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Abstract 
 

The need to close the carbon cycle becomes urgent as concentration of CO2 in the earth 

atmosphere increases exponentially. Electrochemically-mediated conversion of CO2 into 

biofuels is a possible solution to this problem, as it enables storage of energy while using the 

harmful CO2 feedstock as starting material. Notably, low-valent iron-porphyrins have been 

established as the best and most selective family of homogeneous catalysts for CO2 reduction 

into CO, a first step towards the synthesis of biofuel from CO2. The purpose of this research 

project is to correlate the high activity of [Fe(TPP)] (TPP=tetraphenylporphyrin) towards CO2 

reduction with its peculiar electronic structure. With this knowledge in mind, a guideline for 

the synthesis of efficient and selective catalysts is proposed. To realize this purpose, we 

investigated the electronic structure of [Fe(TPP)], [Fe(TPP)]- and [Fe(TPP)]2- using a 

combination of theoretical chemistry coupled with experimental spectroscopic techniques, such 

as 57Fe Mössbauer, magnetometry measurements and X-ray absorption spectroscopy. After 

unambiguously determining the electronic structure of each of these species, a reactivity study 

was carried out to establish the correlation between electronic structure and reactivity.  

Our results indicate that [Fe(TPP)] is a triplet iron(II) ground state with a quite unique 

almost three-fold orbital degeneracy of the dxz, dyz and dz2 orbitals. This peculiar electronic 

structure leads to a large, unquenched orbital angular momentum lying on the porphyrin plane, 

as observed experimentally. Comparing spectroscopic data of [Fe(TPP)]- and [Fe(TPP)]2- to 

that of [Fe(TPP)] led to the conclusion that the oxidation state of iron remains unchanged upon 

one- and two-electrons reduction of [Fe(TPP)]. In other terms, [Fe(TPP)]- and [Fe(TPP)]2- are 

best described as Fe(II) centers antiferromagnetically coupled with a porphyrin ligand radical 

and diradical, respectively. In fact, our reactivity study shows how the non-innocent porphyrin 

ligand in [Fe(TPP)]2- plays a major role in the high reactivity of the complex towards CO2 

reduction, by acting as an electron reservoir able to transfer electrons to the CO2 molecule via 

the metal center. We stress that ligand non-innocence is a common feature in CO2 reduction 

catalysts, but its role relative to catalytic activity has not yet received sufficient attention.  
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Introduction 

 

The increasing atmospheric concentration of greenhouse gases due to human activities 

has become an urgent environmental issue with multiple ramifications.1,2,3 Among those 

greenhouse gases, one of the major concerns is CO2, and its global atmospheric concentration 

has risen to an all-time record of 411 ppm in 2019..4 To revert this trend while limiting the effect 

on human activity, industrialized societies need to adopt complementary measures.5 The most 

mature technologies at our disposal consist of carbon capture and sequestration (CCS).6 Those 

technologies in principle allow capture and storage of CO2 in geological layers. However, the 

geological storage which follows a large-scale CO2 capture may have unknown long-term 

ecological consequences. A seductive solution to circumvent this problem would be to use the 

CO2 feedstock as a starting material for chemical manufacturing, in place of other 

hydrocarbons.7 However, this solution may not be economically viable until the prices of other 

fossil fuels has risen significantly. 

It is critical that the part of fossil fuels in the energy production decreases, in benefit of 

renewable sources of energy, among which photovoltaics8 and wind turbines are the most 

plausible candidates due to their economic and technical maturity. However, due to the 

instability of the energy outputs of these sources, the need to indirectly store electrical energy 

arises. To date, the most scalable way to do so is to convert electric energy into chemical energy. 

In this regard, electrocatalytic reduction of CO2 into biofuel may be a promising way to solve 

the problem originating from the instability of renewable energies while helping to close the 

carbon cycle.9,10,11 It is therefore an intriguing topic in which research has invested a great deal 

of effort. CO2 reduction can generate many products and the principal reactions are summarized 

in eq. 1-412,13:  

𝐶𝑂2+2𝐻++2𝑒- →𝐶𝑂+𝐻2𝑂          (1)  

𝐶𝑂2 +2𝐻+ +2𝑒# →𝐻𝐶𝑂𝑂𝐻          (2)  

𝐶𝑂2+4𝐻+ +4𝑒- →𝐻𝐶𝐻𝑂+𝐻2𝑂         (3)  

𝐶𝑂2 +6𝐻+ +6𝑒- →𝐶𝐻3𝑂𝐻+𝐻2𝑂         (4)  

 

Not all reduction products are directly usable as biofuels, and some need further processes. For 

instance, carbon monoxide reacts with H2 via the well-known and industrially mature Fischer- 

Tropsch process to yield different hydrocarbons.14  
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From a thermodynamic point of view, CO2 must be activated into CO2•- prior to any further 

reaction. This activation has a very negative potential (-1.9 V vs NHE),15 consequently, the 

reaction often suffers from a prohibitively large overpotential. Thus, all the aforementioned 

reactions require appropriate catalysts. In general, a “good” catalyst is one that selectively 

catalyzes the desired reaction at a low overpotential while having a good turnover number 

(TON) and turnover frequency (TOF). Catalysis can be classified into two categories: 

heterogeneous and homogeneous. While less industrially relevant, homogeneous catalysis 

presents certain advantages such as the milder conditions usually required and the increased 

facility to carry out in-situ spectroscopic investigations. In fact, homogeneous catalysis can be 

viewed as a more fundamental approach to probe the mechanism and reactivity of a particular 

reaction. From an experimental perspective, mechanistic insights may be provided mostly by 

kinetic experiments16 and spectroscopic measurements17,18. On the theoretical side, recent 

developments, in particular the progress of low-computational cost methods both in terms of 

calculation time and accuracy,19,20 render quantum mechanics-based methods an invaluable tool 

to provide energetics, interpret spectroscopic data, and ultimately provide insights on the 

relationship between reactivity and electronic structure.  

The research field of CO2 reduction is more than thirty years old, and has been the subject 

of many studies. The subject of this thesis dissertation is the detailed elucidation of the 

electronic structure of the iron-tetraphenylporphyrinate complex ([Fe(TPP)]2-, 

TPP=tetraphenylporphyrin) and of its excellent catalytic performances for CO2 reduction. This 

goal is achieved by a systematic joint use of spectroscopic techniques and theoretical methods. 

However, before focusing on the iron-porphyrin family, we review here the state-of-the-art 

molecular catalysts available for CO2 reduction, and aim to shed light to how a joint use of 

experimental and theoretical methods can lead to a better understanding of their reactivity and 

to a rational design of new generations of those catalysts. Of note, we focus solely on 

mononuclear catalysts which reactivity can be more easily compared with that of [Fe(TPP)]. 

 

 

 

I. Formic acid generation 

 

Formic acid is among the principal end products for CO2 reduction in homogeneous 

catalysis. It can be a first step towards the reduction of CO2 into methanol21. Alternatively, 
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reversible conversion of CO2 and H2 into formic acid may be a suitable way of storing hydrogen 

while utilizing CO2 feedstock.22 Interestingly, the reaction does not necessarily require the 

application of an external potential. In fact, formic acid can be generated by reaction with 

dihydrogen, where the latter works as a reductant (eq. 5).  

H2 à 2H+ + 2e-          (5a) 

CO2 + 2H+ + 2 e- à HCOOH         (5b) 

CO2 + H2 à HCOOH          (5c) 

On a thermodynamic point of view, the reaction (5c) is in fact reversible,23,24 consequently, 

harsh conditions including high pressure of H2 and CO2 are often required to drive the reaction 

forward.  

Most of the transition metal complexes showing a significant catalytic activity for CO2 

hydrogenation into formic acid are complexed with phosphine ligands. Among the most 

efficient homogeneous catalysts for this reaction, an iridium-based catalyst developed by 

Nozaki25 (1 in Figure 1) has shown the best performance up to date in terms of TON (3 500 

000) and TOF (150 000 h-1). Hazari has developed another Iridium-based catalyst26 (2 in Figure 

1) which has shown excellent TON (348 000) and TOF (14 500 h-1). For instance, a Rhodium 

catalyst (complex 3 in Figure 1) exhibits a TOF of 1335 h-1.27 A ruthenium phosphine catalyst 

(complex 4 in Figure 1) has a tremendous TOF of 95 000 h-1.28 Another ruthenium catalyst29 (5 

in Figure 1) showed a TOF of 1400 h-1. While the use of early-transition metal has an obvious 

economic interest, early transition metal-based catalysts tend to have lower performances than 

that of late-transition metals. For instance, iron catalysts (8 and 9 in Figure 1) have shown a 

total TON of 727 over 20 hours,30 and a TON of 1220 over 24 hours,31 respectively. Nickel 

catalysts32,33 (7 and 6 in Figure 1) have TOF of 0.6 and 495, respectively. There are some 

exceptions: a cobalt catalyst34 (6 in Figure 1) shows a TOF of up to 74 000 h-1. 
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Table 1: Representative examples of mononuclear transition metals exhibiting catalytic activity 

for CO2 hydrogenation into formic acid and the highest associated turnover frequency. 

Catalyst name 

Catalyst 

(labeled 

in Figure 

1 

TOF(h-1) Reference 

[Ir(PNP)(H)3] (PNP=2,6-

bis((dipropylphosphanyl)methyl)pyridine) 

1 150 000 25 

[Ir(PNP’)(H)2] (PNP’=bis(2-

(dipropylphosphanyl)ethyl)amine) 

2 14 500 26 

[Rh(hfacac)(P(Cy)2(CH2)4P(Cy)2)] 

(hfacac=hexafluoroacetylacetonate) 

3 1335 27 

 [RuCl(O2CMe)(PMe3)4] 4 95 000 28 

[Ru(PMe3)3(H)2] 5 1400 29 

[Co(P(Me)2(CH2)2P(Me)2)2(H)] 6 74 000 34 

[Ni(BNOP)(H)] (BNOP=1,3-

bis((dipropylphosphanyl)oxy)benzene) 

7 495 32 

[Ni(P(Me)2(CH2)2P(Me)2)2(H)] 6 0.6 33 

[Fe(PP3)(H)] 

(PP3=tris(2-

(diphenylphosphanyl)ethyl)phosphane) 

8 36a 30 

[Fe(PNP’’)(CO)(H)(BH4)] (PNP’’=2-

(dipropylphosphanyl)-N-(2-

(dimethylphosphanyl)ethyl)-N-methylethan-

1-amine) 

9 2458b 31 

a) Total TON of 727 over 20 hours 

b) Total TON of 58990 over 24 hours. 
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Figure 1: Lewis structure of the catalysts summarized in Table 1. 

In general, the postulated mechanism for hydrogenation of CO2 using H2 consists of23,35 (1) 

formation of a metal-hydride, (2) insertion of the CO2 into the M-H bond forming a M-OCHO 

adduct, (3) departure and protonation of the HCOO- motif, yielding HCOOH and the metal 

complex with an empty coordination site, (4) formation of a M-H2 adduct, (5) reductive 

elimination yielding a metal-dihydride, (6) deprotonation of the complex regenerating the 

metal-hydride (Figure 2). Note that the order of the steps, in particular that of deprotonation 

with respect to CO2 insertion, depends on the experimental conditions and studies.36,37 

Alternatively, another pathway has been proposed,38 where the oxidation state of the metal does 

not change. This alternative pathway involves (1) formation of a metal-hydride, (2) insertion of 

the CO2 into the M-H bond forming a M-OCHO adduct, (3) formation of a M(H2)(OCHO) 

adduct, (4) protonation of the HCOO- by one proton of the H2 motif, leading to the departure 

of HCOOH and regeneration of the metal-hydride. 
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Figure 2: Schematic representation of the two possible catalytic cycles of the hydrogenation of 

CO2 with H2. 

Rhodium-based catalysts have been studied via 1H NMR spectroscopy36 confirms that the CO2 

is inserted into the M-H bond. Kinetic experiments38 performed on catalyst 4 are compatible 

with both the aforementioned catalytic cycle. While the reaction mechanism for this specific 

family of catalysts does not automatically extend to any other catalysts, it provides a 

mechanistic hypothesis which has since been confirmed via theoretical studies for many other 

catalysts.  

Theory has provided a lot of insight on the reactivity of these catalysts over the years. 

DFT calculations seem to indicate that two steps are likely to have a substantial kinetic barrier, 

i.e. (1) the H2 cleavage and (2) the hydride transfer steps.23,35,39 Nozaki also suggested that the 

deprotonation of the complex in pathway 1 may be a potential RDS for the iridium complex 

1.37 It is of great interest to lower those activation barriers by tuning either the metal or the 

ligand. For instance, calculations from Hazari26 suggest that inclusion of a hydrogen bond donor 

in the second sphere of coordination allows to stabilize the transition state of the hydride 

transfer step. Computational studies also propose ideas to reduce the kinetic barrier of the H2 

splitting, specifically. Hence, calculations from Yang et. al.23 suggest that intramolecular proton 

transfers may indeed favor the H2 splitting step (see Figure 3).  
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Figure 3: Transition state of the CO2 insertion step in the catalyst developed by Hazari 

stabilized by the presence of an hydrogen bond donor in the second sphere of coordination (left) 

and transition state of the H2 cleavage step in the computationally-designed catalyst by Yang, 

assisted by an intramolecular proton transfer (right). 

 

It has been noted by several authors40 that the kinetic barrier of these step is in general 

related to the hydricity of the complex, i.e. the affinity of the complex for the hydride, defined 

as41:  

Δr𝐺hyd = 𝐺(𝑀n+) + 𝐺(𝐻-) − 𝐺([𝑀 – 𝐻](n-1)+)        (6)  

By definition, a complex with a more positive hydricity has a high hydride accepting ability. 

Catalysts with high hydricity tend to pass through a hydride transfer rate-determining step 

(RDS), while low hydricity complexes tend to have a dihydrogen cleavage RDS. Ye et al.40 

indeed found that increasing the electron-donating ability of the ligand trans to the transferred 

hydride significantly decreases the kinetic barrier, while simultaneously increasing the barrier 

for the H2 splitting. Conversely, the addition of electron-withdrawing groups on the supporting 

ligands tends to simultaneously decrease the H2 splitting barrier and increase the hydride 

transfer barrier. These studies indicate that tuning the hydricity of the catalysts is a suitable 

catalyst design strategy to accomplish the right “balance” between those two kinetic barriers. 

Clearly, the examples above show that in silico design is a useful approach to achieve 

rational developments of more efficient catalysts. Computational chemistry is not only a 

predictive tool, but also one that enables to understand the electronic structure of the 

intermediates involved, in order to get insights on their reactivity, and use this knowledge to 

design the next generation of catalysts.  

The production of formic acid from CO2 may also be done electrocatalytically. Unlike 

in the former case, the electrons and protons necessary for the reaction 5b are no longer 

furnished simultaneously via the addition of dihydrogen, but separately through the addition of 

 
Figure 2: Schematic catalytic cycle of the hydrogenation of CO2 with H2. 

 

Rhodium-based catalysts have been studied via 1H NMR spectroscopy24 and kinetic 

experiments.25 The former confirms that the CO2 is inserted into the M-H bond, while the latter 

tends to be consistent with a H2-splitting step prior to the insertion. While the reaction 

mechanism for this specific family of catalysts does not automatically extend to any other 

catalysts, it provides a mechanistic hypothesis which has since been confirmed via experimental 

and theoretical studies for many other catalysts.  

Theory has provided a lot of insight on the reactivity of these catalysts over the years. DFT 

calculations seem to indicate that two steps are likely to have a substantial kinetic barrier, i.e. 

(1) the H2 cleavage and (2) the hydride transfer steps.15,26,27 It is of great interest to lower those 

activation barriers by tuning either the metal or the ligand. For instance, calculations from 

Hazari17 suggest that inclusion of a hydrogen bond donor in the second sphere of coordination 

allows to stabilize the transition state of the hydride transfer step. Computational studies also 

propose ideas to reduce the kinetic barrier of the H2 splitting, specifically. Hence, calculations 

from Yang et. al.15 suggest that intramolecular proton transfers may indeed favor the H2 

splitting step (see figure 3).  
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protons from Brönsted acids and the addition of electron via electrolysis. The TOF depends on 

the electrolysis potential according to the following relationship42: 

𝑇𝑂𝐹 = *+

,-./01 234567689
: ;<

         (7) 

Where 𝑘 is the apparent kinetic constant of the chemical reaction, F is the faraday constant, R 

the perfect gas constant, T the temperature, E the potential of the electrolysis and 𝐸?@A  is the 

standard redox potential of the catalysis.  

 The available catalysts for CO2 reduction into HCOOH are rather scarce compared to 

the number of catalysts selectively catalyzing the CO2-to-CO conversion reaction. In fact, a 

review written by Francke43 in 2018 and summarizing the homogeneous catalysts for CO2 

reduction in literature identified only 55 transition metal catalysts for HCOOH generation, 

against 125 transition metal catalysts for CO generation. Nevertheless, catalysts from late 

transitions metals such as iridium,44 rhenium45 and ruthenium,46,47 and first-row transition metal 

complexes such as Fe,48 Cobalt49 and Nickel50 have been reported. The catalytic performance 

of a few representative examples are summarized in Table 2. 

 

 

Figure 4: Lewis structure of the homogeneous electrocatalysts for CO2-to-HCOOH conversion 

reaction summarized in Table 2. 
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Table 2: TOFs, Faradaic efficiency and electrolysis potential for 7 representative examples of 

mononuclear transition complexes exhibiting catalytic activity towards CO2-to-HCOOH 

reduction reaction.  

Catalyst (number in Figure 4 shown 

within bracket) 

E (V vs SCE)a) TOF(h-1) FEc) Reference 

[Fe(L)(CL2)] (L=2,13-dimethyl-

3,6,9,12,18-pentaazabicyclo-

[12.3.1]octadeca-1(18),2,12,14,16-

pentaene)  

(1) 

-1.3 420 75-80% 373 

[Co(PR2NR’2)(Cp)] (PR2NR’2=3,7-

dibenzyl-1,5-dicyclohexyl-1,5,3,7-

diazadiphosphocane, 

Cp=cyclopentadienyl)  

(2) 

-1.8 650 (TON 

23/1h) 

98% 126 

[Ni(NHC1)(Cl)] (NHC1=3,3‘-

(pyridine-2,6-diyl)bis(1-butyl-1H-

imidazol-3-ium-2-ide))  

(3) 

-1.8 30 (TON 

1/2h)c 

47%b) 472 

[Ir(POCOP)(MeCN)(H)2(MeCN)] 

(POCOP=2,6=bis((di-tert-

butylphosphanyl)oxy)pyridine)  

(4) 

-1.45 vs NHE in 

MeCN 

20 (TON 

40/25h) 

85% 276 

[Ru(bpy)2CO]  

(5) 

-1.5 N. D. 

(TON 

19.9/N.D.) 

38% 350 

[Ru(tpy)(pbn-CO)] (pbn-CO=2-

(pyridin-2-

yl)benzo[b][1,5]naphthyridine-10-

carbaldehyde)  

(6) 

-1.1 N. D. 

(TON 

5.2/12h) 

42% 490 

[Rh(tptz)(Cl)3] (tptz=2,4,6-tris(2-

pyridyl)-1,3,5-triazine)  

(7) 

-1.3 N. D. 

(TON 

10.8/1h) 

81% 380 
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a) Potentials given vs a SCE reference electrode except mentioned otherwise. 

b) TON and electrolysis time given within brackets when available. 

c) FE given relative to the displayed potential. 

 

The main difference with hydrogenation of CO2 using H2 as a simultaneous source of 

protons and electrons, is that in electrocatalysis the electrons are provided by the electrodes, 

while the protons are provided by Brønsted acids. Consequently, the mechanism is slightly 

different, and involves (1) the protonation of the metal to form a metal-hydride (2) the insertion 

of the CO2 into the M-H bond, (3) the release of the HCOO- moiety and regeneration of the 

catalyst.51,52 Most of the aforementioned catalysts have a faradaic efficiency lower than 85%. 

This low efficiency is largely explained by the competition of three reactions. First, the reaction 

always competes with hydrogen evolution reaction (HER). Because of the availability in 

Brønsted acid, the metal-hydride may react with a proton instead of a CO2 molecule, releasing 

a dihydrogen molecule. This side-reaction is not a problem in CO2 hydrogenation because the 

large experimental pressure of dihydrogen usually pushes the equilibrium towards formation of 

formic acid. The second side reaction is the generation of carbon monoxide. This happens when 

in place of a protonation, the metal center binds directly with the carbon of a CO2 molecule. 

The reaction pathway that follows ends up after two proton transfers in the release of a carbon 

monoxide molecule and a water molecule (vide infra).  

Some authors have pointed out the possibility of a second type of pathway for CO2 

electrocatalytic reduction into formic acid starting with a direct interaction between the CO2 

molecule and the unprotonated metal. Hence, first Sauvage et. Al.,53 later confirmed by in-silico 

predictions of Ye et. al.,54 have pointed out that the coordination mode of CO2 to the Nickel-

cyclam dictate the final reaction outcome; generation of either formic acid or carbon monoxide 

depends on whether the coordination mode is 𝜂1-OCO or 𝜂1-CO2. From a mechanistic point of 

view, the electron donation of the metal center into the in-plane 𝜋∗ of CO2 results in formation 

of the M-CO2 adduct. The resulting CO2 moiety is thus electron-rich, which enables protonation 

of either the carbon or the oxygen, depending on the site accessibility to proton donors. 𝜂1-OCO 

adducts expose the carbon to protonation, thus generating a formate. On the other hand, 𝜂1-CO2 

adducts expose the oxygen to protonation, eventually resulting in the formation of carbon 

monoxide (vide infra), as depicted in Figure 5. Generally, however, calculations suggest that 

the 𝜂1-OCO binding mode is thermodynamically unfavorable due to the large interelectronic 

repulsion between the oxygen lone pair of CO2 and the low- valent metal center. On the other 

hand, the 𝜂1-CO2 binding mode involves the donation of an electron from the dz2 orbital of the 
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metal center to the rather electrophilic carbon of CO2. Hence the direct formation of a M-CO2 

adducts is thermodynamically preferred over the second mode, and selectively yield carbon 

monoxide.  

 

Figure 5: Schematic representation of the 𝜂1-OCO and 𝜂1-CO2 binding mode, leading to the 

formation of formic acid and carbon monoxide, respectively. [Cat]n refers to the catalyst of 

charge +n. Red arrows point at the available protonation site on the CO2 motif, depending on 

the binding mode. 

 

II. CO generation 

 

 Although it cannot be used directly as a biofuel, carbon monoxide is a suitable C1 

building block for the synthesis of hydrocarbons, in particular via the Fischer-Tropsch 

process.14 Unlike the previous case, reduction of carbon dioxide into CO is usually done 

electrocatalytically.  

Among the reported homogeneous catalysts, those which selectively reduce CO2 into CO are 

the most commonly reported in literature, and some may reach faradaic efficiencies close to 

100%. Although some late-transition metals-based catalysts, including rhenium,55,56,57 

ruthenium,46, 58,59,60,61,62  molybdenum,63, 64 tungsten,63 palladium,65,66,67,68 and iridium69 have 

unfavorable due to the large interelectronic repulsion between the oxygen of CO2 and the low-

valent metal center. On the other hand, the 2(-CO2 binding mode involves the donation of an 

electron from the dz2 orbital of the metal center to the rather electrophilic carbon of CO2. Hence 

the direct formation of a M-CO2 adducts is preferred over the second mode, and selectively 

yield carbon monoxide at the end.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4: Schematic representation of the 2(-OCO and 2(-CO2 binding mode, leading to the 

formation of formic acid and carbon monoxide, respectively.  

 

II. Catalysts for carbon monoxide generation 

 

Although it cannot be used directly as a biofuel, carbon monoxide is a suitable C1 building 

block for the synthesis of hydrocarbons, in particular via the Fischer-Tropsch process.8 Among 

the reported homogeneous catalysts, those which selectively reduce CO2 into CO are the most 

commonly reported in literature, and some may reach faradaic efficiencies close to 100%.10  

Although some late-transition metals-based catalysts, including ruthenium,33 rhenium,34 

osmium35 and palladium36 have been reported, most of the recent research efforts are directed 

towards the use of non-noble transition metal-based catalysts. As seen in the previous section, 

catalysts that can form a direct bond with CO2 preferentially lead to producing carbon monoxide 

over formic acid. One widely used approach is to design macrocyclic complexes with empty 

axial coordination sites. The resulting complexes enable the direct 2(-CO2 coordination mode 

!" − $%$ !" − %$&

H+ H+2	e- 2	e- +	H+

H2O
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been used as catalysts in CO2-to-CO reduction, recent intense research efforts have been 

directed towards more earth-abundant first-row transition metals. Mononuclear early-transition 

metal complexes such as chromium,63,64 manganese,7071,72, iron,16,73,74,75,76,77, 

cobalt48,76,78,79,80,81,82 and nickel79,81,83,84,85,86 have been reported as having a catalytic activity 

towards CO2-to-CO reduction. 

 Both in terms of TOF and selectivity, the iron-porphyrin family undeniably represents 

some of the most performant catalysts reported in the literature. [Fe(TPP)] exhibits a TOF of 

about 104 s-1 at a potential of -1.7 V vs SCE. The effect of tuning the substituents in the 

porphyrin ligand have been intensively studied.87,88,89 In fact, a derivate of [Fe(TPP)] has been 

reported by Saveant et. Al.90 to exhibit a tremendous TOF of 106 s-1! [Fe(TPP)] also exhibits a 

Faradaic efficiency of about 100%, making it de facto the most selective catalyst available in 

the literature. A more in-depth investigation of the iron-porphyrin family as catalysts for CO2 

reduction is the subject of this thesis dissertation. Although [Fe(TPP)] and its derivates stand 

out, other excellent catalysts have been reported. For instance, [Co(qpy)] exhibits an excellent 

TOF of 3.3 x 104 s-1 at a very mild potential of -1.3 V.76 Its Faradaic efficiency with respect to 

CO formation, however, is only 87%. The [Re(R-bpy)(CO)3] and [Mn(R-bpy)(CO)3] also 

provide excellent catalytic performances. For instance, the catalysts [Re(Mes-bpy)(CO)3] and 

[Mn(tBu-bpy)(CO)3] have TOFs of 6206 and 5000 s-1 at potentials of -1.6 and -1.8 V, 

respectively.55,70 They are also highly selective, with Faradaic efficiency of 98% and 96%, 

respectively. Of note, a large number of derivate exist for each of those catalysts, 56,57,91,92,93 the 

study of which is beyond the scope of this dissertation. More recently, an iron complex 

[Fe(bpyNHEtPY2Me)] with a TOF of about 2000 s-1 was reported.74 A plethora of other catalysts 

for CO2 reduction are available and will not be described in details here, but their catalytic 

performances, potential and faradaic efficiencies are summarized in 3. 

 Of note, the large majority of the aforementioned catalysts are transition metal 

complexes involving highly conjugated ligand platform. In fact, on the 35 catalysts reported in 

3, 23 involve ligands possessing a π-system of 10 atoms or more. The specific nature of these 

ligands is multiple, and can be classified either as polypyridine, conjugated macrocycles, 

pyridine-diimine or NHC platforms. The conjugated nature of the ligand hints at the role of the 

ligand in accepting electrons necessary for CO2 reduction, as is described in more details in 

Chapter 3.  
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Table 3: TOF, Faradaic efficiency and electrolysis potential for 35 representative examples of 

reported mononuclear transition metal complexes exhibiting catalytic activity for CO2-to-CO 

reduction reaction.  

Catalyst (number in Figure 6 or 

Figure 7 shown within bracket) 

E (V vs SCE)a) TOF (s-1)b) FEc) Reference 

[Fe(TPP)]  

(1) 

-1.7 >104 

(N.D.) 

~100% 16,73 

[Co(qpy)] (qpy=quaterpyridine)  

(2) 

-1.3 3.3 x 104 

(64/8h) 

87% 76 

[Re(Mes-bpy)(CO)3]  

(3) 

-1.6 6206 

(N.D.) 

96% 55 

[Mn(tBu-bpy)(CO)3]  

(3) 

-1.8 5000 

(4/1.2h) 

98% 70 

[Fe(bpyNHEtPY2Me)] 

(bpyNHEtPY2Me=6'-(1,1-di(pyridin-

2-yl)ethyl)-N-ethyl-[2,2'-bipyridin]-

6-amine)  

(4) 

-1.5 2067 

(N.D.) 

81% 74 

[Fe(Cp1)(CO)3] (Cp1=1,3-bis(tert-

butyldimethylsilyl)-4,5,6,7-

tetrahydro-2H-inden-2-one)  

(5) 

-1.65 vs NHE 

(in CH3CN) 

324-728 

(N.D.) 

96% 75 

[Ru(mes-bpy)(CO)2(Cl)2]  

(6) 

-1.8 320 (N.D.) 95% 60 

[Mo(CO)6]  

(7) 

-2.4 238 s-1 

(8.1/2h) 

83-95% 63 

[Co(Mc)] (Mc=2,4,6,8-tetraaza-

1,3,5,7(2,6)-

tetrapyridinacyclooctaphane)  

(8) 

-2.3 170 

(6.2/2h) 

98% 78 

[W(CO)6]  

(7) 

N.D. 159 s-1 

(N.D.) 

N.D. 63 

[Ni(cyclam)] (cyclam=1,4,8,11-

tetraazacyclotetradecane)  

-1.9 90 (4/1h) 90% 83 
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(9) 

[Ni(CNC)(NCCH3)] (CNC=2,6-

bis(3-methyl-2,3-dihydro-1H-

imidazol-1-yl)pyridine)  

(10) 

-1.8 90 s-1 N.D. 86 

[Co(tpy)2] (tpy=terpyridine)  

(11) 

-1.6 74 (N.D.) 12% 79 

[Cr(CO)6]  

(7) 

N.D. 24 s-1 

(N.D.) 

N.D. 63 

[Co(N4H)] (N4H=2,12-dimethyl-

3,7,11,17-tetraazabicyclo[11.3.1]-

heptadeca-1(7),2,11,13,15-pentane)  

(12) 

-1.7 N.D. 

(4.1/0.6h) 

45% 48 

[Ni(N4H)]  

(12) 

-1.3 N.D. 

(2.1/1h) 

44% 81 

[Cr(bpy)(CO)3]  

(3) 

-2.8 vs Fc/Fc+ in 

NMP 

N. D. 

(N.D.) 

N. D. 64 

[Co(L)] (L=2,13-dimethyl-

3,6,9,12,18-pentaazabicyclo-

[12.3.1]octadeca-1(18),2,12,14,16-

pentaene)  

(13) 

-1.5 N. D. 

(N.D.) 

82% 48 

[Ru(bpy)2(CO)]  

(14) 

-1.5 N.D. 

(TON 

26.2/N.D.) 

51% 46 

[Ru(bpy)(tpy)]  

(15) 

-1.5 vs NHE in 

MeCN 

N.D. 

(5/5h) 

76% 59 

[Fe(qpy)]  

(2) 

-1.2 N.D. 

(12/4h) 

70% 76 

[Fe(TPFc)] (TPFc=5,10,15-

tris(pentafluorophenyl)corrole) 

(16) 

-1.6 N.D. 

(N.D.) 

N.D. 77 

[Mn(κ2-(Ph2P)NMe(NC5H4))(CO)3] -1.9 N.D. 

(N.D.) 

96% 72 
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(κ2-(Ph2P)NMe(NC5H4)=N,N’-

bis(diphenylphosphino)-2,6-

di(methyl-amino)pyridine)  

(17) 

[Co(N4C)] (N4C=(4E, 11E)-

2,5,7,7,9,14,14-heptamethyl-

1,4,8,11-tetraazacyclotetradeca-

4,11-diene)  

(18) 

-1.5 N. D. 

(9/1h) 

90% 81 

[Co(TPP)]  

(19) 

-1.8 N.D. 

(19/1.4h) 

72% 82 

[Pd(PPh,)2(Me-bpy)] (Me-

bpy=4,4’-dimethyl-2,2’-Bipyridine) 

(20) 

-1.3 vs Ag/Ag+ 

(MeCN) 

N.D. 81% 66 

[Co(PPh,)2(Me-bpy)]  

(20) 

-1.3 vs Ah/Ag+ 

(MeCN) 

N. D. 

(8/0.8-3h) 

83% 66 

[Ni(tpy)2]  

(11) 

-1.3 N.D. 18% 79 

[Mo(bpy)(CO)3]  

(3) 

-2.3 vs Fc (in 

NMP) 

N.D. N.d. 64 

[Ru(L’)(napy)(DMSO)] (L’=N‘‘-

methyl-4‘methylthio-2,2’:6’,4’’-

terpyridium, napy =naphtyridine)  

(21) 

-1.1 N.D. 35% 61 

[Ru(tptz)(CH3CN)Cl2] 

(tptz = 2,4,6-tri(2-pyridyl)-1,3,5-

triazine)  

(22) 

 

-1.8 N.D. 

(8/5h) 

92% 61 

[Ru(PNNN)(CO)(Cl)(H)] 

(PNN=N-(di-tert-butylphosphanyl)-

[2,2‘-bipyridin]-6-amine)  

(23) 

-1.3 vs SHE 

(MeCN) 

N.D. 

(6.1/12h) 

61 62 
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[Pd(Me3-P+etpE)(DMF)] (Me3-

P+etpE= (((2-(trimethyl-λ4-

phosphanyl)ethyl)phosphanediyl)bi

s(ethane-2,1-

diyl)bis(diethylphosphane)  

(24) 

 

-1.65 N.D. 

(15/N.D.) 

45% 67 

[Pd(CNC)Cl] (CNC=2,6-bis((3-

butyl-2,3-dihydro-1H-imidazol-1-

yl)methyl)pyridine)  

(25) 

-2.3 vs Ag/AgNO3 

(MeCN) 

N.D. 

(N.D.) 

52% 68 

[Ir(L4)(ppy)(NCCH3)] (ppy=2-

phenylpyridine)  

(26) 

 

-1.2 N.D. 

 

~100% 69 

d) Potentials given vs a SCE reference electrode except mentioned otherwise. 

e) TON and electrolysis time given within brackets when available. 

f) FE given relative to the displayed potential. 
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Figure 6: Lewis structure of the catalysts summarized in 3. 
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Figure 7: Lewis structure of the catalysts summarized in 3 (continuation). 

 

Although a few catalysts are able to catalyze CO generation without a proton source, 

most catalysts require the presence of Brönsted acid to facilitate the reaction. The proposed 

mechanisms of proton-assisted CO generation are multiple depending on authors and catalytic 

systems. In general for mononuclear complexes, we have distinguished 5 different types of 

mechanism investigated in literature.16,54,91 We labelled them type I, II.a, II.b, II.c and III (see 

Figure 8). 
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Figure 8: The possible pathways of CO2 reduction into carbon monoxide. The number n 

designs the charge of the catalyst. The roman numbers I (in red), IIa, IIb, IIc, (in blue) and III 

(in green) mark the mechanism types explicated in the text.  

 

 Type I corresponds to the following sequence: (1) first electron transfer the catalyst, (2) 

second electron transfer to the catalyst, (3) formation of a metal-CO2 adduct, (4) protonation of 

the adduct, (5) proton-assisted cleavage of the C-O bond, and (6) one-electron reduction of the 

catalyst and dissociation of the CO moiety, bringing the state of the catalyst to the end of step 

(1). Many systems have been assigned a type I pathway, including [Mo(Mc)],78 [Co(N4H)],94 

[Co(qpy)],76 one of the possible mechanism of [Mn(bpy)(CO)3] (protonation-first pathway),91 

[Ru(bpy)2(CO)]46 and [Fe(TPP)] according to some authors.95  

Unlike in type I pathway where two electrons are transferred to the catalyst prior to the 

formation of the metal-CO2 adduct, type II pathways generally correspond to a sequence of (1) 
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first electron transfer to the catalyst, (2) formation of a metal-CO2 adduct, (3) protonation of 

the adduct and second electron transfer to the catalyst, (4) proton-assisted cleavage of the C-O 

bond, and (5) one-electron reduction of the catalyst and dissociation of the CO moiety, bringing 

the state of the catalyst to the end of step (1). In details, type II.a, II.b and II.c pathways are 

distinguishable via the order of the proton transfer relative to the electron transfer in step (3). 

In type II.a, the second electron transfer directly follows the formation of the metal-CO2 adduct 

and precedes the protonation of the adduct. To the best of our knowledge, the type II.a 

mechanism has not been explicitely assigned to any of the aforementioned catalysts, although 

the order of the steps separating the formation of the adduct from the cleavage of the C-O bond 

is oftentimes left ambiguous. 48,76,96 In type II.b, the proton transfer follows the formation of the 

metal-CO2 adduct and precedes the second electron transfer. Example of type II.b pathway 

include [Re(bpy)(CO)3]58 or one of the pathways of [Mn(bpy)(CO)3] (reduction-first 

pathway).91 Finally, in type II.c pathway, it is possible that the proton and the electron are 

transferred simultaneously in one elementary step, i.e. a concerted proton-electron transfer 

(CPET).97,98,99 According to Ye et. Al. on the basis of DFT calculations, [Ni(cyclam)] follows 

a type II.c mechanism.54 

Finally, type III mechanism corresponds to a direct cleavage of the C-O bond following 

directly the formation of the adduct. The mechanism involves the following sequence: (1) first 

electron transfer to the catalyst, (2) second electron transfer to the catalyst, (3) elementary 

cleavage of the C-O bond assisted with a proton transfer, and (4) one-electron reduction of the 

catalyst and dissociation of the CO moiety, bringing the state of the catalyst to the end of step 

(1). Note that the type III is rarely investigated in the literature, and has been to our knowledge, 

only proposed by Costentin16 for [Fe(TPP)].  

In principle, type II mechanism are likely to occur at milder potentials than type I or III 

mechanisms. Indeed, the formation of the adduct triggers an electronic donation from the 

catalyst to the CO2 motif, while the protonation increases the charge of the overall complex. 

Hence such chemical steps are expected to shift the second electron reduction potential of the 

resulting species towards more positive values compared to that of the molecular catalyst. 

However, in type II pathways the metal-CO2 and metal-CO2H intermediates are expected to be 

energetically unfavorable compared to their counterpart in type I and III mechanisms. Indeed, 

in each case the higher charge state of the intermediate is likely to translate into a lesser ability 

to donate electrons to the CO2 motif or accommodate a positive charge. Hence in general, the 

kinetics of the type II pathways are expected to be slower than that of type I and type III 

mechanisms.  
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Direct spectroscopic evidences of the intermediates involved in either of those 

mechanism are scarce. However, it is worthwhile to note that infrared evidences of 𝜂1-CO2 

adducts of zero-valent iron and cobalt have been detected in the past. Those adducts 

decomposed above 60 K, suggesting their instability.100 A cobalt(I) 𝜂1-CO2 adduct has been 

characterized by X-ray diffraction analyses,101 although this complex was stabilized by the 

interaction with two K+ ion. More recently, spectroscopic evidence of a cobalt-CO2 adduct was 

found via IR spectroscopy in a study of the activity of [Co(N4H)] with respect to CO2.102  

 DFT calculations usually suggest that formation of the 𝜂1-CO2 adduct and the C-O bond 

cleavage steps are the two potentially rate-determining steps of the reaction for many catalysts. 

For instance, calculations by Ye on nickel-cyclam suggested that the formation of the Ni-CO2 

adduct is only marginally stabilizing (Δr𝐺 = 1.7 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙). The rate-determining step is indeed 

the C-O bond cleavage and varies according to the pKa value of the Brønsted acid. For instance, 

the associated barrier is 21 kcal/mol in water. Kubiak found that the formation of the adduct 

[Re(CO)3(bpy)(CO2)]- underwent a prohibitive kinetic barrier unless in the presence of a 

stabilizing cation. 103 However, the C-O bond cleavage remained the rate-determining step (24.4 

kcal/mol with methanol as proton donor). Joint evidences from experiments and theory provide 

once again a set of ideas to improve the performance of catalysts. For instance, following this 

line, the bipyridine ligand in [Re(bpy)(CO)3]- was modified in order to allow intramolecular 

proton transfers to CO2 and stabilizing the 𝜂1-CO2 adduct via hydrogen bonds.104  

As emphasized before, electrocatalytic generation of carbon monoxide always has to 

compete with formic acid generation or hydrogen evolution. Formic acid generation and H2 

evolution reaction are both initiated with the formation of a metal-hydride, whereas the first 

step of CO generation is the formation of a metal-CO2 adduct. In fact, DFT calculations 

generally suggest that the kinetics of the metal-hydride formation step governs the selectivity 

for CO generation with respect to HCOOH or H2 generation. For instance, in the case of 

[Re(bpy)(CO)3Cl] the formation of the metal-hydride (Δr𝐺0 = −39.8 kcal/mol) is highly favored 

thermodynamically over the formation of the metal-CO2 aduct (Δr𝐺0 = −10.5 kcal/mol).103 

However, the former process requires a significant barrier (𝛥L𝐺M  =21.8 kcal/mol) while the 

formation of the metal-CO2 adduct has no barrier in the presence of a cation, indicating a kinetic 

origin to the selectivity of this complex towards CO generation. A more recent investigation on 

a derivate of [Fe(TPP)] also attributed the selectivity of CO generation over HER to a 

prohibitive barrier associated with the formation of the metal-hydride species.105 As an 

additional illustration for this competition phenomenon, the addition of local proton sources in 

[Mn(bpy-R)(CO)3Br] (R=4-phenyl-6-(1,3-dihydroxybenzen-2-yl) increases drastically the 
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production of formic acid up to a faradaic efficiency of 22%,106 likely because the formation of 

the metal-hydride is favored by the local proton source. 

 

 

Figure 9: Schematic representation of all the reactions involving a two-electron reduction of 

CO2 and the competitive hydrogen evolution reaction. 

The present introduction has detailed the state-of-the-art available homogeneous 

catalysts for the two 2-electrons reduction products of carbon dioxide, i.e. carbon monoxide 

and formic acid. All known mechanistic routes have been described, including the side reaction 

of hydrogen evolution. These routes are sometimes competing against each other and all are 

summarized in Figure 9. For carbon monoxide generation, it seems that the iron-porphyrin 

family constitute one of the most efficient and selective family of catalysts reported so far in 

the literature. We provided multiple examples where spectroscopy and theoretical chemistry 

were used in order to provide mechanistical insights on catalysts reactivity towards CO2 

reduction based on their electronic structure. Ultimately, such approaches aim at providing 

valuable insights into the rational design of new generations of catalysts. Following this 

strategy, the aim of this dissertation is to provide a complete understanding of the electronic 

structure of [Fe(TPP)], prototypical member of the iron-porphyrin family, and relate it to its 

reactivity towards CO2 reduction. In order to get a complete picture of the electronic structure 

 The reduction of carbon dioxide into carbon monoxide has been intensively studied. 

Experimental and theoretical data suggest that the formation of the M-CO2 adduct and the C-O 

bond cleavage are the most thermodynamically unfavorable steps in the reaction. To overcome 

these kinetic issues, catalysts with intramolecular proton donors, which are able to stabilize the 

M-CO2 adduct by engaging in hydrogen bonds and reduce the entropic cost of the C-O bond 

cleavage transition state by promoting intramolecular proton transfer. In order to reduce the 

overpotential necessary for the electrocatalysis, some authors have also included positively 

charged or electron-withdrawing functionalities in the catalysts.  

Of particular interest is the fact that in order to further reduce the overpotential required 

for the reaction to progress, many authors have used conjugated ligands that serve as electron 

reservoir. While stored away from the metal center, the reactive center, in many cases the 

electrons can be mobilized onto the metal to facilitate the metal-to-CO2 electronic transfer.  

As was shown in this report, the joint use of quantum mechanics-based methods, 

spectroscopy and kinetic studies systematically provides a guideline for rational catalyst design 

of the next generation of catalysts including the design of functionalities in the ligands to lower 

activation barriers or lower the required overpotential for electrocatalysis. We believe that a 

particular interest should be dedicated to elucidating the role played by ligand non-innocence 

in the reactivity of molecular catalysts towards CO2 reduction. The mixing between ligand-

based and metal-based orbital provides remarkably low-lying electron-donating orbitals, while 

providing a transfer channel from the ligand to the metal to assist CO2 reduction. 

  

 



 
30 

of the catalyst, we first studied the molecular catalyst at all the oxidation states intervening in 

the reaction cycle, formally Fe(II), Fe(I) and Fe(0). Interestingly, these three forms are 

historically controversial. The electronic ground state of [FeII(TPP)] has always been subject to 

debate and the likelihood of strong relativistic effects gives this system a remarkably peculiar 

magnetic behavior which still remains to be fully understood. The magnetic properties and 

electronic structure of this system has been first investigated in details in Chapter 1. The 

electronic structure of [Fe(TPP)]- and [Fe(TPP)]2- has also been controversial for decades, as 

the likelihood of the 𝜋∗-orbitals of the porphyrin ring to be the electron-accepting orbitals in 

the one- and two-electron reductions of [FeII(TPP)] is still not clear. Elucidating the electronic 

structure of [Fe(TPP)]- and [Fe(TPP)]2-, in particular regarding the physical oxidation state of 

the iron, is the purpose of Chapter 2. Once all these questions are answered and the electronic 

structure of the molecular catalyst is elucidated, DFT models of the reaction intermediates in 

the CO2-to-CO conversion were built and tested against available experimental data. These 

models were used as a starting point to investigate the electronic structure-reactivity 

relationship of [Fe(TPP)] in CO2 reduction. It is the subject of Chapter 3.  

Probing the electronic structure of a system requires the joint use of theoretical and 

experimental methods. On one hand, experimental methods, and particularly spectroscopy, give 

insights on the investigated system’s molecular properties, but the connection between those 

properties and the electronic structure of this system is often too complex to be inferred without 

using adapted theoretical models. On the other hand, theoretical methods provide a microscopic 

understanding of the electronic structure of a system, but may yield biased results for two 

reasons. First, these methods are all based on approximations which may introduce errors in the 

modelling of molecular properties. Second, regardless of the accuracy of a method, the 

relevance of the electronic structure of a modelled system obviously depends on how close it 

stands to the system of interest. Hence, without connection to the experiment, one has no 

guarantees that the investigated model is a correct depiction of the real molecule. In this project, 

extensive use has been made of experimental methods, such as SQUID, X-ray absorption and 
57Fe Mössbauer. To model the electronic structure and reactivity of the investigated systems, 

computational methods including DFT and CASSCF/NEVPT2 have been used and completed 

with concepts of thermodynamics. All the theory underlying these methods, experimental and 

computational, and relevant to the present investigation will be described in the next chapter.  
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Theory 

 

I. Magnetochemistry  

 

A. Physical origin of the magnetic moment 

 

Some of the investigated compounds in this research have unpaired electrons. Measuring 

the molar magnetization of a paramagnetic molecular system can give information on the spin 

and electronic configuration of the ground state, as well as its excited states. Magnetochemistry 

measurement thus constitute an interesting probe of the electronic structure of a system.  

Under an applied magnetic field, these molecular systems have magnetic moments 

oriented with respect to the applied field:107 

𝜇O 	= 	−
R6
RST

           (8) 

 

Where 𝜇O is the 𝛼-component (x, y or z) of the magnetic moment associated with an electronic 

state (microscopic magnetic moment), E the energy and 𝐵O the α-component (x,y or z) of the 

applied magnetic field.  

For paramagnetic molecules, the Zeeman effect dominates the field-dependent 

contribution to the energy: 

𝐻WXXY = 𝜇Z(𝑔.𝑆 + 𝐿a⃗ ) ∙ 𝐵Xdeaaaaaaaa⃗          (9) 

 

Where µB is the Bohr magneton, ge the g-factor of the electron spin (𝑔X = 2.002319),108 𝑆 and 

𝐿a⃗  are the spin and orbital angular momentum vector operators of the molecular system, 

respectively, and 𝐵Xdeaaaaaaaa⃗  is the applied magnetic field.  

Hence, the microscopic magnetic moment �⃗� of a system provides information on the 

spin and electronic state, since the magnetic moment operator is related to the spin and orbital 

angular momentum operators: 

𝜇Ol = −	𝜇Z(𝑔X𝑆Om +	𝐿Om)         (10) 
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Where 𝑆Om and 𝐿Om are the α-components (x,y or z) of the spin and orbital angular 

momentum vector operator, respectively. In the special case of atoms and other spherically-

symmetric systems, each non-relativistic state (i.e. eigenstate of the Born-Oppenheimer 

Hamiltonian) may be described as a manifold of degenerate magnetic sublevels |𝜆, 𝑆,𝑀q, 𝐿,𝑀r⟩ 

of same λ, S and L but different MS and ML, where 𝑆 and 𝑀q are the spin quantum numbers, 𝐿 

is the orbital angular momentum quantum number, and 𝑀r is the magnetic quantum number, 

with −𝑆 ≤ 𝑀q ≤ +𝑆 and −𝐿 ≤ 𝑀r ≤ +𝐿. λ is a compound label that contains all necessary 

quantum numbers except S, MS, L and ML. In this case, the magnetic moment is isotropic, i.e. 

it aligns on the magnetic field with the same projected value regardless of the direction of the 

field.  

⟨𝜆, 𝑆,𝑀q, 𝐿,𝑀r|𝜇Ol|𝜆, 𝑆,𝑀q, 𝐿,𝑀r⟩ = 	−𝜇S(𝑔X	𝑀q +𝑀r)              (11a) 

 

Where 𝜇Ol is the component of the magnetic moment operator aligned to the direction of the 

applied field. Relationship (11a) holds because in a spherically symmetric environment, 

v𝐻S.w.Y, 𝑆*mx = 	 v𝑆Om, 𝑆*mx = v𝐻S.w.Y,𝐿Omx = [𝐻Swm , 𝐿*z ] = 0 , which means that 𝑆,𝑀q, 𝐿,𝑀r are good 

quantum numbers. However, in a non-spherical ligand-field, [𝐻S.w., 𝐿O] = [𝐻Sw, 𝐿*] = 0 is no 

longer valid. Hence , 𝐿,𝑀r are no longer good quantum numbers, and only the spin participates 

to the magnetic moment. The orbital angular momentum is quenched. In this case each non-

relativistic state may be described as a degenerate manifold of magnetic sublevels |𝜆, 𝑆, 𝑀q⟩ of 

same λ and S but different MS. The ensemble of degenerate magnetic sublevels constitutes a 

multiplicity. The number of magnetic sublevels in a multiplicity is (2S+1). For each of these 

magnetic sublevels, 

⟨𝜆, 𝑆,𝑀q|𝜇Ol|𝜆, 𝑆,𝑀q⟩ = 	𝑔X	𝑀q                 (11b) 

 

 The Born-Oppenheimer Hamiltonian, however, neglects a number of physical effects 

which tend to partially unquench the orbital angular momentum of the system. For transition 

metals, the most important of these terms is the spin-orbit coupling (SOC) interaction.109 

𝐻z ≈ 𝐻S.w.Y +𝐻WXXY +𝐻qw}Y                   (12a) 

𝐻qw}Y = 2𝜇S ∑ ∑ W�
|��7L�|�� 	𝑙��aaa⃗ ∙ 𝑠�aa⃗� − 2𝜇S ∑ 𝑠�aa⃗ ∙ ∑

,

�L�7L��
� 	5𝑙�

�aa⃗ + 2𝑙��aa⃗ ;�M��             (12b) 

 

Where ZA is the atomic number of the atom A, RA, ri are the position vectors of the atom A  and 

electron i, 𝑙�� is the orbital angular momentum operator of the electron choosing the atom A as 
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origin, si is the spin angular momentum operator of electron i, and 𝑙�
� is the orbital angular 

momentum operator of the electron i choosing the electron j as origin. 

The SOC effect gets stronger for elements with higher Z. For transition metals, the SOC 

is usually perturbative with respect to the Born-Oppenheimer Hamiltonian. However, unlike 

for atoms of the two first periods, it is not negligible and does have a significant effect on the 

magnetism of a molecular system.  

Different approximations may be made to simplify the treatment of SOC. In one approximation 

widely used in this study, the SOC operator is approximated by its one-electron term, which in 

turn can be approximated to: 

𝐻qw}Y 	= 𝜁� ∑ 𝑙��aaa⃗ ∙ 𝑠�aa⃗�                    (12c) 

 

Where 𝜁� is the SOC constant of the atom A. The competition of SOC effect and ligand-field 

effect may give rise to an unusually large/small and anisotropic magnetic moment, due to the 

partial unquenching of the orbital angular momentum110 and/or mixing between different spin 

states.111 From a perturbative perspective, both effects can ultimately be traced to the SOC 

between low-lying non-relativistic states of same and different S quantum number, respectively. 

The nature and energy separation of these states, of course, stems from the ligand field around 

the metal. The magnetism of a system can therefore be a strong experimental evidence of the 

system’s electronic and molecular structure. 

The anisotropic alignment of the magnetic moment with respect to the applied magnetic 

field is therefore the consequence of SOC perturbations. It is usually described in terms of two 

phenomenological effects applied on the magnetic sublevels of a given multiplicity, namely the 

zero-field splitting (ZFS) and the g-anisotropy (in reference to the corresponding effect in spin 

Hamiltonian formalism, vide infra). The ZFS is an effect existing only for multiplicities higher 

than 2 (S>1/2). The degeneracy between magnetic sublevels of a same multiplicity is lifted 

because each MS eigenstate interacts differently with the excited states manifold via SOC. In 

the presence of a magnetic field, the ZFS competes with the Zeeman effect for certain field 

directions, a source of magnetic anisotropy. The g-anisotropy refers to the fact that the 

eigenvalues of 𝜇Ol in a given multiplicity depend on the component α=x,y,z. This effect stems 

from the mixing of excited non-relativistic states into the multiplicity via SOC interactions. It 

is conceptually different from the ZFS which stems from the energy splitting of the magnetic 

sublevels in the ground multiplicity (although both effects originate in large part from the SOC 

interactions). Of note, after the SOC perturbations, the magnetic sublevels within a given 

multiplicity are no longer eigenstates neither of the Born-Oppenheimer Hamiltonian, nor 𝑆�z  or 
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𝑆*m owing to the state mixing stemming from SOC interactions, and are not degenerate anymore 

due to the ZFS. However, the term of multiplicity is still used to describe these sublevels, 

because consideration of all these sublevels simultaneously is usually required in order to 

understand the magnetism of a system (vide infra). 
Because modelling the magnetic behavior of a molecular system via its electronic 

structure requires a deep knowledge of the system that is not readily available to 

experimentalists, the Zeeman effect and ZFS are often expressed in term of a 

phenomenological, parametrized model Hamiltonian: the spin Hamiltonian.109  This model 

allows the experimentalists to interpret a magnetochemistry measurement using a simple model 

without any previous knowledge of the wave-function besides the multiplicity of the non-

relativistic ground state (2S+1). 

In the spin Hamiltonian model, the magnetic moment operator is replaced by the operator: 

𝜇q�aaaaaaa⃗ = −𝜇S	𝑔 ∙ 𝑆�                    (13a) 

 

And the Zeeman effect is described by the following Hamiltonian: 

𝐻WXXq�Y = 𝜇S	𝐵Xdeaaaaaaaa⃗ ∙ 𝑔 ∙ 𝑆�                   (13b) 

 

Where g is a 3x3 symmetric matrix, and 𝑆� is a pseudospin vector operator. The latter acts on 

the magnetic sublevels of a given multiplicity. Each of these sublevels are assigned the 

eigenvalue 𝑆�(𝑆� + 1) to the operator 𝑆�*mand an eigenvalue 𝑀q� to the operator 𝑆�Wm, such that −𝑆� <

	𝑀q� < 	+𝑆�. The 𝑆�Om operators acts in the basis of the magnetic sublevels in a manner parallel as 

the 𝑆Om operator act on the basis of their eigenvectors: 

�𝑆�, 𝑀q�	�	𝑆�O	�𝑆�,𝑀q�
�� = 	 ⟨𝑆,𝑀q	|	𝑆O	|𝑆,𝑀q

�⟩       (14) 

 

Where 𝑆� = 𝑆, 𝑀q� = 	𝑀q and 𝑀′q� = 	𝑀′q, 𝑆 and 𝑀q are the real spin quantum numbers. Note 

that the pseudo-spin is not identical to the real spin unless the SOC effect is negligible enough 

so the quantum numbers S and MS are good quantum numbers. In this case however, the g-

matrix is diagonal and its three diagonal values are equal to 𝑔X.  

