...jNs
(s; D) are polynomials in s and D. The operator L := Lk,D0

will annihilate the

maximal cuts of Ik(s; D0). Geometrically, these higher-order equations are also known as
Picard-Fuchs differential equations. They describe the periods of algebraic varieties. This will
be explained further in the subsequent chapter 4. The higher-order differential equations can
for example be obtained by decoupling the first-order Gauss-Manin system. However, this
may not be the only way to obtain them, and indeed, in the case of the banana integrals, we
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Chapter 3 Differential Equational Approach to Feynman Integrals

will see that it is easier to derive the decoupled higher-order differential equations directly
without passing through the coupled first-order system.

In the remainder of this section we review some general strategies to solve homogeneous
linear higher-order differential equations (inhomogeneous equations can be brought into
homogeneous form by acting with a suitable differential operator). Moreover, we want
to introduce our notation and conventions. The material in this section is well known in
the literature (see, e.g., refs. [93–95]), but it will play an important role to understand the
properties of the banana integrals, as studied in refs. [44, 45]. We start by reviewing in some
detail the case of a single variable z (which corresponds to the case of Feynman integrals
depending on two scales), and briefly comment on the multi-variate generalization at the
end.

3.3.1 One-parameter Picard-Fuchs-type differential equations

Consider a differential equation of the form

L f (z) = 0 with L = qn(z)∂
n
z + qn−1(z)∂

n−1
z + . . . + q0(z) , qn(z) 6= 0 , (3.17)

where the qi(z) are polynomials, and we assume that the qi(z) do not have any common zero.
The leading coefficient qn(z) =: Disc(L) is called the discriminant. It will often be convenient
to write the differential operator in the equivalent form

L = q̃n(z)θ
n + q̃n−1(z)θ

n−1 + . . . + q̃0(z) with θ = θz := z ∂z . (3.18)

One can relate both forms simply by the relations

θn =
n

∑
i=1

s2(n, k)zk∂k
z or zn∂n

z =
n−1

∏
i=0

(θ − i) , (3.19)

with the Stirling numbers of second kind s2(n, k) = 1
k! ∑k

i=0(−1)i(k
i)(k− i)n. In particular,

we have qn(z) = znq̃n(x).
This equation has n independent solutions fi(z) for 1 ≤ i ≤ n. The solution space Sol(L)

is the C-vector space generated by the fi(z). Let pi(z) := qi(z)/qn(z), 0 ≤ i < n. We want to
understand the singularities of the solutions. We say that the differential equation (3.17) has
an ordinary point at z = z0 if the coefficient functions pi(z) are analytic in a neighbourhood
of z0 for all 0 ≤ i < n. A point z0 is called regular singular point if the (z− z0)

n−i pi(z) are
analytic in a neighbourhood of z0. An irregular singular point is neither an ordinary nor a
regular singular point. Note that all singular points z0 6= ∞ are zeroes of the discriminant,
Disc(L)|z=z0

= qn(z0) = 0. For the point at infinity z0 = ∞ one introduces the variable
t = 1/z and makes the analysis around t = 0. A differential equation without irregular
singular points is called a Fuchsian differential equation. Feynman integrals are expected to
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3.3 Picard-Fuchs type differential equations

have only regular singularities, and no irregular singularities can appear. We therefore do
not distinguish between regular and irregular singularities from now on.

Let us now briefly review how one can obtain a basis for the solution space using the
well-known Frobenius method. The goal will be to construct for every point z0 ∈ C n linearly
independent local solutions. Each local solution will be given in terms of power series
convergent up to the nearest singularity. These local solutions can be analytically continued
to multivalued global solutions over the whole parameter space. In the following we assume
without loss of generality z0 = 0 (if not, we perform a variable substitution z→ z′ = z− z0
or z′ = 1/z). Our starting point is the indicial equation

q̃n(0)α
n + q̃n−1(0)α

n−1 + . . . + q̃0(0)α = 0 , (3.20)

The solutions of eq. (3.20) are called the indicials or local exponents at z0 = 0.

We now discuss the structure of the solution space close to an ordinary or regular-singular
point z0. If z0 = 0 is an ordinary point, then there are n different solutions α1, . . . , αn to
eq. (3.20). The n-dimensional solution space is then spanned by:

zαi Σi,0(z) = zαi
∞

∑
k=0

ai,k zk , ai,0 6= 0 , 1 ≤ i ≤ n , (3.21)

where the Σi,0(z) are power series around z0 = 0 with non-vanishing radius of convergence
and normalized according to Σi,0(0) = 1. The coefficients ai,k can be computed from
recurrence relations obtained by applying the operator L on the ansatz in eq. (3.21).

If z0 = 0 is a regular-singular point, there are still n independent local solutions, but the
solution space contains also solutions other than those in eq. (3.21). Again one analyzes the
indicial equation (3.20), but now some solutions appear with multiplicities. Let us sort them
as (α1, . . . , α1, α2, . . . , α2, . . . , αm, . . . , αm). For all indicials α1, . . . , αr such that αi − αj /∈ Z for
pairwise distinct i, j, one gets r power series-type solutions as in eq. (3.21). The missing n− r
solutions contain powers of log(z) and are constructed by the following procedure. For an
indicial αi ∈ {α1, . . . , αr} appearing with multiplicity s, one has s− 1 different logarithmic
solutions containing up to s powers of log(z). They are given by

zαi
k

∑
j=0

1
(k− j)!

logk−j(z)Σi,j(z) for 0 ≤ k ≤ s− 1 , (3.22)

where again Σi,j(z) are power series convergent until the nearest singularity, normalized
such that Σi,j(z) = δj0 +O(z) for j ≥ 1. For indicials αi and αk such that αi − αk ∈ Z, one
has to check case by case whether one obtains a power series-type solution as in eq. (3.21) or
a logarithmic solution as in eq. (3.22).

For some Fuchsian differential equations there is a special singular point where all indicials
are equal. Close to such a point the solution space can be characterized by an increasing hier-
archical structure of logarithmic solutions, i.e., there exists a power series-type solution v0, a

35



Chapter 3 Differential Equational Approach to Feynman Integrals

single logarithmic solution v1, and so on, up to logn−1(z). Such a point is also-called a point
of maximal unipotent monodromy (MUM-point), and the associated basis v0(z), . . . , vn−1(z) is
called a Frobenius basis.

It may be convenient to collect the information about all singular points and their indicials
in the so-called Riemann P-symbol. Let {z1, . . . , zs} be the singular points of the n-th order
operator L, including possibly also the point at infinity. We denote the indicials for the
singular point zi ∈ {z1, . . . , zs} by {α(i)

1 , . . . , α(i)
n } (some indicials may be equal). The Riemann

P-symbol is then:

P


z1 z2 . . . zs

α
(1)
1 α

(2)
1 . . . α

(s)
1

...
...

. . .
...

α(1)
n α(2)

n . . . α(s)
n

 . (3.23)

The sum of all indicials fulfills the so-called Fuchsian relation:

s

∑
i=1

n

∑
j=1

α
(i)
j =

n(n− 1)(s− 2)
2

. (3.24)

3.3.2 Multi-parameter Picard-Fuchs operators

Let us conclude by making some brief comments about how the Frobenius method general-
izes to the multi-parameter case. In the multi-parameter case one has a set of differential
operators D = {L1, . . . ,Lr}, and we are looking for functions f (z) that are simultaneously
annihilated by all elements in D. The solution space Sol(D) is the C-linear span of all
common solutions, i.e.,

Sol(D) := { f (z)|Li f (z) = 0 for all operators Li ∈ D} . (3.25)

The set D actually generates a (left-)ideal of differential operators. Indeed, if Li ∈ D and
f ∈ Sol(D), we have L̃Li f (z) = 0, for every differential operator L̃.

It is possible to generalize the Frobenius method to the multi-variate case. Close to an
ordinary point (in the sense of section 3.3.1), one again finds a basis of local solutions in
terms of generalized power series-type solutions(

m

∏
i=1

zαi
i

)
∑

j1,...,jm≥0
aj1,...,jm zj1

1 · · · z
jm
m (3.26)

with indicials (α1, . . . , αm). At singular points also multi-variate logarithmic solutions can
show up, and we have(

m

∏
i=1

zαi
i

)
∑

j1,...,jm≥0
k1,...,km≥0

aj1,...,jm,k1,...,km
logj1(z1) · · · logjm(zm)z

k1
1 · · · z

km
m , (3.27)
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where j1 + . . . + jm depends on the multiplicity and the differences of the local indicials.
Similarly to the one-parameter case, the local basis can be analytically continued to a global
solution. In the multi-parameter case, however, this is a much harder problem, and may
require blow ups at certain singular points, see, e.g., refs. [96, 97]. As a side remark we note
that if the singularity is too ‘bad’ due to a crossing of many singular loci, choosing a good
set of coordinates (z1, . . . , zm) can be important. It may happen that with the wrong choice
of coordinates the Frobenius method does not produce all expected solutions. For a more
thorough discussion we refer again to refs. [96, 97].

There may be different ways to choose the set of differential operators, or more precisely,
how to choose a representation of the differential ideal generated byD. There can be different
sets of operators, e.g., D = {L1, . . . ,Ls} and D′ = {L′1, . . . ,L′s′}, which generate the same
ideal, and thus they have the same solution space, i.e.,

Sol(D) = Sol(D′) . (3.28)

Note that the sets D and D′ can have different lengths, s 6= s′, and also the degrees of the
operators can be different. Sometimes even a single but complicated operator is enough to
generate the complete ideal. A clever choice of how to represent the ideal can have an impact
on how complicated it is to find all the solutions. In particular, the higher-order differential
operators obtained by decoupling the Gauss-Manin-type system is only one possible way to
choose a set D that generates the ideal of differential operators; other, equivalent, choices
are possible, and may lead to simplifications. We will exploit this freedom in later sections
to obtain the differential equations satisfied by banana graphs at high loop orders.

Let us conclude with a comment. In the case of differential operators in one variable,
it is always possible to choose a single differential operator that generates the differential
ideal completely. More precisely, in appendix A of [47] it was shown that the ring of
linear differential operators in one variable with rational coefficients is a principle left-
ideal domain, i.e., every differential operator in this ideal is of the form LL0, for some
distinguished differential operator L0.
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CHAPTER 4

Mathematics of Calabi-Yau Spaces in the
Context of Feynman Integrals

In this chapter we will introduce the most important concepts of Calabi-Yau manifolds and
motives useful for computations of Feynman integrals. We will apply these methods on the
banana family in the subsequent chapters.

This chapter follows strongly parts of the third chapter of my third publication [47]. For
more details, in particular, about Calabi-Yau motives and their arithmetic– and number-
theoretic properties we suggest the full third chapter in [47]. We dedicate an additional
whole chapter to mirror symmetry and the Γ̂-conjecture which was one big achievement
presented in my second publication [45] and summarized also in [47]. This is why we do not
discuss these topics in this chapter.

4.1 Calabi-Yau varieties and their complex structure moduli spaces
Mcs

We consider n-dimensional Calabi-Yau manifolds Mn, often only called Calabi-Yau n-folds,
which are complex n-dimensional Kähler manifolds. They are equipped with a Kähler form ω

of Hodge-type (1, 1) that resides in the cohomology group H1,1(Mn, Z). The extra condition
of being Calabi-Yau implies the existence of a non-trivial holomorphic (n, 0)-form Ω spanning
Hn,0(Mn, C). In the case of a family of elliptic curves, which are one-dimensional Calabi-Yau
manifolds, the former is the volume form on the elliptic curve and the latter generalizes
the familiar holomorphic (1, 0)-form dx/y. The two forms Ω and ω are so characteristic
for the Calabi-Yau manifold that one often refers to the triple (Mn, Ω, ω) as a Calabi-Yau
manifold. They are related via the unique volume form ωn/n! = (−1)n(n−1)/2(i/2)nΩ ∧ Ω̄.
One can show that the existence of the form Ω (which is unique up to a phase) is equivalent
to the fact that the holonomy group is SU(n), from which it follows that the first Chern class
is trivial, c1(Mn) = 0. This in turn implies by the famous Theorem of Yau that a Ricci-flat
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Kähler metric gi ̄ exists on every Calabi-Yau manifold [98],1 i.e., Ri ̄(gi ̄) = 0. We want the
holonomy group to be the full SU(n) group, which implies that the cohomology groups
Hk,0(Mn, C) vanish unless k = 0 or k = n, in which case its dimension is one. This is due to
the fact that SU(n) acts canonically on these forms and the only invariant representations
available are the trivial and the totally antisymmetric one.

Another important property of Calabi-Yau manifolds Mn is that their complex structure
moduli spaceMcs has particularly nice and simple structures. The first-order deformations
of a complex manifold are given by (finitely) many linearly independent elements in the
cohomology group H1(Mn, TMn) [99]. For Calabi-Yau manifolds this space is isomorphic to
the space of harmonic (n− 1, 1)-forms

H1(Mn, TMn)
∼= Hn−1,1(Mn) , (4.1)

where the isomorphism is simply provided by contracting the elements in H1(Mn, TMn)

with Ω. First-order complex structure deformations can in general be globally obstructed by
higher-order obstructions, which generically depend on the position in the complex moduli
space. One can think of these obstructions as higher terms in a potential W that obstructs
the movement of a particle in a specific direction. Tian [100] and Todorov [101] have proven
the important fact that for Calabi-Yau varieties Mn the complex hn−1,1-dimensional moduli
spaceMcs of complex structure deformations is globally unobstructed, i.e., in the picture
with the potential, one has W(z) ≡ 0 onMcs.

4.1.1 Complex families of Calabi-Yau n-folds.

It is natural to consider complex families of Calabi-Yau n-foldsMn with projection π :Mn →
Mcs over the complex moduli spaceMcs. This means that at each point z0 ∈ Mcs we have
a fiber being a Calabi-Yau n-fold, i.e., π−1(z0) = Mz0

n with a fixed complex structure. In this
picture one understands easily thatMcs can have special so-called critical2 divisors. At these
codimension one loci inMcs, the manifold itself, i.e., the fiber of the family, becomes singular.
For example, at a point in the one-dimensional complex moduli space of an elliptic curve a
cycle S1 might shrink to a point, and the elliptic curve develops a nodal singularity. More
generally, a nodal singularity corresponds to a Sn shrinking. This is the most generic type of
singularity for n-dimensional Calabi-Yau manifolds. The corresponding critical divisor in
Mcs is called a conifold divisor. However, n-dimensional Calabi-Yau manifolds can acquire
a much greater variety of more interesting singularities, which are only classified up to
n = 2 by the celebrated ADE-type classification of canonical surface singularities. Families

1 Calabi constructed some of these metrics gi ̄ explicitly for non-compact Calabi-Yau manifolds. For elliptic
curves (n = 1), Ricci-flatness implies flatness of the metric, g11̄ = const. For higher-dimensional compact
Calabi-Yau manifolds starting with the complex K3 surfaces (n = 2) the Ricci-flat metric is not known
explicitly.

2 Sometimes they are called singular divisors. However, since a divisor D can itself be singular inMcs (see
below), we call them critical.
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of higher-dimensional Calabi-Yau manifolds have in general a higher-dimensional moduli
space, dimC(Mcs) = hn−1,1. The divisors at which the fiber Mn is singular will intersect in
higher codimensional sub-loci inMcs. This produces over the intersection locus an even
more singular Calabi-Yau n-fold fibre. Generically, these critical divisors are given by the
vanishing locus of algebraic equations, ∆i(z) = 0, i = 1, . . . , r. These loci can itself have
singularities and non-generic intersections. There are mathematical techniques suggesting
that within Calabi-Yau moduli spaces these singularities can be resolved by a finite sequence
of blow ups to divisors with normal crossings [102].

One of the most important properties of a family of complex manifolds is the monodromy
that its periods or its homology groups undergo if one encircles the critical divisors in a
normal crossing model of the moduli spaceMcs. The local monodromy reflects the nature
of the singularity of the fibres and the degeneration of the periods. The global monodromy
often restricts the class of functions that can be periods. For example, for elliptic families
these are weight-one modular forms for a congruence subgroup of SL(2, Z), determined by
the global monodromy of the family. We will discuss these concepts further in section 4.2.3.

4.2 Geometric structures in the complex moduli space and period
integrals

Next, we discuss some features of the structures appearing in the complex moduli space, in
particular period integrals. We focus on the concepts that we expect to be most relevant for
the application to Feynman integrals showing up in this thesis. For more general details we
refer as mentioned to [47]. We start with section 4.2.1 where we focus on the interior of the
moduli space, commonly called the bulk. We give the conceptual explanations, together with
many references, that underly the most useful tools developed over a long period of time in
mathematics, for example the concept of periods, the Gauss-Manin connection, the Picard-
Fuchs differential ideal and the Griffiths transversality. As we will show in section 4.2.2,
the latter leads straightforwardly to quadratic relations between maximal cuts of Feynman
integrals. In section 4.2.3 we review concepts relevant to describe the possible degenerations
of the geometry and the Feynman integrals at the critical divisors, i.e., at the boundary of
the moduli space.

The mathematical properties of periods on compact smooth Kähler manifolds are captured
by a so-called variation of a pure Hodge structure, characterized by its decreasing Hodge filtration
in eq. (4.9). In a series of spectacular papers [103–105], Deligne generalized that notion to the
variation of mixed Hodge structures to include open smooth, complete singular and general
varieties. In addition to the decreasing Hodge filtration, one defines in these situations a
second increasing filtration, the so-called monodromy weight filtration. For many applications
to Feynman integrals the generalization to open manifolds is essential, as their integration
domain is open. In our discussion, however, we concentrate on the case of complete singular
spaces, as our main point is the study of the generalization of elliptic periods to Calabi-Yau
periods, because they appear as the maximal cuts of (at least) the banana integrals. At the
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same time, our discussion is a prerequisite for the final step to describe the analytic structure
of the banana integrals in terms of the generalized Γ̂-class. A standard reference on mixed
Hodge structures is the book of Peters and Steenbrink [106]; some applications to mirror
symmetry are discussed in the book by Cox and Katz [107].

4.2.1 On the bulk ofMcs

Away from the critical divisors, i.e., in the bulk,Mcs is a nicely behaved globally-defined
Kähler manifold of dimension hn−1,1(Mn), where the real Kähler potential K(z, z̄) is given by

e−K(z,z̄) = in2
∫

Mn

Ω(z) ∧ Ω̄(z̄) = in2

Π†(z)Σ Π(z) . (4.2)

For the last equal sign in eq. (4.2) will be explained in the subsequent text, in particular, the
definition of the vector of period functions Π(z) := (Πi(z))1≤i≤bn

(with bk := dim Hk(Mn, Z)

the Betti numbers) and the intersection pairing Σ will follow. Note that there is a ‘gauge
freedom’ to rescale Ω(z) → e f (z)Ω(z) with f (z) a holomorphic function, under which the
Kähler potential K(z, z̄) undergoes a Kähler gauge transformation

K(z, z̄)→ K(z, z̄)− f (z)− f̄ (z̄) . (4.3)

Most geometrical structures on Calabi-Yau manifolds, e.g., the Kähler metric, are invariant
under the gauge transformation in eq. (4.3), but the Feynman integral is taken in a specific
Kähler gauge.3 In eq. (4.2) one understands the form Ω(z) to depend on the complex
structure parameters z such that the Ω(z0) is of type (n, 0) exactly for the complex structure
defined by z = z0. For each point z0, the fibre Mz0

n over it enjoys a Hodge decomposition, in
particular, of its middle dimensional cohomology:4

Hn(Mn, C) =
⊕

p+q=n
Hp,q(Mn) with Hp,q(Mn) = Hq,p(Mn) , (4.4)

and a canonical polarization, i.e., for ωp,q ∈ Hp,q(Mn) and ωr,s ∈ Hr,s(Mn) with p + q =

r + s = n, one has ∫
Mn

ωp,q ∧ωr,s = 0 unless p = s and q = r ,

ip−q
∫

Mn

ωp,q ∧ωp,q > 0 for ωp,q 6= 0 .
(4.5)

3 This means concretely that the holomophic (n, 0)-form could be modified by an e f (z) factor, but we make an
explicit choice in eq. (6.17).

4 We suppress the dependence on the point z0 to ease the notation.
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4.2 Geometric structures in the complex moduli space and period integrals

The periods of Mn are pairings between the middle homology and the middle cohomology.
They carry information about how the Hodge structure varies in the family. One fixes an
integral topological basis Γi, 1 ≤ i ≤ bn for the middle homology Hn(Mn, Z). The choice
of this basis is topological, and it does not depend on the complex structure. In particular,
the intersection pairing in this fixed topological basis Σij = Γi ∩ Γj is given by an integer
bn × bn-matrix.5 If n is odd, then it is skew-symmetric and can be chosen to be the standard

symplectic pairing Σ =

(
0 1

−1 0

)
. Instead, if n is even, Σ is symmetric, and general lattice

arguments restrict its further, see [47].
Concretely, the periods are the pairing Π : Hn(Mn, Z)× Hn(Mn, C) → C given by the

integrals

Πij =
∫

Γi

Γ̂j , (4.6)

with Γ̂j some basis of Hn(Mn, C). One can fix a basis γj ∈ Hn(Mn, C) with
∫

Γi
γj = δ

j
i

and
∫

Mn
γi ∧ γj = Σij = Σij. Then one expands Ω(z) ∈ Hn(Mn, C) in terms of the period

functions Πi(z) in this fixed cohomology basis:

Ω(z) = ∑
i

(∫
Γi

Ω(z)
)

γi = ∑
i

Πi(z)γ
i . (4.7)

As an example, for an elliptic curve E with modulus z one may choose a symplectic basis
S1

a, S1
b ∈ H1(E, Z) , with S1

a ∩ S1
b = −S1

b ∩ S1
a = 1 and S1

a ∩ S1
a = S1

b ∩ S1
b = 0 in integral

homology, and a dual symplectic basis α, β ∈ H1(E, Z) with
∫

E α ∧ β = −
∫

E β ∧ α = 1 and∫
E α ∧ α =

∫
E β ∧ β = 0 in integral cohomology. Then Πa(z) =

∫
S1

a
dx/y, Πb(z) =

∫
S1

b
dx/y

are the well-known elliptic integrals, and one can evaluate eq. (4.2) in terms of these periods.
The elliptic periods can in turn be evaluated in terms of complete elliptic integrals of the
first kind. For the two-loop banana and train-track integrals (also known as the sunrise and
the elliptic double-box integrals, respectively), the maximal cuts evaluate to the periods of
an elliptic curve, cf., e.g., refs. [7, 108–110]. Introducing the parameter τ = Πb(z)/Πa(z) on
the upper half-plane, and keeping in mind that Πa(z) (and Πb(z)) are holomorphic, we can
evaluate from eq. (4.2), with Gττ̄ = ∂τ ∂̄τ̄K = 1/(2Im(τ))2, the famous parabolic metric on
the upper half-plane (the Teichmüller space of E). Moreover, using τ as complex structure
variable one can express the periods of the elliptic curve as modular forms of weight one in
τ [111]. The Calabi-Yau periods generalize this relationship between periods and maximal
cuts to higher-loop banana and train-track integrals, cf., e.g., refs. [44–46, 112, 113].

5 Here ∩ denotes the standard intersection pairing on cycles.
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Chapter 4 Mathematics of Calabi-Yau Spaces in the Context of Feynman Integrals

The variation of the Hodge structure on the middle cohomology.

As pointed out, for a given complex structure specified by, let us say, z0 the form Ω(z0) is
of Hodge type (n, 0). At z0 one can, due to (4.4), choose a basis γ̃i

p,q of specific Hodge type
(p, q), p + q = n, and express them with constant coefficients in terms of the topologically
basis γi at z0, cf. eq. (4.7). If we vary the complex structure, say z0 → z0 + δz, then in
particular the n-form Ω(z0 + δz) gets admixtures of forms of other types compared to the
original complex structure at z0. The period functions Πi(z) describe this variation of Hodge
structure, cf. eq. (4.7). One could have studied analogs of eq. (4.7) for all forms of Hodge type
γ̃i

p,q but for Calabi-Yau manifolds the period functions Πi(z) over the unique holomorphic
form Ω(z0) play a special role, and many seemingly more general questions follow from
them.

Mathematically, one captures this variation of the Hodge decomposition of the middle
cohomology Hn(Mn, C) in eq. (4.4)6 in terms of the so-called Hodge filtration of weight m = n
with7

FpHm =
⊕
l≥p

Hl,m−l , (4.8)

such that
Hm = F0Hm ⊃ F1Hm ⊃ · · · ⊃ FmHm ⊃ Fm+1Hm = 0 . (4.9)

One can recover the Hodge decomposition in eq. (4.4) from the Hodge filtration F• via the
relations:

FpHm ⊕ Fm−p+1Hm = Hm and Hp,m−p = FpHm ∩ Fm−pHm . (4.10)

The Hodge cohomology groups come from what is more generally known as the associated
graded complex of the filtered complex

Grp
F Hm = FpHm/Fp+1Hm ∼= Hp,m−p . (4.11)

Unlike the Hp,q, the FpHm vary holomorphically with the complex structure and fit into
locally free constant sheaves F p overMcs, with the inclusions F p ⊂ F p−1. This defines a
decreasing varying Hodge filtration of the Hodge bundleH for the family

H = F 0 ⊃ F 1 ⊃ · · · ⊃ F n ⊃ F n+1 = 0 , (4.12)

6 We will often suppress the dependence of the cohomology groups on the manifold Mn, i.e., we simply write
Hm for Hm(Mn).

