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Abstract

Nuclear magnetic resonance (NMR) spectroscopy is an essential analytic technique in
chemical, pharmaceutical, and biomedical research and materials sciences. The informa-
tion that NMR provides about the molecular structure of novel compounds is detailed
but indirect, hidden behind the two main quantities that determine the shape of the
spectrum: the shielding tensor (observed as a chemical shift) and the indirect spin–spin
coupling tensor. Thus, computational methods are often used to predict these properties
from first principles and correctly interpret complex spectra. The challenge is to develop
methods which are both accurate and robust enough to resolve truly complicated struc-
tures, and efficient enough to be routinely applicable to large molecular systems. This
work aims to facilitate the fast and accurate calculation of NMR shielding tensors in three
complementary ways.

First, two popular approaches for speeding up Hartree–Fock (HF) and density func-
tional theory (DFT) calculations, the resolution of the identity (RI) and chain-of-spheres
exchange (COSX) approximations, are applied to NMR shielding calculations using gauge-
including atomic orbitals (GIAOs). A benchmark study is performed to assess the errors
thus introduced in the calculated shieldings, in comparison to the inherent errors due
to the level of theory. After selection of appropriate basis sets and integration grids, it
is shown that the RI approximation for Coulomb interactions, combined with either the
same for exchange interactions (RIJK), or with COSX (RIJCOSX), are both sufficiently
accurate. However, for systems with more than 100 electrons and 1000 basis functions,
RIJCOSX is more efficient.

Next, NMR shielding calculations with GIAOs are implemented for RI-based second
order Møller–Plesset perturbation theory (RI-MP2) and also, for the first time, for double-
hybrid DFT (DHDFT). The latter is shown to be substantially more accurate than either
MP2 or regular DFT, reproducing NMR chemical shifts within 2 % of the CCSD(T)
(coupled clusters with single, double, and perturbative triple excitations) reference values.
The accuracy and efficiency of the RI-MP2 approximation is also assessed and it is shown
that the implementation is suitable for systems with up to 400 electrons and 2500 basis
functions.

Finally, the applicability of MP2 and DHDFT is extended to even larger systems by
employing the concepts of local electron correlation within the framework of the domain-
based local pair natural orbital (DLPNO) approximation. The formally complete analytic
second derivatives of DLPNO-MP2 are derived and implemented for both NMR shieldings
and electric dipole polarizabilites. Some numerical stability issues, potentially relevant
to other local correlation methods, and their avoidance are discussed. The effect of the
DLPNO approximation is assessed for medium-sized systems and it is shown that relative
deviations from the RI-MP2 reference result are below 0.5 % for both properties when
using the default truncation thresholds. For large systems, the implementation achieves
quadratic effective scaling of the computational effort with system size. It is more efficient
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than RI-MP2 starting at 280 correlated electrons and is never more than 5–20 times slower
than the equivalent HF or hybrid DFT calculation. The largest system treated here at
the DLPNO-DHDFT level is the vancomycin molecule with 176 atoms, 542 correlated
electrons, and 4700 basis functions.
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Chapter 1

Introduction

1.1 The nuclear magnetic resonance shielding tensor

Nuclear magnetic resonance (NMR) spectroscopy is an essential tool in modern chemistry
with a myriad of applications including characterization of novel compounds, measuring
reaction kinetics and binding constants, assessing the purity of synthetic products, etc.
NMR is very sensitive to changes in the chemical environment of the studied nuclei, how-
ever, this structural information is indirect. While advanced experimental techniques,
such as two-dimensional NMR spectroscopy, are very powerful in deconvoluting compli-
cated spectra, computational modeling is often necessary in order to interpret the exper-
imental data. The main two observables obtained from NMR spectra are the chemical
shift and the indirect nuclear spin–spin coupling both of which can be calculated from first
principles for model systems. However, the methods presented in this work are mainly
directed at the ab initio computation of chemical shifts.

The chemical shift, δ, is defined as the relative difference of the nuclear magnetic res-
onance frequency of a sample nucleus, νsample, with respect to that of a reference nucleus,
νref, expressed in parts per million (ppm):1

δ =
νsample − νref

νref

(1.1)

The resonance frequency is proportional to the nuclide’s magnetogyric ratio γ and the
applied magnetic field B0:

ν =
γ

2π
B0 (1− σ) (1.2)

This equation defines the shielding constant σ as a dimensionless quantity, usually re-
ported in ppm, which reflects how the magnetic field acting on the nucleus is affected by
the induced currents in the surrounding electron density. This dependence on the local
electronic environment makes σ and δ sensitive probes for the chemical structure around
a given nucleus. In principle, the value of σ depends on the orientation of the molecule in
the external magnetic field and therefore both σ and δ are three-dimensional second-rank
tensors. However, due to rapid tumbling in the liquid state, only an average isotropic
value is observed, which can be calculated from the trace of the tensor:

σiso =
1

3
(σxx + σyy + σzz) (1.3)

The anisotropy of the tensor can also be measured in solid state experiments.

1



1.2 Ab initio calculation of NMR shielding

The theory behind the computation of NMR parameters from first principles dates back to
the 1950s2 and progress in the field has been the subject of many monographs, reviews,
and conference proceedings over the years.3–15 The following sections point out some
of the relevant works, focusing in particular on improvements in the accuracy and/or
computational cost of NMR shielding calculations.

Formally, the NMR shielding tensor σK of nucleus K can be expressed as the second
derivative of the energy with respect to the magnetic field B and the magnetic moment
the nucleus, mK :13,16

σKβα =
d2E

dBαdmKβ

∣∣∣∣
B,mK=0

, α, β = x, y, z (1.4)

In principle, energy derivatives can be obtained using numerical differentiation techniques,
i.e. finite differences. However, such an approach suffers from limited numerical precision,
as well a high computational cost due to the large number of energy calculations that
must be performed. In addition, it is particularly ill-suited for magnetic properties, as
these would require parameterizing the wave function using complex variables, which is
not possible in most electronic structure programs. Thus, practical implementations for
NMR shielding calculations rely on analytic derivative techniques, which resolve these
issues. The downside, however, is that the derivation and implementation of each specific
property for each electronic structure method requires significant effort.

1.2.1 The gauge origin problem

An additional complication is the so-called “gauge origin problem”,13,17 which requires
special treatment. The external magnetic field is introduced into the Hamiltonian through
a vector potential:

Ae(r,B) =
1

2
B× (r−RO) (1.5)

where r is the electron position and RO is the gauge origin, which can be chosen arbitrarily
as long as it satisfies the condition

B = ∇×Ae(r,B) (1.6)

In contrast, observable properties of the system, such as the shielding tensor, must be
independent of this choice. That is indeed the case for the exact wave function, however,
not so for the approximate wave functions used in practice. In fact, not only do the
calculated shieldings vary with RO, the convergence towards the complete basis set (CBS)
limit is very slow as the basis set is increased.16 Several methods have been devised to
tackle this problem:

• Individual Gauge for Localized Orbitals (IGLO);18,19

• Localized Orbitals/Localized Origins (LORG)20 and its second order variant SOLO;21

• Individual Gauges for Atoms in Molecules (IGAIM);22

• Continuous Set of Gauge Transformations (CSGT)23 and the related Continuous
Transformation of the Current Density (CTOCD) variations;24–26
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• Gauge-Including Atomic Orbitals (GIAOs).27–31