The g matrix always possesses a set of proper axes, in which it is diagonal. In this frame, 

the g-matrix thus possesses three independent parameters (gxx, gyy and gzz). These three g-values 

contain the information relative to the g-anisotropy. 

An important property of the spin Hamiltonian Zeeman operator is that there always exists a 

set of g-values such that for a multiplicity of 2 or 3, the spin Hamiltonian Zeeman operator (eq. 
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13b) reproduces all matrix elements of the Zeeman operator (eq. 9) in the basis of the magnetic 

sublevels after perturbation by SOC.112 This property means that one can reproduce the Zeeman 

effect simply by parametrizing three g-values. We note here in passing that the sign of the g-

values determines the relative orientation of the pseudospin vector with respect to the applied 

field, but has no influence on the description of the Zeeman effect.112 However, the sign of the 

product 𝑔dd𝑔��𝑔�� does have a physical significance.113 To simplify the description and 

because this significance has no influence on the description of the magnetism in this study, we 

simply assumed that all three g-values are positive.  

On the other hand, the spin Hamiltonian Zeeman operator does not describe any field-

dependent coupling between the magnetic sublevels of a given multiplicity and those of higher-

lying states. If the set of magnetic sublevels from a given multiplicity is significantly lower in 

energy than those higher-lying states, then those couplings can be neglected. However, in the 

case of orbitally-degenerate or near-degenerate non-relativistic states, this approximation is no 

longer valid and the spin Hamiltonian model is insufficient. A more detailed analysis of the 

shortcoming of this Hamiltonian is available in chapter 1.  

Note that for multiplicities higher than 3, it is possible that the spin Hamiltonian does not 

reproduce the Zeeman matrix exactly, and require operators of higher orders in 𝑆� for an exact 

description of the Zeeman effect.112 These higher-order operators are not needed in this study, 

since [Fe(TPP)], [Fe(TPP)]- and [Fe(TPP)]2- have multiplicities of 3, 2 and 1, respectively (see 

chapters 1, 2 and 3). 

The ZFS effect is taken in account by the spin Hamiltonian ZFS operator (eq. 15a). 

𝐻W�qq�Y =	𝑆� ∙ 𝐷� ∙ 𝑆�                   (15a)  

 

𝐷� is a symmetric 3x3 tensor. It has a set of proper axes and its trace is zero, which leaves two 

independent parameters. By convention, |𝐷��| > �𝐷��� ≥ |𝐷dd| 

In the proper axis of D, the spin Hamiltonian ZFS is usually rewritten in a more convenient 

form (eq. 15b): 

𝐻W�qq�Y = 𝐷1𝑆��* −
q��

�
< + 𝐸	(𝑆d� − 𝑆��)                 (15b) 

 

Where 𝐷 = �
*
𝐷WW and 𝐸 = ���7���

*
. 𝐷 is called the axial ZFS parameter, and 𝐸 is called the 

rhombicity parameter. 

For a multiplicity equal to 3, there is always a value of D and E such that 𝐻W�qq�  reproduces the 

ZFS of the magnetic sublevels. Like for the Zeeman effect, higher-order terms may be 
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necessary for multiplicities higher than 3,112 but study of these operators is beyond the scope of 

this study.  

Of note, the proper axes of the matrices 𝐷� and g are not necessarily colinear. In 

principle, this may force the incorporation of additional parameters in the spin Hamiltonian to 

account for the rotation matrix between these axes. However, this difficulty does not arise for 

systems with symmetry axes of order superior or equal to 3, where the proper axes must be 

aligned to the axis of symmetry. In this investigation, the system possesses an effective C4 

symmetry, thus this additional layer of complexity will not be addressed.  

Hence, the magnetic moments of the magnetic sublevels of a given multiplicity give 

information on its spin state. Furthermore, through resolving the anisotropy of the magnetic 

moments, one may get information on the ZFS and g-anisotropy effect due to the SOC 

perturbation, and ultimately, get information on the electronic structure of the ground and 

excited non-relativistic states manifold of the investigated system. A good example of in-depth 

analysis of the electronic structure of a system based on its magnetism will be provided in 

chapter 1. 

 

B. Macroscopic magnetization 

 

1) High-temperature magnetization 

 

Unfortunately, the microscopic magnetic moment of a molecular system is not directly 

observable, but experimentally one may measure the macroscopic magnetization of an 

ensemble of particles at a given temperature. Since the population of excited magnetic sublevels 

for such an ensemble follows a Boltzmann distribution, 

𝑀aa⃗ = 𝑁�
∑ ¡¢aaaa⃗ X

£
¤�
¥¦4�

∑ X
£
¤�
¥¦4�

          (16) 

 

Where 𝑀aa⃗  is the molar magnetization vector, NA the Avogadro number, 𝜇�aaa⃗  is the magnetic 

moment of the magnetic sublevel i, Ei is the energy of the magnetic sublevel i, 𝑘S is the 

Boltzmann constant and 𝑇 is the temperature. A set of magnetic sublevels of a given multiplicity 

have a total energy: 

𝐸� = 𝐸W�q,� − 𝜇�aaa⃗ ∙ 𝐵Xdeaaaaaaaa⃗          (17) 
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Where 𝐸W�q,� is the ZFS energy. 

Hence, eq. 16 becomes: 

𝑀aa⃗ = 𝑁�
∑ ¡¢aaaa⃗ X

£
¤§2¨,�
¥¦4 X

©¢aaaa⃗ ∙¦ª�«aaaaaaaaaaa⃗
¥¦4 	�

∑ X
£
¤§2¨,�
¥¦4� X

©¢aaaa⃗ ∙¦ª�«aaaaaaaaaaa⃗
¥¦4

         (18) 

 

In general, at high temperatures, the Zeeman effect is much lower than 𝑘S𝑇, meaning that 

𝑀aa⃗ ≈ 	𝑁�
∑ ¡¢aaaa⃗ X

£
¤§2¨,�
¥¦4 1,-©¢

aaaa⃗ ∙¦ª�«aaaaaaaaaaa⃗
¥¦4

<�

∑ X
£
¤§2¨,�
¥¦4� 1,-©¢aaaa⃗ ∙¦ª�«

aaaaaaaaaaa⃗
¥¦4

<

	                 (19a) 

𝑀aa⃗ ≈ 	 ¬� ∑ ¡¢aaaa⃗ X
£
¤§2¨,�
¥¦4�

∑ X
£
¤§2¨,�
¥¦4 1,-©¢aaaa⃗ ∙¦ª�«

aaaaaaaaaaa⃗
¥¦4

<�

+
¬� ∑

(©¢aaaa⃗ ∙¦ª�«aaaaaaaaaaa⃗ )©¢aaaa⃗
¥¦4

X
£
¤§2¨,�
¥¦4�

∑ X
£
¤§2¨,�
¥¦4 1,-©¢aaaa⃗ ∙¦ª�«

aaaaaaaaaaa⃗
¥¦4

<�

               (19b) 

 

At high temperature limits, where 𝐸W�q,� ≪ 𝑘S𝑇, all the exponential terms tend towards 1.  

In the absence of a field, following time-reversal symmetry requirements,114 any magnetic 

sublevel within a given multiplicity possessing a non-zero first-order magnetic moment has a 

degenerate counterpart with an exactly opposite magnetic moment. Therefore, the sum of 

magnetic moments within a given multiplicity is zero.  

We now treat the case where Zeeman couplings between the magnetic sublevels of the 

considered multiplicity and higher-lying sublevels are neglected. As mentioned in subsection 

I.A, this is the case here the spin Hamiltonian is a valid approximation. In this case, the sum of 

the magnetic moments within the ground multiplicity remains zero regardless of the direction 

of the field, since the trace of a matrix (here the magnetic moments matrix in the basis of the 

magnetic sublevels of the multiplicity) remains unchanged upon unitary transformation. The 

consequence is that the first term of eq. 19b vanishes. The expression of the 𝛼 component of 

the magnetization thus becomes: 

𝑀aa⃗ ≈ 	
¬� ∑

(©¢aaaa⃗ ∙¦ª�«aaaaaaaaaaa⃗ )©¢aaaa⃗
¥¦4�

*q-,
                   (19c) 

 

Although the angular-dependence of the magnetization can be resolved on single crystals, in 

the general case, the measured samples are powder-distributed. In this case, the observable 

magnetization corresponds to the averaged magnetization over all directions of the sphere, i. e., 

if 𝑒Saaaa⃗  is the unitary vector carrying the direction of the field, 

⟨𝑀⟩ 	≈ ,
®¯ ∫ ∫ ±𝑀aa⃗ ∙ 𝑒Saaaa⃗ ²

	
𝑠𝑖𝑛𝜃	𝑑𝜃𝑑𝜙¸¹¯

¸¹A
º¹*¯
º¹A                 (19d) 
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⟨𝑀⟩ 	≈ ¬�Sª�«
(*q-,)�+¦»

	∑ ⟨𝜇�*⟩� 	                  (19e) 

𝜒𝑇 = ⟨½⟩»
Sª�«

= 	 ¬�
(*q-,)�+¦

	∑ ⟨𝜇�*⟩�                  (19f) 

 

The magnetic susceptibility  𝜒 of a system is defined as the ratio of the magnetization by the 

magnetic field norm. It becomes apparent from (19f) that at high temperature, 𝜒𝑇 reaches a 

regime independent of temperature (Curie law). Note that some authors use the effective 

magnetic moment 𝜇X¾¾ = 5 �+¦
¬¡¦�

𝜒𝑇;
¿
�	rather than 𝜒𝑇, because the former has units of Bohr 

magneton. 

Using the spin Hamiltonian expression for the magnetic moment (eq. 13a), eq. 19f becomes the 

eq. 20.107 

𝜒𝑇 = ⟨½⟩»
S
	≈ ¬�¡¦�

�+¦
	𝑔ÀÁ* 𝑆�(𝑆� + 1)        (20) 

 

With 𝑔ÀÁ* = Â��� -	Â��� -	ÂÃÃ�

�
.  

Importantly, in this regime the magnetization is independent of the ZFS and of the g-anisotropy. 

However, it depends to a large extend of the unperturbed non-relativistic ground state 

multiplicity. However, it also depends on the average g-value, which may deviate from ge if the 

orbital angular momentum is significantly unquenched and/or if the ground multiplicity is a 

spin mixture. Oftentimes, the average g-value is deduced from high-temperature magnetic 

susceptibility measurements; while ZFS parameters are deduced from low-temperature 

measurements (vide infra).  

 Note that when the Zeeman coupling with higher-lying states are no longer negligible, 

the magnetic moment of each magnetic sublevel is affected accordingly. In fact, the magnetic 

sublevels of the ground multiplicity cannot be diagonalized independently from the higher-

lying multiplicities. As a result, the sum of the magnetic moments within the multiplicity is not 

necessarily zero. It will now be shown that under this condition, the first term in eq. 19b does 

not cancel out. Suppose the total Hamiltonian is diagonalized in the basis of the magnetic 

sublevels of the ground multiplicity. We take the resulting eigenvectors i as basis. Then, 

following perturbation theory, we have: 

⟨𝜇O,�⟩ = ⟨𝜇O⟩�
(,) +	⟨𝜇O⟩�

(*)                   (21a) 
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Where the first term of eq. 21a corresponds to the magnetic moment in the absence of Zeeman 

couplings with higher-lying terms. The second term can be estimated via second-order 

perturbation theory.  

⟨𝜇O⟩�
(*) = − R

RSª�«,T
Ä∑ ���¡aa⃗ ∙Sª�«aaaaaaaaa⃗ ������¡aa⃗ ∙Sª�«aaaaaaaaa⃗ ���

6�76�� Å                (21b) 

 

Where j runs over all sublevels except for the sublevels of the same multiplicity as i, since the 

Hamiltonian matrix is already diagonal in this basis. Of note, the term within bracket is negative 

by construction since 𝐸� − 𝐸� < 0 (the sublevel i belongs to the ground multiplicity). 

Consequently, ⟨𝜇O⟩�
(*) is positive by construction. Hence the sum of ⟨𝜇O⟩�

(*) does not cancel 

out. Inserting eq. 21a and 21b into eq. 19b, remembering that the first term in eq. 21a is the 

magnetic moment in the absence of Zeeman couplings with higher-lying terms, the sum of 

⟨𝜇O⟩�
(,)cancel out, and after a bit of mathematic treatment, 

𝑀O 	≈ − ¬�
*q-,

∑
SÆÇÈ𝑗Ê𝜇O|m 𝑖ËÈ𝑖Ê𝜇Ì|m 𝑗Ë-È𝑗Ê𝜇Ì|m 𝑖ËÈ𝑖Ê𝜇O|m 𝑗ËÍ

6�76�Ì,�,� + 	
¬� ∑

±©¢aaaa⃗ ∙¦ª�«aaaaaaaaaaa⃗ ²©�,T
¥¦4�

*q-,
	            (21c) 

 

Here α and β correspond to the x,y,z components. The first term becomes dominant at high 

temperature since by opposition to the second, it is not temperature-dependent. The 

corresponding susceptibility therefore gives rise to a Temperature Independent Paramagnetism 

(TIP), which manifests itself in that the 𝜒𝑇 measurement does not reach a plateau at high-

temperature, but instead exhibit a linear increase with temperature.115  

 

2) Low-temperature magnetization 

 

While the measurement of the magnetic susceptibility at high temperature gives information on 

the spin state and on the presence of significantly unquenched orbital angular momentum or 

spin mixture, the measurement of the magnetization at low temperature, on the other hand, 

gives extensive information about the ZFS. Within the magnetic sublevels of a given 

multiplicity, the macroscopic magnetization generally decreases as the temperature increases. 

The temperature profile of the magnetization (eq. 18) depends on the ZFS parameters. In 

systems with low ZFS in general, the Curie temperature is reached at lower temperature, since 

lower temperatures are required to reach the regime 𝐸W�q,� ≪ 𝑘𝑇. Furthermore, the evolution 

of the temperature profile of the magnetization in the low-temperature region strongly depends 

of the ZFS. Systems with non-degenerate ground magnetic sublevel isolated from the other 
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sublevels of its multiplicity (odd multiplicity systems with positive D and/or large rhombicity) 

tend to exhibit a constant magnetization at low-temperature. In such systems, the ground 

sublevel remains the only populated sublevel for a long range of temperature over which the 

macroscopic magnetization is essentially due to the ground sublevel, which is temperature-

independent. On the contrary, systems where the ground magnetic sublevel is close to 

degenerate, (systems with large negative D and low rhombicity and/or even multiplicity 

systems), the magnetization exhibits a rapid decay with temperature. In those configurations, 

several magnetic sublevels with different magnetic moments are being rapidly populated via 

Boltzmann distribution as temperature increases, making the overall magnetization highly 

dependent on temperature.  

The field-dependence dependence of the magnetization at a given temperature is also 

related to the ZFS. Indeed, in high-field limit, i. e. 𝐷 ≪ 𝛽𝑔𝐵, the effect of the ZFS is negligible 

and the magnetization arises from first-order magnetic moments. Hence, along the direction of 

the field: 

𝜇�aaa⃗ = 𝜇S⟨𝑖�𝑔X𝑆 + 𝐿a⃗ �𝑖⟩          (22) 

 

The magnetic sublevel i is an eigenvector of the Zeeman Hamiltonian. Hence, in the high-field 

limit, the magnetization is independent of the applied field.  

On the other hand, in low-field limit, 𝐸W�q ≫ 𝛽𝑔X𝐵, the ZFS dominates over the Zeeman effect. 

The Zeeman effect thus becomes perturbative and the magnetic moment of each sublevel is 

described by first and second-order contributions (Van Vleck approximation).107 The latter is 

linear with the applied field and inverse proportional to the ZFS energies (eq. 23). 

⟨�̂�O,�⟩ = 	 ⟨�̂�O⟩�′(,) + 	⟨�̂�O⟩�′(*)                  (23a) 

⟨�̂�O⟩�′(,) = 𝜇S⟨𝑖|𝜇Ol|𝑖⟩                   (23b) 

⟨�̂�O⟩�′(*) = −∑
SÆÇÈ𝑗Ê𝜇O|m 𝑖ËÈ𝑖Ê𝜇Ì|m 𝑗Ë-È𝑗Ê𝜇Ì|m 𝑖ËÈ𝑖Ê𝜇O|m 𝑗ËÍ

6�76�Ì,�M�                (23c) 

 

The unperturbed sublevels i and j are SOC (or ZFS in a SH formalism) eigenstates instead of 

total Hamiltonian eigenstates. Hence, in low-field limit, the magnetization is linear with the 

field.  

The overall field profile of low-temperature magnetization, i. e., the transition from low-field 

to high-field limit, as well as the slope of the low-field limit profile, is also highly dependent 

on the ZFS parameters, as seen in Figure 10. Hence, the simultaneous fit of the temperature and 
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field profile of the low-temperature magnetization (VTVH) is a strong assignment of the zero-

field splitting.  

 

 
Figure 10:Evolution of the field profile of low temperature average magnetization for a S=1 

system with isotropic g-value g=ge, E=0 and different axial ZFS parameters D=1, 5, 10, 50 and 

100 cm-1. For D=1 and D=5, the system operates its transition to high-field limit within the 

investigated field range. For D=50 and D=100, the system remains in low-field limit over the 

investigated range. 

 

II. 57Fe Mössbauer 

 

The 57Fe Mössbauer spectroscopy is a 𝛾-ray absorption spectroscopy used to probe with 

an extreme precision the local electronic structure of an iron center. In details, this spectroscopy 

is based on the resonant absorption of a gamma photon of 14.4 keV by an iron nucleus in its 

ground state. Due to the large half-time of the iron nucleus,116 the absorption line is very narrow 

and the technique is dependent on the use of a source able to produce photons of the exact 

energy. Those photons are obtained by electron capture of 57Co into 57Fe in its excited nuclear 

state followed by the deexcitation of the 57Fe. The recoilless deexcitation of 57Fe produces a 

photon of precisely 14.4 keV.  
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 Paradoxically, while the absorption is a nuclear process, the Mössbauer spectroscopy 

makes use of the very narrow absorption line of the absorber to detect extremely subtle shifts 

resulting from the electrons-nucleus interactions (hyperfine effects). To account for these subtle 

shifts, the energy of the source is slightly modulated by Doppler effect, by moving it forward 

or backwards from the absorber. For this reason, the energy of Mössbauer spectra is expressed 

in terms of the velocity of the source (in mm/s). The velocity is related to the energy by the 

expression of the Doppler effect117 : 

𝐸Ò = 	𝐸Ó 51 +
ÔÕ
Ö
;	          (24) 

 

Where Eγ is the energy of the incident gamma photon (𝐸Ó = 14.4 keV), νn the velocity of the 

source, and c the speed of light.  

 The hyperfine effects can be classified into two kinds. The electric hyperfine 

interactions, correspond to the electrostatic interactions between the iron nucleus and the 

electrons surrounding it. The magnetic hyperfine interactions correspond to the interaction 

between the iron nuclear spin and the magnetic field created by the electrons surrounding it.  

 

A. Electric hyperfine interactions 

 

The electric hyperfine interactions regroup all electric interactions between the iron 

nucleus and the electrons surrounding it. Since the charge distribution of the nucleus changes 

upon nuclear excitation, the electric hyperfine interactions do not cancel out exactly, and the 

absorption energy of the photon is modulated accordingly.  

The Taylor expansion (up to second-order) of the electrostatic interaction between the nucleus 

and the electronic potential is: 

𝐸XØ = 	∫𝜌¬	𝑉(𝑟)𝑑𝜏 ≈	∫ 𝜌¬	𝑉(0)𝑑𝜏 +	∑ ∫ 𝜌¬	𝑉O 𝑥O𝑑𝜏O + ,
*
∑ ∑ ∫𝜌¬	𝑉OÌ𝑥O𝑥ÌÌO 𝑑𝜏 

            (25) 

 

Where 𝜌¬ is the charge distribution within the nucleus, 𝑉(𝑟) is the electrostatic potential 

described by the electrons, 𝑉O =
RÞ
RdT

, and 𝑉OÌ =
R�Þ

RdTRdÆ
 are the α and β (x,y,z) components of 

the electric field vector and electric field gradient (EFG) tensor at the center of charge of the 

nucleus, respectively. The terms xα and xβ represent the α and β components of the position 

vector. The term dτ is the infinitesimal volume element 𝑑𝜏 = 𝑑𝑥𝑑𝑦𝑑𝑧. 
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The first term corresponds to the electrostatic potential of the nucleus treated as a point charge 

and enters in the composition of the usual Born-Oppenheimer Hamiltonian. The second term is 

zero, because the center of charge of the nucleus is always in a stable position with respect to 

the electrons (Hence the potential gradient in any direction is zero). The third term on the other 

hand, is non-zero. Since 𝜌¬ is different for the ground and excited nuclear state, it becomes 

apparent that the third term in eq. 25 slightly modulates the absorption energy of the photon. It 

is also apparent that this effect is correlated to the electrostatic potential of the electrons 

surrounding the iron nucleus, hence hinting that knowledge of these electric hyperfine 

interactions may bring information on the electronic structure surrounding iron. 

The third term in eq. 25 (𝐸XØ
(*)) may be reorganized into a sum of monopole and quadrupole 

contributions (first and second term, respectively, in eq. 26)118: 

𝐸XØ
(*) = 	𝐸áâÒâãâØÀLä + 𝐸@ä                   (26a) 

𝐸XØ
(*) = 	 ,

å
∑ ∫𝜌¬	𝑉OO𝑟*O 𝑑𝜏 +	,

å
∑ ∑ ∫𝜌¬	𝑉OÌ(3𝑥O𝑥Ì − 𝑟*𝛿OÌ)ÌO 𝑑𝜏            (26b) 

 

Here, r is the norm of the position vector. The monopolar contribution cannot be evaluated 

precisely because the nuclear charge distribution is not known. However, under the 

approximation that the nucleus is a uniformly-charged sphere, this term can be treated 

classically to yield the following energy term116: 

𝐸áâÒâãâØÀLä = − *¯
ç
𝑒*𝑍�X𝑅ä*𝜌XØ(0)                  (27a) 

 

Where e is the elementary charge of the electron, ZFe the charge of the iron nucleus, 𝑅ä the 

radius of the nucleus in a given nuclear state of nuclear spin I, and 𝜌XØ(0) is the electronic 

density at the charge center of the nucleus. Because 𝑅ä changes from one nuclear state to 

another, the interaction energy does not cancel out during the excitation process, leading to an 

energy modulation as described by the following equation: 

Δ𝐸áâÒâãâØÀL 	= − *¯
ç
𝑒*𝑍𝜌XØ(0){𝑅äì

* − 𝑅ä*}                (27b) 

 

Note that this term is not zero for the source, and modulates the energy of the incident photons, 

as well as the resonant energy of the absorber. In fact, this term is the physical origin of the 

isomer shift 𝛿, which corresponds to the difference of monopolar interaction energy of the 

absorber with respect to that of the source. 

𝛿 = ΔΔ𝐸áâÒâãâØÀL = −*¯
ç
𝑒*𝑍î𝑅äì

* − 𝑅ä*ï{𝜌XØÀðñâLðXL(0) − 𝜌XØñâòLÖX(0)}	            (27c) 
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Where 𝜌XØÀðñâLðXL(0) and 𝜌XØñâòLÖX(0) correspond to the electron density at the center of charge 

of the source and of the absorber, respectively. Interestingly, the isomer shift is proportional to 

the s-electrons density, since those are the only ones with non-zero density at the charge center 

of the nucleus. The s-density at the nucleus is sensitive to any effect susceptible to expand or 

contract the electronic density around the nucleus, making the isomer shift very sensitive to 

oxidation state and chemical environment of the iron. Specifically, isomer shifts are sensitive 

to the number of coordination and soft character of the ligands, 116 as well as the spin state of 

iron since it influences iron-ligand bond lengths. Although trends have been established to 

correlate isomer shifts with oxidation and spin states of iron,116 the many competing physical 

effects determining the isomer shift make the use of computational chemistry-based methods 

almost unavoidable for a precise assignment (vide infra).  

 The second term in eq. 26 corresponds to the quadrupolar interactions. In principle, the 

direct use of that term implies the knowledge of the charge distribution of the nucleus. However, 

recognizing that the expression (3𝑥O𝑥Ì − 𝑟*𝛿OÌ) may be expressed as a rank 2 spherical tensor 

operator, the quadrupolar interactions Hamiltonian may be expressed, after a mathematical 

derivation described elsewhere,118 using the nuclear spin operators according to eq. 28a: 

𝐻@äm = X@
åä(*ä7,)

		∑ ∑ 𝑉OÌ 	Ç
�
*
	±𝐼O𝐼Ì + 𝐼Ì𝐼O² − 𝛿OÌ𝐼*ÍÌO               (28a) 

 

Where the quadrupolar moment of the nucleus Q is a constant of the nuclear quantum number 

I. Note that the nuclear spin of the nuclear ground state of 57Fe is I=1/2, while its excited state 

is characterized by a nuclear spin I=3/2. Iα and Iβ are the α and β components of the Nuclear 

spin vector operator 𝐼. Noting that 𝑉OÌ  is a tensor, one deduces that a set of proper axes may 

always be used. Since the tensor is traceless, 𝑉OÌmay be described in this frame by two 

parameters, 𝑉�� and 𝜂 = Þ��7Þ��
ÞÃÃ

. By convention, |𝑉��| ≥ 	 �𝑉��� ≥ 	 |𝑉dd|, hereby insuring that 

0 ≤ 𝜂 ≤ 1. At this point it is worthwhile to introduce the notion of nuclear magnetic sublevels, 

which correspond to the multiplicity of simultaneous I2 and Iz eigenstates |𝐼, 𝑀ä⟩, with −𝐼 <

𝑀ä < +𝐼. In the absence of electric quadrupolar interactions (or magnetic interactions, vide 

infra), these sublevels are degenerate. Following the Hamiltonian of eq. 28a, the quadrupolar 

interactions split the magnetic sublevels of the excited nuclear state (I=3/2) into two doublets, 

separated by a value determined by 𝑉�� and 𝜂: 

Δ𝐸@ =
X@ÞÃÃ
*
	51 + ô�

�
;
¿
�                  (28b) 
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On the other hand, the ground nuclear state (I=1/2) is not affected by quadrupolar interactions 

because the quadrupolar moment Q associated with this nuclear state is zero. 

Like for the monopolar interaction, the quadrupole splitting energy should in principle be 

substracted to that of the source, but the symmetry of the source is cubic, meaning that there is 

no EFG at the nucleus. Hence the energy of the emitted photons is not affected by any 

quadrupole splitting. 

The contribution of the electronic wavefunction to the quadrupole splitting arises from the EFG 

tensor 𝑉OÌ . This EFG tensor is highly sensitive to the local electronic structure of the iron, and 

is influenced by the iron’s electronic configuration, ligand field and iron-ligand covalency.  

In a ligand-field approximation, the iron center consists of filled 1s, 2s, 2p and 3s 

subshells, as well as a partially-filled 3d subshell. Electronic density from electrons populating 

entirely filled subshells has a cubic symmetry, hence participation of these electrons to the EFG 

is zero. Hence, in this approximation only the population of the d-electrons may induce a non-

zero EFG at the nucleus. 

However, the ligand-field picture is often qualitatively correct at most. To analyze 

further the origin of the EFG, one must often consider the mixing between iron-based and 

ligand-based orbitals. Furthermore, the polarization of the core shells under the action of the 

ligand field may lead to small departure from perfect cubic symmetry. The analysis of ligand 

orbital participation and core polarization effects on the EFG tensor is not straightforward and 

requires the use of computational chemistry-based methods (vide infra).  

 Inferring the electric hyperfine effects parameters from a Mössbauer spectrum in the 

absence of a magnetic field is rather easy. The 57Fe Mossbauer spectrum exhibits a doublet. 

The splitting between doublets corresponds to the quadrupole splitting. The energy difference 

between the center of the doublet and the reference energy (velocity of the source 𝜈Ò =

0	𝑚𝑚/𝑠) corresponds to the isomer shift (Figure 11)  
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Figure 11: (Top) schematic representation of the γ-photon absorption energies relative to the 

ground nuclear state, as modulated by the monopolar and quadrupolar interactions. (Bottom) 

Corresponding 57Fe Mössbauer spectrum lines. Isomer shifts and quadrupole splitting are 

identified on the spectrum as δ and ΔEQ. The energy reference is taken as the excitation energy 

of the source. 
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B. Magnetic hyperfine interactions 

 

1) Magnetic hyperfine interactions alone 

 

As already stated in this section, the ground nuclear state of iron may be described with 

its nuclear spin angular momentum, which is characterized by a spin number I=1/2. The excited 

nuclear state on the other hand, has a nuclear spin of I=3/2. In the absence of electric 

quadrupolar effects and magnetic effects, each of these states are composed of (2I+1) 

degenerate nuclear magnetic sublevels |𝐼, 𝑀ä⟩ with −𝐼 < 𝑀ä < +𝐼. This degeneracy is lifted in 

the presence of a magnetic field because the nuclear spin tends to align with a magnetic field 

due to the Nuclear Zeeman effect: 

𝐻WXX¬òÖY = −𝑔¬𝛽¬𝐼 ∙ 𝐵Xdeaaaaaaaa⃗          (29) 

 

 The term 𝑔¬ corresponds to the g-factor of iron. It is different for the nuclear state I=1/2 (𝑔¬ =

0.181	) than for the nuclear state I=3/2 (𝑔¬ = −0.103	).116 𝛽¬ corresponds to the nuclear 

magneton. Notably, the sign of the g-factor is different between these nuclear states. 

Consequently, under a positive magnetic field, the sign of the 𝑀ä values for the lowest-lying 

nuclear magnetic sublevel is positive for the I=1/2 states and negative for the I=3/2 states 

(Figure 12). Although the splitting of the nuclear magnetic sublevels gives rise to eight possible 

transitions, magnetic spectra (in the absence of a quadrupole splitting) give rise to a six-lines 

pattern. The reason is inferred from the consideration that the Mössbauer transition are mostly 

magnetic dipole transitions. Those have selection rules of Δ𝑀ä = 0,±1, which make two of 

those eight transitions forbidden.  

The magnetic splitting of the nuclear magnetic levels may be due to an externally applied 

magnetic field and/or a field created at the nucleus by the electrons surrounding it, through 

hyperfine effects.  
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Figure 12: (Top) Magnetic splitting of the ground (I=1/2) and excited (I=3/2) nuclear states of 
57Fe under a magnetic field. Each nuclear magnetic sublevel is labelled by its MI value. In this 

case no electric quadrupolar interactions are considered. Allowed transitions are displayed as 

black arrows and labelled by numbers from 1 to 6. Forbidden transitions are displayed as red 

arrows. (Bottom) Schematic representation of the corresponding 57Fe Mössbauer spectrum. 

Each line of the spectrum is labelled with the number corresponding with the associated 

transition.  

 and associated transition in Mossbauer spectroscopy. The intensity ratios of the transition lines 

will be discussed later. The red transition are magnetic-dipole forbidden transitions.  
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 The magnetic hyperfine interactions regroup all interactions between the nuclear spin 

of iron and the magnetic field created by the electrons surrounding it. The latter originates either 

from the orbital or spin momenta of the electrons surrounding the iron.  

Usually, the magnetic hyperfine interactions are a sum of three components, i. e. the Fermi-

contact interactions (eq. 30b), the spin-dipole interactions (eq. 30c) and the orbital interactions 

(eq. 30d). Those three interaction Hamiltonian take the form119: 

𝐻��}Y = 𝐻�}m + 𝐻q�m +𝐻räm                   (30a) 

𝐻�}m = 𝜇S𝛽N𝑔e𝑔N𝐼 ∙ ù∑
ú¯
�
𝛿(𝑟�)𝑠�aa⃗� û	                 (30b) 

𝐻q�m = 𝜇S𝛽N𝑔e𝑔N	𝐼 ∙ Ä∑
�(L¢aaa⃗ ∙ñ¢aaa⃗ )L¢aaa⃗

L�
ü − ñ¢aaa⃗

L�
�� Å                (30c) 

𝐻räm = 2𝜇S𝛽N𝑔N	𝐼 ∙ ∑
Ø¢aa⃗

L�
�� 	                  (30d) 

 

Here the sum i runs over all electrons, 𝑟� is the radius of the electron position with respect to 

the iron center and 𝛿(𝑟�) is the dirac function. Each of these interactions may be viewed as a 

Nuclear Zeeman interaction between the nuclear spin and a magnetic field generated by the 

electrons, defining the Fermi-contact, spin-dipole interaction and orbital internal field 

operators: 

𝐻��}Y = −𝑔¬𝛽¬𝐼 ∙ 𝐵�Òeaaaaaaa⃗                   (31a) 

𝐵�Òeaaaaaaa⃗ = 𝐵a⃗ �} + 𝐵a⃗ q� + 𝐵a⃗ rä                  (31b) 

𝐵a⃗ �} = 	−
ú
�
𝜋𝑔X𝜇S ∑ 𝛿(𝑟�)𝑠�aa⃗�                   (31c) 

𝐵a⃗ q� = 	−𝑔X𝜇S ∑ 3 L¢aaa⃗ (ñ¢aaa⃗ ∙L¢aaa⃗ )
L�ü

− ñ¢aaa⃗
L�
��                  (31d) 

𝐵a⃗ rä = 	−2𝜇S ∑
Ø⃗�
L��                    (31e) 

 

Note that because the nuclear Magneton is lower than the Bohr Magneton by a factor of about 

1800, the electronic Zeeman effect is much stronger than the nuclear Zeeman effect. This means 

that under magnetic fields fields of a few hundreds of Gauss, the coupling between nuclear spin 

and electronic spin is negligible. In this approximation, the effect of the hyperfine coupling on 

the electronic wave-function may be neglected and the electronic Hamiltonian may be solved 

separately from the nuclear Hamiltonian. Thus, the electronic operators of eq. 31c, 31d and 31e 

may be replaced by their expectation values over a given magnetic sublevel. Obviously, the 

internal field operators are sublevel-specific, which leads to an additional layer of complexity 

when several magnetic sublevels are simultaneously populated (vide infra). 
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The Fermi contact field is a pure contact effect arising from the spin polarization of the 

s-orbitals. It is always colinear and proportional to the spin angular momentum. It is lying in 

the same direction as the spin vector. The proportionality between the spin angular momentum 

and Fermi-Contact field is rather independent of the system, and generally (but not always) 

follows the 220kG/spin unit,120,121,122 thus giving a rather direct information on the spin state of 

a system. 

The spin-dipole field also depends on the spin angular momentum. Its orientation with 

respect to the overall spin angular momentum depends on the orientation of the latter. In fact, 

eq. 31d may be reorganized the following way: 

𝐵a⃗ q� = 	−𝑔X𝜇S ∑ 𝑟7�𝑓(̿𝑖) ∙ 𝑠�aa⃗�          (32) 

 

Where 𝑓OÌ(𝑖) = Ç�dTdÆ
L�

− 𝛿OÌÍ	are the components of the one-center reduced EFG tensor. 𝛿OÌ 

is the Kronecker delta. Because of this term, the orientation of the spin-dipole field with respect 

to the spin angular momentum is strongly dependent on the electronic configuration of the iron. 

Paradoxically, while arising from the spin angular momentum, the spin-dipole field anisotropy 

depends on the electronic structure of the iron center. 

The last component, the orbital contribution, is isotropic with respect to the orbital 

angular momentum.  Unlike the Fermi contact field, for systems without spontaneous 

magnetization this component is always lying in the opposite direction to that of the orbital 

angular momentum vector. 

 Similar to the magnetic moment, the internal field operator may be reproduced exactly 

in the basis of electronic magnetic sublevels for a multiplicity of 2 or 3 using the pseudospin 

operator: 

𝐵�Òe,q�aaaaaaaaaaaaa⃗ = 	− �
ÂÿÌÿ

∙ 𝑆�                   (33a) 

𝐻��}q�Y = 𝐼 ∙ 𝐴 ∙ 𝑆�                   (33b) 

 

Where 𝐵�Òe,q�aaaaaaaaaaaaa⃗  is the internal field operator and 𝐻��}q�  the hyperfine coupling Hamiltonian 

described by the spin Hamiltonian formalism. 𝐴 is the symmetric hyperfine matrix. Since it is 

symmetric, there is a set of axes in which it is diagonal. Like the hyperfine field, the hyperfine 

matrix can be divided into three components, i.e. the Fermi-contact, spin-dipole and orbital 

matrix. Each of these components have signs which describe the direction of the hyperfine field 

with respect to the applied field. Those are determined with respect to the sign of the electronic 

g-values since they determine the direction of the pseudospin vector with respect to the applied 
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field. As specified in section I, we use here an assumption in which all g-values are considered 

positive.  

The Fermi contact contribution is isotropic, i.e. all components are equivalent. Because 

the Fermi-contact field is opposite in direction to that of the applied field, the Fermi-contact 

matrix contribution is always negative. In an ionic system without any significantly unquenched 

orbital angular momentum, 𝐴�} ≈ −22	𝑇. It can deviate significantly in case of spin mixture 

or unquenched orbital angular momentum and/or if the spin density is significantly delocalized 

to the ligand.123  

The spin-dipole contribution is anisotropic. In fact, the trace of the matrix is zero (it can 

deviate slightly from zero in case of strongly mixed magnetic sublevels, see Chapter 1), which 

means that the sign of all three components cannot be identical unless the contributions are 

zero. The signs of the x,y,z components of this term depends on the electronic structure of the 

ground multiplicity. It is usually much weaker than the Fermi-contact term,116 but not always 

negligible.  

 The orbital contribution may be anisotropic depending on the symmetry of the ligand 

field, since it depends on the orbital angular momentum. Unlike the spin-dipole contribution, it 

is not traceless. Most importantly, the orbital contribution can be either positive or negative 

because the orbital field always lies on the opposite direction as that of the orbital angular 

momentum. The later may be lying in opposite direction as that of the applied field (if it is 

unquenched due to the near-degeneracy of a more than half-filled subshell), in which case the 

orbital contribution is positive. There are cases where it may also be lying in the same direction 

as that of the field (if it is unquenched due to the near-degeneracy of a less than half-filled 

subshell). In this case, the orbital contribution is negative Regardless, a positive A value is 

usually the experimental proof that a significant orbital angular momentum is unquenched, 

assuming that the spin-dipole contribution is weaker than the fermi-contact contribution (see 

chapter 1). 

Finally, note that while the hyperfine effects may be described in spin Hamiltonian, the 

description of the hyperfine fields suffers from the same shortcomings as the description of 

magnetic moments in case of near-degenerate non-relativistic states (see Chapter 1).  

 Taken together, all three components of the field may bring information on the spin 

state and electronic structure of iron. Additionally, absorption lines depend on the relative 

orientation of the gamma-ray propagation vector and the total magnetic field. This impacts the 

line absorption pattern differently depending on the ZFS parameters. In this study, we consider 
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the case where the gamma photon propagation vector is perpendicular to the applied magnetic 

field (perpendicular mode). 

For an easy-plane of magnetization (integer spin, D>0, low rhombicity), the internal 

field created by the electron is usually lying close to the projection of the applied field on the 

plane of the proper magnetic axis. In this situation, the powder-distributed spectrum is 

dominated by configurations in which the total magnetic field is close to perpendicular to the 

propagation vector. In this configuration, the line intensities follow a pattern close to 

3:4:1:1:4:3. On the other hand, for an easy-axis of magnetization, (non-integer spin or integer 

spin with D<<0 and low rhombicity), the internal field is mostly lying along one axis regardless 

of the orientation of the field. In this case, in the powder-distributed spectrum the orientation 

of the propagation vector with respect to the total field is rather ubiquitous. In this situation, the 

line intensities follow a pattern close to 3:2:1:1:2:3.  

 At high temperature, when several electronic magnetic sublevels are thermally 

populated, the Mössbauer line pattern depends on the electronic relaxation time compared to 

the nuclear Larmor precession time. In the fast electronic relaxation limit, when the electronic 

relaxation time is much lower than the nuclear Larmor precession time, the nucleus experiences 

the averaged field created by all populated electronic magnetic sublevels, weighted by their 

Boltzmann population. In the slow electron relaxation limit, when the electronic relaxation time 

is faster than the nuclear Larmor precession time, each populated magnetic state induces a 

different field on the nucleus, and the resulting spectrum is a sum of individual six-line patterns 

each corresponding to one populated electronic magnetic state, weighted by the corresponding 

Boltzmann population. Intermediate situations between those two limits exist, although rather 

difficult to model. The issue will not be addressed in this study. 

 

2) Competition of magnetic hyperfine and electric hyperfine interactions 

 

 It must be noted that in systems with a non-zero electric-field gradient at the nucleus, 

the splitting of the nuclear magnetic sublevels has to competes with the quadrupole splitting 

effect. In cases where the magnetic effects are dominant, the quadrupolar interaction may be 

treated at the second-order perturbation theory and any sublevel mixing due to this effect may 

be neglected. In this case one merely observes a shift of the absorption lines, without a 

significant change in the intensity ratios. The shift of the absorption lines depends on the relative 

orientation of the total field and the electron field gradient tensor116: 

𝐸½,@ 5𝐼 =
�
*
,𝑀ä; = −𝑔¬𝛽¬𝐵Xde𝑀ä + 𝜇¬

(7,)�"#�$
¿
�X@Þ§§

ú
	(3𝐶𝑜𝑠*𝜃 − 1 + 𝜂 sin* 𝜃 cos 2𝜙) (34) 
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Note that the nuclear magnetic levels of same |𝑀ä| are affected identically by the quadrupole 

splitting, such as only the distance between lines 1 and 2 and that between 5 and 6 changes 

under the action of the quadrupolar effect.  

 On the other hand, for cases where the quadrupole splitting is dominating, the nuclear 

Zeeman effect may be treated as a second-order perturbation. In case of low asymmetry 

parameters, the line pattern looks like a low-energy triplet and high energy doublet for a positive 

𝑉WW or a low-energy doublet and high-energy triplet for a negative 𝑉WW. The reason may be 

inferred from the fact that the unperturbed doublets may be considered as pure | �
*
, ± ,

*
⟩ and 

| �
*
, ± �

*
⟩ nuclear magnetic sublevels, and due to the forbidden transitions involving the | �

*
, ± �

*
⟩ 

nuclear magnetic sublevels, the observer may only see two distinct transitions involving the 

| �
*
, ± �

*
⟩ doublet as the final state, whereas three distinct transitions involving | �

*
,± ,

*
⟩ are visible 

. For systems with a large asymmetry parameter, the |𝐼,𝑀ä⟩ levels are mixed together. Hence 

the line pattern of the spectrum appears as two symmetric triplets. 

For case where no effect is clearly dominant over the other, diagonalization of the total 

Hamiltonian is necessary for the resolution of the transition energies. The nuclear magnetic 

sublevels may be mixed depending on the relative orientation of the electric-field gradient 

tensor and that of the total magnetic field. Interpretation of the intensity ratios is not 

straightforward and must be calculated exactly for each relative orientation of (1) the EFG 

tensor principal axis, (2) the total magnetic field and (3) the incident gamma-rays. For a 

transition involving two nuclear magnetic sublevels consisting of a mixture of |𝐼,𝑀ä⟩, the 

transition intensity is proportional to the modulo square of the transition intensity: 

��𝐼,,𝐴�𝐻�Òem �𝐼*, 𝐵��
*
=

	∑ ∑ ∑ ∑ 𝐶½∗½���½��½� 𝐶½�∗ 𝐶½��𝐶½���	⟨𝐼,, 𝑀|𝐻�Òe|𝐼*, 𝑀��⟩⟨𝐼*,𝑀�|𝐻�Òe|𝐼,, 𝑀���⟩	½            (35a) 

 

Where the nuclear magnetic sublevels |𝐼,,𝐴⟩ and |𝐼*, 𝐵⟩ are linear combination of the nuclear 

magnetic sublevels |𝐼,,𝑀⟩, |𝐼,, 𝑀′⟩ and |𝐼*,𝑀′′⟩, |𝐼*, 𝑀′′′⟩, respectively. The interaction 

Hamiltonian 𝐻�Òem  is the magnetic-dipole transition Hamiltonian described elsewhere124.  

The angular-dependence of the source with respect to the quantization axis is hidden in the term 

⟨𝐼,, 𝑀|𝐻�Òe|𝐼*,𝑀��⟩⟨𝐼*,𝑀�|𝐻�Òe|𝐼,, 𝑀���⟩. For a non-polarized source, this expression breaks 

down into: 
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⟨𝐼,, 𝑀|𝐻�Òe|𝐼*,𝑀��⟩⟨𝐼*,𝑀�|𝐻�Òe|𝐼,, 𝑀���⟩. =

�𝐼,, 𝑀, Δ𝑀½,½ìì�𝐼*𝑀����𝐼,, 𝑀���, Δ𝑀½,½ì�𝐼*, 𝑀��	𝐹*½","ìì

*½","ì (𝜃, 𝜙)	             (35b) 

 

Where the terms �𝐼,, 𝑀, Δ𝑀½,½ìì�𝐼*𝑀��� and �𝐼,, 𝑀, Δ𝑀½,½ìì�𝐼*𝑀��� are Clebsch-Gordon 

coefficients and 𝐹*½","ìì

*½","ì (𝜃, 𝜙) are functions of the relative orientation between the 

quantization axis and the incident gamma-ray. Both have been tabulated elsewhere. 116  

 

III. X-ray absorption spectroscopy 

 

In this study, K-edge XAS spectroscopy and in particular the analysis of pre-edge structure 

has been used to determine the physical oxidation state of the reduced forms of [Fe(TPP)]. K-

edge XAS spectroscopy corresponds to the absorption spectrum corresponding to excitation 

from the 1s orbital of iron to orbitals near the continuum. Usually, a typical K-edge spectrum 

is separated in three regions, from higher to lower energy: (1) the high energy region (EXAF 

region), (2) the edge region and (3) the pre-edge region. The high energy region corresponds to 

excitations from the 1s orbital to the continuum. The analysis of this region gives structural 

information such as the nature of the ligating atoms and iron-ligand bond lengths. EXAFS 

investigation is beyond the scope of this investigation. Instead, we focus on the edge and pre-

edge regions which correspond to excitations from the 1s to 4p orbitals and 1s to 3d orbital, 

respectively. In general, the edge region is characterized by intense lines because the associated 

transition correspond to Δ𝑙 = +1 (where l is the azimuthal quantum number of the orbital). 

Therefore, they are electric-dipole allowed. On the contrary, the pre-edge region is 

characterized by much weaker line intensities, because the associated transition corresponds to 

Δ𝑙 = +2. Therefore, they are electric dipole forbidden, and only allowed through electric 

quadrupolar interactions, the latter being much weaker than the former.125 Of note, however, in 

non-centrosymmetric systems, the mixture of 3d orbitals with small amounts of 4p orbitals is 

symmetry-allowed, and may subsequently increase the intensity of the pre-edge region. The 

excitation energies in the pre-edge and edge region are strongly dependent on a number of 

factors.125 The factor of interest in this study is the oxidation state of the iron center. Indeed, 

upon reduction of the metal center, the higher screening predominantly increases the energy of 

the 1s orbital. This phenomenon dominates over the destabilization of the valence orbitals, and 

overall the excitation energy decreases. For instance, in the octahedral iron in K2NaFeIIIF6, the 
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energy of the edge in region and that of the transition in the pre-edge region are shifted by +4 

and +1.3 eV compared to the corresponding structure of the octahedral complex KFeIIF3 

complex.126 On the other hand, the complex K3[FeIII(CN)6] has an edge structure only 1 eV 

superior to the K4[FeII(CN)6] complex, respectively, because despite their formally different 

oxidation state, strong backdonation phenomena reduce the changes in electronic density on the 

iron center. Of note, the coordination number, nature of the ligand and geometry of the complex 

also affects the edge and pre-edge transition energies. The competition of these different effects 

may give rise to difficulties in comparing non-structurally equivalent systems. In that regard, 

the use of time-dependent density functional theory (TD-DFT) to predict the K-edge spectrum 

and analyze the underlying electronic structure of a given compound is a considerable asset 

(vide infra).127 Unfortunately, prediction of edge structures via TD-DFT is nearly impossible 

due to the low accuracy of TD-DFT for the prediction of excitations near the continuum (vide 

infra) and the exceedingly high number of individual transitions populating this region. Thus, 

in this study we focus on the analysis of the pre-edge region via TD-DFT (see Chapter 2).  

 

IV. Thermochemistry 

 

In this study, Gibbs free energy was calculated in order to (1) get an estimation of the kinetics 

of the CO2-to-CO reduction reaction catalyzed by [Fe(TPP)], and (2) get an estimation of the 

redox potentials of the reduced states of [Fe(TPP)] (see chapter 3). 

The Gibbs free energy is particularly important in reactivity since in transition state 

theory, it provides the theoretical kinetic constants of a given elementary reaction step through 

the Eyring equation128: 

𝑘 = +¦»
+
	𝑒7

,-.

¥¦4                    (36a) 

 

Where k is the kinetic constant of an elementary step, ℎ the Planck constant and Δ𝐺M is the 

activation free energy of the step, i.e. the free energy difference between the transition state and 

the reactant state. Knowledge of the kinetic constants may enable to compute the TOF of a 

catalytic systems, providing that all intermediates and transition states are known, and the 

catalytic system has reached a steady-state regime.129,130,131 Hence, for a sequence of reactions 

(cycle or otherwise) in a steady-state regime, the rate of reaction can be written: 
L
[ä�]
= *

∑ ½���
                    (36b) 
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Where Δ is defined in Eq. 36c, and Mij are the elements of the matrix defined in Eq. 36d. 

Δ = k,k*. .k¬ − k7,k7*. . k7¬                 (36c) 

𝑀z = 1
k*k�. .k¬ k7,k�. . k¬
k�k®. . k, k7*k®. . k,

… k7,k7*. .k7(¬7,)
… k7*k7�. . k7¬… …

k,k*. .k¬7, k7¬k*. . k¬7,
… …
… k7¬k7,. . k7(¬7*)

3             (36d) 

 

For a completely homogeneous catalytic reaction, the TOF can be computed as: 

𝑇𝑂𝐹 = *
∑ ½���,�

                    (36e) 

 

Of note, in the electrocatalytic reduction of CO2, certain elementary steps of the catalytic cycle 

may only occur at the electrode. In such cases, the concentration of the intermediates is not 

homogeneous and Eq. 36e cannot be used to estimate the TOF; instead a more complex 

mathematical treatment is required.42 An example of such treatment is given in the annex of 

Chapter 3 to estimate the turnover frequency of [Fe(TPP)] from its calculated free energy 

surface.  

The Gibbs free energy is also related to most thermodynamic properties, such as the 

absolute Nernst potential: 

𝐸A = 45�: 746ª7
:

Òª�
           (37) 

Where 𝐺âdA  is the Gibbs free energy of the oxidized system, 𝐺LXRA  is the Gibbs free energy of the 

reduced system, both in standard conditions and F is the Faraday constant. 

 

 The Gibbs free energy can be decomposed in an entropy and enthalpy contribution: 

𝐺 = 𝐻 − 𝑇𝑆           (38) 

 

 𝐻 is the enthalpy term and 𝑆 the entropy term. Each of these two terms have numerous 

components (Figure 13), which need to be calculated by different methods. Furthermore, 

several corrections must be added in the case of a solvated system compared to the gas phase. 

First, we describe all these components in gas phase. Then we extend the discussion to cases 

involving a solvated system.  
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Figure 13: Decomposition of the components entering the composition of the free energy 

explicitely calculated in this study. In red are all the components relative to calculation of the 

enthalpy (H) in gas phase. In blue are all the components relative to the entropy (S) in gas phase. 

In green are represented all the components relative to the free energy of solvation (ΔrGsolv). All 

components are discussed in the text. 

 

A. Enthalpy term 

 

The enthalpy term is defined as: 

𝐻 = 𝑈 + 𝑃𝑉                    (39a) 

 

Where U is the internal energy of the system (vide infra) and PV is the product of pressure and 

volume. The second term is usually calculated in the perfect gas approximation, i.e. 

𝐻 = 𝑈 + 𝑘S𝑇                    (39b) 

 

In the usual Born-Oppenheimer approximation, which assumes that nuclear motion is 

decoupled from electronic motion, the internal energy term U can be decomposed into an 

electronic term and a nuclear term, i.e. 

𝑈 = 𝐸XØ + 𝐸¬òÖ                    (39c) 

 

The first term encompasses the kinetic energy of the electrons, the inter-electronic 

electrostatic repulsion, the electron-nuclei electrostatic attraction, and the nuclei-nuclei 

electrostatic repulsion for a given set of nuclear coordinates, while the second corresponds to 

G = H TS

U PV
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the energy of vibration, rotation and translation of the nuclear system.132 In practice, the 

electronic energy is calculated by DFT, as will be further developed in the next section.  

The second term, under the usual rigid rotor approximation which assumes that the 

vibration motions are decoupled from the rotation motions, can be decomposed in three 

independent terms, i. e. vibrational, rotational and translational energy (Evib, Erot and Etrans). 

𝐸¬òÖ = 𝐸Á�ð +	𝐸Lâe + 𝐸eLÀÒñ                   (39d) 

 

In this study, the nuclear system is treated as a quantum object only for the calculation of the 

vibrational energy. The rotational and translational energies are both treated classically. 

In the rigid rotor approximation, the rotational energy is derived from the classical partition 

function of a rigid rotor and yields for a non-linear polyatomic molecule:132 

𝐸Lâe =
�
*
𝑘S𝑇                    (39e) 

 

The translational energy is derived according to the same method and also yields: 

𝐸eLÀÒñ =
�
*
𝑘S𝑇                   (39f) 

 

Finally, the vibrational energy is calculated in this study using the harmonic oscillator 

approximation, in which the electronic potential is estimated by a Taylor expansion of the 

electronic energy up to the second order with respect to the nuclear coordinates. Under this 

approximation, and substituting the electronic Hessian eigenvectors (normal modes of 

vibration) to the nuclear coordinates, the energy associated with each mode of vibration can be 

calculated as132:  

𝐸�,+ = 5𝜈� +
,
*
;ℏ𝜆+

¿
�                   (39g) 

 

𝜈� = 0,1,…+∞ are the vibrational quantum numbers, 𝜆+ is the eigenvalue of the mass-

weighted Hessian matrix associated with the mode k, and ℏ = +
*¯

. 

Note that in the harmonic oscillator approximation, the vibration of the normal modes of 

vibration are decoupled, which enables to treat the partition function of the system as a product 

of the individual partition function of each mode of vibration. The total vibrational energy 

depends on the thermally populated levels. It may be derived easily from the partition function 

as:132 
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𝐸Á�ð = ∑ ℏ𝜆+
¿
� <,

*
+ ,

X
ℏ=
¿
�

¥4 7,

>+                   (39h) 

 

Since for each mode, the ground vibrational mode has a non-zero vibrational energy, the total 

vibration energy is non-zero even at the 0 K limit. This energy is referred to as zero-point 

energy, and correspond to the sum of the individual mode energies in their ground vibrational 

state (𝜈� = 0). It is straightforwardly calculated from eq. 39g and it can be verified that this 

energy indeed corresponds to the limit of eq. 39h when T à 0 K. Thus, one can decompose the 

vibrational energy into a zero-point energy and a thermal energy, such as: 

𝐸W?6 =
∑ ℏ?¥

¿
�

¥

*
                    (39i) 

𝐸»+ = ∑ ℏ?¥

¿
�

X
ℏ=
¿
�

¥4 7,

+                    (39j) 

 

Note that the calculation of the vibrational energies requires the knowledge of the nuclear mass-

weighted Hessian eigenvalues 𝜆+. Diagonalization of the electronic Hessian is a somewhat 

computationally expensive task, usually performed with density functional theory (vide infra) 

and is usually bottle neck of thermochemistry calculations.  

 

B. Entropy term 

 

The second component of eq. 38 is the entropy. The entropy of a system accounts for 

the number of configurations accessible to this system.133 

𝑆 = +¦	R(»ØÒ@)
R»

                    (40a) 

 

Where Q is the system’s partition function. The entropy can be decomposed into 4 components, 

i.e electronic, vibrational, rotational and translational entropy.132,134  

𝑆 = 𝑆XØ + 𝑆Á�ð + 𝑆Lâe + 𝑆eLÀÒñ                  (40b) 

 

In the Born-Oppenheimer and rigid rotor approximations, those three components are not 

coupled and can be calculated independently using one partition function for each component. 