7 A good and more thorough treatment of the variation of the Hodge structure and the limiting mixed Hodge
structure can be found in ref. [106] and in relation with mirror symmetry in ref. [107].
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4.2 Geometric structures in the complex moduli space and period integrals

where we suppressed the dependence on Hm since we understand that we work in the
middle cohomology m = n. By construction F 0 = Rnπ∗C⊗OMcs

contains a local system,
namely the locally constant sheaf Rnπ∗C. This defines a flat connection called the Gauss-
Manin connection

∇ : F 0 7→ F 0 ⊗Ω1
Mcs

. (4.13)

The flat sections of the Gauss-Manin connection coincide with the local system Rnπ∗C,
i.e., for f a holomorphic function onMcs and s a flat section of Rnπ∗C, one defines ∇ by
∇(s⊗ f ) = s⊗ d f . As before, one chooses inH the locally constant subsheafHC = Rnπ∗C,
and within that an integer subsheafHZ = Rnπ∗Z. The quadruple (H,∇,HZ,F •) is called
a variation of pure Hodge structures. One of the most important features is the Griffiths
transversality of ∇:

∇F p ⊂ F p−1 ⊗Ω1
Mcs

. (4.14)

A modern language proof of eq. (4.14) can be found in ref. [114]. In every coordinate system
that corresponds to a local trivialization of H, the connection ∇ is the normal derivative,
and for Ω(z) ∈ F n one gets in particular [115]

∂k
zΩ(z) ∈ F n−|k| , (4.15)

with ∂k
z := ∂k1

z1
. . . ∂kr

zr
and |k| = ∑hn−1,1

i=1 ki. Let us note in passing that one can define a non-

holomorphic connection that allows one to kill the starting terms from F n−|k| in eq. (4.15).
For example, we have ∂zk

Ω(z) ∈ F n−1 = Hn,0 ⊕ Hn−1,1, but one checks from eqs. (4.2)
and (4.17) that the application of Dk = ∂zk

+ (∂zk
K) yields DkΩ(z) ∈ Hn−1,1. Writing down

higher iterations of this non-holomorphic connection with this property is more involved,
but possible, and is known as special Kähler geometry for n = 3, and generalizes to higher
dimensions, see, e.g., ref. [49].

Since eq. (4.15) is a cohomological inclusion into the finite-dimensional space H, there
must be, up to exact terms, linear relations between the derivatives. The coefficients of these
linear relations turn out to be rational functions in the complex moduli z. The relations
form a finitely-generated differential ideal called the Picard-Fuchs differential ideal. One can
find its generators Li, i = 1, . . . , r concretely, for example, by the Griffiths reduction method
pioneered in ref. [116] or for Calabi-Yau spaces embedded in toric varieties by the Gel′fand-
Kapranov-Zelevinskı̆ (GKZ) systems [117], see also refs. [48, 118]. A complete Picard-Fuchs
differential ideal is equivalent to the flat Gauss-Manin connection. In fact, it often allows
one to construct more easily the global flat sections (and other important structures, like the
n-points couplings [115], see section 4.2.2). Since exact terms vanish when integrated over
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Chapter 4 Mathematics of Calabi-Yau Spaces in the Context of Feynman Integrals

any closed cycle, the period functions are annihilated by the Li:

LiΠ∗(z) = 0 for i = 1, . . . , r . (4.16)

Here the index ∗ refers to period integrals in any basis. The differential ideal is complete if it
has bn independent solutions near any z0 ∈ Mcs.

4.2.2 Quadratic relations from Griffiths transversality

In this section we explore an important consequence of Calabi-Yau geometries for the
maximal cuts of Feynman integrals. More precisely, we will show that the Calabi-Yau
geometry leads to quadratic relations among the maximal cuts (in integer dimensions). We
limit the exposition here to the mathematical background, and we will describe the resulting
relations explicitly in the context of the equal-mass banana integrals in D = 2 dimensions in
section 5.2.

Our starting point is the Griffiths transversality in eq. (4.15). Combing eq. (4.15) with the
first polarization condition in eq. (4.5) and considerations of type, one gets as a generalization
of the observations of Bryant and Griffiths [115] for Calabi-Yau manifolds in any dimension
n:

Π(z)T
Σ ∂k

zΠ(z) =
∫

Mn

Ω ∧ ∂k
zΩ =

{
0 for 0 ≤ r < n
Ck(z) for |k| = n

, (4.17)

where the Ck(z) are rational functions in the complex structure parameters z. For the first
equality in eq. (4.17), we used eq. (4.7) and the properties of the integer basis described
earlier. The second equality follows very generally from eqs. (4.15) and (4.5). We point
out that even in an arbitrary local basis Π̃(z) corresponding to an (implicit) choice of a
basis of cycles Γ̃i ∈ Hn(Mn, C) (obtained, for example, as independent local solutions of the
Picard-Fuchs differential ideal), one can find a Σ̃ and write down the corresponding relations
Π̃(z)T

Σ̃ ∂k
zΠ̃(z) among the solutions very explicitly.

The quadratic relations in eq. (4.17) have important implications for Feynman integrals.
Since the vector of periods Π(z) describes the maximal cuts, the relations in eq. (4.17) can
equally be interpreted as a set of quadratic relations among the maximal cuts! Note that these
relations are not obvious from a pure physics point of view, e.g., the momentum-space
representation of the Feynman integrals. We will describe these relations among maximal
cuts explicitly for the equal-mass banana integrals in section 5.2. Here we only mention
that for the equal-mass banana graphs one finds l(l + 1)/2 quadratic relations for l − 1 = n
even and l(l − 1)/2 for n odd. The reason for this difference is that in the latter case the
intersection form Σ is antisymmetric, so symmetric quadratic relations are trivially fulfilled.
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4.2 Geometric structures in the complex moduli space and period integrals

The n-point (Yukawa) couplings and self-adjoint operators

In order to understand the quadratic relations in eq. (4.17) and to write them down ex-
plicitly, we need to know the functions Ck(z), sometimes referred to as the Yukawa n-point
couplings. They can be obtained from the rational coefficients in front of the derivatives in
the Picard-Fuchs differential operators, if and only if the latter generate the Picard-Fuchs
ideal completely, see ref. [49] for details.

If the Picard-Fuchs differential ideal is generated by a single differential operator (see [45]
for a proof) with normalization such that

L(n+1) = ∂n+1
z +

n

∑
i=0

ai(z) ∂i
z , (4.18)

then the Yukawa coupling fulfills the differential equation

∂zCn(z)
Cn(z)

=
2

n + 1
an(z) . (4.19)

One can define the adjoint differential operator [119]

L∗(n+1) =
n+1

∑
i=0

(−∂z)
i ai(z) . (4.20)

An operator is called essentially self-adjoint if

L∗(n+1)A(z) = (−1)n+1A(z)L(n+1) , (4.21)

where A(z) satisfies the differential relation ∂z A(z)
A(z) = 2

n+1 an(z). Note that A(z) is up to a
multiplicative constant given by the Yukawa coupling Cn(z). It was noticed in the search for
Calabi-Yau operators [120] that the self-adjointness of an abstractly constructed differential
operator with regular singularities implies that the solutions admit an even or odd inter-
section form for n even or odd, respectively, if A(z) is an algebraic function. This gives an
easy criterium to decide whether one-parameter specializations of Picard-Fuchs operators
can come from a Calabi-Yau motive8: This can only be the case if eqs. (4.21) and (4.17) are
fulfilled and in addition the global monodromy is in O(Σ, Z). In other words, imagine
that the maximal cut of a Feynman integral depends on a single dimensionless variable (if
there are more kinematic variables, we may consider a one-parameter slice in the rescaled
kinematic space), and that its maximal cut is annihilated by some Picard-Fuchs operator

8 By a motive we mean in this thesis a subspace of the cohomology group Hr(X) for 0 ≤ r ≤ 2n of a n-
dimensional variety X that is compatible with the Hodge decomposition and the action of the Galois group.
For a more precise definition we refer to [47] or to the mathematical literature [121, 122].
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L(n+1). The previous discussion gives an easy criterion to determine from the Picard-Fuchs
operator if the Feynman integral is associated with a Calabi-Yau motive. One can check
that this criterion is satisfied for all the Picard-Fuchs operators for the maximal cuts of the
banana integrals in D = 2 dimensions. On the other hand in dimensional regularization, i.e.
D = 2− 2ε, these Picard-Fuchs operators cease to be self-adjoint as can be seen in [47].

4.2.3 Monodromy and limiting mixed Hodge structure on the boundary ofMcs

Now we turn in this section to the structures related to the boundaries of the moduli
space that are related to the special monodromies of the periods when we analytically
continue them around the critical divisors which form the boundaries ofMcs. This will
give additional structures to the periods which also characterizes the upcoming period
functions a lot. Additionally, this will constrain the form of the l-loop banana Feynman
integral considerably such that at the end together with mirror symmetry it is possible to
determine these completely in D = 2 dimensions.

A normal crossing model for the boundaries ofMcs.

By going in a loop γ∆k
from a base-point z0 around a divisor given by ∆k(z) = 0, induces a

monodromy on the period integrals,9 and hence on the maximal cut Feynman integral iden-
tified with the latter. These monodromies are very characteristic for the type of singularity
that the fibre M{∆k=0} over {∆k(z) = 0} acquires. The branching behavior of the periods at
all crictical loci is crucial to understand the analytic structure of the Feynman integral in
all regions of its physical parameters. Mirror symmetry suggests that Calabi-Yau n-folds
have a maximal degenerate singular point (see subsection 3.3.1) in their complex moduli
space, called point of maximal unipotent monodromy. This point was identified with the large
momentum regime of the banana integrals in ref. [45] and used with the monodromy at
other singularities to clarify the analytic structure of these integrals in D = 2 dimensions
completely to all loop orders.

The boundary of the moduli spaceMcs refers to the critical divisors at which the Calabi-
Yau fibre becomes singular. As we mentioned in section 4.1, we assume to be able to
compactify and to resolve the moduli space to achieve a situation where all divisors are
normal crossing in the compactified moduli spaceMcs. We refer toMcs asMcs =Mcs \ D,
where D is a divisor with normal crossings, D =

⋃
k Dk.

Let us begin with explainining how we can find the boundary components ∆k(z) = 0. The
first method to find them is to identify the sub-loci ofMcs over which the fibre of the family
becomes singular. For example, for a Calabi-Yau manifold defined by P1 = . . . = Ps = 0, we
have to find values inMcs such that P1 = . . . = Ps = 0 and dP1 ∧ . . . ∧ dPs = 0 admits a
solution. We can also determine the critical loci from the Picard-Fuchs differential ideal J that
is generated by differential operators of order ordk, Lordk

k

(
z, ∂z

)
∈ C

[
z1, . . . , zm, ∂z1

, . . . , ∂zm

]
,

9 See section 4.2.1 for a detailed introduction to period integrals on Calabi-Yau varieties.
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k = 1, . . . , |J|. We can replace the derivatives ∂zi
7→ ξi, i = 1, . . . , m = dim(Mcs) by formal

variables ξ to get |J| elements in the polynomial ring in z and ξ. Then we consider the
smallest differential ideal that characterizes the periods and restrict to the leading pieces,
i.e., to the elements Sk(z, ξ) := Lordk

k (z, ξ)
∣∣∣
deg(ξ)=ordk

, which are homogeneous of order ordk

in the variables ξ. One refers to the Sk as the symbol of the differential operator Lordk
k . The

critical loci ∆̃j(z) = 0 are now given by the resultant of the Sk(z, ξ) = 0 in the z parameters,
i.e., resultant({Sk(z, ξ) = 0, ∀k}, z). The resultant characterizes all divisors ∆̃j(z) = 0 for
which the system {Sk(z, ξ) = 0, ∀k} has non-trivial solutions and it contains, in particular,
the critical divisors of the family. For the Picard-Fuchs ideal generated by a single ordinary
differential operator in one variable this amounts to find all zeroes of the coefficient of the
highest derivative for z ∈ P

1. This second method to find the boundary components is in
general superior as it detects also the apparent singularities, which are not present in our
examples of the banana family as can be checked since both methods lead to the same result.

Let us note that for moduli spaces Mcs of dimension greater than one, non-generic
intersections, e.g., tangencies of order m between the {∆̃k(z) = 0} or singularities of the
{∆̃k(z) = 0}, generally occur. In a procedure that can involve several steps of blow ups, they
can be resolved to achieve a geometry ofMcs with only normal crossing divisors. Adding
all the exceptional divisors of the blow ups, the critical locus D ⊂Mcs is described as the
set of irreducible normal crossing divisors {Dk}, k = 1, . . . , #D. Normal crossing means
that locally we can describe the intersections of components in D as w1 = 0, · · · , wp = 0,
p ≤ r in local coordinates wi, i = 1, . . . , r = dim(Mcs). In this case we say that the family
π : Mn → Mcs can be extended to a family π : Mn → Mcs. Concrete examples for the
blow up procedure in Calabi-Yau moduli spaces can be found in refs. [96, 97].

Local and global monodromies.

We now analyze the monodromies that the vectors of periods undergo, when we take z
around a loop γ∆i

around the critical divisor D given by ∆i(z) = 0. We illustrate this
first on the example of a one-parameter differential operator L of order l. In that case,
the compactification ofMcs is P

1, and the divisors are just isolated points, ∆i(z) = z− zi,
i = 1, . . . , #pcrit. We can find a basis for the solution space at z0 using the Frobenius method
we explained in subsection 3.3.1.

Let us discuss in some detail the case of the Legendre family ELeg of elliptic curves. This
family is defined by the cubic constraint

y2 = x(x− 1)(x− z) (4.22)

in P
2 in the patch where we have set the third coordinate w = 1. The corresponding

Picard-Fuchs equation is given by the operator

LLeg = z2(1− z)∂2
z + z(1− 2z)∂z − z/4 = θ2 − z(θ − 1/2)2 . (4.23)
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and the periods are solutions to LLeg = 0. We can apply the Frobenius method and solve the
indicial equation for each singular point z0 ∈ {0, 1, ∞}. The local exponents at all critical
points are summarized in the Riemann P-symbol:

PLeg


0 1 ∞
0 0 1

2
0 0 1

2

 . (4.24)

Since the local exponents at each singular point are equal to α, say, at each singular point
there is a power series solution ω(∆) = ∆α +O(∆α+1) (with ∆ = z− z0) and a logarithmic
solution ω̂(∆) = m

2πi ω(∆) log(∆) +O(∆α). In particular, if α ∈ Z, then the period vector
transforms for a positively oriented loop γ∆i

around ∆i(z) = 0 with a Tγ∆i
monodromy

matrix (
ω̂

ω

)
7→
(

1 m
0 1

)(
ω̂

ω

)
=: Tγ∆i

(
ω̂

ω

)
. (4.25)

In particular, let the period be ω(∆) =
∫

S1
ν

dx/y(z) and the dual period defined over the

dual cycle be ω̂(∆) =
∫

S1
ν̂

dx/y(z). Without loss of generality we can assume that S1
ν = S1

a

and S1
ν̂ = mS1

b in an integral symplectic basis (a, b) of H1(E, Z). Then m has to be an integer.
Generally, a monodromy matrix T in an integral basis has to be integral and has to respect
the intersection form, TT

Σ T = Σ. We denote the group of all integer matrices that respect
the intersection form Σ on the middle cohomology of rank bn(M) = r (or the rank of the
Calabi-Yau motive r) by

O(Σ, Z) =
{

T ∈ GL(r, Z)
∣∣ TT

ΣT = Σ
}

. (4.26)

The subgroup of O(Σ, Z) that is generated by the actual monodromies of the family is
denoted by ΓMn

. For example, in odd dimensions n, the intersection pairing Σ is the
standard symplectic pairing, and so ΓMn

has to be a subgroup of the group of integral
symplectic matrices Sp(bn, Z). In particular, for elliptic curves (n = 1), it is a subgroup of
SL(2, Z). Note that the Kähler potential in eq. (4.2) is single-valued under all monodromies.

A famous theorem of Landman [123] states that all possible monodromy matrices on an
algebraic n-dimensional manifold have to obey

(Tk − 1)n+1 = 0 . (4.27)

Here k ∈N0 implies that the indicial α has to be a rational number. A monodromy matrix
T can be unipotent of lower order m < n, i.e., (Tk − 1)m+1 = 0. It is clear that m is the size
of the biggest Jordan block in T. The maximal n that can appear is n = dim(M). It is not
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too hard to see that the unipotency of order m ≤ n implies that a period on a n-dimensional
manifold cannot degenerate worse than with a logarithmic singularity of type log(∆)n. This
has an important consequence for Feynman integrals. Assume that we have a maximal cut
of a Feynman integral in integer dimensions that degenerates in a dimensionless physical
parameter ∆ (or, more generally, some polynomial combination thereof) as log(∆)m. Then it
follows from Landman’s theorem that the geometry associated to this integral cannot be an
algebraic manifold of dimension less than m, or a Calabi-Yau motive of weight less than m!

In the example of the Legendre family ELeg one sees that for z0 ∈ {0, 1, ∞} the curve
is singular, i.e., P = 0 and dP = 0 have at least one common solution. This happens
at a point on the curve, say (x, y) = (x0, y0) (we assume that the singularity is not at
w = 0 and use again the corresponding local patch w = 1). Using local coordinates
(x, y) = (x0 + ε̃x, y0 + ε̃y) the expansion around this point is given after a linear change in
the deformation parameters up to quadratic order by P = ε2

x + ε2
y = 0. Allowing in addition

small perturbations around the critical point z = z0 + µ inMcs, the local singularity becomes

ε2
x + ε2

y = µ2 . (4.28)

This describes a node, where a S1-cycle ν shrinks with µ→ 0. The vanishing S1-cycle ν can
be literally seen by taking the real slice of the equation (4.28), which describes the S1 with
radius r2 = Re(µ)2. This can be generalized to higher dimensions and the period integral
over the Sn can be performed perturbatively, see eq. (3.3) in ref. [124]. The corresponding
critical locus inMcs is hence a conifold, while the singularity in the fibre is a node. The
corresponding monodromy follows purely topologically from the Picard-Lefshetz formula

W(Γ) = Γ + (−1)(n+1)(n+2)/2(Γ ∩ ν)ν , (4.29)

in any dimension n, see ref. [125] for a clarification regarding the signs in higher dimensions.
The formula says that the conifold monodromy action W on any cycle Γ ∈ Hn(M, Z), which
can be identified (up to finite multi-covering issues in the choice of parametrization z ofMcs)
with the monodromy on the periods, depends only on its intersection with the vanishing
cycle. Together with the self intersection of n spheres in projective n-folds [125],

Sn ∩ Sn =

{
0 for n odd ,

2(−1)
n
2 for n even ,

(4.30)

eqs. (4.29) and (4.30) give eq. (4.25) with S1
ν̂ ∩ S1

ν = −m. They also imply something com-
pletely general for the degenerations of Feynman integrals. If the maximal cut integral
corresponds to a period of a n-dimensional algebraic variety, then the most generic singular-
ity will be a square root cut if n is even, and a logarithmic cut if n is odd (cf. the fact that
(l = n + 1)-loop banana integrals have square roots cuts when l is odd and only logarithmic
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singularities when l is even). This follows simply because eqs. (4.29) and (4.30) imply in
odd dimensions an infinite-order operation, a so-called symplectic reflection, and in even
dimensions a standard Euclidean Z2-reflection.

A simple application of this structure is that the logarithmic/square root cut behavior of
the solutions to the Picard-Fuchs differential ideal at the conifold detects uniquely the period
over the geometric vanishing cycle. As an actual cycle the latter might contain information
about to the Feynman integral. Let us illustrate this for the banana integrals. In section 2.8
we have argued that as a consequence of the optical theorem, the imaginary part of the
banana integral is proportional to a specific maximal cut. The corresponding cycle must
be such that this maximal cut vanishes at the threshold z = 1/(l + 1)2, which is a conifold
divisor. There is a unique period that vanishes at this conifold divisor, and so this period
corresponds to the maximal cut that describes the imaginary part of the banana integral
above threshold [45]. Note that the cycle that describes the imaginary part is different from
the cycles Tl or ΓT which give rise to the maximal cut in eq. (2.44), and we will comment
further on this at the end of the this section.

The analysis of the solutions from the Picard-Fuchs differential ideal or eq. (4.29) yields
the local monodromies. To determine the global monodromy group ΓMn

in an integral
symplectic basis requires global knowledge of the periods. For the elliptic curve case this
can be obtained by analyzing the behavior of the explicit elliptic integrals near the critical
points. Let the period vector of the Legendre curve be (Πb, Πa) = (

∫
b Ω,

∫
a Ω), and let Πb

be the logarithmic period as in eq. (4.25). Then, up to SL(2, Z) conjugation, the monodromy
group ΓELeg

of the Legendre family is generated by the following two matrices (we use here
the notation Tγz−a

=: Ta with a ∈ {0, 1, ∞}):

T0 =

(
1 2
0 1

)
and T1 =

(
1 0
−2 1

)
. (4.31)

One can check that these matrices generate the congruence subgroup Γ(2) of index 6 in
SL(2, Z), and so the monodromy group of the Legendre family is ΓELeg

= Γ(2). One can also
check that the matrices in eq. (4.31) satisfy Landman’s theorem in eq. (4.27) with n = k = 1.
Due to the obvious relation by successively going around all the loops γ∆i

for i = 1, 2, 3 in

P
1 one has T0T1T∞ = 1, and therefore T∞ =

(
1 −2
2 −3

)
. We can conjugate the basis by

Πb → Πb, Πa → Πa + Πb to get Tc
∞ =

(
−1 2

0 −1

)
. Comparing with eq. (4.27), we see that

Tc
∞ (and thus also T∞) satisfies Landman’s theorem with k = 2 and n = 1. For the differential

equation associated to the banana graph one finds the corresponding monodromy group to
be ΓEban2

= Γ1(6), cf. refs. [20, 24, 78]. Finding the integral basis and the monodromy group
ΓMn

for families of higher-dimensional Calabi-Yau manifolds with higher-dimensional
moduli spaces can become a formidable task. We comment on some strategies to do this at
the very end of this section.
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It follows generally from eq. (4.27) that T can always be factored as T = T(s)T(u), where T(s)

is semi-simple and of finite order and T(u) is unipotent, i.e., (T(u) − 1)n+1 = 0. For example,
all singularities of the fibres in the Legendre family ELeg are nodes and a homologically

different cycle S1
Γ with Γ primitive in H1(E, Z) vanishes at each conifold point. The square

root cut at z = ∞ (k = 2), as well as the shifts by two at the other points, are due to the global
choice of the parameter z. Locally, one can get rid of the semi-simple piece by choosing
different local variables, e.g., for the Legendre family at z = ∞, one can choose v =

√
w

instead of w = 1/z. Only for elliptic curves the conifold points are also MUM-points.

The limiting mixed Hodge structure.

The general situation of more involved singularities in families with higher-dimensional
fibers is described by the limiting mixed Hodge structure. The first statement of Deligne [126]

is that the bundle F 0 onMcs has a canonical extension F 0 overMcs. As we have learned
from the theorem of Landman applied to the monodromy matrices, the forms the singulari-

ties of F 0 are only logarithmic. This is referred also as regular singularities (see section 3.3),
and allows one to define an extension of the Gauss-Manin connection to

∇ : F 0 → F 0 ⊗Ω1
Mcs

(log(D)) . (4.32)

Here Ω1
Mcs

(log(D)) are meromorphic one-forms on Mcs which can have the indicated
logarithmic coefficients. In local coordinates where the divisor D is defined by z1 = · · · =
zp = 0, Ω1

Mcs
(log(D)) is generated by dz1/z1, . . . , dzp/zp, zp+1, . . . , zr. This means that in

the first-order form of the Picard-Fuchs equation, the entries in the matrix Ã(z) in eq. (3.3)
for families of any dimension of fibre and base can have only first-order poles at the singular
loci! Locally, we can modelMcs as products of punctured discs (D∗)r andMcs as products
of full discs (D)r. We assume to have changed coordinates such that we got rid of the
semi-simple piece, and that going clockwise around a loop in the kth disc we generate the
unipotent piece T(u)

k of the monodromy. We define

Nk = − log(T(u)
k ) = − log(1 + [T(u)

k − 1]) =

max
∣∣J

T(u)k

∣∣
∑
l=1

(−1)l [T(u)
k − 1]l/l . (4.33)

It is obvious that the sum is bounded by the maximal size of a Jordan block in T(u)
k . Now

a section s of F 0 defined on (D∗)r transforms like s 7→ T(u)
k s, but one can construct a

monondromy invariant section s, i.e., one that is single-valued on (D∗)r, by

s = exp

(
− 1

2πi

r

∑
k=1

Nk log(zk)

)
s =: O(N)s , (4.34)
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and extend it canonically over Dr. This defines a natural extension of F 0 over Dr. The
so-called nilpotent orbit theorem of W. Schmid [127] guarantees further that the F p extend

in a canonical way to sub-bundles F p of F 0 that extend the fibration in eq. (4.9) to Dr. In
particular, at the origin z = 0 ∈ Dr, the F p define the limiting Hodge filtration Fp

lim. The Nk

fulfill a transversality Nk(Fp
lim) ⊂ Fp−1

lim like the Griffiths transversality in eq. (4.14). One can
show that the action of the extension of the Gauss-Manin connection ∇θk

(with θk = zk ∂zk
)

to Dr becomes proportional to the action of Nk on Fp
lim as well as on Grp

lim = Fp
lim/Fp+1

lim :

∇θk
= − 1

2πi
Nk . (4.35)

Also a section sZ ∈ HZ of the integer local system HZ on Dr can be extended as sZ =

O(N)sZ to Dr and defines an integral structure sZ(0) over z = 0. However, there is
a freedom in the choice of coordinates on the discs Dr. More precisely, the change of
coordinates z → z̃(z) induces a choice exp (2πiαk(dz̃/dz)k(0)Nk), referred to as nilpotent
orbit, in the choice of the integral structure sZ(0).