Of these, the GIAO approach has been established as the de facto standard, as it formally
(and practically) ensures gauge-origin independence of the result, does not require orbital
localization (which may fail for delocalized systems), and can be applied to correlated
wave function-based methods. Within the GIAO approach a magnetic field dependence
is introduced as a phase factor in the definition of the basis functions:

χκ(B, r) = exp [−iAe(RK ,B) · r]ϕκ(r) (1.7)

where ϕκ is a regular Gaussian-type orbital (GTO), centered on atom K and Ae
K is

the local representation of the external field at coordinates RK , as given by eq. 1.5.
In integrals over GIAOs the dependence on RO cancels out,32,33 making the calculated
properties gauge origin-independent. Note that derivatives of these integrals with respect
to B (at the zero-field limit) are strictly imaginary. In practice, the imaginary unit is
factored out and thus a real representation is sufficient for the perturbed integrals with
the minor complication that the resulting matrices are antisymmetric.16

1.2.2 Wave function theory

In the field of wave function theory, the Hartree–Fock (HF) method has undoubtedly pro-
vided useful insights but it has been shown to predict NMR shieldings rather far from the
experimental observations, due to a lack of electron correlation effects. Shielding calcu-
lations using correlated wave function-based methods and analytic derivative techniques
were pioneered by Gauss, first at the level of second order Møller–Plesset perturbation
theory (MP2),34,35 and subsequently at higher orders of perturbation theory and coupled
cluster (CC) theory,36–41 as well as configuration interaction (CI) up to full CI (FCI).42

While calculations at high levels of CC theory are only feasible for rather small molecules,
they provide accurate reference values, against which to benchmark other computational
methods. In this respect, CC with single, double, and perturbative triple excitations
(CCSD(T)) has been established as the “gold standard”. MP2 has been shown to offer
a good balance between cost and accuracy in the calculated NMR shieldings,34,35,43–47 al-
though it can fail completely for systems with significant static correlation. In these cases
a multiconfigurational approach may be more appropriate,48–50 though single reference
CC calculations are usually also successful.39,41

A somewhat empirical way to improve MP2 results is to scale the same-spin (SS) and
opposite-spin (OS) contributions to the energy by different factors in the so-called spin-
component-scaled MP2 (SCS-MP2) approach.51–53 The related spin-opposite-scaled MP2
(SOS-MP2) method completely neglects the SS contribution and yields similar accuracy
with the added benefit of reduced formal scaling of the computational effort with system
size from O (N5) to O (N4), provided a Laplace transform-based implementation is used.
Fitting the scaling parameters in SCS-MP2 (or SOS-MP2) to better reproduce CCSD(T)
NMR shielding constants is also possible,54 although this somewhat obscures the physical
meaning behind these parameters.

1.2.3 Density functional theory

A rather more popular approach to the calculation of chemical shifts is density func-
tional theory (DFT), which has a significantly lower computational cost.10,55–57 The proper
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treatment of magnetic perturbations in the context DFT is the subject of ongoing discus-
sion.58–62 Most common density functionals (DFs) do not depend on the external magnetic
field, and therefore produce exchange and correlation (XC) energies, which are unphysi-
cally constant in the presence of such. While it is possible to introduce an explicit mag-
netic field dependence,63 the more widely-accepted approach is current density functional
theory (CDFT), pioneered by Vignale and Rasolt,64,65 who introduced the paramagnetic
current density as an independent variable, although this choice is also subject to debate.66

CDFT is still actively developed and was recently extended to functionals based on the
meta-generalized-gradient approximation (meta-GGA).62,67–70 However, while the current
density contributions to NMR shieldings can be substantial,59,62 CDFT results are not
necessarily substantially better than those obtained with standard current-independent
DFs.58,70–72 Therefore, for pragmatic reasons the latter are widely used for the calculation
of magnetic properties, with different functionals showing varying degrees of accuracy.47,73

While there are DFs specifically optimized for NMR shielding calculations,74,75 some gen-
eral application meta-GGAs like VS98, and M06-L have been shown to be particularly
well-suited for NMR chemical shifts.76

According to the “Jacob’s ladder” classification, introduced by Perdew,77 the highest
level (fifth rung) DFT methodologies include a non-local correlation energy contribution
by taking into account the virtual molecular orbitals (MOs). One possible approach
of this type is double-hybrid DFT (DHDFT), whereby an MP2-like term is added to
the total energy.78,79 Combining this with SCS-MP2 and the empirical dispersion correc-
tion (denoted D3BJ in its most popular formulation), introduced by Grimme,80–82 gives
the general formulation of dispersion-corrected spin-component-scaled double-hybrid DFT
(DSD-DFT), developed by Kozuch and Martin.83–85 In extensive benchmark studies of
themochemistry, kinetics and noncovalent interactions, double-hybrid density functionals
(DHDFs) have been clearly shown to outperform lower-rung DFs, with DSD-BLYP and
DSD-PBEP86 among the most accurate.86–89 DSD-DFT functionals also perform better
than other common DFs or MP2 in calculations of properties, for which they were not
specifically optimized, such as harmonic vibrational frequencies,84,85 dipole moments,90

and polarizabilities.91 This suggests they may be sufficiently “universal” to also produce
high quality results for other response properties. Note that, as discussed above, the
XC functionals used in DHDFT are independent of the magnetic field. While it may
be expected that this deficiency is partly offset by the inclusion of Hartree–Fock (HF)
exchange and MP2 correlation, this issue is not examined in the current work. Analytic
derivatives for DHDFT have been derived and implemented previously for geometric gra-
dients,92,93 as well as NMR shieldings,94 however, without proper treatment of the gauge
origin problem.

1.3 Shielding calculations for large systems

A fundamental challenge of computational chemistry is how to apply its methods to
ever larger systems. This is also relevant to NMR shielding calculations, as particularly
biomolecules and natural products can have hundreds or thousands of atoms, while sim-
ulations of condensed phases may require inclusion of many molecules to obtain reliable
results. Thus, it is worthwhile to improve the efficiency of computational methods as
much as possible, in terms of both formal scaling with system size and overall time and
resources required.

One possibility is to exploit the local nature of NMR shielding by dividing the system
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into fragments and performing separate calculations for these fragments, accounting in
some approximate way for their interaction with the rest of the system.95–102 Such ap-
proaches have been successfully applied to chemical shift calculations of entire proteins. A
benefit of methods based on simple electrostatic embedding of the target fragment within
the surroundings, such as quantum-mechanics/molecular mechanics (QM/MM)96,97,99 or
ONIOM-like schemes,100,101,103,104 is that one can in principle apply arbitrary levels of
theory for the individual sub-calculations. This implies that any efficiency improvements
in the underlying computational method can be carried over to much larger systems, pro-
vided the latter lend themselves to such fragmentation. Alternatively, if only a few nuclei
in the system are of interest, it is possible to reformulate the methodology to selectively
calculate only their shielding constants, thereby dramatically reducing the computation
time.105,106

Complementary to these techniques is the use of efficient integral evaluation algo-
rithms. As is the case for self-consistent field (SCF) calculations of the energy, the com-
putational effort for NMR property calculations is also dominated by the evaluation of
two-electron repulsion integrals. Therefore a number of approaches have been developed
to reduce the cost of this step, including prescreening procedures, which reduce the number
of integrals to be computed, and approximate calculation of the integrals themselves.107