 For the purpose of calculating the electronic entropy, the ground non-relativistic state is 

considered to be the only accessible at room temperature. If one neglects any zero-field 



 
60 

splitting, the electronic entropy therefore only accounts for the degenerate 𝑀q levels and solely 

depends on the multiplicity of the system,132  

𝑆XØ = 𝑘Sln	(2𝑆 + 1)                   (40c) 

 

The rotational entropy can be derived from the corresponding partition function and 

yields:132,134 

𝑆Lâe = 𝑘S(
�
*
+ ln A¯

¿
�

B6
ù*ä+¦»

ℏ�
û
�
�C                 (40d)  

 

Where 𝜎L is the rotational symmetry number of the molecule, and 𝐼 is the average inertia 

moment of the molecule, i. e. 𝐼 = ±𝐼d𝐼�𝐼�²
¿
�. 

 The translational entropy may also be determined from the translational partition 

function, and yield:132,134 

 𝑆eLÀÒñ = 𝑘S 5
�
*
ln ù*¯á"+¦»

+�
û + ç

*
+ ln(𝑉q);               (40e) 

 

Where mM corresponds to the mass of the molecule. The only ill-defined term in this expression 

is VS, which corresponds to the volume occupied by the molecule. In the gas phase, the 

calculation is made at a constant pressure of about P=1 atm and using the ideal gas expression, 

𝑉q =
+¦»
?

. 

 

The vibrational entropy may be derived from the vibrational partition function in the 

harmonic oscillator approximation,132 and yields: 

 𝑆Á�ð = 𝑘S ∑
ℏ?¥

¿
�

+¦»

⎝

⎜
⎛
X
ℏ=¥

¿
�

¥¦47,
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⎟
⎞

− ln11 − 𝑒7
ℏ=¥

¿
�

¥¦43+                (40f) 

 

Like for the vibrational energy, the vibrational entropy requires the eigenvalues of the nuclear 

Hessian, which is computationally expensive.  
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C. Solvation free energy 

 

 So far, the free energy terms were computed for a molecular system in an ideal gas state. 

Some corrections need to be applied in order to calculate the free energy of a solvated molecule. 

Specifically, the electrostatic and non-electrostatic (dispersion) interactions between the solvent 

and the solute need to be calculated. Furthermore, the creation of a cavity able to contain the 

solute (cavitation) has a significant entropic and enthalpic cost.135 Finally, the loss of volume 

available to the solute in solution compared to the gas phase significantly decreases the 

translational entropy.  

 Calculation of solute-solvent interactions by including explicitly the first spheres of 

solvation is possible,136 although the high computational cost is prohibitive for the purpose of 

this study. Consequently, the electrostatic solute-solvent interactions were calculated using the 

implicit solvent model CPCM,137 which calculates such interaction by incorporating an 

additional solute-solvent interaction term in the Hamiltonian to be solved by the self-consistent 

field.  

𝐻ÖãÖá = 𝐻ÁÀÖòòá + 𝑉ñâØòeX7ñâØÁXÒe        (41) 

 

The form and derivation of the term 𝑉ñâØòeX7ñâØÁXÒe  is beyond the scope of this study and will 

not be described here. Note that it has been intensively described elsewhere.137 Its inclusion in 

the Hamiltonian enables the calculation of ΔrGel (Figure 13) by computational methods such as 

density functional theory (vide infra). 

 The cavitation and dispersion correction terms can be computed as a linear function of 

the cavity surface (defined through Van der Vaals radii of the atoms of the solute). This 

assumption is based on the experimental findings that for alkane chains, the hydration energy 

is proportional to the alkane chain’s surface area.138  

ΔL𝐺ÖÀÁ7R�ñã = 1.321 + 0.0067639	𝐴½       (42) 

 

Where AM is the surface of the cavity determined from van-der-Waals radii of the solute’s atoms 

(in Angströms squared). The parameters of this equation were determined by linear regression 

of the free energy of hydration versus surface area (defined through Van der Vaals radii of the 

atoms of the solute) for a set of 24 hydrocarbons.139 This method assumes that the cavitation 

and dispersion energy is not dependent on anything else than the surface area, and in particular, 

dependent neither on the nature of the solvent nor the nature of the solute. Hence this 

approximation should be regarded with caution. 
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 The entropy of a system is significantly different in solution compared to the gas phase. 

This is principally due to the loss of translational entropy due to the lower volume accessible 

to the system. The electronic and vibrational components of the entropy of the system are 

usually not strongly affected by the solute-solvent interaction. The rotational entropy is also 

very weakly affected, and subtle changes may only arise from a loss of available volume due 

to the gyration of the solute.134 Those changes are usually weak140,141 and will not be discussed 

here.  

Estimation of the loss of entropy due to the lower accessible volume is tackled with a 

certain success by free volume theory.134 According to this method, the solute and the solvent 

are both approximated as hard spheres, and the volume accessible to the system is calculated 

as the radius of a solvent cavity multiplied by the average number of cavity accessible to the 

system. The calculation of the volume accessible only requires the density and molar mass of 

the solvent and the volume of both the solute and the solvent (typically define through the Van-

der-Waals radii of the atoms).  
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           (43) 

 

Here, Mw and ρ are the molar and volumic mass of the solvent, respectively, VS is the volume 

of the solvent molecule and VM is the volume of the solute.The value of 𝑉ÀÖÖXññ  is then to be 

substituted to 𝑉 in eq. 40e to get the translation entropy in solution, and ultimately TΔSFV. 

Although the corresponding expression is complicated, free volume theory gives reasonable 

agreement with the experiment134 and is conceptually satisfying. 
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V. Density Functional theory  

 

A. Calculation of a single-determinant wave-function and electronic energy 

 

The first computational method used throughout this study is Density Functional Theory. It 

has been used to calculate the electronic and vibrational energy of various systems, as well as 

the Mössbauer parameters (isomer shift and quadrupole splitting). 

The theory underlying density functional theory (DFT) has been extensively described for 

decades in the literature142,143 and will not be reviewed here. For the purpose of this study, it is 

enough to know that DFT enables the estimation142 of the energy and electronic density of a 

molecular system. It relies on the self-consistent solvation of the Kohn-Sham equations, 

themselves depending on the choice of an exchange and correlation functional. In this study, 

DFT was used consistently to calculate the electronic energy, the Hessian matrix which is 

necessary for the calculation of vibrational energies and free energy, which in turn enables an 

estimation of the kinetics of the reaction (vide supra). The method was also used for calculation 

of 57Fe Mössbauer isomer shifts and quadrupole splittings.  

 DFT enables the description of the electronic correlation energy (unlike Hartree-Fock 

theory) at relatively small computational costs. In general, the quality of the description of the 

exchange and correlation energies via a specific functional follows Jacob’s ladder. The more 

accurate is the energy description of the functional, the more computationally expensive is the 

resolution of the Kohn-Sham equations. Hence, the Generalized Gradient Approximation 

(GGA) functionals, in which the description of the exchange and correlation energy depends of 

the density as well as the density gradient, are generally both less computationally expensive 

and less accurate than the hybrid functionals, in which a part of the exchange energy is 

described by Hartree-Fock theory. In this study, we limit ourselves to these two families of 

functionals. 

Computational chemistry in general (including but not limited to DFT) requires the use 

of a set of basis functions used to describe the wavefunction of the system. In particular, the 

use of those functions allows to shift the Kohn-Sham differential equation problem into an 

algebraic equation problem (where coefficients of the basis functions are the variables). In the 

present study, the Ahlrichs144 basis sets were the most commonly used, together with the 

CP(PPP) basis set145 whenever a precise description of the s-type orbitals were needed (vide 

infra).  
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Linear combinations of basis set functions form molecular orbitals (MO), which are optimized 

by solving the Kohn-Sham equations. In DFT, the wave-function is described by an 

antisymmetrized product of occupied MOs (determinant). The form of the wavefunction 

implies that DFT is an intrinsic single-reference method, and will not be able to provide a good 

energy description of intrinsically multi-determinantal systems, i.e. systems which must be 

described by linear combination of determinants. Example of such systems include for instance 

antiferromagnetically-coupled systems or open-shell singlets. The best DFT approach to 

circumvent these problems is “broken-symmetry” DFT, which provides a single-determinant 

solution. This solution turns out to be a mixture of different spin states.146 Various methods 

exist to estimate the energy of a pure multiplet from a broken-symmetry energy.147 

 One of the most widely calculated molecular properties available with DFT is the 

electronic energy and molecular Hessian. In reactivity, these components are an essential part 

of the Gibbs free energy (vide supra). As mentioned above, free energy enables to get a 

qualitative estimation of the kinetic and thermodynamic properties of a system. Note that to this 

date, the accuracy range of DFT is not enough to predict the kinetic constants quantitatively. 

Indeed, the typical error of reaction energy calculations by hybrid functional (with the TZVPP 

basis set) is about 6 to 8 kcal/mol. This number was found in a benchmark study by Grimme148 

(benchmarked with respect to the CCSD(T) method at the complete basis set limit). Because of 

the exponential term of eq. 36a, the kinetic constant may thus be underestimated or 

overestimated by a factor of about 104-106 . This makes DFT inapt to quantitatively predict the 

kinetics of a reaction, but may provide qualitative insights on the nature of the mechanism (see 

Chapter 3).  

 

B. Calculation of 57Fe Mössbauer parameters 

 

 In this study, DFT was also used as a tool to calculate the 57Fe Mössbauer electric 

hyperfine parameters, i. e., isomer shift (eq. 27c) and quadrupole splitting (eq. 28b).  

 In principle, calculation of the 57Fe isomer shift requires the accurate calculation of the 

density at the nucleus 𝜌(0). While this value can be calculated at virtually no computing cost 

from the electronic wave-function, it has been shown to be strongly dependent on the functional 

and the basis set, which suggests that DFT is not accurate enough to predict absolute density at 

the nucleus. On the other hand, variations of the calculated density compared to a reference 

show a linear correlation to the experimental isomer shift,145 or 

𝛿 ≈ 𝛼 5𝜌��»(0) − 𝜌��»
LX¾ (0); + 𝛽    `    (44) 
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 The chemical trend of 57Fe isomer shifts is thus reasonably well reproduced by DFT, although 

systematic errors are presents. Those errors show in that the parameters of the linear regression 

(𝛼and 𝛽) are dependent on the used basis set and functional. Linear regressions of the calculated 

density of a set of 21 mononuclear iron complexes against their experimental 57Fe iron isomer 

shift by Römelt149 suggested that the quality of the isomer shift description is slightly superior 

for hybrid functionals than for pure GGA functionals. The study also suggested that the use of 

CP(PPP),145 a strongly uncontracted basis set providing good description of the s-type function 

at the nucleus, improves significantly the quality of the fit. Finally, this study, in agreement 

with earlier studies,150 suggests that the use of zero-order relativistic corrections to the 

Hamiltonian did not improve the quality of the fit, which may be rationalized by the fact that 

the core s-orbitals density, which is most strongly affected by relativistic effects, is not 

significantly affected by the chemical environment. Consequently, in the present study, a 

systematic procedure was used to calculate the 57Fe Mössbauer isomer shifts. The density is 

calculated using the B3LYP functional, the basis set CP(PPP) for iron atoms and the basis set 

Def2-TZVP for all other atoms. No relativistic correction was used. We note here in passing 

that the linear regression is, to some extent, dependent on the type of bonds engaged by the 

iron, and several authors report the need to build their own calibration curves for iron oligomers 

or iron heterobimetallic complexes.151,152,153 

 The calculation of the 57Fe quadrupole splitting follows eq. 28b. It requires the 

knowledge of the nuclear moment Q, 𝑉WW and 𝜂. The former is taken at 0.16 barn in this study,150 

while the components of the electronic EFG tensor can be accessed rather easily from the 

electronic wavefunction. Indeed, 𝑉OÌm  is a sum of one-electron operators: 

𝑉OÌ = �Ψ�𝑉OÌm �Ψ� = 	 �Ψ�∑ 𝑟�7�𝑓OÌ(𝑟�)� �Ψ�                (45a) 

 

In DFT, because the wavefunction is a single determinant, the EFG tensor components 

can be decomposed into MO-wise contribution using Slater-Condon rules. 

𝑉OÌ = ∑ ⟨𝑖�𝑟�7�𝑓OÌ(𝑟�)�𝑖⟩�                   (45b) 

 

Where i corresponds to the occupied MOs. In this study, each MO contribution was further 

decomposed atomic-orbital contributions: 
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�𝑖�𝑉OÌ�𝑖� = 	∑ ∑ 𝐶¡�∗ 𝐶Ô��𝜇�𝑟�7�𝑓OÌ(𝑟�)�𝜈��X
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¡ ²𝐶¡�∗ 𝐶Ô��𝜇�𝑟�7�𝑓OÌ(𝑟�)�𝜈�                 (45c) 

 

In eq. 45c, the MO i is decomposed into a linear combination of atomic orbitals 𝜇 and 𝜈 

belonging to the iron center (Fe), or to the ligands (L and L’). The Cµi correspond to the 

coefficient of the atomic orbital µ in the MO i. 

The first term of eq. 45c corresponds to the so-called one-center contribution because it 

regroups atomic orbitals belonging to the iron center only. It can be further decomposed into a 

valence orbitals and core orbitals contribution. It mainly arises from the d-population of iron, 

but may also be modulated by (1) the mixing of Fe-based d-orbitals with ligand orbitals, and 

(2) the polarization of the core orbitals of iron. The one-center contribution is generally the 

most important contribution, but not always (see Chapter 1).  

The second term is the two-center “bond contribution”, which arises due to the 

covalency of the bonds engaged by the iron center. The third term is the two-center “point-

charge contribution”, which corresponds to the participation of the ligand-based electronic 

density. This contribution is usually rather weak. Finally, the fourth term is called three-center 

contribution and is generally very weak. 

 The quadrupole splitting may be calculated rather accurately by DFT. A study involving 

10 mononuclear iron complexes found the root mean square deviation between calculated and 

experimental quadrupole splitting to be 0.57 mm/s.150 The quadrupole splittings were calculated 

at the B3LYP level of theory, using the CP(PPP) basis set on iron and the TZVP basis set on 

all other atoms. No significant improvement was found when adding relativistic correction, 

since the EFG mainly arises from the valence electrons. Consequently, in the present study, the 

same procedure applied to systematically calculate the isomer shift was also applied for the 

calculation of quadrupole splitting.  
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VI. Time-dependent DFT (TD-DFT) 

 

TD-DFT is a variant of Kohn-Sham DFT, in which the time-dependent Kohn-Sham 

equation154 is solved for a non-relativistic ground state responding linearly (i.e. to the first-

order) to a time-dependent perturbation. In practice, it leads to the resolution of an eigenvalue 

equation in the orbital space in which the eigenvalues themselves are the transition energies 

and the eigenvectors the transition amplitudes. TD-DFT as a method to calculate excited non-

relativistic states stands out for its low computational cost and relative accuracy. However, it 

suffers from the same shortcomings as ground state DFT. Both rely on an approximate 

exchange-correlation functional, and the accuracy of TD-DFT results are only as good an 

approximation as the functional itself. Furthermore, the method itself tends to fail in accurately 

predicting the energies of Rydberg states and excitations involving extended 𝜋∗ orbitals, due to 

the inaccurate long-range behavior of most functionals.154 Also of note, the charge-transfer 

excitation energies are usually considerably underestimated by TD-DFT.155  

In this investigation, TD-DFT has been used exclusively in order to calculate the pre-edge 

region of the Fe K-edge spectrum in [Fe(TPP)]- and [Fe(TPP)]2-. Because of the inaccurate 

description of near-continuum transitions by TD-DFT, the edge region has not been modelled 

and this study focuses instead on local 1s-to-3d transition, which are not long-range and do not 

involve any 𝜋∗ orbital, nor any charge-transfer excitation. In that region, this method is 

expected to yield good results. In fact, a previous investigation on 10 iron complexes showed 

that the DFT functional BP86 (GGA functional) and B3LYP (hybrid functional) reproduced 

the experimental pre-edge intensity features with a predicted vs experimental value correlation 

coefficient of 0.96-0.98.127 Furthermore, although the absolute excitation energies are off by 

several eV (2.2 to 171 eV, depending on the functional choice and the use of scalar relativistic 

correction), errors are to a large part systematic, and the peak energy shift from system to 

system, which contains the relevant information, is rather well described. Indeed, after 

correcting the excitation energy in the set of 10 complexes for a systematic value, the absolute 

standard deviation drops to much smaller values (0.4 to 2.2 eV, depending mostly on the choice 

of the functional and scalar relativistic correction). This hints at the necessity to rely on 

calibration curves to get rid of the systematic errors in 1s-to-3d excitation energies. One such 

curve has been built in Chapter 2.  
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VII. Complete Active Space Self Consitent Field (CASSCF) 

 

A. Calculation of a multireference wave function and associated energy 

 

The second computational method technique used in this study was the Complete Active Space 

Self-Consistent Field (CASSCF) method. Throughout this study, the CASSCF method was 

used to calculate the excited non-relativistic states of a system and provide insights on the 

magnetic properties of the investigated molecular systems.  

The principle underlying this method consists in (1) a Hartree-Fock calculation, (2) a 

full configuration interaction calculation on a small subset of the orbital space created in step 1 

(active space), and (3) optimization of the orbital coefficients to minimize the energy of the 

system for the given CI expansion. Step 2 and 3 are repeated iteratively until convergence of 

the energy and/or orbital gradient.156  

This method has several advantages. Most importantly, unlike (ground state) DFT, it 

gives access to the excited non-relativistic states. This knowledge is crucial to understand the 

physical origin of molecular magnetism in transition metal complexes, which is closely related 

to the interaction of close-lying non-relativistic states through SOC (vide supra). Second, since 

it is a multireference method, it can be used to describe inherently multireference and/or multi-

determinantal systems such as for instance antiferromagnetically-coupled systems and open-

shell singlets. Most importantly for this study and unlike DFT, it is able to provide 𝑆*m 

eigenfunctions which is fundamental for the description of the SOC interactions, and therefore, 

the magnetism of a system.  

On the other hand, because the method provides a full configuration interaction only on 

a small subset of orbitals, it neglects a large part of the dynamical correlation which arise from 

small interactions between the Slater determinants manifold. For a good description of 

dynamical correlations, coupled-cluster methods are preferred. Another problem inherent to the 

method is the choice of the active space. The choice of restraining the configuration interaction 

to a limited subset of orbital is motivated by the prohibitive computational cost of the full 

configuration interaction. The downside, obviously, is that the solution will be strongly 

dependent on the choice of the active space. Thus, a reasonable CASSCF result requires 

chemical intuition, unlike more “black box” methods like DFT or coupled-cluster. 

How to choose the active space? In transition metal complexes and especially in order 

to calculate the magnetic properties of a system, the five valence d-orbitals must be added, 
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because (1) the d-d excited states are often closely-lying to the ground state, and (2) the d-d 

excitations are the most likely to contribute significantly to the SOC effect. Notably, the method 

tends to underestimate bond covalency. Thus, if the d-orbitals are significantly antibonding, 

inclusion of the corresponding bonding orbitals may improve the description of covalency. 

Finally, the first empty d-shell (the 4d shell in case of 3d transition metals like iron) is 

sometimes added to account for the double shell effect.157 This improves the description of the 

energy by enabling the d-orbital to expand. Of course, the choice of the active space needs to 

be adapted to the problem at hand. If one is interested in charge transfer excitation, inclusion 

of ligand-based orbitals in the active space is obviously primordial.  

 The energy of CASSCF states must be regarded with caution since errors of several 

thousand wavenumbers may occur.158 To recover a substantial amount of dynamic correlation, 

perturbation theory to the second order is often used to correct the energy of the CASSCF states 

(but not the state compositions). Several methods of multireference perturbation theory exist 

and are characterized by their non-perturbed Hamiltonian. In this study, we use the N-Electron-

Valence state Perturbation Theory at the second-order (NEVPT2).159  

 

B. Calculation of magnetic properties using CASSCF wave functions, NEVPT2 

energies and effective Hamiltonian theory 

 

 One of the application of CASSCF/NEVPT2 is the calculation of magnetic properties. 

The ground state and closely-lying excited states accessible by this method can be perturbed by 

spin-orbit and Zeeman couplings. Diagonalization of the SOC and Zeeman Hamiltonian in the 

space of the calculated non-relativistic states may enable calculation of the magnetic properties 

beyond the Born-Oppenheimer approximation, such as magnetic susceptibility, EPR 

transitions, hyperfine effects… In order to compare a given calculation to experimentally-

resolved parameters, it is often useful to calculate the spin Hamiltonian matrices, g, D and A 

(vide supra). This is usually done via effective Hamiltonian theory, although more direct 

methods can be used. In effective Hamiltonian theory, the Hamiltonian expressed in a large 

space (here the space of the resolved non-relativistic states) is projected onto a more restricted 

subspace (here the magnetic sublevels of the ground non-relativistic state) using an effective 

Hamiltonian.109  

𝐻X¾¾ = 𝐻ÀÀ + 𝐻Àð(𝐸 − 𝐻ðð)7,𝐻ðÀ                  (46a) 
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Where the subscript a and b describe the restricted space and the large space, respectively. The 

energy E appearing in this equation corresponds to the eigenvalue of the total Hamiltonian. To 

simplify equation, the Hamiltonian is decomposed into an unperturbed (Born-Oppenheimer 

Hamiltonian) and a perturbed Hamiltonian (SOC, Zeeman effect and hyperfine couplings). The 

following approximations are used: (1) the energy E is approximated to the eigenvalue of the 

unperturbed Hamiltonian and (2) the Hamiltonian 𝐻ðð  is approximated to the non-perturbed 

Hamiltonian. Under those two approximations, we get the following expression for the effective 

Hamiltonian matrix elements. 

�0𝑆𝑀q�𝐻X¾¾�𝑂𝑆𝑀q
�� = 𝐸A𝛿½½ì +	 ⟨0𝑆𝑀q|𝐻,|0𝑆𝑀q

�⟩ +

	∑ �Aq½¨|�¿|ðqì½¨
ìì��¡qì½¨

ìì|�¿|ðq½¨
ì�

6:76©ð,qì,½ìì                 (46b) 

 

Where the |𝑏	𝑆�𝑀��⟩ states correspond to the non-relativistic states of the subspace b, 𝐸¡  is its 

unperturbed energy, 𝐸A is unperturbed energy of the state |𝑂𝑆𝑀q⟩, 𝐻, is the perturbation 

Hamiltonian 

 The spin Hamiltonian parameters may be extracted by imposing that the effective 

Hamiltonian matrix elements match the spin Hamiltonian matrix elements one by one. The 

derivation and expression of the spin Hamiltonian parameters expression is rather tedious and 

will not be repeated here, but it is described elsewhere in details.109  

 Hence the effective Hamiltonian theory, used in addition to the CASSCF/NEVPT2 

method enables to get an estimation of the magnetic properties of a system. However, as stated 

earlier, errors of several thousands of wavenumbers are not uncommon with the 

CASSCF/NEVPT2 method,158 and errors in relative energies may lead to dramatic shifts in the 

calculated magnetic properties. Therefore, CASSCF/NEVPT2 results should always be 

regarded with caution. In this study, this method is always coupled with experimental 

measurements, and is merely employed as a way to provide a qualitative insight on the 

electronic structure and/or magnetism of a system.  
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Chapter 1: elucidation of the electronic 

structure of [Fe(TPP)] 

 
The author of this thesis single-handedly built all the effective Hamiltonian, developed the 

program to simulate magnetometric and 57Fe Mössbauer spectroscopy measurements, and 

performed the ab-initio and DFT calculations. He participated to the acquisition of the 

experimental magnetometric and Mössbauer spectroscopy measurements. He did not 

participate in the acquisition and simulation of the THz-EPR data, neither in the synthesis 

of [Fe(TPP)].  

 

I. Introduction 

 

Despite intensive experimental and theoretical investigations in the past, the exact nature of 

the ground state of [Fe(TPP)] (1) has never been fully established. Specifically, the room-

temperature effective magnetic moments (µeff) measured for various crystalline forms obtained 

by different preparation procedures range from 4.0 to 4.4 µB (µB = Bohr magneton).160  The 

values are considerably lower than the spin only value (4.9 µB) for a quintet state (S = 2), but 

substantially larger than that (2.8 µB) for a triplet state (S = 1). Although early studies161 have 

assigned a high spin quintet state to 1, consensus has been finally reached that the ground state 

is a triplet. A high-spin d6 configuration would inevitably populate the Fe dx2-y2 orbital, which 

is strongly σ-antibonding with respect to the interaction between the iron center and the four 

nitrogen atoms of the porphyrin ligand. In fact, the Fe-NTPP bond distances (1.97 Å) determined 

by X-ray crystallography for 1160 are significantly shorter than those found for the related high-

spin (S = 5/2) ferric porphyrin complex, [FeIII(TPP)Cl] (2.06 Å)162 and for [ZnII(TPP)] (2.04 

Å).163 Note that for the latter two complexes, the Fe dx2-y2 orbital is known to be singly and 

doubly occupied, respectively. These experiment findings thus provide a strong support for the 

notion that complex 1 features an S = 1 spin ground state, instead of an S = 2 state.164  

Complex 1 features a square-planar coordination geometry; therefore, the Fe-dxy, -dxz, -dyz 

and -dz2 orbitals are all essentially non-bonding in nature and nearly degenerate. As a 
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consequence, the triplet ground state of complex 1 can be assigned to four distinct electron 

configurations (Figure 14), all having a vacant dx2-y2 orbital, namely, (a) 3A2g with a 

(dxy)2(dz2)2(dxz,yz)2 configuration, (b) 3Eg(A) (dxy)2(dz2)1(dxz,yz)3, (c) 3Eg(B) (dxy)1(dz2)2(dxz,yz)3 

and (d) 3B2g (dxy)1(dz2)1(dxz,yz)4. Here, the symmetry of each state was labelled by the irreducible 

representations of the D4h point group. As verified below, all experimental results are consistent 

with the assumption that 1 belongs to the D4h point group despite the core distortion effects. 

 

 
Figure 14: The four low-lying triplet electronic configurations of 1 with an unpopulated dx2-y2 

orbital.  
 

Experimentally, Mössbauer studies on 1165 and resonance Raman measurements on related 

complex [Fe(OEP)] (OEP2– = octaethylporphyrinate dianion)166 suggested the 3Eg ground state. 

On the contrary, a range of experimental investigations using X-ray diffraction,167 1H NMR,168 

applied field Mössbauer spectroscopy,169 and in particular magnetometry,160 all attributed the 
3A2g ground state to 1.  

Theoretical studies have also led to a number of contradictory assignments. Early CASSCF 

computations reported by Choe et. al. on [FeII(Por)] (Por = porphyrinate dianion), a truncated 
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model of 1, predicted a quintet ground state with a (dxy)1(dz2)2(dxz,yz)2(dx2-y2)1 electron 

configuration.170 It is known that the CASSCF method often tends to overstabilize high spin 

states.171 Thus, to obtain more reliable spin-state energetics, second-order perturbative 

treatments such as CASPT2 or NEVPT2 are required to capture dynamic correlation effects. 

Indeed, CASPT2 calculations substantially reduce the quintet-triplet gap by more than 4200 

cm-1. However, the triplet-quintet estimated energy separation computed by Choe remains 

~6700 cm–1.170 On the other hand, accurate CCSD(T) calculations estimated the quintet state to 

be 804 cm-1 above the lowest-energy triplet state.172 For the relative energy of the 3A2g and 3Eg 

states, stochastic CASSCF calculations including all porphyrin π-orbitals in the active space 

recently reported by Alavi and coworkers173 revealed that 3Eg is about 175 cm-1 lower in energy 

than 3A2g. Qualitatively the same conclusion was reached by earlier configuration interaction 

(CI) and multi-reference Möller-Plesset174 perturbation computations.175 In contrast, 

CASSCF/CASPT2 and CCSD(T) calculations published by Choe,170 Pierloot176, Radón172 and 

Bistoni177 and coworkers all favored the 3A2g ground state, and CCSD(T) calculations delivered 

an energy gap of ~600 cm-1 between the 3Eg and 3A2g states. 

The contradictory assignments of the electronic structure of 1 point to a situation where 

neither experiments nor quantum chemical calculations alone can unambiguously answer the 

question. The present chapter therefore presents dedicated efforts to elucidate the intriguing 

electronic structure of 1 through a combined spectroscopy-based theoretical and experimental 

study. Specifically, guided by the computational results we design an effective Hamiltonian 

that is able to simultaneously simulate all spectroscopic data derived from our variable 

temperature and variable field (VTVF) magnetization and Mössbauer measurements with only 

one common set of parameters. Note that Boyd et al160 and Lang et al,169 have employed 

magnetometry and applied field Mössbauer spectroscopy, respectively, to probe the electronic 

structure of 1. To fit the magnetometry and Mössbauer spectroscopy data, two different models 

based on the ligand-field theory have been proposed. Different from the aforementioned work, 

the present contribution provides a universal model to simultaneously simulate these two sets 

of experimental data, and, more importantly, aims to build up a detailed magneto-structure 

correlation of 1, which, to the best of our knowledge, has not been reported to date.  
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II. Technical Details 

 

A. Experimental protocols 

 

1) Synthesis 

 

All reactions were carried out in an inert glovebox argon atmosphere. Stabilizer free THF 

was purchased at Acros Organics. Before use, it was degassed by freeze-pump-thaw technique 

(3 cycles), stirred over sodium for two days and stored over molecular sieve (4 Å). Heptane 

was purchased at Acros Organics, degassed by bubbling argon through for one hour and stored 

over molecular sieve (4 Å). [Fe(TPP)Cl] was purchased at Sigma Aldrich with 95% purity 

(porphin residue). Sodium anthracenide was prepared by a previously described procedure.178 

After reduction, all samples were stored at -40 °C inside the glovebox. [FeTPP(THF)2] was 

prepared according to the procedure published by Scheidt et al.179  

 

Sodium anthracenide: Anthracene (1.26 g, 7.07 mmol, 1.1 equivalents) is dissolved in THF (32 

mL). Metallic sodium (148 mg, 6.44 mmol, 1 equivalent) is added to the solution. The reaction 

mixture is stirred for 24 hours. No further workup is needed; the dark blue solution can be 

directly used as reducing agent. 

 

[Fe(II)TPP(THF)2]: FeClTPP (100 mg, 0.142 mmol, 1 equivalent) is dissolved in THF (12 

mL). Sodium anthracenide (0.2 M solution, 0.71 mL, 1 equivalent) is added slowly via a syringe 

to prevent local excess of reducing agent. The solution is stirred at room temperature for 30 

minutes and then filtered over a PTFE syringe filter, layered with heptane (48 mL) and set aside 

for crystallization at -40 °C for 2-3 days. The mother liquor is removed and the remaining solid 

is washed with little heptane (3 x 1 mL). Mössbauer (80 K, solid, relative to a-Fe): δ = 0.95 

mm/s, ΔEQ = 2.64 mm/s. UV-Vis (2-MeTHF, RT): λmax 425 nm, 545 nm, 605 nm. 

 

[Fe(II)TPP]: [Fe(II)TPP(THF)2] is dried at 100 °C in high vacuum (10-2 mbar) for 60 minutes. 

Thermogravimetric measurements confirm the loss of two THF molecules from the THF 

adduct: mbefore thermogravimetry = 9.3 mg; mafter thermogravimetry = 7.56 mg. Δmcalcd for [M - 2 THF] = 

1.73 mg; Δmexp = 1.74 mg. Mössbauer parameters (80 K, solid, relative to Fe): δ = 0.56 mm/s, 

ΔEQ = 1.32 mm/s. UV-Vis (2-MeTHF, RT): λmax 425 nm, 545 nm, 605 nm.  
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2) Magnetic susceptibility measurements 

 

Magnetic susceptibility data were measured from powder samples of solid material 

immobilized in eicosane in the temperature range 2 - 300 K by using a SQUID susceptometer 

with a field of 1 T (MPMS-7, Quantum Design, calibrated with standard palladium reference 

sample, error <2%). Multiple-field variable-temperature magnetization measurements were 

done at 1, 4, and 7 T also in the range 2- 300K with the magnetization equidistantly sampled 

on a 1/T temperature scale.  

 

3) Mössbauer spectroscopy measurements 

 

Mössbauer spectra were recorded on conventional spectrometers with alternating constant 

acceleration of the g-source. The minimum experimental line width was 0.24 mm/s (full width 

at half-height). The sample temperature was maintained constant either in an Oxford 

Instruments Variox cryostat or a cryogen-free, closed-cycle Mössbauer magnet cryostat from 

Cryogenic Ltd. The latter is a split-pair super-conducting magnet system for applied fields up 

to 7 T. The temperature of the sample can be varied in the range 1.7 K to 300 K. The field at 

the sample is perpendicular to the γ-beam. The 57Co/Rh source (1.8 GBq) was positioned at 

room temperature inside the gap of the magnet system at zero-field position, by using a re-

entrant bore tube. The detector was an Ar/10%CH4-filled end-window type proportional 

counter for the zero-field measurements, and a Si-Drift diode (150 mm2 SDD CUBE) of a 

AXAS-M1 system from Ketek GmbH with vacuum-tight 200 mm stainless steel finger, which 

was inserted into the cryostat to position the diode also in the gap of the magnet. Isomer shifts 

are quoted relative to iron metal at 300 K. 

 

4) THz-EPR 

 

THz-EPR experiments were performed at the THz beam line of the synchrotron BESSY II, 

Helmholtz-Zentrum Berlin. The experiment is described elsewhere in great detail.180 12 mg of 

polycrystalline powder of 1 was mixed with PE powder, grinded and pressed into a TPX sample 

holder. An Hg arc lamp was used for irradiation. Inside the FT-IR spectrometer (IFS 125, 

Bruker) the radiation was divided by a 6 µm Mylar multilayer beam splitter. Mirro movements 

corresponded to a scanner velocity of 40 kHz and an experimental resolution of 1 cm-1. The 
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sample was placed in the VTI of an Oxford Optistat magnet with outer TPX and inner diamond 

windows and kept at a temperature of 5 K. Radiation passed through the magnet (and the 

sample) in Voigt configuration and was detected with a Infrared 4.2K Si bolometer. At each 

field, 256 scans were acquired.Spectra are shown as Magnetic field division spectra (MDS), 

where the spectrum for the field B0 is obtained by dividing a spectrum measured at B0 + 1 T by 

a spectrum measured at B0 (further details on how to analyze MDS can be found in ref. 180. 

Simulations were perfomed with EasySpin181 and its extensions for frequency-domain EPR.182  

 

B. Details relative to the modelization 

 

1) Computational details 

 

All calculations were performed using the ORCA v.4.0 package.183  

All calculations were carried out on experimental structures determined by X-ray diffraction 

analysis, after the hydrogen positions were optimized at the BP86/def2-TZVP level of 

theory.144,184 Normal SCF (1×10-6 Eh), normal geometry convergence criteria and a grid level 

5 were used for these calculations. Because of the high flexibility of porphyrins, three core 

conformations, namely, ruffled, saddled and planar,160 have been found for the crystal structure 

of various forms of complex 1 and its derivatives. In particular, the distinct core conformations 

have slightly different Fe-N bond lengths and disparate packing modes, which likely leads to 

their different electronic structures, a behavior observed for high spin Fe(III)-porphyrins.185 

Therefore, all calculations were performed on three crystal structures, each corresponding to a 

four-coordinated iron(II) complex crystallised in one of the three aforementioned porphyrin 

conformation.160  

The DFT single point calculations were carried out using the functional B3LYP, the 

basis set CP(PPP) for the iron and the basis set Def2-TZVP for all other atoms. Normal SCF 

(1×10-6 Eh) convergence criterium in combination with a grid level of 7 for iron and 5 for all 

other atoms were used for these calculations. 57Fe isomer shifts were calculated using the 

calibration curve developed by Römelt.149 The physical origin of the EFG tensor  was analysed 

by breaking it down into one-center, two-center “bond”, two-center “point-charge” and three 

center contributions, according a prior methodology.145 The one-center contribution of the MOs 

was further broken down into three contributions, i.e. core orbitals, d-orbitals and ligand orbitals 

contribution according to the following method. All quasi-restricted orbitals186 identified as 

predominantly iron 1s, 2s, 2p, 3s and 3p were identified as “core”. The sum of their contribution 
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was labeled as core contribution. All orbitals but the core orbitals were localized using Pipek-

Mezey algorithm.187 The contribution from the localized orbitals mainly composed of Fe-3d 

atomic orbital were labelled as d-orbital contribution. The remaining of the one-center 

contribution was labeled as ligand contribution.  

For the CASSCF calculations of 8 electrons in 11 orbitals, the active space composition 

is described in subsection IV.B.1. The calculations were performed in gas phase in conjunction 

with the Def2-TZVP basis set for all atoms.144 The normal convergence criteria were selected 

(energy convergence threshold 1×10-7 Eh and orbital gradient convergence threshold 1×10-3), 

in combination with a grid level of 6. The quasi-restricted orbitals186 from a single-point DFT 

calculation were used for the initial guess of each CASSCF calculation. The orbitals were 

optimized in order to minimize the CASSCF energy state-averaged over the four lowest triplet 

states and the lowest quintet state. Dynamical correlation was added to the CASSCF energy 

using the strongly-contracted second-order N-electron Valence Perturbation Theory 

(NEVPT2).159 

 

2) Numerical simulations of the magnetic susceptibility 

 

In the present study, the simulated magnetic susceptibility was calculated after the 

diagonalization of an electronic Hamiltonian which form will be discussed later. For this 

purpose, a program was coded in Fortran90 and will be briefly described here. 

 The program works in two steps, i.e. (1) calculation of a molar magnetization which is 

dependent on the temperature and the direction of the applied magnetic field vector with respect 

to the molecular frame (represented by the angles 𝜃, and 𝜙, see Figure 15), and (2) numerical 

powder-averaging of the direction-dependent magnetization.  

The temperature-dependent macroscopic magnetization along the applied magnetic field is 

defined according to eq. 19c and can be rewritten as eq. 47a using the partition function of the 

thermally-populated magnetic sublevels: 

𝑀(𝐵./_, 𝜃,, 𝜙, 𝑇) = 𝑁�𝑘S𝑇
RØÒ±@¿(S,¸¿,º,»)²

RS
= 𝑁�𝑘S𝑇

`a5@¿ùSbRc-
7¦
� ,¸¿,º,»û;7`a5@¿ùSbRc7	

7¦
� ,¸¿,º,»û;

RS
	

                     (47a) 

 

Where Q1, the partition function, is defined as:  

𝑄,(𝐵./_, 𝜃,, 𝜙, 𝑇) = ∑ 𝑒7
¤�(¦ª�«,e¿,f)

¥¦4�                  (47b) 
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The energies 𝐸� corresponds to the eigenvalues of the diagonalized Hamiltonian, and dB 

corresponds to the infinitesimal increment of the field norm. They are dependent on the applied 

field intensity (Bext) and direction because of the Zeeman interaction term. To calculate 

magnetization according to eq. 47a, the infinitesimal incrementation of Bext (dB) was 

approximated to 0.1 T, and the Hamiltonian matrix was diagonalized twice, i.e. once to 

calculate 𝑄, 5𝐵./_ +
gS
*
, 𝜃,, 𝜙; and once to calculate 𝑄, 5𝐵./_ −

gS
*
, 𝜃,, 𝜙;.  

 In a second step, the averaged magnetization is calculated from the direction-dependent 

magnetization. For a powder sample, the applied magnetic field is assumed to be randomly 

oriented with respect to the molecular framework. Hence, the averaged magnetization is the 

average of the direction-dependent magnetization over all possible directions of the magnetic 

field’s directional vector, or: 

𝑀h = ,
®¯ ∫ ∫ 𝑀(𝐵./_, 𝜃,, 𝜙, 𝑇)𝑠𝑖𝑛𝜃,𝑑𝜃𝑑𝜙

¯
A

*¯
A                  (47c) 

 

The infinitesimal increments 𝑑𝜃, and 𝑑𝜙 were both approximated as 0.01𝜋 radians, and the 

integration was performed numerically.  

 

3) Simulation of the Mössbauer spectra 

 

Likewise, a code was written to simulate the 57Fe Mössbauer absorption spectra after 

diagonalization of a nuclear Hamiltonian which form will be described in details later. The 

calculation was made in three steps. (1) An absorption function, corresponding to the number 

of photons absorbed over the number of photons emitted, is calculated. This absorption function 

depends on the doppler shift 𝜈, the direction of the applied magnetic field described by the 

angles 𝜃, and 𝜙, and the direction of the propagation vector of the incident 𝛾-wave 𝑘a⃗  with 

respect to the molecular frame, described by only one angle 𝜃* (vide infra). Note that one angle 

is enough to describe the propagation vector 𝑘a⃗  because the Mössbauer spectrometer is in 

perpendicular mode (the field at the sample is perpendicular to the 𝛾-beam). (2) The absorption 

function is averaged over all directions of the propagation vector on the plane normal to the 

applied magnetic field. (3) The absorption function is averaged over all possible directions of 

the applied magnetic field. Step (2) and (3) account for the powder distribution of the sample 

and result in the calculation of the average spectrum. 

The direction-dependent absorption function is calculated as a sum of Lorentzian 

functions: 
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𝑌(𝐸a, 𝐵./_, 𝜃,, 𝜙, 𝜃*, 𝑇) = 𝐼jk/ 	∑
�lm(SbRc,¸¿,º,¸�,»)

5n�;
�
-56o76lm(SbRc,¸¿,º,»);

��,�              (48a) 

 

All the terms involved in eq. 48a are now described in details.  Imax is a scaling factor 

adjusting the total absorption function. This factor was set arbitrarily to match the experimental 

spectra. Note that because the number of recoilless emissions depends on the temperature, so 

does the total absorption. Hence, the factor Imax was rescaled for each temperature at which the 

experimental Mössbauer spectrum was measured. ω determines the spectral line width. It is 

chosen arbitrarily to match the experimental spectra, although one unique factor ω was chosen 

for all absorption lines and spectra regardless of the temperature. The sum runs for every 

possible transition from an initial nuclear magnetic sublevel i (I=1/2) to a final sublevel j 

(I=3/2). The factor En corresponds to the energy of the incident photon. Eij is the resonant energy 

corresponding to the transition from the nuclear state i (I=1/2) and the nuclear state j (I=3/2) 

(substracted to the emission energy of the 𝛾-photon, 14.4 keV). It is inferred from the nuclear 

states energy and hence requires the diagonalization of the nuclear Hamiltonian. 

𝐴pq(𝐵./_ , 𝜃,, 𝜙, 𝜃*, 𝑇) is the squared transition intensity corresponding to the transition from the 

nuclear state i to the nuclear state j.  

Calculation of the 𝐴pq requires the state composition of the nuclear Hamiltonian 

eigenvectors which is obtained by diagonalization of the nuclear Hamiltonian. Because the 

quadrupole splitting and magnetic hyperfine coupling/nuclear Zeeman effects are competing, 

those eigenvectors are linear combinations of |𝐼, 𝑀ä⟩. Consequently, the terms 𝐴pq must be 

calculated using eq. 35a-35b. Note that to calculate the expression of 𝐴pq, the angles describing 

the direction of the propagation vector in the molecular frame are required. These can be 

obtained along the following procedure. The axes x, y and z of the molecular framework are 

described by the directional vectors 𝑒�aa⃗ , 𝑒�aa⃗ , 𝑒+aaaa⃗ , respectively. The two successive rotations 

transforming the vector 𝑒+aaaa⃗  into the directional vector of the applied magnetic field 𝑒Saaaa⃗  is noted 

𝑅r. 𝑅r consists in a rotation around the axis y by an angle 𝜃, followed by a rotation around the 

axis z by an angle 𝜙. Finally, we note 𝑒�′aaaa⃗  and 𝑒�′aaaa⃗  the products of the transformation 𝑅r applied 

to 𝑒�aa⃗  and 𝑒�aa⃗ , respectively (Figure 15). 𝑒�′aaaa⃗ , 𝑒�′aaaa⃗  and 𝑒Saaaa⃗  are orthonormal, and hence the propagation 

vector 𝑘a⃗  can be described with respect to 𝑒�′aaaa⃗  and 𝑒�′aaaa⃗ : 

𝑘a⃗ = 𝐶𝑜𝑠(𝜃*)𝑒�′aaaa⃗ + 𝑆𝑖𝑛(𝜃*)𝑒�′aaaa⃗ = 	𝐶𝑜𝑠(𝜃*)𝑅r(𝜃,, 𝜙)𝑒�aa⃗ + 𝑆𝑖𝑛(𝜃*)𝑅r(𝜃,, 𝜙)𝑒�aa⃗             (48b) 
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It appears from eq. 48b that the angles describing the direction of the propagation vector 𝑘a⃗  in 

the molecular frame can be described as functions of 𝜃,, 𝜃* and 𝜙. Thus, as mentioned above, 

only one additional angle 𝜃* is necessary to describe the direction of the propagation vector. 

 

 
Figure 15: (left) Orientation of the applied field directional vector 𝑒Saaaa⃗  (red) in the molecular 

framework represented by the directional vectors 𝑒�aa⃗ , 𝑒�aa⃗  and 𝑒+aaaa⃗  (black) and (right) orientation of 

the propagation vector 𝑒Saaaa⃗  (red) and the directional vectors 𝑒�′aaaa⃗ , 𝑒�′aaaa⃗  and 𝑒Saaaa⃗  (dashed red) in the 

molecular framework (black). The dashed red circle represents the plane normal to the vector 

𝑒Saaaa⃗ . 

 

 Because the sample is a powder and because the set-up is in perpendicular mode, a 

random distribution of the propagation vector direction is assumed on the plane normal to the 

applied magnetic field vector. As apparent in eq. 48b, this direction is described by the angle 

𝜃*. Hence, the direction-dependent absorption function is averaged over an angle 𝜃* in the 

range 0 to 2𝜋: 

𝑌s(𝐸a, 𝐵Xde, 𝜃,, 𝜙, 𝑇) =
,
*¯
	∫ 𝑌(𝐸a, 𝐵Xde, 𝜃,, 𝜙, 𝜃*, 𝑇)𝑑𝜃*
*¯
A               (48c) 

 

The infinitesimal increment 𝑑𝜃* was approximated to 0.02𝜋 radians, and the integration was 

performed numerically.  

 Finally, because the sample is a powder, a random orientation of the applied magnetic 

field vector with respect to the molecular framework is assumed. Hence, the function 

𝑌s(𝐸a, 𝐵./_, 𝜃,, 𝜙) is averaged over all possible directions of the magnetic field. This leads to 

the final expression for the powder-averaged absorption function: 
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𝑌t(𝐸a, 𝐵./_, 𝑇) =
,
®¯
	∫ ∫ 𝑌s(𝐸a, 𝐵./_, 𝜃,, 𝜙, 𝑇) sin(𝜃,) 𝑑𝜃,𝑑𝜙

¯
A

*¯
A              (48d) 

 

The infinitesimal increments 𝑑𝜃, and 𝑑𝜙 were both approximated as 0.02𝜋  radians, and the 

integration was performed numerically.  

Because conventionally, the spectrum displays a transmission rather than an absorption 

function, the final spectral shape is described by the function: 

𝑇(𝐸a, 𝐵./_ , 𝑇) = 1 −	𝑌t(𝐸a, 𝐵./_, 𝑇)                 (48e) 

 

III. Experimental results 

 

A. THz-EPR 

 

In the zero-field THz-EPR spectra of 1 (see Figure 16), a maximum, surrounded by minima, 

was observed at approximately 94.5 cm-1. With increasing magnetic field the maximum split 

into two, with one blue- and the other red-shifted. The corresponding minima at slightly higher 

energies blue shifts and become more intense with increasing field. The zero-field position of 

the maximum directly provides the axial ZFS term (D). In terms of the S = 1 spin Hamiltonian 

(eq. 13b and 15b), this correspond to D ~ 94.5 cm-1. For a triplet in zero field two EPR 

transitions are allowed. The fact that we observe only one transition indicates that two of the 

three states are (almost) degenerate. In the language of the spin Hamiltonian, this corresponds 

to negligible E/D, consistently with the postulated four-fold symmetry of the molecule. 

Nevertheless, simultaneous spin Hamiltonian simulations of zero field and field dependent 

spectra allowed an estimate of E~1.1 cm. g⟂ (=gxx, gyy) had only minor influence on the 

simulations (for g⟂	<4) and could not be determined. In contrast, g∥ (=gzz) had a clear impact. 

We found the best agreement for D = 94.4 cm-1, E = 1.1 cm and g∥=1.7	(Figure 16).	
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Figure 16: THz-EPR spectra of 1. Data (black line) is rescaled and offset according to the 

applied magnetic field B0. Simulation with the parameters shown on top of the plot are shown 

in red. Gray lines in the back indicate calculated transition energies for a magnetic field applied 

along the x- (dashed), y- (dotted), and z-axis (solid). 

 

A. Variable temperature and variable field (VTVF) magnetic susceptibility 

measurements 

 

1) Low-temperature susceptibility and magnetization 

 

As visible in Figure 17, below ca. 120 K, the effective magnetic moment µeff(T) of 1 

shows a strong drop, typical of systems having strong ZFS.107 In accordance with the large ZFS, 

isofield magnetization curves, M(µBBext/kT), measured at Bext = 1, 4 and 7 T, show a strong 

nesting behavior. In fact, the magnetization at 2.0 K is almost linear with the applied field, 

hinting that the system is still close to the low-field limit, even under a field of up to 7 T, an 

observation compatible with a very large and positive ZFS. The plateau-shaped magnetization 

curve at low-temperature for the 4 and 7 Tesla curves also suggest a well-isolated ground state, 

as described in the Theory chapter (subsection I.B.2). Only the low-temperature magnetization 

under 1 T seems to exhibit a sharp decrease with temperature, seemingly incompatible with a 
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large, positive ZFS. This discrepancy, however, is likely to be explained by the presence of 

[Fe(TPP)(THF)2] impurities (S=2) with a much lower lower ZFS188 (see subsection III.B.3).  

 

2) High-temperature measurements 

 

The effective magnetic moment µeff determined at 298 K (4.24 µB) is consistent with earlier 

studies.160 It is markedly higher than the spin-only value for a triplet state (2.8 µB), but much 

lower than expected for a quintet state (4.9 µB). This may indicate, as specified in the Theory 

chapter, either a spin mixture between the triplet and the quintet, or a large participation of the 

orbital angular momentum to the magnetic moment. Furthermore, the effective magnetic 

moment does not reach a plateau at high temperature but keeps steadily increasing, a behavior 

quite typical of a TIP, as specified in the Theory chapter (subsection I.B.1). Similar non-Curie 

behavior of four-coordinated iron(II)-porphyrins has been previously investigated by 1H NMR 

studies.189 

 

3) Spin Hamiltonian simulations 

 
Figure 17: Effective magnetic moment under an applied field of 1 T and isofield magnetization 

curves with applied fields of 1, 4 and 7 T (inset) of 1. Dots represent experimental 

measurements and the solid lines represent the best fits obtained from the simulation using the 

spin Hamiltonian under 1 (red), 4 (pink) and 7 T(blue). Spin Hamiltonian parameters include 
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D = 94 cm-1, E/D = 0, g∥ = 1.7, g⊥=3.05, TIP= 1000× 10-6 emu, and 7.7% of S = 2 

[Fe(TPP)(THF)2] impurities were taken into account in the simulation.  

 

A global simulation with the usual spin Hamiltonian of S = 1 of all magnetic data yielded 

a satisfactory fit with parameters D = 94 cm-1, E/D = 0, g∥ = 1.7, g⊥=3.05 (gav = 2.7) and a TIP 

value of 1000× 10-6 emu (Figure 17). Due to the high molecular symmetry, the principal axes 

of the g-matrix and 𝐷� tensor are collinear. The rhombicity E/D and g∥, were fixed according to 

the THz-EPR results above (see subsection III.A). The rapidly decreasing behavior of the low-

field (1T) magnetization could not be reproduced with such a large ZFS but this discrepancy 

was solved by the inclusion of 7.7% S=2 impurities. The effect of those impurities is maximal 

at low-field, because the S=2 impurities are close to the high-field limit for which low-

temperature magnetization is field-independent, while 1 remains close to weak-field limit 

throughout the field series, for which magnetization is proportional to the field (see Theory 

chapter, subsection I.B.2). Hence the ratio of the signal from the impurities over the signal from 

1 is maximal at low field. Consequently, the low-field magnetization exhibits the sharp decrease 

due to the lower D S=2 impurities while magnetization at higher field is dominated by the 

plateau-shaped magnetization of 1. Alternatively, the impurities might also be high-spin Fe(III) 

products generated by air oxidation as documented in earlier publications.160,161 Simulations 

with 5.2% S = 5/2 impurity also yielded a global fit of similar quality (Figure A1 in the annex). 

Despite the good fit, the large magnitude of the deduced ZFS, the average g value, and, 

in particular, the phenomenological TIP correction cast doubt on the validity of the spin 

Hamiltonian treatment, which requires an energetically well isolated, non-degenerate non-

relativistic ground state without first order orbital angular momentum. In contrast, our results 

suggest that 1 possesses closely spaced low-lying states (see Theory chapter, subsection I.B.1). 

More important is that the spin Hamiltonian analysis does not allow us to determine directly 

whether 3A2g or 3Eg is the non-relativistic ground state, therefore the present situation calls for 

the use of a more physically transparent model. 

 

B. VTVF Mössbauer spectroscopy 

 

1) Electric hyperfine effects 

 

A zero-field Mössbauer measurement at 10 K (Figure 18) showed that complex 1 possesses an 

isomer shift (δ) of 0.56 mm/s and an absolute quadrupole splitting (|ΔEQ|) of 1.31 mm/s (eq. 
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27c and 28a, respectively). The isomer shift is consistent with the values (0.52 – 0.57 mm/s) 

reported earlier for 1, as well as those for the related porphyrin complexes ([Fe(OEP)], δ = 0.62 

mm/s, and [Fe(OEC], OEC = trans-7,8-dihydro-octaethylporphyrin), δ = 0.63 mm/s).190 The 

quadrupole splitting measured for our sample is comparable to that found for complex 1 having 

a slightly ruffled core (1.51 mm/s),160,169 as well as those for [Fe(OEP)] with (1.71,190 +1.60191). 

On the other hand, it is significantly lower than 1 with a saddle core conformation160 (2.21) or 

[Fe(OEC)] (2.55).190 Previous authors have attributed this disparity in the iron(II)-porphyrin 

family to distinct electronic configurations of the iron in otherwise chemically similar 

compounds. This brings further credence to the hypothesis of closely lying non-relativistic 

states in iron(II)-porphyrin systems (see subsection IV.A).160 The sign of the quadrupole 

splitting  of 1 was resolved later by application of a magnetic field, and is shown to be positive 

(see subsection III.C.2). This result is surprising for an iron configuration where the dx2-y2 

orbital (large positive contribution to the z-component of the EFG) is expected to be 

unoccupied, thus shifting the overall d-orbital contribution, usually dominant, towards negative 

values (see Theory chapter, subsection II.A).  

 

 
Figure 18: Zero-field Mössbauer spectrum of 1 at 80 K.The solid line corresponds to the best 

fit obtained for a quadrupole splitting of 𝛥𝐸@ = ±1.31 mm/s and 𝛿 = 0.56	mm/s. 
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2) Magnetic hyperfine effects 

 

To gain further insight into the electronic structure of complex 1, VTVF 57Fe Mössbauer 

studies were conducted. As shown in Figure 19, the magnetic splitting of the spectra recorded 

at 1.7 K is moderately large, but strongly field-dependent. Each spectrum shows a unique 

pattern determined by differentially competing nuclear Zeeman and electric quadrupole 

interaction. The pattern and, in particular, no more than six resolved lines are characteristic of 

fast paramagnetic relaxation. In this limit, the temperature- and field- dependent hyperfine 

fields of the powder spectra are Boltzmann-weighted averages of the contributions from all 

magnetic sublevels (cf. Theory chapter, subsection II.B.1).  