The second filtration of the limiting mixed Hodge structure at the boundary is the ascending
monodromy weight filtration:

W• : W0 ⊂W1 ⊂ · · · ⊂W2n−1 ⊂W2n = Hn(Mz, C) , (4.36)

with GrW
k = Wp/Wp−1. The spaces W• are defined by the action of the operator

(i.) N(Wk) ⊂ N(Wk−2) ,

(ii.) Nk : GrW
n+k

∼−→ GrW
n−k .

(4.37)

The first few and the last W• are explicitly given by

W0 = Im(Nn) ,
W1 = Im(Nn−1) ∩Ker(N) ,
W2 = Im(Nn−2) ∩Ker(N) + Im(Nn−1) ∩Ker(N2) ,

...
W2n−1 = Ker(Nn) .

(4.38)

A key point is that F•lim induces a Hodge structure of pure weight k on GrW
k [127], and the

triple (sZ(0), F•lim, W•) fits together to define a polarized limiting mixed Hodge structure. Its
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limiting Hodge diamond is given according to Lemma 1.2.8 of ref. [104] by (see also ref. [128])

Hp,q
lim = Fp

lim ∩Wp+q ∩ (F̄p
lim ∩Wp+q + ∑

j≥1
F̄q−j

lim ∩Wp+q−j−1) , (4.39)

with the property that Wl = ⊕p+q≤l H
p,q
lim, Fp

lim = ⊕r≥pHr,s
lim, Hp,q

lim projects isomorphically

to Hp,q(GrW
p+q) and Hp,q

lim = Hp,q
lim (mod Wp+q−2). From the Feynman integral point of

view, one would like to have an application of this structure like for the conifold, i.e., one
that relates the branching behavior of the periods to the singularity type in the fibre and
predicts something concrete about the integral. Consider a filtration of a complex K•, with
the standard definition d · d = 0 and the cohomology H•(K•) = ⊕p≥0Hp(K•), where

Hp(K•) = Zp

dKp−1 and Zp = ker{d : Kp → Kp+1} are cycles while dKp−1 = Bp ∈ Zp are

boundaries. One gets a spectral sequence Er = ⊕p,q≥0Ep,q
r with dr : Ep,q

r → Ep+1,q−r+1
r ,

dr · dr = 0 and H•(Er) = Er+1, and this spectral sequence typically converges, i.e., there is
an r0 so that Er = Er+1 = . . . =: Ep,q

∞ for all r ≥ r0. One says that Er degenerates at r0 and
abuts to H•(K•). The spectral sequence that comes from the filtration of K is given by

E0 = FpKp+q/Fp+1Kp+q,
Ep,q

1 = Hp+q(GrpK•),

Ep,q
r =

{c ∈ FpKp+q|dc ∈ Fp+rKp+q+1}
dFp−r+1Kp+q+1 + Fp+1Kp+q ,

...
Ep,q

∞ = Grp(Hp,q(K•)) .

(4.40)

A statement that relates logarithmic degenerations generally to the structure of the singularity
of the fibre M0 = π−1(0) in π : M 7→ D, or rather to its resolutions, is as follows: If by a
chain of blow ups the singularity of M0 can be made to a reduced divisor E with normal
crossing components Ei for i = 0, . . . , k, then the Hodge spectral sequence based on F•lim
degenerates at Flim

Epq
1 , while the monodromy weight spectral sequence degenerates at W E2, and

one has [106, 120]

W Ep,q
1 =

2p⊕
k=0

Hq+2(p−k)(E[2p− k], Q) , (4.41)

where we define E[k] by the disjoint union as E[k] = äI Ei0 ∩ Ei1 ∩ · · · ∩ Eik
, I = {i0 < i1 <

· · · < ik}. In particular, Ep,0
1 is identified with the complex 0 → H0(D[0]) → H0(D[1]) →

· · · → H0(D[2n]) → 0 and GrW
0 Hk

lim(M0) = Hk(ΓI), where ΓI is the dual intersection
complex of M0. What we said about the limiting mixed Hodge structures and monodromies
in this section does not require the Calabi-Yau property c1(M) = 0. Calabi-Yau manifolds,
however, have generically a MUM-point.

A point of maximal unipotent monodromy short MUM-point fulfills the following conditions:
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(i.) The point is defined by P =
⋂r

i=1 Di in an r-dimensional moduli spaceMcs and all
monodromies TγDi

corresponding to the loops around all normal crossing divisors Di

are unipotent.

(ii.) One has dim(W0) = dim(W1) = 1 and dim(W2) = 1 + r.

(iii.) For a basis g0, g1, . . . , gr of W2, with g0 a basis of W0 and Nk defined by eq. (4.33), the
r× r matrix mj

k, j, k = 1, . . . , r defined by Nkgj = mj
kg0 is invertible.

These criteria given in ref. [129] might be sufficient, but there are easier necessary conditions
in many cases. For example, for one-parameter Calabi-Yau three-folds with fourth-order
differential operators, it is sufficient that all four local exponents α are equal [120] at z0 to
make z0 a MUM-point. More generally, one can characterize the MUM-point by demanding
that at z0 the solutions of the leading order symbols of the complete set of generators of the
differential ideal should be completely degenerate with local exponent α, say, and that there
is one normalized holomorphic solution v0(z) = zα +O(z1+α) with this local exponent and
r independent single logarithmic solutions of the form vk =

1
2πi v0(z) log(zk) + Σk(z) [118],

where we have chosen Σk(z) = zα+1
k +O(zα+2). That replaces a.)-c.).

More generally, let Ip an index set of order |Ip| = p and define the Frobenius basis:

S(p),k(z) =
1

(2πi)p p! ∑
Ip

κ
i1,...,ip

(p),k v0(z) log(zi1) · · · log(zip
) +O(z1+α) , (4.42)

where O(z1+α) can also include logarithmic terms of total power up to p− 1. The isomor-
phism in eq. (4.37) (ii.) implies that there is a non-degenerate pairing over Q between the
solutions S(n−p),k and S(p),k for k = 1, . . . , |S(p)(z)| = |S(n−p)(z)| and p = 0, . . . , n. Here
|S(p)(z)| denotes the total number of solutions which are of leading order p in log(zi). The
statement is, roughly, that solutions of degree n− p (n = l − 1) in the logarithms log(zk)

are dual to solutions of degree p in the logarithms. In particular, the unique holomorphic
solution with p = 0, S(0),1 = v0(z), is dual to the unique solution which is of maximal degree
n in the logarithms. The paring of the other solutions in this Frobenius basis depends on the

details of the intersection numbers κ
i1,...,ip

(p),k . To define this pairing over Z and to get a basis of
solutions that correspond to period integrals over an integral basis of cycles in Hn(Mn, Z),
one has to analyze the pairing in eq. (8.6) and the map M−1 defined by the Γ̂-class, as we will
explain in section 8.2. The basis change which transforms the Frobenius basis in eq. (4.42)
to this integer basis is triangular with respect to the grading by the logarithmic degree, i.e.,
it adds to solutions of degree p in the logarithms only solutions of lower degree in the
logarithms, with coefficients that depend on the global topology of Mn and zeta values.

Note that the leading symbols of the differential ideal allow one to calculate the κ
i1,...,in
(0),0

up to a constant. In the case of mirror symmetry, these are the classical intersections
κ

i1,...,in
(0),0 = Di1 ∩ · · · ∩ Din

of the basis of divisors in the mirror Wn to Mn, and the pairing over
Q can be identified with the intersection pairing in its Chow ring. Much of the structure
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of the logarithmic solutions will survive if n = dim(Mn) is replaced with the size of the
Jordan block for a non-complete degeneration. For example, in ref. [120] it is argued that the
limiting mixed Hodge structure of one-parameter Calabi-Yau three-folds can be one of the
following types:

• The generic point F is characterized by generic local exponents.

• The conifold point C has local exponents (a, b, b, c) and a single 2× 2 Jordan block.

• The K point has local exponents (a, a, b, b) and two 2× 2 Jordan blocks.

• Finally, the MUM-point M has local exponents (a, a, a, a) and a 4× 4 Jordan block.

Here different characters stand for different rational numbers and the limiting mixed Hodge
diamond Hp,q

lim in eq. (4.39) for the different degenerations at F−, C−, K−, M− points are
depicted below:

F :

0
0 0

0 0 0
1 1 1 1

0 0 0
0 0

0

C :

0
0 0

0 1 0
1 0 0 1

0 1 0
0 0

0

K :

0
0 0

1 0 1
0 0 0 0

1 0 1
0 0

0

M :

1
0 0

0 1 0
0 0 0 0

0 1 0
0 0

1

.

(4.43)

For example, the previous considerations allow us to completely classify the singular points
of the Calabi-Yau three-fold associated to the four-loop banana integral. The complex
moduli space isM4-loop = P

1 \ {z = 0, 1/25, 1/9, 1, ∞}. The local exponents of the singular
points are summarized in the Riemann P-symbol in eq. (5.4). In particular, using eq. (4.43),
we immediately see that z = 0 is a M-point (MUM-point), z = 1/25, 1/9, 1 are C-points
(conifolds), and z = ∞ is a K-point.

The SL(2, C) orbit theorem [127] extends the standard SL(2, C) Lefshetz decomposition
on polarized Kähler structures [130] to the limiting Hodge structure. Using this one can
see for example that a 3× 3 Jordan block in the above decomposition is not possible. The
generic form of the limiting Hodge structures for multi-parameter families has been studied
in refs. [131, 132]. These works characterize the types of limiting mixed Hodge structures that
can occur in these cases, and one finds as a consequence which types of critical divisors can
intersect. A generic feature is that at the MUM-point the horizontal middle cohomology
with the degeneracies 1 = hn,0, hhor

n−1,1, . . . , hhor
1,n−1, h0,n = 1 is mapped to the vertical entries
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of the limiting mixed Hodge structure 1 = h0,0
lim, h1,1

lim, . . . , hn−1,n−1
lim , hn,n

lim = 1 as explained in
refs. [133, 134]. This has clearly bearings on the degenerations that can occur in maximal cut
Feynman integrals as illustrated at the end of section 8.2. Since the Kähler potential is given
in terms of the periods in eq. (4.2), the mixed Hodge structure in eq. (4.39), together with
eq. (4.42), determines its leading logarithmic degeneration. One can therefore determine
the leading behavior of the Weil-Peterssen metric and distinguish for example whether the
critical divisors are at finite or infinite distance from the bulk of the moduli space. This
leading behavior is enough to make statements about the swampland distance conjectures
for Calabi-Yau three-folds, see refs. [135–137] and [138] for a review. The exact metric has
been fixed using the Barnes integral representation and derivatives of the gamma function
at the MUM-point before [48, 118, 124, 139]. In ref. [137] the Weil-Peterssen metric was
determined exactly at the possible degenerations (4.43) of hypergeometric one-parameter
Calabi-Yau three-folds.

The Frobenius basis and the integer basis.

So far, even if all classical constants in the symmetric tensors κ(p),k have been determined, the
basis in eq. (4.42) for the periods is only what is called a Frobenius basis by mathematicians.
In fact, eq. (4.17) extends to the singular locus z0 and gives non-trivial relations between
the intersection numbers. A Frobenius basis does not correspond to a basis of cycles Γ for
Hn(Mn, Q), which is sometimes called a Betti basis, and, of course, not to a basis in Hn(Mn, Z),
which we call an integral basis. Whereas, a maximal cut integral does correspond to an integral
over an element in Hn(Mn, Z) and so the latter has to be found if one is interested in the
maximal cuts computed with an integral basis of cycles. A basis transformation from a
generic Frobenius basis to a rational or integral basis will involve interesting transcendental
numbers.

A pedestrian way to construct an integral basis proceeds by the following method: Resolve
the critical loci in the moduli space to divisors with normal crossings. After that step, we
construct near sufficiently many points zi and, in particular, around the intersections of
the critical divisors, local Frobenius bases of solutions Π̃zi

of the Picard-Fuchs operators.
Here ‘sufficient’ means that the finite regions of convergence of the Π̃zi

define sufficiently
many overlapping patches Ui to coverMcs. Once one has picked such a system of local
solutions Π̃zi

, i = 1, . . . , s, one finds a global basis by analytic continuation of the solutions
into all patches. Between neighboring patches Ui and Uj with Uj ∩Uj 6= ∅, one can construct
numerically connection matrices Cij such that Π̃zi

= Cij Π̃zj
between patches, eventually in

intermediate steps to achieve the necessary numerical precision. In this globally defined basis
one can construct the simultaneous action of all independent generators of the monodromy
group ΓMn

. The latter generate (not freely, but with the so-called Van Kampen relations) the
monodromies around all critical divisors. A basis change, involving transcendental entries,
makes all these generators simultaneously elements of O(Σ, Z) and leads up to conjugation
in O(Σ, Z) to the desired integer basis of solutions Π.

This complicated procedure can be much simplified if one knows certain integral geometric
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cycles a priori. For example, at the conifolds the vanishing Sn-spheres can be identified, and
the corresponding integrals over Ω can be perturbatively performed to low order in the
moduli to get the exact normalization. Most information concerning the integral basis can
be extracted at the MUM-point. As can be seen from eq. (6.17), the holomorphic solution
at the MUM-point is an integral over a n-torus T = Tn = Tl−1, which can be performed by
taking residues, cf. eq. (7.7). Consider now the unique cycle S, whose period degenerates at
the MUM-point with the highest power of the logarithms, i.e., with order logn. The latter
is dual to T, whose period has no logarithm, according to eq. (4.37) (ii), as explained after
eq. (4.42). Since both cycles are unique, they are dual with respect to the intersection form
Σ. The cycle S = Sn corresponds to the Sn-sphere that vanishes at the conifold locus that is
nearest to the MUM-point under consideration. This property of the dual periods is known
to hold quite generally and plays an important role in homological mirror symmetry, where
the shift monodromy by the maximal degenerating cycle of the MUM-point at the nearest
conifold is known as Seidel-Thomas twist [140].

It is a very remarkable fact found in ref. [45] that for the banana integral the maximal cut
integral that corresponds to the period over this cycle S yields the imaginary part of the
integral above threshold. We have thus been able to identify two distinguished cycles in
the Calabi-Yau: The sphere S provides the imaginary part above threshold. It corresponds
in loop momentum space to the maximal cut contour ΓIm, and so it has a direct physical
interpretation and relevance. The torus T considered in ref. [43], which corresponds in loop
momentum space to the maximal cut contour ΓT from eqs. (2.44) and (6.17), does not seem
to have any known physical interpretation. Its importance, however, lies in the fact that it
furnishes the unique holomorphic period at the MUM-point. This integral allows one to
reconstruct the generators of the Picard-Fuchs differential ideal and plays an important role
in understanding this ideal (cf. ref. [45], as well as chapters 6 and 7). Amazingly, these two
distinguished cycles are exactly the dual cycles that play a crucial role in homological mirror
symmetry, as discussed above.

Finally, let us mention the important observation by Deligne that the mixed Hodge
structure becomes a mixed Hodge-Tate structure at the MUM-point [141]. In this situation
one expects that the Γ̂-class governs the integral structure and the transcendental weight of the
periods. As it turns out, this Γ̂-class (and the closely related Mellin-Barnes representation of
the banana integrals) are the most effective analytic tools to find the integral basis and to
perform some of its analytic continuations, respectively. We explain in section 8.2 that the
Γ̂-class can also be extended to include the inhomogeneous solutions, i.e., the full Feynman
integral. In section 9.1 we show that the Mellin-Barnes representation of the banana integral
allows one to prove this Γ̂-conjecture if one considers the right contours.
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CHAPTER 5

The Equal-Mass Banana Graphs

In this chapter we want to collect all information about the equal-mass banana graphs such
that we can compute them to arbitrary loop order in D = 2 dimensions. For this we use the
techniques and insights of the last chapters. We focus here on the results we made in [45, 47].

5.1 Frobenius method for equal-mass banana graphs

We want to compute the equal-mass banana graphs in D = 2 dimensions using differential
equations. It is known that the maximal cuts Jl,0(z; 0) (cf. eq (2.19)) of the banana family
are annihilated by a differential operator Ll of order l. For low loop order, the explicit
form of Ll (and of its solutions) can be found in refs. [20, 33, 86, 87, 108, 109, 112, 113, 142].
One can construct the operator Ll by a procedure developed in [8, 45]. Furthermore, the
operator Ll is the Picard-Fuchs operator associated to a family of Calabi-Yau (l − 1)-folds
Ml−1 (chapter 4) parametrized by z = m2/p2 ∈ R.1

Let us collect some properties of the operators Ll . The singularities of Ll are located at the
points

z ∈ {0, ∞} ∪
d l−1

2 e⋃
j=0

{
1

(l + 1− 2j)2

}
, (5.1)

and they form the discriminant of the operator by

Disc(Ll) = (−z)l ∏
k∈∆(l)

(1− kz) , (5.2)

1 We could also consider complex values z, but for physics applications it is sufficient to consider z real.
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with the short hand notation

∆(l) :=
d l−1

2 e⋃
j=0

{
(l + 1− 2j)2

}
. (5.3)

The discriminant multiplies the highest θ-derivatives times a factor zl . We can collect the
singularity structure of the operators Ll in the Riemann P-symbol, see subsection 3.3.1.
At the point z = 0 we have for each loop order l a MUM-point with indicials αi = 1
for i = 1, . . . , l. At the closest singularity, i.e. p2/m2 = (l + 1)2, one has for even l a
single logarithmic solution and for l odd a square root solution, i.e. αi ∈ N/2 for a single
i ∈ {1, . . . , l}. In total the Riemann P-symbol is given for even l by

Peven



0 1
(l+1)2

1
(l−1)2 · · · 1 ∞

1 0 0 · · · 0 0
1 1 1 · · · 1 0
1 2 2 · · · 2 1

1
...

...
...

...
...

...
1 l − 2 l − 2 · · · l − 2 l

2 − 1
1 l

2 − 1 l
2 − 1 · · · l

2 − 1 l
2 − 1


(5.4)

and for odd l by

Podd



0 1
(l+1)2

1
(l−1)2 · · · 1

4 ∞

1 0 0 · · · 0 0
1 1 1 · · · 1 0
1 2 2 · · · 2 1

1
...

...
...

...
...

...
l−3

2
1 l − 2 l − 2 · · · l − 2 l−3

2
1 l

2 − 1 l
2 − 1 · · · l

2 − 1 l−3
4



. (5.5)

Around the MUM-point we can construct with the Frobenius method (subsection 3.3.1) a
basis of solutions Πl(z) :=

(
vl,0(z), . . . , vl,l−1(z)

)T given by

vl,k(z) =
k

∑
j=0

1
(k− j)!

logk−j(z)Σl,j(z) , (5.6)

62



5.2 Bilinear relations for equal-mass banana graphs

where the Σl,k(z) are holomorphic in a neighbourhood around the MUM-point z = 0,
normalized such that Σl,k(z) = δk0 z +O(z2). For k = 0 we have explicitly

vl,0(z) = Σl,0(z) = ∑
k1,...,kl+1≥0

(
|k|

k1,...,kl+1

)2

z|k|+1 , (5.7)

with |k| = k1 + . . . + kl+1 and the multinomial coefficient ( k
k1,...,kl+1

) = k!
k1!···kl+1! . To extend

this basis to the whole parameter space one has to perform a careful analytic continuation
which was explained and demonstrated through a PariGP program in [45].

Using the basis of solutions Πl(z) we can get the maximal cuts of Jl,1(z; 0) (cf. eq (2.19)) by

JΓ
l,1(z) = αΓ ·Πl(z) =

l

∑
j=1

αΓ
j vl,j−1(z) for αΓ ∈ C

l . (5.8)

These maximal cuts form a basis of the Calabi-Yau periods of Ml−1. Notice that the maximal
cut contours are defined in integral homology, they are ‘genuine geometric objects’, whereas
the Frobenius basis elements vl,j(z) are not, they are not obtained by integrating over a cycle
in integer homology.

5.2 Bilinear relations for equal-mass banana graphs

To find the bilinear relations between the periods vl,j(z) as described in subsection 4.2.2 we
write the Picard-Fuchs operator in the terms of usual derivatives

Ll =
l

∑
k=0

Bl,k(z)∂
k
z , (5.9)

where the Bl,k(z) are polynomials. We can choose for the Wronskian

Wl(z) :=


vl,0(z) vl,1(z) . . . vl,l−1(z)

∂zvl,0(z) ∂zvl,1(z) . . . ∂zvl,l−1(z)
...

...
...

∂l−1
z vl,0(z) ∂l−1

z vl,1(z) . . . ∂l−1
z vl,l−1(z)

 , (5.10)

which is related to the master integrals by JΓ
l (z) = Wl(z)α

Γ. A small calculation shows [47]
that the determinant of the Wronskian Wl(z) yields

det Wl(z) =
(
(−1)lz−3 Disc(Ll)

)−l/2
=

zl−3 ∏
k∈∆(l)

(1− kz)

−l/2

, (5.11)
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Chapter 5 The Equal-Mass Banana Graphs

where Disc(Ll) is given in eq. (5.2). In section 3.2 we have seen the important role of the
Wronskian Wl(z) for solving the Gauss-Manin system. For this one has to compute its
inverse. Now we will see that the structure of the inverse Wronskian will be reduced due to
the bilinear relations as a result from Griffiths transversality.

Recall from subsection 4.2.1 that there is a bilinear pairing – the intersection pairing Σ –
on the entries of Wl(z). If we work with the Frobenius basis Πl(z), Griffiths transversality
in eq. (4.17) takes the form

Πl(z)
T

Σl ∂k
zΠl(z) =

{
0 , k < l − 1 ,

Cl−1(z) , k = l − 1 ,
(5.12)

where the intersection matrix Σl is given by

Σl =


1

−1
1

. . .

 . (5.13)

Equation (5.12) can be interpreted as a collection of bilinear relations between the maximal
cuts of Jl,1(z; 0) and Jl,k(z; 0) for k > 1. One can derive (c.f. 4.2.2 and [47] for a more thorough
derivation) a differential equation for Cl−1(z) from the Picard-Fuchs operator Ll

∂zCl(z) +
2
l

Bl,l−1(z)
Bl,l(z)

Cl(z) = 0 . (5.14)

With our normalization of Frobenius basis Πl(z) (c.f. equation (5.6)) we find

Cl(z) =
1

zl−3 ∏k∈∆(l)(1− kz)
. (5.15)

With further differentiation of eq. (5.12) we can obtain more relations. One can even find a
hole matrix of bilinear relations of the

Zl(z) =


Πl(z)

T
Σl Πl(z) · · · Πl(z)

T
Σl ∂l−1

z Πl(z)
...

. . .
...

∂l−1
z Πl(z)

T
Σl Πl(z) · · · ∂l−1

z Πl(z)
T

Σl ∂l−1
z Πl(z)

 . (5.16)

One can show that all entries of this matrix are rational functions and that Zl(z)
T =

(−1)l+1 Zl(z).
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5.2 Bilinear relations for equal-mass banana graphs

Let us make some comments and examples for these relations. For low loop orders these
relations are well-known. At l = 1 the period is an algebraic function and for l = 2 the
relations are the familiar Legendre relations. More interesting is that at three loops the
operator is a symmetric square. For l = 4 we want to give the relations explicitly. It turns
out that the inverse Z−1

l (z) has a more compact form. We find

Z−1
4 (z) =


0 − 1

z + 28− 285z + 450z2

1
z − 28 + 285z− 450z2 0

1− 70z + 777z2 − 900z3 −z + 35z2 − 259z3 + 225z4

z− 35z2 + 259z3 − 225z4 0

−1 + 70z− 777z2 + 900z3 −z + 35z2 − 259z3 + 225z4

z− 35z2 + 259z3 − 225z4 0
0 0
0 0

 .

As a final remark let us state that we could not find additional relations between the periods
which are not captured by Griffiths transversality, for more details we refer to [47].

With the relations or better the matrix of relations Zl(z) we can express the inverse of the
Wronskian matrix Wl(z) through

Wl(z)
−1 = ΣlWl(z)

TZl(z)
−1 . (5.17)

Note that this implies polynomial relations of higher degree between the entries of Wl(z),
because the entries of the inverse are proportional to (l − 1)× (l − 1) minors. Moreover, we
see that Griffiths transversality also determines det Wl(z). Using eq. (5.17) one finds

det Wl(z) = Cl(z)
l/2 , (5.18)

which is also a cross check for eq. (5.11).

Let us conclude this section with some comments: First, we mention that this is not the
first time that bilinear relations between maximal cuts of banana integrals were considered.
In particular, refs. [143–146] considered quadratic relations between moments of Bessel
functions, which are closely related to banana integrals and their cuts. Quadratic relations
for maximal cuts for l = 2 and l = 3 were also studied in ref. [147], and such relations also
arise from the twisted Riemann bilinear relations [148, 149]. Finally, in this section we have
only discussed the equal-mass case. Griffiths transversality holds more generally also for
the periods, i.e., the maximal cuts, in the case of distinct propagator masses.
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Chapter 5 The Equal-Mass Banana Graphs

5.3 Explicit set of master integrals for banana graphs

Having analyzed the Frobenius basis of solutions and the relations between them let us
know use this to obtain the banana integrals for arbitrary loop orders in D = 2 dimensions
as (iterated) integrals of Calabi-Yau periods as explained in section 3.2.