Ochsenfeld and coworkers have applied advanced screening techniques in combination with
the continuous fast multipole method (CFMM) to SCF-level NMR shielding calculations
and demonstrated asymptotic linear scaling with system size.108,109

Two other popular approaches are the resolution of the identity (RI) and chain-of-
spheres (COS) approximations, which have been applied successfully to energy calcu-
lations, as well as first and second order geometric perturbations (gradients and Hes-
sians).110–114 Both approximations provide significant speedups and only introduce small
deviations in the results (e.g. errors in the energy up to 100 µEh/atom).111,113,115,116 For
energy calculations on medium to large systems at the HF and hybrid DFT levels, the
COS approximation of the exact exchange (COSX) has been shown to be more efficient
than the RI approximation of the latter (RIK), due to the more favorable scaling of the
COSX algorithm with system size (formally linear, quadratic in practice, as opposed to
O (N4) for RIK, albeit with a small prefactor).116 Conversely, the RI approximation of
the Coulomb terms (RIJ) usually provides a better balance of cost vs efficiency than the
respective COS approximation (COSJ).113 While the RI approximation has also been
employed for the calculation of NMR shielding constants using GIAOs,106,117 no such im-
plementation of the COS scheme has been reported prior to the present work, although
it is similar to the pseudospectral approach of Friesner et al.118,119

As part of this thesis deals with extending the applicability of MP2 to much larger
systems, it should be viewed as part of an ongoing effort to reduce the computational
cost of MP2 response property calculations. Works in this context are the integral-direct
GIAO-MP2 implementation for NMR shieldings of Kollwitz, Häser, and Gauss,120,121 the
derivation of RI-MP2 second derivatives in combination with COSX,94 and the Laplace-
based approaches of Ochsenfeld, Hättig, and their coworkers,122,123 as well as the local
correlation methods discussed in the next section.
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1.4 Property calculations with local correlation meth-

ods

When it comes to reducing the rather steep formal scaling of correlated wave function-
based methods such as CC, local correlation approaches, which exploit the “near-sight-
edness” of dynamic correlation, have been a great success. The early development of
local electron correlation methods is due to Pulay and Sæbø,124–126 although the ini-
tial ideas date further back.127,128 Thanks to recent advancements in several research
groups,122,129–165 the popularity and applicability of these methods for the calculation of
relative energies have grown tremendously. With modern approximations, the “gold stan-
dard” CCSD(T) method166 has become available at a computational cost only a few times
higher than that of DFT.167,168 Considering the massive progress that has been made in
this field for the calculation of electronic energies, there are comparatively few works that
make use of local correlation approximations to compute molecular properties, such as the
dipole polarizability, NMR shielding, etc., which are related to derivatives of the energy.
This is, in part, because analytic derivatives of local correlation methods are challenging,
due to the complexity of the theories.

This is not to say that nothing has been accomplished on this subject. Werner, Schütz,
and coworkers have derived and implemented analytic nuclear gradients for several lo-
cal correlation methods169–174 based on projected atomic orbitals (PAOs),124,125 including
MP2, and have also used them to semi-numerically calculate vibrational frequencies.175–177

Gauss and Werner also presented a pilot implementation for NMR shielding calculations
with PAO-based local MP2 (LMP2).178 The first efficient such implementation, also em-
ploying the RI approximation, was later reported by Loibl and Schütz,179 and also adapted
to magnetizabilities.180 Another study by Werner and coworkers examines the accuracy
of PAO-based local correlation methods for polarizability calculations via finite differ-
ences,181 an approach which is difficult to apply to magnetic properties, as it requires
an implementation based on complex algebra. Maurer and Ochsenfeld developed an AO-
based Laplace-transformed MP2 method for the computation of NMR shieldings, which
can asymptotically achieve linear scaling, or even sub-linear if only a few nuclei are of in-
terest.182 Static and dynamic polarizabilities have also been implemented for MP2 and the
approximate coupled cluster method CC2, using both RI and a Laplace-transformation.123

Frank et al. reported analytic gradients for a local MP2 variant, based on pair natural
orbitals (PNOs), although they neglected the PNO relaxation.183 The complete analytic
gradient for an orbital-specific virtual (OSV) local MP2 method was also published re-
cently by Yang and coworkers.184 We should also mention here the work by Crawford
and coworkers in the field of local coupled cluster linear response theory for the calcula-
tion of molecular properties, including frequency-dependent polarizabilities and specific
optical rotations.185–188 Work in the Neese group has focused on the domain-based local
pair natural orbital (DLPNO) approximation and has resulted in orbital-unrelaxed first
derivatives of DLPNO-CCSD, which can be used to calculate, e.g., dipole moments and
HFCs.189,190 Fully orbital-relaxed first derivatives and nuclear gradients were also imple-
mented for the DLPNO-MP2 method,191–193 and those results highlight the importance
of the PNO relaxation contributions, e.g. for electric field gradients.191
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1.5 Relativistic, rovibrational, and environmental ef-

fects

The discussion so far dealt with the accurate and efficient calculation of NMR shieldings
of static molecules in the gas phase within the non-relativistic and Born–Oppenheimer
approximations. However, NMR experiments are performed at a finite temperature and
represent averaged parameters for an ensemble of vibrating and rotating conformers of
the target molecule, usually in a liquid or frozen solution. Therefore, a direct compar-
ison between computed and measured chemical shifts is only possible if the relativistic,
conformational, rovibrational, and environmental (i.e. solvent/crystal) effects are either
negligibly small, or properly accounted for in the calculations.

Relativistic effects in general are only significant if the system contains heavy atoms.9,194–197

In these cases, both scalar relativistic and spin–orbit coupling contributions can become
substantial, resulting, for example, in the observable “heavy atom–light atom” (HALA)
and “heavy atom–heavy atom” (HAHA) effects. Both scalar and spin–orbit relativistic
corrections can be computed using an appropriate modification to the theory, such as the
full four-component Dirac–Fock treatment,198–200 approximate two-component approaches
such as the zeroth-order regular approximation (ZORA)201,202 or the Douglas–Kroll–Hess
(DKH) transformation,203,204 as well as exact two-component (X2C) methods.205–207

Different conformers of the same system can have drastically different NMR shieldings.
In addition, chemically equivalent nuclei, such as the three hydrogen atoms of a methyl
group, appear as a single signal in the spectrum, while they are non-equivalent in static cal-
culations. Therefore, for flexible molecules, which can exist in multiple conformations at
room temperature, it is absolutely essential to correctly average the computed properties
over the whole conformer–rotamer ensemble. This can be done via some (manual or au-
tomatic) sampling procedure, together with accurate estimates of the Boltzmann weights
of individual conformers.208,209 Alternatively, molecular dynamics (MD) approaches can
be used, including ab initio MD (AIMD), to compute a time average of the NMR shield-
ings.210 The effects of rovibrational averaging can also be substantial.211 In many cases,
they can be estimated using second order vibrational perturbation theory (VPT2),43,212

while AIMD simulations are another option.210

Finally, the effects of the molecular environment are most noticeable in the solid state
or in strongly polar and protic solvents.213,214 In these cases, it may be necessary to
explicitly include the surrounding molecules in the model system (often within an MD
simulation) in order to obtain accurate predictions.215–217 For weakly polar and aprotic
solvents, an implicit solvent model is often sufficient.218

1.6 Scope of the present work

This thesis encompasses three main projects. The first is a detailed study of the accuracy
and efficiency of the RI and COS approximations applied to NMR shielding calculations at
the SCF (HF and DFT) level with GIAOs. To put the errors due to these approximations
in context, a test set of small molecules is assembled and the comparatively larger errors
due to basis set incompleteness and the level of theory are assessed. The findings are
presented in Chapter 2.