The Mössbauer spectrum obtained at 1T/1.7 K (Figure 19) is a typical case of weak field 

limit. The low-energy triplet and high-energy doublet line pattern is typical of a positive 

quadrupole splitting with a very low asymmetry parameter (see Theory chapter, subsection 

II.A). Moreover, the weak magnetic splitting reveals a low internal field incompatible with a 

first-order spin or orbital angular momentum. In the spin Hamiltonian picture this behavior 

would be typical for an integer spin system (S = 1) with a low-lying Ms = 0 level arising from 

a large positive ZFS. The drastic increase of the magnetic splitting with applied fields suggests 

a positive internal field, as verified below by simulations. As elaborated in the Theory chapter 

(subsection II.B.1), this is a characteristic feature of a large orbital contribution to the 57Fe 

hyperfine interaction. Here, the positive orbital contribution dominates over the otherwise 

overwhelming negative Fermi contact contribution from the electronic spin. Such situations are 

frequently encountered for systems having sizeable orbital angular momenta. 116,192 

The 1.7K/7T spectrum (Figure 19) approaches the typical six-line pattern for the high-

field limit of mixed magnetic and electric hyperfine interactions116 (see Theory chapter, 

subsection II.B.2), where the nuclear Zeeman splitting is significantly stronger than the 

quadrupole interaction (due to the presence of a strong induced internal field). In this situation, 

the high intensity of the ΔMI = 0 lines (lines 2 and 5 from left to right) indicates an easy x/y-

plane of magnetization, as expected for a large axial ZFS with a “Ms = 0” ground level. 

Moreover, the shift of the inner four lines of the spectrum with respect to the outer two reveals 

a negative quadrupole shift. However, in the actual high-field limit of hyperfine interactions, 

the quadrupole shift in the first-order approximation arises only from the components of the 

EFG tensor along the dominating internal field. However, since the internal field from “Ms = 

0” is predominantly oriented in the x/y plane due to the large ZFS (D > 80 cm-1), only the 

negative Vxx and Vyy components of the EFG are sensed in the measurement (see eq. 34). 
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Because the EFG is a traceless tensor, the sign of the main component Vzz is positive and so is 

ΔEQ, which is consistent with our interpretation of the weak-field spectrum (1.7 K, 1 T). Here 

we can safely assume that the EFG tensor is collinear with the principal axes of the ZFS because 

of the effective four-fold rotation symmetry.  

 

3) The spin Hamiltonian simulation 

 

   
Figure 19: spin Hamiltonian fit of 1 at 1.7 K under 1 T, at 1.7K under 4 T, at 1.7 K under 7T, 

at 60 K under 7 T and at 120K under 7T. The dots correspond to the experimental measurements 

and the red line corresponds to the spin Hamiltonian fit, using the following phenomenological 

parameters: 𝑔x = 3.05, 𝑔∥ = 1.7, 𝐷 = 94 cm-1, 6
�
= 0, yz

{|}|
= 	50.0T, ΔE� = +1.31 mm/s 

and δ = +0.56 mm/s. In all case, A∥ was unresolved and arbitrarily set to zero. The black 

arrows indicate the small misfits at high temperature.  

 

We attempted to simulate the entire VTVF Mössbauer spectra using the usual spin 

Hamiltonian (see eq. 13b, 15b, 28a and 33b). Note that the principal axes of the 𝐷�, EFG tensors, 

g and A matrices are collinear due to the high symmetry of the molecule. The D, E/D and g-

values were fixed to those determined by the magnetometry and THz-EPR measurements, 𝑉�� 
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was fixed to that determined by the zero-field measurement, η=0 on the ground of the high 

molecular symmetry, and only the hyperfine matrix was allowed to vary. The whole VTVH 

series can be fitted satisfactorily with a unique  �z
ÂÿÌÿ

 value of 50.0 T (Figure 19). Such a large, 

positive 𝐴x strongly suggests the presence of a sizeable orbital angular momentum along the 

xy plane (see Theory chapter, subsection II.A.1). The 𝐴∥ parameter could not be resolved as 

expected for systems with very large positive D values. Finally, we note in passing that the 

magnetic splitting of 1 is slightly underestimated at higher temperature even with our best spin 

Hamiltonian fit (Figure 19). This misbehavior is very faint, but is still physically relevant as 

discussed in subsection VII.A. 

Previously Lang and coworkers169 proposed a phenomenological Hamiltonian to 

simulate the variable temperature Mössbauer spectra of 1 recorded at a fixed magnetic field of 

3.2 T. In their approach, each Mössbauer spectrum at a given temperature was fitted with a 

temperature-dependent w matrix for parametrizing the nuclear Zeeman effect, 𝐻 = 	−𝑔¬𝛽¬𝐼 ∙

(1 +𝜔)𝐵a⃗ . Apparently, this model does not allow to easily extract the electronic-structure 

information of 1 and therefore does not provide insight into the nature of its ground state.  

The analysis of these experimental results leads to a double conclusion. First, a deep 

understanding of the physical origin of the quadrupole splitting is necessary for a complete 

understanding of the electronic structure of the ground state of 1. As mentioned above, the sign 

of the quadrupole splitting of 1 is counter-intuitive, and the origin of the large disparity in 

quadrupole splitting values throughout the iron-porphyrin family is ill-understood. Hence, in-

depth study of the electric quadrupole effects is required but calls for the use of more advanced 

computational models.  

Furthermore, and much more importantly, the magnetometry and applied field 

Mössbauer measurements altogether suggest that the magnetic properties of compound 1 cannot 

be properly described by the usual S = 1 spin Hamiltonian, although reasonable simulations can 

be obtained. Instead, all experimental data indicate that the ground non-relativistic state of 1 

features a small energy separation from the low-lying excited non-relativistic states, which 

leads to considerable field-induced mixing between these states and the ground state. Such 

interactions are not accounted for by the spin Hamiltonian model.  

Following those observation, we have separated the next section into two parts. First, 

we investigate the origin of the zero-field Mössbauer parameters by means of DFT calculations 

to shed more light on the electronic structure of the non-relativistic ground state. Second, we 

investigate the low-lying excited non-relativistic states of 1 by means of an ab-initio 

investigation. 
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IV. DFT and ab-initio calculations 

 

A. DFT calculations 

 

1) Energetic considerations 

 

To investigate the physical origin of the zero-field Mössbauer parameters of 1, and to study 

the possible effect of the porphyrin core-conformation, DFT calculations were carried out in 

gas-phase on the ruffled, saddle and planar porphyrin conformations (see computational 

details). For each core-conformations, it was possible to converge a solution corresponding to 

the 3A2g iron electronic configuration (dxy)2(dxz)1(dyz)1(dz2)1, and a solution corresponding to the 
3Eg iron electronic configuration (dxy)2(dxz)2(dyz)1(dz2)1. The results are summarized in Table 4. 

Irrespective of the core-conformation, the 3A2g solution was always found slightly lower in 

energy, but the energy gap between the two solutions is too small to be conclusive with regard 

to the nature of the non-relativistic ground state. However, this result hints at a very small 

energy separation between the 3A2g and 3Eg states, as already suggested by the available 

experimental data. 

 

Table 4: Relative energy of the3A2g and 3Eg states (ΔE = E± 𝐸{	
� ² − E( 𝐴*{	

� )), and electric 

hyperfine parameters (57Fe isomer shift δ and quadrupole splitting 𝛥𝐸� for each core 

conformation and electronic configuration, calculated by DFT.  

 
Core conformation 

Δ𝐸(𝑐𝑚7,) 𝛿(3A2g) 

(mm/s) 

𝛿(3Eg) 

(mm/s) 

Δ𝐸@(3A2g) 

(mm/s) 

Δ𝐸@(3Eg) 

(mm/s) 

 Planar 482 0.40 0.49 +0.433 +1.115 

 Ruffled 454 0.38 0.48 +0.596 +1.256 

 Saddle 389 0.38 0.46 +0.532 +1.322 

 

2) Calculated Mössbauer parameters 

 

The Mössbauer isomer shifts and quadrupole splittings for each of the core-

conformation and non-relativistic ground state are summarized in Table 4. Neither the isomer 
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shift nor the quadrupole splitting seems to have a significant dependence on the core 

conformation. However, the nature of the electronic configuration (3A2g or 3Eg) has a 

tremendous impact on the Mössbauer parameters. The 3A2g configuration exhibits a lower 

quadrupole splitting and a larger isomer shift by about 0.6-0.7 mm/s and 0.1 mm/s, respectively, 

compared to the configuration 3Eg. The calculated quadrupole splitting value obtained for the 
3Eg configuration is consistent with an earlier DFT study on iron-porphyrins.193 Although the 

best agreement with the experimental Mössbauer parameters (ΔEQ= +1.31	𝑚𝑚/𝑠 and δ=0.56 

mm/s) is for the 3Eg electronic configuration, we show in the next section that the magnetism 

of 1 is strictly incompatible with a 3Eg ground state (see subsection VII.B).  

Absolute parameters calculated with DFT may suffer from large deviations from the 

experiment. By contrast, the comparison of these parameters between chemically similar 

systems is an approach likely to be more insightful, because of the large error compensation 

afforded by their chemical similarity. Following this approach, we observe that the quadrupole 

splitting dependence on the non-relativistic ground state found above is consistent with an 

earlier hypothesis by Scheidt and coworkers.160 In their study, the authors claim that the 

quadrupole splitting variability in the iron(II)-porphyrin family is a marker of the non-

relativistic ground state variability. In details, 3A2g ground states exhibit quadrupole splitting 

values of around +1.5, while 3Eg ground states exhibit quadrupole splitting parameters superior 

to 2. For instance, ruffled core-conformation has a quadrupole splitting of Δ𝐸@ =

+1.51	𝑚𝑚/𝑠, while 1 in a saddle core-conformation has a quadrupole splitting of Δ𝐸@ =

+2.21	𝑚𝑚/𝑠. The authors attribute this large difference to a difference in the electronic ground 

state, i.e. 3A2g for the former and 3Eg for the latter. The experimental quadrupole splitting shift 

(ΔΔ𝐸@ = +0.70	𝑚𝑚/𝑠) is compatible with the presently calculated differences for 3A2g and 3Eg 

configurations (Table 4). Furthermore, the present investigation suggests that core 

conformation does not influence significantly the quadrupole splitting values beyond a possible 

change in the electronic configuration. Taken together, both observations bring credence to 

Scheidt’s hypothesis. As such, this would rather suggest that in the present work, 1 (ΔEQ=

+1.31	𝑚𝑚/𝑠) possesses a 3A2g ground state. 

 

3) Physical origin of the quadrupole splitting 

 

To investigate the physical origin of the quadrupole splitting and the difference between 

the 3A2g and 3Eg configuration, the z-component of the electric-field gradient tensor is 

decomposed into three components, as elaborated in the Theory chapter (subsection V.B). The 
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1-center, two-center “bond”, two-center “point-charge” and three-center contributions for the 
3A2g and 3Eg electronic configuration are summarized in Table 5 for the ruffled porphyrin 

conformation. For a deeper understanding, the one-center contribution is further decomposed 

into core orbitals, valence orbitals and primarily ligand-based orbitals. Note that only one core 

conformation is considered here because it was already shown that the core conformation is 

irrelevant to the calculated zero-field Mössbauer parameters for a given non-relativistic ground 

state (Table 4).  

 

Table 5: Breakdown of the contribution to the total Vzz (a.u.-3) into 1-center, 2-center “bond”, 

2-center “point-charge” and 3-center, for the 3A2g and 3Eg state of the ruffled core conformation. 

 
Electronic ground state 

1-center 

(core/ d-orbitals/ 

ligands) 

2-

center  

“bond” 

2-center  

“point-

charge” 

3-

center 

Total 

 3A2g 

-1.03 

(-0.06/  

-3.55/ +2.58) 

1.40 0.00 -0.01 +0.36 

 

3Eg -0.07 

(-0.03/ 

-2.62/+2.58 

 

0.82 +0.01 -0.01 +0.75 

 

In both configurations, the Vzz is dominated by the ligand contributions, i.e. (1) the one-

center ligand orbitals contributions and (2) the two-center bond contribution, both of which are 

positive. In fact, the underlying explanation is that the primarily nitrogen-based  𝜎-orbitals mix 

significantly with the empty dx2-y2 and the 4px,y of iron (Figure 20), both of which have large 

and positive contributions to the Vzz. These observations support the hypothesis of a large 

participation of the porphyrin ligand to the quadrupole splitting, and explain the experimentally-

observed positive quadrupole splitting.  

As evident from Table 5, the difference between the 3A2g and the 3Eg configuration is 

mainly explained by the d-orbitals contribution to the one-center component. The d-orbital 

contribution is much lower for the 3A2g configuration than for the 3Eg configuration, consistently 

with the promotion of one electron from the dz2 orbital (very large, negative contribution to the 

𝑉WW) to the dxz (small, negative contribution).116  
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Figure 20: orbital diagram of 1 in a ruffled core conformation showing the mixing of the 

symmetry-adapted, doubly-occupied nitrogen-based  orbitals (right-hand side) and unoccupied 

Fe-based AO (left-hand side) responsible for the large contribution of the ligand orbitals to the 

quadrupole splitting value. Hydrogens are omitted for clarity. Carbons are represented in beige, 

nitrogens in blue and iron in orange. Orbitals are represented in red (positive part) and yellow 

(negative part). 

 

The present DFT investigation is non-conclusive with respect to the nature of the ground 

state, but provided insights about a number of points. First, these results predict that the 

quadrupole splitting of 1 is positive, consistently with the experiment, because the z-component 

of the EFG tensor is dominated by the contribution of the porphyrin ligand. The Mössbauer 

parameters of 1 were found independent of the core-conformation for a given electronic 

configuration. By contrast, we found that the quadrupole splitting is very sensitive to the 

electronic configuration of the ground state. These results suggest that the quadrupole splitting 

value may be used a marker of the non-relativistic ground state in the iron(II)-porphyrin family, 

a notion already investigated by previous authors.160 If that is the case, the experimental 

variability of quadrupole splitting values within the four-coordinated iron(II)-porphyrins family 
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Fe-3dx2-y2
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implies that very subtle changes in the ligand field or crystal packing effect are enough to swap 

the non-relativistic ground state, because the ligand environment is almost identical in all these 

compounds. Thus, this observation brings yet another argument in favor of the existence of 

near-degenerate electronic configurations in four-coordinated iron(II)-porphyrins. 

The DFT-calculated energies suggest the presence of at least three closely-lying non-

relativistic states. However, the energy separation of these states falls within the error range of 

DFT,148 which makes the assignment of the ground state non-conclusive. Furthermore, Kohn-

Sham DFT is an intrinsic ground state method relying on the variational principle. The 

description of excited states is neither practical nor well founded theoretically. In the next 

subsection, we investigate the low-lying non-relativistic states by means of CASSCF/NEVPT2 

calculations, a method well-suited for the description of excited states.  

 

B. CASSCF/NEVPT2 calculations 

 

1) Choice of the active space 

 

To investigate the electronic structure of 1 and the effect of different core-conformations, 

CASSCF(8,11)/NEVPT2 calculations on the ruffled, saddle and planar porphyrin 

conformations have been carried out in gas-phase. The five valence d-orbitals are included to 

the active space to account for the d-d excitations. As expected for a square-planar ligand-field, 

preliminary DFT results show that the dx2-y2 orbital is strongly antibonding. Therefore, to 

account for the covalency effect, the symmetry-adapted bonding counterpart of this orbital was 

added to the active space. On top of that, a second d-shell was added in order to account for the 

well-known double shell effect (see Figure 21).157 
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Figure 21: Active space CAS(8,11) for 1 (ruffled conformation). The active space is composed 

of the valence d-shell (3d), the double d-shell (4d), plus the 𝜎-bonding counterpart of the 3dx2-

y2 orbitals (1σ). The same active space was used for 1 in saddle conformation and [Fe(TTP)] in 

planar conformation. 

 

2) Energetic considerations 

 

Gratifyingly, irrespective of the core conformations, the calculations delivered the same 

energetic ordering of the four lowest-lying triplet states (Table 6), consistent with earlier 

work.160,168,169,172 Specifically, the lowest-energy state was predicted to be 3A2g having a leading 

configuration (90%) of (dxy)2(dz2)2(dxz,yz)2, and none of the remaining electron configurations 

4dx2-y2
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has a weight exceeding 1%. The 3Eg state with two nearly degenerate components was found 

to lie approximately 1000 cm–1 above 3A2g. The dominant electron configuration of 3Eg is 

(dxy)2(dz2)1(dxz,yz)3, and both components contain non-negligible contributions (10 – 15%) from 

the (dxy)1(dz2)2(dxz,yz)3 electron configuration. It is worthwhile to note that the core distortion 

does not discernibly lift the two-fold degeneracy of the 3Eg	state (the highest splitting being 

only 20.0 cm-1, Table 6) all in agreement with the axial symmetry postulated above. Finally, a 
3B2g state with a leading electron configuration of (dxy)1(dz2)1(dxz,yz)4 (90%) was computed to 

be situated at considerably higher energy (> 4000 cm-1). While the quintet state 5A1g having a 

leading configuration (dz2)2 (dxy)1 (dx2-y2)1 (dxz)1 (dyz)1 (>90%) was predicted to be the ground 

state by the CASSCF approach, further computations including NEVPT2 corrections swap the 

lowest-energy state from 5A1g to 3A2g.  

 

Table 6: Vertical excitation energy with respect to the 3A2g ground state (cm-1), D (cm-1) and g 

(no units) spin Hamiltonian parameters for different core conformations of complex 1 estimated 

by CASSCF(8,11)/NEVPT2 calculations and effective Hamiltonian theory.  

 
Core conformation 3Eg(xz)  3Eg(yz) 3B2g 5A1g D gzz/gyy/gxx (gav) 

 Planar 979 997 4937 172 99 1.94/3.09/3.10 (2.76) 

 Ruffled 919 919 4753 783 102 1.89/3.04/3.04 (2.71) 

 Saddle 835 855 4753 895 102 1.88/3.05/3.07 (2.72) 

 

The small energy difference between 3A2g and 3Eg is unfortunately not decisive and 

within the uncertainty range of the quantum chemical methods employed. CASSCF 

calculations typically tend to overestimate excitation energies, and even with the second order 

perturbative corrections, such as NEVPT2, errors of several thousands of wavenumbers are not 

uncommon.158,194 Thus, the non-relativistic ground state of 1 being either 3A2g or 3Eg cannot be 

unambiguously assigned on the basis of the calculations.  

 

3) Calculation of the magnetic susceptibility and spin Hamiltonian parameters 

 

The magnetic susceptibility is calculated numerically after diagonalization of the total 

Hamiltonian (including Born-Oppenheimer, SOC and Zeeman effect) in the basis of the states 

calculated via CASSCF. Those states include three magnetic sublevels for each triplet non-

relativistic state, plus five sublevels for the 5A1g. The total size of the Hamiltonian thus amounts 

to a 14x14 matrix. The corresponding calculated effective magnetic moment is shown in Figure 
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22. Irrespective of core conformation, the agreement with the experimental data is remarkable 

for ab-initio calculations. In particular, the present calculation accounts for the large room-

temperature µeff and the TIP, as well as the large ZFS. The calculation of Mössbauer parameters 

(via effective Hamiltonian theory, see Theory chapter, subsection VII.B) confirms the large 

ZFS and average g-value, consistently with the experiment (D>80 cm-1 and 𝑔k� = 2.7). 

 

 
Figure 22: Temperature-dependence of the µeff of 1 under 1 Tesla calculated from the CASSCF 

wavefunctions and NEVPT2 energies for the ruffled (red solid line), saddle (blue solid line) 

and planar (pink solid line) core conformation, and experimentally measured effective magnetic 

moment measurements of 1 (dots). 

 

The theoretical results revealed that the 3A2g, 3Eg and 5A1g states are energetically well-

isolated from other excited states. The energetic proximity of 3Ag and 3Eg further corroborates 

the notion that the Fe-dxy, -dxz, -dyz and -dz2 orbitals are close in energy for 1, which features a 

square planar coordination geometry. More importantly, the magnetic susceptibility calculated 

by ab-initio calculations shows a remarkable agreement with the experiment and suggests that 

the SOC-induced coupling of the 3A2g, 3Eg and 5A1g states is responsible for the unusual 

magnetism of 1. In fact, in the present case SOC is expected to considerably mix these non-

relativistic states, because their energy separation is comparable to the effective SOC constant 

for Fe(II) (~400 cm-1)195. 
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In order to (1) correlate those results with all the available experimental data and (2) 

provide a qualitative understanding of the magnetism of 1, we decided to construct a simplified 

effective Hamiltonian based on the first-principle study above. This Hamiltonian first treats 

SOC and Zeeman interactions between the nine magnetic sublevels arising from simplified 3A2g 

and 3Eg non-relativistic states (see section V). Later, the model is enlarged to include the 5A1g 

state, but it is shown that the enlargement of the effective Hamiltonian has a marginal effect on 

the magnetism of 1. Finally, the electronic Hamiltonian is completed with a nuclear 

Hamiltonian to treat electric and magnetic hyperfine interactions. Such a treatment therefore 

allowed us to perform physically justified simulations of all the experimental data beyond the 

usual spin Hamiltonian formalism.  

 

V. Simulation of the magnetometric data with an enlarged effective 

Hamiltonian 

 

A. Developpement of an effective Hamiltonian beyond the spin Hamiltonian 

formalism 

 

1) Setting up the effective Hamiltonian  

 

To set up a parametrized effective Hamiltonian for the simulation of the magnetic data of 

complex 1, we carried out a ligand-field type analysis, and the dominant electron configurations 

of the 3A2g and 3Eg states were chosen as the non-relativistic basis. The basis functions were 

constructed using pure iron d-orbitals. In the present case, the covalency effects can be safely 

neglected, because the orbitals used to construct the 3A2g and 3Eg states are all essentially non-

bonding. By convention, the porphyrin plane was referred to as the xy plane, and its normal 

vector was chosen as the z axis. For MS = +1, the basis functions are given by  

� 𝐴*Â	
� , +1� = |𝑑d�𝑑d�sssss𝑑d�𝑑��𝑑�*𝑑�*ssss|       (49) 

| 𝐸Â(𝑥𝑧)	
� , +1⟩ = 𝑐𝑜𝑠(𝜃)� 𝐸Â𝐴(𝑥)	

� , +1� + 𝑠𝑖𝑛(𝜃)| 𝐸Â𝐵(𝑥)	
� ,+1⟩	             (49a) 

| 𝐸Â(𝑦𝑧)	
� , +1⟩ = 𝑐𝑜𝑠(𝜃)| 𝐸Â𝐴(𝑦)	

� , +1⟩ + 𝑠𝑖𝑛(𝜃)| 𝐸Â𝐵(𝑦)	
� , +1⟩             (49b) 

 

Here, |…| denotes a normalized Slater determinant, orbitals without a vinculum (ex: 𝑑d�) 

represent alpha spinorbitals and those with a vinculum (ex: 𝑑d�sssss) correspond to beta spinorbitals. 
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𝜃 was introduced to describe the mixing of the two Eg states as suggested by the CASSCF 

calculations. For these degenerate Eg states, the label xz or yz indicates whether the function 

transforms as the quadratic functions xz or yz in the D4h point group. The label “+1” refers to 

the Ms of the wave-function. 

� 𝐸Â𝐴(𝑥𝑧)	
� , +1� = |𝑑d�𝑑d�sssss𝑑d�𝑑��𝑑��sssss𝑑�*|                (49c) 

� 𝐸Â𝐵(𝑥𝑧)	
� , +1� = |𝑑d�𝑑d�𝑑d�sssss𝑑��𝑑�*𝑑�*ssss|                (49d) 

� 𝐸Â𝐴(𝑦𝑧)	
� , +1� = |𝑑d�𝑑d�sssss𝑑d�𝑑d�sssss𝑑��𝑑�*|                (49e) 

� 𝐸Â𝐵(𝑦𝑧)	
� , +1� = |𝑑d�𝑑d�𝑑��𝑑��sssss𝑑�*𝑑�*ssss|                (49f) 

 

Similarly, one can write down the basis functions for MS = 0, and –1. 

The energy splitting of the 3A2g and 3Eg states was set as a fitting parameter, ΔE = E(3Eg) – 

E(3A2g). To avoid the over-parametrization, the splitting of the two 3Eg components was 

neglected, as suggested by the marginal splittings (< 20 cm-1) obtained by the 

CASSCF/NEVPT2 calculations. SOC and Zeeman interactions were considered by using the 

single-electron Hamiltonians: 

𝐻XØ	m = 𝐻*6m +𝐻qw}Y +𝐻WXXY                  (50a) 

𝐻XØ	m = E(X)𝛿�,�ì𝛿½�,½�ì + 	𝜁 ∑ 𝑙�aa⃗ ∙ 𝑠�aa⃗� + 𝜇Z(𝑔.𝑆 + 𝐿a⃗ ) ∙ 𝐵Xdeaaaaaaaa⃗             (50b) 

 

Here, i runs over the electrons, E(X) corresponds to the energy of the unperturbed states of 

symmetry representation X (A2g, Eg(xz) or Eg(yz)), the Kronecker deltas 𝛿�,�� and 𝛿½ñ,½ñì are 

equal to 1 if the symmetry representation and the MS of the unperturbed states in the bra and 

ket are identical. The first term in 𝐻XØ	m  introduces the adjustable energy gap ΔE = E(3Eg) – 

E(3A2g) between 3A2g and 3Eg states. The form chosen for the SOC Hamiltonian is described by 

eq. 12c and the Zeeman effect is described by eq. 9. 

𝜁, the effective SOC constant of iron, is fixed to be 𝜁 = 400	cm-1, a value typically suggested 

for iron(II) (400-430 cm-1),109 and from earlier work on 1.160 The matrix elements for each of 

these operators were reduced into 𝑠�,Ol  (𝛼=x,y,z) matrix elements in the | ,
*
,± ,

*
⟩ basis and matrix 

elements of 𝑙�,Om in the pure real d-orbital basis using the Slater-Condon rules: 

�ΨA�𝜁	 ∑ 𝑙�� ∙ 𝑠�aa⃗ �ΨA� = 𝜁 ∑ ⟨𝜙��𝑙�𝜙�⟩ ∙ ⟨𝜒�|𝑠|𝜒�⟩� 	               (51a) 

�ΨA�∑ 𝜇S±2𝑠�aa⃗ + 𝑙�² ∙ 𝐵./_aaaaaaa⃗� �ΨA� = 𝜇S ∑ ±2⟨𝜒�|𝑠|𝜒�⟩ + �𝜙��𝑙�𝜙��²� ∙ 𝐵./_aaaaaaa⃗             (51b) 

ÈΨº¿�¿
º����𝜁	 ∑ 𝑙�� ∙ 𝑠�aa⃗ �ΨAË = 𝜁⟨𝜙*�𝑙�𝜙,⟩ ∙ ⟨𝜒*|𝑠|𝜒,⟩               (51c) 
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ÈΨº¿�¿
º����∑ 𝜇S±2𝑠�aa⃗ + 𝑙�² ∙ 𝐵./_aaaaaaa⃗� �ΨAË = 2𝜇S⟨𝜙*|𝜙,⟩⟨𝜒*|𝑠|𝜒,⟩ ∙ 𝐵./_aaaaaaa⃗ + 	𝜇S⟨𝜒*|𝜒,⟩�𝜙*�𝑙�𝜙,� ∙

𝐵./_aaaaaaa⃗                      (51d) 

 

The matrix elements on the right-hand side of eq. 51a-51d are tabulated in the literature.109 ΨA 

is a given normalized Slater determinant constituted of an antisymmetrized product of spin 

orbitals 𝜙�𝜒� (the 𝜙� are the space functions and 𝜒� are the spin functions). Ψº¿�¿
º��� corresponds 

to a Slater determinant obtained from ΨA by promotion of 1 electron from the spinorbital 𝜙,𝜒, 

to the spinorbital 𝜙*𝜒* Note that matrix elements involving Slater determinants which 

spinorbital population differ by more than one excitation are zero. Finally, the problem amounts 

to the diagonalization of a 9x9 matrix (Figure 23). 

 

 
Figure 23: The 𝐻XØ	m  matrix (Eq. 50a) in the basis of the symmetry-adapted | 𝐸Â	� ,Y⟩	states, where 

Eg is the representation of the parent non-relativistic state and Y is the D4 double-group 

irreducible representation of the magnetic sublevel (detailed state compositions in terms of the 

| 𝐸{(x)	
� ,M�⟩ and | 𝐸{(y)	

� ,M�⟩ magnetic sublevels described in eq. 53a-53b and eq. 55a-55e), 

and | 𝐴*{	
� ,M�⟩	magnetic sublevels. HΔ terms are displayed in red. 𝐻SOCY  terms are displayed in 

green. 𝐻Zeem  terms are displayed in brown (spin Zeeman) and blue (orbital Zeeman). For clarity, 

zero matrix elements are omitted, and the following substitution have been used: A = cos 2θ; 
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𝐵± =
,
√*
±𝐵/ ± i𝐵�²; C = √3 cosθ − sin θ. Bx, By and Bz are the three components of the 

applied magnetic field Bext.  

 

2) Simulation of the experimental data 

 

The resulting 9 × 9 matrix of the electronic Hamiltonian (𝐻XØ	m ) was diagonalized, and 

the magnetic susceptibility was directly computed from the resulting energies, according to the 

method described in subsection II.B.2. The magnetic susceptibility was fitted by hand to the 

experimental susceptibility. For simulations of the actual experimental magnetic data, in 

addition to ΔE, the mixing angle θ that controls the relative weight of 3Eg(A) and 3Eg(B) in the 
3Eg state was taken as another fitting parameter. A satisfactory global fit to all data yields ΔE = 

950 cm-1, and θ = -0.13𝜋 (Figure 24). 

 

 
Figure 24: Effective magnetic moment under an applied field of 1 T and isofield magnetization 

curves of 1 under applied fields of 1 (red), 4 (pink) and 7 T (blue) (inset) of 1. The solid lines 

represent the best fits obtained by the simulation using the effective Hamiltonian, eq. 50a-50b. 

The parameters of the Hamiltonian are ΔE = 950 cm-1, and θ = -0.13𝜋. The simulation takes 

into account 7.7% S = 2 [Fe(TPP)(THF)2] impurity.  

 

Our results revealed that the 3A2g state is situated below 3Eg by 950 cm-1, and the 3Eg(A) 

configuration makes the leading contribution (90%) to the 3Eg state. This configuration is in 
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remarkable agreement with the CASSCF/NEVPT2 calculations described in subsection IV.B. 

Although our assignment of the non-relativistic ground state is the same as that proposed by 

Mitra and coworkers,160 our conclusion was grounded on the simultaneous fit of all data derived 

from magnetic susceptibility and VTVF magnetization measurements, whereas only the former 

set of data was used in the earlier work. 

 

The simulations with the effective Hamiltonian also nicley reproduce the single-crystal 

susceptibility data reported by Mitra et. al,160 which shows large magnetic anisotropy of 1, 

defined as the difference in the susceptibility for fields perpendicular (χ⟂) and parallel (χ∥) to 

the defined z-axis (Figure 25). The striking difference between the large χ⟂ and vansihing χ∥ 

values below 50 K nicely demonstrates the easy-plane of magnetization for the low-lying 

magnetic sublevel of 1 (i.e Ms = 0 in the spin Hamiltonian description). 

 

 
Figure 25: magnetic anisotropy of 1, taken as χx − χ∥, calculated using the effective 

Hamiltonian with the following parameters: 𝛥𝐸 = 950 cm-1, 𝜃 = −0.13𝜋 (red line), and 

experimental measurements as taken from ref. 160 (dots). No impurities are considered in the 

calculation. 

 

To understand the unusual magnetic behavior exhibited by 1, it is of interest to disentangle 

the effects of SOC within the low-lying 3A2g and 3Eg non-relativistic states. After SOC, three 

low-lying magnetic sublevels are separated from other excited states by ca. 1000 cm-1. 

Moreover, the three magnetic sublevels are split into a singlet (|𝜙A⟩) lying below a degenerate 



 
102 

doublet (|𝜙±⟩) by about 94 cm–1 (Figure 26). This situation resembles the S = 1 spin 

Hamiltonian description given in subsections III.B.3 and III.C.3, with an axial ZFS D > 90 cm-

1, and the rhombicity E/D = 0. However, these three magnetic sublevels are 

multiconfigurational in nature, because they contain 12-15% of the 3Eg state (see subsection 

V.B). In the next subsection, it is shown how the peculiar electronic structure of 1 , and in 

particular the effect of SOC on the non-relativistic ground state, induces its remarkable 

magnetism.  

 

B. Connection between the magnetism of the system and its electronic structure 

 

1) Effect of the SOC 

 

In contrast to the non-degenerate 3A2g non-relativistic ground state, the two essentially 

degenerate 3Eg excited non-relativistic states yield magnetic sublevels with an unquenched 

orbital angular momentum along the z direction due to in-state SOC of 3Eg (first-order SOC). 

In the following, we first consider in-state SOC of 3Eg and then deal with the out-of-state SOC 

between 3A2g and 3Eg states (second order SOC and higher).  

Diagonalization of the SOC matrix of the six magnetic sublevels of 3Eg yield three non-

Kramers doublets, labeled as � 𝐸	� Â, 𝑀q,±� (𝑀q =	±1, 0) which are also eigenfunctions of 𝐿� 

with eigenvalues: 

� 𝐸	� Â, 𝑀q,±|𝐿�| 𝐸	� Â, 𝑀q,±� = ±𝐶𝑜𝑠(2𝜃)        (52) 

 

The state composition of the �	𝐸Â,𝑀q,±� magnetic sublevels is given by eq. 53a and 53b: 

� 𝐸	� Â, 𝑀q,+� =
,
√*
	±	� 𝐸	� Â(𝑦𝑧),𝑀q� − 𝑖	| 𝐸	� Â(𝑥𝑧),𝑀q⟩)              (53a) 

� 𝐸	� Â, 𝑀q,−� =
,
√*
	±	� 𝐸	� Â(𝑦𝑧),𝑀q� + 𝑖	| 𝐸	� Â(𝑥𝑧),𝑀q⟩)              (53b) 

 

Although the SOC operator (eq. 12c) does not follow the Russel-Sanders scheme, in the present 

case, the energies of the three doublets of 3Eg are given by their 𝑆� and 𝐿� eigenvalues: 

𝐸 = ∆𝐸 ∓ �
*
𝑀q𝐶𝑜𝑠(2𝜃) 	= ∆𝐸 − �

*
	𝑀q⟨𝐿�⟩       (54) 

 

Note that two of the three doublets are accidentally degenerate according to the irreducible 

representations of the D4 point group. Specifically, the magnetic sublevels of 3Eg transform as 

E + A1 + A2 + B1 + B2 in the D4 double group. The higher-lying and lower-lying doublets are 
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accidentally degenerate and transform as A1 + A2, and B1 + B2, respectively. Only the 

intermediate doublet actually belong to the double representation E. The symmetry-adapted 

magnetic sublevels are labeled as | 𝐸	� Â,Y⟩, where Y corresponds to the D4 double-group 

irreducible representation of the sublevel, and are linear combination of �	 𝐸	� Â, 𝑀q,±�: 

� 𝐸	� Â,A*� =
,
√*
	±	� 𝐸	� Â, +1,−� +	 � 𝐸	� Â, −1,+�	²               (55a) 

� 𝐸	� Â,A,� =
,
√*
	±	� 𝐸	� Â,+1,−� −	 � 𝐸	� Â, −1,+�	²               (55b) 

� 𝐸	� Â, E±� = 	∓� 𝐸	� Â, 0,±�                  (55c) 

� 𝐸	� Â,B*� =
,
√*
	±	� 𝐸	� Â, +1, +� +	� 𝐸	� Â, −1, −�	²               (55d) 

� 𝐸	� Â,B,� =
,
√*
	±	� 𝐸	� Â, +1,+�	−	� 𝐸	� Â, −1, −�	²               (55e) 

 

The three magnetic sublevels of 3A2g, which transform as E  + A1 in the D4 double group, 

remain degenerate in the in-state (first order) SOC treatment. The degeneracy will be lifted by 

higher order SOC, for which the sublevels of the 3Eg and 3A2g states that transform as the same 

irreducible representation can interact with each other. Such interactions, in fact, gives rise to 

the ZFS of the 3A2g non-relativistic ground state.  
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Figure 26: Final energy splitting deduced by the simulation with the effective Hamiltonian in 

the absence of any applied field that describes the in-state and out-of-state SOC of the nine 

magnetic sublevels . On the left side, the symmetry-adapted magnetic sublevels arising from 

first-order SOC are named |𝑋,Y⟩, where X is the D4h point-group irreducible representation of 

the non-relativistic state and Y is the D4 double-group irreducible representation of the magnetic 

sublevel. The dotted lines represent state coupling through the out-of-state SOC (green lines 

couple E sublevels, and red lines couple A1 sublevels). On the right side, the sublevels |𝜙A⟩, 

|𝜙-⟩, |𝜙7⟩, |𝜙-′⟩, |𝜙7′⟩, |𝜙A′⟩ represent the magnetic sublevels resulting from out-of-state 

SOC.  

 

2) Understanding the large ZFS 

 

Hereafter, we employed the second-order perturbation theory to estimate the ZFS of the 

three low lying magnetic sublevels. Clearly, due to the energetic close proximity of the A2g and 

Eg non-relativistic states, the second-order perturbation approximation is not sufficient to give 

a quantitative treatment of the SOC; however, it can provide insights into the origin of the ZFS. 

The energy lowering of each magnetic sublevel of 3A2g due to the out-of-state SOC is: 

𝐸(*)(� 𝐴*Â	
� , 0�) = �� ���	

� ,A���5�	Y � 6�	� ,�¿⟩|�

�6-��	}âñ(*¸)
	                (56a) 

E"	$ , A'

E"	$ , E±

| A*"	$ , ±1⟩

E"	$ , B*

.±

E"	$ , A*

./′

|./⟩

.±′

94	cm-1

Energy

In-state	spin-orbit	
coupling

Out-of-state	spin-orbit	
coupling

E"	$ , B'

| A*"	$ , 0⟩

E"	$ , A*

E"	$ , B* E"	$ , B'

957	cm-1
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𝐸(*)(� 𝐴*Â	
� , ±1�) = �� ���	

� ,±,���5�Y� 6�	� ,6±⟩|�

�6
                (56b) 

 

Therefore, 

	Δ = 	𝐸(*)±� 𝐴*Â	
� , ±1�² −	𝐸(*)±� 𝐴*Â	

� , 0�².                (56c) 

 

Note that Δ is the equivalent of D in the spin Hamiltonian language, i.e. the splitting between 

the ground singlet and upper doublet. In the present case, the coupling element 

�� 𝐴*Â	
� , 0�𝐻ñâÖ� 𝐸Â	� ,𝐴,��

*
= 	1.97	𝜁*	was found to be twice as large as 

�� 𝐴*Â	
� , ±1�𝐻ñâÖ� 𝐸Â	� , 𝐸±��

*
= 0.99	𝜁* and |ΔE| >> z/2. In detail, 𝐸(*)±� 𝐴*Â	

� , 0�² = –291 cm-1, 

𝐸(*)±� 𝐴*Â	
� , ±1�²	= –167 cm-1, and Δ= 124 cm-1. Thus, this analysis showed that the strong out-

of-state SOC between A2g and Eg is the origin of the large ZFS observed for complex 1. 

 

3) Relationship betweeen the magnetism of 1 and the multi-configurational nature of its 

ground state 

 

Our analysis above showed that complex 1 features strong easy-plane of magnetization at 

low temperatures. While this result is not surprising for a system with a large axial ZFS 

parameter and a low rhombicity, the large room-temperature 𝜇X¾¾  hints at the possibility that 

other factors are at play. Effectively, calculation of the spin and orbital angular momentum 

expectation values in the magnetic sublevels |𝜙A⟩ and �𝜙±� shows that along the quantization 

axis z, the �𝜙±� sublevels have large first-order spin angular momenta and residual first-order 

orbital angular momenta (Table 7). The ground magnetic sublevel |𝜙A⟩ has no first-order 

angular momentum along the quantization axis as is always the case for non-degenerate 

magnetic sublevels. However, upon application of an applied field on the xy plane, the magnetic 

sublevels |𝜙A�⟩,|𝜙±�⟩ (the eigenstates of the total Hamiltonian for an applied field along the xy 

plane) acquire field-induced orbital and spin angular momenta. Those angular momenta have 

similar amplitudes (Table 7). They are both lying antiparallel to the direction of the field on the 

xy plane, and their norms are independent on the azimuthal direction of the applied field, giving 

rise to an easy-plane of magnetization as observed experimentally.  

 

Table 7: Expectation values for spin and orbital angular momenta and total magnetic moments 

⟨𝜇O⟩ = −⟨𝐿O⟩ + 2⟨𝑆O⟩ (µB) for the three lowest-lying magnetic sublevels of 1 obtained from 

diagonalization of the Hamiltonian 𝐻XØm  (eq. 50a-50b), under an applied field of 7 T along the 
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z-direction (|𝜙A⟩,|𝜙±⟩) and the x-direction (|𝜙A�⟩,|𝜙±�⟩). The parameters of 𝐻XØm  are ΔE = 950 

cm-1, 𝜃 = −0.13𝜋. 

State ⟨Sx⟩  ⟨Lx⟩   ⟨µx⟩    State ⟨Sz⟩ ⟨Lz⟩ ⟨µz⟩ 

|𝜙A�⟩ -0.20 -0.25 0.65  |𝜙A⟩ 0 0 0 

|𝜙7�⟩ 0 -0.03 0.03 |𝜙7⟩ -0.885 -0.08 1.85 

|𝜙-�⟩ 0.20 0.22 -0.62 |𝜙-⟩ 0.885 0.08 -1.85 

 

The existence of a first-order orbital angular momentum in �𝜙±� and of a field-induced 

orbital angular momentum in �𝜙A��, |𝜙±�⟩ (Table 7) is a direct consequence of the multireference 

character of these magnetic sublevels. Obviously, the multireference character of the sublevels 

is the direct consequence of SOC induced mixing of the 3A2g and 3Eg non-relativistic states. The 

magnetic sublevels can in fact be written as: 

|𝜙A⟩ = 0.92� 𝐴*Â	
� , 0� + 0.39	| 𝐸Â	� ,𝐴,⟩                (57a) 

�𝜙±� = 0.94� 𝐴*Â	
� , ±� + 0.34	| 𝐸Â	� , 𝐸±⟩                (57b) 

 

Since the symmetry adapted 3Eg states are linear combination of the states | 𝐸Â	� , 𝑀q,±⟩, eq. 57a 

and 57b become: 

|𝜙A⟩ = 	0.92	� 𝐴*Â	
� , 0� + 0.27	v	� 𝐸Â	� , +1, −��−� 𝐸Â	� , −1,+�	x             (57c) 

�𝜙±� = 0.94� 𝐴*Â	
� , ±1�∓ 0.34	| 𝐸Â	� , 0,±⟩                (57d) 

 

Three distinct electronic configurations enter in the composition of this magnetic triplet, i.e. 

� 𝐴*Â	
� ,𝑀q� and � 𝐸Â	� ,𝑀q, ±�. The first-order orbital angular momentum in �𝜙±� is directly 

related to the first-order orbital angular momentum of | 𝐸Â	� , 0,±⟩ that enters in its composition 

(see eq. 52). The field-induced orbital angular momentum along the xy plane appears due to the 

x- and y- components of the orbital Zeeman coupling between |𝜙A⟩ and �𝜙±�. These couplings 

are non-zero because of the elements � 𝐴*Â	
� , 0�𝐿rd,�| 𝐸Â	� , 0,∓⟩ and � 𝐸Â	� , ±1,∓1	�𝐿rd,�| 𝐴*Â	

� , ±⟩ 

(see Figure 23). They are both sizeable due to the large configuration mixing within the 

magnetic sublevels |𝜙A⟩ and �𝜙±�.  

The large easy-plane of magnetization observed in 1 is characteristic of the peculiar 

almost three-fold degeneracy of the 3A2g and 3Eg non-relativistic states. As emphasized above, 

the low-lying triplet consists of a low-lying singlet |𝜙A⟩ below a degenerate doublet �𝜙±� 

(E/D=0 in the spin Hamiltonian language). Furthermore, the relative weight of 3Eg(xz), 3Eg(yz) 
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and 3A2g configuration within the |𝜙A⟩ and �𝜙±� triplet is such that the coupling elements 

⟨𝜙A|𝐿rd|𝜙±⟩ and ⟨𝜙A|𝑆dm|𝜙±⟩ are identical to the coupling elements ⟨𝜙A|𝐿r�|𝜙±⟩ and ⟨𝜙A|𝑆��|𝜙±⟩ 

(to a phase factor). Taken together, all these features ensure that the eigenvalues of Hel are 

independent of the azimuthal direction of the applied field. In other words, both spin and orbital 

angular momenta align equivalently to any field direction on the xy plane. Importantly, all these 

features (the positive axial ZFS with E/D=0 and the peculiar relative weight of 3Eg(xz), 3Eg(yz) 

and 3A2g  in the magnetic triplet) originate from the almost three-fold near-degenerate non-

relativistic states of 1 consisting of a 3A2g ground state below a symmetry-enforced degenerate 
3Eg state. Were the ground state simply described as 3A2g, one would not observe the large ZFS 

or any significant orbital angular momentum. Were the ground state the two-fold degenerate 
3Eg, then after SOC the lowest-lying magnetic states would be the � 𝐸	� Â, ±1, ±� non-Kramer 

doublet as defined in eq. 53a and 53b, which has a significant first-order spin and orbital 

momenta along the z-direction. In this case, the system would therefore admit an easy-axis of 

magnetization rather than an easy-plane.196 If the ground state was 3A2g closely-lying to two 

non-degenerate 3Eg(xz) and 3Eg(yz) components, the SOC interactions would be such as the 

�𝜙±� doublet would split and the relative weight of the3Eg(xz), 3Eg(yz) and 3A2g configurations 

within the triplet would change. Ultimately, this would lead to a preferential alignment of the 

spin and orbital angular momenta along either the x or y axis (Figure 27). Instead, the presently 

observed easy-plane of magnetization with an important participation of the orbital angular 

momentum indicates a three-fold near-degenerate non-relativistic states consisting of a 3A2g 

non-degenerate state below a degenerate 3Eg excited state.  
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Figure 27: Magnetic moment of the ground sublevel along the x (black) or y direction (red) 

under a field of 7 T aligned along the corresponding direction, for different values of 𝛥676 =

𝐸± 𝐸Â(𝑦𝑧)	
� ² − 	𝐸± 𝐸Â(𝑥𝑧)	

� ². The value 𝛥𝐸 is chosen so that the state 3Eg(yz) is always 

separated from the 3A2g by a constant value, i.e. 950 cm-1. 𝛥676 = 0 case corresponds to the 

present situation with a three-fold degeneracy limit, where the magnetic moment aligns along 

any direction of the plane; while large values of 𝛥676  correspond to situation closer to a two-

fold degeneracy limit, where the magnetic moment aligns preferentially along one direction.  

 

4) Spin Hamiltonian parameters 

 

The field-induced orbital angular momentum along the xy plane is the main responsible 

for the large room-temperature 𝜇.�� (4.3 𝜇Z) compared to a pure spin triplet (2.8 𝜇Z). The origin 

of the room-temperature 𝜇.�� is most easily rationalized in a spin Hamiltonian formalism, where 

the expression of 𝜇.�� is a simple function of the principal g-values (eq. 20). Furthermore, unlike 

the present model, the spin Hamiltonian formalism is a “common language” spoken by most 

spectroscopists. In that regard, we believe that the establishment of this system’s spectroscopic 

signature will be easier if said magnetism can be reduced to a set of spin Hamiltonian 

parameters. Gratifyingly, it is possible to calculate the spin Hamiltonian parameters best 

reproducing the magnetism of the present model. The method, based on a previous work from 

Chibotaru and coworkers,112 is detailed in the annex of this chapter. However, as convenient as 
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this approach may be, one must not forget that the spin Hamiltonian model does not capture all 

physical effects related to the near-degeneracy of the three non-relativistic states 3A2g and 3Eg. 

The subsection VII.A of this chapter is dedicated to the shortcomings of the spin Hamiltonian 

in the present case.  

The principal g-values extracted from the present model are 𝑔dd = 𝑔�� = 𝑔x = 3.05 

and 𝑔�� = 𝑔∥ = 1.85, consistently with our previous spin Hamiltonian simulations. Further 

decomposition of these g-values into a spin (𝑔∥,q and 𝑔x,q) and orbital (𝑔∥,r  and 𝑔x,r) 

contribution reveals that the orbital angular momentum has a non-negligible contribution in the 

𝑔∥ value (𝑔∥,q = 1.77, 𝑔∥,r = 0.08), and a gigantic contribution in the 𝑔x values (𝑔x,q = 1.91, 

𝑔x,r = 1.14). 

The z-component of the g-matrix is slightly inferior to 2, because the � 𝐸Â	� , 0,±� 

configuration in the �𝜙±� doublet only participates to the first-order orbital angular momentum, 

but not to the spin angular momentum. Since the former has a smaller g-value (1.0) than the 

latter (2.0), the mixing of the � 𝐸Â	� , 0,±� and � 𝐴*Â	
� , ±1� within |𝜙A⟩ reduces the overall gzz 

value compared to a pure � 𝐴*Â	
� , ±1� contribution. On the other hand, the x- and y- components 

of the g-matrix are considerably higher than the isotropic g-values, consequence of the 

considerable orbital Zeeman couplings between the |𝜙A⟩ and |𝜙±⟩ (vide supra). Of note, the 

gxx and gyy principal values are identical, a notion in line with the easy-plane of magnetization 

of 1 investigated in the previous subsection. The average g-value calculated from these three 

principal values reaches 2.7, which is similar to the phenomenological fit of subsection III.B.3 

and explains the large room temperature 𝜇.�� (except the non-Curie behavior, see subsection 

VII.A).  

Hence, the g-anisotropy and the unusually large 𝜇.�� value for 1 are the direct 

consequence of the considerable mixing between the 3Eg and 3A2g states via SOC. They 

constitute the experimental proof of the multiconfigurational nature for the ground state of 1. 

The two gigantic and identical g-values gxx and gyy constitute the spectroscopic signature of this 

system. It is characteristic of a three-fold near-degeneracy, where a non-degenerate non-

relativistic ground state mixes considerably with two degenerate excited states via SOC.  

 

5) Inclusion of the quintet state 5A1g 

 

Ab-initio calculations predict the 5A1g state very close to the ground state. Experimental 

observations rule out the possibility that it might be the ground non-relativistic state,160,164,167 
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but the possibility that it has a sizeable effect on the magnetism of 1 cannot be neglected. 

Furthermore, mixed intermediate- and high-spin states have been observed before for Fe(III) 

porphyrin systems.111  To examine the effect of the 5A1g state, we have enlarged the model space 

to include it into the effective Hamiltonian.  

 The effect of including the 5A1g state as low as 800 cm-1 above the non-relativistic 

ground state in the model is marginal (Figure 28). In detail, it slightly reduces the magnetic 

susceptibility at low temperature, while having little to no effect on the room-temperature 𝜇.��. 

The low-temperature changes may all be explained by the increase of ZFS axial 

parameter (114 cm-1) compared to the value found without including the 5A1g state (94 cm-1). 

The increase of the ZFS axial parameter reduces the Zeeman interaction between ground and 

excited magnetic sublevels, hereby reducing the magnetic moment of the ground state along 

the xy plane. Since the ground magnetic sublevel is the only significantly populated sublevel at 

low temperature, this effect entirely explains the decrease of low-temperature magnetic 

susceptibility upon inclusion of the 5A1g state into the model. 

On the other hand, the high-temperature susceptibility is only marginally affected by 

the inclusion of the 5A1g state because the average g-value remains almost identical. We indeed 

found that the corresponding average g-value is 2.72, only 0.01 higher than the average value 

calculated without including the quintet state. The transverese g-value is 3.06, which is almost 

identical to the value found without inclusion of the 5A1g state (3.05). In details, however, the 

gL,⟂ decreases significantly compared to the value calculated without including the 5A1g, but 

this downshift is compensated by a similar upshift of gS,⟂. Similarly, the parallel g-value is 

almost unaffected by the inclusion of the quintet state (1.87 and 1.85 with and without inclusion 

of 5A1g, respectively). However, this overall similarity hides a slight upshift of gS,∥ compensated 

by a slight downshift of gL,∥ (see Table 8) upon inclusion of the quintet state.  

 

Table 8: Effect of the inclusion of the quintet state 5A1g on the g-values of 1. gL and gS 

correspond to the orbital and spin components of the g-values. gav refers to the average g-value.  

 
5A1g state? g⟂ (gL,⟂/ gS,⟂) g∥ (gL,∥/ gS,∥) gav 

 Not included 3.05 (1.14/1.91) 1.85 (0.08/1.77) 2.71 

 Included 3.06 (0.95/2.11) 1.87 (0.06/1.81) 2.72 

 

In general, including the quintet state increases the gS values and decreases the gL values. 

The former phenomenon is readily explained by the mixing of S=2 character into the S=1 
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magnetic triplet. The latter phenomenon is more indirect. The mixing of the quintet state into 

the magnetic triplet decreases the 3A2g and 3Eg components, both of which are responsible for 

the large orbital angular momentum in this system. By opposition, there is no first-order orbital 

angular momentum in 5A1g. Likewise, there is no orbital Zeeman coupling element between the 
5A1g and 3Eg or 3A2g states susceptible to induce additional orbital angular momentum under an 

applied field. Hence the mixing of the 5A1g state into the ground triplet may only decrease its 

total orbital angular momentum.  

These findings show that the inclusion of the quintet state 5A1g have little to no effect 

on the overall magnetism of the system. They also show that the inclusion of the 5A1g state 

cannot be responsible for the large orbital angular momentum of 1, which is an experimentally 

observed key feature of this system (see section VI). Hence, we do not consider it further.  
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Figure 28: (Top) effect of the inclusion in the effective Hamiltonian of the 5A1g state 800 cm-1 

above the 3A2g state on the temperature-dependent µeff of 1. The red line and the black dashed 

line correspond to the effective magnetic moment of 1 with and without the 5A1g state included 

in the model, respectively. (Bottom) energy diagram showing the magnetic sublevels resulting 

from the SOC between the magnetic sublevels arising from the non-relativistic states 3A2g and 
3Eg states after in- and out-of-state SOC (left-hand side) and the symmetry-adapted magnetic 

states arising from the 5A1g non-relativistic state (right-hand side). The color code represents 

the representation of the coupling sublevels in the D4 point group. E sublevels are shown in 

green, B1 and B2 sublevels are shown in blue, and the A1 sublevels are shown in red. The A2 

sublevel is shown in orange. 

 

VI. Consistent simulation of the Mössbauer spectra using the same effective 

Hamiltonian 

 

A. Completing the effective Hamiltonian with a nuclear Hamiltonian and simulating 

the experimental data 

 

1) Setting up the nuclear Hamiltonian 

 

To simulate the applied-field 57Fe Mössbauer data of 1 shown in Figure 30, the electronic 

Hamiltonian (𝐻XØm ) of eq. 50a-50b was complemented by the following nuclear-spin and 

hyperfine Hamiltonian (𝐻Òò	m ),119 

𝐻Òò	m = 𝐻�	m + 𝐻WXX¬òÖY +𝐻� ¡	Y          (58) 

 

The first term represents the usual quadrupole interaction (eq. 28a), the second the nuclear 

Zeeman interaction (eq. 29), and the third the magnetic hyperfine interaction. The last one is a 

sum of three contributions, i.e. the Fermi contact contribution (𝐻 ¡m , eq. 30b), the spin-dipole 

contribution (𝐻�¢m , eq. 30c) and the orbital contribution (𝐻£¤m , eq. 30d). 

The following approximations were invoked to compute the magnetic hyperfine interaction, 

𝐻� ¡Y . First, because in the presence of applied fields larger than a few hundred Gauss, the 

electronic Zeeman interaction is much stronger than all other interactions involving the nuclear 

spin, the nuclear and electronic states are largely decoupled. As such, one can replace the 
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electron spin and orbital angular momenta operators in 𝐻� ¡Y  by their expectation values, and 

diagonalize the electronic and nuclear Hamiltonians separately.  