We start with eq. (3.7) for D = 2:

∂z Jl(z; 0) = Bl,0(z) Jl(z; 0) + (−1)l+1(l + 1)!
z

zl ∏k∈∆(l)(1− kz)
êl , (5.19)

with êl = (0, . . . , 0, 1)T. Changing variables like in eq. (3.9), we obtain

∂zL(0)
l (z) = (−1)l+1(l + 1)!

z

zl ∏k∈∆(l)(1− kz)
Wl(z)

−1êl = (l + 1)!
Σl Πl(z)

z2 , (5.20)

where in the last step we have used the identity Wl(z)
−1 êl = (−1)l+1 ΣlΠl(z)

Cl(z)
, which follows

from (5.17). This equation can easily be solved by quadrature

L(0)
l (z) = L(0)

l (0) + (l + 1)! Σl

∫ z

~10

dw
Πl(w)

w2 , (5.21)

or equivalently

J(0)l (z) = Wl(z)L(0)
l (0) + (l + 1)! Wl(z)Σl

∫ z

~10

dw
Πl(w)

w2 . (5.22)

For the individual master integrals, i.e., the individual components of J(0)l , we find:

J(0)l,k (z) = ∂k−1
z Πl(z)

T
Σl L(0)

l (0) + (l + 1)! ∂k−1
z Πl(z)

T
Σl

∫ z

~10

dw
Πl(w)

w2 . (5.23)

Here~10 denotes the unit tangent vector at 0. In the limit z→ 0, we have

Πl(z) = z
(

1, log z,
1
2

log2 z, . . . ,
1

(l − 1)!
logl−1 z

)T

+O(z2) , (5.24)

so that the integral in eq. (5.22) diverges if the lower integration limit is zero. The divergency
is regulated by introducing the tangential base point~10. For a comprehensive review of how
this regularization can be practically implemented into the framework of iterated integrals
on curves see, e.g., ref. [150]. In the present case, the tangential base point regularization

66



5.3 Explicit set of master integrals for banana graphs

(often called shuffle regularization) reduces to the prescription:

∫ z

~10

dw
vl,k(w)

w2 :=
1

(k + 1)!
logk+1 z +

∫ z

0

dw
w

(
vl,k(w)

w
− 1

k!
logk w

)
. (5.25)

It is easy to check that the remaining integral in eq. (5.25) is absolutely convergent (as long
as the range [0, z] does not contain any singular point of Ll).

Finally, we have to determine the initial condition L(0)
l (0). We start from eq. (5.23) for

k = 1. Since the integral in the second term in eq. (5.25) is convergent, this integral vanishes
like a power in the limit z → 0, and so this term behaves like O(z2). Using eq. (5.24), we
find:

Jl,1(z; 0) = −(−1)l(l + 1) z logl z + z
l−1

∑
j=0

L(0)
l,l−j(0)

(− log z)j

j!
+O(z2) . (5.26)

We see that the vector L(0)
l (0) is uniquely determined once we know the leading asymptotics

of Jl,1(z; 0) in the limit z → 0. This limit can be related for arbitrary loop order to a novel
Γ̂-class which we explain in chapter 8. In particular, one will show that the coefficients
L(0)

l,k (0) are given as Q[iπ]-linear combinations of zeta values of uniform transcendental
weight k, c.f. eqs. (8.19) - (8.21).

Equation (5.22) was one of the main results of my publication [47] because it expresses all
master integrals for the equal-mass banana integral in D = 2 dimensions for arbitrary loop
order l as an integral of Calabi-Yau periods. Furthermore, the initial condition can be given
in a closed form, namely in terms of a generating functional determined from the Γ̂-class,
so purely from geometry. We find it remarkable that such a compact formula of geometric
origin exists for all loop orders. Notice that the relations among maximal cuts from Griffiths
transversality play an important role in deriving eq. (5.22).
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CHAPTER 6

Hypersurface Motive of the Banana Graphs

In the previous chapters we have learned the basics of Feynman integrals, especially differ-
ential equational techniques to compute them, and the mathematics of Calabi-Yau manifolds.
Now we want to combine both to compute the banana integrals for generic masses. In this
chapter we associate a first geometry to the l-loop banana integral which enabled us to solve
them in the generic-mass case for l ≤ 4. This is the so-called hypersuface motive, since
the Calabi-Yau manifold is realized as a hypersurface in a toric ambient space. This was
originally done in my first paper [44] for l ≤ 3 and was later extended with the l = 4 case in
my second publication [45].

The geometry will directly originate from the graph polynomial representation of the
Feynman integral, see section 2.4. It is very special for the banana family that in D = 2
dimensions the exponent of the first Symanzik polynomial vanishes and the exponent of the
second Symanzik polynomial is equal to one. This simplifies a lot the form of these integrals
and offers us our first geometric description. We use the second Symanzik polynomial
as a Newton polynomial which then defines our Calabi-Yau variety. Using the Gel′fand-
Kapranov-Zelevinskı̆ system of differential equations for this geometry we can construct a
basis of periods of the Calabi-Yau variety which first describe the maximal cut integrals of
the banana graph. This will be done around the MUM-point corresponding in physical terms
to the large momentum region. Furthermore, we explain then how one can extend these
homogeneous differential equations to a set of inhomogeneous differential equations such
that its solution space yields a full set of functions parametrizing the full banana integral.

6.1 Hypersurface geometry associated to the l-loop banana graph

As already mentioned we start with the second Symanzik polynomial which is also the
denominator of the banana integral in D = 2 dimensions∫

σl

µl

Fl(p2, m2; x)
, (6.1)

69



Chapter 6 Hypersurface Motive of the Banana Graphs

see also section 2.4 and in particular eqs. (2.29) - (2.31). The zero locus of this integrand
defines a singular1 family of (l − 1)-dimensional Calabi-Yau hypersurfaces Ms

l−1 by

Ms = {Fl(p2, m2; x) = 0 | (x1 : . . . : xl+1) ∈ P
l} . (6.2)

From standard arguments, see e.g. [151], Ms
l−1 is a complex Kähler manifold with trivial

canonical class, hence a Calabi-Yau space, see section 4.1. The first fact follows by the
definition of Ms

l−1 as a hypersurface in projective space P
l , which is Kähler, and the second

since for a homogeneous polynomial P with degree deg(P) in P
l the canonical class is given

in terms of the hyperplane class H of P
l as [151]

−K = c1(TMs
l−1) = ((l + 1)− deg(P)) H . (6.3)

So for the banana graph polynomial we have deg(Pl) = l + 1 and therefore the canonical
class is trivial. Notice that it is important that the integrand in (6.1) is well defined under
the C

∗ scaling of the homogeneous coordinates of P
l . This is guaranteed by the degree of

the second Symanzik polynomial and the measure µl . As we have said the hypersurface
constraint (6.2) defines a singular Calabi-Yau variety. Fortunately, there is a canonical
resolution known. This method is known as the Batyrev construction [49, 152–154] and
yields a smooth family of Calabi-Yau varieties Ml−1 with typically more parameters than
the singular one.

6.1.1 Calabi-Yau hypersurfaces in toric ambient spaces

Now we want to describe the Batyrev construction which will furnishes for us a smooth
Calabi-Yau manifold and its mirror in a toric ambient space. Moreover, we can compute
some characteristics of the Calabi-Yau spaces and their moduli spaces in this formalism and
find also a suitable set of coordinates, the so-called Batyrev coordinates.

We first define a Newton polynomial P∆l
as

Fl(p2, m2; x) =: P∆l

l+1

∏
i

xi . (6.4)

The exponents of each monomial of P∆l
w.r.t. to the coordinates xi for i = 1, . . . , l + 1 define

a point in a lattice Z
l+1. The convex hull of all these points in the natural embedding of

Z
l+1 ⊂ R

l+1 defines a l-dimensional lattice polyhedron. The dimension is reduced due to
the homogeneity of P∆l

. We denote the polyhedron that lies in the induced lattice Z
l ⊂ R

l

by ∆l . One calls P∆l
the Newton polynomial of ∆l and ∆l the Newton polyhedron of P∆l

.

1 For l = 1, 2 actually the family is generically non-singular.
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6.1 Hypersurface geometry associated to the l-loop banana graph

More concretely, picking the canonical basis ei for Λ = Z
l ⊂ R

l = ΛR the l(l + 1) vertices
defined by (6.4) span the polytope ∆l

2, i.e.

∆l = Conv
(
{±ei}

l
i=1 ∪ {±(ei − ej)}1≤i<j≤l

)
. (6.5)

Note that ∆l contains beside these vertices no further integral point other then the origen
ν0 = (0, . . . , 0). Moreover, ∆l is integral and reflexive, which implies that the dual polytope
∆̂l ⊂ Λ̂R

∆̂l = {y ∈ Λ̂R|〈y, x〉 ≥ −1, ∀ x ∈ ∆l} (6.6)

is also an integral lattice polyhedron. Note that the dual of the dual polyhedron is the
polyhedron itself, i.e. ̂̂∆l = ∆l . The dual polyhedron ∆̂l is concretely given by

∆̂l = Conv

 l⋃
k=1

( l
k )⋃

r=1

l

∑
i=1

I(k),ri êi ∪
l⋃

k=1

( l
k )⋃

r=1

l

∑
i=1

(−I(k),ri êi)

 , (6.7)

where êi is a basis of the lattice Λ̂R and the I(k),r for r = 1, . . . ,
(

l
k

)
are the sets of all distinct

permutations of k ones and l − k zeros. Indeed the 2(2l − 1) points listed in (6.7) are all
integral points of ∆̂l beside the origin. For the polytope ∆l itself it means that it has 2(2l − 1)
faces. From the structure of the vertices of ∆l it can be proven that there is no integral point
in the facets of the dual polytope. The combinatorics of all facets of ∆̂ are equal, in particular,
they all have 2l−1 vertices.

A central theorem in the toric mirror construction of Batyrev [152] says that a smooth
resolution Ml−1 of Ms

l−1 with trivial canonical class is given by the constraint

P∆l
= ∑

ν(i)∈∆l

ai ∏
ν̂(k)∈∆̂l

x〈ν
(i),ν̂(k)〉

k = 0 (6.8)

in the coordinate ring Xi of P∆̂l
, where ν(i), i = 0, . . . , np and ν̂(k), i = 1, . . . , n p̂ run over all

integer points in ∆l and ∆̂l , respectively3. Here I(∆l) is the number of lattice points in ∆l and
np = I(∆l)− 1. Analogous definitions apply for ∆̂l . Note that (6.8) defines an embedding
of the physical parameters p2 and m2, into convenient but redundant complex structure
variables ai ∈ C for i = 0, . . . , np. Both the physical as well as the a parameters are only
defined up to scale. Note that we are a little cavaliar with the notations: The coordinate rings
xi, i = 1, . . . , l + 1 in the definition (6.4) and the one xi, i = 0, . . . , n p̂ in (6.8) are, of course,

2 For l = 3 this polytope is depicted in Figure 6.1.
3 P∆l

is a Laurent polynomial in which the minimal degree of the xi is−1, whileFl(p2, m2; x) = 0 is a polynomial
constraint.
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Chapter 6 Hypersurface Motive of the Banana Graphs

different. However, we can get the former by blowing down the latter. This is achieved
by setting a suitable subset of n p̂ − (l + 1) of the latter xi variables to one. Likewise, given
P∆l

in xi, i = 1, . . . , l + 1 as in (6.4) and all C
∗ actions (6.10) we can uniquely extend it to

n p̂ variables Xi by requiring that the extended polynomial (or strictly speaking the proper
transform of (6.4)) is homogeneous w.r.t. to all C

∗ rescalings in (6.10).
The space P∆l

is a l-dimensional projective toric variety that can be associated to any
reflexive lattice polyhedra ∆l given a star triangulation 4 T of ∆l as

P∆l
=

C
np [x0, . . . , xnp

] \ ZT

(C∗)np−l . (6.9)

Here the C
∗ actions that are divided out are generated by

xi 7−→ xi(µ
(k))`

(k)
i for i = 0, . . . , np , (6.10)

where µ(k) ∈ C
∗ and the `(k) vectors span the (np− l)-dimensional space of all linear relations

L = {(`∗0 , `∗1 , ..., `∗np
) ∈ Z

np+1 | l∗0 ν̄0 + `∗1 ν̄1 + ... + `∗np
ν̄np

= 0} (6.11)

among the points
A = {ν̄0, ν̄1, ..., ν̄np

|ν̄i = (1, νi), νi ∈ ∆l ∩Z
l} . (6.12)

From a triangulation 5 T of the polytope ∆l one can determine the set of generators `(k) of L
and the Stanley-Reisner ideal ZT . The latter describes loci in C

p[x0, . . . , xp], which have to
be excluded so that the orbits of the C

∗ action (6.10) have a well defined dimension. Positive
linear combinations of `(k) for k = 1, . . . , n span the Mori cone, which is not necessary
simplicial if n > np − l. It is dual to the Kähler cone of P∆l

and all cones corresponding to
all triangulations T of Σ∆l

form the secondary fan, see [156] for a review how to calculate

the `(k) vectors and the Stanley-Reisner ideal combinatorial from a triangulation T . This
combinatorics is implemented in the computer package SageMath [157], which calculates
the possible triangulations T and from them the generators `(k) and the Stanley Reisner
ideal ZT . For the project [44] we could write a code in SageMath which could generate a
star triangulation for the polytopes of the banana family. Here we used the special form of
them such that we could simply triangulate the codimensional one facets and connected
these triangulations with the inner point. These gave at least a few triangulations of the

4 In a star triangulation all l-dimensional simplices of the triangulation covering the reflexive polyhedron share
the inner point as one of their vertices.

5 ∆l defines canonically a fan Σ∆l
and the definition of a smooth P∆l

may require to add integer points outside
∆l and to triangulate the fan Σ∆l

. Such cases are discussed in [153, 155].
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6.1 Hypersurface geometry associated to the l-loop banana graph

polyhedrons ∆l for l ≥ 4 since the combinatorics grows too fast to list all triangulations. For
l ≤ 3 all triangulations could be found.

The family of (l − 1)-dimensional Calabi-Yau varieties defined as section of the canonical
bundle P∆̂l

= 0 of P∆l
is by Batryrev [152] conjectured to be the mirror manifold Wl−1 = X∆̂l

of the manifold Ml−1, i.e. (Ml−1, Wl−1) form a mirror pair with dual properties, see for
more details chapter 8. A main implication of this proposal is that the complex structure
deformation space of Ml−1 denoted byMcs(Ml−1) is identified with the complexified Kähler
or stringy Kähler moduli spaceMcKs(Wl−1)

McKs(Wl−1) =Mcs(Ml−1) (6.13)

and vice versa. Note that the real Kähler moduli space is parametrized by the Kähler
parameters tR

k =
∫
Ck

ω, where ω ∈ H1,1(Ml−1) and Ck span a basis of holomorphic curves in
H1,1(Ml−1, Z). In string theory the complexification is due to the Neveu-Schwarz two-form
field b also in H1,1(Ml−1). The complex variables tk =

∫
Ck

ω + ib, k = 1, . . . , h1,1(Ml−1)

parametrize locally the complexified moduli spaceMcKs(Wl−1) of Wl−1. We will elaborate
on the concept of mirror symmetry and its implications in chapter 8.

We will next discuss the spaceMcs(Ml−1) of complex structure deformations of Ml−1.
This space is redundantly parametrized by the complex coefficients ai for i = 0, . . . , np in (6.8).
The a are identified by l + 1 scaling relations on the coordinates of P∆̂l

and the automorphism
of P∆̂l

that leaves Ml−1 invariant but acts on the parametrization of the polynomial constraint
P∆l

. The latter one-parameter families of identifications of the deformation parameters are in
an one-to-one correspondence to the points inside codimension one faces of ∆l . Let us denote
by Θj

k all faces of codimension k in ∆l labeled by j. I(Θj
k) denotes the number of lattice points

contained in Θj
k, while I′(Θj

k) denotes the number of lattice points that lie in the interior of

Θ(j)
k . With this notation Ml−1 has I(∆l)− (l + 1)−∑j I′(Θj

1) independent complex structure
deformations. They correspond to elements in H1(Ml−1, TMl−1) and are unobstructed on
a Calabi-Yau manifold Ml−1. The cohomology group H1(Ml−1, TMl−1) is related to the
cohomology group Hl−2,1(Ml−1) via the contraction with the unique holomorphic (l − 1, 0)-
form, see also section 4.1.

Equation (6.13) implies that, in particular, the complex dimensions of these spaces have to
match, i.e. h1,1(X∆̂l

) = hl−2,1(X∆l
) and h1,1(X∆l

) = hl−2,1(X∆̂l
). From theses facts it follows

that the dimensions of these important cohomology groups are given by counting integral
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points in the polytops6

h1,1(X∆l
) = I(∆̂l)− (l + 1)−∑

j
I′(Θ̂j

1) + ∑
j

I′(Θ̂i
2)I′(Θi

l−2)) = 2l+1 − l − 2

hl−2,1(X∆l
) = I(∆l)− (l + 1)−∑

i
I′(Θi

1) + ∑
i

I′(Θi
2)I′(Θ̂i

l−2)) = l2 .
(6.14)

For l = 3 the Calabi-Yau manifold M2 will be a nine-parameter family of polarized K3
surfaces. In this case the transversal cycles in h11 are counted hT

11 = I(∆l)− (l + 1) = 9, i.e.
in total one has eleven transcendental and eleven algebraic two-cycles, which are counted
by hA

11 = I(∆̂l)− (l + 1) = 11. For l = 4 the 16-parameter family of Calabi-Yau three-folds
M3 has h11 = 26 and h21 = 16 and hence Euler number χ = 20. For l = 5 the Calabi-Yau
four-fold M4 has h31 = 25, h11 = 57, h21 = 0 and χ = 540. Using an index theorem [133] one
gets h22 = 422. These numbers are important topological data of the (l − 1)-dimensional
Calabi-Yau varieties and they can be used to distinguish them. We notice this at this point
because later we will define another Calabi-Yau geometry associated to the banana graph
which is topological different to the hypersurface geometry defined here simply because the
Euler numbers computed here differ. We will discuss this point later in more detail.

Since our polytope (6.5) has only ∑i I(Θi
l) = l(l + 1) corners and one inner point the

manifold Ml−1 has l2 complex structure deformations, which at the end have to be mapped
to our physical parameters p2 and m2. Due to the scaling behavior (2.4) we can scale one
parameter away such that we have only l + 1 independent physical parameters. Therefore,
the map to the physical parameter space has a huge kernel for high loop l and special
effort has to be made to specify the relevant physical subspace ofMphys(M) ⊂Mcs(M) as
described concretely in the example section 6.3. This is also why later we prefer the other
geometry associated to the l-loop banana graph since there the dimension of the complex
structure deformation space equals the relevant physical parameter space.

Actual properties of the smooth canonical resolution of Ms
l−1, in particular its Kähler

cone, depend on the choice of the star triangulation T̂ of ∆̂l . However, these detailed
properties of the Kähler moduli space McKs(Ml−1) of Ml−1 do not affect the complex
moduli spaceMcs(Ml−1) and also not the maximal cuts of the banana integral. The maximal
cut integrals depend only on the complex structure parameters. The blow up coordinate
ring allows, however, a useful description of the boundary contribution to the full Feynman
integral, see [113]. Moreover, the identification (6.13) turns out to be very useful to introduce
suitable coordinates onMcs(Ml−1) to obtain solutions for the integral (6.1). Different star
triangulations T of the polyhedra ∆l correspond to different Kähler cones of the ambient
space P∆l

of Wl−1 and correspond eventually7 to different Kähler cones of Wl−1. Each choice

6 The last terms after the first equal sign in the formulas in each line of (6.14) correspond to Kähler— or complex
structure deformations, which are frozen by the toric realization of the manifolds, respectively. Likewise the
third terms are absent in our case. The last equality holds only for the polyhedra given in (6.5) and (6.7).

7 If all curves that bound the Kähler cone of P∆l
descend to the hypersurface Wl−1.
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6.1 Hypersurface geometry associated to the l-loop banana graph

of the Kähler cone of Wl−1 defines by mirror symmetry and the identification (6.13) canonical
so called Batyrev coordinates zB

i for i = 1, . . . , hl−2,1(Ml−1) = h1,1(Wl−1) =: h onMcs(Ml−1).
These are very useful and good coordinates since they reflect best the symmetries of the
complex structure moduli spaceMcs(Ml−1). Moreover, at their origin zB

i = 0 for all i there
is a MUM-point ofMcs(M). The coordinates zB are ratios of the coefficients a of P∆l

given
for each triangulation by

zB
i = (−a0)

`
(i)
0 ∏

k
a`

(i)
k

k , i = 1, . . . , np − l = h . (6.15)

The definition of the zB eliminates the scaling relation. Since in our case we have no
codimension one points, i.e., no automorphism of P∆̂ leaving the hypersurface invariant
and further identifying the a deformations, the zB are actual coordinates on Mcs(Ml−1).
In other simple cases one can restrict in the definition of L (6.11) to linear relations of
points, which are not in codimensions one, the general case is discussed in [153, 155]. In
the moduli space of Mcs(Ml−1) as parametrized only by the independent ai, the zB are
blow up coordinates resolving singular loci in discriminant components of the hypersurface
P∆l

= 0 inMcs(Ml−1), so that these become in the resolved model of the complex moduli
space M̂cs(Ml−1) intersection points of normal crossing divisors Di = {zi = 0}, i =

1, . . . , hl−2,1(Ml−1).
Of particular significance in the geometric toric construction of the differentials on Ml−1 is

the coefficient a0 of the monomial ∏l+1
i=1 xi in Fl(p2, m2; x) corresponding to the inner point

in ∆l , which is given in the physical parameters by8

a0 = −p2 +
l+1

∑
i=1

m2
i . (6.16)

6.1.2 Period integrals of the hypersurface model Ml−1

The Baytrev coordinates zB defined by the Mori cone `(k) vectors of the mirror Wl−1 are so
constructed, as already said, that at their origin zB

i = 0 for all i = 1, . . . h one has a point
of MUM-point. Now we can use all the beautiful structures of a MUM-point as explained
in chapter 4. For instance, we can simply compute the period v0 which is given at the
MUM-point by an integral over the cycle T = Tl−1 in the Calabi-Yau Ml−1. This period v0
is the holomorphic period at the MUM-point and is given as the unique power series in the
Frobenius basis, see section 3.3. In the toric ambient space this integral can be written as a

8 Notice here an additional minus sign compared to the works [44, 45] since there the second Symanzik
polynomial is normalized with this additional −1 factor. This difference will continue through this thesis to
guarantee consistent conventions.
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residue integral over a Tl of the holomorphic (l − 1, 0)-form Ωl−1(z
B). With the `(k) vectors

we can compute

v0(z
B) =

1

(2πi)l

∫
Tl

a0µl
Fl(a; x)

=
1

(2πi)l−1

∫
Tl−1

Ωl−1(z
B)

= ∑
{k}

Γ
(
−∑h

α=1 `
(α)
0 kα + 1

)
∏

np
l=1 Γ

(
∑h

α=1 `
(α)
l kα + 1

) h

∏
α=1

zB
α

kα .
(6.17)

First, notice the factor of a0 in the numerator such that the integral is invariant under
rescalings of the paramters a. This factor has to be divided out later to get the actual
Feynman integral. In eq. (6.17) we use the coordinate ring x as in (6.4) and set xl+1 = 1. In
the tuple {k} = {k1, . . . , kh} each ki runs over non negative integers ki ∈N0. Note that by
definition the sum of the integer entries in each `(k) is zero. Therefore, they have also negative
entries. For hypersurfaces and complete intersections the `

(k)
0 entry is non-positive `

(k)
0 ≤ 0

for all k. However, for i > 0 the `
(k)
i can have either sign. Poles of the gamma function at

negative integers in the denominator make the summand vanishing. This effectively restricts
the range of the {k1, . . . , kh} to a positive cone

h

∑
α=1

`
(α)
j kα ≥ 0 . (6.18)

Restricting to the physical slice means to parametrize the ai, i = 0, . . . , np by the physical
variables p2, m2 and, therefore, we have zB = zB(p2, m2). Due to the definition of (6.15) one
can find a splitting of the set of indices {α1, . . . , αh} into {α1, . . . , αl+1} and {αl+2, . . . , αh}
so that the variables {zB

αl+2
, . . . , zB

αh
} are either set to constant values9 or identified with the

variables zB
αj
(p2, m2) for i = 1, . . . , l + 1. A key observation in the examples of the banana

family is that the range (6.18) is such that the contribution from the summation over the

kαj
, j = l + 2, . . . , h to each monomial ∏l+1

i=1 zB
αi

ki is finite. This implies that we can also give

(6.17) non-redundantly in the l + 1 physical parameters zB
αi
(p2, m2) for i = 1, . . . , l + 1 exactly

to arbitrary order. The range (6.18) and (6.17) can also be calculated directly as follows:
Expanding in the integrand a0/Fl(a; x) = [1/ ∏i xi] [1/(1− 1/a0(. . .))] the second factor as
a geometric series and noticing that only the constant terms of it contribute to the integral
yields the result. Applying this to the torus integral v0 we find for the maximal cut after

9 In principle, this can also mean zero or infinity where both limits have to be treated carefully since they can
result in divergencies of the period integrals on this subslice. Problems of divergencies if one goes onto the
subslice will be discussed later in the text in more detail.
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6.1 Hypersurface geometry associated to the l-loop banana graph

dividing through the inner point a0 given in (6.16)

MTl−1

l (p2, m2) =
v0

(
zB(p2, m2)

)
−p2 + ∑l+1

i=1 m2
i

(6.19)

This is an exact series expansion with finite radius of convergence for regions in the physical
parameters in which zB(p2, m2) are all small.