The second project deals with the derivation and implementation of the RI-MP2 and
DHDFT methods for NMR shielding calculations using GIAOs. The accuracy of various
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double-hybrid functionals, as well as the other sources of error (RI, basis sets, etc.), are
assessed using the same set of molecules, which is why these results are also grouped in
Chapter 2.

The third project, discussed in Chapter 3, is the derivation and implementation of
analytic second derivatives of DLPNO-MP2, applicable to field-response properties, such
as dipole polarizabilities and NMR shieldings. A detailed benchmark study of the accuracy
and efficiency of the method is also reported. This is the first implementation of formally
complete analytic second derivatives of a PNO-based local correlation method and on the
one hand it serves as a stepping stone towards DLPNO-CCSD second derivatives. On the
other hand, it allows the application of MP2 and DHDFT, which have been shown to be
very accurate for polarizabilities and NMR shieldings,35,47,91 to even larger systems.

All software implementations related to this thesis are included in the ORCA electronic
structure program.219–221

Note that the derivations and implementations discussed in this work are not directly
applicable to harmonic vibrational frequencies, as the efficient evaluation of the nuclear
Hessian requires substantially different algorithms.

In addition, relativistic effects are entirely neglected throughout this thesis. Rovibra-
tional influences are circumvented by comparing between equilibrium values computed
using various methods and approximations. However, the techniques discussed here are
in principle also applicable within schemes such as VPT2 or AIMD. Finally, the results in
this work are computed in vacuum, although implicit solvent models are briefly discussed
and once again, inclusion of explicit solvent molecules is also possible with the presented
methods.
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Chapter 2

Efficient NMR shielding calculations
at the SCF, MP2, and double-hybrid
DFT levels

2.1 Theory

2.1.1 Notation and general considerations

Throughout this chapter µ, ν, . . . label atomic orbitals (AOs), i, j, . . . and a, b, . . . label
occupied and virtual molecular orbitals (MOs), respectively, and p, q, . . . label any MOs.

Where a matrix quantity is defined using the same symbol in both the AO and MO
basis sets, for example Fµν and Fpq, to distinguish these in matrix notation, the index
“AO” is added to the former, i.e. FAO and F, respectively. A matrix trace is denoted as
tr(A) =

∑
iAii.

When expressing derivatives in matrix form the following notation is used:

∂A

∂bij
= Cij ⇔ ∂A

∂b
= C (2.1)

Abij ≡
dAij
db

∣∣∣∣
b=0

= Cij ⇔ Ab ≡ dA

db

∣∣∣∣
b=0

= C (2.2)

A perturbation index in parenthesis, i.e. A(b) is used to imply that not the full derivative
is taken but, e.g., derivatives of the MO coefficients are excluded. In the following, these
symbols are defined at first occurrence. In addition, the following shorthand is used to
explicitly denote unperturbed quantities:

A(0) ≡ A|b=0 (2.3)

In the case of magnetic properties, special attention must be paid to complex con-
jugation: the superscripts “∗”, “T”, and “†” are used to denote the complex conjugate,
matrix transpose, and complex transpose of a quantity. Because the independent param-
eters in the derivations are considered complex quantities, Wirtinger derivatives are used
throughout,222 i.e. for a complex parameter z = x+ iy and a function f(z, z∗):

df

dz
=

1

2

df

dx
− i

2

df

dy

df

dz∗
=

1

2

df

dx
+

i

2

df

dy
(2.4)
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In addition to the ordinary product and chain rules, the following equalities hold:(
df

dz

)∗
=

df ∗

dz∗

(
df

dz∗

)∗
=

df ∗

dz
(2.5)

In general, z and z∗ are viewed as independent parameters until a point where they
become fully real (z = z∗) or fully imaginary (z = −z∗).

Atomic units are used in all equations throughout this work.

2.1.2 NMR shielding at the self-consistent field level

In the following, a brief overview is given of the basic theory underlying the calculation of
the NMR shielding tensor using analytic derivative techniques, in particular, at the SCF
level. For a more thorough discussion the reader is referred to the lecture by Gauss,16 as
well as the extensive review by Helgaker et al.13 and references therein.

2.1.2.1 The NMR shielding tensor as a derivative of the energy

As mentioned in Section 1.2, the NMR shielding tensor σK of nucleus K can be expressed
as the second derivative of the energy with respect to the magnetic field B and the
magnetic moment of the nucleus, mK :

σKβα =
d2E

dBαdmKβ

∣∣∣∣
B,mK=0

, α, β = x, y, z (2.6)

The energy E is the expectation value of the Hamiltonian, the one-electron part of which
is parametrized to depend explicitly on B and mK in the following manner:33

h(r,B,m) =
1

2
π2 − V(r), π = −i∇ + A(r,B,m) (2.7)

where the vector potential A is given by

A(r,B,m) =
1

2
B× (r−RO) + α2

∑
K

mK × (r−RK)

|r−RK |
(2.8)

where the first term corresponds to the external field, the second arises due to the nuclear
magnetic moments. In the above equations, r and RK are the coordinates of the electron
and nucleus K, respectively, α is the fine-structure constant, and RO is the arbitrarily
chosen gauge origin.

Using a density matrix-based formalism, equation 2.6 can be evaluated as

σKβα =
d2E

dBαdmKβ

∣∣∣∣
B,mK=0

=
∑
µν

Dµν
d2hµν

dBαdmKβ

+
∑
µν

dDµν

dBα

dhµν
dmKβ

(2.9)

where D is the density matrix. Note that for non-variational methods, the proper defi-
nitions of the density matrices must be used.34,37,39,223–227 The first and second terms in
eq. 2.6 are referred to as the “diamagnetic” and “paramagnetic” parts of the shielding
tensor. To compute the latter, the perturbed or “response” density matrix DB is required
– its evaluation at the HF level is discussed in the following section. The extension to
(hybrid) Kohn–Sham DFT (KS-DFT) is given in Section 2.1.4.
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2.1.2.2 Coupled perturbed self-consistent field equations

For SCF methods (HF or DFT), the density matrix is defined as:

DSCF
µν = 2

∑
i

c∗µicνi (2.10)

We can parametrize the dependence of the MO coefficients on the magnetic field as

c(B) = c(0)U(B) (2.11)

Hence, the perturbed density becomes

DSCF,B
µν = 2

∑
pi

(
c∗µpU

B∗
pi cνi + c∗µiU

B
pi cνp

)
(2.12)

where the superscript B denotes a magnetic field derivative (at B = 0).
For any value of the external perturbation, the MO coefficients must fulfill the or-

thonormality condition Spq = δpq and the Brillouin condition Fai = 0 where Spq and Fpq
are elements of the overlap and Fock matrices in the MO basis. The unknown coefficients
UB are constrained by the derivative of these conditions:

d

dB
Spq = 0

d

dB
Fai = 0 (2.13)

The former gives:

UB∗
qp + S(B)

pq + UB
pq = 0, with S(B)

pq =
∑
µν

c(0)∗
µp S

B
µνc

(0)
νq (2.14)

while the latter results in the so-called coupled perturbed self-consistent field (CPSCF)
equations:

0 = FB
ai =

(
UB†F + FUB + c†hB

AOc + c†gB
AO

[
DSCF

]
c + g

[
DSCF,B

])
ai

(2.15)

hµν = 〈µ| h |ν〉 (2.16)

gµν [D] = Jµν [D]− 1

2
Kµν [D] =

∑
κλ

Dκλ

[
(µν|κλ)− 1

2
(µλ|κν)

]
(2.17)

where (µν|κλ) are the two-electron repulsion integrals in Mulliken (1∗1|2∗2) notation
and hAO, gAO

[
DSCF

]
, JAO

[
DSCF

]
, and KAO

[
DSCF

]
are respectively the one-electron,

two-electron, Coulomb and exchange parts of the Fock matrix in AO basis. The same
symbols without the “AO” index denote the matrices transformed to the MO basis,
e.g. g

[
DSCF

]
= c†gAO

[
DSCF

]
c. The two-electron operators are also defined analogously

for (pseudo-)density matrices in the MO basis, as determined from context.
We evaluate the terms in eq. 2.15 one by one using eq. 2.14 and assuming canonical

orbitals, i.e. Fpq = δpqεq:(
UB†F

)
ai

= UB∗
ia εi =

(
−S(B)

ai − UB
ai

)
εi (2.18)(

FUB
)
ai

= εaU
B
ai (2.19)(

c†hBc
)
ai

=
∑
µν

c∗µacνi
dhµν
dB

(2.20)
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gB
µν

[
DSCF

]
= JB

µν

[
DSCF

]
− 1

2
KB
µν

[
DSCF

]
=
∑
κλ

Dκλ

[
d (µν|κλ)

dB
− 1

2

d (µλ|κν)

dB

]
(2.21)

gai
[
DSCF,B

]
= −

∑
bj

[
UB∗
bj (aj|bi) + UB

bj (ab|ji)
]

︸ ︷︷ ︸
Kai[UB]

+
∑
kj

S
(B)
kj (ak|ji)︸ ︷︷ ︸

Kai[S(B)]

(2.22)

where we have used eq. 2.14 to express the perturbed density matrix as

DSCF,B
µν = 2

∑
ai

(
c∗µaU

B∗
ai cνi + c∗µiU

B
aicνa

)
− 2

∑
ij

c∗µjS
(B)
ij cνi (2.23)

Note that for magnetic perturbations, all integral derivatives are purely imaginary and
so are the perturbed MO coefficients, i.e. UB∗ = −UB. All perturbed Hermitian matrices
such as DSCF,B are therefore antisymmetric, which is why the Coulomb contributions in
eq. 2.22 drop out. The term denoted Kai

[
UB
]

in the same equation is not consistent with
the definition of the K[D] operator above but we use this notation for convenience.

Collecting all terms in eq. 2.15 containing UB in the left-hand side we obtain the final
form of the CPSCF equations in the canonical MO basis. These can be formulated in
matrix form by combining the indices ai into a single index:

AUB = −LB (2.24)

Aai,bj = (εa − εi) δai,bj + (aj | bi)− (ab | ji) (2.25)

LB
ai = h

(B)
ai +

∑
j

[
2 (ai|jj)(B) − (aj|ji)(B)

]
− εiS(B)

ai +
∑
jk

S
(B)
kj (ak|ji) (2.26)

h(B)
pq =

∑
µν

c(0)∗
µp h

B
µνc

(0)
νq (2.27)

(pq|rs)(B) =
∑
µνκλ

c(0)∗
µp c

(0)
νq c

(0)∗
κr c

(0)
λs (µν|κλ)B (2.28)

The discussion above also applies to KS-DFT, however, some additional terms arise due
to the XC functional, which are discussed in Section 2.1.4. Inclusion of implicit solvent
effects is discussed in Section 2.1.5.

2.1.2.3 GIAO Integrals

The dependence of the AOs on B and of the Hamiltonian on both B and mK leads to
non-zero derivatives of molecular integrals with respect to these quantities. The exact
form of the derivative GIAO integrals was derived in detail by Helgaker and Jørgensen.33

We summarize the working equations here for completeness:

d (µMνN |κKλL)

dB

∣∣∣∣
B=0

=
i

2
(µMνN | [OMNr1 + OKLr2] r−1

12 |κKλL) (2.29)

dSµν
dB

∣∣∣∣
B=0

=
i

2
〈µM |OMNr |νN〉 (2.30)

dhµν
dB

∣∣∣∣
B=0

=
i

2
〈µM |OMNrh |νN〉+

1

2
〈µM |LN |νN〉 (2.31)

12



dhµν
dmK

∣∣∣∣
mK=0

= α2

〈
µM

∣∣∣∣ LN

r3
N

∣∣∣∣ νN〉 (2.32)

d2hµν
dBdmK

∣∣∣∣
B,mK=0

=
α2

2

〈
µM

∣∣∣∣ iOMNrLT
N + (rM · rN) 1− rMrT

N

r3
N

∣∣∣∣ νN〉 (2.33)

LN = −irN ×∇ (2.34)

RMN = RM −RN =
[
XMN YMN ZMN

]
(2.35)

OMN =

 0 −ZMN YMN

ZMN 0 −XMN

−YMN XMN 0

 (2.36)

Note that the definition of the matrix O allows for integral derivatives with respect to
the magnetic field to be calculated similarly to geometric derivative integrals, required
for analytic gradient calculations. The evaluation of the contributions involving the two-
electron integrals (eq. 2.29) can be carried out efficiently using either RI or COS, both of
which are discussed in the following sections.

2.1.2.4 Resolution of the identity approximation

In the RI or density fitting approximation, a product of Gaussian-type orbitals (GTOs)
is expanded as a linear combination of auxiliary basis functions (denoted K,L, . . . ). In
the present case, the unperturbed Coulomb integrals can be approximated using RI as228

JRI
µν

[
DSCF

]
=
∑
K

dK (µν|K) (2.37)

dK =
∑
L

(
V−1

)
KL

∑
κλ

DSCF
κλ (κλ|L) (2.38)

where the integrals involved are defined as

(µν|K) =

∫
ϕ∗µ(r1)ϕν(r1) r−1

12 ηK(r2) dr1dr2 (2.39)

VKL =

∫
η∗K(r1) r−1

12 ηL(r2) dr1dr2 (2.40)

Several efficient algorithms exist for the evaluation of the Coulomb term, in this work
the Split-RI-J algorithm is used.229 The exchange matrix is evaluated using the expres-
sion110,230

KRI
µν

[
DSCF

]
= 2

∑
iK

(µi|K) (νi | K̃) (2.41)

(µi|K) =
∑
λ

cλi (µλ|K) (2.42)

(µi | K̃) =
∑
L

(
V−1

)
KL

(µi|L) (2.43)

It should be noted that RI does not reduce the formal scaling (only the prefactor) of the
evaluation of the exchange term, unlike it does for the Coulomb contribution. The RI
metric V does not need to be explicitly inverted. Instead, eqs. 2.38 and 2.43 are solved
using a Cholesky decomposition of V.
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In order to apply the RI approximation to the two-electron integrals in the CPSCF
equations, several modifications are made. The K

[
S(B)

]
term can be assembled from

stored four-index MO basis integrals evaluated using RI:

KRI
ai

[
S(B)

]
=
∑
jk

S
(B)
kj (ak|ji)RI (2.44)

(pq|rs)RI =
∑
KL

(pq|K)
(
V−1

)
KL

(rs|L) (2.45)

(pq|K) =
∑
µν

c∗µpcνq (µν|K) (2.46)

Likewise, the K
[
UB
]

term on the left-hand side of the CPSCF equation can be assembled
at every iteration from stored integrals:

KRI
ai

[
UB
]

=
∑
jb

UB
bj

[
(aj|bi)RI − (ab|ji)RI

]
(2.47)

While it significantly speeds up the calculation (see Section 2.3.10.1), storing the
four-index integrals on disk also leads to large disk space requirements. In case these
become prohibitive, K

[
UB
]

may instead be computed on-the-fly in each iteration using
standard integral-direct techniques. An integral-direct RIK implementation for this term
is not discussed here, however it is not expected to be very efficient. Unlike the exchange
contribution in the SCF (eq. 2.41), where only the integrals (µi|K) are evaluated at every
iteration, for eq. 2.47 it is also required to recalculate (µa|K), which significantly increases
the computational effort.