Second, we neglected anisotropic covalency for different d orbitals by replacing the individual 

𝑟�7� operators by a unique expectation value ⟨𝑟R7�⟩ for the Fe-dxy, -dxz, -dyz and -dz2 orbitals.197 

Therefore, the nuclear Hamiltonian can be simplified to:  

𝐻a¥	m = 𝐻�	m − 𝑔¦𝛽¦𝐼 ∙ 𝐵effaaaaaa⃗ = 𝐻@	m − 𝑔¬𝛽¬𝐼 ∙ ±𝐵intaaaaaa⃗ + 𝐵extaaaaaaa⃗ ²              (58a) 

 

Where the effective field 𝐵effaaaaaa⃗  is the vector sum of the applied (𝐵extaaaaaaa⃗ ) and internal field (𝐵intaaaaaa⃗ ). 

The internal field 𝐵intaaaaaa⃗  is given by:  

𝐵intaaaaaa⃗ = 	−2𝜇S	⟨𝑟R7�⟩�𝐿a⃗ � − 2	𝜇S⟨𝑟R7�⟩⟨ù∑
�(L⃗�∙ñ¢aaa⃗ )L¢aaa⃗

L��
− 𝑠�aa⃗� û⟩ − 𝐴�}�𝑆�	.             (58b) 

 

The three terms in eq. 58b correspond to the orbital, spin-dipole and Fermi contact contributions 

to the internal field, 𝐵�Òeräaaaaaaa⃗ , 𝐵�Òeq�aaaaaaa⃗  and 𝐵�Òe�}aaaaaaa⃗ , respectively (see Theory chapter, subsection II.B.1). 

Two parameters, namely 𝐴�}  and ⟨𝑟R7�⟩, cannot be calculated within the scope of this model 

because our initial assumptions neglect any spin polarization or expansion/contraction of the d-

orbitals. Therefore, they must be either assigned a value or fitted against the experimental data 

(see subsection VI.A.2).  

The first and the third terms of eq. 58b are straightforward to calculate using Slater-Condon 

rules.  

�ΨA�𝐿a⃗ �ΨA� = 	∑ ⟨𝜙��𝑙�𝜙�⟩�                   (59a) 

ÈΨº¿�¿
º����𝐿a⃗ �ΨAË = ⟨𝜙*�𝑙�𝜙,⟩ ∙ ⟨𝜒*|𝜒,⟩                 (59b) 

�ΨA�𝑆�ΨA� = ∑ ⟨𝜒�|𝑠|𝜒�⟩�                   (59c) 

ÈΨº¿�¿
º����𝑆�ΨAË = ⟨𝜙*|𝜙,⟩ ∙ ⟨𝜒*|𝑠|𝜒,⟩                 (59d) 

 

 The matrices elements on the right-hand side are tabulated in the literature. The second term 

(spin-dipole contribution) may be reorganized into the one-center reduced electric-field 

gradient tensor operator projected onto the spin: 

Èù∑ �(L⃗�∙ñ¢aaa⃗ )L¢aaa⃗
L��

− 𝑠�aa⃗� ûË = �∑ 𝑓�� ∙ 𝑠�aa⃗ �                 (60a) 

ÈΨA Ê∑
�(L⃗�∙ñ¢aaa⃗ )L¢aaa⃗

L��
− 𝑠�aa⃗� ÊΨAË = ∑ ⟨𝜙��𝑓�̿𝜙�⟩� ∙ ⟨𝜒�|𝑠|𝜒�⟩               (60b) 

ÈΨº¿�¿
º��� Ê∑ �(L⃗�∙ñ¢aaa⃗ )L¢aaa⃗

L��
− 𝑠�aa⃗� ÊΨAË = ⟨𝜙*�𝑓�̿𝜙,⟩ ∙ ⟨𝜒*|𝑠|𝜒,⟩              (60c) 
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Where 𝑓OÌ =
�dTdÆ
L�

− 𝛿OÌ . The one-center reduced EFG tensor 𝑓 ̿ (see Theory chapter, 

subsection II.B.1) is a pure angular tensor and its matrix elements in the basis of the pure d-

orbitals are tabulated in the literature.109  

Finally, since the experimental spectra showed that the system is in the regime of fast 

paramagnetic relaxation, the 57Fe nuclei in the sample do not experience an individual internal 

field for each populated magnetic sublevel, but a thermally averaged internal field given by,  

�𝐵intaaaaaa⃗ � =
∑Sintaaaaaaa⃗ �X

£
¤�
¥¦4

∑ X
£
¤�
¥¦4

          (61) 

 

where the Ei are the energies of the three lowest-energy magnetic sublevels of 1. 

Eventually, the problem amounts to the calculation of the internal field expectation values from 

the eigenvectors of 𝐻.`m  and diagonalization of a 6x6 nuclear Hamiltonian (Figure 29). 

 

 
Figure 29: Nuclear Hamiltonian matrix (eq. 58a) in the basis of the nuclear magnetic sublevels 

of iron |𝐼,𝑀ä⟩. 𝐻��}	Y +𝐻WXX¬òÖY  terms are shown in brown and 𝐻@m  terms are shown in green. Of 

note, gN and gN* represent the g-factor of the ground and excited nuclear state, respectively. For 

clarity, zero matrix elements have been omitted. 𝐵X¾¾,± =
,
√*
±𝐵X¾¾,d ± 𝑖𝐵X¾¾,�². 
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2) Consistent simulation of all the experimental data 

 

To simulate the Mössbauer data, the expectation values of the electronic operators involved in 

eq. 58b were directly calculated from diagonalization of Hel with the parameters determined in 

subsection V.A.2 (Figure 24). However, under the approximations of the above effective 

Hamiltonian, neither ⟨𝑟R7�⟩ nor 𝐴�}  can be calculated. Instead, the value of 𝐴�}  was fixed to 

21.5 T, according to the empirical rule that the Fermi contact contributions is 22 T/spin or 21 

T/spin for most ferric and ferrous complexes.120,121,122,123,198 The remaining parameter ⟨𝑟R7�⟩ 

was allowed to vary freely during the fit. As shown in Figure 30, a satisfactory global simulation 

of all VTVF Mössbauer spectra yielded ⟨𝑟R7�⟩ = 5.4	𝑎.𝑢.7�. This value is similar to that found 

for the metallic iron (5.5 a.u.–3),109 thereby indicating that the expansion effect of the ligand 

field counteracts the contraction due to the high oxidation state of iron. 

 

 
Figure 30: Applied field Mössbauer spectra of 1 recoded at different temperatures, from top to 

bottom: 7 T, 1.7 K; 4 T, 1.7 K; 1 T, 1.7 K; 7 T, 60 K; 7 T, 120 K. The solid lines represent the 

best fits obtained from the simulation using the effective Hamiltonian, eq. 50a-50b and 58a. 

The fits were obtained with the following parameters, 𝛥𝐸 = 950 cm-1, 𝜃 = −0.13𝜋 and ⟨𝑟R7�⟩ 

= 5.4 a.u.-3 The dots represent the experimental measurements.  
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In summary, all experimental data (shown in Figure 24 and Figure 30, respectively) 

could be fitted very satisfyingly with the same electronic and nuclear Hamiltonian. In 

comparison with the spin Hamiltonian which is phenomenological and requires the 

parametrization of six components (𝑔x, 𝑔∥ 𝐷, 𝐴x, 𝐴∥, TIP), our model is physically more 

transparent and only requires the parametrization of three components, i.e. the unrelativistic 

energy difference between the 3Eg and 3A2g states 𝛥𝐸, the relative weight of the 3Eg(A) and 
3Eg(B) configurations described by θ, and ⟨𝑟R7�⟩, which considerably adds to the credence of 

the conclusion. Furthermore, unlike for the spin Hamiltonian simulations of subsection III.C.3, 

no misfit of the Mössbauer spectra is observed at high temperature. Note that fitting the applied 

field Mössbauer spectra also requires two more parameters, namely, the quadrupole splitting 

and isomer shift, but they can be determined unambiguously from the zero-field Mössbauer 

spectra. Therefore, they do not undermine the quality of the simulation of the applied field 

Mössbauer spectra.  

 

B. Connection between the hyperfine field and the electronic structure of 1 

 

1) Low-temperature hyperfine field 

 

At low temperatures, no internal field is induced under an applied field along the z-

direction. On the other hand, under an applied field along the xy plane, a strong, positive internal 

field (i.e. same direction as that of the applied field) appears on the xy plane. The internal field 

is positive because the orbital field (positive) dominates over the Fermi-contact field (negative). 

The third contribution, the spin-dipole field, is by far the smallest of the three contribution 

(Table 9). Finally, the norm of this internal field does not depend on the azimuthal direction of 

the applied field.  

The overall internal field is dominated by the microscopic internal field of the ground 

magnetic sublevel |𝜙A⟩, which is the only significantly populated level due to the large axial 

ZFS parameter. The ground sublevel is non-magnetic and has no first-order orbital and/or spin 

angular momentum along the z-direction, hence it induces no internal field along that axis. 

However, under an applied field along the xy plane, strong field-induced spin and orbital 

angular momenta appear (see subsection V.B.3). The internal field on the xy plane is the direct 

consequence of these large field-induced angular momenta acquired by the ground sublevel (eq. 

58b). Obviously, the overall positive internal field is the direct consequence of the large field-

induced orbital angular momentum of 1, and is therefore a direct experimental proof of the 
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multiconfigurational character of the ground sublevel. The fact that the internal field norm does 

not depend on the azimuthal direction of the applied field reflects the easy-plane magnetization 

of 1. As developped in the subsection V.B.3, this behavior is due to the remarkable three-fold 

near-degeneracy of the non-relativistic states 3A2g and 3Eg. 

 

2) High-temperature hyperfine field 

 

At higher temperature, under an applied field along the xy plane the internal field norn 

decreases. On the other hand, under an applied field along the z-direction a small, positive 

internal field appears along the same direction. Within this small field, the spin-dipole field 

(positive) is as large as the Fermi-contact field (negative), which is rather uncommon, and the 

orbital field (positive) is the smallest contribution (Table 9).116 

The change in the internal field profile can be entirely attributed to the population of the 

|𝜙±⟩ doublet. Under an applied field along the xy plane, the field-induced spin and orbital 

angular momenta of the excited doublets are either smaller or opposite in direction to that of 

the ground sublevel (Table 7), hence the overall internal field is averaged out due to the fast 

electron relaxation limit (see eq. 61). The z-component of the internal field stems from the first-

order spin and orbital angular momenta of the |𝜙±⟩ doublet. For that component, the Fermi 

contact field is particularly small due to the mixing of 𝑀q = ±1 and 𝑀q = 0 configurations in 

the |𝜙±⟩ doublet. On the other hand, the spin-dipole field is strong and positive, steming from 

the contributions of the singly-occupied orbitals in the 𝑀q = ±1 configuration 3A2g (dxz, dyz). 

Both those orbitals have positive contributions to the spin-dipole field.109 Along this direction, 

the orbital contribution is very small because the sublevels |𝜙±⟩ only have a very small first-

order orbital angular momentum due to the presence of | 𝐸Â	� 0,±⟩ character. However, taken 

together, the orbital field and spin-dipole field (positive) are larger than the Fermi-contact field 

(negative). 
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Table 9: Decomposition of the Fermi contact, spin-dipole and orbital contributions of the 

internal field of 1, at a temperature of 1.7 K and 60 K under an applied field of 7 Tesla along x 

and z, respectively.  

 

Temperature  

(K) 

Direction 

of the 

applied 

Field 

Component  

of the 

internal 

field 

Total internal 

 field (T) 

Fermi-

contact 

contribution 

(T) 

Spin-dipole 

contribution 

(T) 

Orbital 

contribution 

(T) 

 1.7 x x 10.6 -4.3 -1.8 16.7 

  z z 0 0 0 0 

 60  x x 8.3 -3.2 -1.3 12.8 

  z z 0.1 -0.5 0.5 0.1 

 

3) Spin Hamiltonian parameters 

 

 For qualitative interpretation, the spin Hamiltonian A matrix values associated with the 

present model were calculated. The procedure is exactly similar to the one we used to calculate 

the g-values in section V. More details on the calculation procedure are available in the annex. 

The following spin Hamiltonian parameters were calculated: A⊥
ÂÿÌÿ

= 47.5	𝑇; A∥
ÂÿÌÿ

= 	4.6	𝑇. 

Note that the A⊥ parameter is somewhat lower than that deduced from the phenomenological 

fit of subsection III.C.3. The origin of this difference is related to the relative failure of the spin 

Hamiltonian formalism, and explicated in subsection VII.A. Furthermore, the z-component of 

the A matrix could not be resolved in subsection III.C.3 due to the large positive ZFS, while the 

present methodology allows us to calculate it from the effective Hamiltonian. The three 

components of the A matrix are positive, although the z-component is extremely weak (Table 

10). This situation is very rare for transition metal complexes and is connected to the strong 

multiconfigurational character of the ground state of 1. The A⊥ is positive because it is 

dominated by the orbital component; that is a direct observation of the orbital angular 

momentum of 1 and a strong experimental proof of the multireference character of its ground 

state. The fact that the x- and y- components of the A matrix are identical is in-line with the 

easy-plane of magnetization in 1 detailed in subsection V.B.3. Taken together, the positive and 

identical Axx and Ayy are characteristic of the three-fold near-degeneracy of the non-relativistic 

states of 1. In the A∥ component, the Fermi-contact and spin-dipole cancel each other out, 

leaving only the positive contribution from the small first-order orbital angular momentum due 

to the presence of | 𝐸Â	� 0, ±⟩ character in the magnetic sublevels (see subsection V.B.3). Finally, 
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two out of the ordinary features need to be acknowledged: (1) the Fermi contact matrix is 

slightly anisotropic, and (2) the trace of the spin-dipole matrix departs slightly from zero (0.6 

T). The first feature has been noted before in other systems featuring strong SOC.199 Both these 

features originate from the large multiconfigurational character of the magnetic sublevels. 

In summary, the two positive and identical Axx and Ayy, as well as the two gigantic and 

identical gxx and gyy, are characteristic of the three-fold near-degeneracy developed above, and 

therefore constitute the spectroscopic signature of this system. 

As stated before in this subsection, the spin Hamiltonian model does not capture all the 

physics of the system. First, the calculated value of A⊥ is significantly lower than that of the 

phenomenological fit. Second, even the phenomenological fit, although providing a good 

description of the low-temperature measurement, slightly misfits the high-temperature 

measurements.  In the next subsection, we discuss the nature of the spin Hamiltonian model 

and its limits.  

 

Table 10 Calculated spin Hamiltonian A(@ A/gNβN) values (in Tesla) for each contribution of 

the hyperfine field: Fermi Contact (FC), spin-dipole (SD) and orbital contribution (L) 

Contribution Total  FC   SD    L 

𝐴x 47.5 -20.6 -8.8  76.9 

𝐴∥ 4.6 -19.0 18.2 5.4 

 

VII. Comments and outreach 

 

A. Comments on the limits of the spin Hamiltonian formalism 

 

It was shown in subsections III.B.3 and III.C.3 that the failure of the spin Hamiltonian 

manifests itself both in magnetometry measurements and Mössbauer spectra. For the former, 

the failure manifests itself by an unusually large TIP. For the latter, the A⟂ value calculated 

from the effective Hamiltonian leads to a considerably underestimated magnetic splitting of the 

magnetic Mössbauer spectra (Figure 32). Yet, the effective Hamiltonian from which those 

parameters are extracted yields a very satisfactory fit. Even when increasing the A⟂ value to fit 

the experimental magnetic splitting at low temperature, a slight misfit remains at higher 

temperature (Figure 19). So, what is the physical origin of these misbehaviors? 
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All the aforementioned failures of the spin Hamiltonian formalism share the same origin: 

they are due to the fact that the spin Hamiltonian formalism completely neglect the field induced 

second-order Zeeman interactions between the low-lying triplet and excited states (Figure 31). 

Such interactions stabilize the low-lying magnetic sublevels by increasing their field-induced 

spin and orbital angular momenta. Obviously, this means that each and every magnetic moment 

and internal field is underestimated by the spin Hamiltonian formalism owing to the neglection 

of these couplings.  

By construction, such couplings cannot be satisfyingly reproduced by the spin Hamiltonian 

formalism. As developed above, this phenomenon always stabilizes all magnetic sublevels, 

which deviates the trace of the Zeeman matrix from zero (see Theory chapter, subsection I.B.1). 

By contrast, the trace of the Zeeman matrix is always zero in the spin Hamiltonian formalism. 

Hence the spin Hamiltonian formalism is unable to reproduce appropriately these Zeeman 

couplings for all sublevels simultaneously, and as such, is unable to reproduce the associated 

field-induced magnetic moments and internal fields.   

As shown in Figure 31, the second-order Zeeman interactions are state-specific; 

specifically, the ground singlet (|𝜙A⟩) and the upper doublet (�𝜙±�) interacts with distinct 

excited states, mostly through the transverse orbital Zeeman interaction. Therefore, the 

introduced spin and orbital angular momenta to the low-lying triplet is not identical for the 

ground singlet and the upper doublet. The correction for the upper doublet is larger than that 

for the ground singlet due to the differential energetic proximity. 
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Figure 31: Representation of the second-order Zeeman coupling of the ground triplet with the 

excited magnetic sublevels after in-state and out-of-state SOC. The color code is the same as 

that used for Figure 4. The black arrows on the left side represent the x,y-component of the 

orbital Zeeman coupling (𝐻�XX,d,�rY ) between the magnetic sublevels. The sublevelx |ϕ±⟩ 

(green) interact with the sublevels |𝐸{, 𝐵,⟩ and |𝐸{, 𝐵*⟩; the sublevel |ϕA⟩ (red) interacts with 

the sublevels |ϕ±′⟩. 

 

In the case of magnetometry measurements, the second-order Zeeman effects are 

typically accounted for by invoking an ad-hoc TIP correction to the magnetic susceptibility (see 

Theory chapter, subsection I.B.1). Here, since the correction is state-specific, the overall 

magnetization correction should in principle be dependent on temperature. However, we found 

that the introduced magnetic moment is negligible for µ∥ and only accounts for a rather constant 

increase of µ⟂ for each magnetic sublevels in the triplet (0.01, 0.03 and 0.02 Bohr magnetons 

for �𝜙A�� , �𝜙7�� and �𝜙-��, as shown in Table 11). Consequently, the thermally averaged 

susceptibility correction is only marginally dependent on temperature, and can be reasonably 

approximated to an ad-hoc TIP correction, as done in the phenomenological fit.  
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Table 11: Comparison of the magnetic moments (µB) and the internal fields (T) of the low-

lying triplet (|𝜙A�⟩, |𝜙±�⟩) computed under an applied field of 7 T under the x direction, 

calculated by the spin Hamiltonian with D = 94 cm-1 , 	𝑔x = 3.05, 𝐴x = 47.5 T,and by the 

effective Hamiltonian with with ΔE = 950 cm-1, θ = –0.13π and ⟨𝑟R7�⟩ = 5.4 a.u.-3  

 

Average 

observable 

Magnetic sublevel Spin Hamiltonian Effective Hamiltonian 

 𝜇x |𝜙A�⟩ 0.64 0.65 

  |𝜙7�⟩ 0.0 0.03 

  |𝜙-�⟩ -0.64 -0.62 

 𝐵pa_,x |𝜙A�⟩ 9.8 10.6 

  |𝜙7�⟩ 0 1.4 

  |𝜙-�⟩ -9.8 -8.6 

 

The description of the internal fields in the spin Hamiltonian formalism suffers from the 

same bias as the magnetic moment description, as they also depend on the spin and orbital 

angular momenta (eq. 58b). Furthermore, the orbital angular momentum contribution to the 

internal field is about 160% of the total field. By comparison, the orbital angular momentum 

contribution to the magnetic moment is only 37%. Hence the negligible change in the magnetic 

moment, mostly due to orbital Zeeman coupling terms, translates into an increase of 0.8 T in 

the internal field of the ground singlet and 1.4 and 1.2 T in the internal fields of the upper 

doublets. As a result, the internal field delivered by the spin Hamiltonian is always lower than 

that computed by the effective Hamiltonian (Figure 32), and the fit quality slightly worsens 

with temperature.  
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Figure 32: Temperature-dependence of the Boltzmann averaged internal field (eq. 61) under 

an applied field of 7 T along the x direction, calculated by the spin Hamiltonian (red) with D = 

94 cm-1 , 𝑔x = 3.05 , 𝑔x = 1.85  and A⟂= 47.4 and by the effective Hamiltonian (black) with 

ΔE = 950 cm-1, θ = –0.13π and  ⟨𝑟R7�⟩ = 5.4 a.u.-3   

 

Note that in a phenomenological approach it is possible to improve the apparent quality 

of the spin Hamiltonian at a given temperature fit by adjusting the overall A matrix. This is why 

the low-temperature fit in the subsection III.C.3 seems satisfying. However, despite the higher 

quality fit, such approach is not conceptually satisfying because it does not improve the 

individual description of each magnetic sublevel. In fact, due to the invariant trace of the spin 

Hamiltonian Zeeman matrix, it is not possible to describe the correct behavior of all three 

magnetic sublevels simultaneously (vide supra). Instead, adjusting the A matrix to improve the 

description of one magnetic sublevel’s internal field is always done at the cost of worsening the 

description for the remaining magnetic sublevels. Hence, even the phenomenological set of 

parameters of subsection III.C.3 introduces a misfit at high temperature, when the remaining 

magnetic sublevels are populated. 

 

B. Comments on the electronic structure of 1 

 

Taken together, all peculiar magnetic properties observed for complex 1 are in fact the 

manifestations of its electronic-structure feature that its low-lying triplet possesses the 
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substantial unquenched orbital angular momentum in the xy plane, which eventually stems from 

admixture of 3Eg into the closed spaced 3A2g electronic sublevels induced by SOC. As a 

consequence, the electronic structure of complex 1 is best formulated as having an almost triple 

degeneracy. If the ground state was best described as 3A2g, the system would have no sizeable 

unquenched orbital angular momentum. If it were as the doubly degenerate 3Eg state, the system 

would exhibit uniaxial magnetic properties featuring an unquenched orbital angular momentum 

along one direction rather than in a plane.  

Due to SOC-induced mixing of the 3A2g and 3Eg states, the ground state of 1 is of a bona 

fide multiconfigurational character. In the present context, a configuration is interpreted as an 

occupation-number vector with individual orbital occupations being either 0, 1 or 2. The 

situation is distinctly different from multi-determinantal states, where a linear combination of 

several Slater determinants is required to satisfy spin-symmetry constraints. Note that in the 

latter cases all required Slater determinants still belong to the same electron configuration, but 

differ in the spin label, viz. spin-up or spin-down, that is assigned to each electron in a given 

Slater determinant. In this regard, most antiferromagnetically coupled transition metal 

oligomers are multideterminantal, instead of multiconfigurational. While the 

multiconfigurational character is often deduced by computations, the extent of configuration 

mixing is to some extent dependent on the choice of orbitals, and, more importantly, such 

computational findings need to be validated by experimental evidence in order to 

unambiguously establish the multiconfigurational nature of the electronic structure of interest. 

In fact, there are very few, if any, cases where an authenticated multiconfigurational nature 

(with contributions of more than one configurations exceeding, say, 10%) is strongly implied 

by the analysis of experimental data in conjunction with high-level calculations, like the present 

case.  

 

C. Three-fold degeneracy against two-fold degeneracy 

 

Hence all experimental data consistently point out to a non-degenerate 3A2g non-relativistic 

ground state for 1, highly mixed via SOC with a degenerate 3Eg pair of excited non-relativistic 

states. Consequently, the ground state is highly multiconfigurational, which induces a 

considerable orbital angular momentum along the porphyrin plane. The orbital angular 

momentum aligns to an external field on the porphyrin plane due to the considerable orbital 

Zeeman mixings of the 3A2g and 3Eg configuration. This situation is intrinsically connected to 

the peculiar ligand-field of iron(II)-porphyrin which we call three-fold degeneracy, because (1) 
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the ground state is non-degenerate, and (2) the high symmetry of the porphyrin plane ensures 

the degeneracy of the excited state. This situation is similar to that of cobalt(II) porphyrins, 

which has been intensely analyzed with EPR spectroscopy.200 The g-values of [Co(II)(OEP)], 

for instance, were found at about 𝑔x = 3.4; 𝑔∥ = 1.6. The magnetic anisotropy is due the 

distribution of five electrons in very closely-lying dz2, dxz and dyz orbitals. The large 𝑔x are 

markers of the low-lying d-d excitations from the non-degenerate ground state 2A2g to the 

degenerate 2Eg non-relativistic states of cobalt(II)-porphyrin systems.201 Note that some five-

coordinated Fe(III) heme systems also have a similar three-fold near-degeneracy leading to a 

𝑔∥ inferior to 2 and two identical 𝑔x close to 3.202 Those systems also have two positive 𝐴x 

values resolved by Mössbauer spectroscopy. Those observations are consistent with a 

(dxz,yz)4(dxy)1 non-degenerate ground state and closely lying degenerate (dxz,yz)3(dxy)2 excited 

states. By contrast, other Fe(III) heme systems have a predominantly large magnetic moment 

and a large, positive internal field along the z-direction, indicative of a two-fold degenerate 2Eg 

ground state (dxz,yz)3(dxy)2. consistently with the wide majority of reported systems with an 

unquenched orbital angular momentum.196 For instance, a low coordinate S = 3/2 Fe(I) 

complex, [LFeI(HCCPh)]0 (L = HC(C[tBu]N-[2,6-diisopropylphenyl])2]– ), was found to have 

a large effective g factor of 8.9 with the other two g components less than 0.3 in the X-band 

EPR spectra and a large and positive internal field in the applied field Mössbauer spectra.196 

Note that the maximum effective spin-only g value of quartet systems is only 6. The proposed 

ground state with the electron configuration of (dz2,dyz)3(dxy)2(dxz)1(dx2-y2)1 has nearly two-fold 

degeneracy. Representative examples of non-Kramers systems are a range of two coordinate 

linear high spin ferrous complexes.203 Unlike complex 1, such systems were always found to 

feature easy axis magnetization as a consequence of their gigantic negative D values and 

vanishing rhombicity (E/D ~ 0). Hence, usually their low-lying non-Kramers doublets can be 

probed by using X-band EPR, in particular in parallel detection mode. Typically, they feature 

an effective g factor (>10) that by far exceeds the spin-only value of 8, and a large and positive 

internal field along the same direction, both findings indicative of their doubly degenerate 

ground state with the electron configuration of (dxy,dx2-y2)3(dxz)1(dyz)1(dz2)1. A series of planar 

three coordinate S = 2 Fe(II) complexes, [LFeIIX]0 (L = β-diketiminate; X = Cl–, CH3–, NHTol–

, NHtBu–), also belong to this category.196  

Those experimental observations together with our understanding of the system 1, lead 

us to propose the following general description of systems with a three-fold degeneracy, similar 

to the system 1, as opposed to systems with only two-fold degeneracy. For the former case, (1) 

the system exhibits a large magnetic moment (two high g-values) along the plane of 
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magnetization due to the orbital angular momentum aligned on the plane and parallel to the 

spin angular momentum. On the other hand, in two-fold degenerate systems, the situation is 

similar to the in-state SOC described above (Figure 26), and the system exhibits a very large 

magnetic moment (one high g-value) along the easy-axis due to a first-order orbital angular 

momentum parallel to the spin angular momentum. Note these observations are similar to those 

made by previous authors for S=1/2 systems.201 To the best of our knowledge however, 1 

constitutes the first S=1 system to be unambiguously identified as a three-fold near degenerate 

system.  

All the aforementioned system share one common feature in that the subshell formed by the 

near-degenerate orbitals is more than half-filled. The situation is likely to be different in systems 

presenting a less than half-filled subshell. Second-order perturbation theory predicts that an 

excitation from a doubly to a singly occupied MO introduces a positive g shift, whereas a 

transition from a singly to an unoccupied MO gives a negative g shift. Therefore, It is likely 

than less than half-filled subshells behave in exactly opposite ways to the more than half-filled 

systems, i.e. the orbital angular momentum is antiparallel to the spin, rather than parallel. In 

other words, three-fold degenerate would have two g-values significantly lower than 2, while 

two-fold degenerate systems would have one g-value significantly lower than 2. For instance, 

in [FeV(N)(TPP)],204 a near-axial EPR spectrum with g = 1.0, 1.70, and 1.83 is correlated with 

a two-fold degenerate electronic configuration of (dxy)2(π*)1 (π* denotes the two π antibonding 

conbinations formed by the Fe dxz/yz and N/O px/y atomic orbitals). Earlier work showed that 

octahedral [TiIII(OH2)6]3+ complexes in titanium caesium alum (TiCs(SO4)2.12H2O) undergoes 

weak trigonal distortions, which lifts the triple degeneracy of the T2g ground state and yields an 

orbital singlet slightly below a doublet, a bonding situation similar to complex 1. Its EPR 

spectrum show a reversed pattern with g∥ = 1.25, and g⟂ = 1.14,205 compared to [FeV(N)(TPP)]. 

Although we note that in both these examples, all three g-values are significantly down-shifted, 

we observe the pattern g∥< g⟂ in two-fold degenerate systems and g∥> g⟂ in three-fold 

degenerate systems. 

 

VIII. Conclusion 

 

The present work reports a detailed study of the electronic structure of the triplet ground 

state of 1 using a combined spectroscopic and computational approach. The theoretical results 

suggest a near-degeneracy of the 3A2g and 3Eg non-relativistic states. An effective Hamiltonian, 
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which explicitly takes the SOC and Zeeman interaction of 3A2g and 3Eg into account, was 

proposed. Our results point out that at the Born-Oppenheimer level, the ground state for 

complex 1 is 3A2g. However, because of their near-degeneracy, both states are highly mixed by 

SOC effect (the ground state is actually weighted at 85% 3A2g and 15% 3Eg). This effect 

manifests itself experimentally in a large ZFS, a large g-tensor anisotropy, a large deviation of 

µeff from the spin-only value, and most importantly, a large orbital field (positive) along the xy 

plane. Indeed, the large SOC coupling splits the magnetic sublevels of the electronic ground 

state by 94 cm-1, and the consequent non-relativistic state mixing restores a large, magnetically-

induced orbital angular momentum along the porphyrin plane. The near-degeneracy of the 3A2g 

and 3Eg non-relativistic states also manifests itself in the failure of the spin Hamiltonian 

formalism to fit consistently both the magnetometric data and Mössbauer spectra. Specifically, 

the energetic proximity of the non-relativistic states gives rise to sizeable Zeeman couplings 

that are neglected by the spin Hamiltonian model.  

 The consistency of the fit for all VT and VTVF magnetometric and Mössbauer data 

lends considerable credence to the results of the effective Hamiltonian model, despite the small 

number of fitting parameters (3). Remarkably, the results of the effective Hamiltonian are in 

very close agreement with the ab-initio calculation. Furthermore, this model enables a detailed 

analysis of the relationship between electronic structure and experimental magnetic behavior. 

It shows beyond reasonable doubt that 1 is one of the rare truly multiconfigurational systems 

available throughout literature. While the multiconfigurational nature of a system is usually 

claimed by the means of ab-initio calculations, it is often dictated by the choice of orbitals and 

often lacks any experimental proof. Most importantly, the rationalization of the magnetic 

behavior of 1 provides a direct, experimental and quantitative proof of its multiconfigurational 

ground state. 

Through comparison with the related systems, in particular those with nearly doubly 

degenerate ground states, we propose the following spectroscopic signature for systems with 

degenerate non-relativistic ground states. For complexes having three-fold near-degenerate 

ground states, if their nearly degenerate orbitals are more than half filled, they exhibit two g 

values that are substantially larger than 2 and for S>1/2 systems, whereas if their nearly 

degenerate orbitals are less than half filled, they likely exhibit a pattern of g⟂ < g∥. In the case 

of complexes having doubly degenerate non-relativistic ground states, if their nearly degenerate 

orbitals are more than half filled, their EPR spectra likely show only one considerably large g 

component, whereas if their nearly degenerate orbitals are less than half filled, their EPR spectra 
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likely characterized by g⟂ < g∥ ≤ 2. Further theoretical and experimental investigations are 

necessary to verify the applicability of the proposed spectroscopic signature.  
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Chapter 2: Elucidation of the electronic 

structure of [Fe(TPP)]- and [Fe(TPP)]2- 

 

The author of this thesis took care of the DFT modelling of the reduced complexes, including 

the molecular and electronic structure analysis, as well as calculation of the Mössbauer 

parameters. Although he initially did not take part in the TD-DFT calculations at the time of 

the associated article publication, he reproduced them later for the purpose of a more in-depth 

analysis. He did not however, take part in any experimental measurement or synthesis effort 

related to the content of this chapter. 

 

I. Introduction 

 

The elucidation of the ground state of 1 may now serve as a starting point to study the one- 

and two- electrons reductions of this complex. We thus aim to assign precisely the electronic 

structure of [Fe(TPP)]- (1-) and [Fe(TPP)]2- (12-), which has been experimentally assigned by 

cyclic voltammetry16 as the reactive species in the CO2-to-CO reduction reaction.  

1- and 12- have already been extensively studied. The former has been unambiguously 

characterized with EPR studies as an overall S=1/2 system,179,206,207,208 while the second is 

diamagnetic (S=0 system).179 However, contradictory assignments about whether the one- and 

two-electron reduction are ligand-centered or metal-center have been made.  

For instance, 1H and deuterium NMR proton studies206,209,210 have shown that the 

chemical shift patterns of the porphyrin protons in 1- are incompatible with a ligand-centered 

radical. Those studies conclude that the reduction is iron-centered and the iron is a d7 Fe(I). 

Furthermore, several EPR studies179,206,207,208 revealed that the g-values show axial symmetry 

with 𝑔x = 2.15 − 2.3 with a slight solvent dependency and 𝑔∥ = 1.93. The g-values are too 

anisotropic for a porphyrin radical EPR signal and thus suggest that the unpaired electron is on 

the metal rather than on the ring. The disappearance of the EPR signal at 300K further 

corroborates this assumption, as organic radical have much larger relaxation times and their 

EPR signals are more likely to subsist at high temperature than metal signals. Interestingly 

however, we note here that all the studies cited show that the presence of spin density on the 
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ring is unlikely, but do not exclude the possibility of a strong antiferromagnetic spin coupling 

between the ring and the metal. On the other hand, zero-field Mössbauer studies on 

[Fe(TPP)][Na(THF)3] suggested an iron-centered reduction.211 The reported isomer shift of 𝛿 =

0.65 mm/s, significantly higher than the isomer shift of four-coordinated 1 (0.52-0.57).160b This 

may indicate an iron-centered reduction because the increase in d-population increases the 

screening of the 4s orbital,145 therefore decreasing the density at the nucleus, although several 

other factors such as axial interactions with the [Na(THF)3]+ cation might also take part in the 

significant increase of the isomer shift. 

By contrast, several studies point out to a ring-centered reduction. UV-vis spectroscopic 

studies have shown a consistent splitting of the Soret band upon reduction to 1- and 12-

207,209,212,213 This behavior has been attributed by some authors as evidence for a ligand-centered 

reduction,211 although this assumption is controversed.213 More compelling, an X-ray 

diffraction study of [Fe(TPP)][Na(DB-18-crown-6)(THF)2] and [Fe(TPP)][Na(THF)3]2 by 

Scheidt179 has compared the ligand bond distances of the one- and two- electron reduced species 

with that of a 6-coordinated low-spin [Fe(II)(TPP)] with a similarly planar core. They found 

that the C-C and C-N bond lengths shifted significantly upon reduction, which suggests a 

ligand-centered reduction. Finally, A zero-field Mössbauer study of [Fe(TPP)][Na(THF)3]2 

reported an isomer shift 𝛿 = 0.48 mm/s,211 very close to the isomer shift of the iron(II) complex 

1, and strongly suggests that [Fe(TPP)][Na(THF)3]2 is best described as a Fe(II) center coupled 

to a doubly-reduced ring. Furthermore, a 1H NMR study found that the addition of electron 

withdrawing substituents in meso or 𝛽 position on the porphyrin rings changed completely the 

pattern of paramagnetic shifts of the protons in derivates of 1-. The resulting pattern was found 

closer to that of a 𝜋∗ radical.210 Although this result suggests that 1- is not a ligand-centered 

radical, it provides evidences of very low-lying 𝜋∗orbitals in iron-porphyrins, which in turns 

gives credence to the hypothesis of a spin coupling between the metal and the ring.  

As far as the electronic structure of the iron in the reduced species is concerned, the 

NMR data of several studies,206,210,214 based on previous paramagnetic NMR studies on iron(II)-

porphyrins168 showed that the negative Fermi contact shift of the pyrrole ring was typical of a 

𝜎-spin transfer to the ring and indicated that either the dx2-y2 or the dz2 orbital is singly-populated 

(x,y and z axes are chosen collinear to those chosen in Chapter 1). Because of the square-planar 

environment of the iron, the population of the dz2 is much more likely. The electronic structure 

of the doubly-reduced species has to the best of our knowledge, never been elucidated 

unambiguously. 
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All the cited studies are contradictory regarding the electronic structure of 1- and 12-. 

Furthermore, in some of those studies, 179 the influence of the counterion is unclear, as the Fe-

Na distances are rather short (3 Angstrom in [Fe(TPP)][Na(THF)3]2).179 In the present chapter, 

the electronic structure of 1- and 12- is unambiguously determined by probing directly the local 

oxidation state of the iron via XANES and Mössbauer spectroscopies. To get rid of the possible 

counterion effect, the sodium was captured using a 18-crown-ether cage whenever possible. 

More importantly, we provide a quantitative and qualitative understanding of these 

experimental results by successfully simulating them with a unique quantum chemistry-based 

DFT model. Finally, we compare the present model to available rRaman data published in 

literature to insure the consistency of our assignment.  

 

II. Experimental and computational details 

 

A. Synthesis protocols 

 

Synthesis of reduced four-coordinated iron-porphyrin complexes have been already 

described elsewhere,179 and the present protocol is elaborated in details below. All reduction 

reactions were performed in THF using [Fe(TPP)Cl] as starting material and sodium 

anthracenide as a reductant. [Fe(TPP)][Na(THF)3] and [Fe(TPP)][Na(THF)3]2 were then 

crystallized and washed using heptane (vide infra). The powder crystals thus obtained were re-

dissolved in Me-THF, a slightly weaker Lewis base than THF,215 together with 18-crown-ether 

to capture sodium ions and remove any possible axial interaction between the anions 1-/2- and 

their counterions.  

 

[Fe(TPP)(THF)2] and 1 were prepared according to the method described in the last chapter. 

Sodium anthracenide: Anthracene (1.26 g, 7.07 mmol, 1.1 equivalents) is dissolved in THF 

or MeTHF, respectively (32 mL). Metallic sodium (148 mg, 6.44 mmol, 1 equivalent) is added 

to the solution. The reaction mixture is stirred for 24 hours. No further workup is needed; the 

dark blue solution can be directly used as reducing agent.  

 [Fe(TPP)][Na(THF)3]: FeClTPP (100 mg, 0.142 mmol, 1 equivalent) is dissolved in THF or 

MeTHF (12 mL). Sodium anthracenide (0.2 M solution, 1.78 mL, 2.5 equivalents) is added 

slowly via a syringe to prevent local excess of reducing agent. The solution is stirred at room 

temperature for 20 minutes. When THF is used as solvent, the solution is filtered over a PTFE 
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syringe filter, layered with heptane (48 mL) and set aside for crystallization at -40 °C for 2-3 

days. The mother liquor is removed and the remaining solid is washed with little heptane (3 x 

1 mL). When MeTHF is used as solvent, crystallization does not occur. Therefore, MeTHF is 

only used for preparation of samples where spectroscopy was carried out in solution.  

[Fe(TPP)][Na(THF)3]2: FeClTPP (150 mg, 0.213 mmol, 1 equivalent) is dissolved in THF or 

MeTHF (10 mL). Then, sodium anthracenide (0.2 M solution, 5.1 mL, 4.8 equivalents) is added 

via a syringe. The solution is stirred at room temperature for 2 hours. When THF is used as 

solvent, the solution is filtered over a PTFE syringe filter, layered with heptane (40 mL) and 

set aside for crystallization at -40 °C for 2-3 days. The mother liquor is removed and the 

remaining solid is washed with little heptane (3 x 1 mL). When MeTHF is used as solvent, 

crystallization does not occur. Therefore, MeTHF is only used for preparation of samples where 

spectroscopy was carried out in solution.  

 

B.  Mössbauer spectroscopy measurements 

 

Mössbauer spectra were recorded on a conventional spectrometer with alternating 

constant acceleration of the γ-source. The minimum experimental line width was 0.24 mm/s 

(full width at half-height). The sample temperature was kept constant in an Oxford Instruments 

Variox or in an Oxford Instruments Mössbauer-Spectromag. The latter is a split-pair 

superconducting magnet system for applied fields up to 8 T where the temperature of the sample 

can be varied in the range of 1.5−250 K. The field at the sample is perpendicular to the γ-beam. 

The 57Co/Rh source (1.8 GBq) was positioned at room temperature inside the gap of the magnet 

system at a zero-field position, by using a re-entrant bore. Isomer shifts are quoted relative to 

iron metal at 300 K. Magnetic Mössbauer spectra of fully reduced compound 4b were simulated 

with the program MX (by E.B.) by using the usual nuclear Hamiltonian with an applied field 

only and zero internal field due to electronic spin S = 0. Zero-field spectra were measured at 80 

K. For solid-state measurements, the obtained solid was filled into a self-sealing Delrin capsule 

in the glovebox. The capsule was additionally wrapped airtight in aluminum foil and placed in 

liquid nitrogen directly after being discharged from the glovebox. Handling and mounting of 

the samples were performed under liquid nitrogen. For solution measurements, the preparation 

of the reduced species was performed according to the previously described procedures. The 

starting compound was enriched with 20% [57Fe(TPP)Cl]. The reaction solution was filtered 

and directly used for Mössbauer experiments. The solution capsule was placed in a Schlenk 
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flask, discharged from the glovebox, and placed in liquid nitrogen until the solution was frozen. 

Handling and mounting of the samples were performed under liquid nitrogen.  

 

C.  XAS measurement details 

 

For solid-state XAS experiments, the samples were diluted in boron nitride, sealed in 

an aluminum spacer (1 mm layer thickness) between 38 µm Kapton tape windows, and stored 

in liquid nitrogen. Handling and transportation of the samples were performed under a nitrogen 

atmosphere. XAS measurements were performed on ESRF beamline BM23, which is equipped 

with a liquid N2-cooled Si(111) double-crystal mono- chromator, which was used for energy 

selection. Energy calibration was performed by setting the first inflection of an Fe foil to 7111.2 

eV. A beam size of 500 µm × 3 mm was used. A continuous flow dual- chamber liquid He 

cryostat at 10 K was used. All samples were continuously monitored for signs of radiation 

damage throughout the course of data collection. Data were measured over an energy range of 

7056−7970 eV. Data calibration and averaging were performed using Athena from the IFEFFIT 

package. Peak positions of the pre-edge and rising edge were determined by calculating the 

center of mass of the second-derivative minima of five-point smoothed spectra.  

 

D.  Computational details 

 

All calculations were performed using the ORCA 4.0 package.183 All calculations use 

normal SCF convergence settings (1x10-6 Eh), and Grid5. The geometry of the anions 1- and 

12- were optimized in gas-phase with normal geometry convergence settings using the basis sets 

Def2-TZVP for iron and Def2-SVP for all other atoms.144 The GGA functional BP86184 which 

often yields very reliable geometries216 at an affordable computational cost, was used. Grimme 

dispersion correction was included to all energies.217,218 All calculations described below are 

performed on the resulting geometries.  

For calculation of the Mössbauer properties, single-point calculations were then 

performed at the B3LYP/Def2-TZVP level of theory, using the basis set CP(PPP) for iron, as 

detailed in the Theory chapter (subsection V.B). Grimme dispersion correction was also 

included to all single-point energies. To get a better description of the electronic density around 

the iron nucleus, a grid 7 was used for the iron only. The isomer shifts were deduced from the 

density at the nucleus thus calculated using calibration curves published by Ye et. Al.149 (see 

Theory chapter, subsection V.B).  
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For calculation of the XAS spectra, single-point TD-DFT calculations127 were 

performed using the CAM-B3LYP functional,219 which has proven reliable to describe pre-

edge structures (Figure 33). For each calculation, 150 roots consisting exclusively of excitations 

involving the 1s orbital were requested. Obviously, the electric quadrupole transition intensities 

were calculated in addition to the usual electric dipole. To speed up the calculation, the 

RIJCOSX approximation was used.220 Relativistic effects were accounted for using the scalar 

relativistic Zero-Order Regular Approximation (ZORA).221 For a more accurate description of 

the s-type density, the basis set CP(PPP) was used for iron in combination with a grid 7 setting, 

and the ZORA-TZVP basis set222 was used for all other atoms. Due to the systematic errors of 

pre-edge energies calculated with DFT, all pre-edge energies were shifted by 22.37 eV. This 

value was obtained by building a calibration curve from the calculated and experimental pre-

edge energies of 9 ferrous and ferric complexes (Figure 33). The systems and values are shown 

in the annex of this chapter (Table A1). 

For the orbital analysis of 1- and 12-, the magnetic orbitals223 were directly extracted 

from the unrestricted corresponding orbitals set (UCO).146 For the rest of the set, the orbitals of 

the alpha set was assimilated to the doubly-occupied space, since no overlap integral is lower 

than 0.95. The orbitals of the alpha set were localized using a Pipek-Mezey algorithm,187 and 

the orbitals with primarily 3d character (according to a Löwdin population analysis) were 

labelled as d-orbitals. For the analysis of the XAS spectra, the natural transition orbitals 

(NTO)224 were constructed from the TD-DFT calculations. 

 

 
Figure 33: Experimental vs. calculated pre-edge structure energies for 9 ferrous and ferric 

complexes. The dots represent the calculated values shifted by 22.37 eV. The solid line 

represents the perfect calculation-experiment agreement.  
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III. Experimental results 

 

A. Mössbauer spectroscopy 

 

Table 12: Zero-field Mössbauer parameters, i.e. isomer shift (δ) and quadrupole splitting 

(ΔEQ) for the species under investigation. The sign of ΔEQ is reported when known. 

Experimentally, 1- and 12-correspond to the singly- and doubly-reduced species in frozen 

solution in presence of 18-crown-ether cages. The calculated parameters for each of these 

species are included (B3LYP/CP(PPP) level of theory, see subsection II.D for computational 

details), and discussed in section IV.  

 
Species 

𝛿(Exp) 

(mm/s) 

𝛿(calc) 

(mm/s) 

Δ𝐸@(Exp) 

(mm/s) 

Δ𝐸@(calc) (mm/s) 

 1 0.52a-0.56b 0.42 +1.31b-1.51a +0.60 

 1- 0.52b- 0.41 ±2.21a +0.40 

 [Fe(TPP)][Na(THF)3] 0.65c  ±2.23c  

 12- 0.45b 0.43 +1.50 +0.34 

 [Fe(TPP)][Na(THF)3]2 0.49b  ±1.35b  

a) Taken from ref. 160b 

b) This work 

c) Taken from ref. 179 
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Figure 34: 57Fe Mössbauer spectrum of 12-  in frozen THF and in presence of 18-crown-ether 

at 4.2 K under 4 T (perpendicular mode). The dots correspond to the experimental 

measurements. The red line corresponds to the best spin Hamiltonian fit. The fit consists of the 

superposition of two subspectra. The principal subspectrum (90% of the total iron, green solid 

line) is assigned to 12- with the parameters 𝛿 = 0.45 mm/s, 𝛥𝐸@ = +1.50 mm/s, 𝜂 = 0.1; the 

minor subspectrum (10% of the total iron, dashed black line) corresponds to an unknown 

impurity, with 𝛿 = 1.02 mm/s, 𝛥𝐸@ = +3.61 mm/s, 𝜂 = 0.1 

 

The Mössbauer zero-field parameters for 1-, 12- (in frozen solution with 18-crown-ether 

cage) and that of [Fe(TPP)][Na(THF)3] and [Fe(TPP)][Na(THF)3]2 (in solid state) are shown in 

Table 12. For comparison, the parameters of 1 are shown as well. The applied field Mössbauer 

of 12- is shown in Figure 34. The absence of any hyperfine coupling confirms the diamagnetic 

ground state of this specie.179 The low-lying triplet and high-lying doublet line pattern of the 

magnetic splitting is characteristic of a positive quadrupole splitting (Δ𝐸@ = +1.5 mm/s) with 

a low asymmetry parameter (𝜂 = 0.1) (see Theory chapter, subsection II.B.2). 

The isomer shift of 1, 1- and 12- are remarkably identical. By opposition, isomer shifts 

are usually expected to increase as the oxidation state of the iron decreases, principally because 

the additional d-electrons screen the 4s electrons away from the nucleus.145 On the contrary, 

this result suggests that the two reductions are primarily ligand-centered since they do not affect 

the isomer shift of 57Fe.  

 Interestingly, the quadrupole splitting value of 1- is significantly upshifted compared to 

1, suggesting a different electronic configuration. However, because the isomer shift is so 
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similar to that of 1, it is unlikely that this change is due to a metal-centered reduction. Instead, 

it is possible that the configuration of the iron is different in 1- and 1. This hypothesis is 

reasonable given that we found in Chapter 1 that in 1, the 3A2g and 3Eg(A) states are separated 

by less than 1000 cm-1, implying that subtle change in the molecular structure of the complex 

might lead to a change in the electronic ground state. Our DFT calculations in the previous 

chapter suggested that the configuration 3Eg(A) creates a substantially larger quadrupole 

splitting than the configuration 3A2g, due to the promotion of an electron from the dz2 orbital 

(large negative contribution) to the dxz/yz orbital (small negative contribution). In fact, assuming 

a positive sign, the quadrupole splitting value of 1- is similar to that reported for the complex 1 

in a saddle core conformation (+2.21 mm/s), for which the assigned ground state is 3Eg(A).160b  

On the other hand, the quadrupole splitting of 12- is remarkably identical to that of 1. 

This result, together with their similar isomer shifts, tends to suggest that the local electronic 

configuration of the iron center is identical in both systems, i.e., primarily 3A2g 

(dxy)2(dxz,yz)2(dz2)2 (see previous chapter), and further strengthens the hypothesis of a double 

ring reduction. Note that the low asymmetry parameter determined in the fit of the applied-field 

Mössbauer spectrum is consistent with this electronic configuration. By contrast, the electronic 

configuration 3Eg(A) should have a large asymmetry parameter because the population of three 

electrons in the orbital pair (dxz,dyz) should induce a non-equivalent x- and y- component of the 

EFG tensor.  

It is worth noting that [Fe(TPP)][Na(THF)3] has a significantly higher isomer shift than 

1- in frozen solution. According to this value, it is tempting to say that in the former case, the 

reduction is iron-centered. However, this hypothesis is unlikely since the quadrupole splitting 

of [Fe(TPP)][Na(THF)3] is identical to that of 1-, which suggests that the local electronic 

structure of the iron is identical in both case. Instead, it is possible that this slightly higher 

isomer shift is the result of the crystal packing effect, which may have large effect on the Fe-N 

bond lengths in iron-porphyrins,160b or the interaction with the sodium counterion. 

 

Hence the zero-field Mössbauer data strongly points out to a ring-centered reduction. 

The quadrupole splitting and isomer shift of 1- are compatible with a 3Eg(A) iron(II) center 

antiferromagnetically-coupled to a radical ligand, in agreement with the experimentally-

resolved S=1/2 spin state.179 Similarly, the quadrupole splitting and applied-field Mössbauer 

spectrum of 12- points out to a 3A2g iron(II) center antiferromagnetically coupled with a diradical 

anionic ligand. The Mössbauer data is more ambiguous for [Fe(TPP)][Na(THF)3], for which a 

metal-centered reduction cannot be unambiguously discarded due to the significant increase in 
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isomer shift, although the quadrupole splitting value suggests that the local electronic structure 

of the iron is the same as that of 1-.  

 

B. X-ray absorption spectroscopy 

 

The iron K-edge spectrum of 1, [Fe(TPP)][Na(THF)3] and [Fe(TPP)][Na(THF)3] is 

shown in Figure 35. For useful comparison, the spectrum of [Fe(TPP)Cl] and [Fe(TPP)(THF)2] 

is also shown. The very weak peaks between 7110 and 7114 eV correspond to the pre-edge 

structures of each of these species. Those peaks are reported in Table 13. For 1, 

[Fe(TPP)][Na(THF)3] and [Fe(TPP)][Na(THF)3]2, only one structure appears at a remarkably 

constant energy of 7110.1-7110.5 eV. For [Fe(TPP)Cl], one structure is also visible, although 

clearly upshifted compared to the formers (7112.9 eV). Finally, for [Fe(TPP)(THF)2], two 

structure appear (7110.5, 7113.5). For 1, [Fe(TPP)][Na(THF)3] and [Fe(TPP)][Na(THF)3]2, an 

additional, much more intense peak appears around 1118 eV. This feature is absent from the 

spectrum of [Fe(TPP)Cl] and [Fe(TPP)(THF)2]. Finally, the rising edges of 1, 

[Fe(TPP)][Na(THF)3] and [Fe(TPP)][Na(THF)3]2 are very similar. By contrast, the rising edge 

of [Fe(TPP)Cl] is clearly the most upshifted.  

 

Table 13: Experimental pre-edge and low-lying rising edges peaks of all the investigated 

species. The energies of the structures calculated via TD-DFT at the CAM-B3LYP/CP(PPP) 

level of theory are included (after shifting the energies by 22.37 eV, see subsection II.D) and 

discussed in section IV. In the computational models, counterions are omitted. 

 
Species 

Pre-edge peak 

(eV) 

(Exp.) 

Pre-edge peak 

(eV) 

(Calc.) 

Rising-edge 

peak (eV) 

(Exp.) 

Rising edge 

peak (eV) 

(Calc.) 

 [Fe(TPP)Cl] 7112.9 7113.2 / / 

 [Fe(TPP)(THF)2] 

7110.5, 

7113.5 

7111.3, not found / / 

 1 7110.5 7111.1 7115.9 7118.1 

 [Fe(TPP)][Na(THF)3] 7110.5 7111.6 7116.3 7117.9 

 [Fe(TPP)][Na(THF)3]2 7110.1 7111.6 7115.4 7117.6 
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Figure 35: superimposed iron K-edge spectra of [Fe(TPP)Cl] (1), [Fe(TPP)(THF)2] (2a), 1 (2b), 

[Fe(TPP)][Na(THF)3] (3a), [Fe(TPP)][Na(THF)3]2 (4a). The inset corresponds to an 

enlargement of the pre-edge region between 7110 and 7114 eV.  

 

 The weak pre-edge structures of 1, [Fe(TPP)][Na(THF)3] and 

[Fe(TPP)][Na(THF)3]2 suggest that the local oxidation state of the iron remains constant over 

the one- and two-electron reduction. Pre-edge structures correspond to the 1s-3d transitions,125 

which are normally electric dipole-forbidden transition due to their Δ𝑙 = +2 character and only 

appear weakly on the spectrum mainly due to electric quadrupole transitions. Because these 

transitions involve the 1s orbital, they are usually significantly downshifted upon metal-

centered reduction. Hence, for instance, the pre-edge structure of 1 is significantly downshifted 

compared to that of [Fe(TPP)Cl]. This downshift can be attributed, at least partly, to the lower 

oxidation state of iron in the former (although other factors such as the different spin state and 

number of coordination may play a role). By contrast, the pre-edge structure of 1, 

[Fe(TPP)][Na(THF)3] and [Fe(TPP)][Na(THF)3]2 are almost identical, hence it is probable that 

the local oxidation state of iron remains constant in this series. As a side note, the two structures 

of [Fe(TPP)(THF)2] are quite typical of S=2 Fe(II) complex in octahedral coordination and 

likely are due to the energy separation of the t2g and eg orbitals.125 

 Similarly, The rising edge of 1, [Fe(TPP)][Na(THF)3] and [Fe(TPP)][Na(THF)3]2 

remain very similar, consistently with the previous hypothesis that the oxidation state of the 

iron is invariant in all three compounds. Rising edge transitions correspond to 1s-4p transition 

and, unlike the 1s-3d transitions, are very intense since their Δ𝑙 = +1 makes them electric 

dipole allowed transitions. However, like pre-edge structures, they are sensitive to the local 
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oxidation state of iron and are significantly downshifted in case of metal-centered reduction. 