The other periods around the MUM-point can be computed with the Frobenius method,
see section 3.3. For this we introduce h auxiliary deformation parameters ρα in

v(zB, ρ) = ∑
n1,...,nh≥0

c(n, ρ)zBn+ρ
, (6.20)

where zBn+ρ
:= ∏h

α=1 zB
α

nα+ρα and

c(k, ρ) =
Γ
(
−∑h

α=1 `
(α)
0 (nα + ρα) + 1

)
∏

np
l=1 Γ

(
∑h

α=1 `
(α)
l (nα + ρα) + 1

) . (6.21)

With this definition v0(z
B) = v(zB, ρ)|ρ=0 and the hn−1,1 linear logarithmic solutions are

given by

v
(α)
1 (zB) = [(1/(2πi)∂ρα

v(zB, ρ)]|ρ=0 = 1/(2πi)v0(z
B) log(zB

α) +O(z) (6.22)

for α = 1, · · · , h. All other solutions of degree 2 ≤ k ≤ l− 1 in the logarithms are of the form

v
(i)
k (zB) = [cα1 ...αk

i ∂ρα1
. . . ∂ραk

v(zB, ρ)]|ρ=0 (6.23)

for i = 1, . . . , nk-log. sol.. The tensors cα1 ...αk
i can be chosen such that the functions vk are period

integrals of actual cycles in integral homology when they contain the correct transcendental
numbers which are dictated by the Γ̂-class conjecture and classical intersection theory on W.
We will demonstrate this in chapter 8 at least for some particular cycles but also for the other
geometric realization we introduce in chapter 7. There we also comment why this is much
more difficult for the hypersurfaces.
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6.1.3 GKZ method for the banana integrals

Gel′fand, Kapranov and Zelevinskı̆ [158] investigated integrals of the from

IGKZ
σ =

∫
σ

r

∏
i=1

P(x1, . . . , xk)
αi xβ1

1 · · · x
βk
k dx1 · · ·dxk , (6.24)

where they consider σ to be a cycle without a precise definition in [158]. The full banana
integral in D = 2 dimensions (6.1) is a special case of the general integral (6.24) where the
integration domain σl is given by a chain. In comparison the integral in (6.17) is over a
closed cycle Tl but still a specialization of (6.24). For the GKZ method this means that for
the former we obtain a set of inhomogeneous differential equations because the chain σl is
an open cycle on the Calabi-Yau variety whereas the maximal cut integrals, as in particular
the torus integral in (6.17), are governed by homogeneous equations.

In general the GKZ integrals IGKZ
σ can be viewed as a systematic multivariable generaliza-

tion of the Euler integral

2F1(a, b, c; z) =
∞

∑
n=0

(a)n(b)n
n!(c)n

=
Γ(c)

Γ(b)Γ(b− c)

∫ 1

0
t(b−1)(1− t)(b−c−1)(1− zt)−a dt , (6.25)

which solves the Gauss hypergeometric system. In this sense v0 is a generalized multivari-
able hypergeometric series.

The power of the GKZ method goes back to a detailed analysis of the scaling properties
of integrals as given in (6.24). Using these scaling properties one can write down a set
of differential equations the integral (6.24) satisfies. These differential equations will be
computed in a combinatorial fashion which is much easier and faster than the full Griffiths
reduction method. But this set of differential equations is typically not large enough to
uniquely determine the integral (6.24), in particular, since the GKZ method does not give
boundary conditions for these differential equations. It does not even give the smallest set
of functions which describe the integral (6.24). But later we show how one can deal with
these issues at least in the context of the banana integrals.

The scaling relations of the l-loop banana integral follow from the linear relations between
the points of the associated Newton polytope ∆l . These were generated by the `(k) vectors.
Now each `(k) give rise to a differential operator D

`(k)
in the redundant moduli a. Moreover,

the infinitesimal invariance under the (C∗)l+1 scaling relations yields further differential
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6.1 Hypersurface geometry associated to the l-loop banana graph

operators Zj, j = 1, . . . , l + 1. Together they constitute a resonant GKZ system [117, 159]:

D̂
`(k)

MΓ
l =

 ∏
`
(k)
i >0

(
∂

∂ai

)`
(k)
i

− ∏
`
(k)
i <0

(
∂

∂ai

)−`(k)i

MΓ
l = 0 and

Zj M
Γ
l =

(
p

∑
i=0

ν̄i,jθai
− β j

)
MΓ

l = 0

(6.26)

with β = (−1, 0, ..., 0) ∈ R
l+1 for the hypersurface case and θa = a ∂a and Γ a cycle defining

a maximal cut. This form applies to the period integrals of Calabi-Yau hypersurfaces in toric
varieties [152, 153]. Notice that these operators are given in terms of the redundant variables
a. To turn them into operators of our favorite Batyrev coordinates zB we have to include an
additional factor of a0 such that they annihilate a0MΓ

l which at the end has to be divided out
again since we are only interested in MΓ

l . We can use the relations Zj M
Γ
l = 0 to eliminate the

a in favour of the scale invariant zB defined in (6.15) using ai∂ai
= ∑l2

k=1 `
(k)
i zB

k ∂zB
k

and by the

commutation relation [θa, ar] = rar applied previously to a0 we obtain operators D
`(k)

(zB)

that annihilate a0MΓ
l . As it turns out these operators do not only determine the a0MΓ

l since
they admit further solutions [153]. To obtain the actual Picard-Fuchs differential ideal one
can factorize the D

`(k)
(zB) and disregard trivial factors that allow for additional solutions

which have the wrong asymptotic to be periods [48, 153]. In practice, the most efficient
way to get the Picard-Fuchs differential ideal is often to make an ansatz for additional
minimal order differential operators that annihilate (6.17) and check that the total system of
differential operators allows no additional solutions then the ones specified in (6.22) and
(6.23). Or, as we do in section 9.2 cf. eq. (9.11), one can analyze the structure of the quotient
of gamma functions in (6.17) to write down additional differential operators simply from
the combinatorics of these gamma functions.

One of our main results of [44] is that we give the general strategy to derive the Picard-
Fuchs differential ideal in the physical parameters zB(p, m2) for i = 1, . . . , l + 1. We recall
this in this thesis for the three-loop case which corresponds to a two-dimensional Calabi-Yau
also known as K3 surface. These operators determine the maximal cut integrals everywhere
in the parameter space. By applying these operators to the geometrical chain integral∫

σl

a0 µl
Fl(a; x) (6.27)

and integrating explicitly over the boundary of the chain σl we can find the inhomogeneous
differential equations and the corresponding special solutions describing the full l-loop
banana graph explicitly. With this method we could reach loop orders l = 1, 2, 3 in [44]
and l = 4 in [45] where for l = 3, 4 the generic mass case was not known before. For even
higher loop orders this method gets too time consuming and we would recommend to use
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Chapter 6 Hypersurface Motive of the Banana Graphs

the methods explained in chapter 7 which give also results for much higher loop orders.

6.1.4 Mori cone generators and subslice problem

There are two main difficulties in the case of the banana family if one wants to use the GKZ
method of a hypersurface Calabi-Yau. The first problem concerns the number of `-vectors
which can be too large although an appropriate triangulation of the polytope ∆l is used.
The second problem is that the smooth hypersurface Calabi-Yau has to many parameters
compared to the actual number of physical parameters. Therefore, one has to deal with a
subslice problem. Both difficulties could be solved in [44] where also a longer discussion
about them is given.

The minimal number of `-vectors should be equal to l2 which is also the number of
complex structure deformations of the Calabi-Yau Ml−1 as given in (6.14). But it can happen
that an appropriate triangulation T give rise to more `-vectors. In this case one has to select
only l2 `-vectors such that the following conditions we made and claimed in [44] are fulfilled.
Firstly, the selected `-vectors should be linear independent over the reals. Secondly, we want
that at least for each entry of a `-vector corresponding to a vertex of the polytope different to
the origin there is a `-vector which has a positive entry at this position. With these conditions
we were able to choose a correct set of `-vectors for the banana integrals.

To restrict onto the physical subslice one has to analyze the holomorphic solution (6.17)
carefully. Using the inequalities (6.18) it is possible to resum the summations in (6.17) of the
unphysical Batyrev coordinates, i.e., the ones which have no counterpart in the physical
parameters p2 and m2 since they have to be set to unity or another value. This means that the
infinite sums in (6.17) of the unphysical Batyrev coordinates are actually finite and these can
be simply set to unity or another value without causing divergencies. Then one can use v0
expressed only in the physical important Batyrev coordinates to generate the other solutions.
For this one makes an ansatz of operators spanning a differential operator ideal which
describes this holomorphic solution together with other logarithmic solutions such that all
solutions describe a Calabi-Yau motive with l + 1 logarithmic solutions. One should start
first with second order operators and extends then with higher-order operators if necessary.
For more details see section 2.2.4 of [44].

6.2 The complete banana diagram and inhomogeneous differential
equations

So far we have only described the solutions corresponding to the maximal cuts of the banana
graphs. These correspond to the period integrals of a Calabi-Yau hypersurface Ml−1 and
can be described by a differential operator ideal which can be found with the prescription
given in the last subsection. But now we have to extend this to yield the actual full Feynman
integral (6.1) in D = 2 dimensions.

For this we want to extend the differential operator ideal of the maximal cuts to a set

80



6.3 Example: The generic mass three-loop banana integral

of inhomogeneous differential operators. Here we simply apply these operators on the
full Feynman integral (6.1) for some fixed value of the Batyrev coordinates and perform
the resulting integral numerically. This integration can be done with standard numerical
integration routines implemented, for example in mathematica. Then the crucial step is to
guess the analytic form of the result. For this one has to do the numerical integration for
different values of the Batyrev coordinates and analyze the form of the result. Fortunately,
there is a good guess how the inhomogeneities have to look like. From integration by parts
section 2.3.2 and the construction of the Gauss-Manin connection section 3.2 we know that
the inhomogeneities are given by the subtopologies having less propagators. For the banana
graphs there is only one type of subtopology which is a tadpole, cf. eq. (2.19). In D = 2 a
tadpole has roughly the form of log(zB

i ). Therefore, we can make an ansatz out of log(zB
i )

for the inhomogeneities of the differential operators. For more details we refer again to [44]
section 2.3.

6.3 Example: The generic mass three-loop banana integral

In this section we want to demonstrate our method for the three-loop banana integral. This
was before our paper [44] the first unknown generic mass case in the infinite series of l-loop
banana graphs. In [44] we have given more details and also more examples are shown for
the interesting reader.

Figure 6.1: Polytope ∆3 together with a triangulation for the three-loop banana graph.

The geometry underlying the three-loop banana integral is a K3 surface. In the hypersur-
face description this K3 surface can be constructed from the polytope shown in figure 6.1.
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This polytope is constructed from the vertices

{(−1, 1, 0), (1, 0, 0), (0,−1, 1), (0, 0, 1), (1,−1, 0), (1, 0,−1), (0, 0,−1), (−1, 0, 1),

(0,−1, 0), (−1, 0, 0), (0, 1, 0), (0, 1,−1), (0, 0, 0)} ,
(6.28)

which are the exponents of the monomials in the second Symanzik Polynomial F3(p2, m2; x)
given in (2.30). In figure 6.1 we have also drawn a triangulation which give the following
nine `-vectors

`1 = (0, 0,−1, 0, 1, 0, 0, 1, 0, 0, 0, 0,−1) , `2 = (0,−1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0,−1)

`3 = (0,−1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0,−1) , `4 = (0, 0,−1, 1, 0, 0, 0, 0, 1, 0, 0, 0,−1)

`5 = (−1, 0, 0,−1, 0, 0, 0, 1, 0, 0, 1, 0, 0) , `6 = (0, 0, 0, 0,−1, 1,−1, 0, 1, 0, 0, 0, 0)

`7 = (0, 0, 1, 0, 0, 0, 0,−1,−1, 1, 0, 0, 0) , `8 = (0, 1, 0, 0, 0,−1, 0, 0, 0, 0,−1, 1, 0)

`9 = (1, 0, 0, 0, 0, 0, 1, 0, 0,−1, 0,−1, 0) .

(6.29)

This set of `-vectors yields directly a minimal set and the Batyrev coordinates. On the
physical subslice, i.e., expressed only through the physical parameters p2 and m2, they are
given by

zB
1 = m2

1

p2−m2
1+m2

2+m2
3+m2

4
,

zB
2 = m2

2

p2−m2
1+m2

2+m2
3+m2

4
,

zB
3 = m2

3

p2−m2
1+m2

2+m2
3+m2

4
,

zB
4 = m2

4

p2−m2
1+m2

2+m2
3+m2

4

(6.30)

and zB
5 = · · · = zB

9 = 1. From the `-vectors we can find the holomorphic solution which is
given on the physical subslice by

v0(z
B
1 , zB

2 , zB
3 , zB

4 ) = ∑
J

Γ(1+m1+m2+m3+m4)
Γ(1+m3+m4−m5)Γ(1+m1+m2−m6)Γ(1+m1+m5−m7)Γ(1+m4+m6−m7)

· zB
2

m1 zB
3

m2 zB
4

m3 zB
5

m4

Γ(1−m1−m4+m7)Γ(1+m2+m5−m8)Γ(1+m3+m6−m8)Γ(1−m2−m3+m8)

· 1
Γ(1+m7−m9)Γ(1+m8−m9)Γ(1−m5+m9)Γ(1−m6+m9)

= 1 + 2
(

zB
1 zB

2 + zB
1 zB

3 + zB
1 zB

4 + zB
2 zB

3 + zB
2 zB

4 + zB
3 zB

4

)
+ 12

(
zB

1 zB
2 zB

3 + zB
1 zB

2 zB
4 + zB

1 zB
3 zB

4 + zB
2 zB

3 zB
4

)
+ · · · ,

(6.31)
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where the summation range is

J = {0 ≤ m1 ≤ ∞, 0 ≤ m2 ≤ ∞, 0 ≤ m3 ≤ ∞, 0 ≤ m4 ≤ ∞, 0 ≤ m5 ≤ m3 + m4,

m2 + m3 ≤ m8 ≤ m2 + m5, 0 ≤ m6 ≤ m1 + m2, m1 + m4 ≤ m7 ≤ m1 + m5,

m6 ≤ m9 ≤ m7}
(6.32)

after having used the inequalities (6.18) appropriate. Then one can find the differential
operators D1, . . . ,D4 generating a differential operator ideal for the K3 periods. These are
listed in appendix A. The single-logarithmic solutions of these operators are

v
(1)
1 (zB) = v0 log(zB

1 ) + Σ1
1

v
(2)
1 (zB) = v0 log(zB

2 ) + Σ2
1

v
(3)
1 (zB) = v0 log(zB

3 ) + Σ3
1

v
(4)
1 (zB) = v0 log(zB

4 ) + Σ4
1

(6.33)

with
Σ1

1 = −zB
1 + zB

2 + zB
3 + zB

4 + zB
1

2

2 −
zB

2
2

2 −
zB

3
2

2 −
zB

4
2

2

+ zB
1 zB

2 + zB
1 zB

3 + zB
1 zB

4 + zB
2 zB

3 + 5zB
2 zB

3 + 5zB
2 zB

4 + 5zB
3 zB

4 + · · · .
(6.34)

The other Σi
1 for i = 2, 3, 4 are given as permutations, namely Σ2

1 = Σ1
1(z

B
1 ↔ zB

2 ), Σ3
1 =

Σ1
1(z

B
1 ↔ zB

3 ) and Σ4
1 = Σ1

1(z
B
1 ↔ zB

4 ). The double-logarithmic solution is given by

v2(z
B) = v0zB

[
log(zB

1 ) log(zB
2 ) + log(zB

1 ) log(zB
3 ) + log(zB

1 ) log(zB
4 ) + log(zB

2 ) log(zB
3 )

+ log(zB
2 ) log(zB

4 ) + log(zB
3 ) log(zB

4 )
]
+
(

Σ2
1 + Σ3

1 + Σ4
1

)
log(zB

1 )

+
(

Σ1
1 + Σ3

1 + Σ4
1

)
log(zB

2 ) +
(

Σ1
1 + Σ2

1 + Σ4
1

)
log(zB

3 )

+
(

Σ1
1 + Σ2

1 + Σ3
1

)
log(zB

4 ) + Σ2

(6.35)

with
Σ2 = 4

(
zB

1 zB
2 + zB

3 zB
2 + zB

4 zB
2 + zB

1 zB
3 + zB

1 zB
4 + zB

3 zB
4

)
+ · · · . (6.36)

The differential operators D1, . . . ,D4 do not allow for further solutions as expected.
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Chapter 6 Hypersurface Motive of the Banana Graphs

From numerics we can find for the inhomogeneities

D1 → 0

D2 → 5 log(zB
1 )− 5 log(zB

2 )

D3 → log(zB
1 ) + log(zB

2 ) + log(zB
3 )− 3 log(zB

4 )

D4 → −5 log(zB
3 ) + 5 log(zB

4 ) .

(6.37)

These inhomogeneous differential equations have an additional cubic-logarithmic solution

vS =−v
[
log
(

zB
1

)
log
(

zB
2

)
log
(

zB
3

)
+ log

(
zB

1

)
log
(

zB
3

)
log
(

zB
4

)
+ log

(
zB

1

)
log
(

zB
3

)
log
(

zB
4

)
+ log

(
zB

2

)
log
(

zB
3

)
log
(

zB
4

)]
− 2

[
(zB

1 + zB
2 )
(

log(zB
1 ) + log(zB

2 )
)
+ (zB

1 + zB
3 )
(

log(zB
1 ) + log(zB

3 )
)

+ (zB
1 + zB

4 )
(

log(zB
1 ) + log(zB

4 )
)
+ (zB

2 + zB
3 )
(

log(zB
2 ) + log(zB

3 )
)

+(zB
2 + zB

4 )
(

log(zB
2 ) + log(zB

4 )
)
+ (zB

3 + zB
4 )
(

log(zB
2 ) + log(zB

4 )
)]

+ 2
[
(−3zB

1 + zB
2 + zB

3 + zB
4 ) log(zB

1 ) + (zB
1 − 3zB

2 + zB
3 + zB

4 ) log(zB
2 )

+(zB
1 + zB

2 − 3zB
3 + zB

4 ) log(zB
3 ) + (zB

1 + zB
2 + zB

3 − 3zB
4 ) log(zB

4 )
]

+ 12(zB
1 + zB

2 + zB
3 + zB

4 ) + · · · .

(6.38)

One can then construct the full Feynman integral as a linear combination of the solutions
6.31, (7.13), (6.35) and (6.38). Additionally, one has to divide through the inner point a0.
Later in chapter 8 we will explain how one can determine the coefficients of this linear
combination from mirror symmetry and the Γ̂-class.
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CHAPTER 7

Complete Intersection Motive of the Banana
Graphs

In the last chapter we have introduced a Calabi-Yau geometry defined by a hypersurface in
a toric ambient such that the periods of this Calabi-Yau correspond to the maximal cuts of
the banana graphs. Now we want to associate another and topological different Calabi-Yau
geometry to the banana graphs such that again their periods describe the maximal cuts. This
will be a complete intersection Calabi-Yau and we will argue that this motive is superior to
the hypersurface motive. At the end we will compute the periods for the four-loop banana
integral and demonstrate the power of this technique.

The complete intersection description was from us used in [45, 47] for the banana graphs.

7.1 A complete intersection Calabi-Yau for the l-loop banana graph

In the hypersurface geometry it was quite obvious that their period integrals correspond
to the banana integral because they were literally the same integral expressions. Only the
integration range was different. The cycle Tl give rise to the holomorphic period at the
MUM-point and could be related to a maximal cut integral. The simplex integral over σl was
a relative period of the hypersurface Calabi-Yau. So this was a direct identification between
the banana integrals and the Calabi-Yau periods. For the complete intersection Calabi-Yau
this identification is a little bit more indirect and one has really to compare the periods and
not the integral expressions.

85



Chapter 7 Complete Intersection Motive of the Banana Graphs

So let us start with a direct computation of the holomorphic period at the MUM-point1

v0(p2, m2
i ) = −

p2

(2πi)l

∫
Tl

1(
∑l+1

i=1 m2
i xi

) (
∑l+1

i=1
1
xi

)
− p2

µl

∏l+1
i=1 xi

=
1

(2πi)l

∫
Tl

∞

∑
n=0

(
1

p2

)n(
∑
|k|=n

(
n

k1, . . . , kl + 1

) l+1

∏
i=1

(m2
i xi)

ki

)

×

 ∑
|k̃|=n

(
n

k̃1, . . . , k̃l+1

) l+1

∏
i=1

x−k̃i
i

 µl

∏l+1
i=1 xi

=
∞

∑
n=0

∑
|k|=n

(
n

k1, . . . , kl + 1

)2 l+1

∏
i=1

(
m2

i

p2

)ki

(7.1)

with |k| = ∑l+1
i=1 ki. For the second equality we have used the geometrical series and in

the last line we evaluated all residues. We see that v0 is actually only a function of the
ratios zi = m2

i /p2 for i = 1, . . . , l + 1 as expected from section 2.3. These parameters z are
now the good parameters for the complete intersection geometry compared to the Batyrev
coordinates zB for the hypersurface model. Before we move on let us emphasize that this
is exactly the same as the holomorphic period we found from the hypersurface Calabi-Yau
(6.17). The only difference is that in (6.17) we have used the Batyrev coordinates zB and one
has to divide by the inner point contributation a0. If one does this both expressions are the
same.

The idea is that we want to build a Calabi-Yau geometry such that its holomorphic period
is exactly (7.1). Moreover, we want that this geometry has naturally only the l + 1 coordinates
z and no further auxiallary parameters such that we do not have to worry about subslice
problems as in the hypersurface case. To be honest this is not a simple task and in [45] we
were lucky that we could find an appropriate candidate in the data base [160] after a hint
from Matt Kerr.

This geometry is defined as a complete intersection of two polynomials in an ambient
space. Therefore, we call it the complete intersection model. More precisely, these two
polynomials are of degree (1, . . . , 1) in

Pl+1 :=
l+1⊗
i=1

P
1
(i), (7.2)

i.e.,

Ml−1=
{

P1(w
(i)
1 , w(i)

2 ) = P2(w
(i)
1 , w(i)

2 ) = 0|(w(i)
1 : w(i)

2 ) ∈ P
1
(i), ∀i = 1, . . . , l + 1

}
⊂ Pl+1

(7.3)

1 We have rescaled the integral by a factor of p2 to compensate the scaling behavior from (2.4).
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with the two degree (1, . . . , 1) polynomial constraints

P1 = w(1)
2 · · ·w

(l+1)
2

(
κ −m2

1
w(1)

1

w(1)
2

− . . .−m2
l+1

w(l+1)
1

w(l+1)
2

)

P2 = w(1)
1 · · ·w

(l+1)
1

(
−p2 + κ

w(1)
2

w(1)
1

+ . . . + κ
w(l+1)

1

w(l+1)
1

)
.

(7.4)

Here we used as parameters the momentum p2, the masses m2 and an additional parameter
we call κ. The parameter κ can be scaled out and is only introduced for relating the complete
intersection description to the hypersurface one. We can denote our complete intersection in
a product of manifolds as

Ml−1 =


P

1
1

...
P

1
l+1

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

1 1
...

...
1 1

 l + 1

 ⊂


P

1
1

...
P

1
l+1

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

1
...
1

 l + 1

 = Fl ⊂ Pl+1 . (7.5)

The ambient manifold Fl is a Fano variety and we will see that it also plays an important
role for the full banana integral.

We can construct a birational map from the smooth geometry in eq. (7.3) to the singular
hypersurface geometry in eq. (6.2). First we go to a patch in Pl+1 in which we can set all w(i)

2

to unity. Then solving P1 = 0 for the parameter κ one obtains κ = ∑l+1
i=1 m2

i w(i)
1 . Plugging

this into the second constraint we immediately see that it is given by the second graph
polynomial

P2 = w(1)
1 · · ·w

(l+1)
1

(
−p2 +

(
l+1

∑
i=1

m2
i w(i)

1

)(
l+1

∑
i=1

1

w(i)
1

))
, (7.6)

which defines the hypersurface geometry by (6.2). So we see that booth geometries are
related through a birational map and so we expect that they should also both describe the
maximal cuts of the banana graphs. But to make this even more explicit we can compute the
holomorphic period of the complete intersection model directly from (7.3) and (7.4). Setting
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κ = 1 and going to the patch with w(i)
2 = 1 for all i = 1, . . . , l + 1, we find for the torus period

−p2

(2πi)l+1

∮
w(1)

1 =0
· · ·

∮
w(l+1)

1 =0

1
P1P2

dw(1)
1 ∧ . . . ∧ dw(l+1)

1

=
1

(2πi)l+1

∮
w(1)

1 =0
· · ·

∮
w(l+1)

1 =0

1

1−∑l+1
i=1 m2

i w(i)
1

1

1−∑l+1
i=1

1
p2

1
w(i)

1

dw(1)
1

w(1)
1

∧ . . . ∧
dw(l+1)

1

w(l+1)
1

=
1

(2πi)l+1

∮
w(1)

1 =0
· · ·

∮
w(l+1)

1 =0
∑
|m|=m
|n|=n

(
m

m1 . . . ml+1

)(
n

n1 . . . nl+1

) l+1

∏
i=1

(m2
i w(i)

1 )mi

(
1

p2w(i)
1

)ni

·
dw(1)

1

w(1)
1

∧ . . . ∧
dw(l+1)

1

w(l+1)
1

=
∞

∑
n=0

∑
|k|=n

(
n

k1, . . . , kl+1

)2 l+1

∏
i=1

zki
i = v0(z) .

(7.7)

The last identity is obtained by performing all the residues and using the coordinates zi =
m2

i

p2 .

From this small computation we really see that the complete intersection Calabi-Yau provides
the correct holomorphic period with the correct number of parameters for us.