Somewhat more involved are the gB
[
DSCF

]
terms, where the three-index perturbed

integrals are required:

(µi|K)(B) =
∑
ν

c
(0)
νi (µν|K)B (2.48)

(µν|K)B =
d (µν|K)

dB

∣∣∣∣
B=0

=
i

2
〈µMνN |OMNr1r

−1
12 |K〉 (2.49)

JRI,B
µν

[
DSCF

]
=
∑
K

dK (µν|K)B (2.50)

KRI,B
µν

[
DSCF

]
= 2

∑
iK

[
(µi|K)(B) (νi | K̃)− (µi | K̃) (νi|K)(B)

]
(2.51)

The fitting coefficients dK are independent of the perturbation because DSCF
κλ is symmetric,

while (κλ|L)B is antisymmetric in κ and λ and therefore the trace of their product is zero.
Note that the auxiliary basis functions are not field-dependent to ensure gauge invariance
of the three-index integrals.117

2.1.2.5 Chain of spheres approximation

Unlike RI, the COS approximation does lower the formal scaling of the exchange term, for
the evaluation of which it is especially well suited. The COS method is a seminumerical
technique, in which the integration over r2 is done numerically as a sum over grid points
g, weighted by wg

113

KCOS
µν

[
DSCF

]
=
∑
g

WµgGνg (2.52)
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Gνg =
∑
κ

FκgA
g
κν , (2.53)

Wµg =
√
wgϕµ(rg) (2.54)

Fκg =
∑
λ

DSCF
κλ Wλg (2.55)

Agκν =

∫
ϕκ(r)ϕν(r) |r− rg|−1 dr (2.56)

The numerical error can be reduced by employing the so-called “overlap-fitting” proce-
dure,231 whereby the following expression is used instead of eq. 2.52:

KCOS
µν [D] =

∑
g

QµgGνg (2.57)

where the matrix Q is defined as

Q = SAO

(
WWT

)−1
W (2.58)

where SAO is the analytic overlap matrix in the AO basis.
The Coulomb term can also be approximated (COSJ):

JCOS
µν

[
DSCF

]
=
∑
κλ

Dκλ (µν |κλ) =
∑
g

WµgWνgIg (2.59)

Ig =
∑
κλ

DSCF
κλ Agκλ (2.60)

While the evaluation of eq. 2.59 can be implemented very efficiently, a large number of
grid points is required to achieve sufficient accuracy, making this approach inferior to
the RIJ approximation (eq. 2.37),113 and hence it is not employed in this work (for the
unperturbed integrals).

The K
[
UB
]

and K
[
S(B)

]
terms require no special attention – they are evaluated

using equations 2.53–2.58 by replacing DSCF with the appropriate effective density matrix,
i.e. the first or second term of eq. 2.23, respectively, transformed to the AO basis. Note
that special care must be taken when evaluating 2.55 because the perturbed density is
antisymmetric.

The GIAO terms are also evaluated in the AO-basis. We first split the derivative
integrals into two parts in order to make use of permutational symmetry:

(µMλL|OMLr1r
−1
12 |κKνN) + (µMλL|OKNr2r

−1
12 |κKνN)

=
(
µλ
∣∣κν)B + (µλ|κν)B

=
(
µλ
∣∣κν)B − (νκ|λµ)B

(2.61)

A bar over the AO labels signifies that a derivative is taken only of those basis functions.
Exploiting also the symmetry of the density matrix, we obtain for KB

[
DSCF

]
:

KB
µν

[
DSCF

]
=
∑
κλ

DSCF
κλ

(
µλ
∣∣κν)B −∑

κλ

DSCF
κλ (νκ|λµ)B = K̃B

µν − K̃B
νµ (2.62)

where the last equality defines K̃B. It is useful to look at the perturbation along one
coordinate:

K̃Bx
µν =

i

2

∑
κλ

DSCF
κλ

[
YML (µMλL| z1r

−1
12 |κKνN)− ZML (µMλL| y1r

−1
12 |κKνN)

]
15



COS
≈ i

2

∑
κλ

DSCF
κλ

∑
g

wgϕµ(rg)ϕν(rg)A
g
κν [YMzg − YLzg − ZMyg + ZLyg]

=
i

2

∑
g

[
W

x

µgGνg +WµgG
x

νg

]
(2.63)

and finally, introducing overlap-fitting:

K̃COS,Bx
µν =

i

2

∑
g

[
Q
x

µgGνg +QµgG
x

νg

]
(2.64)

where the barred quantities are defined as

W
x

µg =
√
wgϕµ (rg) [YMzg − ZMyg] (2.65)

G
x

νg =
∑
κ

F
x

κgA
g
κν (2.66)

F
x

κg =
∑
λ

DSCF
κλ Wλg [ZLyg − YLzg] (2.67)

Q
x

µg = Qµg [YMzg − ZMyg] (2.68)

KB
[
DSCF

]
is therefore approximated as

KCOS,B
[
DSCF

]
= K̃COS,B − K̃COS,B,T (2.69)

The perturbed Coulomb term can also be approximated using COS:

JCOS,Bx
µν

[
DSCF

]
=
∑
κλ

DSCF
κλ (µν|κλ)Bx =

i

2

∑
g

WµgWνg [YMLzg − ZMLyg] Ig (2.70)

The
(
µν
∣∣κλ)B term vanishes because it is antisymmetric in κ and λ while the density is

symmetric, so the trace of their product is zero.

2.1.3 Analytic derivatives of RI-MP2 and RI-DHDFT

The theory of MP2-level NMR shielding calculations is well known34,35,120 and adapta-
tions to SCS-,54 local,122,178 and RI-accelerated local MP2179 have been developed and
implemented. The extension to DHDFT is rather simple and in general presents fewer
difficulties than geometric DHDFT derivatives.92,94 In this section, a derivation of RI-MP2
analytic second derivatives for NMR shieldings is presented, in the context of DSD-DFT
for the sake of generality.