This explains, at least partly, why the rising edge of 1 is clearly downshifted compared to 

[Fe(TPP)Cl]. On the other hand, the constant rising edges of 1, [Fe(TPP)][Na(THF)3] and 

[Fe(TPP)][Na(THF)3]2 leads further credence to the hypothesis of a ligand-centered reduction. 

Of note, comparison of the pre-edge and rising edge of [Fe(TPP)(THF)2] with that of 1, 

[Fe(TPP)][Na(THF)3] and [Fe(TPP)][Na(THF)3]2 is difficult because although the oxidation 

state of Fe is identical, the spin state and number of coordination are different. 

 Finally, note that 1, [Fe(TPP)][Na(THF)3] and [Fe(TPP)][Na(THF)3]2 all have an 

additional peak at around 1118 eV. This peak is rather intense compared to the pre-edge 

structures and probably corresponds to a low-lying 1s-4pz transition. This hypothesis is further 

strengthened by the observation that this peak disappears both in [Fe(TPP)(THF)2] and 

[Fe(TPP)Cl], where axial ligands destabilize the Fe-4pz orbital.  

This analysis thus further strengthens the hypothesis of a ring-centered reduction, 

consistently with the previous Mössbauer analysis. Furthermore, it removes the previous 

ambiguity concerning the local oxidation state of iron in [Fe(TPP)][Na(THF)3] (see subsection 

III.A). While the present analysis of the experimental data provides a rationalization of the ring-

centered reduction, a complete understanding of the electronic structure of 1- and 12- requires 

the design of a theoretical model able to reproduce all data simultaneously. In section IV, we 

attach to develop such model with the help of computational chemistry methods. 

 

IV. Theoretical analysis 

 

A. Electronic and molecular structure of the DFT models 

 

Our geometry optimized structure of 1- and 12- in gas phase show a non-negligible 

saddle character, i.e. the pyrrole rings are bending alternatively below and above the mean plane 

of the 20 carbon and 4 nitrogen atoms of the porphyrin ring (Table 14). The highest distance to 

the mean plane (belonging to a 𝐶} atom of a pyrrole ring) is 0.7 A for both compounds. The 

iron-nitrogen, C-C and C-N distances and highest distance to the mean plane are shown in Table 

14 and compared to the corresponding experimental distances published by Scheidt179 for 

[Fe(TPP)][Na(DB-18-crown-6)(THF)2] and [Fe(TPP)][Na(THF)3]2.  
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Table 14: Experimentally-resolved iron-nitrogen, nitrogen-carbon and carbon-carbon 

distances in [Fe(TPP)][Na(DB-18-crown-6)(THF)2] (labelled as 1-) and 

[Fe(TPP)][Na(THF)3]2 taken from ref. 179 and corresponding calculated bond length by 

geometry optimization of the anions 1- and 12- in gas phase. 

 
Distances 

1- 

(Exp.) 

1-  

(Calc.) 

[Fe(TPP)][Na(THF)2]2 

(Exp.) 

12- 

(Calc.) 

 Fe-N 1.980(6) 1.977 1.968(1) 1.987 

 N-Cα 1.401(6) 1.399 1.409(5) 1.400 

 Cα-Cβ 1.429(12) 1.444 1.421(4) 1.438 

 Cα-Cm 1.385(5) 1.403 1.380(3) 1.412 

 Cβ-Cβ 1.338(1) 1.375 1.352(5) 1.383 

 

Highest out-of-plane 

distance 

0.05 0.7 0.08 0.7 

 

 The overall agreement between the experimental and calculated geometries is good 

compared to the usual performances of the BP86/Def2-TZVP and BP86/Def2-SVP levels of 

theory.216 Although satisfying, the quality of the bond length description is slightly inferior for 

12-. More preoccupying, the calculations do not capture the experimental trend of Fe-N bond 

lengths shortening upon reduction. Furthermore, the molecular structure of 1- and 12- have a 

significantly saddle core while experimental crystal structures show a very planar core 

conformation. However, metal-porphyrin are known to have a very flexible core and several 

almost iso-energetic configurations,225 for which Fe-N distances may vary drastically.160b 

Subtle effects such as a change in crystal packing or in the interaction with counterions (neither 

of which are accounted for in these gas-phase calculations) may influence significantly those 

parameters. 
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Figure 36: Calculated electronic configuration of iron in 1- (left) and 12- (right). Hydrogens are 

omitted for clarity. Carbons are shown in beige, nitrogens in blue and iron in orange. Orbitals 

are represented in red (positive part) and yellow (negative part). The overlap between the 

magnetic orbitals is indicated in red. The electrons populating the ligand-centered orbitals 

1eg(xz) and 1eg(yz) are represented by red arrows. The magnetic orbitals (Fe-dxz/1eg(xz) in 1- ; 

Fe-dxz/1eg(xz) and Fe-dyz/1eg(yz) in 12-) are obtained from the unrestricted corresponding 

orbitals set. The 1eg orbitals are labelled according to which quadratic function (xz or yz) they 

transform as in a D4h point group. The other orbitals correspond to the primarily Fe-d based 

occupied orbitals, obtained by localization of the rest of the occupied orbital set using a Pipek-

Mezey algorithm.  

 

The orbital analysis confirms the previous hypothesis according to which the iron center 

remains at the local oxidation state +II (Figure 36). For each successive reduction, the electron-

accepting orbital (1eg(xz) for 1/1- and 1eg(yz) for 1-/12-) is primarily ring-centered. Furthermore, 

the DFT calculations of 1- and 12- showed considerable spin contamination. The unrestricted 

corresponding orbital (UCO) analysis tracks down the origin of this contamination to one and 

two pairs of magnetic orbitals, respectively, with an overlap ranging from S=0.30 to S=0.35.  

As suggested by the very large overlap between the magnetic orbitals, the spin coupling 

is strongly antiferromagnetic. In fact, although the systems are best described as Fe(II) centers 

and radical rings, the strong overlaps between the magnetic orbitals imply that in both case, the 

ground states have minor but non-negligible Fe(I) and Fe(0) characters, respectively. These 

significant configurational mixings are the expression of kinetic exchange phenomena, which 

explain the strong observed antiferromagnetic coupling. As developed in the next chapter, this 
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phenomenon is of critical importance in the reactivity of 12- in CO2-to-CO reduction. According 

to Yamaguchi’s formula,226 the calculated exchange coupling constant is 𝐽 = −1501 cm-1 and 

𝐽 = −475 cm-1 for 1- and 12-, respectively. Strong antiferromagnetic spin coupling is permitted 

here because the magnetic orbitals (Fe-dxz/yz and 1eg(xz/yz)) share the same symmetry (eg in the 

D4h point group limit) which enables considerable mixing between them. This behavior is 

coherent with the experimental magnetism of these two systems. Indeed, both behave as an 

overall S=1/2 and S=0 system, respectively.179,206,207,208  

 The calculated electronic structure of 1- corresponds to a 2Eg configuration 

(dxy)2(dz2)2(dxz)1(dyz)11eg(xz,yz)1. Thus it is best described as a local 3A2g Fe(II) center 

antiferromagnetically coupled to a ligand radical. The calculated electronic structure of 12- 

corresponds to a 1A1g configuration (dxy)2(dz2)2(dxz)1(dyz)11eg(xz)11eg(yz)1. Hence it is best 

described as a local 3A2g Fe(II) antiferromagnetically coupled to a ligand di-radical. Of note, 

for 1-, another solution corresponding to a local 3Eg(A) iron configuration antiferromagnetically 

coupled with a ligand radical could be found only 503 cm-1 above the calculated ground state. 

This finding is consistent with the small energy gap of the dz2 and dxz,yz orbitals encountered in 

the analysis of 1 (see Chapter 1). An energy gap of this order of magnitude is below the accuracy 

range of hybrid DFT, hence the nature of the ground state of 1- cannot be unambiguously 

assessed on the basis of DFT calculations alone. However, a similar low-lying excited state 

could not be found for 12-. This finding is consistent with the hypothesis that kinetic exchange 

favors the local 3A2g iron configuration over the local 3Eg(A) iron configuration in 12- but not in 

1-. Indeed, in the former system, efficient kinetic exchange is insured by electron transfer from 

the β-1eg(xz) orbital to the β-dxz orbital and from the β-1eg(yz) orbital to the β-dyz orbital. This 

is only possible if both β-dxz and β-dyz are unoccupied in the dominant configuration, which is 

the case for 3A2g but not 3Eg(A). Hence kinetic exchange participates in stabilizing the 3A2g 

configuration over the 3Eg(A) configuration. By contrast, in 1-, because only one radical 

electron is stored on the ring, only one β-dxz/yz orbital must be unoccupied to maximize the 

kinetic exchange, while the population of the other does not influence the spin coupling. Hence 

in this case, kinetic exchange does not participate in stabilizing the local 3A2g iron configuration 

over the 3Eg(A) iron configuration. 

 

 Hence, our DFT calculations predict that the systems 1- and 12- are best described as an 

iron(II) iron center strongly antiferromagnetically coupled with a porphyrin radical and 

diradical, respectively. In 12-, the calculations point out to an overall 1A1g configuration best 

described as a local 3A2g Fe(II) antiferromagnetically coupled with a ligand di-radical. The 
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precise nature of the electronic ground state remains ambiguous for 1-. Although our results are 

consistent with a S=1 Fe(II) center antiferromagnetically coupled with a ligand radical, the local 

electronic configuration of the iron center, i.e. 3Eg or 3A2g cannot be strongly assessed on the 

ground of DFT alone. Furthermore, although those results are in qualitative agreement with our 

previous hypothesis of a ligand-centered reduction, quantitative agreement between the 

experimental spectroscopic data and this in-silico model is required for its definitive validation.  

 

B. Description of the Mössbauer parameters 

 

 Calculated Mössbauer parameters for 1, 1- and 12- are reported in Table 12. As already 

developed in the previous chapter, both isomer shift and quadrupole splitting are significantly 

underestimated for 1. Unsurprisingly, this tendency remains for the low-valent 1- and 12- as 

well. However, the trends are more important than the absolute values because they are direct 

probe of the electronic structure change upon reduction.  

Hence, the calculated isomer shifts are almost completely unaffected by the one- and 

two-electron reductions of the ring. This result is readily explained by the fact that the additional 

electrons are mostly localized on the ring, leaving the s-density on the metal mostly unaffected. 

This trend is consistent with the experimental observation. The calculated quadrupole splittings 

remain almost constant over the whole series, which is unsurprising given that the calculated 

local electronic structure of iron is identical (3A2g) for all three complexes. This trend reproduces 

the similarity between the experimental quadrupole splittings of 1 and 12-. However, it does not 

reproduce the upshifted experimental quadrupole splitting of 1- and [Fe(TPP)][Na(THF)3] 

compared to 1 and 12-. This discrepancy likely implies that the local electronic configuration of 

iron is 3Eg(A) rather than 3A2g in 1- (see subsection III.A).160b The calculated quadrupole 

splitting of the low-lying local 3Eg(A) iron configuration solution found for 1- is upshifted by 

+0.83 mm/s compared to the quadrupole splitting of 1, which is very close to the experimental 

upshift of +0.70-0.90 mm/s. By contrast, the calculated quadrupole splitting of the predicted 

ground state of 1- (local 3A2g configuration) is downshifted by 0.20 mm/s. 

Although their absolute value is slightly underestimated by our DFT calculations, the 

trend of the calculated isomer shifts upon reduction reproduces the experimental trend and 

validates the hypothesis of a ligand-centered reduction. As far as the electronic structure of iron 

is concerned, comparison of our calculated quadrupole splitting values with the experimental 

values overall suggest that the local electronic configurations of iron in 1- and 12- is 3Eg(A) and 
3A2g, respectively.  
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C. TD-DFT description of the XAS spectra 

 

Transitions between 7110 and 7120 eV were calculated by TD-DFT. Calculation of 

transitions closer to the continuum were not attempted since the description of barely bound 

states is poorly described by standard electronic structure methods. Calculated pre-edge 

structure and low-lying rising-edge peaks of the complexes [Fe(TPP)Cl], [Fe(TPP)(THF)2], 1, 

1- and 12- are reported in Table 13. The overall agreement between experiment and TD-DFT 

calculations is satisfying, especially for the description of pre-edge structures, for which TD-

DFT is established as an accurate description method.127 More importantly, the pre-edge 

structures of 1, 1- and 12- are almost identical, consistently with the experimental trend. 

Furthermore, the low-lying rising-edge found around 7118 eV follows the experimental trend 

upon reduction for the three four-coordinated compounds and is inexistent for the five and six-

coordinated systems [Fe(TPP)Cl] and [Fe(TPP)(THF)2], consistently with the experiment. 

The remarkably constant energy of the pre-edge structure for 1, 1- and 12- is readily 

explained by the fact that the local oxidation state of iron remains identical upon one- and two-

electron reductions. In details, the pre-edge structure is in fact constituted of four distinct 

transitions, each of which is dominated by the promotion of a 1s electron to one of the holes of 

the d-shell. In the local 3A2g electronic configuration of iron, those holes are in the 𝑑d�sssss, 𝑑��sssss, 

𝑑d*7�* and 𝑑d*7�*sssssssss unoccupied orbitals (Figure 37 and Figure 38). These excitations only 

marginally shift upon reduction of 1, consistently with the fact that the additional electrons are 

mostly localized on the porphyrin ring, whereas the transitions are overwhelmingly iron-to-iron 

electronic transitions.  

Notably, the predicted pre-edge structure of the 3Eg(A) solution of 1- is very similar to 

the predicted spectrum of the 3A2g solution, even though the three constitutive excitations are 

different due to the change in electronic configuration of the ground state (Figure 38). This is 

consistent with the notion that Fe-dxz, Fe-dyz and Fe-dz2 orbitals are non-bonding and very 

closely lying. It also suggests that the electronic structure of the iron in 1- cannot be elucidated 

by the analysis of XANES spectroscopy.  

The low-lying rising-edge features of 1, 1- and 12- are characterized by two principal 

transitions, both of which are mainly constituted of 1𝑠 to 4𝑝� and 1𝑠sss to 4𝑝�sssss excitations, 

although they gain some non-negligible iron-to-ring charge transfer character as the charge of 

the complex increases. Similar to the pre-edge transitions and consistently with the 

experimental trend, the low-lying rising-edge transitions are marginally affected by the 
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reduction because the local oxidation of iron remains +II. Because of the absence of axial 

ligands, the 4pz is essentially non-bonding, which explains why a rising edge feature may be 

observed at such a low transition energy. This explanation is consistent with the experimental 

observation that this transition disappears for the five and six coordinate systems, in which axial 

interactions significantly destabilize the 4pz. 
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Figure 37: Decomposition of the calculated XAS spectra (from top to bottom, 1, 1- with Fe in 

a 3A2g configuration). The black bars below the envelope correspond to the individual 

transitions composing the pre-edge and low-lying rising-edge structures. Their hight is 

proportional to the squared transition intensity. The colour code refers to α→ α (red) or β→β 

(green) transitions. The black line corresponds to mixed α→ α and β→β transitions. The orbital 
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pictures in the rectangles correspond to the natural transition orbitals. Only the orbitals 

excitations having a weight superior to 5% are shown in the figure. 

 

 

 
Figure 38: Continuation of Figure 37 (from top to bottom, 1- with Fe in 3Eg(A) configuration 

and 12-).  
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The TD-DFT calculations satisfyingly reproduce the experimental pre-edge structures 

and rising edge structure trends upon reduction. A deeper analysis of the underlying transitions 

confirmed that pre-edge structures are mostly composed of iron-centered 1s-to-3d transition 

and low-lying rising-edge structures are mostly composed of 1s to 4pz transitions. 

Consequently, those structures are only marginally affected by the ring reduction. This 

computational analysis, together with the computational electronic structure and Mössbauer 

analyses, points out unambiguously to a ring-centered reduction, which means that 1- and 12- 

are best described as a S=1 Fe(II) center antiferromagnetically coupled with a radical and 

diradical porphyrin ring, respectively. Note that the local electronic structure of 1- remains 

ambiguous and both candidate 3Eg(A) and 3A2g are consistent with the absorption pattern. 

 

D. A complementary rRaman study on 1-/2- 

 

 So far, our approach to assign the electronic structure of 1- and 12- has mostly consisted 

in probing the evolution of the local oxidation state of the iron center upon successive reduction 

of 1 to 1- and 1- to 12-. We have concluded that the iron center remains a local Fe(II), and 

therefore the reduction is ligand-centered Our hypothesis is strongly reinforced by a 

complementary study performed by our group.18 Rather than focusing on the oxidation state of 

the iron center, this study probes the evolution of the electronic density on the porphyrin ligand 

by analyzing the evolution of the rRaman vibrational transitions of the ligand upon successive 

reduction.  

  Raman spectra of metalloporphyrins have been studied for decades.212,213,227, 228,229   In 

particular, several bands corresponding to various vibration mode of the porphyrin ligand have 

been identified. Among them, two transition bands, usually named A and D, are of particular 

interest as they are sensitive to the reduction of the ring and/or reduction of the metal. In details, 

a benchmark study on 20 Fe(III) and Fe(II) porphyrin complexes has shown a consistent trend 

for these two bands.227 Upon reduction of the metal and/or change in spin state, the band A is 

expected to be drastically downshifted. Conversely, the band D has been found rather 

insensitive to the change in oxidation state of the metal, but significantly affected by a change 

in spin state. On the other hand, upon ring reduction, band A is expected to remain essentially 

unaffected while the band D is expected to be strongly downshifted. This latter observation 

relies on the experimentally observed shift of the band A and D upon reduction of [Zn(TPP)] 

to [Zn(TPP)]-, which has been clearly established as a ring-centered reduction.230,231 

Furthermore, DFT calculations have predicted a similar trend for band A and D upon reduction 
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of H2TPP to H2TPP-, and H2TPP- to H2TPP2- (Table 15). Hence the shift of the marker bands A 

and D upon successive reduction of 1 may be used as a spectroscopic signature either for the 

reduction of the ring or the reduction of the metal. 

 The rRaman spectra of the species [Fe(TPP)Cl], 1 , 1- and 12- have been assigned by 

DFT and TD-DFT calculations18 on the ground of two criteria: (1) the energy of the bands, 

since an agreement of ±25 cm-1 with respect to the experimental Raman shifts is expected at 

this level of theory,232,233 and (2) the agreement between calculated and experimental transition 

intensities at different excitation wavelength, since they are dependent on the nature of the 

resonant electronic states234,235 and accounted for by the method used by the authors. 

Assignment of the bands A (1361 cm-1) and D (1553 cm-1) on the spectrum [Fe(TPP)Cl] was 

consistent with earlier assignments.229 The associated vibration mode for band A is an 

asymmetric half-ring pyrrole vibration, and that of band D corresponds to a mixed mode 

composed of vibrations of the Cβ-Cβ bonds, Cα-Cα and Cβ-H bonds (Figure 39).  

 

  
Figure 39: Schematic representation of band A (left) and D (right) in [Fe(TPP)Cl]. 

Hydrogens are shown in white, carbons in grey, nitrogens in blue, iron in orange and chlorine 

in green. The blue arrows represent the displacement vectors.  Figure taken from ref. 18. 

 

 The assigned experimental bands A and D are reported in Table 15. The shift of band 

A upon the first and second reduction is -2 and -1 cm-1, respectively. The shift of the band D is 

-28 and -7 cm-1, respectively. Hence for both one-electron reductions, the band A remains rather 

constant and the band D is significantly downshifted. This is consistent with two ring-centered 

reduction, and is in perfect agreement with our findings so far. The predicted shifts of the 

computational models are in very good agreement with the experiment (Table 15) and the 

associated electronic structure is identical to our own DFT models. The local electronic 

structure of iron is Fe(II) in a 3A2g configuration, antiferromagnetically coupled with a radical 

or diradical ring. Note that the ambiguity on whether the local electronic structure of iron in 1- 
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is 3Eg(A) or 3A2g is likely to not affect drastically the ring-based vibrations, since the dxz,yz and 

dz2 are essentially non-bonding.  

 

Table 15: experimental rRaman band shifts of the bands A and D (in cm-1) upon one-electron 

reductions of selected porphyrin complexes. Non-available values are noted “N.A”. Calculated 

values are noted in brackets.  

  

H2TPP/H2TPP- 

H2TPP-/H2TPP2 

[Zn(TPP)]/[Zn(TPP)]- 1/1- 

1-/12- 

 Δ𝜈	(𝐴) 

N. A. (+2)18  

N.A (-5) 18 

-1231 -2 (-2) 18 

-1 (+2) 18 

 Δ𝜈	(𝐷) 

N. A. (-17)18 

N. A. (-26)18 

-1618 -28 (-10) 18 

-7 (-22) 18 

 

 Earlier studies on the rRaman spectrum of 1- deserve a few words here.213,228 Those 

studies found that band A and D remain unaffected upon one-electron reduction of 1. The 

conclusion of these studies is that because the band D remains essentially unaffected by the 

reduction, the reduction must be metal-centered. However, the assignment of band D is 

inconsistent with the study from Neese et. Al. The use of quantum chemistry-based models to 

assign the bands gives higher credence to the latter study. Furthermore, these studies do not 

address the fact that the band A remains almost completely unaffected by the reduction although 

it has been clearly established as an oxidation state sensitive band.227 Consequently, we cannot 

agree with the conclusion of the authors.  

 This study provides consistent results with our own. The shift of the marker bands A 

and D are consistent with two successive ring reductions and provides further credence to our 

hypothesis. The computational models are in good agreement with the experiment and their 

electronic structure is identical to our findings. Together with our computational, Mössbauer 

and XAS analysis, it assigns unambiguously the two successive one-electron reductions as 

ligand-centered, and establishes that 1 and 12- are best described as Fe(II) centers 

antiferromagnetically coupled with TPP radical and diradical, respectively. 
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V. Conclusion 

 

 A joint use of spectroscopic methods and quantum-mechanics-based analysis enable us 

to unambiguously determine the electronic structure of 1- and 12-. The result of this study is that 

those two systems are best described as Fe(II) centers antiferromagnetically coupled with 

porphyrin radical and diradical, respectively. In details, this assignment is the result of a very 

satisfying agreement between our computed and experimental spectroscopic data. Our 

Mössbauer and X-ray absorption data consistently suggest that the local oxidation state of iron 

remains unchanged for both the reduction of 1 to 1- and 1- to 12-, and thus points out to a ligand-

centered reduction. A rRaman study performed by Neese in addition to this work also pointed 

out a ligand-centered reduction. As far as the electronic structure of 1- and 12- is concerned, 

Mössbauer data suggests that the electronic configuration of iron in 1 and 1- is different, but 

that of 1 and 12- is similar.  

 Our DFT computational models confirm that the predicted electronic ground state of 1- 

and 12- are best described as Fe(II) centers antiferromagnetically coupled with a radical and 

diradical porphyrin ring, respectively. The computed electronic local electronic configuration 

of iron for 12- is a 3A2g configuration. In that configuration, both β-Fe-dxz and β-Fe-dyz orbitals 

are empty, which favors antiferromagnetic exchange pathways with the 1eg porphyrin-based 

orbitals. The electronic configuration of 1- is more ambiguous. Our DFT computation predict 

two almost iso-energetic electronic states corresponding to a 3A2g and 3Eg(A) iron configuration 

antiferromagnetically coupled with a porphyrin radical, respectively.  

 Our DFT calculations reproduce very satisfyingly the trend of the Mössbauer 

isomer shift and pre-edge XANES structure upon reduction, which confirms that the 

experimental trend may be interpreted as a consequence of the ring-centered reduction. For 12-

, the strong DFT assignment combined with the reproduction of the iron quadrupole splitting 

provide a strong electronic structure assignment. It suggests the electronic configuration of the 

iron in 12- is 1A1g, i.e. a 3A2g Fe(II) center antiferromagnetically coupled with a ligand diradical. 

For 1–, the assignment is unfortunately less clear. Although experimental and computational 

data point out to a S=1 Fe(II) center antiferromagnetically coupled with a ligand radical, DFT 

calculations cannot assign the exact electronic configuration of iron. Comparison of the 

quadrupole splitting in 1- with that of 1 and 12- suggests a 3Eg(A) Fe(II) antiferromagnetically 

coupled with a ligand diradical. Taken alone, one could argue that the quadrupole splitting 

argument is rather weak. It is sensitive to various effect beyond the electronic configuration of 

iron,116 and the DFT description of the quadrupole splitting in four-coordinated iron-porphyrins 
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is severely underestimated. However, previous NMR studies206,210,214 suggest that the spin 

density is localized in the Fe-dz2 or Fe-dx2-y2, which is consistent with a local 3Eg(A) Fe(II) iron 

configuration, but not with a 3A2g local iron configuration. Therefore, experimental and 

computational data seemingly point out to the 3Eg(A) Fe(II) iron configuration 

antiferromagnetically coupled with a ligand radical. 

 At the conclusion of this study, the electronic structures of 1, 1- and 12- have been 

assigned unambiguously. The simultaneous assignment of all three compounds allowed us to 

distinguish two main features of low-valent iron porphyrins. (1) the dxz, dyz and dz2 orbitals are 

almost degenerate which is the main reason for the very peculiar magnetism of 1, and (2) the 

reduction of 1 to 12- is ligand-centered, yielding a doubly-reduced species that is a local Fe(II) 

coupled with a tetra-anion porphyrin. There is little doubt that the ligand non-innocence of the 

porphyrin ring plays a central role in the reactivity of this system with respect to CO2 activation. 

Since the accuracy of our computational model for low-valent iron-porphyrins has been 

validated, an in-silico study of the reactivity of this system with respect to CO2 reduction 

appears as a method of choice to understand the origin of the performances of this catalyst and 

retrieve chemical insights for future catalyst design strategy. This is the subject of the next 

chapter.  
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Chapter 3: Role of the non-innocent 

porphyrin ligand in CO2 reduction 

 

 

All the work related to section has been entirely realized by the author of this dissertation 

thesis. 

 

I. Introduction 

 
As emphasized in the introduction of this thesis, 1 and its derivatives exhibit the highest 

catalytic performance, i.e. relatively low overpotentials, high turnover frequencies and a 

faradaic efficiency for CO generation close to 100% in the presence of sufficiently weak 

acid.16,87,89,105,236,237 Experimental findings suggested that the active species responsible for CO2 

conversion is 12-, a formal Fe0 complex, generated by two-electron reduction of 1. It is generally 

accepted that the reaction is initiated by CO2 binding to 12- to yield a η1-CO2 adduct; however, 

the following transformation is rather controversial. An earlier experimental study16 suggested 

that to activate the C-O bond being cleaved, two Brönsted acids interact with one oxygen of the 

bound CO2 motif to form two hydrogen bonds. And subsequently the C-O bond scission is 

accompanied by a single proton transfer, thereby yielding a FeII-carbonyl adduct and releasing 

a hydroxylate anion. Although this mechanistic hypothesis likely accounted for the influence 

of the pKa value of the Brønsted acid on the reaction rate,16 the postulated tri-molecular reaction 

usually suffers from a prohibitively large positive entropic term.238 Theoretical calculations95 

instead point out that the η1-COO adduct first gets protonated to afford a metallacarboxylic 

acid, which then undergoes C-O bond cleavage concerted with a second protonation, ultimately 

furnishing a FeII-carbonyl adduct and H2O. Similar mechanisms have been proposed in the 

literature for the reaction mediated by related systems.48,76,78, 103,104,239,240 

To dissect reaction mechanisms, thoroughly elucidating the electronic structures of key 

intermediates is typically a prerequisite. Using a combined spectroscopic and computational 

approach, Chapters 1 and 2 of this thesis unequivocally reveal that 12- in fact contains an 

intermediate spin ferrous center in a 3A2g electronic configuration that is antiferromagnetically 
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coupled to a porphyrin triplet diradical tetra-anion (STPP = 1), thereby yielding an overall singlet 

ground state, viz. [FeII(TPP••4–)]2-.17,18 As such, the two electrons used to reduce CO2 stored in 

the TPP ligand rather than the Fe center. However, the earlier mechanistic investigations did 

not provide any information about the role of the non-innocent TPP ligand played in the 

reaction. As a matter of fact, a significant portion of homogenous CO2 catalysts reported thus 

far are supported by well-known redox active non-innocent ligands, such as porphyrins,95,237 

corroles,77,241 pyridine-diimines,48,80,242 polypyridines,103,240,243,74,244,59 and N-heterocyclic 

carbenes86,245 to name a few. Although ligand non-innocence has been intensely discussed in 

general catalysis, its implication with respect to CO2 reduction has received relatively little 

attention. In a broad sense, this gives rise to an intriguing question about how the non-innocent 

ligand interacts with the metal center to trigger the two-electron reduction of CO2 to CO, 

because not all coordination unsaturated transition metal complexes with non-innocent ligands 

can function as CO2 reduction catalysts.  

In the present chapter, we first investigate the possible mechanistic routes leading to CO 

generation and possible side-products, based on the mechanistic information gathered in the 

introduction of this thesis. We then present a detailed analysis of the electronic-structure 

evolution in the course of CO2-to-CO conversion catalyzed by 12-, following the most probable 

route. We show that ligand non-innocence is at the core of the presently investigated reactivity. 

Then, we compare the reactivity of 12- with that found for CO2 reduction mediated by 12 other 

systems selectively catalyzing CO2-to-CO conversion reaction: 8 polypyridine systems, 3 

pyridine-diimine derivatives, and 1 saturated macrocycle (Figure 40). The catalytic 

performances of these systems are summarized in Table 3 (Introduction, section II). All 

catalysts mentioned in Figure 40 contain non-innocent ligands except for [Ni(cyclam)]+ (cyclam 

= 1,4,8,11-tetraazacyclotetradecane),246 featuring an authenticated metal-centered reduction. 

Comparison of all systems under consideration enables us to easily identify the crucial role of 

non-innocent ligands in CO2 activation. On the basis of that, we propose fundamental 

electronic-structure requirements for CO2 reduction with transition metal complexes with non-

innocent ligands, which can be used as a guideline for future design of similar catalytic systems. 
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Figure 40: Representative examples of catalytic systems for CO2-to-CO reduction with a non-

innocent ligand platform, and nickel-cyclam, an example of “innocent” ligand platform. The 

represented systems correspond to [Fe(TPP)] (12-),16,237,17,18 [M(qpy)] (M=Fe (2+), Co (60); qpy 

= quaterpyridine),76 [Fe(bpyNHEtPY2Me)] (30, bpyNHEtPY2Me=6'-(1,1-di(pyridin-2-yl)ethyl)-

N-ethyl-[2,2'-bipyridin]-6-amine),243 [M(N4H)] (M= Ni (40), Co (50);  N4H=2,12-dimethyl-

3,7,11,17-tetraazabicyclo[11.3.1]-heptadeca-1(7),2,11,13,15-pentane),80 [Co(L)] (70, L=2,13-

dimethyl-3,6,9,12,18-pentaazabicyclo-[12.3.1]octadeca-1(18),2,12,14,16-pentaene),48 

[M(bpy)(CO)3] (M= Re (8-), Mn (9-), Cr (102-); bpy=bipyridine), 64, 71,103,247 [Ru(bpy)2(CO)] 

(110),46 [Ru(tpy)(bpy)] (120, tpy=terpyridine),59 and [Ni(cyclam)]+ (13+).54,246 
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II. Computational details 

 
All calculations were performed using the ORCA 4.0 program package.183 All geometry 

optimizations used tight geometry convergence settings. All energy calculations used normal 

SCF settings (1x106 Eh). All calculations used a grid level 5. For geometry optimizations and 

frequency calculations, the hybrid functional B3LYP184 was used in combination with the Def2-

TZVP basis set for iron and the first coordination sphere, and Def2-SVP basis set for all 

remaining atoms, referred to as B3LYP/Def2-TZVP/Def2-SVP hereafter.144 To account for 

solvation effects and non-covalent dispersion interactions, the solvation model CPCM137 for 

DMF and D3BJ corrections due to Grimme were employed, respectively.217,218 Electronic 

energies were calculated on the molecular structure obtained by geometry optimization. Final 

accurate electronic energies were computed at the B3LYP/Def2-TZVPP level of theory. All 

calculations were sped up by using the RIJCOSX approximations.220 

Initial guesses of transition states geometries were obtained by running relaxed surface 

scans along the sensible normal modes or using the nudged elastic band method,248 in particular 

for delicate transition states. The approximate transition-state geometries were then optimized 

by maximizing the energy along a given normal mode and minimizing the energy along all 

other normal modes. Subsequent frequency analysis on local minima revealed an occasional 

imaginary frequency of less than 16 cm-1 and frequency analysis on transition states revealed 

an occasional imaginary frequency of less than 14 cm-1 besides that associated with the 

transition state. Despite our efforts, these frequencies could not be removed neither by 

increasing the grid nor the geometry and SCF convergence settings. However, they can be 

safely attributed to numerical noises or a particularly flat energy surface owing to their 

magnitude. 

Enthalpies were calculated following the section IV.A of the Theory chapter. In details, 

the zero-point energy (𝐸W?6, eq. 39i), the thermal vibrational (𝐸e+, eq. 39j), rotational (𝐸Lâe, eq. 

39e) and translational (𝐸eLÀÒñ , eq. 39f) energy at 298 K calculated at the B3LYP/Def2-

TZVP/Def2-SVP level of theory, were added to the electronic energy (𝐸XØ), calculated at the 

B3LYP/Def2-TZVPP level of theory. A kBT term was added to account for the PV term in an 

ideal gas approximation. To estimate the energy of the pure multiplets, an electronic energy 

correction (Δ𝐸XØ) was added to the energy of the broken-symmetry wave function for 

intermediates featuring antiferromagnetic spin coupling between the ligand and the metal. This 

correction was calculated following the method by Malrieu and Trinquier.147 Free energies at 
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298 K were calculated by adding the electronic (𝑆XØ, eq. 40c), rotational (𝑆Lâe, eq. 40d), 

translational (𝑆eLÀÒñ , eq. 40e) and vibrational (𝑆Á�ð , eq. 40f) entropy contributions multiplied 

by the temperature to the enthalpy.132 In the case of bimolecular reactions in gas phase, 

translational entropic contributions typically account for +10 to +15 kcal/mol to Gibbs free 

energy changes,238 as suggested by an earlier work on O2 and CO2 association with transition 

metal centers.54,249 As stated in the Theory chapter (subsection IV.C), the gas-phase 

approximation overestimates the condensed-phase free energy significantly for two reasons. 

First, translational freedoms are largely quenched in condensed phase, because of the volume 

occupied by the solvent.134 Consequently, the translation entropy, which is directly dependent 

on the volume accessible to the solute, is affected by the passage from gas to condensed phase. 

The subsequent loss of entropy can be estimated by free-volume theory (Δ𝑆�Þ, eq. 40e and 43). 

Second, gas-phase free energy does not account for the cavitation free energy (Δ𝐺ÖÀÁ7R�ñã, eq. 

42). The latter corresponds to the free energy affording the formation of the solvent cage around 

the solutes. Typically, both the aforementioned effects induce negative Gibbs free energy 

variations for bimolecular reactions, which partially compensate the large gains of entropic 

origin calculated in gas phase. To account for these effects, we correct the free energy by adding 

two correction terms Δ𝑆�Þ𝑇  and Δ𝐺ÖÀÁ7R�ñã according to eq. 62. 

𝐺 = 𝐸XØ + Δ𝐸XØ + 𝐸W?6 + 𝐸e+ + 𝐸Lâe + 𝐸eLÀÒñ +	𝑘S𝑇 + 𝑆XØ𝑇 + 𝑆Á�ð + 𝑆eLÀÒñ + 𝑆Lâe +

Δ𝑆�Þ𝑇 + Δ𝐺ÖÀÁ7R�ñã          (62) 

 

 All redox potentials against the SCE electrode in DMF were calculated from the free 

energies of the species of the redox couple, according to eq. 37. For this purpose, 𝐹 the Faraday 

constant is taken as 𝐹 = 23.061 kcal.V-1.mol-1,250 and 𝐸Aq}6
�½� , the absolute potential of the SCE 

electrode in DMF, is taken as 4.350 V.251 The calculated redox potential associated with the 

couple 1/1- and 1-/12- are -1.17 and -1.76, respectively, which are in reasonable agreement with 

the experimental values of -1.07 and -1.64 V.236,252,253 These results thus lend credence to the 

reliability of our present computational setup. 

 For orbital analysis, the doubly-occupied unrestricted corresponding orbitals (UCO)146 

(overlap between the alpha and beta orbital superior to 0.95) were localized using Pipek-Mezey 

algorithm.187 The alpha and beta set in this subspace were approximated to be identical and 

orbitals thus obtained from the localized subspace were considered as doubly occupied. The 

singly-occupied UCO and the magnetic orbitals (overlap comprised between 0 and 0.95) were 

not localized. In the resulting set of orbitals, the d-orbitals were identified as the orbitals having 

predominant Fe-3d character according to the MO-wise Löwdin population analyses.  
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III. Reactivity of 12- in CO2 reduction 

 

A. Elucidation of the reaction pathway 

 

1) CO2-to-CO conversion: elucidation of the most probable pathway 

 

The cyclic voltammetry data of 1 in the presence and absence of CO2 suggests the 

activity of a type I or type III mechanism, as determined in the Introduction of this thesis (Figure 

8).16 The possibility of a type II pathway is investigated in subsection III.A.2. In details, CO2 

reduction to CO mediated by 12- proceeds as follows. The reaction of CO2 with catalytic active 

12- first leads to generation of the η1-CO2 adduct A (Figure 41), which then undergoes C-O 

bond cleavage to produce CO and H2O in acidic media. Clearly, the energy gained from 

formation of the OH bond in H2O compensates the energetic penalty required to break one C-

O bond in CO2. However, the mechanistic details of the C-O bond breaking have not been 

reached consensus yet.16,95 To address this question, we first carefully examined two viable 

mechanistic scenarios (type I and III mechanisms). In mechanism III, one oxygen of the CO2 

moiety in A forms two hydrogen bonds with two phenols (PhOH), affording C. The subsequent 

C-O bond cleavage is assisted by transfer of two protons from PhOH to A, yielding 

[Fe(CO)(TPP)] (F in Figure 41) and H2O directly. Of note, in mechanism III as defined in the 

kinetic study by Costentin et. al.,16 the cleavage of the bond releases F and OH-, the latter being 

protonated in H2O in a subsequent step. However, our calculations could not reproduce that 

two-step mechanism, the two proton transfers occurring simultaneously upon elongation of the 

C-O bond. In mechanism I, a hydrogen bond is formed between a PhOH and the oxygen of the 

CO2 moiety in A affording B (Figure 41). A proton transfer then affords the metallacarboxylic 

acid [Fe(CO2H)(TPP)]- (D in Figure 41), and releases a phenolate (PhO-). Subsequently, a 

second PhOH forms a hydrogen bond with the protonated oxygen of the COOH moiety in D, 

affording E. The subsequent bond breaking is coupled with a second proton transfer, thus 

leading to F, and releasing H2O plus a PhO-. To further examine the importance of the second 

proton transfer in the C-O bond cleavage process in mechanism I, we also investigated a third 

channel (labelled mechanism IV in Figure 41). In this pathway, the C-O bond in D is cleaved 

in the absence of additional acid, yielding F and HO-. All intermediates and pathways are 

summarized in Figure 41. 
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Although 12- was irrefutably identified to possess a singlet ground state,17,18 to explore 

possibility of spin crossover during the reaction, we investigated not only S = 0 but also S = 1 

and S=2 potential energy surfaces. However, our theoretical results revealed that the 

aforementioned intermediates all lie at higher energy than the corresponding singlet ones and 

improbably participate into the actual reaction (for details, see subsection III.B.2 and Table 

A2). Therefore, in this subsection only discuss the singlet pathway is discussed. To avoid 

confusion, hereafter we add a superscript to each species to denote its spin multiplicity.  

 

 
Figure 41: Free energy landscape of the intermediates involved in the CO2-to-CO reductio1n 

according to type I, III and IV mechanisms. Intermediates are displayed in solid lines and 

transition states are displayed in dashed lines. The Gibbs free energy variation compared to the 
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reference, i.e. the intermediates 12- and all reactants infinitely separated in DMF, is displayed 

below each intermediate. For a better understanding of the entropy contribution, the enthalpy 

variation (same reference) is shown below the Gibbs free energy. Intermediates belonging to 

mechanism I are represented in blue, those selectively belonging to mechanism III are 

represented in red, and those selectively belonging to mechanism IV are represented in green. 

(Bottom) Schematic representation of the reaction intermediates by order of generation for each 

pathway.  

 

DFT calculations predicted that formation of 1A is slightly endergonic with ΔG = +2.5 

kcal/mol and traverse a barrier of ΔG≠ = +9.0 kca/mol of 1TS1. In fact, the positive ΔG values 

almost exclusively originates from the unfavorable entropic term (-TΔS), because this 

transformation was computed to be only slightly exothermic (ΔH = -5.4 kcal/mol), consistent 

with the fact that CO2 is a typically weak ligand and the metal-CO2 interaction is quite 

weak.54,102,103 In line with this reasoning, the entropy contribution also accounts for more than 

80% of the barrier.  

In mechanism III, activation of the CO2 motif in 1A is accomplished by forming two 

hydrogen bonds between the oxygen atom of the target C-O bond and two PhOH affording 1C. 

The formation of 1C was computed to be energetically neutral (ΔG = +0.4 kcal/mol) and no 

barrier could be found. In fact, the step was calculated to be highly exothermic (ΔH=-20.1 

kcal/mol), but this high exothermicity is compensated by an unfavorable entropic term due to 

the association of three fragments (1A and 2 PhOH). The subsequent C-O bond cleavage in 1C 

is simultaneous with two proton transfers from the phenols to the oxygen, affording 1F and 

H2O. The step was estimated to be significantly exergonic (ΔG = -6.2 kcal/mol), due to the 

tremendous entropic contribution arising from the dissociation of 1C into four fragments, i.e. 

the metal-carbonyl 1F, H2O and two PhO-. Despite this, this step has to overcome a sizeable 

barrier of ΔG≠ = +10.5 kcal/mol (1TS2). This barrier can be attributed to lack of driving force 

associated with the C-O bond cleavage in 1C as suggested by the estimated enthalpy change 

(ΔH = +9.4 kcal/mol).  

In mechanism I and IV, 1A interacts with one PhOH to afford 1B featuring a hydrogen 

bond between the O atom of the target C-O bond and the PhOH. No detectable kinetic barrier 

could be found for this step. The formation of complex 1B from 1A in mechanism I and IV (ΔG 

= –6.8 kcal/mol) is significantly favored over that of complex 1C in mechanism III (ΔG = +0.4 

kcal/mol). Essentially, this difference originates from the entropy penalty associated with the 

formation of 1C. 1B then transforms into 1D, a significantly endergonic event (ΔG = +7.5 
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kcal/mol) traversing a sizeable barrier (1TS3, ΔG≠ = +9.4 kcal/mol). The free energy cost of 

this step originates from an unfavorable enthalpy contribution, despite 1D being stabilized by 

an intramolecular hydrogen bond between the COOH group and one nitrogen of the porphyrin 

ligand (as indicated by the short N-H interatomic distance of 2.02 Å). The barrier height mostly 

originates from the lack of driving force associated with the proton transfer (ΔH = +9.2 

kcal/mol). 

In mechanism I, the formation of complex 1E from 1D is slightly exergonic (ΔG = -3.8 

kcal/mol). In more details, a strong enthalpic contribution is compensated by an unfavorable 

entropic term, owing to the association of two fragments (1D and PhOH). No detectable kinetic 

barrier could be found for this step. The subsequent C-O bond scission in 1E ultimately affords 
1F, H2O and PhO-. Similar to the formation of 1F in mechanism III, this step is slightly exergonic 

by ΔG = -2.7 kcal/mol, owing to a tremendous entropy contribution following the dissociation 

of 1E into three fragments (1E, PhO- and H2O). The barrier was computed to pass through 1TS4 

with a barrier of +7.9 kcal/mol. This value is on par with that of 1TS2 in mechanism III. In fact, 

the barrier largely stems from the driving force of the C-O bond cleavage, ΔH = +6.5 kcal/mol, 

which is is similar to that of the C-O bond breaking in mechanism III. However, although the 

barrier of 1TS4 is commensurate with that found for 1TS2 in mechanism III, 1TS2 is 

destabilized by +6.1 kcal/mol relative to 1TS4. This difference largely arises from the 

prohibitive entropic term resulting from the association of 1A with two PhOH molecules, 

because the enthalpy of 1TS2 is 4.4 kcal/mol lower than that of 1TS4. 

In mechanism IV, the C-O bond in 1D cleaves without assistance of a second proton 

transfer, releasing 1F and a OH- ion. Unlike in mechanism I, this step is significantly uphill (ΔG 

= +15.6 kcal/mol) due to a prohibitive enthalpic difference (ΔH = +23.6 kcal/mol), and has to 

go through an impossibly high barrier of ΔG≠ = +43.7 kcal/mol (1TS5). In comparison with 

Pathway I and II, the high enthalpic cost in the present case stems from the absence of protons 

to produce H2O, a thermodynamic sink, with the resulting OH–. As a consequence of lack of 

sufficient driving force, the C-O bond breaking suffers from an exceedingly high kinetic barrier. 

This example confirms that the formation of a water molecule simultaneously with the C-O 

bond cleavage considerably lowers the associated barrier. On this basis, the pathway initially 

suggested by Costentin et. al.237b (where 1C dissociates into 1F, PhO- , PhOH and OH-) is likely 

to go through a higher barrier than that of 1TS2 in pathway I. Therefore, it can be ruled out from 

the most plausible pathways.  

 Taken together, the present analyses suggested that mechanism I is the most favored of 

all explored mechanisms because the transition state associated with the C-O bond cleavage is 
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of the lowest energy of all the three pathways. This result is consistent with an earlier 

computational study.95 However, this previous work only considered the reaction occurring on 

the triplet and quintet surfaces, the singlet pathways were completely ignored. Furthermore, on 

the basis of our theoretical results, we cannot unequivocally determine the nature of the rate-

determining step to be either the formation of the CO2 adduct (ΔG≠=9.0 kcal/mol),  the first 

proton transfer (ΔG≠ = +9.4 kcal/mol) and the C-O bond cleavage in Pathway II (ΔG≠ = +7.9 

kcal/mol) since the estimated barrier differences between them fall within the typical 

uncertainty range of hybrid DFT functionals.148 Despite this, the C-O bond breaking was found 

involve a significantly high barrier, as postulated in earlier experimental studies.16,236 The high 

energy barrier associated with 1TS4 (ΔG≠ = 43.7 kcal/mol) show that the C-O bond cleavage 

must be concerted with a proton transfer, lest the step suffers from a substantial lack of driving 

force. This result is consistent with the experimental findings by Costentin.16  

To verify whether our computational model satisfyingly reproduces the physics of the 

reaction, we computed the turnover frequency of the reaction, which requires the complete 

energy landscape including all intermediates and the transition states connecting them.130,131 

Indeed, the maximum turnover frequency was estimated for three different phenol 

concentrations ([PhOH] = 0.1, 0.75 and 3 M) using the method of Costentin et. al.42 Our 

calculated values of 3.6x104 s-1, 2.6x105 s-1 and 1.10x106 s-1 are in very good agreement with 

the experimental values (1.8x103 s-1, 1.5x104 s-1 and 1x105 s-1) (for details, see the annex of this 

chapter). This further lends credence to the reliability of our theoretical results, a necessary 

premise for the following analyses aiming at obtaining qualitive insights into the reaction 

mechanism. The turnover frequency was estimated at 2.5x105 s-1 using the method of 

Christiensen129,130,131 (all reactants concentration of 1 M, for calculation details, see the annex 

of this chapter) also reasonably matches the experimental order of magnitude. This further lends 

credence to the reliability of our theoretical results, a necessary premise for the following 

analyses aiming at obtaining qualitive insights into the reaction mechanism. 

 

2) Exploration of alternative type II mechanisms 

 

The possibility that the reduction step follows the formation of the Fe-CO2 adduct (type 

II.a mechanism) or the protonation of the adduct (type II.b mechanism) rather than preceding 

the formation of the adduct (type I mechanism) has been investigated (Figure 42). 

Unsurprisingly, the formation of the intermediate 1[Fe(TPP)(CO2)]- from 21- requires a free 

energy cost of ΔG = +10.9 kcal, and has to go through a barrier of ΔG≠ = +13.1 kcal/mol, mostly 
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due to the lack of driving force associated with the adduct formation. In mechanism II.a, the 

intermediate accepts an electron from the electrode, (E0= -1.39 V) to form 1A, similar to 

mechanism I or III. In mechanism II.b, the oxidized adduct first undergoes protonation from a 

nearby phenol to afford the oxidized metallacarboxylic acid [Fe(TPP)(CO2H)]. However, this 

step is particularly uphill (ΔG = +18.0 kcal/mol). The intermediate subsequently accepts a 

second electron from the electrode to form 1D (E0=  -0.66 V), similar to pathway I.  

In mechanisms II, the formation of the adduct is significantly more uphill than the 

corresponding step in mechanism I. This can be easily rationalized on the basis of the donating 

abilities of the metal being somewhat impaired by the higher charge of the overall complex. 

Because of the lack of driving force, the step admits a barrier that is about 3.7 kcal/mol higher 

than the highest computed barrier in mechanism I. Therefore, the kinetics of the reactions are 

expected to be drastically lower than that of pathway I, consistently with the experimental 

observation.16  

Obviously, the redox potentials and formation energies of the intermediates are linked 

through a thermodynamic cycle (Figure 42). Consequently, mechanisms II can only afford 

milder potentials than mechanism I or III at the cost of a lower driving force for key-

intermediates formation, which in turn can impair the reaction kinetics. In this case, the redox 

potentials of mechanism II.a (E0= -1.39 V) and II.b (E0= -0.66 V) are significantly milder than 

that of pathway I (E0= -1.76 V), but intermediates and transition states in those mechanisms are 

significantly higher in energy than their counterparts in mechanism I. This negatively affects 

the kinetics and makes the mechanism I preferred over mechanism II, despite the slightly more 

negative required potentials. Generalizing from this case, it can be proposed that in CO2 

electrocatalytic reduction, the compromise between mild potential and fast kinetics determines 

the active mechanism: type II mechanism may prove too slow, while type I mechanisms may 

require the generation of active species at impossibly negative potentials, which may then 

undergo various facile decomposition or side reactions.  
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Figure 42: Schematic representation of the energetics of Type I versus type II.a mechanisms. 

Horizontal arrows represent chemical steps, while vertical arrows represent reductions at the 

electrode. Numbers in green represent the Gibbs free energy variation associated with each 

step; number in red represent the free energy barriers associated with the step; blue numbers 

represent the standard redox potentials (vs. SCE) of the couples.  

 

3) Selectivity with respect to H2 generation 

 

We also computationally investigated the side reactions to furnish H2 and formic acid (Figure 

43). For each intermediate, three possible spin states have been calculated and only the lowest-

lying is discussed here. Typically, these reactions start with formation of a metal-hydride 1M 

rather than the Fe-CO2 adduct 1A.52 In the case of 12-, this step is rather unfavorable (ΔG= + 8.5 

kcal/mol), and most importantly admits a rather large kinetic barrier (ΔG≠= + 19.1 kcal/mol, 
1TS6). Following this step, the reaction may proceed either towards HER or HCOOH 

formation. The formation of dihydrogen involves the attack of the subsequent metal-hydride on 

a second proton to form 31 and dihydrogen. This step is highly exergonic (ΔG = -18.4 kcal/mol), 

because of a favorable entropy and enthalpy variation. Alternatively, in the mechanism of 

formic acid generation, the next step consists in a insertion of a CO2 molecule to form a Fe-

OCHO adduct 5N. Our calculation show that this step is extremely exergonic (ΔG= - 33.0 

kcal/mol) despite an unfavorable entropy variation. An alternative pathway for HCOOH 

generation involves the direct interaction between the reduced metal and CO2 to form an Fe-

OCO adduct. However, we could not find a stable geometry for this adduct, which dissociates 

upon geometry optimization into 12- and CO2, showing this alternative pathway is not a viable 

source.  

The experimental selectivity of the reaction for CO generation over HCOOH and H2 

generation thus originates from pure kinetic reasons. In fact, the driving force of the two latter 
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reactions are significantly higher than that of CO generation. However, we found that the 

formation of the metal-hydride admits an impossibly large barrier (ΔG≠= + 19.1 kcal/mol), 

which prevents the formation of this key-intermediate. By comparison, the barrier controlling 

the formation of the Fe-CO2 adduct is only ΔG = +9.0 kcal/mol. The relative accessibility of 

these two key intermediates is of the outmost importance, since it determines whether the 

reaction is driven towards CO or HCOOH/H2 generation. Hence, our calculations predict the 

formation of HCOOH and H2 is prohibited for kinetic reason, due to the impossibly high-lying 

transition state associated with the formation of the metal-hydride adduct. A similar result was 

found by Zhang and al. for a related iron-porphyrin system105 and by Keith and al. for 

[Re(bpy)(CO)3]K.103 

 

 
Figure 43: Free energy landscape of key-intermediates and transition states involved in the 

CO2-to-CO conversion reaction (Pathway II, green lines), hydrogen evolution (red lines) and 

HCOOH generation (blue lines). Intermediates are displayed in solid lines and transition states 

are displayed in dashed lines. The Gibbs free energy variation and the enthalpy variation are 

displayed below each intermediate. The schematic representation of each intermediate is shown 

below the free energy surface. 

(112-)

(1TS1)

(1A)
Δ" = 0
Δ% = 0

Δ" = 9.0
Δ% = 1.7

Fe
2

Fe

C
O O

2

Fe

C

O

G (kcal/mol)

+CO2
0

+10

−10

+20

(1A) (1F)(112-)

+2 PhOH
-2 PhO-

+H2O (1F)
Δ" = −3.3
Δ% = −3.3

(1TS6)
Δ" = 19.1
Δ% = 6.7

(1M)
Δ" = 8.5
Δ% = 8.3+PhOH

-PhO-

−20

(31)

Δ" = −10.1
Δ% = −5.5

−30

(5N)

Δ" = −24.5
Δ% = −28.4

+PhOH
-PhO-

+H2

+CO2

Fe

H

(1M)

Fe

O

O
H

(5N)

Fe

(31)

Δ" = 2.5
Δ% = −5.4



 
167 

B. Electronic structure analysis of the reaction 

 

1) Orbital analysis of the intermediates in mechanism I 

 

In the following, the changes in the electronic structure of mechanism I, most probable 

of all investigated mechanisms, was scrutinized. On the basis of that, we attempted to correlate 

the electronic structure of 112- with its exceedingly high activity of CO2 functionalization, in 

particular, aiming to pinpoint the role played by the non-innocent TPP ligand. 

As elaborated in Chapter 2, the bonding of 112- is best described as an intermediate spin 

FeII center (SFe = 1) antiferromagnetically coupled to a triplet diradical TPP tetra-anion (STPP = 

1), thereby yielding an overall singlet ground state (Figure 44, A). Specifically, the Fe center 

features an electronic configuration of (dxy)2(dz2)2(dxz)1(dyz)1, and there are two electrons 

occupying the low lying TPP centered π* eg orbitals labelled as1eg(xz) and 1eg(yz). The Fe-

dxz/yz and 1eg orbitals forms two spin-coupled pairs that represent two antiferromagnetic 

coupling pathways. It should be re-emphasized that the magnetic orbitals (Fe-dxz/yz and 1eg) 

belong to the same representation (eg) of the effective D4h point group of 112-; therefore, their 

interactions are symmetry-allowed as indicated by the computed considerable overlap of the 

two spin coupled pairs (0.33). As such, in the resulting MOs, the Fe dxz/yz atomic orbitals (93.9 

and 6.4% in the α and β magnetic orbitals, respectively) mix heavily with the TPP-1eg (6.1 and 

93.6%) fragment orbitals. If the fragment orbitals of the TPP••4– ligand and the Fe center 

transformed as different irreducible representation of the effective D4h point group, their 

exchange interaction would feature ferromagnetic coupling on the grounds of the Goodenough-

Kanamori rule254 rather than antiferromagnetic coupling as determined experimentally.17,18,179 

It is because of this symmetry-allowed exchange interaction that 112- possesses a singlet ground 

state. The triplet and quintet states were computed to be destabilized by 5.6 and 12.1 kcal/mol, 

respectively, relative to the singlet state (Table A2). 