7.1.1 Frobenius method for complete intersection geometry

So far we have only computed the holomorphic period for the complete intersection geome-
try. Similar as in the hypersurface model (6.20) - (6.23) one can construct all periods using the
Frobenius method for complete intersections [48]. The crucial point is the knowledge of the
`-vectors which have for a complete intersection the form `(k) = (`

(k)
01 , . . . , `(k)0h ; `(k)1 , . . . , `(k)c )

for k = 1, . . . , hl−2,1(Ml−1). Here h is the number of complete intersection constraints, c is the
number of homogeneous coordinates of the ambient space and the `(k)i for i = 1, . . . , c are the
degrees of the constraints. For simple ambient spaces being products of (weighted) projective
spaces one can directly write down the `-vectors using the rules in [48]. For general toric
ambient spaces one has to do a similar procedure as we did in the hypersurface case, namely
one has to analyze the associated polyhedron and a triangulation of it is necessary. Also here
we refer for more details to [48]. Fortunately, in the case of the banana graphs the ambient
space is a product of l + 1 copies of P

1 and by (7.5) we have h = 2 , c = 2(l + 1) and the `(k)
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7.1 A complete intersection Calabi-Yau for the l-loop banana graph

read
`(1) = (−1,−1; 1, 1, 0, 0, · · · , 0, 0, 0, 0)
`(2) = (−1,−1; 0, 0, 1, 1, · · · , 0, 0, 0, 0)
...
`(l) = (−1,−1; 0, 0, 0, 0, · · · , 1, 1, 0, 0)

`(l+1) = (−1,−1; 0, 0, 0, 0, · · · , 0, 0, 1, 1) .

(7.8)

From the `-vectors we get first the natural variables of the geometry which are also called
the Batyrev coordinates but now for a complete intersection. A general formula is given
in [48] which is quite similar to the one in the hypersurface case (6.15). For the banana graph
geometry one finds

zi =
m2

i

p2 for i = 1, . . . , l + 1 , (7.9)

which are exactly the right dimensionless parameters one would expect from eq. (7.1).
Secondly, one can construct from the `-vectors a generalized Gelfand-Kapranov-Zelevinskı̆

differential ideal with holomorphic solution

ω(z; ρ) = ∑
n1,...,nl+1≥0

c(n + ρ) zn+ρ , (7.10)

where the series coefficients c(n) are determined by the l + 1 `-vectors via

c(n, ρ) =
∏2

j=1 Γ
(
−∑l+1

α=1 `
(α)
0j (nα + ρα) + 1

)
∏2l+2

i=1 Γ
(

∑l+1
α=1 `

(α)
i (nα + ρα) + 1

) . (7.11)

In particular, the unique holomorphic solution at the point of maximal unipotent mon-

odromy, i.e., zi =
m2

i

p2 = 0 for i = 1, . . . , l + 1, is given by

v0(z) = ω(z; ρ)|ε=0 = ∑
n1,...,nl+1≥0

(
|n|

n1, . . . , nl+1

)2 l+1

∏
k=1

znk
k . (7.12)

The other periods are given as certain combinations of derivatives w.r.t. the deformation
parameters

v
(i)
k (z) = [cα1...αk

i ∂ρα1
. . . ∂ραk

v(z, ρ)]|ρ=0 , (7.13)

where the index i labels the different k-logarithmic solutions. For certain tensors cα1...αk
i
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Chapter 7 Complete Intersection Motive of the Banana Graphs

these solutions correspond to actual period integrals of integral homology of Ml−1. We will
determine them with the Γ̂-class in chapter 8.

From the `-vectors we can actually determine not only the periods but also a set of
differential operators annihilating them. For every `-vector `(i) one can compute using the
rules of [48] a differential operator Di. For the `-vectors of the banana graphs (7.8) we get
the following ones

Di = θ2
i −

(
l+1

∑
j=1

θj

)2

zi

= θ2
i − zi

(
1 +

l+1

∑
j=1

θj

)2

for i = 1, . . . , l + 1.

(7.14)

These l + 1 operators are not enough to determine the periods of Ml−1 uniquely, i.e., the
solution space of all Di contain more solutions than periods exist. Therefore, one has to
find more differential operators such that the non-geometric solutions disappear. There
are several techniques known to find such operators. The naiv one is to make an ansatz.
Here one makes an ansatz of an additional operator such that it annihilates the known
holomorphic solution. Then one assumes that such an operator should also annihilate the
higher-logarithmic solutions. By this procedure one can construct the desired additional
operators. Another more difficult method is to try to factor the operators Di and require that
the resulting operator after factorization also annihilates the geometric periods. In practice
this is a hard task, in particular in the multi-parameter case, because often only certain linear
combinations of the operators Di are factorizable and not the single one. As a last method
one can also use the combinatorics of (7.11) to simply guess additional differential operators.
In contrast to the naive ansatz method there are muss less parameters to fix. In section 9.2
we will explain this in more detail and in section 7.3 we demonstrate the hole GKZ method
on the four-loop generic-mass banana graph.

7.2 Comparison of the hypersurface motive and the complete
intersection motive

There are at least four reasons why the smooth complete intersection representation in
eq. (7.3) is superior to the hypersurface representation in eq. (6.2). First, after using the
SLi(2, C) symmetries, it contains exactly the right number of deformations which are very
easily identifiable with the physical parameters p2, m2 or their ratios z. Second, and even
more importantly, eq. (7.3) defines a natural closed sub-motive (see below) Hhor

l−1(MCI
l−1) and

Hl−1
hor (MCI

l−1, Z) of the total homology and cohomology of MCI
l−1.2 In particular, Hl−1

hor (MCI
l−1)

is generated by derivatives w.r.t. the deformation parameters in (7.5) of the holomorphic

2 Which similar to the cohomology and homology of MHS
l−1 is much bigger then the desired physical sub-motive.
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(l − 1, 0)-form as can be seen from (4.15) and the discussion around. We find for the
respective cohomology groups

hl−1−k,k
hor (MCI

l−1) =


(

l+1
k

)
if k ≤

⌈
l
2

⌉
− 1(

l+1
l−1−k

)
otherwise

, (7.15)

which is much smaller than the full cohomology group for high loop orders. Among this
cohomology group we can identify the integrands of the master integrals in D = 2 di-
mensions, while among the dual homology group Hhor

l−1(MCI
l−1) we find a basis of different

maximal cut contours. Third, it allows one to extract the Picard-Fuchs differential ideal with
general masses straightforwardly as a simpler GKZ system only in the physical masses, as
pioneered for these cases in ref. [48]. The last point is that, according to ref. [48], mirror
symmetry maps the horizontal middle cohomology Hl−1

hor (MCI
l−1) to the vertical cohomology

Hk,k
vert(W

CI
l−1), i.e., the one that is inherited from the ambient space, and the corresponding

middle homology Hl−1
hor (MCI

l−1) to the even homology Hvert
even(W

CY
l−1), that is obtained by re-

stricting the Chow group of the ambient space, on the same manifold. If we restrict ourselves
to these vertical– and horizontal subspaces of homology and cohomology parametrized by
the physical subspace of the moduli spaces and denote the restriction by the superscript res
then the restricted complete intersection geometries for the banana graphs are self mirrors

MCI, res
l−1 = WCI, res

l−1 . (7.16)

The latter fact allowed some of us in ref. [45] to find the full banana integral in D = 2
dimensions using the Γ̂-classes of the mirror geometry WCI, res

l−1 in the large volume regions
for the full physical parameter space and to specify the exact branching behavior of the
Feynman integral at the conifold divisors. We will demonstrate this in chapter 8.

The important lesson to draw from the two geometrical representations for the banana
graphs is that there is no such thing as a unique Calabi-Yau geometry (or its extension)
associated to a Feynman graph. To underline the point, we note that MHS

l−1 and MCY
l−1 have

different topologies, e.g., the Euler numbers for MHS
l−1 were already computed after eq. (6.14)

and are listed here again

χ(MHS
3 ) = 20 , χ(MHS

4 ) = 540 , . . . . (7.17)

For the complete intersection one can find MCI
l−1

χ(MCI
3 ) = −80 , χ(MCI

4 ) = 720 , . . . . (7.18)

Therefore, one cannot find a smooth map relating these geometries. Rather, one must
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focus on finding the uniquely defined family of Calabi-Yau motives, preferably in the easiest
geometrical setting.

7.3 The four-loop generic-mass banana integral

Before we end this chapter on the complete intersection Calabi-Yau motive associated to
the banana family we want to demonstrate on the four-loop generic-mass case the strength
of this description. This is a five-parameter model, i.e. z1 = m2

1/p2, . . . , z5 = m2
5/p2. The

`-vectors were already defined in (7.8) and the holomorphic solution is given in (7.12) which
reads for the four-loop case

v0(z) = ∑
n1,...,n5≥0

(
|n|

n1, . . . , n5

)2 5

∏
k=1

znk
k

= 1 + z1 + z2 + z3 + z4 + z5 + z2
1 + z2

2 + z2
3 + z2

4 + z2
5

+ 4(z1z2 + z1z3 + z2z3 + z1z4 + z2z4 + z3z4 + z1z5 + z2z5 + z3z5 + z4z5) + · · · .
(7.19)

For the logarithmic solutions we promote the faculties to gamma functions as in (7.11)
and compute the derivatives. Here every derivative w.r.t each ρα, α = 1, . . . , 5 is actually a
solution. We find

v
(1)
1 (z) = [∂ρ1

v(z, ρ)]|ρ=0

= v0 log(z1) + 2(z2 + z3 + z4 + z5) +O(zizj) .
(7.20)

The other four single-logarithmic solutions are obtained by replacing z1 ↔ zi for i = 2, . . . , 5.

For the higher k-logarithmic solutions not all derivatives w.r.t. any k-tuple of ρ-derivatives
are actually solutions to the desired differential ideal. To find the correct linear combinations
of ρ-derivatives we first have to find a generating set of operators such that their solutions
span the whole cohomology group Hl−1

hor (Ml−1). More precisely, we want at the MUM-point
a single holomorphic and single triple-logarithmic solution as well as five single-logarithmic
and five double-logarithmic solutions as predicted from the Calabi-Yau geometry such that
in total we have twelve solutions generating Hl−1

hor (Ml−1).

These operators are best determined by analyzing the gamma functions in (7.11) by the
techniques explained in section 9.2 for ε = 0. A mathematica code for generating them
is supplemented to my publication [47]. As a possible generating set of operators one can
take first the five operators from the `-vectors given in eq. (7.14) and additional five more
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7.3 The four-loop generic-mass banana integral

complicated operators which start in leading order in z as

D6 = (θ1 − θ4) (θ3 − θ5) +O(zi)

D7 = (θ1 − θ3) (θ4 − θ5) +O(zi)

D8 = (θ2 − θ4) (θ3 − θ5) +O(zi)

D9 = (θ2 − θ3) (θ4 − θ5) +O(zi)

D10 = θ1 (θ2 − θ5) + (−θ2 + θ4) θ5 + θ3 (−θ4 + θ5) +O(zi) .

(7.21)

The full form can be found in appendix B.

With the operators {D1, . . . , D10} the five double-logarithmic solutions are

v
(1)
2 (z) = [(∂ρ1

∂ρ2
+ ∂ρ1

∂ρ3
+ ∂ρ1

∂ρ4
+ ∂ρ1

∂ρ5
)v(z, ρ)]|ρ=0

= v0 log (z1) (log (z2) + log (z3) + log (z4) + log (z5)) + 8z1 log(z1)

+ 2(z2 + z3 + z4 + z5)(3 log (z1) + log (z2) + log (z3) + log (z4) + log (z5))

+O(zizj)
(7.22)

and again the other four are found by replacing z1 ↔ zi for i = 2, . . . , 5.

The tripple-logarithmic solution is given by

v3(z) =

[(
∑

1≤α1<α2<α3≤5
∂ρα1

∂ρα2
∂ρα3

)
v(z, ρ)

]∣∣∣∣∣
ρ=0

= v0

(
∑

1≤α1<α2<α3≤5
log(zα1

) log(zα2
) log(zα3

)

)
+O(zi) .

(7.23)

The twelve solutions in eqs. (7.20), (7.20), (7.22) and (7.23) span the cohomology Hl−1
hor (Ml−1).

In chapter 8 we explain how one can construct out of these solutions geometrical period
integrals of Hl−1

hor (Ml−1, Z) using the Γ̂-class formalism.

At the end we want to mention that as in the hypersurface case one can extend the
homogeneous differential operators {D1, . . . , D10} to a set of inhomogeneous differential
equations such that their solution space describes the whole banana four-loop integral and
not only its maximal cuts. The corresponding inhomogeneities are obtained as explained in
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section 6.2. They are given for the choice of the operators {D1, . . . , D10} by

D6 → (log (z1)− log (z4)) (log (z3)− log (z5))

D7 → (log (z1)− log (z3)) (log (z4)− log (z5))

D8 → (log (z2)− log (z4)) (log (z3)− log (z5))

D9 → (log (z2)− log (z3)) (log (z4)− log (z5))

D10 → log (z1) (log (z2)− log (z5)) + (− log (z2) + log (z4)) log (z5)

+ log (z3) (− log (z4) + log (z5)) ,

(7.24)

whereas the operators D1, . . . , D5 have vanishing inhomogeneities, i.e., they stay homoge-
neous also for the whole Feynman integral.

The additional special solution to (7.24) can be chosen to be

v4(z) = v0

(
∑

1≤α1<α2<α3<α4≤5
log(zα1

) log(zα2
) log(zα3

) log(zα4
)

)
+O(zi) . (7.25)

Also here we discuss the correct linear combination of solutions of (7.20), (7.20), (7.22),
(7.23) and (7.25) to yield the banana four-loop Feynman integral in chapter 8.
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CHAPTER 8

Mirror Symmetry and the Γ̂-Class

In this chapter we want to introduce techniques from mirror symmetry to determine from
the non-geometric Frobenius basis of periods the geometrical, integral basis of periods. For
the Calabi-Yau geometry this means that we want to find a geometrical basis of maximal cut
integrals. For the full Feynman integral we want to find the correct linear combination of
Calabi-Yau periods and the additional special solution of the extended set of inhomogeneous
differential equations. These problems can be solved with the Γ̂-class formalism which is a
technique from mirror symmetry.

We began this chapter with an introduction of mirror symmetry and a recapitulation of
its most important consequences and concepts. In particular, we explain the Γ̂-class and
its extension to the fano variety Fl . Then we use the Γ̂-class technique to determine in the
equal-mass case the linear combination of Frobenius basis elements to describe the full
banana integral.

8.1 Mirror symmetry

There is a quite remarkable fact, namely that Calabi-Yau manifolds come quite generically
in mirror pairs (Mn, Wn). This can be understood as the exchange of two deformation– or
moduli spaces. It has precise implications on how the l-loop banana integral can degenerate,
e.g., in the large momentum regime.

So far we have only described the complex structure moduli spaceMcs of the manifold
Mn. One can depicture the infinitessimal directions of this moduli space as infinitessimal
deformations δgı̃ ̃ of the Calabi-Yau Kähler metric gi ̄ that preserve the Calabi-Yau property
namely its Ricci-flatness, Ri ̄(giı̄ + δgı̃ ̃) = 0. While the Kähler metric in a given complex
structure has mixed index structure i ̄, the deformation δgı̃ ̃ can have any index structure. It is
clear that the pure deformations correspond to the complex complex structure deformations,
which change the meaning of the unbarred and barred indices. Morevover, using the
Weitzenböck formula [130], one shows that the latter are related to harmonic forms spanning
H1(Mn, TMn), i.e., to complex structure deformations [99]. Deformations with mixed index
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Chapter 8 Mirror Symmetry and the Γ̂-Class

structure are identified with real Kähler structure deformations. They correspond to a choice
of the Kähler form ω as a real linear combination of h1,1(Mn) harmonic (1, 1)-forms. The
classical Kähler moduli space is hence of real dimension h1,1(Mn). It has been suggested
by type II string theory on Mn (see ref. [49]) that one should complete the choice of the
real Kähler form ω with the choice of a real Neveu-Schwartz B-field b = bi ̄ dxidx̄ ̄ whose
equations of motion imply that it is also a harmonic (1, 1)-form to describe a complexified
Kähler moduli space. Let us fix topological curve classes Ci for i = 1, . . . , h1,1 in H2(Mn)

dual to a reference basis of H1,1(Mn) at t0 on Mn. The independent Kähler parameters of the
large volume Calabi-Yau n-fold Mn are identified with the complexified areas

ti =
∫

Ci

(ω + ib) for i = 1, . . . , h1,1(Mn) . (8.1)

These curves1 parametrize the complexified Kähler moduli spaceMcKs(Mn).
The mirror symmetry conjecture states that for a Calabi-Yau n-fold Mn there is a Calabi-Yau

n-fold Wn so that the structures

Hp,q(Mn)
∼= Hn−p,q(Wn) (8.2)

are identified. On the one hand, as reviewed in section 4.1, the infinitesimal complex struc-
ture deformations are described by the cohomology groups H1(Mn, TMn)

∼= Hn−1,1(Mn).

They are unobstructed and the dimension ofMhn−1,1

cs (Mn) is hn−1,1, as indicated. On the

other hand, we know from eq. (8.1) that the complexified Kähler moduli spaceMh1,1

cKs(Mn)

has dimension hn−1,1(Mn). So, schematically, mirror symmetry states that the structures
associated to the following moduli spaces are identified:2

Mhn−1,1(Mn)
cs (Mn)⇐⇒M

h1,1(Wn)
cKs (Wn) and Mh1,1(Mn)

cKs (Mn)⇐⇒M
hn−1,1(Wn)
cs (Wn) . (8.3)

Note that eq. (8.2) corresponds to a 90 degree rotation of the Hodge diamond of Mn relative
to the one of Wn, in which the unique (n, 0)– and (0, n)-forms on Mn and the unique (0, 0)-
cohomology element and the unique (n, n)-volume form on Wn, respectively, are identified.
In other words, mirror symmetry exchanges the vertical– and horizontal cohomologies and
their associated structures. In particular, it exchanges Hn

hor(Mn) with Hvert = ⊕
n
k=0Hk,k

vert. This
is also what we see when comparing the middle cohomology of Mn with the limiting mixed

1 Recall that the area of a curve (Ci) is given by area(Ci) =
∫

Ci
ω.

2 The statement also applies to K3 surfaces where H1,1(MK3) ∼ H1,1(WK3), and there is anyways only a
universal K3, albeit in a more subtle sense. The exchange means in this case that the polarization is changed,
so that the role of the transcendental– and the holomorphic cycles are exchanged. More generally, in the
symmetric cohomology groups, like H

n
2 , n

2 (X) for n even, one can define vertical– and horizontal pieces, that
get exchanged.
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8.2 The Γ̂-class

Hodge structure at the MUM-points according to eq. (4.39), for example when comparing the
F-point with the M-point in eq. (4.43). Using monodromy considerations and the notation
from eq. (4.42), the following mirror map can be identified at the MUM-points:

tk(z) =
S(1),k(z)
S(0),0(z)

=
1

2πi

(
log(zk) +

Σk(z)
v0(z)

)
for k = 1, . . . , h11(Wn) = hn−1,1(Mn) .

(8.4)

The last ingredient is the homological mirror symmetry conjecture which states the equivalence
of the derived categories on Mn and Wn:

Dπ(Fukaya(Mn))

the bounded derived Fukaya
category of Mn

⇐⇒
Db(Coh(Wn))

the bounded derived category
of coherent sheaves on Wn ,

. (8.5)

According to the conjecture, mirror symmetry is really supposed to be an order two iso-
morphism M : Db(Coh(Wn))→ Dπ(Fukaya(Mn)) between these categories respecting all
structures. The objects in Dπ(Fukaya(Mn)) are Lagrangian cycles supporting local systems.
The definition of the Lagrangian cycles L uses the symplectic structure L|ω = 0, as it is famil-
iar from classical mechanics. They have real dimension n and can be characterized by their
homology classes Γ in Hn(Mn, Z) that carry a mass MΓ(z) given by MΓ(z) = eK(z)/2|ZΓ(z)|
related to the period or charge ΠΓ(z). The objects in Db(Coh(Wn)) are coherent holomorphic
sheaves. They are supported on holomorphic sub-manifolds and carry additional bundle
structures and can be characterized by their class G in the algebraic K-theory group K0

alg. A
key point is that, on the one hand, their charge ΠG(t) can be calculated using the Γ̂-class of
G in the large volume regime in terms of classical intersections of divisors and characteriztic
classes on Wn, and on the other hand, they can be identified at the MUM-points with the
periods of the mirror using the mirror map in eq. (8.4) as ΠG(t) = ΠM(G)(t). Here we
introduced the convention that ΠΓ(t) is evaluated in the Kähler gauge X0 = S(0),0 = 1. Note
that MΓ(z) is invariant under Kähler gauge transformations.

8.2 The Γ̂-class

The motivation for defining the Γ̂-class orginated in the idea of identifying the pairing in
both categories more naturally. Both categories have such a pairing between the charge
classes of objects and auto-equivalences that leave the pairing invariant. In the Fukaya
category the pairing is induced by the intersection pairing coming from Σ (we abbreviate it
as Γ ◦ Γ′), and the auto equivalences can be identifyied with the monodromy group action
on Γ. The natural pairing for objects in Db(Coh(Wn)), after mapping K0

alg to Hvert using the
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Chapter 8 Mirror Symmetry and the Γ̂-Class

Chern map, is the Euler pairing

G ◦ G ′ =
∫

Wn

ch(G∗) ch(G ′)Td(TWn) . (8.6)

The Strominger-Yau-Zaslow conjecture implies that the sky-scrapper sheafOpt and the structure
sheafOWn

are mapped to M(Opt) = T and M(OWn
) = S, where the classes of the two special

Lagrangian n-cycles T,S have been specified at the end of section 4.2.3. In simple cases,
ΠS could be analytically continued to the MUM-point and some data of ZOWn

(t) = ΠS for

OWn
= M(S) were known for three-folds, like the famous ζ(3)χ(Wn) term [124] and the

(2πi)2

24 c2 · D terms [48]. The Todd class Td is a multiplicative class generated by [161]

x
1− e−x . (8.7)

The Γ̂-class proposal [162–165] is to take a ‘square root’ of the Todd class using the following
identity

Γ
(

1 +
x

2πi

)
Γ
(

1− x
2πi

)
= e−x/2 x

1− e−x , (8.8)

and define the Γ̂-class by

Γ̂(TWn) = ∏
i

Γ
(

1 +
δi

2πi

)
= exp

(
−γc1(TWn) + ∑

k≥2
(−1)k(k− 1)! ζ(k) chk(G)

)
(8.9)

with the Euler-Mascheroni constant γ. Here δi are the Chern roots of TWn. The transition
from the Chern characters to the Chern classes ck is decribed by Newton’s formula

chk = (−1)(k+1)k

[
log

(
1 +

∞

∑
i=1

ci xi

)]
k

, (8.10)

where [∗]k means to take the kth coefficient (in x) of the expansion of the expression ∗. The
Chern classes in turn can be computed from the adjunction formula

ck(Wl−1) =

[
∏l+1

i=1(1 + Hi)
2

(1 + ∑l+1
i=1 Hi)

2

]
k

, (8.11)

where one has to take the term of multi-degree k in the hyperplane classes Hi. More precisely,
since the hyperplane classes in each P

1 fulfill H2
i = 0 we can express ck in terms of elementary
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symmetric polynomials sk(H) = ∑i1<...<ik
Hi1 · · ·Hik

as

ck(Wl−1) = (−1)kk!
k

∑
j=0

(−2)j(k + 1− j)
j!

sk(H) =: NWl−1
k sk(H) . (8.12)

Similarly, considering the power one of the normal bundle in the denominator of (8.11)
(instead of two) we can write for the Chern classes of the ambient space

ck(Fl) = (−1)kk!
k

∑
j=0

(−2)j

j!
sk(H) =: N Fl

k sk(H) . (8.13)

Moreover, we notice that the integral of a top degree product of Chern classes ckn
over

X = Wl−1 or X = Fl is given by

∫
X

∏
n

ckn
= (l + 1)! ∏

n

N X
kn

kn!
. (8.14)

On Calabi-Yau spaces one defines G ◦ G ′ =
∫

Wn
ψ(G)ψ(G ′) with Ψ(G) = ch(G) · Γ̂(TWn).

The operation ψ(G) gives a sign (−1)k on elements in H2k, and one gets as desired G ◦ G ′ =
Γ ◦ Γ′ with Γ = M(G) and Γ′ = M(G ′). Moreover, the charges of G in the large volume limit
of Wn, which corresponds to a MUM-point of Mn, can be calculated as [134, 162–166]

ΠG(t) =
∫

Wn

eω·t Γ̂(TWn)ch(G) +O(e−t) . (8.15)

If we know the image of the class of the cycle of a maximal cut, we can use eq. (8.15) to
compute its precise asymptotic at the MUM-point. For the banana integral the maximal
cut contour related to the imaginary part of the integral was identified with S in ref. [45],
and it has the dual G = OWn

with ch(OWn
) = 1. Therefore, it was possible to extract the

asymptotic expansion of the Feynman integral involving all the transcendental numbers by
identifying

ΠS(t(z)) =
∫

Wn

eω·t Γ̂(TWn) +O(e
−t) = ZOWn

(t) , (8.16)

and comparing the powers of tk on both sides using the mirror map in eq. (8.4), see also
below. This uniquely defines the transformation from the Frobenius basis in eq. (4.42) to
the integer cycle basis and relates the large momentum behavior of the banana integrals
to the topological data of the Calabi-Yau space Wn given in eq. (7.5), where the dimension
of the Calabi-Yau space n = dim(Mn) = dim(Wn) = l − 1 is determined by the loop order
l. We also note that the cycle T ∼ Tn can be identified with the skyscraper sheaf Opt and

99
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ΠOpt
= 1 [163]. Hence, in this case we get no logarithm and the corresponding solution is

the holomorphic one and OW ◦ Opt = S∩ T = 1. It is possible to get the full set of integral
K-theory classes and specify a complete integral basis of periods using eq. (8.15). This is
reviewed for three-folds and four-folds in ref. [134], but should be possible for all Wl−1.