2.1.3.1 Lagrangian formulation

The general DSD-DFT energy expression is83–85

EDSD-DFT = ET + EJ + Ene + cXE
HF
X + (1− cX)EDFT

X + cCE
DFT
C + s6ED︸ ︷︷ ︸

ESCF

+ cOE
MP2
O + cSE

MP2
S︸ ︷︷ ︸

EMP2

(2.71)
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where the terms are, respectively, the kinetic energy, the electron–electron and electron–
nuclear Coulomb energies, exact (HF) exchange, exchange and correlation DF contri-
butions, empirical dispersion correction, and opposite-spin and same-spin MP2 corre-
lation energies. Depending on the values of the coefficients in eq. 2.71, one may also
obtain e.g. “pure” dispersion-corrected DFT (cX = cO = cS = 0), pure HF (cX = 1,
cO = cS = cC = s6 = 0), pure MP2 (cX = cO = cS = 1, cC = s6 = 0), as well as simpler
DHDFs like B2PLYP (cO = cS = 1 − cC, s6 = 0). These coefficients are assumed to be
included in the definitions of ESCF and EMP2. The DSD-DFT shielding tensor may also
be split into SCF and MP2 contributions:

σDSD-DFT
A = σSCF

A + σMP2
A (2.72)

Note that the empirical dispersion correction only depends on the nuclear coordinates
and therefore does not contribute to the shielding tensor. The SCF contribution σSCF

A is
calculated as described in Section 2.1.2 with the only difference that the DFT correlation
terms (discussed in Section 2.1.4) are scaled by cC.

Because the usual RI-MP2 energy expression is not variational, it is convenient to use
the following Lagrangian formulation:

L = ESCF + ERI
2 + CBri + CMOO + CCV (2.73)

where ERI
2 is the Hylleraas functional,232 in the generator state matrix formulation,233,234

CBri is the Brillouin condition, CMOO is the MO orthonormality constraint, and CCV is
the core–valence separation condition in the case of the frozen-core approximation. These
terms will be described in detail below. The Hylleraas functional:

ERI
2 =

∑
i≥j

tr
(
KjiT̃ij + Kji∗T̃ij∗

)
+ tr

(
D′FT

)
(2.74)

depends on the spin-adapted excitation amplitudes T ijab = T jiba and introduces the con-

travariant amplitudes T̃ ijab defined as

T̃ ijab = 2 (1 + δij)
−1 [(cS + cO)T ijab − cST

ij
ba

]
(2.75)

where δij is the Kronecker delta symbol. Eq. 2.75 is obtained as in refs. 233 and 234, em-
ploying in addition the SCS-MP2 ansatz.51 The orbital-unrelaxed MP2 difference density
matrix D′, contracted with the Fock matrix F, only has occupied–occupied and virtual–
virtual blocks given by

D′ij = −
∑
k

(1 + δjk) tr
(
T̃kj∗Tik

)
(2.76)

D′ab =
∑
i≥j

(
T̃ji∗Tij + T̃ij∗Tji

)
ab

(2.77)

Finally, the two electron repulsion integrals in the RI-MP2235,236 approximation are de-
fined as

Kij
ab =

∑
KL

(ia|K)
(
V−1

)
KL

(L|jb) (2.78)

with VKL = (K|L) being the auxiliary basis Coulomb metric.
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Turning to the constraints in eq. 2.73,

CBri =
1

2

∑
ia

(zaiFai + z∗aiF
∗
ai) = tr

(
zTF

)
(2.79)

CCV =
1

2

valence∑
i

core∑
m

(z̄imFim + z̄∗imF
∗
im) = tr

(
z̄TF

)
(2.80)

CMOO =
∑
pq

xpq (Spq − δpq) = tr(x (S− I)) (2.81)

where zai, xpq, z̄im, and their complex conjugates are the undetermined Lagrange multi-
pliers, which can be arranged in Hermitian matrices z, x, and z̄, defined in the respective
blocks with

zia ≡ z∗ai (2.82)

z̄mi ≡ z̄∗im (2.83)

xqp ≡ x∗pq, q < p (2.84)

The arbitrary factors of 1
2

in CBri and CCV are added for consistency with derivations for
nuclear gradients where the complex conjugates z∗ai and z̄∗im are not necessary. Note that
special care needs to be taken regarding complex conjugation, as the magnetic perturba-
tion leads to imaginary matrix elements.

2.1.3.2 First derivatives

The derivative of the Lagrangian in eq. 2.73 with respect to the nuclear magnetic moment
component mKβ is

dL
dmKβ

=
∂L

∂mKβ

+ tr

(
∂L
∂U

∂UT

∂mKβ

+
∂L
∂U†

∂U∗

∂mKβ

)
+
∑
i≥j

tr

(
∂L
∂Tij

∂Tij,T

∂mKβ

+
∂L
∂Tij,†

∂Tij,∗

∂mKβ

)
+ tr

(
∂L
∂x

∂xT

∂mKβ

+
∂L
∂z

∂zT

∂mKβ

+
∂L
∂z̄

∂z̄T

∂mKβ

)
=

∂L
∂mKβ

=
∑
µν

(
DSCF
µν +Dµν

)
h
mKβ
µν (2.85)

where the orbital-relaxed difference density matrix Dµν is defined as:223,225,237

D = c∗
(

D′ +
1

2
z +

1

2
z̄

)
cT (2.86)

The second equality in eq. 2.85 holds when the Lagrangian is made stationary with respect
to variation in all parameters, i.e. the conditions ∂L/∂U = ∂L/∂Tij = ∂L/∂x = ∂L/∂z = ∂L/∂z̄ =
0 (and their complex conjugates) are fulfilled. These conditions also provide the necessary
expressions for Tij, z and z̄ which we will derive below.

Taking first the amplitude stationarity conditions, it can easily be shown using eq. 2.75
that

∂L
∂T ijab

= 2 (1 + δij)
−1

[
(cS + cO)

∂L
∂T̃ ijab

− cS
∂L
∂T̃ ijba

]
(2.87)
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Therefore, instead of the conditions ∂L/∂Tij = 0 we will use ∂L/∂T̃ij = 0, because the latter
are more concise:

0 ≡ ∂L
∂T̃ ij∗ab

= Kij∗
ab +

∑
c

(
T ijacFbc + FacT

ij
cb

)
−
∑
k

(
FkjT

ik
ab + FkiT

kj
ab

)
≡ Rij

ab (2.88)

0 ≡ ∂L
∂T̃ ijab

= Rij∗
ab (2.89)

eq. 2.89 comes from the properties of Wirtinger derivatives (see Section 2.1.1) and the fact
that the Lagrangian is real. At the stationary point Rij

ab = 0 and if we substitute it back
into the Hylleraas functional we can recognize the expression for the RI-MP2 correlation
energy.