 As depicted in Figure 44, B, the driving force to generate 1A largely stems from the 𝜎-

donation from the doubly occupied Fe-dz2 orbital to the vacant CO2 in-plane π* orbital (πip*). 

The latter constitutes one of the lowest unoccupied molecular orbitals (LUMOs) of CO2 that 

has much larger lobe at the central C atom than those at the two terminal O atoms. The most 

notable geometric feature of 1A is bending of the CO2 ligand with an O-C-O angle of 1300 

compared to 1800 for uncoordinated CO2 molecules. As elaborated earlier,54 such a geometric 

distortion not only significantly decreases the energy of the LUMO, but also increases the C-p 

character in it. Thus, the energy difference between the CO2-πip* and Fe-dz2 orbitals drops and 
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their overlap becomes enlarged. Apparently, both factors enhance their interaction. Despite this, 

the resulting bonding MO (1σ) contains only 32% CO2 π* parentage; hence, the bonding is 

quite weak, consistent with the estimated vanishing formation enthalpy of 1A (see subsection 

III.A). Nevertheless, this essentially dative interaction can be viewed as partial electron transfer 

from the Fe center to the CO2 motif. Interestingly, the MO analyses revealed that the formation 

of 1A is accompanied with an intramolecular β electron transfer from the 1eg(yz) MO to Fe-dyz. 

This electron transfer occurs only for the spin-coupled pair consisting of the Fe-dyz and 1eg(yz) 

MOs, instead of the other pair. Different from 12-, the Fe-dxz and Fe-dyz orbitals in 1A are not 

energetically degenerate anymore, because the former is destabilized by the repulsion with the 

doubly occupied 𝜎 orbitals of the two C-O bonds; while the latter is stabilized by its back-

donation to the CO2 out-of-plane π* orbital (πop*), the other LUMO of CO2. Consequently, the 

electronic structure of 1A is best formulated as a low FeI center (SFe = ½) bound to an 

approximately charge-neutral CO2, interacting with a TPP radical ligand (STPP = 1/2) in an 

antiferromagnetic fashion, thus giving an overall singlet ground state. More importantly, the 

loss of the electron density of the Fe center resulting from the Fe-to-CO2 σ- and backdonation 

is compensated by the TPP-to-Fe electron transfer, and during the CO2 association process the 

electron density of the Fe center does not vary drastically.  

In fact, the bending of the CO2 motif in 1A is primed for the protonation to afford 1D 

(Figure 44, C), because, besides the electronic structure discussed above, such a geometric 

distortion also raises the energy of its highest occupied molecular orbital (HOMO), an 

antisymmetric combination of the two O lone pairs and in-plane C-p orbital, and simultaneously 

increases the weight of the O-p orbital in it.54 Our theoretical results revealed that upon 

protonation, the CO2-πip* character in the doubly occupied 1σ bonding MO increases from 32% 

to 56%, thereby indicating substantial covalent character for the Fe-CO2 σ-bonding. In analogy 

to the preceding step, the protonation is companied by a β electron transfer from the porphyrin-

based 1eg(xz) MO to the Fe-dxz orbital, which again prevents drastic change in the electron 

density of the Fe center. The physical oxidation state of the Fe center cannot be unambiguously 

assigned because of the high covalency of the C-O bond. Instead, the bonding of 1D has to be 

described as a resonance hybrid of a low spin FeII ion (SFe = 0) bound to (CO2H)– ligand and a 

low spin Fe0 center (SFe = 0) coordinated by a (CO2H)+ ligand. This complex electronic-

structure description indeed suggest that one-electron reduction of the CO2 ligand is complete, 

in line with the calculated Fe-CO2 bond distance shortening from 2.02 Å in 1A to 1.89 Å in 1D. 

As such, conversion of 1A to 1D is best described as a concerted proton-electron transfer and 

C-O bond cleavage (CPETBC) as postulated by earlier experimental studies.16,97,98,99 
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As bored out from the MO diagram of 1TS4 (Figure A2), in the following proton-

assisted heterolytic C-O bond breaking, the two electrons originally occupying the 𝜎-bonding 

C-O orbital enter into the lone pair of the oxygen in the nascent H2O molecule. Meanwhile, due 

to the exceedingly high electron-accepting capability of the resulting formal carbocation center, 

in 1F the bonding MO 1σ acquire more CO character (61%) and the weight of the Fe-dz2 atomic 

orbital decreases to 35%; thus, 1F contains a low spin ferrous center bound to a CO ligand and 

features strong back-donation from the doubly-occupied Fe-dxz and Fe-dyz orbitals to the C-O 

π* orbitals. At this stage, the two-electron transfer from the Fe dz2 orbital to the CO2-πip* orbital 

is largely completed. Taken together, this step can be interpreted as a concerted proton-electron 

transfer and C-O bond cleavage. 

 



 
170 

  
Figure 44: (Top) catalytic cycle of CO2-to-CO conversion catalyzed with 12- (mechanism I). 

(Bottom) associated electronic structure of the intermediates 12- (A), 1A (B), 1D (C) and 1F (D). 

The electrons occupying the d-orbitals of the iron, the 1σ orbital and the redox-active orbitals 

of the TPP ligand are represented by arrows. Electrons involved in the ligand-to-metal 

intramolecular transfer are shown as red arrows. Electrons involved in the metal-to-CO2 charge 

transfer are shown as green arrows. The Fe and CO2/CO2H/CO Löwdin population of the 1σ 

bonding orbital formed by interaction of the iron center and the ligand is displayed circled in 

green. For clarity, all hydrogens are hidden except the hydrogen of the CO2H motif. 
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2) The role of the non-innocent porphyrin ligand in the reaction 

 

Due to the non-innocence of the TPP ligand, the active species 112- is formed from 31 

by primarily ligand-centered two-electron reduction. This enables the generation of 112- at a 

milder potential compared to what would be expected for a metal-centered reduction. In fact, 

because the electron acceptor is the highly delocalized 1eg orbitals, the additional electronic 

density is delocalized over the 24 atoms of the porphyrin ligand and is expected to suffer 

moderate interelectronic repulsion. Furthermore, this electron transfer is expected to induce 

rather low degree of the geometric distortions and hence suffers from substantially attenuated 

reorganization energy. This contrast with metal centered redox processes with much more 

compact and localized d-orbitals functioning as the redox active orbitals. Typically, two-

electron reduction of the metal center hardly occur, in particular for 3d transition metals. Even 

if such redox events could happen, the reduction potential should be exceedingly negative. The 

resulting highly reactive complexes are thus expected to undergo various more facile 

transformations and perhaps cannot participate in CO2 reduction. By contrast, for 112-, the 

complete delocalization of the additional electrons onto the conjugated porphyrin π-system 

provides a certain degree of stabilization of such a highly charged species. This probably 

explains why 112- can be generated at a rather mild potential and exhibits an almost quantitative 

Faraday efficiency for CO generation. 

As discussed above, each elementary step of the reaction consists of two separate 

electron-transfer events. One is the two-electron transfer from Fe-dz2 to CO2 πip* orbitals that 

is required for conversion of CO2 to CO, and the other is the two-electron transfer from 1eg to 

Fe-dxz/yz orbitals. Indeed, in the present case, the CO2 binding has to happen at the Fe center.255 

Due to the completely delocalized nature of the π-electrons, all atoms of TPP possess more or 

less identical electron density. On the contrary, the Fe center is more reactive, because its dz2 

orbital has appropriate shape and can preferentially interact with the CO2 π* LUMOs.54 Hence, 

the CO2 reduction must happen at the Fe center, but the required reducing equivalents are stored 

at the ligand.  In essence, the intrinsic electron donor is TPP••4–, and the Fe center merely acts 

as a wire to effect the electron transfer from TPP••4– to CO2.  

Because the two aforementioned electron transfers are synchronized, the electron 

density of the Fe center does not vary significantly throughout the reaction; therefore, the iron 

center retains its donating abilities despite the metal-to-CO2 electron transfer. Furthermore, the 

distortion energy resulting from the adjustments in the first coordination sphere of the Fe center 

during the electron transfer is considerably reduced. This analysis, at least in part, rationalizes 
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why 112- featuring a non-innocent TPP ligand exhibits the exceedingly high catalytic activity 

towards CO2 reduction. The fundamental importance of the electron transfer events 

synchronization is best illustrated by the investigation of the triplet and quintet energy surface 

(Figure 45, Table A2). 

As detailed in Figure 45, the triplet state of [Fe(TPP)]2- (312-) also contains an 

intermediate spin ferrous center but interacting with a singlet diradical TPP tetra-anion with 

one α electron and one β electron occupying its 1eg orbitals. Subsequently, the formation of the 

Fe-CO2 adduct (3A) is characterized by a weak 𝜎-donation from the Fe-dz2 orbital to the CO2 

πip*, concomitant with a spin-allowed electron transfer of a β-electron from the 1eg(yz) to the 

Fe-dyz orbital. Hence, 3A, contains a local FeI similar to 1A, although the former is 

ferromagnetically coupled with a porphyrin tri-anion. Consequently, we find the formation cost 

of 3A (ΔG = - 0.1 kcal/mol) is similar to that of 1A (ΔG = +2.5 kcal/mol) within the error range 

of DFT. On the other hand, the protonation of the adduct (3D) does not involve a second electron 

transfer like in its singlet counterpart because the transfer of the α-electron from the 1eg(xz) to 

the Fe-dxz metal is spin-forbidden. Hence, the metal center in 3D is best described as a resonance 

hybrid form of a FeIII ion bound to a (CO2H)– ligand and a FeI center bond to a (CO2H)+ ligand, 

ferromagnetically coupled to a porphyrin tri-anion. The iron in the 3D intermediate has a higher 

oxidation state than that of 1D (see subsection III.B.1). Consequently, the formation cost of 36 

is highly unfavorable (ΔG = +10.4	kcal/mol) whereas the formation of 1D, facilited by a second 

intramolecular electron transfer, is barely uphill (ΔG = +0.7	kcal/mol). This example nicely 

illustrates how the coupling of the two electron transfer events (Fe-to-CO2 and TPP-to-Fe) 

significantly reduces the energy of the intermediates, and thus has a positive effect on the 

kinetics of the reaction.  

The quintet state of [Fe(TPP)]2- (512-) contains a ferrous Fe(II) (SFe=1) ferromagnetically 

coupled with a porphyrin diradical (STPP=1), i.e. with two α electrons occupying its eg orbitals. 

Interestingly, the Fe-CO2 adduct (5A) was found unstable and spontaneously dissociated into 
512- and CO2 upon geometry optimization. This constitutes a major difference with the singlet 

and triplet pathways where the corresponding adduct is stable. Unlike in the singlet and triplet 

pathways where the adduct formation is companied with one TPP-to-Fe electron transfer, in 

this case any such transfer is spin-forbidden. Consequently, the donating ability of the metal 

center remains insufficient to bind CO2. The protonated adduct (5D) is stable but significantly 

higher in energy than 1D (ΔG = +18.5 kcal/mol), at least in part due to the higher iron oxidation 

state in 5D compared to 1D. Notably, 5D is even more high-lying than 3D (ΔG = +5.8 kcal/mol), 

although both intermediates contain an iron center in the same oxidation state. This difference 
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can be traced back to the electronic configuration of the iron. 5D differs from 3D by the 

promotion of one electron from the Fe-dyz orbital to the antibonding 1σ* (antibonding 

combination of the Fe-dz2 and CO2-πip*). The latter is much higher lying due to unfavorable 

repulsive interactions with the CO2H moiety, which explains why 5D is destabilized with 

respect to 3D. 

 

 
Figure 45: (Top) Representation of the singlet (black), triplet (blue) and quintet (brown) free 

energy landscape for the mechanism I, up until the formation of the metallacarboxylic acid. 

Each bar corresponds to the energy of the intermediate schematized below the diagram, i.e. 12-

, A, D and F. (Bottom) schematic representation of the electronic structure of the system , i.e. 

occupied d-shell of iron, redox-active orbitals of the TPP ligand (1eg), bonding (1σ) and 

antibonding (1σ*) combination of the Fe-dz2 and CO2-π* orbitals in the intermediates 12-, 2 and 

6, depending on the overall spin state of the intermediate, i.e. .S=0 (top), S=1 (middle) or S=2 

(bottom). Of note, in 12-, the Fe-dz2 and CO2-π* orbitals do not overlap, hence 1σ and 1σ* are 
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replaced by dz2 and CO2-π*, respectively. Electrons in the orbitals are represented by black 

arrows. Green dashed arrows represent spin-allowed electron transfers, and red dashed arrows 

represent spin-forbidden electron transfers. For the electronic structure of the intermediate 52, 

the mention “Unstable” accounts for the fact that the adduct dissociates spontaneously into 
5[Fe(TPP)]2- and CO2. 

 The above study on the triplet and quintet energy surfaces highlights the importance of 

the electron transfer synchronization. Hence, because ligand-to-metal electron transfers are 

prohibited, 3D and 5D both contains a metal center in a higher oxidation state than the iron of 
1D. Consequently, both 3D and 5D admit a formation free energy cost that is higher than the 

highest barrier in the singlet mechanism. Likewise, the formation of 5A is entirely prohibited, 

because both electrons remain on the TPP platform and cannot participate in the metal-centered 

binding of CO2. All these elements strengthen our assumption that the synchronization of two 

electron transfers is fundamentally crucial to the reaction kinetics. 

 How does the system synchronize the TPP-to-Fe electron transfer with the Fe-to-CO2 

electron transfer? First, the TPP-1eg and Fe-dxz,yz fragment orbitals have comparable energy, 

otherwise the electron transfer would not be thermodynamically feasible. Most importantly, 

both sets transform as the same irreducible representation of the effective D4h point group of 
112-. Consequently, they form two spin-coupled pairs with considerable overlap. The 

antiferromagnetic coupling between the ligand and the metal has two consequences. First, it 

lowers the energy of the singlet energy surface compared to that of higher spin multiplicities, 

and ensures the electron transfer does not incur an energetically unfavorable spin crossover.256 

Second, the system carries out the TPP to Fe transfer simultaneously with the Fe to CO2 transfer 

as the latter increases the effective charge of Fe. In fact, the loss of Fe electronic density due to 

the Fe to CO2 transfer is immediately compensated by an increasing TPP to Fe electron 

delocalization in the magnetic orbitals. Indeed, as seen in Figure 46, along the reaction 

coordinates of the formation of 1A, the Fe+CO2 population of the β-1eg(x) magnetic orbital 

slowly increases, stepping from about 6% in 112- to about 20% in 1TS1, to finally reach 98% in 
1A. This mode of continuous transfer minimizes the variation of electronic density of the metal 

center along the reaction coordinates. In all likelihood, this participates in lowering the 

activation barrier by increasing the donating abilities of the metal center, even when a complete 

electron transfer is not thermodynamically feasible. Hence the antiferromagnetic coupling is 

pivotal in synchronizing the two electron-transfer events.  
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Figure 46: Evolution of the β (spin-down) magnetic orbital 1eg(x) as a function of the Fe-CCO2 

distance during the formation of the intermediate 1A. The dots correspond to the structures 

calculated along the relaxed surface scan. The red dot corresponds to the transition state 1TS1. 

 

IV. General patterns of ligand non-innocence in CO2 reduction 

 

A. Comparison with representative systems 

 

Besides 112-, we have analyzed the electronic structure evolution in the course of the 

CO2-to-CO reactions mediated by at least eleven related catalysts (Scheme 1) that are also 

supported by non-innocent ligand platforms (for details see Supporting Information ). For all 

these systems, the metal center acts as the active site for CO2 functionalization, but the non-

innocent ligand acts as the electron reservoir. Like 112-, this requires the metal-to-CO2 electron 

transfer should be coupled to the ligand-to-metal electron transfer. Our results demonstrated 

that the main differences among them lies in the nature of the chemical steps involving a ligand-

to-metal electron transfer. Based on this, these catalysts are divided into three categories.  
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Category I includes 112-, 22+ (Figures A4) 76, 330 (Figure A5)243 and 140 (Figure A6). The 

active species consists of a metal center in its usual oxidation state that is either 

antiferromagnetically coupled to a one- (22+) or two-electron reduced ligand diradical (112- and 
330), or coupled with a closed-shell, doubly-reduced ligand (140). The category is distinguished 

by the ligand-to-metal electron transfer being achieved by two separate one-electron transfers; 

one takes place during the CO2 adduct formation step, and the other during the first protonation 

step.  

 

1) Comparison with Category II 

 

Category II is distinguished by the ligand-to-metal electron transfers taking place in two 

separate events: one takes place during the CO2 adduct formation step; the other during the C-

O bond cleavage step. Category II catalysts include, 250 , 260 and 270, 48,76,239 which either feature 

a metal center antiferromagnetically-coupled to a two-electron reduced ligand (250, 260), or a 

metal center coupled to a closed-shell, doubly-reduced ligand (270). Either way, the electron 

transfers describing the reaction mechanism are identical for these three catalysts. Here we take 

the reaction with 250 as an example to discuss the electronic structure evolution along the 

reaction coordinate, and summarize those for 160 and 270 in the Annex of this chapter (Figures 

A7, and A8). 

 The system 250 has been extensively studied and is known to catalyze selective CO2 to 

CO conversion reaction in wet conditions. Computational and experimental studies suggest 

ligand non-innocence,80,102 a notion in line with the notorious non-innocent character of the 

Pyridine-diimine (PDI) ligand platform resolved experimentally in several transition metal 

complexes. 242,257,258  In fact, our calculations suggest that 250 is best described as a low spin 

CoII (SCo=1/2) antiferromagnetically coupled with a N4H••2- di-anion radical (SN4H=1). 

Specifically, our orbital analysis (Figure 47, A) suggests that two unpaired electrons populate 

the orbitals 1a’ and 1a’’, labelled according to their symmetry representation in the Cs point 

group. The former is mainly composed of the N4H-centered N4H-πa’* fragment orbital. The 

latter is an admixture of Co-dyz fragment orbital (29%) and a ligand-based N4H-πa’’* fragment 

orbital (71%). Consequently, both 1a’’ and Co-dyz form a spin-coupled pair. Of note, the heavy 

mixing of the Co-dyz and N4H- πa’’* fragment orbitals is only possible because both transform 

in a A’’ representation in a Cs point group. Otherwise, the mixing would be energetically 

unfavorable. 
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The molecular structures of the intermediates involved in the CO2-to-CO reduction have 

been extensively studied in the literature and are summarized in Figure 47.94 Upon CO2 binding 

(intermediate 2G, Figure 47, B), the doubly-occupied Co-dz2 orbital slightly mixes with the 

empty πip* orbital of the CO2. The resulting bond is essentially dative, as shown by the Löwdin 

population of the resulting 1σ bonding orbital (77% Co, 23% CO2). This step is coupled with a 

first electron transfer from the N4H-πa’’* orbital to the Co-dyz, such that the resulting 

intermediate is best described as a low-spin CoI (SCo=0) weakly bound to a neutral CO2 ligand, 

plus a radical anion N4H•- (SN4H=1/2). Hence, this step is companied with a one-electron transfer 

from the N4H ligand to the cobalt. The subsequent protonation of the adduct yielding the 

intermediate 2H (Figure 47, C) increases the covalence of the bond between the Co center and 

the CO2H motif, as illustrated by the Löwdin population of the bonding orbital 1σ (43% Co, 

51% CO2H). Of note, the step is characterized by a partial electron transfer from the ligand to 

the metal. Indeed, unlike in the previous intermediate the singly-occupied 1a’ orbital 

corresponds to a mixture of the antibonding 1σ* fragment orbital (antibonding counterpart of 

1σ, Co-dz2 44% and CO2H 10%) and the N4H-πa’’* fragment π* orbital (46%). This mixture is 

possible because (1) the 1σ* and the ligand-based N4H-πa’* fragment orbitals are symmetry 

compatible (a’ representation in a Cs point group), and (2) these orbitals overlap significantly 

owing to the axial interactions between the Co-dz2 and the CO2H motif. Were these two 

conditions not fulfilled, the mixing of these fragment orbitals would not be energetically 

favorable, and the partial transfer would not happen. The oxidation state of the cobalt in this 

intermediate is ambiguous because of the covalence of the metal-CO2H bond and the 

delocalized nature of the radical electron. In fact, the cobalt can be described as a resonant 

structure between a CoIII (SCo=0) and Co0 (SCo=1/2) center, while the ligand is a resonant 

structure between a neutral N4H and an anion radical N4H•-, and the CO2H motif is a resonant 

structure between a (CO2H)- and (CO2H)+ ligand. In terms of electronic transfer events, this 

step can be interpreted as a one-electron transfer from the metal to the CO2 concomitant with a 

partial electron transfer from the ligand to the metal. Finally, the subsequent cleavage of the C-

O bond affords a metal-carbonyl adduct 2I and H2O (Figure 47, D). The formal carbocation has 

exceedingly high electron-accepting abilities compared to CO2, thus increasing considerably 

the CO character of the bonding orbital 1σ (26% Co, 70% CO). This step is concerted with the 

completion of the electron transfer from the N4H-πa’* orbital to the antibonding 1σ* orbital. 

Consequently, the cobalt is unambiguously described as a CoII center bound to a carbonyl 

ligand. Hence this step corresponds to the second metal-to-CO2 electron transfer and the 

completion of the previously partial electron transfer from the ligand to the metal. 
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 Like for 12-, the reaction process is associated with two intramolecular electron transfers 

events: a metal-to-CO2 transfer happening through σ-donation of the doubly-occupied dz2 to the 

unoccupied CO2-πip* orbital, and a ligand-to-metal electron transfer compensating the loss of 

electronic density on the metal center. Much like 12-, these electron transfer events are 

synchronized efficiently via the mixing of the primarily ligand-based electron-donating orbitals 

(N4H-πa’’*, N4H-πa’*) and the metal-based electron-accepting orbitals (Co-dyz and 1σ*). This 

mixing is allowed because the involved fragment orbitals (1) are symmetry compatible and (2) 

overlap significantly. The principal difference of this class of catalysts with that of 112- 

originates from the nature of the electron-accepting orbitals in the ligand-to-metal electron 

transfer, i.e. the Co-dyz and 1σ*. This difference stems from the higher d-count of cobalt 

catalysts compared to iron. Indeed, unlike for 12-, the dxz orbital is doubly occupied. Therefore, 

the β-dyz and the antibonding 1σ* orbital are the lowest-lying unoccupied d-orbitals. Of note, 

the latter is energetically very high compared to the electron-donating orbital. This explains 

why the second ligand-to-metal electron transfer is only partial in the metallacarboxylic acid 

intermediate 2H, unlike for 112- where the second electron transfer is complete in the 

intermediate 1D. 
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Figure 47: (Top) catalytic cycle of CO2-to-CO conversion catalyzed with [Co(N4H)] 

(mechanism taken from ref. 94). Dashed straight lines between atoms represent hydrogen 

bonds. (Bottom) associated electronic structure of the intermediates [Co(N4H)] (250, A), 

[Co(N4H)(CO2)] (2G, B), [Co(N4H)(CO2H)]+ (2H, C) and [Co(N4H)(CO)]2+ (2I, D) . The 

electrons occupying the d-orbitals of the cobalt, the 1σ, 1σ* orbitals and the redox-active orbitals 
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of the ligand are represented by arrows. Electrons involved in the ligand-to-metal 

intramolecular transfer are shown as red arrows. Electrons involved in the metal-to-CO2 charge 

transfer are shown as green arrows. The Co and CO2/CO2H/CO Löwdin population of the 

bonding orbital formed by interaction of the cobalt center and the ligand is displayed circled in 

green. In [Co(N4H)(CO2H)]+, the Co and N4H Löwdin population of the orbital harboring the 

radical electron is displayed circled in red. Positive parts of the orbitals are represented in red. 

Negative parts are represented in yellow. For clarity, all hydrogens are hidden except the 

hydrogen of the CO2H motif and the hydrogen participating in the intramolecular hydrogen 

bond. 

 

2) Comparison of 12- with Category III 

 

Category III is distinguished by a ligand-to-metal transfer entirely completed during the 

formation of the metal-CO2 adduct. This category includes 18-,103 19-, 71,247 1102-,64  1110,46 and 
1120.59 All catalysts contain a metal center coupled with a closed-shell, doubly-reduced ligand. 

Here we take the reaction with 18- as an example to discuss the electronic structure evolution 

along the reaction coordinate. 19-, 1102-, 1110 and 1120 are discussed in the Annex of this chapter 

(Figure A9, A10, A11 and A12).  

 18- and its derivates can catalyze selective CO2-to-CO reduction with one of the best 

turnover frequencies reported for homogeneous catalysis (Table 3). The non-innocence of the 

ligand in the active form of the catalyst was revealed by earlier experimental and computational 

studies.103,240,259  Notably, Keith and al.103 suggested that the presence of a counter-cation in the 

vicinity of the active species played an important role in the reactivity. In the following 

investigation, a K+ ion was added to the reaction intermediates to ensure consistency with this 

previous work. Consistently with these earlier investigations, our computations reveal that the 

diamagetic ground state of [Re(CO)3(bpy)]K is best formulated as a low spin ReI center (SRe = 

0) ligated by a singlet bpy2– ligand. Specially, the centered HOMO of 18- (1π*) with dominant 

bpy-π* parentage (74%) contains considerable Re-dz2 character (16%) (Figure 48, A). The 

mixing of these two fragment orbitals is symmetry-allowed, because they both belong to the 

representation A’ in the Cs point group. Furthermore, the bipyridine ligand bends out of the 

equatorial plane such as the overlap between the fragments is non-zero (Figure 48).  

The mechanism of CO2 reduction by 18- has been extensively studied in the past.103,240 

As CO2 approaches the Re center to form the intermediate 1J (Figure 48, B), two-electron 

transfer from the bpy-π* orbital to the formally empty Re-dz2 orbital takes place, and the latter 



 
181 

orbital donates the electron density into the CO2 in-plane π* orbital. Indeed, the doubly-

occupied, bonding orbital between the Re center and the carbon of the CO2 (1σ) has a large 

CO2 population (59% CO2, 28% Re). Because of the high covalency of the Fe-CCO2 bond, the 

oxidation state of Re is difficult to assign and the intermediate is best described as a resonant 

structure between a ReI center (SRe=0) bound to a (CO2)2- ligand and a Re-I center bount to a 

charge neutral CO2 ligand. Thus, during this elemental step, two electrons are transferred from 

the ligand to the metal, and approximately one electron was transferred from the metal to the 

CO2. After the protonation of the adduct and formation of 1K (Figure 48, C), the electron 

transfer to CO2 increases as indicated by the population of the 1σ orbital (26% Re-dz2, 66% 

CO2H). Here, the oxidation state of the Re center is less ambiguous and the complex can be 

described as a ReI (SRe=0) coupled to a (CO2H)- motif. Hence this step can be viewed as the 

second electron transfer from the metal to the CO2 ligand. Subsequently, an electron transfer 

from the electrode populates the 1π* orbital now unoccupied. Hence the complex can be 

described as a ReI (SRe=0) bound to a (CO2H)- motif and a radical bpy•- ligand (Sbpy=1/2, Figure 

A3). Finally, the C-O bond is cleaved, yielding a metal-carbonyl intermediate 2J best described 

as a ReI center bound to a radical bpy•- ligand and a carbonyl ligand, and releasing a water 

molecule.  

A great similarity with the electronic transfer patterns of 12- can be observed, i.e. the 

presence of two coupled electron transfer events (metal-to-CO2 and ligand-to-metal). 

Eventually, these events transfer the electrons stored on the ligand directly to the CO2 motif 

while leaving the oxidation state of the metal unchanged. Like in 12-, the coupling of the two 

electron transfer events is ensured by mixing of the ligand-based electron-donating (bpy-π*) 

and metal-based electron-accepting (Re-dz2) fragment orbitals. Here also, this mixing is favored 

thermodynamically favored because the fragment orbitals (1) are symmetry compatible and (2) 

overlap significantly due to the geometric distortion of the bpy ligand. Different from 12-, where 

the electrons stored on the ligands are transferred to the dxz,yz orbitals, in this case the electrons 

stored on the ligand are transferred to the metal-based Re-dz2 fragment orbital which directly 

interacts with the CO2 molecule. This difference with respect to 12- largely stems from the 

ligand-field symmetry (square-pyramidal), which greatly stabilizes dxy, dxz and dyz orbitals over 

the dz2. Hence the latter is likely to harbor the lowest-lying d-holes. Because the electron-

accepting orbital is greatly stabilized by interaction with the CO2-πip*, CO2 association triggers 

the direct bpy-to-Re two-electron transfer. This contrasts with the two categories discussed 

above, whose ligand-to-metal electron transfers are separated into two events.  
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Figure 48: (Top) catalytic cycle of CO2-to-CO conversion catalyzed with [Re(bpy)(CO)3]K 

(mechanism taken from ref. 103). (Bottom) associated electronic structure of the intermediates 

[Re(bpy)(CO)3]K (18-, A), [Re(bpy)(CO2)(CO)3]K (1J , B), [Re(bpy)(CO2H)(CO)3]K+ (1K, C) 

and [Re(bpy)(CO)4] (2L, D) The electrons occupying the d-orbitals of the rhenium and the 

redox-active orbitals of the ligand are represented by arrows.. Electrons involved in the ligand-

to-metal and metal-to-CO2 intramolecular transfer are shown as green arrows. The Re, bpy and 

CO2/CO2H/CO Löwdin population of the bonding orbital formed by interaction of the metal 

center, the bpy and the CO2 ligands is displayed circled in green. Positive parts of the orbitals 
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are represented in red. Negative parts are represented in yellow. For clarity, all hydrogens are 

hidden except the hydrogen of the CO2H motif. 

 

3) Comparison with [Ni(cyclam)]+ (“innocent” ligand) 

 

 Unlike 12-, the nickel-cyclam catalyst, another catalyst for CO2-to-CO reduction with 

excellent performances, is an example case of “innocent” ligand.54 A comparison with the 

catalytic cycle of 12- indicates that in both cases the two metal-to-CO2 electrons is mainly 

achieved by 𝜎-donation from the metal-dz2 to the CO2 in-plane π* orbital. However, the role of 

the ligand is fundamentally different in both cases. In the case of nickel-cyclam, the ligand 

itself, a saturated macrocycle, has no low-lying 𝜋∗ orbital susceptible to serve as electron-

accepting orbitals. Consequently, all the reductions are metal-centered. Unlike in the case of 12-

, where the two electrons necessary for the eventual reduction of CO2 are transferred to the 

molecular catalyst before the formation of the adduct, in the nickel-cyclam catalytic cycle the 

transfer of the second electron from the electrode to the catalyst would involve the population 

of a second electron in the antibonding Ni-dx2-y2 orbital, a highly unfavorable event. Instead, 

the second electron transfer from the electrode to the catalyst is only favorable at a later stage, 

when concerted with a proton transfer to the adduct (type IIc mechanism). As developed in 

subsection III.A.2, this type of mechanism involves the generation of uphill intermediates 

and/or transition states that can hinder the reaction kinetics, compared to a case where both 

electrons necessary for the CO2 reduction can be incorporated into the catalyst before the metal-

CO2 interaction. Of course, it is not to say that a catalyst with non-innocent ligand platform is 

always superior to a catalyst with an innocent ligand platform; this is not true. Many factors are 

always at play to explain the catalytic performance of a specific system. However, perhaps by 

storing electrons at a low energy cost and making them readily available to the metal center, 

non-innocent ligands platforms circumvent the necessity of generating high-lying intermediates 

or transition states. This in turn, may have a positive effect on the catalytic performances of a 

given system. 

 

B. General electronic and molecular structure requirements for catalysts with non-

innocent ligands 

 

1) General electronic and molecular structure requirements for catalysts with non-innocent 

ligands 
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All the CO2-to-CO catalytic reactions studied above can be broken down into two 

synchronized electron transfer events: (1) a metal-to-CO2 two-electrons transfer, and (2) a 

ligand-to-metal one- or two-electron transfer. The former is always effected mainly via σ-

donation of two electrons from the doubly-occupied dz2 orbital of the metal into the empty CO2 

πip* orbital. The latter transfer connects highly delocalized occupied π* orbitals of the ligand 

with formally unoccupied metal d-orbital. The ligand-metal cooperativity is at the core of the 

reactivity for all these complexes, hereby ensuring that the electrons stored on the ligand are 

transferred to the CO2 via the metal. 

 What ensures the synchronization of the two electron transfer events? All the 

investigated catalysts feature a heavy coupling between the ligand-based electron-donating π* 

orbital and the metal-based electron-accepting d-orbital. This coupling may give rise to an 

antiferromagnetic spin coupling, or more generally a molecular orbital delocalized over the 

ligand platform and the metal. Hence, for instance, in 112-, the TPP-1eg orbitals couple with the 

Fe-dxz,yz atomic orbitals to yield a delocalized 1eg molecular orbital; in 250, the N4H π1a’’* 

fragment orbital mixes with the Co dyz atomic orbital and, at later stage, the N4H π1a’* fragment 

orbital mixes with the σ*Co-C fragment orbital to yield the orbitals 1a’’ and 1a’, respectively; in 
18-, the bpy-π* fragment orbital mixes with the Re-dz2 orbital to yield the 1π* molecular orbital. 

Either way, the coupling of ligand-based and metal-based orbitals is central in ensuring that 

even small losses of electron density on the metal center is compensated by a continuous ligand-

to-metal electron delocalization, as developed for the case of 112-. This phenomenon is 

permitted because the aforementioned orbitals have (1) compatible symmetries, and (2) similar 

energies, otherwise such coupling could not happen.  

This work is perfectly in line with the earlier works on ligand non-innocence in general 

catalysis.260,261,262,263 In terms of reactivity, although some cases of ligand-centered mechanisms 

have been reported, 264,265 in many cases the reactivity is completely metal-centered. In the latter 

case, the ligand plays two fundamental roles. (1) The ligand serves as an “electron reservoir”, 

thus enabling the metal center to remain at stable oxidation state along the reaction 

pathway.266,267 (2) The electrons stored on the ligand are transferred to the metal during the 

reaction.260,268 Several studies have also noted significant mixing between the primarily ligand-

based redox-active orbitals and formally unoccupied metal d-orbitals in complexes featuring 

non-innocent ligands.269 All these findings are consistent with our present analysis. 

So, how to design catalytic systems taking the best advantage of the aforementioned 

properties? First of all, systems with pending coordination sites are to be preferred, to facilitate 
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the 𝜎-bonding with the CO2. This step often lacks suitable driving force,59,95,103 and kinetics 

may be further hindered if the metal-CO2 interaction has to compete with a ligand coordination. 

In that regard, four-coordinated planar or five-coordinates square-pyramidal complexes are 

excellent candidates. 

 The synchronization of the ligand-to-metal electronic transfer is also dependent on the 

coupling between the ligand and the metal, which requires orbitals of similar energies and 

compatible symmetry. Typically, large 𝜋-systems have a wide range of available molecular 

orbital which energies are comparable to the metal d-orbitals. A large manifold of low-lying 

available orbitals with various symmetries also ensures that such coupling is symmetry 

compatible. For these two reasons, highly conjugated ligand platforms are clearly excellent 

candidates. Furthermore, to maximize the ligand-metal interaction, the atoms of the ligand 

interacting with the metal center should also have pz-orbitals participating in the 𝜋-system, in 

order to maximize overlap between the lobes of the aforementioned fragment orbitals. For 

instance, conjugated sp2 nitrogen donors or carbenes are excellent candidates.  

 

2) Further implications of ligand non-innocence 

 

Generalizing the role of the ligand in the case of 12-, it can be speculated that non-innocent 

ligands endorse many roles in CO2-to-CO electrocatalysis. First and foremost, ligand-centered 

reductions enhance the stability of the active species by providing low-lying redox-active 

orbitals. By contrast, metal-centered reduction would involve the formation of highly reactive 

species more likely to be deactivated by side reactions.267 Likewise, stable active species also 

afford a high selectivity for CO2-to-CO compared to other electrocatalytic reduction reactions 

such as HCOOH or H2 generation. Indeed, our calculations suggest that in 12- the two latter 

reactions are prohibited mainly for kinetic reasons, because the metal-hydride formation step 

admits an impossibly high barrier (see subsection III.A.3). A more reactive species would likely 

find a lower barrier and have a negative impact on selectivity. Several computational studies of 

catalysts for CO2-to-CO conversion featuring non-innocent ligands also found that the 

selectivity originates from the height of the barrier in the metal-hydride formation step.103,105 

This pattern therefore suggests that the role of redox-active ligands in ensuring a high selectivity 

for CO2-to-CO conversion can be generalized.  

As developed in the case of 12-, the ligand-metal cooperativity is essential to the kinetics of 

the reaction. Owing to the synchronization of both electron transfer events, the metal oxidation 

state remains rather constant throughout the reaction. In the absence of such synchronization, 
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the reaction involve extremely unfavorable intermediates as was shown in the investigation of 

the triplet surface of 312-. It is likely that this kinetic effect is further enhanced by the coupling 

of the metal with the ligand. For instance, the continuous ligand-to-metal electron transfer 

during the formation of 1A likely helps reducing the kinetic barrier. The formation of the 

intermediate 2H is favored by the partial delocalization of the 1a’ orbital, mitigating the loss of 

electron density on the metal center and probably stabilizing 2H. It is likely that the metal-ligand 

cooperativity fulfills the same role in all the catalysts investigated in this study. However, the 

variable metal electronic configuration in the aforementioned catalysts warrants that different 

electron-accepting d-orbitals are involved in the ligand-to-metal electronic transfer. The nature 

and energy of these orbitals influence the synchronization of the two electron transfer events, 

which may induce differences in reactivity. For instance, in category I, two electrons are 

transferred from the ligand to the metal after the first protonation step. On the other hand, in 

category II, the second electron transfer is complete only after the cleavage of the C-O bond. 

Therefore, in the latter category the metallacarboxylic acid intermediates involve metal centers 

with higher oxidation states, with a possible negative repercussion on the reactivity.  

 

V. Conclusion 

Our computational investigation of the CO2-to-CO reduction reaction catalyzed by 112- 

proposes the following mechanism. (1) formation of the adduct, (2) protonation of the adduct, 

(3) cleavage of the C-O bond, (4) reduction of the metal-carbonyl and release of a CO molecule. 

We found a satisfying agreement between the predicted pathway and the available 

thermodynamic and kinetic data at our disposal. In particular, we found that the highest barrier 

was indeed compatible with the large turnover frequency of this catalyst, and that the system 

exhibited a high selectivity for CO generation rather than HCOOH or H2 generation. 

Most importantly, our present investigation provides a profound understanding of the 

catalyst’s structure-activity relationship. Indeed, the reaction can be broken down into two 

electron transfers events: (1) a metal-to-CO2 transfer, and (2) a ligand-to-metal electron 

transfer. The two aforementioned transfers are synchronized in such a way that the oxidation 

state of the metal hardly varies along the reaction coordinates. It was shown through comparison 

with higher spin state surfaces that the synchronization of the two electron transfer events is 

fundamental to the reactivity, because it circumvents the formation of intermediates with 

unfavorable oxidation states. Optimal synchronization is facilitated by the antiferromagnetic 

spin coupling between the porphyrin ligand and the metal. The latter connects the electron 
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density on the metal with that of the ligand such that along the reaction coordinates, the 

continuous transfer of electronic density from the metal to the CO2 is compensated by a 

continuous electronic transfer from the ligand to the metal.  

Comparison of the reactivity of 12- with that of 10 other catalysts with non-innocent ligand 

platform enables to generalize the feature of ligand non-innocence in CO2 reduction observed 

in 12-. On the basis of these findings, we propose that ligand non-innocence in CO2 reduction 

plays a central role in ensuring a high selectivity and stability, while maintaining fast kinetics 

through ligand-metal cooperativity. Finally, fundamental requirements to design catalysts with 

non-innocent ligands are provided. Importantly, the present contribution does not claim to 

provide guideline for the synthesis of catalysts with turnover frequencies and selectivity equal 

or superior to that of 112- or its derivates. Ligand non-innocence is a key component of the 

reactivity in molecular systems with high activity towards CO2-to-CO reduction; however, it is 

certainly not the only factor at play, as demonstrated by the variable catalytic performances of 

the investigated compounds.  
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General Conclusion 

 
 

The focus of this dissertation was to  unambiguously determine the electronic structure of 

[Fe(TPP)]n- at different charge states, using an approach of combined spectroscopic and 

computational chemistry methods. The profound understanding of the electronic structure of 

[Fe(TPP)], [Fe(TPP)]- and [Fe(TPP)]2- enabled us to correlate its peculiar electronic structure 

with its remarkable reactivity towards CO2 reduction. We propose that the non-innocence of 

the porphyrin ligand in [Fe(TPP)]- and [Fe(TPP)]2- is at the core of its reactivity, and suggest 

orienting future research efforts in the development and analysis of non-innocent ligands.  

In the first chapter, we used a combination of Mössbauer spectroscopy, magnetometric 

measurements, ab-initio calculations and “pen-and-paper” theory to understand the electronic 

structure of [Fe(TPP)]. In details, we developed a simple effective Hamiltonian based on first-

principle calculation reproducing the explicit spin-orbit couplings between the magnetic 

sublevels arising from the configuration 3A2g (dxy)2(dxz)1(dyz)1(dz2)2 and 3Eg (dxy)2(dxz,yz)3(dz2)1 

(labelled according to the D4h point group). This effective Hamiltonian was able to 

simultaneously reproduce all magnetometric and Mössbauer data obtained in this project. The 

best fit reveals that at the Born-Oppenheimer level, the ground state is 3A2g, but the degenerate 
3Eg states is lying only 950 cm-1 higher than the ground state. In fact, the 3A2g and 3Eg electronic 

states are so close that they are considerably mixed via spin-orbit coupling. After considering 

this effect, the lowest-lying magnetic sublevels correspond to a singlet separated from a doublet 

by 90 cm-1. All three of these magnetic sublevels are highly multiconfigurational since they 

exhibit more than 12% 3Eg character. In fact, it is the multiconfigurational nature of the ground 

state that gives to the system its unusual magnetic properties, i.e. a large field-induced orbital 

angular momentum along the porphyrin plane. The present Hamiltonian is more physically 

transparent and proved more adapted to the present situation than the usual spin Hamiltonian. 

The latter neglects a significant part of the system’s physics, i.e. Zeeman coupling between the 

three lowest-lying magnetic sublebvels and the rest of the magnetic sublevels arising from spin-

orbit coupling between 3Eg and 3A2g states. However, in the interest of comparison with 

available spectroscopic data, the spin Hamiltonian parameters were extracted from the effective 

Hamiltonian and yield D=94 cm-1, E/D=0, g⊥=3.05, g∥=1.85, A⊥/gNβN=+47.5	T,	A∥/gNβN=4.6	
T. Beyond the case of this system alone, it is proposed that two large and identical gxx and gyy 
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values and a smaller gzz value are a spectroscopic signature for systems with a non-degenerate 

electronic ground state closely-lying to a symmetry-enforced degenerate state and a less than 

half-filled nearly-degenerated orbital subshell (here dz2, dxz and dyz). 

In the second chapter, we determined the electronic structure of the reduced species 

[Fe(TPP)]- and [Fe(TPP)]2- using a combination of DFT, X-ray absorption and Mössbauer 

techniques, and using the electronic structure of [Fe(TPP)] as a starting point. In fact, the 

remarkable consistency of Mössbauer isomer shifts and X-ray near-edge structures of 

[Fe(TPP)], [Fe(TPP)]- and [Fe(TPP)]2- lead to the conclusion that the one- and two-electrons 

reduction of [Fe(TPP)] are both ligand-centered. Furthermore, pre-existing magnetic data 

confirms that the overall spin states of the one- and two-electron reduced species are S=1/2 and 

S=0, respectively. In other terms, [Fe(TPP)]- and [Fe(TPP)]2- are best described as triplet 

iron(II) centers antiferromagnetically coupled with a porphyrin ligand radical and diradical, 

respectively. Of note, a complementary rRaman study consistently identified the reductions of 

[Fe(TPP)] as ligand-centered, further strengthening our conclusion. Our DFT calculations 

reproduce the trend of pre-edge structures and isomer shifts upon reduction. In terms of 

electronic structure, DFT calculations assigned to [Fe(TPP)]2- an iron(II) with a 3A2g electronic 

configuration antiferromagnetically coupled to a ligand diradical. This conclusion was further 

strengthened by the experimental similarity between the quadrupole splitting of iron in 

[Fe(TPP)] and [Fe(TPP)]2-. On the other hand, the electronic configuration of the iron center in 

[Fe(TPP)]- remains ambiguous. Although our calculations pointed out to an iron(II) with a 3A2g 

electronic configuration antiferromagnetically coupled with a ligand radical, several elements 

contradict this prediction. First, our calculations predict a low-lying excited state within the 

error range of hybrid DFT functionals. This state corresponds to an iron(II) with a 3Eg 

configuration antiferromagnetically coupled with a ligand radical. This observation is 

consistent with the orbital near-degeneracy verified in Chapter 1 for [Fe(TPP)]. Furthermore, 

the comparison of the quadrupole splitting of iron in [Fe(TPP)]- with that of [Fe(TPP)] and 

[Fe(TPP)]2- rather point out to an iron(II) with a 3Eg configuration antiferromagnetically 

coupled with a ligand radical. Consistently, a previous NMR studies suggesting that the 

unpaired electron resides in the dz2 orbital also indicates a 3Eg local electronic configuration. 

In chapter 3, we explored the effect of ligand non-innocence on the reactivity of [Fe(TPP)]- 

and [Fe(TPP)]2- with respect to CO2-to-CO reduction. In a first step, we explored different 

possible pathways for CO2 reduction and compared them with pre-existing kinetic data. We 

found that the most probable pathway corresponds to the following sequence: (1) reduction of 

[Fe(TPP)]- to [Fe(TPP)]2-, (2) formation of a [Fe(TPP)(CO2)]2- adduct, (3) protonation of the 
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adduct forming the metallacarboxylic acid [Fe(TPP)(CO2H)]-, (4) cleavage of the CO bond and 

generation of the metal-carbonyl intermediate [Fe(TPP)(CO)], (5) reduction of the catalyst and 

departure of the carbonyl ligand, which regenerates the catalyst. The calculated energy 

landscape associated with this mechanism satisfyingly reproduced the tremendous 

experimental turnover frequency of [Fe(TPP)]. The orbital analysis of the intermediates 

involved in the reaction gave deeper insight on the role of the ligand during the reaction. In fact, 

two distinct types of electron transfer events happen during the reaction. The first type of event 

corresponds to electrons transfers from the metal center to the CO2 molecule via σ-donation of 

the doubly-occupied Fe-dz2 into the CO2-π* orbital. These two electrons are necessary for the 

reduction of CO2 into CO. The second type of transfer event corresponds to a transfer from the 

primarily-ligand-based radical electrons to the metal center. The coupling of these events 

enables a metal-centered reactivity while preventing the oxidation state of the metal to vary 

drastically over the course of the reaction. In particular, the oxidation state of the metal never 

goes below +I neither above +II. This considerably stabilizes the intermediates of the reaction 

which has the double effect of preventing the catalyst from undergoing side-reactions and 

avoiding prohibitive kinetic barriers. Furthermore, we found that the antiferromagnetic 

coupling between the metal and the ligand plays a central role in the reactivity. It has the triple 

effect of (1) coupling the ligand-to-metal and metal-to-CO2 electron transfers, (2) enhancing 

the donating abilities of the metal, and (3) ensuring the ligand-to-metal electron transfers are 

spin-allowed. It was shown that ligand non-innocence is a rather common trait in homogeneous 

CO2 reduction catalysts. In details, by studying 11 other catalysts with non-innocent ligands in 

silico, we found a general pattern. (1) The reduction of all these catalysts by the electrode is 

ligand-centered. (2) The primarily ligand-based orbitals harboring the electrons accepted from 

the electrode couples with metal-based d-orbitals. This coupling either takes the form of an 

antiferromagnetic spin coupling or formation of delocalized closed-shell molecular orbital. 

Either way, this metal-ligand coupling has a similar effect to the antiferromagnetic coupling in 

[Fe(TPP)]2-. (3) In all these catalysts, a metal-to-CO2 electron transfer is coupled to a ligand-

to-metal electron transfer. The former occurs through σ-donation of the doubly-occupied dz2 

into the CO2-π* orbital is coupled with a ligand-to-metal electron transfer, similar to [Fe(TPP)], 

while the latter connects the redox-active low-lying π* orbitals of the ligands to various 

available d-orbitals of the metal. The nature of these electron-accepting orbitals varies 

depending on the catalyst, specifically the nature of the metal center and symmetry of the ligand 

field. It is likely that the nature of the electron-accepting orbital affects the reactivity and 

selectivity of the catalyst with respect to CO2 reduction.  
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Although some insights into the design of catalysts with non-innocent ligands have been 

given in the last chapter, it is important to stress here that many questions related to the effect 

of ligand non-innocence on the reactivity remain to be elucidated. For instance, investigating 

how precisely the nature of electron-accepting orbitals involved in ligand-to-metal transfers 

influences the reactivity and selectivity might be a valuable next step in harnessing ligand non-

innocence properties for the design of CO2-to-CO catalysts. In that regards, we stress that 

computational chemistry, coupled with experimental kinetic and spectroscopic techniques, may 

be a valuable tool. 

 The present state of the field of CO2 reduction in homogeneous catalysis focuses mostly 

on design of new catalysts and improvement of already available catalysts. Hundreds of these 

catalysts presently exist, most of which likely will be forgotten once the next generation has 

been reported. This approach, while unavoidable to a certain degree, is perhaps not the most 

efficient in a long-term perspective. Instead, we believe it must be coupled to a rational 

approach, i.e focusing on understanding the electronic structure of successful catalysts, and the 

origin of their efficiency. This type of valuable information will provide a lasting insight for 

future catalysts design; instead, a plethora of reported homogeneous catalysts provide more 

background noise than useful information.  

 The properties of a given catalyst arise from its electronic structure. To access it, we 

believe the use of computational chemistry together with spectroscopy is an invaluable 

approach. The latter provides direct, experimental probes of the electronic structure, and the 

former provides a model for our understanding, to be validated by reproducing the 

spectroscopic data. This is the method we have been using successfully throughout this 

dissertation. In the end, it provides a strong confidence in the electronic structure of [Fe(TPP)], 

[Fe(TPP)]- and [Fe(TPP)]2- that the use of neither computational chemistry nor spectroscopy 

alone could have provided. In that regard, we stress here that the role of computational 

chemistry in research is not only to predict numbers, but rather to provide models for 

understanding. Like synthesizing cohorts of catalysts does not provide significant insights for 

future research efforts, neither does calculating hundreds of energy landscapes without 

interpretation. As computational power increases, it is tempting to orient research efforts 

exclusively towards the prediction of energies within chemical accuracy. While this is useful, 

one must not forget what computational chemistry, like theory in general, is as much about 

understanding as it is about predicting. 
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Annex 

I. Annex: Chapter 1 

  
Figure A1: Effective magnetic moment of a powder sample of 1 recorded with a field of 1 T, 

and temperature dependence of the magnetization with applied fields of 1 (red), 4 (magenta) 

and 7 T (blue) (inset). The solid lines represent the best fits obtained by the simulation using 

the spin Hamiltonian (parameters gxx=gyy=3.05, g∥=1.7, D=94 cm-1, 6
�

 = 0, TIP=1000  x 10-6 

emu). The simulation considers 5.2% S = 5/2 impurity.  

 

Extraction of spin Hamiltonian parameters 

The relativistic states |𝜙-⟩, |𝜙7⟩ and |𝜙A⟩ constitute the space in which the electronic Zeeman, 

SOC and hyperfine coupling operators are expressed (if second-order Zeeman effects are 

neglected, see main text). In parallel, the fictitious pseudo-spin eigenstates |𝑆� = 1,𝑀q� = +1⟩, 

|𝑆� = 1,𝑀q� = −1⟩ and |𝑆� = 1,𝑀q� = 0⟩ constitute the space in which the spin Hamiltonian 

Zeeman, ZFS and hyperfine field operators are expressed. The extraction method consists in 

finding the spin Hamiltonian parameters such as the matrix elements of the electronic operators 

are one-by-one equivalent to their spin Hamiltonian counterpart. 
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A. Calculation of the Magnetic moment and hyperfine field parameters 

 

We will not derive a general method to extract spin Hamiltonian parameters. This has been 

published by Chibotaru and will not be repeated here. Instead, we attach to obtain simple 

expressions for the g- and A- values in this specific system. Because of the high C4 symmetry 

axis of the system, the g- and A- matrices must be already diagonal in the chosen molecular 

framework, and the x- and y- components of both these matrices must be identical. This 

considerably simplify our task as the total number of independent spin Hamiltonian parameters 

must be equal to 4 (𝑔x, 𝐴x , 𝑔∥, and 𝐴∥). The magnetic moment parameters (𝑔x and 𝑔∥) will be 

extracted first. A similar demonstration may then be done to extract the hyperfine field 

parameters (𝐴xand 𝐴∥).  

First, using time-reversal symmetry arguments, we identify the independent matrix 

elements one must parametrize to describe the effective Hamiltonian magnetic moment 

matrices. Second, we identify the corresponding matrix elements to parametrize in order to 

describe the spin Hamiltonian magnetic moment matrices. Then, we establish all the 

independent relationships between spin Hamiltonian and effective Hamiltonian matrix 

elements that need to be fulfilled in order to have an equivalency between both matrices. 

Finally, we extract the spin Hamiltonian parameters by using the established relationship as a 

requirement. 

In the basis of |𝜙-⟩, |𝜙7⟩ and |𝜙A⟩, the magnetic moment vector is described by 3 

Hermitian matrices 𝜇d, 𝜇�  and 𝜇�. Each of these matrices have 6 a priori independent matrix 

elements. Three of these six matrix elements are off-diagonal and need to be described with 

two independent parameters potentially having a real and imaginary part. This adds up to a total 

of 18 matrix elements and 27 parameters to describe the three magnetic moment matrices. 

Because |𝜙-⟩, |𝜙7⟩ have opposite first-order angular momenta and |𝜙A⟩ has no first-order 

angular momentum, we can make use of time-reversal symmetry to establish relationships 

between matrix elements and hence reduce the number of independent parameters necessary to 

describe the magnetic moment matrices. Indeed, let there be a state with a first-order angular 

momentum, for which: 

𝜃r|𝜙-»�⟩ = ⟨𝜙7»�|                  (A1a) 

And let there be a state without first-order angular momentum, 

𝜃r|𝜙A»�⟩ = ⟨𝜙A»�|                  (A1b) 

Since the states |𝜙-⟩, |𝜙7⟩ and |𝜙A⟩ have undefined phase factors, they relate to the states 

�𝜙±»��, |𝜙A»�⟩ by the following relationship 
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|𝜙A⟩ = 𝑒�±:|𝜙A»�⟩	                  (A2a) 

�𝜙±� = 	 𝑒�±±�𝜙±»��                  (A2b) 

Where 𝛩A, 𝛩± are the respective phase angles. 

and because the magnetic moment operator is time-odd, we have the following equalities: 

⟨𝜙-|𝜇O|𝜙-⟩ = ⟨𝜃𝜙7|𝜇O|𝜃𝜙7⟩ = 	 ⟨𝜙7|𝜃³𝜇O𝜃|𝜙7⟩ = 	−	⟨𝜙7|𝜇O|𝜙7⟩           (A3a) 

⟨𝜙A|𝜇O|𝜙A⟩ = ⟨𝜃𝜙A|𝜇O|𝜃𝜙A⟩ = −	⟨𝜙A|𝜇O|𝜙A⟩ = 0              (A3b) 

⟨𝜙7|𝜇O|𝜙-⟩ = 𝑒�(±$7±£)⟨𝜙7»�|𝜇O|𝜙-»�⟩ 	= 	𝑒�(±$7±£)⟨𝜃𝜙7»�|𝜇O|𝜃𝜙-»�⟩ =

	−𝑒�(±$7±£)⟨𝜙7»�|𝜇O|𝜙-»�⟩ = 	−⟨𝜙7|𝜇Oaaaa⃗ |𝜙-⟩               (A3c) 

Obviously, relationship (A3c) becomes: 

⟨𝜙7|𝜇Oaaaa⃗ |𝜙-⟩ = 0                  (A3d) 

Finally,  

⟨𝜙A|𝜇Oaaaa⃗ |𝜙-⟩ = 	 𝑒�(±$7±:)⟨𝜙A»�|𝜇Oaaaa⃗ |𝜙-»�⟩ = 	 𝑒�(±$7±:)⟨𝜙7»�|𝜃³𝜇Oaaaa⃗ 𝜃|𝜙A»�⟩ =

	−𝑒�(±$	-	±£7*±:)⟨𝜙7|𝜇Oaaaa⃗ |𝜙A⟩                 (A3e) 

Similarly, the phase factor =	𝑒�(±$	-	±£7*±:) is undefined and may be taken so that: 

 ⟨𝜙A|𝜇Oaaaa⃗ |𝜙-⟩ = ⟨𝜙7|𝜇Oaaaa⃗ |𝜙A⟩                 (A3f) 

We may verify that A3f is respected for the chosen overall phase factor chosen in the Main 

Text for |𝜙A⟩, |𝜙±⟩. Taking those relationships into accounts greatly decreases the number of 

independent matrix elements down to one diagonal and one off-diagonal for each matrix, i.e. a 

total of 6 matrix elements, i.e. ⟨𝜙-|𝜇d|𝜙-⟩,	⟨𝜙-|𝜇�|𝜙-⟩, ⟨𝜙-|𝜇�|𝜙-⟩  ⟨𝜙A|𝜇d|𝜙-⟩, 

⟨𝜙A|𝜇�|𝜙-⟩, ⟨𝜙A|𝜇�|𝜙-⟩ (9 parameters).  