The last point to make here goes beyond the case of maximal cuts and should fit into
the framework of the third generalization of Deligne to define mixed Hodge structures
on singular manifolds for open cycles. It was found in ref. [45] and proven by Hiroshi
Iritani in ref. [50] that the full banana integral, which is defined over the open cycle σl in the
l-dimensional Fano variety Fl with Wl−1 ⊂ Fl such that the l − 1-dimensional Wl−1 embeds
as canonical hypersurface, is determined by an extended Γ̂-class

Γ̂Fl
(TFl) =

Â(TFl)

Γ̂2(TFl)
=

Γ(1− c1)

Γ(1 + c1)
cos(πc1) , (8.17)

where Â is the Hirzebruch A-roof genus [161] and c1 = c1(Fl) 6= 0. Using this we can get the
asymptotic behavior of the full Feynman integral by the identification

Jl,0(z, 0) =
∫

Fl

eω·t Γ̂Fl
(TFl) +O(e

−t) . (8.18)

The integer symplectic basis element that corresponds to Jl,0(z, 0) can now be determined
by expanding eq. (8.18) in the parameters t(z). To do this one has to calculate the classical
topological intersection data that occur in this expansion. Let I(k) a set of k indices, with
1 ≤ I(k)p ≤ h11(Fl) for all p = 1, . . . , k. Then typical terms that appear are the intersections of

l divisors Di for i = 1, . . . , h11(Fl) in Fl , i.e.,
∫

F
∧l

p=1 ωI(l)p
=
⋂l

p=1 DI(l)p
or the intersection of

the kth Chern class ck with l − k such divisors in F, i.e.,
∫

F ck
∧l−k

p=1 ωI l−k
p

= [ck] ∩
⋂l−k

p=1 DI(l−k)
p

etc.. The evaluation is feasible by simple and fundamental techniques in algebraic geometry
and fixes the numerical coefficients of a degree l polynomial in t that represents Jl,0(z, 0) up
to O(e−t) corrections. For the Fano variety Fl in eq. (7.5), the calculation was performed
in ref. [45] in detail. Inserting the mirror map in eq. (8.4), we can hence get the precise
coefficients of the leading logarithmic terms and since Jl,0(z, 0) is a solution to a linear
differential equation we can uniquely combine the Frobenius solutions in eq. (4.42) to get
the exact linear combination that specifies an integer basis element of periods.

These coefficients can also nicely be expressed through a generating functional as we
found in [45] before the proof with the Γ̂-class was performed. If one expands the l-loop
banana Feynman integral in terms of the Frobenius basis (5.6) as

Jl,0(z, 0) =
l

∑
k=0

λ
(l)
k vk (8.19)
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then the coefficients λ
(l)
k can be computed through3

∞

∑
l=0

λ
(l)
0

xl

(l + 1)!
= −Γ(1− x)

Γ(1 + x)
e−2γx−iπx , (8.20)

and the other coefficients are related by

λ
(l)
k = (−1)kk!

(
l + 1

k

)
λ
(l−k)
0 . (8.21)

For the generic mass case the coefficients λ
(l)
k split symmetrically for multiple higher-

logarithmic solutions if these are constructed also symmetrically. This is actually the case
for our bases of generic-mass solutions in the hypersurfaces as well as in the complete
intersection geometry. For the hypersurface motive, cf. (6.2), this splitting4 can be found in
table 4 of [45] and equation (5.17). For the four-loop banana integral with solutions (7.20),
(7.20), (7.22), (7.23) and (7.25) the correct linear combination to obtain the full banana integral
is given by

λ
(4)
0 = −450ζ(4) + 80πζ(3)i

λ
(4)
1,1 = . . . = λ

(4)
1,5 = 16ζ(3) + 24πζ(2)i

λ
(4)
2,1 = . . . = λ

(4)
2,5 = 6ζ(2)

λ
(4)
3,1 = 2πi

λ
(4)
5,1 = 1 .

(8.22)

Before we end this chapter we also want to mention that there is also another possibility to
determine the leading asymptotic of the banana integral which can also be seen as a check of
the Γ̂-class results, namely the hypergeometric series representation of the banana integrals.
We determined through a lengthy computation in [47] the leading asympotic of the banana
integrals using the Mellin-Barnes representation also in dimensional regularization. In the
following chapter we will recall shortly this computation and its implications. But in D = 2
this again confirms the results presented in this section.

3 Notice that here the coefficients are slightly different than the ones in [45] due to a different normalization of
the Frobenius basis, cf. (5.6).

4 Notice that in [45] the different convention in the analytic continuation which gives the imaginary part of the
banana integral a negative sign compared to the conventions used here. The convention in this thesis follow
the standard physical ones.
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CHAPTER 9

Banana Feynman Integrals in Dimensional
Regularization

So far we have only considered the banana integrals in D = 2 dimensions. In this final
chapter we now want to extend this to dimensional regularization and we want to elaborate a
formalism to systematically compute the expansion in the dimensional regulator ε. As a first
step we compute an explicit hypergeometric series representation for the generic-mass banana
integral in the large momentum limit, p2 � m2

i > 0. This hypergeometric representation
serves a twofold purpose: First, it allows us to obtain the leading asymptotic behavior of all
banana integrals in the large momentum limit, which provides the boundary condition for
solving the differential equations, reproducing in leading order in ε the coefficients given in
eqs. (8.20) and (8.21) found by numerics and the Γ̂-class. Second, we use this representation
to derive a complete set of differential equations satisfied by the banana integrals.

This chapter is mostly based on my last publication [47] abound the banana integrals
in dimensional regularization. We collect here only the most important aspects to explain
the computation of the banana integrals in D = 2− 2ε dimensions as an extension of the
previous chapters. For the complete derivation of the hypergeometric series expansion of
the banana integrals and the intermediate Mellin-Barnes representation we refer to the original
work [47].

9.1 A hypergeometric series representation of the banana integral

In this section we want shortly to recapitulate the most important steps to compute the
hypergeometric series expansion of the l-loop banana integral eqrefsymbanana. For this
one first starts to find a Mellin-Barnes integral representation which for the banana integrals
can be evaluated in the large momentum regime p2 � m2

i > 0 yielding the hypergeometric
series expansion. This determines the leading asymptotic of the banana integrals to all
orders in the dimensional regulator ε.

Our derivation of the hypergeometric series expansion is valid for generic masses m2
i and
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Chapter 9 Banana Feynman Integrals in Dimensional Regularization

exponents νi of the propagators. Nevertheless, we present here only the results for the case
νi = 1 for all i = 1, . . . , l + 1. If all propagator masses are zero, the integral is trivial and can
be evaluated in terms of gamma functions. Therefore, we assume from now on that at least
one propagator is massive.

To derive the MB representation for Ĩ := IBan
ν (p2, m2; D), we start from the Feynman

parameter representation in eq. (2.31) and adapt the approach of ref. [33, app. A] to the
l-loop case (the two-loop case was treated in ref. [167]; see also ref. [168]). There are two
important identities. The first one is the identity

1

(A + B)λ
=
∫ c+i∞

c−i∞

dξ

2πi
Aξ B−ξ−λ Γ(−ξ)Γ(ξ + λ)

Γ(λ)
, (9.1)

where for appropriate c the contour runs parallel to the imaginary axis and separates the left
poles (due to Γ(ξ + λ)) from the right poles of the integrand (due to Γ(−ξ)). Secondly, we
use a formula of a Euler beta type integral∫ ∞

0
dx xα (A + Bx)β = A1+α+βB−1−α Γ(1 + α)Γ(−1− α− β)

Γ(−β)
. (9.2)

With these two identities we can compute a Mellin-Barnes representation of the banana
integral. For a careful derivation we refer to [47]. Afterwards this Mellin-Barnes integral
can be computed in the large momentum region, i.e. for p2 � m2

i . This is a very technical
procedure and again the details can be looked up in [47]. We only cite here the final
hypergeometric series representation of the banana integral for the generic-mass case and
with unit propagator powers

IBan
1,...,1(p2, m2; 2− 2ε) =

1
Γ(1 + lε)

(
1

−p2 − i0

)1+lε

∑
j∈{0,1}l+1

Γ(−ε)j Γ(ε)l+1−j Γ(1 + (j− 1)ε)
Γ(−jε)

×

l+1

∏
i=1

(
m2

i

−p2 − i0

)(ji−1)ε

∑
n∈N

l+1
0

(1 + jε)n (1 + (j− 1)ε)n

∏l+1
i=1(1 + (−1)ji+1ε)ni

l+1

∏
i=1

1
ni!

(
m2

i

p2

)ni
 .

(9.3)

We can see here that, similar to the case D = 2, the generic-mass banana integral is symmetric
in variables m2

i /p2 for i = 1, . . . , l + 1. Or the other way round, the equal-mass case is
somehow the diagonal of the generic-mass case. This reflects the fact that the banana graphs
have a symmetry which interchanges the propagators.

At the end we want to give the leading asymptotic behavior of the banana integral (9.3) at
large momentum. So let n = (0, . . . , 0) in eq. (9.3), we can immediately extract the leading
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behavior of the banana integrals at large momentum. For the generic-mass case one obtains:

IBan
1,...,1(p2, m2; 2− 2ε) = − 1

Γ(1 + lε)
eiπlε

(
1

p2

)1+lε

× ∑
j∈{0,1}l+1

eiπ(j−1)ε Γ(−ε)j Γ(ε)l+1−j Γ(1 + (j− 1)ε)
Γ(−jε)

l+1

∏
i=1

z(ji−1)ε
i +O

(
z2

i

)
.

(9.4)

Equation (9.4) gives the leading asymptotics of IBan
1,...,1(p2, m2; 2 − 2ε) and can be used as

a boundary condition to solve the differential equations for the banana graphs. In the
equal-mass case, eq. (9.4) can be further simplified to

Jl,1(z; ε) = −
l+1

∑
k=1

(
l + 1

k

)
Γ(−ε)k Γ(ε)l+1−k

Γ(−kε)

Γ(1 + (k− 1)ε)
Γ(1 + lε)

e(k−1)iπε z1+(k−1)ε +O
(

z2
)

.

(9.5)

Expanding eq. (9.5) around ε = 0, one obtains

Jl,1(z; ε) =
∞

∑
n=0

J(n)l,1 (z) εn , (9.6)

and inspecting the leading order in ε, J(0)l,1 precisely reproduces the logarithmic structure of
the l-loop banana Feynman integral in D = 2 spacetime dimensions described in chapter 4.
Moreover, eq. (9.5) confirms the combinatorial pattern of Riemann zeta values in the
constants λ

(l)
k in eqs. (8.20) and (8.21), and extends it to higher orders in ε. It was also

observed that the transcendental weight of λ
(l)
k , which is l − k, and the highest occurring

power of logarithms in vl,k(z), which is k, always add up to the loop order l.

We can now partially generalize these observations to higher orders in the ε-expansion.
For simplicity we discuss the equal-mass case, while the generic-mass case can be treated
similarly. At order εn we find powers of log(z) up to L = l + n and coefficients with
transcendental weight up to T = l + n. Indeed, at any order εn, the constant of highest
occurring transcendental weight T = l + n always multiplies the holomorphic period vl,0(z)
of the Calabi-Yau (l − 1)-fold. More generally, at order εn, consider all terms that multiply
constants of a certain transcendental weight T and a certain power L of logarithms, i.e.,
logL(z). We find that there are only non-zero terms for L + T ≤ l + n. For the maximum
value L + T = l + n, these terms are again proportional to the holomorphic Calabi-Yau
period vl,0(z) (with a rational number as proportionality constant), independently of the
splitting between L and T and the value of n.
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9.2 Differential equations for banana Feynman integrals

The goal of this section is to present a method to derive differential equations for banana inte-
grals at arbitrary loop order and in dimensional regularization. In principle, the differential
equations can be derived using IBP relations (see section 2.3.2). However, for high numbers
of loops l and for many distinct values of the masses m2

i , publicly available computer codes
can be rather inefficient, and it can be hard to obtain the explicit form of the differential
equations. Here we present an alternative method to derive a set of operators that define
inhomogeneous differential equations for IBan

1,...,1(z; 2− 2ε), cf. eq. (3.15). As explained in
section 9.2, these differential operators form an ideal, and there may be substantial freedom
in choosing a generating set for this ideal. As a consequence, our set of operators may look
substantially different from the one obtained from first-order differential equations and IBP
relations.

For the generic-mass case we use a purely combinatorial method to find the desired
differential operators by analyzing the structure of the gamma functions appearing in the
second line of eq. (9.3). We work with gamma functions instead of rising factorials, because
this will simplify the formulas. This can be achieved simply be rescaling the coefficient in the
first line of eq. (9.3). We define the ε-Frobenius basis with an explicit ε-dependent indicial
by:

I(j1,...,jl+1)
(z, ε) := ∑

n∈N
l+1
0

Γ(1 + n + jε) Γ(1 + n + (j− 1)ε)

∏l+1
i=1 Γ(1 + ni) Γ(1 + ni + (−1)ji+1ε)

l+1

∏
i=1

zni+jiε
i . (9.7)

Indeed, it is easy to see that eq. (9.3) can be written as a linear combination of the I(j1,...,jl+1)
.

The power series in eq. (9.7), however, have a finite radius of convergence. Our goal is
to derive a set of 1 < j ≤ l + 1 differential operators that annihilate the elements of the
ε-Frobenius basis, where we again use the notation j = ∑l+1

i=1 ji. and similarly for n. The set
of differential operators is then extended to a set of inhomogeneous differential equations by
including the case j = 1 (for now, we exclude the case j = 0, but we briefly comment on it
at the very end). These differential equations then serve as a starting point to analytically
continue the ε-Frobenius basis to all values of the zi.

Let us start by analyzing the maximal cuts. We want to find a set of differential operators
{Lk} whose solution space is spanned by the ε-Frobenius basis in eq. (9.7) (and only those):

Sol({Lk}) =
〈
I(j1,...,jl+1)

(z, ε)
〉

1<j≤l+1
. (9.8)

Clearly, this solution space will then also contain the maximal cuts of the banana integral for
a given loop order l.

The most general linear differential operator with polynomial coefficients acting on the
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9.2 Differential equations for banana Feynman integrals

ε-Frobenius basis can be written in the form

Lα,β = ∑
α,β

aα,β zαθβ , (9.9)

where aα,β are constants and α, β are multi-indices, and zα := ∏l+1
k=1 zαk

k and θβ := ∏l+1
k=1 θ

αk
k . It

is therefore sufficient to understand the action of the zαθβ on the elements of the ε-Frobenius
basis.

Let us start by analyzing the maximally symmetric index j = (1, . . . , 1). With the rising

and falling factorial1

(x)n = x(x + 1) · · · (x + n− 1) ,

[x]n = x(x− 1) · · · (x− n + 1)
(9.10)

we find

zαθβ I(1,...,1) = ∑
n∈N

l+1
0

∏l+1
i=1[ni]αi

[ni + ε]αi

[n + lε]α[n + (l + 1)ε]α

l+1

∏
k=1

(nk − αk + ε)βk

× Γ(1 + n + (l + 1)ε) Γ(1 + n + lε)

∏l+1
i=1 Γ(1 + ni) Γ(1 + ni + ε)

l+1

∏
i=1

zni+ε
i ,

(9.11)

where in the left-hand side we again use the simplified notation α = ∑i αi. Using a computer
algebra system we can now solve for the coefficients aα,β in eq. (9.9) such that the operator
Lα,β annihilates the ε-Frobenius basis element with j = (1, . . . , 1),

Lα,β I(1,...,1) = 0 . (9.12)

For fixed α and β, any linear combination that annihilates I(1,...,1) can be computed in this
way2.

As an example, let us consider the two-loop case. Here we can construct the operators

L1 = (1− z1)(θ2 − ε)(θ3 − ε)− (z2(θ3 − ε) + z3(θ2 − ε))(2θ1 + θ2 + θ3 + 1− ε) ,

L4 = θ1(θ1 − ε)− z1(θ1 + θ2 + θ3 + 1)(θ1 + θ2 + θ3 + 1− ε) ,
(9.13)

and L2 = L1(1 ↔ 2), L3 = L1(1 ↔ 3), L5 = L4(1 ↔ 2) and L6 = L4(1 ↔ 3) . For these

1 The rising factorial is also known as the Pochhammer function. Note that there are different notations for
rising and falling factorials used in the literature.

2 A Mathematica-code which generates these operators can be downloaded from http://www.th.physik.
uni-bonn.de/Groups/Klemm/data.php as supplementary data to [47].
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Chapter 9 Banana Feynman Integrals in Dimensional Regularization

operators we have chosen α ≤ 1 and β ≤ 2. The set of operators

L(2) := {L1, . . . ,L6} (9.14)

is enough to uniquely determine the ε-Frobenius basis elements with j = 2, 3, and no other
solutions.

More generally, for α and β chosen large enough, the operators Lα,β will generate the
solution space in eq. (9.15), i.e., Sol({Lα,β}) = 〈I(j1,...,jl+1)

(z, ε)〉1<j≤l+1. From our computa-
tions we actually found that the operators with α ≤ 1 and β ≤ l are enough to generate the
desired solution space:

Sol({Lα,β}α≤1,β≤l) =
〈
I(j1,...,jl+1)

(z, ε)
〉

1<j≤l+1
. (9.15)

The set {Lα,β}α≤1,β≤l is still overcomplete: A properly chosen subset of {Lα,β}α≤1,β≤l can be

sufficient to generate the whole solution space. For example, the operators from the set L(2)

are sufficient to generate the desired ε-Frobenius basis elements in the sunset case, although
there exist 9 linearly independent operators for α ≤ 1 and β ≤ 2.

As mentioned in subsection 3.3.2, it is in general not clear what is the best way of represent-
ing an ideal such that it yields the desired solution space. For instance, naively, the maximal
cuts of the two-loop banana integral were found to satisfy a fourth order homogeneous
differential equation, cf., e.g., ref. [169]. Later, it was shown that a second-order differential
operator suffices (in two space-time dimensions), cf. refs. [7, 109, 170]. Using our method,
we would obtain the set L(2) of six operators, which has still the same solution space. Our set
L(2) consists of more operators, but of simpler type. For example, the polynomials appearing
in the operators in eq. (9.13) are of small degree. The question of which representation is
more appropriate depends on the concrete application that one has in mind.

So far we have only discussed how to find a set of operators {Lα,β} that annihilate the
functions I(j1,...,jl+1)

(z, ε) with 1 < j ≤ l + 1. Equivalently, the solution space Sol({Lα,β})
will be generated by all the maximal cuts of the l-loop banana graph. In order to describe
the full uncut Feynman integral, we need to include the corresponding functions with j = 1.
There are (l+1

1 ) = l + 1 different functions of this type (and there is the same number of
l-loop tadpole graphs for generic masses). These functions, however, are not elements of
Sol({Lα,β}) (i.e., they are not simultaneously annihilated by all the Lα,β). Instead, they are
special solutions to certain inhomogeneous differential equations obtained from the Lα,β. In
analogy with eq. (3.25), we define the solution space of a set of inhomogeneous differential
equations:

SolInhom({(Lk, gk)}) = { f (z)|Li f (z) = gi(z) for all (Li, gi) ∈ {(Lk, gk)}} . (9.16)
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9.2 Differential equations for banana Feynman integrals

In this language, an element of the ε-Frobenius basis with j = 1 lies in the solution space
SolInhom({(Lα,β, gα,β)}), for a specific set of inhomogeneities {gα,β} depending on the
particular chosen j-vector. In order to determine these inhomogeneities, we simply apply
every generator Lα,β to every element of the Frobenius basis with j = 1. By this procedure
one finds for each basis element with j = 1 inhomogeneities of the form zε

i .

Let us illustrate this again on the example of the two-loop banana integral. Acting with
the the operators from L(2) yields the following inhomogeneities:

L1I(1,0,0)(z, ε) =
1

Γ(−ε)2 zε
1 ,

L2I(0,1,0)(z, ε) =
1

Γ(−ε)2 zε
2 ,

L3I(0,0,1)(z, ε) =
1

Γ(−ε)2 zε
3 .

(9.17)

All other operators give zero when applied to the three ε-Frobenius solutions with j = 1.
We stress that there is still a freedom in how we choose the set {(Lα,β, gα,β)} and con-
struct the corresponding solution spaces. For example, we could write the vector space
SolInhom({(Lα,β, gα,β)}) as a sum of three solution spaces

SolInhom({Lα,β, gα,β}) =
3

∑
p=1

SolInhom(L(2,p)) =
〈
I(j1,j2,j3)(z, ε)

〉
1≤j≤3

, (9.18)

with
L(2,p) = {(Li, gi) : gi(z) = δip zε

p Γ(−ε)−2, 1 ≤ i ≤ 6} . (9.19)

Since I1,1,1(z, ε) is symmetric under a permutation of the zi, the inhomogeneous term must
also have this property. It is therefore sufficient to consider {(Lα,β, gα,β)} such that the
solution space contains the sum I(1,0,0) + I(0,1,0) + I(0,0,1), but it does not contain each
summand separately. This is achieved by the choice

SolInhom({(Lα,β, gα,β)}) = SolInhom(L(2)
inhom) , (9.20)

with

L(2)
inhom = {(L1, Γ(−ε)−2 zε

1), (L2, Γ(−ε)−2 zε
2), (L3, Γ(−ε)−2 zε

3), (L4, 0), (L5, 0), (L6, 0)} .
(9.21)
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Chapter 9 Banana Feynman Integrals in Dimensional Regularization

Note that SolInhom(L(2)
inhom) is contained in the sum of vector spaces in eq. (9.18), but the

converse is not true. Finally, we can also describe the solution space of a set of homogeneous
equations, by multiplying L1, L2 and L3 from left by an operator that annihilates the
inhomogeneity. We have

Sol(L̃(2)) =
〈
I(j1,j2,j3)(z, ε)

〉
1≤j≤3

, (9.22)

with
L̃(2) := {(θ1 − ε)L1, (θ2 − ε)L2, (θ3 − ε)L3,L4,L5,L6} . (9.23)

The previous discussion makes it clear that it is a matter of taste whether we consider a set
of inhomogeneous differential operators or a set of higher-order differential operators; the
resulting solution spaces contain all functions necessary to solve the problem at hand. Our
strategy of first constructing combinatorially an ideal which can then be extended to a set
of inhomogeneous differential equations guarantees that we generate the correct solution
space.

The method we have just described can easily be implemented into a computer algebra
system. We can in this way derive a set of inhomogeneous differential equations satisfied by
Jl,0(z, ε). The coefficients of the linear combination in the Frobenius basis in eq. (9.7) can be
read off by comparing to the hypergeometric series representation in eq. (9.3) (or by using
eq. (9.4) as a boundary condition in the large momentum limit). At this point we have to
make an important comment. Our strategy to obtain the differential equations consisted in
starting from the MB representation, which leads to the hypergeometric series representation
in eq. (9.3). It may thus appear that we did not gain anything, because we have derived the
differential equations after we knew the solution, cf. eq. (9.3). The series representation in
eq. (9.3), however, does not converge for all values of z. The differential equations allow us
to analytically continue the series in eq. (9.3), e.g., by transforming the differential equation
to another point and to obtain local power series representations close to that point (see the
discussion in chapter 3).

Let us make some comments about our differential equations. First, we emphazise that
our procedure allows us to derive differential equations for arbitrary values of z, including
zero masses. This follows immediately from the fact that eq. (9.3) is valid also in the case
of massless propagators. Second, we point out that from our higher-order inhomogeneous
differential equation for Jl,0(z, ε), we can easily obtain the first-order Gauss-Manin system
for the master integrals in eq. (2.18). When extracting the entries of the matrix Ã(z; ε) in
eq. (3.3), we need to divide by the discriminant of the system. This introduces typically a
very long and complicated polynomial, especially in the multi-parameter case. Therefore,
the matrix Ã(z; ε) is usually very complicated, and we prefer to work with the larger, but
simpler, set of differential operators {Lα,β} constructed in this section.

Finally, we want to emphasize that our combinatorial method of constructing a set of

110



9.2 Differential equations for banana Feynman integrals

differential operators such that its solution space contains a specific set of functions starting
from an analysis of a power series as in eq. (9.7) can be applied not only with the dimensional
regulator ε but also for ε = 0 and we think also to other functions given as a power series
with coefficients being fractions of gamma functions. In particular, in the ε = 0 case one
can construct easily a complete set of operators generating the function space of the l-loop
banana integral in D = 2 dimensions. In chapter 7 we used the GKZ method for complete
intersection Calabi-Yau manifolds to compute the banana integrals. The GKZ method does
not directly yield a complete set of operators such that one has to find additional operators.
In section 7.3 we explicitly solved the four-loop case where we used the methods explained
in this section to generate the additional operators listed in eq. (7.21) and in appendix B.

9.2.1 Comments on the number of solutions

We conclude with some comments about the number of elements in the ε-Frobenius basis
in eq. (9.7) for a given loop order l. We count the number of solutions with the same value
of j, which itself counts how many ε parameters appear in the indicials to the differential
operators. Thereby, we find for fixed j exactly (l+1

j ) different solutions. In total we obtain the
following sequence:(

l + 1
1

)
= l + 1︸ ︷︷ ︸

j=1

∣∣∣∣∣
(

l + 1
2

)
︸ ︷︷ ︸

j=2

(
l + 1

3

)
︸ ︷︷ ︸

j=3

. . .
(

l + 1
l + 1

)
= 1︸ ︷︷ ︸

j=l+1

.
(9.24)

Here the vertical line separates the special solutions of the inhomogeneous equations from
the homogeneous ones. For example, for the two-loop case this reduces to

3 | 3 1 , (9.25)

in agreement with the discussion above. If we compare the number of solutions in the
generic-mass case for ε = 0 and ε 6= 0, we observe that for ε 6= 0 we have more solutions.
For example, at two-loop order the number of solutions for ε = 0 is

1 | 1 1 . (9.26)

The fact that the number of master integrals is smaller in exactly D = 2 dimensions was
already observed in refs. [7, 109, 170] for the two-loop banana graph. Comparing to the
number of solutions for ε = 0 for the maximal cut in D = 2 dimensions in ref. [45], we see
that generically the dimension of the solution space, and therefore the number of master
integrals, increases by introducing a non-vanishing dimensional regularization parameter ε.

Let us make another comment about the number of solutions for different values of j.
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Chapter 9 Banana Feynman Integrals in Dimensional Regularization

We can extend the sequence in eq. (9.24) by including the function in eq. (9.7) for j = 0.
There is exactly one such function. Note that this solution can also be included into eq. (9.3),
because it would enter the linear combination with a vanishing prefactor. We then obtain
the sequence:

1 =

(
l + 1

0

)
︸ ︷︷ ︸

j=0

∣∣∣∣∣
∣∣∣∣∣
(

l + 1
1

)
= l + 1︸ ︷︷ ︸

j=1

∣∣∣∣∣
(

l + 1
2

)
︸ ︷︷ ︸

j=2

(
l + 1

3

)
︸ ︷︷ ︸

j=3

. . .
(

l + 1
l + 1

)
= 1︸ ︷︷ ︸

j=l+1

.
(9.27)

The solution space of the functions in eq. (9.7) with 0 ≤ j ≤ l + 1 can be described in
terms of differential equations in different ways. One possibility is that one allows only
certain linear combinations of operators determining the solution space corresponding to
the sequence in eq. (9.24). One may apply appropriate θ-derivatives to the same operators,
similar to the procedure of extending the solution space by the ε-Frobenius solutions with
j = 1. To be precise, let us look again at the two-loop case. Here the ε-Frobenius element
with j = 0 can be included into the solution space if one considers the following ideal
{θ1(θ1− ε)D1, θ2(θ2− ε)D2, θ3(θ3− ε)D3,D4,D5,D6}. This ideal allows exactly the 8 desired
solutions which can be grouped into

1 || 3 | 3 1 . (9.28)

More generally, the pattern of the number of solutions in eq. (9.27) corresponds to the
pattern of the dimensions of the (co)homology groups of the ambient space Pl+1, which is
first the ambient space of the Fano variety Fl in which in turn the Calabi-Yau variety Ml−1
for the critical spacetime dimensions ε = 0 is embedded, as it is explained in eq. (7.5). It is
tantalising to speculate that in dimensional regularization the solutions can be interpreted
as some kind of twisted quantum deformation of the cohomology of Pl+1.

9.3 Some comments on the equal-mass case

The techniques introduced in the last two sections can also be applied on the equal-mass
banana integrals to compute them in dimensional regularization. In this case the equal-mass
case is considered as a one-parameter subslice in the generic-mass parameter space. As we
have already seen in subsection 6.1.4 restricting a high-parameter moduli space to a smaller
here even a one-parameter slice is typically a hard technical problem. One cannot simply
restrict the partial differential equations obtained in the previous section to the equal-mass
case. Furthermore, the dimension of the ε-Frobenius basis is much smaller in the equal-mass
case where it is the same in D = 2 and D = 2− 2ε dimensions, namely l + 1.

In this thesis we do not want to recapitulate in detail the additional methods which were
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9.4 Special solutions and cut integrals

elaborated in [47] but only want to give some comments about them.
In the equal-mass case it turns out that one can compute directly a Picard-Fuchs differential

equation starting from a Bessel function representation [8, 167] of the banana integral given
by

Jl,1(z = 1/t; ε) =
2l(1−ε)

Γ(1 + lε)
t

ε
2

∫ ∞

0
x1+lε I−ε(

√
tx)Kε(x)l+1 dx , (9.29)

valid for t := 1/z < (l + 1)2, where Iα(x) and Kα(x) are the modified Bessel functions. From
a detailed analysis of this representation and, in particular, of the Bessel functions we could
derive in [47] an inhomogeneous differential equation for the l-loop equal-mass banana
integral. A list of these equations can be found in table 2 of [47].

These differential equations could be solved with the Frobenius method where now the
indicials get an ε-dependence and therefore the basis of solutions as well, similarly as the
ε-Frobenius basis is (9.7). Also the Riemann P-symbol gets a ε-dependence since also at the
other singular points the indicials get shifted by ε-terms. Only the location of the singular
points is unchanged. For details see section 6.2 of [47].

With eq. (9.5) we could find also the correct linear combination of the ε-Frobenius basis to
obtain the full l-loop equal-mass banana integral in D = 2− 2ε dimensions. Again at zeroth
order in the regulator ε this reproduced the results found from numerics and the Γ̂-class.
This also extended the results in the literature of the equal-mass banana integrals to arbitrary
loop order.

9.4 Special solutions and cut integrals

In this section we provide an interpretation of the additional special solutions to the in-
homogeneous Picard-Fuchs differential ideal in terms of non-maximal cut integrals. This
interpretation complements and extends the interpretation of the maximal cut integrals as
solutions to the associated homogeneous system and its relationship to the Frobenius basis
for the solution space of the Picard-Fuchs differential ideals for the maximal cuts. We start by
defining non-maximal cuts in general (not restricted to banana integrals), and then comment
on the relationship to the solution space of the Picard-Fuchs differential ideal at the end of
this section. This section is also an extension of section 2.7.

Let us consider the setup and the notation of chapter 2, in particular section 2.7. A
non-maximal cut contour Γ for the integral IG

ν (x; D) is a contour that encircles some of the
propagators of IG

ν (x; D). We assume that Γ encircles at least one propagator. At this point we
have to make an important comment about dimensional regularization. In integer dimension
the integration contour Γ has an immediate geometrical interpretation. The extension of
this contour to dimensional regularization will be necessary for the following discussion.
One can still define the contour geometrically, but it needs to be interpreted as a twisted
cycle [171], see also refs. [66, 172–175]. The distinction will not be crucial for the discussion
that follows, and it is sufficient to apply intuition from ordinary cycles in integer dimensions.
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Chapter 9 Banana Feynman Integrals in Dimensional Regularization

It is important, however, to point out that beyond one loop non-maximal cut integrals may
diverge even if the original Feynman integral is finite, cf., e.g., refs. [80, 176]. The divergences
are of infrared origin and arise from massless particles that are put on-shell when taking the
residues. Therefore, it is important to work with an appropriate infrared regulator when
discussing non-maximal cut integrals. Dimensional regularization provides such a regulator.

Following sections 2.7 and 2.8, if Γ is a cut contour and Ji(z; ε) denotes a master integral,
then we denote the corresponding cut integral by JΓ

i (z; ε). The vector JΓ(z; ε) then satisfies
the same system of differential equations as the vector of master intergals Ji(z; ε) in eq. (3.3),
i.e., we have

dJΓ(z; ε) = Ã(z; ε)JΓ(z; ε) for every cut contour Γ . (9.30)

Let us discuss how we can construct a basis of cut integrals. We say that a sector is reducible
if every integral from this sector can be written as a linear combination of integrals from
lower sectors. Let Θ1, . . . , Θs denote the set of irreducible sectors. There is a natural partial
order on the Θr (coming from the partial order on sectors, see subsection 2.3.2). In particular,
we choose Θ1 = (1, . . . , 1). We denote by Jr(z; ε) = (Jr,1(z; ε), . . . , Jr,Mr

(z; ε))T the master
integrals in the sector Θr (by which we mean that those master integrals cannot be expressed
as linear combinations of integrals from lower sectors; cf. eq. (3.6)). In each sector Θr we can
now choose a basis of Mr maximal cut contours, i.e., a set of Mr independent cut contours
that encircle precisely the propagators that define the sector Θr. Let us denote the basis of
maximal cut contours in the sector Θr by Γr,1, . . . , Γr,Mr

. Note that for r = 1 and integer D,
we recover the maximal cut contours defined in section 2.7. Each contour Γr,i defines a valid
non-maximal cut contour for integrals from sectors with more propagators.

Consider the M×M matrix (where M = ∑s
r=1 Mr is the total number of master integrals):

J(z; ε) =:
(

JΓ1,1(z; ε), . . . , JΓ1,M1 (z; ε), JΓ2,1(z; ε), . . . , JΓs,Ms (z; ε)
)

. (9.31)

It is easy to check that the columns of J(z; ε) are linearly independent (for generic z), and
so J(z; ε) is a fundamental solution matrix for the system in eq. (9.30). As a corollary, we
conclude that every master integral can be written as a linear combination of its cut integrals
in the basis of cut contours Γr,i:

Jk(z; ε) =
s

∑
r=1

Mr

∑
i=1

ar,i(ε) JΓr,i
k (z; ε) , (9.32)

where the coefficients ar,i(ε) may depend on ε, but they are independent of z. Note that this
relation is very reminiscient of the celebrated Feynman Tree Theorem [177, 178]. It would be
interesting to work out the relationship between the basis decomposition in eq. (9.32) and
the Feynman Tree Theorem in the future.
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Assume now thatD(k) generates the Picard-Fuchs differential ideal that annihilates Jk(z; ε),
i.e., it is a complete set of differential operators that annihilate Jk(z; ε). Since the solution
space of the Picard-Fuchs differential ideal must agree with the general solution obtained
from the system in eq. (9.30), eq. (9.32) implies that

Sol(D(k)) =
〈

JΓr,i
k (z; ε)

〉
1≤r≤s;1≤i≤Mr

=
s

∑
r=1

〈
JΓr,i
k (z; ε)

〉
1≤i≤Mr

, (9.33)

where in the second inequality we have made explicit the fact that the solution space can
be decomposed into contributions from cut contours from different sectors. The previous
considerations show that we can, at least in principle, obtain a basis of the solution space of
the system of differential equations satisfied by the master integrals that consists entirely
of cut integrals. Just like in the case of maximal cuts, however, constructing such a basis of
cycles explicitly can be a monumental task, and it is in general not possible to follow this
route.

In the following, we argue that the special solutions from section 9.2 that extend the
solution space for the Picard-Fuchs differential ideal for the maximal cuts can be identified
with non-maximal cuts. However, similar to the discussion of the relationship between the
Frobenius basis and the maximal cuts defined via cycles from integral homology, the special
solutions constructed in the previous section will not be obtained from non-maximal cut
contours defined over the integers.

Let us illustrate this on the example of the two-loop case. In particular, let us discuss the
two-loop master integral J1,0(z; ε). The Picard-Fuchs differential ideal is generated by the set

L̃(2) in eq. (9.23). Its solution space admits the decomposition

Sol(L̃(2)) = Sol(L(2)) +
〈
I(1,0,0)(z, ε)

〉
+
〈
I(0,1,0)(z, ε)

〉
+
〈
I(0,0,1)(z, ε)

〉
, (9.34)

where L(2) was defined in eq. (9.14). Let us interpret eq. (9.34) in the light of eq. (9.33). We
know from section 9.2 that there are four irreducible sectors for the two-loop banana integral,
namely

Θ1 = (1, 1, 1) , Θ2 = (1, 1, 0) , Θ3 = (1, 0, 1) , Θ4 = (0, 1, 1) , (9.35)

and M1 = 4 and M2 = M3 = M4 = 1. Let us start by discussing the first term in eq. (9.34).
Its interpretation is similar to the discussion in section 4.2.3 (which was restricted to D = 2
dimensions): The cut contours Γ1,i, 1 ≤ i ≤ 4, define a basis for the maximal cut contours of

J1,0(z; ε).3 The maximal cut integrals JΓ1,i
1,0 (z; ε) are annihilated by the differential operators

3 Note that these contours define the maximal cuts in D = 2− 2ε dimensions. Consequently, there are four
maximal cut contours, and not only two, just like there are more master integrals in D = 2− 2ε than in D = 2
dimensions, cf. (9.24).
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from L(2), and they form an integral basis for the solution space:

Sol(L(2)) =
〈

JΓ1,i
1,0 (z; ε)

〉
1≤i≤4

. (9.36)

This integral basis may be hard to construct, as it requires a detailed knowledge of the cycles.
We know, however, that the solution space Sol(L(2)) is equally generated by the ε-Frobenius
basis in eq. (9.15). The ε-Frobenius basis is not an integral basis, but its advantage is that we
can construct it explicitly.

Next, let us discuss the remaining three terms in eq. (9.34). The non-maximal cut integrals
JΓr,1
1,0 (z; ε) for 2 ≤ r ≤ 4 are not annihilated by the elements of L(2) (because for each sector

there is a tadpole integral whose maximal cut is non-zero). As a consequence, JΓr,1
1,0 (z; ε) for

2 ≤ r ≤ 4 satisfies an inhomogeneous equation, i.e., it is annihilated by the elements of
L̃(2)! Thus, we see that the last three terms in eq. (9.34) represent the contributions from the
non-maximal cuts in eq. (9.33), which we quote here for the two-loop case:

Sol(L̃(2)) =
〈

JΓ1,i
1,0 (z; ε)

〉
1≤i≤4

+
4

∑
r=2

〈
JΓr,1
1,0 (z; ε)

〉
= Sol(L(2)) +

4

∑
r=2

〈
JΓr,1
1,0 (z; ε)

〉
. (9.37)

Again, constructing explicitly the integer cycles Γr,1 with r > 1 can be extremely complicated,
but we can work with the elements of the non-integer ε-Frobenius basis with j = 1. Note
that it would be wrong to conclude that the elements of the ε-Frobenius basis with j = 1
are the non-maximal cut integrals JΓr,1

1,0 (z; ε) for r > 1, defined by integrating over cycles
from integral homology. Just like for the maximal cuts, the elements of the ε-Frobenius
basis correspond to cut integrals over cycles that are not defined in integral homology, and a
given non-maximal cut integral JΓr,1

1,0 (z; ε) is in general for r > 1 a linear combination with
transcendental coefficients of different terms in the ε -Frobenius basis, including those with
j > 1.
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Conclusion

In this thesis we have seen that there is a strong connection between computations of multi-
loop Feynman integrals and modern algebraic geometry. Only from a deep understanding of
the geometry associated to the l-loop banana Feynman graph it was possible to compute the
Feynman integral for generic masses and high loop orders. Characteristics of the Feynman
integral as the branching behavior, singularity and monodromy structure, its differential
equations and many more are reflected by the geometry. On the geometrical side these
properties are often better understood and under control such that they determine the
Feynman integral. But still this connection is not fully elaborated and in particular, the
physicists and mathematicians have to learn a lot from each other in order to increase the
power of computing multi-loop Feynman graphs.

During my PhD several important results could be achieved:
On a practical side the generic-mass banana integrals could be computed for arbitrary

loop orders which was possible before only for loop orders l ≤ 2 (chapters 6 and 7). These
Feynman graphs have an important role for improving the accuracy of theoretical predictions
for scattering processes of fundamental particles. Using two different Calabi-Yau geometries,
which lead to the same motive, the maximal cuts of the banana integrals were computed.
Additionally, differential equations governing them were found with the GKZ method. This
leads to an analytic continuation over the whole parameter space. An extension of these
differential equations to inhomogeneous ones determined the missing special solution to
describe the full Feynman integral. We also gave an interpretation of these special solutions
as non-maximal cut integrals. Finally, with the help of a novel Γ̂-class we were able to find
the correct linear combination of solutions.

But also in the equal-mass case new results were obtained (chapter 5). In D = 2 dimensions
we could find a compact and simple form of the l-loop integral in terms of iterated Calabi-
Yau periods. This representation is a generalization of the results found for l ≤ 3 [24, 25, 33,
112, 150, 179, 180]. Due to our contribution the banana family joins now the set of infinite
families of Feynman integrals where an explicit analytic result is known [181–188]. But this

117



Chapter 10 Conclusion

is the first of these families which can not be expressed in terms of multiple polylogarithms.
From a conceptional perspective we were also able to extend the connection between

Calabi-Yau motives and multi-loop Feynman integrals. We reviewed basic concepts of
Feynman graph computations (chapter 2), fundamental properties and solution techniques
for differential equations (chapter 3) and the mathematics of Calabi-Yau manifolds (chapter 4)
together with mirror symmetry (chapter 8). This has hopefully boosted the connection
between geometry and Feynman integrals.

There are many continuations of our work possible. First of all, the most obvious one
would be to extend our methods also to other classes of Feynman integrals beside the banana
ones. In this direction it would be interesting to see how one can use the GKZ method and
some intuition from geometry to find differential equations for Feynman integrals without
usage of the traditional integration by parts approach. Secondly, the mathematics of iterated
Calabi-Yau periods has to be enhanced similarly to the theory of iterated modular forms.
The concept of iterated integrals in Feynman integral computations is so fundamental that
also for Calabi-Yau periods these concepts have to be implemented. Probably, this will give
better numerical control over these functions. But in general it would be very interesting
and advisable to check what geometric objects or motives can show up in Feynman graph
computations. In our examples Calabi-Yau motives were the most generic objects and also
the most natural ones. But there are some observations [189–191] that also other geometries
such as Riemann surfaces of higher genus1 can show up, in particular, for non-planar
Feynman diagrams. But there are also possibilities to include these geometries in Calabi-Yau
motives such that one can still claim that Calabi-Yau motives are the most complicated
geometric structures appearing in Feynman graph computations. A clarification of this
relation would be very interesting.

1 Only Riemann surfaces of genus one, i.e. elliptic curves, are Calabi-Yau manifolds. For higher genera they are
not strictly speaking Calabi-Yau manifolds. But they can give rise to so-called local Calabi-Yau spaces.
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APPENDIX A

Differential operators for the three-loop banana
integral

Here we list the four differential operators D1, . . . ,D4 for the three-loop banana integral.

D1 = (θ1 − θ2) (θ3 − θ4)

+ z1(θ3 − θ4)(θ1 − θ2 − θ3 − θ4) + z2(θ3 − θ4)(θ1 − θ2 + θ3 + θ4)

− 2(z1 − z2) (z3(θ3 + 1)− z4(θ4 + 1)) (θ1 + θ2 + θ3 + θ4 + 1)
(A.1)

D2 = 5(θ1 − θ2)θ4 − 6θ2
2

+ z1

(
2θ2

1 − 8θ1θ2 + 6θ2
2 − 6θ2

3 − 11θ2
4 + 4 (θ1 + θ2) θ3 + (9θ1 − θ2 − 13θ3) θ4

)
+ z2

(
17θ2

4 + (13θ1 − 9θ2 + 25θ3 + 6) θ4 − 2 (θ2 − θ3) (4θ2 + 6θ3 + 3) + θ1 (8θ2 + 8θ3 + 6)
)

+ 2
[
5z3z4(θ2 − θ1) + z2

1(θ1 − θ2 − θ3 − θ4) + z2
2(θ1 − θ2 + θ3 + θ4)

+z1z4(3θ1 + 3θ2 − 2θ3 − 8θ4 − 5) + z1z3(3 (θ1 + θ2 − θ3)− 2θ4)

+3z1z2(−θ1 + 3θ2 + θ3 + θ4 + 2) + z2z3(6θ3 + 5θ4 + 6)

+z2z4(5θ3 + 11θ4 + 11)] (θ1 + θ2 + θ3 + θ4 + 1)
(A.2)

D3 = −3θ2
2 − 2θ2θ4 + θ1 (3θ2 − 2θ4) + θ4 (θ3 + θ4)

− 3z1θ2 (−θ1 + θ2 + θ3)− z1θ4(2θ1 + θ2 − 2θ3)− z3θ4(θ1 + θ2 − θ3) + (2z1 − z3)θ
2
4

− z4 (θ1 + θ2 + θ3 − θ4) (θ4 + 1) + z2 (θ1 − θ2 + θ3 + θ4) (3θ2 + 8θ4 + 3)

+ 2 [−2z3z4(θ4 + 1) + z1z4 − 3z1z3θ2 + z1(z3 + z4)θ4 + z2z3(3θ2 + 4θ4 + 3)

+4z2z4 + 4z2(z1 + z4)θ4] (θ1 + θ2 + θ3 + θ4 + 1)
(A.3)
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D4 = −θ2 (θ2 + 5θ3 − 5θ4)

+ z1(2θ2
1 − (3θ2 + θ3 − 4θ4) θ1 + θ2

2 − θ2
3 − 6θ2

4 + 4θ2θ3 − (θ2 + 3θ3) θ4)

+ 5z4 (θ1 − θ2 − θ3) (θ1 + θ2 + θ3 − θ4) + 5z3θ4 (θ1 + θ2 − θ3 + θ4)

+ z2

[
−3θ2

2 + (−14θ3 + 11θ4 − 1) θ2 + 17θ2
3 − 8θ2

4 + θ3 + θ1 (3θ2 + 13θ3 − 12θ4 + 1)

+5θ3θ4 + θ4]

+
[
2z2

1(θ1 − θ2 − θ3 − θ4) + z1z4(11θ1 − 9θ2 + θ3 − 11θ4)

+z1z2(−θ1 + 3θ2 + 11θ3 − 9θ4 + 2) + z1z3(θ1 + 11θ2 − θ3 + θ4)

+2z2z3(−5θ2 + 11θ3 − 5θ4 + 6) + 2z2z4(5θ3 − 4θ4 − 4) + 10z3z4(θ4 − θ3)

+2z2
2(θ1 − θ2 + θ3 + θ4)

]
(θ1 + θ2 + θ3 + θ4 + 1)

(A.4)
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Differential operators for the four-loop banana
integral

Here we list the four differential operators D6, . . . ,D10 for the four-loop banana integral.

D6 = (θ1 − θ4) (θ3 − θ5)− z1 (θ3 − θ5) (θ1 + 2θ2 + θ4 + 1)

− z2 (θ1 − θ4) (θ3 − θ5) + z3(2θ2
1 + θ1 (2θ2 + θ3 + θ5 + 1)− θ4 (2θ2 + θ3 + θ5 + 1))

+ z4(2θ2
3 + θ3 (θ1 + 2θ2 + θ4 + 1)− θ5 (θ1 + 2θ2 + θ4 + 1))

+ z5 (θ1 − θ4) (2θ1 + 2θ2 + θ3 + 2θ4 + θ5 + 1)
(B.1)

D7 = (θ1 − θ3) (θ4 − θ5)− z1(θ4 − θ5)(θ1 + 2θ2 + θ3 + 1)

− z2 (θ1 − θ3) (θ4 − θ5) + z3 (θ4 − θ5) (θ1 + 2θ2 + θ3 + 1)

− z4 (θ1 − θ3) (2θ1 + 2θ2 + 2θ3 + θ4 + θ5 + 1)

+ z5 (θ1 − θ3) (2θ1 + 2θ2 + 2θ3 + θ4 + θ5 + 1)
(B.2)

D8 = (θ2 − θ4) (θ3 − θ5)− z1 (θ2 − θ4) (θ3 − θ5)

− z2 (θ3 − θ5) (2θ1 + θ2 + θ4 + 1)

− z3(2θ2
2 + θ2 (2θ1 + θ3 + θ5 + 1)− θ4 (2θ1 + θ3 + θ5 + 1))

+ z4(2θ2
3 + θ3 (2θ1 + θ2 + θ4 + 1)− θ5 (2θ1 + θ2 + θ4 + 1))

+ z5 (θ2 − θ4) (2θ1 + 2θ2 + θ3 + 2θ4 + θ5 + 1)
(B.3)
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D9 = (θ2 − θ3) (θ4 − θ5)− z1 (θ2 − θ3) (θ4 − θ5)

− z2 (θ4 − θ5) (2θ1 + θ2 + θ3 + 1) + z3 (θ4 − θ5) (2θ1 + θ2 + θ3 + 1)

− z4 (θ2 − θ3) (2θ1 + 2θ2 + 2θ3 + θ4 + θ5 + 1)

+ z5 (θ2 − θ3) (2θ1 + 2θ2 + 2θ3 + θ4 + θ5 + 1)
(B.4)

D10 = θ1 (θ2 − θ5) + (−θ2 + θ4) θ5 + θ3 (−θ4 + θ5)

− z1(θ2 (θ1 + 2θ3 + 2θ4 − θ5 + 1)− θ5 (θ1 + θ4 + 1)− θ3 (θ4 + θ5))

− z2(2θ2
1 + θ1 (θ2 + 2θ3 + 2θ4 − θ5 + 1)− θ5 (θ2 + θ4 + 1) + θ3 (θ4 + θ5))

− z3(θ4 (2θ2 + θ3 − θ5 + 1)− θ5 (θ2 + θ3 + 1)− θ1 (θ2 − 2θ4 + θ5))

+ z4(2θ2
3 + θ3 (2θ2 + θ4 − θ5 + 1)− θ5 (θ2 + θ4 + 1)− θ1 (θ2 − 2θ3 + θ5))

+ z5(2θ2
1 + 2θ2

2 − 2θ2
3 − θ4 (2θ4 + 1)− θ3 (3θ4 + 1)− θ5 (θ3 + θ4) + θ2 (θ5 + 1)

+ θ1 (1 + 3θ2 + θ5))
(B.5)
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