It is trivial to show with ladder operator techniques that the spin Hamiltonian magnetic moment 

matrices in the basis |𝑆� = 1,𝑀q�⟩ follow the exact same constraints. Specifically, the pseudospin 

eigenstates |𝑆�, 𝑀q�⟩ have the same time-reversal properties as the |𝜙-⟩, |𝜙7⟩ and |𝜙A⟩ states, i.e.  

�Sµ , +1�𝜇Oq��Sµ , +1� = −�Sµ , −1�𝜇Oq��Sµ , −1�               (A4a) 

�Sµ , 0�𝜇Oq��Sµ , 0� = 0                  (A4b) 

�Sµ , +1�𝜇Oq��Sµ , −1� = 0                 (A4c) 

�Sµ , 0�𝜇Oq��Sµ , +1� = �Sµ , −1�𝜇Oq��Sµ , 0�                (A4d) 

Where 𝜇Oq�  is the 𝛼- component of the magnetic moment operator described in the spin 

Hamiltonian formalism. Those relationships make the number of independent matrix elements 

decrease down to 6 (9 parameters), i.e. 

�Sµ , +1�𝜇dq��Sµ , +1� = 𝑔d�                 (A5a) 

�Sµ , +1�𝜇�q��Sµ , +1� = 𝑔��                 (A5b) 
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�Sµ , +1�𝜇�q��Sµ , +1� = 𝑔��                 (A5c) 

�Sµ , 0�𝜇dq��Sµ , +1� =
Â��-�Â��

√*
	                 (A5d) 

�Sµ , 0�𝜇�q��Sµ , +1� =
Â��-�Â��

√*
	                 (A5e) 

�Sµ , 0�𝜇�q��Sµ , +1� =
ÂÃ�-�ÂÃ�

√*
	                 (A5f) 

Hence, the spin Hamiltonian and effective Hamiltonian magnetic moment matrices are 

equivalent under the following conditions: 

⟨𝜙-|𝜇O|𝜙-⟩ = 	 �𝑆�, +1�𝜇Oq��𝑆�, +1�                (A6a) 

⟨𝜙A|𝜇O|𝜙-⟩ = �Sµ , 0�𝜇Oq��Sµ , +1�                (A6b) 

Those relationships enable the expression of the g-values in terms of the effective Hamiltonian 

magnetic moment matrix elements, which are known from our effective Hamiltonian analysis. 

We immediately find that the g-matrix is diagonal, i.e. 𝑔d� = 𝑔�d = 𝑔d� = 𝑔�d = 𝑔�� = 𝑔�� =

0, which confirms that the molecular framework is the proper axis of the g-matrix, consistently 

with the high symmetry of the molecule. The diagonal g-values may be expressed in terms of 

the effective Hamiltonian magnetic moment matrix elements, i.e.: 

|𝑔¶¶| = |⟨𝜙-|𝜇�aaaa⃗ |𝜙-⟩|                  (A7a) 

|𝑔dd| = √2|⟨𝜙A|𝜇daaaa⃗ |𝜙-⟩|                 (A7b) 

|𝑔��| = √2|𝑖⟨𝜙A|𝜇�aaaa⃗ |𝜙-⟩|.                 (A7c) 

It is verified that |𝑔dd| = �𝑔��� = |𝑔x| (the sign of the g-values was not investigated and 

arbitrarily set positive for simplicity). 

Eq. A7a-c correspond to the extracted g-values shown in the main text. This demonstration is 

heavily inspired by Chibotaru’s method, but is adapted for this specific case. Rather than 

building the Abragam-Bleaney tensor, it makes use of symmetry arguments to establish a 

simple relationship between g-values and matrix elements. 

 The procedure used to extract the A values is completely equivalent to the 

demonstration above. One simply replaces the magnetic moment matrices with the hyperfine 

field matrices. In total analogy, one finds that 𝐴d� = 𝐴�d = 𝐴d� = 𝐴�d = 𝐴�� = 𝐴�� = 0.   

For the diagonal values, 
�z

ÂÿÌÿ
= √2�⟨𝜙A|𝐵�Òe,daaaaaaaaaa⃗ |𝜙-⟩�                 (A8a) 

�ÃÃ
ÂÿÌÿ

= �⟨𝜙-|𝐵�Òe,�aaaaaaaaaa⃗ |𝜙-⟩�                 (A8b) 

Eq. A8a and A8b correspond to the extracted A-values shown in the main text. In principle, the 

three A values appear from this treatment with a sign that is consistent with the sign of g. In 
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our case, since we arbitrarily set the sign of all g-values to be positive, we instead calculated 

the absolute value of A and then chose the sign to be consistent with the experimental direction 

of the internal field.  

 

B. Calculation of the ZFS operator 

 

The SOC matrix is a 3x3 hermitian matrix with 6 a priori independent matrix elements, 

three of which are potentially complex numbers, i.e. having a real and imaginary part, which 

accounts for a total of 9 parameters to describe the matrix. 

Unlike the hyperfine couplings, the SOC is a product of angular momenta operators, and is 

therefore even by time-reversal symmetry, or: 

𝜃³𝐻qw}𝜃 = 	𝐻qw}                   (A9a) 

One can infer that: 

⟨𝜙-|𝐻qw}|𝜙-⟩ = 	 ⟨𝜙7|𝐻qw} |𝜙7⟩                (A9b) 

⟨𝜙A|𝐻qw}|𝜙-⟩ = 	 𝑒�(±$ 	-	±£7*±:)⟨𝜙7|𝐻qw}|𝜙A⟩              (A9c) 

Which, under the conditions leading to eq. A3f, leads to: 

⟨𝜙A|𝐻qw}|𝜙-⟩ = −	⟨𝜙7|𝐻qw} |𝜙A⟩                (A9d) 

These two relationships allow to lower the number of independent 𝐻qw}  matrix elements down 

to 4, i. e. 2 real diagonal values, and 2 off-diagonal values each of which counts one real and 

one imaginary part (⟨𝜙-|𝐻qw}|𝜙-⟩, ⟨𝜙A|𝐻qw}|𝜙A⟩, ⟨𝜙7|𝐻qw}|𝜙-⟩ and ⟨𝜙A|𝐻qw}|𝜙-⟩), which 

constitutes a total of 6 independent parameters. 

 Using Ladder-operator techniques, one may show that similar relationships between the 

spin Hamiltonian ZFS matrix elements may be obtained under the condition that the D matrix 

is symmetric (we neglect for now the condition that it is traceless), i.e. 

�Sµ , +1�𝐻W�q�Sµ , +1� = 	 �Sµ , −1�𝐻W�q�Sµ , −1�             (A10a) 

�Sµ , 0�𝐻W�q�Sµ , +1� = −�Sµ , −1�𝐻W�q�Sµ , 0�              (A10b) 

We thus reduce the number of matrix elements to 4 and the number of parameters to 6. We 

express here those matrices in terms of the components of D: 

�Sµ , +1�𝐻W�q�𝑆�, +1� =
���-���

*
+	𝐷��	             (A11a) 

�Sµ , 0�𝐻W�q�𝑆�, 0� = 𝐷dd + 𝐷��               (A11b) 

�Sµ , 0�𝐻W�q�𝑆�, +1� =
��Ã-���Ã

√*
               (A11c) 

�Sµ , −1�𝐻W�q�𝑆�, +1� =
���7���

*
+ 𝑖𝐷d�             (A11d) 
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Hence spin Hamiltonian ZFS and effective Hamiltonian SOC matrices are equivalent under the 

conditions: 

�Sµ , +1�𝐻W�q�𝑆�, +1� = ⟨𝜙-|𝐻qw}|𝜙-⟩              (A12a) 

�Sµ , 0�𝐻W�q�𝑆�, 0� = ⟨𝜙A|𝐻qw}|𝜙A⟩              (A12b) 

�Sµ , 0�𝐻W�q�𝑆�, +1� = ⟨𝜙A|𝐻qw}|𝜙-⟩              (A12c) 

�Sµ , −1�𝐻W�q�𝑆�, +1� = ⟨𝜙7|𝐻qw}|𝜙-⟩              (A12d) 

 

Those relationship enable us to express the components of D in terms of the effective 

Hamiltonian SOC matrix elements, which are known from our effective Hamiltonian analysis: 

𝐷�� = ⟨𝜙-|𝐻qw}|𝜙-⟩ −
,
*
⟨𝜙A|𝐻qw}|𝜙A⟩	             (A13a) 

𝐷dd = 𝑅𝑒	(⟨𝜙7|𝐻qw} |𝜙-⟩) +
,
*
	⟨𝜙A|𝐻qw}|𝜙A⟩            (A13b) 

𝐷�� = −	𝑅𝑒	(⟨𝜙7|𝐻qw}|𝜙-⟩) +
,
*
	⟨𝜙A|𝐻qw}|𝜙A⟩            (A13c) 

𝐷d� = 𝐼𝑚	(	⟨𝜙7|𝐻qw}|𝜙-⟩)               (A13d) 

𝐷d� = 	√2	𝑅𝑒(⟨𝜙A|𝐻qw}|𝜙-⟩)	              (A13e) 

𝐷�� = 	√2	𝐼𝑚	(⟨𝜙A|𝐻qw}|𝜙-⟩)	              (A13f) 

Since 𝐻qw}  is diagonal in the basis of |𝜙-⟩, |𝜙7⟩ and |𝜙A⟩, it immediately follows that 𝐷d� =

𝐷d� = 𝐷�� = 0, which confirms that the molecular framework is indeed the proper axis of the 

D tensor, consistently with the high symmetry of the molecule. 

Furthermore, one may realize that under those conditions, the trace of the matrix equals to: 

𝐷�� +𝐷·· +𝐷WW = 	 ⟨𝜙-|𝐻qw}|𝜙-⟩ +
,
*
	⟨𝜙A|𝐻qw}|𝜙A⟩	           (A14a) 

Since ⟨𝜙-|𝐻qw}|𝜙-⟩ and ⟨𝜙7|𝐻qw}|𝜙7⟩ are degenerate, 

𝐷�� +𝐷·· +𝐷WW =
,
*
	(	⟨𝜙-|𝐻qw}|𝜙-⟩ +	⟨𝜙7|𝐻qw}|𝜙7⟩ +	 ⟨𝜙A|𝐻qw}|𝜙A⟩	)        (A14b) 

Choosing that origin for the energy,  

𝐷�� = 𝐷·· = 	−31.33               (A15a) 

𝐷WW = 62.67	                 (A15b) 

Therefore, one may calculate the parameters D and E as involved in the description of the ZFS 

(eq. 15b). They are calculated at 94 cm-1 and 0 cm-1, respectively.  
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II. Annex: chapter 2 

 

Table A1: Experimental and calculated (CAM-B3LYP/Def2-TZVP) pre-edge energies of a 

series of Fe compounds for the purpose of calibrating the predicted-experimental energy 

difference. All calculated energies are given after a systematic shift of 22.37 eV 

System 

Experimental pre-

edge energies 

H2TPP-/H2TPP2 

Calculated pre-edge energies 

[Fe(CN)6]4- 7112.9 7113.3 

[Fe(CN)6]3- 7110.1; 7113.3 7110.4; 7113.9 

[Fe(acac)3] 7112.8; 7114.3 7112.7; 7114.3 

[Fe(salen)Cl] 7112.9 7113.2 

[Fe(Cl)6]4- 7111.8; 7113.4 7111.7; 7113.0 

[Fe(Cl)6]3- 7112.8; 7114.0 7112.8; 7114.2 

[Fe(II)(prpep)2] 7112.1 7111.8 

[Fe(prpep)2]+ 7111.0; 7112.7 7111.1; 7112.8 

[Fe(Cl)4]2- 7111.6; 7113.1 7111.6; 7112.4 

 
 

III. Annex: chapter 3 

Table A2: Relative energy of the intermediates in the CO2 to CO conversion reaction 

(mechanism I) in kcal/mol. The chosen reference corresponds to all the reactive infinitely 

separated in DMF ([Fe(TPP)]2- in singlet state). 

 
S=0 S=1 S=2 

[Fe(TPP)]2- 0 +5.6 +12.1 

[Fe(TPP)(CO2)]2- +2.5 +5.5 Unstable 

[Fe(TPP)(CO2H)]- +3.2 +15.9 +21.7 

[Fe(TPP)(CO)] -3.3 +1.8 +3.7 

 

A. Calculation of the turnover frequency for mechanism I 
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We focus here on mechanism I. Assuming that one elementary step always connects two 

minima on the free energy surface via a transition state, the reaction can be modelled by the 

following sequence: 

𝟏7	
𝟐 + 𝑒7 ⇌ 	 𝟏𝟐7	

𝟏      ke, k-e           (A16a) 

𝟏𝟐7	
𝟏 + CO* + PhOH	 ⇌ 𝐁	𝟏     k1,k-1            (A16b) 

𝐁	𝟏 + 	PhOH	 ⇌ 𝐄	𝟏 + PhO7    k2,k-2           (A16c) 

𝐄	𝟏 → 	 𝐅	𝟏 + PhO7 + H*O    k3           (A16d) 

𝐅	𝟏 + 𝟏𝟐7	
𝟏 → 	2 𝟏7	

𝟐 + CO      k4           (A16e) 

Following the method by Costentin and coworkers,42  

𝑇𝑂𝐹 = +ÂÃ

,-X
2

¥¦4
v¤£¤:x

                  (A17) 

It is supposed that all elementary steps occurring in the homogeneous phase follow a steady-

state regime. Thus, eq. 36b allow us to estimate 𝑘Àã from the kinetic constants: 

 

𝑘Àã =
L

[ 𝟏𝟐£	𝟏 ]
= +¿+�+�+Ä[}w�][?+w�]�v 𝟏𝟐£	

𝟏 x7+£¿+£�+£�+£Ä[}w][��w][?+w£]�

+�+�+Ä[?+w�]v 𝟏𝟐£	𝟏 x-+£¿+�+Äv 𝟏𝟐£	𝟏 x-+£¿+£�+Ä[?+w£]v 𝟏𝟐£	𝟏 x-	+£¿+£�+£�[?+w£][}w][ 𝟏£	𝟐 ]

                  (A18a) 

Supposing [𝑃ℎ𝑂7]~0, the equation reduces to: 

𝑘Àã =
+¿+�[}w�][?+w�]�

+�[?+w�]-+£¿
               (A18b) 

From our DFT results, we may infer: 

k, =
Å
ÆÇÈ

	e7
É.:	ÊËQÌ/PÍÌ

ÊÇÎ                 (A19a) 

k7, =
Å
ÆÇÈ

	e7
¿�.�	ÊËQÌ/PÍÌ

ÊÇÎ                (A19b) 

k* =
Å
ÆÇÈ

	e7
É.Ä	ÊËQÌ/PÍÌ

ÊÇÎ                 (A19c) 

 For three concentrations of phenol ([PhOH]=0.1 M, 0.75 M and 3 M), we obtain 

kap=1.6x105 s-1.M, 1.2x106 s-1.M and 4.8x106 s-1.M. Maximum turnover frequencies may be 

obtain from Eq. A17 (E << E0) for a CO2 concentration of 0.23 mol/L, we obtain TOFmax= 

3.6x104 s-1, 2.76x105 s-1 and 1.10x106 s-1, a remarkable agreement with the experimentally-

resolved values of 1.8x103 s-1, 1.5x104 s-1 and 1x105 s-1. 
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Figure A2: Electronic structure of the transition states TS1, TS2, TS3, TS4 and TS5 defined in 

the Main text (Figure 41). The electrons occupying the d-orbitals of iron, the redox-active 

orbitals of the TPP ligand, and the orbitals associated with the forming or cleaving bonds are 

represented by arrows. Electrons involved in the TPP-to-Fe electron transfers are represented 

as red arrows. Electrons involved in the metal-to-CO2 are shown as green arrows. The Fe and 

CO2/CO2H/CO Löwdin population of the bonding orbital formed by interaction of the iron 

center and the ligand is displayed circled in green. Positive parts of the orbitals are represented 
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in red. Negative parts are represented in yellow. For clarity, all hydrogens are hidden except 

the hydrogen of the CO2H motif and the hydrogen of the PhOH in the process of being 

transferred to the reaction catalyst. 

 

 
Figure A3: Electronic structure of the intermediate [Re(bpy)(CO)3(CO2H)]K. The electron 

occupying the orbitals of the rhenium center, and the ligand-centered redox-active orbitals are 

represented with arrows. Electrons involved in the ligand-to-metal and metal-to-CO2 

intramolecular transfer are shown as green arrows. The Re, bpy and CO2/CO2H/CO Löwdin 

population of the bonding orbital formed by interaction of the metal center, the bpy and the 

CO2 ligands is displayed circled in green. Positive parts of the orbitals are represented in red. 

Negative parts are represented in yellow. For clarity, all hydrogens are hidden except the 

hydrogen of the CO2H motif. 

 

B. Electronic structure of the intermediates 

 

1) Intermediates in the reduction of CO2 catalyzed with [Fe(qpy)]+ 
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Table A3: Electronic energy difference (in kcal/mol) between the spin states of each 

intermediate involved in the mechanism of CO2 reduction catalyzed with [Fe(qpy)]+. For each 

line, the energy is given relative to the lowest-lying spin state of the intermediate. Notably, the 

mention “dissociates” signals that the intermediate [Fe(qpy)(CO2)]+ spontaneously dissociates 

into [Fe(qpy)]+ and CO2 upon geometry optimization. 

Intermediate Low-spin Intermediate spin High spin 

[Fe(qpy)]+ 0 (S=1/2) 19.1(S=3/2) 6.8 (S=5/2) 

[Fe(qpy)(CO2)]+ 0 (S=1/2) Dissociates (S=3/2) Dissociates (S=5/2) 

[Fe(qpy)(CO2)] 0 (S=0) 3.1 (S=1) 4.6 (S=2) 

[Fe(qpy)(CO2H)]+ 0 (S=0) 6.2 (S=1) 1.6 (S=2) 

[Fe(qpy)(CO)]2+ 0 (S=0) 4.0 (S=1) <1  

 

 The active species, [Fe(qpy)]+, features a distorted square-planar environment. It is best 

described as a FeII center (SFe=1) antiferromagnetically coupled to a qpy•- ligand (Sqpy=1/2). In 

details, the Fe center features a configuration (dxy)2(dxz)1(dyz)1(dz2)2, one 𝛽-electron populates 

the primarily ligand-based 1𝜋* orbital, which is an admixture of the ligand-centered πqpy* and 

Fe dyz atomic orbital. Consequently the orbitals Fe-dyz and 1π* form two spin-coupled pairs. In 

the next step, the doubly-occupied Fe-dz2 donates electrons to the unoccupied in-plane CO2 πip* 

orbital. The resulting bonding orbital (1σ) remains mainly centered around Fe (81% Fe, 16% 

CO2). Hence the system is best described as a FeI center (SFe=1/2) bound to a neutral CO2 

ligand. Interestingly, the intramolecular electron transfer connects the πqpy* to the Fe-dxz orbital 

rather than the Fe-dyz, even though in [Fe(qpy)]+, the πqpy* is mixed with the Fe-dyz. In fact, 

concomitantly with the intramolecular electron transfer from 1𝜋* to Fe-dyz, a promotion from 

the Fe-dyz to the Fe-dxz is triggered because of the interelectronic repulsion between the 

electrons in the Fe-dyz orbital and those of the C-O bond. Hence, in total, the electron is 

transferred from the πqpy* to the Fe-dxz, even though these orbitals do not mix. This is an 

exception to the general rule according to which electron transfers occur between the mixing 

fragment orbitals. In the subsequent step, an electron is transferred from the electrode to the 

now vacant 1𝜋* orbital. The reduction takes place on the ligand, hence the polarity of the Fe-

CCO2 bond is only marginally affected and the weight of Fe-dz2 orbital in the 1σ orbital remains 

predominant (70%). Hence the system is best described as a FeI center (SFe=1/2) 

antiferromagnetically-coupled with a radical quaterpyridine ligand and bound to an 

approximately neutral CO2 ligand. The subsequent step is the protonation of the CO2 moiety 

affording the metallacarboxylic acid intermediate, which triggers a significant change in the 
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electronic structure. The Fe-CCO2 bond becomes more covalent, as indicated by the weight of 

Fe in the 1σ orbital (40% Fe, 56% CO2H). Hence this step can be interpreted as a concerted 

proton electron transfer (CPET) to the CO2. Meanwhile, a second electron transfer from the 1π* 

orbital to the Fe-dyz compensates the loss of electronic density due to the metal-to-CO2 transfer. 

The complex has to be described as a resonant form between a Fe0 bound to a (CO2H)+ ligand 

and a FeII bound to a (CO2H)- ligand, bound to a charge neutral quaterpyridine ligand. In total, 

this step thus corresponds to the transfer of one electron from the metal to the CO2 ligand, and 

one electron from the quaterpyridine ligand to the metal center. The next step corresponds to 

the C-O bond cleavage and yields a metal-carbonyl. The 1σ bonding orbital is mainly centered 

around the CO (35% Fe, 61% CO), hence the system is best described as a FeII center (SFe=0) 

bound to a carbonyl ligand (and a neutral quaterpyridine). This sequence of steps correspond to 

two electrons transfers from the metal to the CO2, as well as one electron transfer from the 

electrode to the metal. 
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Figure A4: (Top) catalytic cycle of CO2-to-CO conversion catalyzed with [Fe(qpy)]+. The 

mechanism is taken from ref. 76. (Bottom) associated electronic structure of the intermediates 

Fe(qpy)]+ (A), [Fe(qpy)(CO2)]+ (B), [Fe(qpy)(CO2)] (C), [Fe(qpy)(CO2H)]+ (D) and 

[Fe(qpy)(CO)]2+ (E). The electrons occupying the d-orbitals of the metal and the redox-active 

orbitals of the ligand are represented by arrows. Electrons involved in the ligand-to-metal 

intramolecular transfer are shown as red arrows. Electrons involved in the metal-to-CO2 

intramolecular transfer are shown as green arrows. The Fe and CO2/CO2H/CO Löwdin 

population of the bonding orbital formed by interaction of the metal center and the CO2 ligand 

is displayed circled in green. For clarity, all hydrogens are hidden. 

 

2) Intermediates in the reduction of CO2 catalyzed with [Fe(bpyNHEtPY2Me)] 

 

Table A4: Electronic energy difference (in kcal/mol) between the spin states of each 

intermediate involved in the mechanism of CO2 reduction catalysed with [Fe(bpyNHEtPY2Me)]. 

For each line, the energy is given relative to the lowest-lying spin state of the intermediate. 
 

S=0 S=1 S=2 

[Fe(bpyNHEtPY2Me)] +23.5 0 +5.8 

[Fe(bpyNHEtPY2Me)(CO2)] +9.7 0 +6.7 

[Fe(bpyNHEtPY2Me)(CO2H)]+ +5.9 0 +5.9 

[Fe(bpyNHEtPY2Me)(CO)]2+ +5.1 0 +21.4 

 

 The active species [Fe(bpyNHEtPY2Me)] corresponds to a FeII center (SFe=2) 

antiferromagnetically coupled to a diradical bpyNHEtPY2Me••2- ligand (SbpyNHEtPY2Me=1). In 

details, the Fe features the electronic configuration (dxy)1(dxz)2(dyz)1(dz2)1(dx2-y2)1, and two β-

electrons populate the 1𝜋* and 2𝜋*. The former is an admixture of the PY2Me πPY2Me* and Fe-

dxy fragment orbitals, while the latter is an admixture of bpy-πbpy* and Fe-dyz fragment orbitals. 

Consequently, 1π*, 2π*, dxy and dyz form two spin-coupled pairs. Of note, the Fe-dz2 orbital is 

singly-occupied. However, the approach of the CO2 moleule triggers a substantial electronic 

reorganization which can be summarized as follow: (1) the approach of CO2 triggers the 

πPY2Me*-to-dxy electron transfer, (2) the energy of the 1σ is lowered due to the mixing of the Fe-

dz2 atomic orbital with the CO2-πip* orbital, triggering a dxy-to-1σ electron transfer. The 1σ 

orbital is therefore doubly-occupied with a strong Fe character (74% Fe, 22% CO2). Hence, the 

system is best described as a FeI center (SFe=3/2) antiferromagnetically-coupled with a 

bpyNHEtPY2Me•- ligand (SbpyNHEtPY2Me=1/2). In terms of electronic transfers, the step 
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corresponds to an electron transfer from the ligand to the metal. The subsequent protonation of 

the adduct changes drastically the polarity of the bonding orbital σFe-CO2H orbital (35% Fe, 65% 

CO2H). Furthermore, an electron is transferred from the ligand bpy-πbpy* to the Fe-dyz orbital 

Hence, this species is best described as a FeII (SFe=1) metal center bound to a (CO2H)- ligand. 

This step corresponds to a two-electron transfer from the metal to the CO2, coupled with a one-

electron transfer from the ligand to the metal. Finally, the proton-assisted cleavage of the C-O 

bond yields a metal-carbonyl adduct in which the bonding 1σ is clearly CO-centered (29% Fe, 

67% CO). This species is unambiguously described as a FeII (SFe=1) metal center bound to a 

carbonyl ligand.  
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Figure A5: (Top) catalytic cycle of CO2-to-CO conversion catalyzed with 

[Fe(bpyNHEtPY2Me)]. The mechanism is taken from ref. 244. However, different from the 
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results of the authors, we found that the catalytic system remains in a triplet state for all 

investigated intermediates (Table A9). (Bottom) associated electronic structure of the 

intermediates [Fe(bpyNHEtPY2Me)] (A), [Fe(bpyNHEtPY2Me)(CO2)] (B), 

[Fe(bpyNHEtPY2Me)(CO2H)]+ (C), and [Fe(bpyNHEtPY2Me)(CO)]2+ (D). The electrons 

occupying the d-orbitals of the metal and the redox-active orbitals of the ligand are represented 

by arrows. Electrons involved in the ligand-to-metal intramolecular transfer are shown as red 

arrows. Electrons involved in the metal-to-CO2 intramolecular transfer are shown as green 

arrows. The Fe and CO2/CO2H/CO Löwdin population of the bonding orbital σFe-C formed by 

interaction of the metal center and the CO2 ligand is displayed circled in green. For clarity, all 

hydrogens are hidden except the hydrogen of the CO2H motif and the hydrogens participating 

to the intramolecular hydrogen bond. 

 

3) Intermediates in the reduction of CO2 catalyzed with [Ni(N4H)] 

 

Table A5: Electronic energy difference (in kcal/mol) between the spin states of each 

intermediate involved in the mechanism of CO2 reduction catalysed with [Ni(N4H)]. For each 

line, the energy is given relative to the lowest-lying spin state of the intermediate. Notably, the 

mention “dissociates” signals that the intermediate [Ni(N4H)(CO2)] spontaneously dissociates 

into [Ni(N4H)] and CO2 or [Ni(N4H)] and CO upon geometry optimization. 

Intermediate S=0 S=1 High spin 

[Ni(N4H)] 0 5.6 28.7 

[Ni(N4H)(CO2)] Dissociates 0 28.8 

[Ni(N4H)(CO2H)]+ 5.4 0 54.4 

[Ni(N4H)(CO)]2+ Dissociates 0 58.9 

 

 The active species [Ni(N4H)] was calculated as a NiII center (SNi=0) bound to a closed-

shell N4H2- ligand (SN4H=0). In details, two electrons populate the ligand-centered 1𝜋* orbital. 

The approach of CO2 triggers a significant electronic reorganization. First, the Ni-dz2 orbital 

donates electrons to the unoccupied in-plane πip* orbital of the CO2 ligand. The subsequently 

formed bonding 1σ orbital has a predominant Ni character (73% Ni, 23% CO2). Second, an 

electron is transferred from the 1𝜋* orbital to the Ni-dx2-y2. Furthermore, the 1𝜋* orbital, which 

still harbors one electron, is an admixture of the N4H-πN4H* fragment orbital and the 

antibonding 1σ* orbital, although of predominant N4H-πN4H* parentage (60% N4H, 28% Ni). 

Hence the system is best described as a NiI center (SNi=1/2) ferromagnetically coupled with a 
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N4H•- ligand (SN4H=1/2). In terms of electron transfers, the step corresponds to a simple one-

electron transfer from the ligand to the metal. [Ni(N4H)] is the only example where the dx2-y2 

orbital serves as electron-accepting orbital. Most likely, this is due to the electronegativity of 

the nickel metal, due to which the Ni-dx2-y2 orbital is low-lying enough with respect to the 

ligand-based orbital to accept an electron from the ligand, despite its highly antibonding nature. 

This contrasts with all other studied catalysts, in which the metal center is always less 

electronegative than the nickel. In the subsequent protonation of the adduct to yield a 

metallacarboxylic acid, the Ni-CCO2 bond becomes strongly covalent, as indicated by the 

population of the 1σ bonding orbital (37% Ni, 59% CO2H). Hence, this step corresponds to a 

one-electron transfer to the CO2 moiety. Concomitantly, the electron previously populating the 

N4H-πN4H* orbital is fully transferred to the antibonding 1σ*. Hence the system can be described 

as a resonance hybrid between a NiII center (SNi=1) bound to a (CO2H)- motif and a Ni0 center 

bound to a (CO2H)+ motif. In total, the step corresponds to a one-electron transfer from the 

metal to the CO2H motif companied by a second electron transfer from the ligand to the metal. 

Finally, the cleavage of the C-O bond affords a metal-carbonyl adduct, in which the bonding 

orbital is mostly CO-centered (27% Ni, 70% CO), corresponding to the second metal-to-CO2 

transfer. Hence this species is best described as a NiII center (SNi=1) bound to a carbonyl ligand. 
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Figure A6: (Top) catalytic cycle of CO2-to-CO conversion catalysed with [Ni(N4H)]. The 

mechanism is assumed to be similar to that of [Co(N4H)]. Given the potential of the electrolysis 

in ref. 81 (-1.3 vs SCE) and the redox potential of the couple [Ni(N4H)]+/[Ni(N4H)] (-1.7 vs 

Cp+/Cp0 in MeCN, i.e. -1.3 vs SCE),242a the active species is assumed to be [Ni(N4H)]. (Bottom) 
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associated electronic structure of the intermediates [Ni(N4H)] (A), [Ni(N4H)(CO2)] (B), 

[Ni(N4H)(CO2H)]+ (C), and [Ni(N4H)(CO)] 2+ (D). The electrons occupying the d-orbitals of 

the metal and the redox-active orbitals of the ligand are represented by arrows. Electrons 

involved in the ligand-to-metal intramolecular transfer are shown as red arrows. Electrons 

involved in the metal-to-CO2 intramolecular transfer are shown as green arrows. The Ni and 

CO2/CO2H/CO Löwdin population of the bonding orbital 1σ formed by interaction of the metal 

center and the CO2 ligand is displayed circled in green. In the intermediates [Ni(N4H)(CO2)] 

and [Ni(N4H)(CO2H)]+, the Ni and N4H Löwdin population of the MO harboring the radical 

electron delocalized over the metal and the ligand is displayed circled in red. For clarity, all 

hydrogens are hidden except the hydrogen of the CO2H motif and the hydrogens participating 

to the intramolecular hydrogen bond. 

 

 

4) Intermediates in the reduction of CO2 catalyzed with [Co(qpy)] 

 

Table A6: Electronic energy difference (in kcal/mol) between the spin states of each 

intermediate involved in the mechanism of CO2 reduction catalysed with [Co(qpy)]. For each 

line, the energy is given relative to the lowest-lying spin state of the intermediate. Notably, the 

mention “dissociates” signals that the intermediate [Co(qpy)(CO2)] spontaneously dissociates 

into [Co(qpy)] and CO2 upon geometry optimization 
 

S=1/2 S=3/2 S=5/2 

[Co(qpy)] 0 +8.4 +20.9 

[Co(qpy)(CO2)] Dissociates 0 Dissociates 

[Co(qpy)(CO2H)]+ 0 +6.7 +45.7 

[Co(qpy)(CO)]2+ 0 +6.5 +70.5 

 

 This mechanism is highly similar to that of [Co(N4H)]. In the active species [Co(qpy)], 

the cobalt has a distorted square-planar environment. It is best described as a Co(II) (SCo=1/2) 

center antiferromagnetically coupled with a qpy••2- diradical dianion (Sqpy=1). In details, the Co 

center features a (dxy)2(dxz)1(dyz)2(dz2)2 and two electrons populate the primarily ligand-based 

1𝜋* and 2𝜋* orbitals. Of note, the former is purely ligand-centered, while the latter is an 

admixture of the fragment orbital πqpy-1* and the Co-dxz atomic orbital. Consequently, 2π* and 

dxz form a spin-coupled pair leading to an antiferromagnetic spin coupling between the 

quaterpyridine ligand and the metal center. In the first step, the Co center binds the CO2 
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molecule. However, our calculations showed that the adduct was unstable in a singlet state and 

spontaneously dissociates into [Co(qpy)] and CO2. Arguably, this can be attributed to the weak 

bond between the cobalt center and CO2 motif, and the unfavorable interelectronic repulsion 

between the doubly-occupied Co-dyz orbital and the electrons of the C-O bond. Indeed, the 

quartet state, in which one electron of the Co-dyz orbital is promoted to the Co-dx2-y2 orbital, is 

stable, likely due to the lower interelectronic repulsion between the Co-dyz and the electrons of 

the C-O bond. The Co-dz2 donates electrons to the in-plane CO2-πip*. The resulting bonding 

orbital 1σ is strongly Co-centered (82% Co, 18% CO2). Furthermore, one electron is transferred 

from the πqpy-1* to the dxz orbital. Consequently, the Cobalt is best described as a CoI center 

(SCo=1) bound to a CO2 and ferromagnetically coupled with a qpy•- ligand (Sqpy=1/2). In terms 

of electron transfer the step only corresponds to one electron transfer from the ligand to the 

metal. The subsequent protonation of the adduct yielding the metallacarboxylic acid 

intermediate triggers a significant electronic reorganization. Indeed, the 1σ bonding orbital is 

strongly covalent (58% Co, 42% CO2H). Furthermore, the doublet state is significantly more 

stable than the quartet, hence the electron populating the dx2-y2 is promoted back to the dyz 

orbital. Additionnally, in this intermediate the singly populated 1𝜋∗ orbital is a mixture of qpy 

πqpy-2* fragment orbital and the 1σ * orbital (53% Co, 39% qpy). In terms of electron transfer, 

this step corresponds to a one-electron transfer from the cobalt to the CO2H motif, and a partial 

electron transfer from the ligand to the cobalt. Finally, the proton-assisted C-O bond cleavage 

yields a metal-carbonyl adduct. The bonding 1σ orbital is mainly CO-centered (26% Co, 71% 

CO). Futhermore, the electron previously populating the 1𝜋* has relocated completely to the 

antibonding 1σ *. Hence this species is unambiguously assigned as a CoII center bound to a 

carbonyl ligand. In terms of electronic transfer, the step corresponds to a one-electron transfer 

from the cobalt to the CO motif, and the completion of the previously partial electron transfer 

from the ligand to the cobalt.  
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Figure A7: (Top) catalytic cycle of CO2-to-CO conversion catalysed with [Co(qpy)]. The 

mechanism is taken from the reference 76. (Bottom) associated electronic structure of the 

intermediates [Co(qpy)] (A), [Co(qpy)(CO2)] (B), [Co(qpy)(CO2H)]+ (C), and [Co(qpy)(CO)]2+ 

(D). The electrons occupying the d-orbitals of the metal and the redox-active orbitals of the 
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ligand are represented by arrows. Electrons involved in the ligand-to-metal intramolecular 

transfer are shown as red arrows. Electrons involved in metal-to-CO2 intramolecular transfer 

are shown as green arrows. The Co, and CO2/CO2H/CO Löwdin population of the bonding 

orbital formed by interaction of the metal center and the CO2 ligands is displayed circled in 

green. In the intermediate [Co(qpy)(CO2H)]+, the Co and qpy Löwdin population of the MO 

harboring the radical electron delocalized over the metal and the ligand is displayed circled in 

red. Positive parts of the orbitals are represented in red. Negative parts are represented in 

yellow. For clarity, all hydrogens are hidden except the hydrogen of the CO2H motif. 

 

5) Intermediates in the reduction of CO2 catalyzed with [Co(L)] 

 

Table A7: Electronic energy difference (in kcal/mol) between the spin states of each 

intermediate involved in the mechanism of CO2 reduction catalysed with [Co(L)]. For each line, 

the energy is given relative to the lowest-lying spin state of the intermediate. 
 

S=1/2 S=3/2 S=5/2 

[Co(L)] 0 +5.8 +13.3 

[Co(L)(CO2)] 0 +16.9 +27.3 

[Co(L)(CO2H)]+ 0 +1.7 +43.0 

[Co(L)(CO)]2+ +3.4 0 +57.3 

 

The mechanism of CO2 reduction catalyzed by [Co(L)] is similar to that of [Co(N4H)]. 

Like for [Co(N4H)], the ligand environment of [Co(L)] is best described as a square-planar 

ligand field, despite the presence of a fifth nitrogen donor weakly interacting with the cobalt. 

However, instead of being described as a CoII antiferromagnetically coupled to a diradical 

ligand like [Co(N4H)], it is best described as a low-spin CoII (SCo=1/2) bound to a closed shell 

L2- ligand (SL=0). In details, Co features the configuration (dxy)2(dxz)2(dyz)1(dz2)2 and two 

electrons populate the 1a’’ orbital (nomenclature according to the Cs point group). This doubly-

populated orbital is an admixture of the ligand-centered fragment orbital πL-a’’* and the singly-

occupied Co dyz orbital. During the formation of the [Co(L)(CO2)] intermediate, the Co-dz2 

donates electrons to the CO2-πip*, forming a bonding orbital 1σ mainly centered on Co (61% 

Co, 35% CO2). During this step, an electron is transferred from the πL-a’’* to the dyz orbital. 

Concomitantly, the other electron electron centered on the πL-a’’* orbital is promoted to another 

unoccupied orbital of the ring 1a’. The 1a’ orbital has a different symmetry than that of 1a’’, 

and in fact predominantly corresponds to the ligand-centered πL-a’* fragment orbital, slightly 
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mixed with the antibonding 1σ* orbital. Here, the system is best described as a CoI center 

(SCo=0) bound to a L•- ligand (SL=1/2) and a CO2 motif, and the step can be summarized as an 

electron transfer from the ligand to the metal. The subsequent protonation of the adduct 

affording a metallacarboxylic acid intermediate is characterized by a significant increase in 

covalence of the 1σ bonding orbital (41% Co, 59% CO2H). Concomitantly, the mixing of the 

πL-a’* with the σ*Co-C orbital increases, such as the 1a’ orbital is an equal mixture of both 

fragment (40% Co, 56% L). Hence, this step likely corresponds to the transfer of the first 

electron to the CO2 moiety, accompanied by a partial electronic transfer from the ligand to the 

metal. Subsequently, the C-O bond scission occurs coupled with a second proton transfer. After 

this step is complete the 1σ is mainly centered around CO (24% Co, 73% CO). The electron 

previously populating the πL-a’* orbital is entirely transferred to the antibonding σ*Co-CO orbital. 

Hence, the oxidation state of this intermediate is clearly identified as a CoII bound to a carbonyl 

ligand. The step thus corresponds to a second metal-to-CO2 electron transfer, and the 

completion of the previously partial electron transfer from the ligand to the metal.  
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Figure A8: (Top) catalytic cycle of CO2-to-CO conversion catalyzed with [Co(L)]. The 

mechanism is taken from the reference 48. On the basis of the system’s structural and electronic 

similarity with [Co(N4H)], the mechanism is assumed to be identical. Dashed bonds between 

the oxygen of the CO2 or CO2H motif and the hydrogen of one amine ligand correspond to 
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hydrogen bonds. Dashed bond between the nitrogen of the amine ligand and the cobalt center 

correspond to weak axial interactions. (Bottom) associated electronic structure of the 

intermediates [Co(L)] (A), [Co(L)(CO2)] (B), [Co(L)(CO2H)]+ (C), and [Co(L)(CO)]2+ (D). 

The electrons occupying the d-orbitals of the metal and the redox-active orbitals of the ligand 

are represented by arrows. Electrons involved in the ligand-to-metal intramolecular transfer are 

shown as red arrows. Electrons involved in metal-to-CO2 intramolecular transfer are shown as 

green arrows. The Co, and CO2/CO2H/CO Löwdin population of the bonding orbital formed by 

interaction of the metal center and the CO2 ligands is displayed circled in green. In the 

intermediate [Co(L)(CO2H)]+, the Co and L Löwdin population of the MO harboring the radical 

electron delocalized over the metal and the ligand is displayed circled in red. Positive parts of 

the orbitals are represented in red. Negative parts are represented in yellow. For clarity, all 

hydrogens are hidden except the hydrogen of the CO2H motif and the hydrogens participating 

to the intramolecular hydrogen bonds. 

 

 

6) Intermediates in the reduction of CO2 catalyzed with [Mn (bpy)(CO)3]K 

 

The mechanism resembles closely that of [Re(bpy)(CO)3]K. In the first intermediate [Mn 

(bpy)(CO)3]K, the ligand field is square-pyramidal. The Mn features a configuration 

(dxy)2(dxz)2(dyz)2 and the HOMO 1π* is an admixture of Mn and bpy π* fragment orbitals (24% 

Mn and 62% bpy). Thus, it is best described as a MnI center (SMn=0) bound to a doubly-reduced 

bpy2- ligand (Sbpy=0). During the formation of the adduct [Mn(bpy)(CO)3(CO2)]K, a two-

electron transfer from the 1π* orbital to the formally empty dz2 orbital takes place, and the latter 

orbital donates the electron density into the CO2 πip* orbital. The subsequently-formed bonding 

1σ orbital has a strong covalent character (28% Mn and 55% CO2), and the system is best 

described as a resonance form between a MnI center (SMn=0) bound to a (CO2)2- ligand and a 

Mn-I center bound to a neutral CO2 ligand. The subsequent protonation of the adduct yielding 

a [Mn(bpy)(CO2H)(CO)3]K+ further polarizes the Mn-CCO2 bond since the bonding molecular 

orbital is about 28% Mn and 63% CO2H. Hence, this intermediate is best described a MnI center 

(SMn=0) bound to a (CO2H)- motif. In two distinct subsequent steps, an electron is transferred 

to the catalyst from the electrodeand the C-O bond is cleaved concomitantly with a second 

proton transfer. As elaborated elsewhere,91 the electron transfer may be before (reduction-first) 

or after (protonation-first) the proton-assisted cleavage of the bond. We did not investigate that 

level of details. However, this two-steps sequence yields a metal-carbonyl adduct In this 
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species, the 1σ orbital is mainly CO centered, and the Löwdin populations remain almost 

identical to those of the metallacarboxylic acid (30% Mn, 64% CO). The additional electron 

transferred from the electrode resides in the 1π*, here primarily composed of the bpy π* 

fragment orbital. Hence, the species is identified as a MnI species (SMn=0) bound to a radical 

bpy•- (Sbpy=1/2) and a CO ligand. 
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Figure A9: (Top) catalytic cycle of CO2-to-CO conversion catalysed with [Mn(bpy)(CO)3]K. 

The mechanism is taken from the reference 91. A K+ counterion was added to the reaction 

complex, by analogy to the mechanistic studies on the very similar [Re(bpy)(CO)3]K complex 

described in reference 103. Dashed bond correspond to weak bonds formed with the K+ ion. 

(Bottom) associated electronic structure of the intermediates [Mn(bpy)(CO)3]K (A),  

[Mn(bpy)(CO2)(CO)3]K (B), [Mn(bpy)(CO2H)(CO)3]K+ (C), and [Mn(bpy)(CO)4]. The 

electrons occupying the d-orbitals of the metal and the redox-active orbitals of the ligand are 
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represented by arrows. Electrons involved in the ligand-to-metal and metal-to-CO2 

intramolecular transfer are shown as green arrows. The Mn, bpy and CO2/CO2H/CO Löwdin 

population of the bonding orbital 1σ formed by interaction of the metal center, the bpy and the 

CO2 ligands is displayed circled in green. Positive parts of the orbitals are represented in red. 

Negative parts are represented in yellow. For clarity, all hydrogens are hidden except the 

hydrogen of the CO2H motif. 

 

7) Intermediates in the reduction of CO2 catalyzed with [Cr(bpy)(CO)3]2- 

 

Table A8: Electronic energy difference (in kcal/mol) between the spin states of each 

intermediate involved in the mechanism of CO2 reduction catalysed with [Cr(bpy)(CO)3]2-. For 

each line, the energy is given relative to the lowest-lying spin state of the intermediate. 
 

S=0 S=1 S=2 

[Cr(bpy)(CO)3]2- 0 18.3 52.5 

[Cr(bpy)(CO2)(CO)3]2- 0 11.8 50.7 

[Cr(bpy)(CO2H)(CO)3]- 0 25.8 62.9 

[Cr(bpy) (CO)4] 0 45.6 74.5 

 

 This mechanism is similar to that of [Re(bpy)(CO)3]-. The active species, 

[Cr(bpy)(CO)3]2- possesses a square-pyramidal ligand field. It is identified as a Cr0 center 

(SCr=0) bound to a doubly-reduced bpy2- ligand (Sbpy=0). In details, the Cr center has a 

(dxy)2(dxz)2(dyz)2 configuration, and the HOMO of [Cr(bpy)(CO)3]2- (1π*) is an admixture of Cr 

dz2 and bpy 𝜋* fragment orbitals (17% Cr, 75% bpy). During the formation of the adduct 

[Cr(bpy)(CO)3(CO2)]2-, a two-electron transfer from the 1π* orbital to the formally empty dz2 

orbital takes place, and the latter orbital donates the electron density into the CO2 in-plane πip* 

orbital. The subsequently formed bonding orbital 1σ demonstrates a significant covalent Cr-

CCO2 bond (31% Cr, 51% CO2), although the orbital remains partially delocalized to the 

bipyridine and the carbonyl ligands. This intermediate is best described as a resonant structure 

between a Cr0 center (SCr=0) bound to a (CO2)2- ligand and a Cr-II center bound to a CO2 ligand. 

The proton transfer step affording the metallarboxylic acid intermediate increases the weight of 

the CO2H motif in the bonding orbital (28% Cr, 64% CO2H). Here, the system is best described 

as a Cr0 (SCr=0) bound to a (CO2H)- ligand. The two subsequent steps are the proton-assisted 

C-O bond cleavage and electron transfer from the electrode, in an unknown order. Determining 

whether this species follows a “protonation-first” or “reduction-first” pathway is beyond the 
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scope of this study. However, this two-step sequence yields a metal-carbonyl adduct. The σCr-

CO bonding orbital remains mainly centered around CO (29% Cr, 65% CO) but does not further 

polarize. The electron is transferred from the electrode to the 1𝜋* orbital, entirely centered 

around the ligand. Hence the system is best described as a Cr0 (SCr=0) bound to a carbonyl and 

a bpy•- ligand (Sbpy=1/2).  

 

  
Figure A10: (Top) catalytic cycle of CO2-to-CO conversion catalysed with [Cr(bpy)(CO)3]2-. 

The type of mechanism is postulated to be similar to that of [Re(bpy)(CO)3]K and 
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[Mn(bpy)(CO)3]K. Cyclic voltammetry data suggests the active species is [Cr(bpy)(CO)3]2-.64 

(Bottom) associated electronic structure of the intermediates [Cr(bpy)(CO)3]2- (A), 

[Cr(bpy)(CO)3(CO2)]2- (B), [Cr(bpy)(CO)3(CO2H)]- (C), and [Cr(bpy)(CO)4] (D). The 

electrons occupying the d-orbitals of the metal and the redox-active orbitals of the ligand are 

represented by arrows. Electrons involved in the ligand-to-metal and metal-to-CO2 

intramolecular transfer are shown as green arrows. The Cr, bpy and CO2/CO2H/CO Löwdin 

population of the bonding orbital formed by interaction of the metal center, the bpy and the 

CO2 ligands is displayed circled in green. For clarity, all hydrogens are hidden except the 

hydrogen of the CO2H motif. 

 

8) Intermediates in the reduction of CO2 catalyzed with [Ru(bpy)2(CO)] 

 

Table A9:Electronic energy difference (in kcal/mol) between the spin states of each 

intermediate involved in the mechanism of CO2 reduction catalysed with [Ru(bpy)2(CO)]. For 

each line, the energy is given relative to the lowest-lying spin state of the intermediate. 

Intermediate S=0 S=1 S=2 

[Ru(bpy)2(CO)] 0 +8.6 +40.7 

[Ru(bpy)2(CO)(CO2)] 0 +30.3 +63.8 

[Ru(bpy)2(CO)(CO2H)]+ 0 +53.0 +118.5 

[Ru(bpy)2(CO)2]2+ 0 +64.8 +128.7 

 

 The active species, [Ru(bpy)2(CO)], has a square-pyramidal ligand-field symmetry 

similar to [Re(bpy)(CO)3]-. The ruthenium has a (dxy)2(dxz)2(dyz)2 electronic configuration. The 

HOMO of [Ru(bpy)2(CO)] (1π*) is strongly delocalized and mainly corresponds to an 

admixture of Ru dz2 (44%) and bpy 𝜋* (33%) from one bipyridine ligand. Hence the system is 

best described as a hybrid form between a RuII (SRu=0) system bound to a (bpy)2- (Sbpy=0), and 

a Ru0 bound to a neutral bpy ligand. During the formation of the adduct [Ru(bpy)2(CO)(CO2)], 

two electron transfers from the 1π* orbital to the dz2 orbital takes place, and the latter orbital 

donates two electrons into the CO2 in-plane π* orbital. The subsequently-formed bonding 

orbital 1σ is strongly covalent (46% Ru and 49% CO2), such that the species is best described 

as a resonant hybride between a RuII center (SRu=0) bound to a (CO2)2- ligand and a Ru0 center 

(SRu=0) bound to a CO2 ligand. The bpy ligand is neutral. Hence, this step corresponds to an 

overall electron transfer from the bpy ligand to the CO2. The subsequent protonation further 

polarizes the bonding orbital (37% Ru and 59% CO2H). However, the bond is still strongly 
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covalent and the oxidation state of the ruthenium remains ambiguous. Finally, the proton-

assisted cleavage of the C-O bond yields a metal-carbonyl adduct. 1σ is largely CO-centered at 

this stage, (32% Ru, 64% CO) and the system unambiguously described as a RuII center (SRu=0) 

bound to a carbonyl ligand.  

 

 
Figure A11: (Top) catalytic cycle of CO2-to-CO conversion catalysed with [Ru(bpy)2(CO)]. 

The mechanism is taken from reference 46. (Bottom) associated electronic structure of the 
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intermediates [Ru(bpy)2(CO)] (A), [Ru(bpy)2(CO)(CO2)] (B), [Ru(bpy)2(CO)(CO2H)]+ (C), 

and [Ru(bpy)2(CO)2]2+ (D). The electrons occupying the d-orbitals of the metal and the redox-

active orbitals of the ligand are represented by arrows. Electrons involved in the ligand-to-metal 

and metal-to-CO2 intramolecular transfer are shown as green arrows. The Ru, bpy and 

CO2/CO2H/CO Löwdin population of the bonding orbital 1σ formed by interaction of the metal 

center, the tpy and the CO2 ligands is displayed circled in green. Positive parts of the orbitals 

are represented in red. Negative parts are represented in yellow. For clarity, all hydrogens are 

hidden except the hydrogen of the CO2H motif. 

 

 

9) Intermediates in the reduction of CO2 catalyzed with [Ru(bpy)(tpy)] 

 

Table A10: Electronic energy difference (in kcal/mol)  between the spin states of each 

intermediate involved in the mechanism of CO2 reduction catalysed with [Ru(bpy)(tpy)]. For 

each line, the energy is given relative to the lowest-lying spin state of the intermediate.   

Intermediate S=0 S=1 S=2 

[Ru(bpy)(tpy)] 0 7.7 34.1 

[Ru(bpy)(tpy)(CO2)] 0 58.7 63.7 

[Ru(bpy)(tpy)(CO)] <0.1 0 50.7 

 

Unlike most investigated catalysts, this catalyst yields CO under aprotic conditions, 

following the stochiometric equation: 

2𝐶𝑂* + 2	𝑒7 → 𝐶𝑂 + 𝐶𝑂�*7         (13) 

 

Very similar to [Re(bpy)(CO)3]K, the active form of the catalyst exhibits a ligand field best 

described as a deformed square-pyramidal. The HOMO is a mixture of 27% Ru-dz2 and 69% 

tpy-𝜋* orbital. Hence, the species can be described as a RuII (SRu=0) bound to a tpy2- ligand. 

During the formation of the adduct [Ru(bpy)(tpy)(CO2)], a two-electron transfer from the tpy-

π* orbital to the formally empty Ru-dz2 orbital takes place, and the latter orbital donates the 

electron density into the CO2 πip* orbital. The subsequently-formed bonding orbital 1σ is 

strongly covalent (44% Ru and 49% CO2), such that the species is best described as a resonant 

hybride between a RuII center (SRu=0) bound to a (CO2)2- ligand and a Ru0 center (SRu=0) bound 

to a CO2 ligand. Thus it is safe to consider this step as a first electron transfer to the CO2 motif. 

Subsequently, the catalyst accepts two electrons from the electrode. The electron-accepting 
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orbitals are entirely ligand-based, i.e. the bpy-𝜋* and the tpy-𝜋*. The subsequent C-O bond 

cleavage yields a metal-carbonyl. In the latter species, the bonding orbital 1σ is largely CO-

centered (33% Ru, 63% CO) due to the superior electron-attracting properties of CO2+ 

compared to CO2. This step can be interpreted as the second electron transfer to CO. 

Meanwhile, the two electrons previously transferred from the electrode remained centered on 

the ligand. Hence, this species can be interpreted as a RuII center (SRu=0) bound to a carbonyl, 

a bpy•- and a tpy•- ligands. Notably, the energy the present triplet state and the singlet state is 

below the error range of DFT for this intermediate. The latter is a closed-shell system in which 

a RuII (SRu=0) is bound to a closed shell tpy2- ligand instead of a RuII bound to two radical 

ligands bpy•- and a tpy•-.  
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Figure A12: (Top) catalytic cycle of CO2-to-CO conversion catalysed with [Ru(bpy)(tpy)]. The 

mechanism is taken from reference 59. (Bottom) associated electronic structure of the 

intermediates [Ru(bpy)(tpy)] (A),  [Ru(bpy)(tpy)(CO2)] (B), and [Ru(bpy)(tpy)(CO)] (C). The 

electrons occupying the d-orbitals of the metal and the redox-active orbitals of the ligand are 

represented by arrows. Electrons involved in the ligand-to-metal and metal-to-CO2 

intramolecular transfer are shown as green arrows. The Ru, tpy and CO2/CO Löwdin population 

of the bonding orbital 1σ formed by interaction of the metal center, the tpy and the CO2 ligands 
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is displayed circled in green. Positive parts of the orbitals are represented in red. Negative parts 

are represented in yellow. For clarity, all hydrogens are hidden. 
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