ERI
2 =

∑
i≥j

∑
ab

(
Kij
abT̃

ij
ab + T̃ ij∗ab R

ij
ab

)
(2.90)

If the Fock matrix is expanded in terms of canonical orbitals in eq. 2.88, i.e. Fpq = εpδpq
we obtain the familiar closed-form expression for the amplitudes:

T ijab = Kij∗
ab (εi + εj − εa − εb)−1 (2.91)

Next, we derive the orbital rotation stationarity conditions:

0 ≡ ∂L
∂U

=
∂ESCF

∂U︸ ︷︷ ︸
0

+
∂

∂U

∑
i≥j

tr
(
KjiT̃ij + Kji∗T̃ij∗

)
+

∂

∂U
tr
(
DFT

AO

)
+
∂CMOO

∂U
(2.92)

where FAO is the AO-basis Fock matrix Fµν . The first term is zero because the SCF
energy is already variational. Proceeding with the other terms:

∂

∂Upq

∑
i≥j

tr
(
KjiT̃ij + Kji∗T̃ij∗

)
=
∑
Kbj

[
δqb
(
jp(0)

∣∣K)ΓKjq + δqj
(
bp(0)

∣∣K)ΓK∗qb
]

(2.93)

∂

∂Upq
tr
(
DFT

AO

)
=

[
c(0),TF∗AOc∗

(
D′ +

1

2
z +

1

2
z̄

)]
pq

+ 2δqi
(
c(0),Tg∗AO[D]c∗

)
pq

(2.94)

∂CMOO

∂Upq
=
(
c(0),TS∗AOc∗x

)
pq

(2.95)

where SAO is the AO-basis overlap matrix Sµν , g∗[D] is the complex conjugate of the
two-electron repulsion operator defined in eq. 2.17 over the MP2 difference density D,
and the three-index two-particle density ΓKia is defined as:92,237

ΓKia =
∑
jbL

(1 + δij) T̃
ij
ab (jb|L)

(
V−1

)
LK

(2.96)

(
qp(0)

∣∣K) =
∑
µν

c∗µqc
(0)
νp (µν|K) (2.97)

The contributions coming from the XC functional in the case of DHDFT are given in Sec-
tion 2.1.4 and drop out in the case of pure MP2. Note two peculiarities in eqs. 2.93–2.95:
first, some of the MO coefficient matrices no longer depend on the external perturbation
(i.e., we have c(0) instead of c) for subsequent derivatives, and second, eq. 2.92 (as well as
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its complex conjugate) depends on the Lagrange multipliers x. Therefore, we construct
the linear combination:

0 ≡ ∂L
∂Upq

− ∂L
∂U∗qp

=
∑
Kbj

[
δqb
(
jp(0)

∣∣K)ΓKjq + δqj
(
bp(0)

∣∣K)ΓK∗qb

− δpb
(
q(0)j

∣∣K)ΓK∗jp − δpj
(
q(0)b

∣∣K)ΓKpb
]

+

[
c(0),TF∗AOc∗

(
D′ +

1

2
z +

1

2
z̄

)
−
(

D′ +
1

2
z +

1

2
z̄

)
cTF∗AOc(0)∗

]
pq

+ 2δqi
(
c(0),Tg∗AO[D]c∗

)
pq
− 2δpi

(
cTg∗AO[D]c(0)∗)

pq

+
(
c(0),TS∗AOc∗x

)
pq
−
(
x†cTS∗AOc(0)∗)

pq

(2.98)
At U = I the last two terms cancel out and the virtual–virtual, core–core, and valence–
valence blocks are trivially zero. The core–valence block gives the equations for z̄im
(referred to as “Z-CV equations” below):179,237,238

0 ≡
[
∂L
∂Uim

− ∂L
∂U∗mi

]∣∣∣∣
U=I

=
1

2

∑
j

Fjiz̄jm −
1

2

∑
n

Fmnz̄in −
∑
Kb

(mb|K) ΓKib (2.99)

which yield a closed-form solution for canonical orbitals:

z̄im = 2 (εi − εm)−1
∑
Kb

(mb|K) ΓKib (2.100)

The occupied–virtual block of eq. 2.98 gives the equations for zai,

0 ≡
[
∂L
∂Uai

− ∂L
∂U∗ia

]∣∣∣∣
U=I

=
1

2

∑
b

Fbazbi −
1

2

∑
j

zajFij + 2g∗ai[D]

+
∑
Kb

(ba|K) ΓK∗ib −
∑
Kj

(ij|K) ΓK∗ja

(2.101)

which take the following form, assuming canonical orbitals, and must be solved iteratively:

(εa − εi) zai + 2g∗ai[z] = Xai (2.102)

Xai = 2
∑
Kj

(ij|K) ΓK∗ja − 2
∑
Kb

(ba|K) ΓK∗ib − 4g∗ai

[
D′ +

1

2
z̄

]
(2.103)

These are equivalent to Handy and Schäfer’s “z-vector equations”,239 which here arise
naturally from the Lagrangian formulation and are referred to as “Z-CPSCF equations”.
The two-electron Fock response term may be approximated using the RIJK,111 RIJONX,
or RIJCOSX113 approaches, of which the latter is the most efficient for large systems, due
to its more favorable scaling behavior.93,116

Note that evaluation of the Lagrange multipliers for the orthonormality condition xpq
is not necessary for the first derivative, eq. 2.85, because the basis functions do not depend
on the nuclear magnetic moment. Nevertheless, xpq are needed for the evaluation of the
second derivative as shown in the next section. Defining for convenience:

L-MOO = L − CMOO (2.104)
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we get the following equations for xpq:

xpq = − ∂L-MOO

∂Upq

∣∣∣∣
U=I

(2.105)

xpq = − ∂L-MOO

∂U∗qp

∣∣∣∣
U=I

(2.106)

These solutions are identical, provided that eq. 2.98 is fulfilled.

2.1.3.3 Second derivatives

The second derivative of the RI-MP2 Lagrangian with respect to the nuclear magnetic
moment component mKβ and the external magnetic field component Bα, is equal to the
derivative of eq. 2.85:

d2L
dBαdmKβ

=
∑
µν

(
DSCF
µν +Dµν

)
h
mKβ ,Bα
µν +

∑
µν

(
DSCF,Bα
µν +DBα

µν

)
h
mKβ
µν (2.107)

where the SCF response density matrix DSCF,Bα
µν is defined in eq. 2.12. The RI-MP2

response difference density is defined as the derivative of eq. 2.86:

DB = c∗
(

D′B +
1

2
zB +

1

2
z̄B

)
cT + cB∗

(
D′ +

1

2
z +

1

2
z̄

)
cT + c∗

(
D′ +

1

2
z +

1

2
z̄

)
cB,T

(2.108)
where

D′Bij =
∑
k

(1 + δjk)
(

tr
(
T̃
kj∗B

Tik
)

+ tr
(
T̃
kj∗

Tik,B
))

(2.109)

D′Bab =
∑
i≥j

(
T̃ji∗BTij + T̃ij∗BTji + T̃ji∗Tij,B + T̃ij∗Tji,B

)
ab

(2.110)

The perturbed parameters cB, Tij,B, zB, and z̄B are obtained from magnetic field deriva-
tives of the Lagrangian stationarity conditions, which we present below. Analogous equa-
tions are derived in refs. 34, 35, 120, and 179

The coefficients UB
ai are computed as solutions to the CPSCF equations,240 2.24, which

come about from the condition CB
Bri = 0. The UB

ij and UB
ab blocks are also required and are

only constrained by the perturbed orthonormality condition CB
MOO = 0, eq. 2.14. Thus,

they can be chosen in different ways, the most common being

UB
ij = −1

2
S

(B)
ij (2.111)

UB
ab = −1

2
S

(B)
ab (2.112)

However, a computationally more efficient alternative choice of UB
ij , resulting in perturbed

canonical orbitals,39,120,241 is presented in Section 2.1.3.4.
The magnetic field derivative of the amplitude stationarity conditions, eq. 2.88, gives

the equations for Tij,B, which take the following form, assuming canonical orbitals:

T ij,Bab = (εi + εj − εa − εb)−1

[
Kij∗B
ab +

∑
c

(
T ijacF

B
bc + FB

acT
ij
cb

)
−
∑
k

(
FB
kjT

ik
ab + FB

kiT
kj
ab

)]
(2.113)
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where the perturbed exchange integrals in the RI approximation are

Kij,B
ab =

∑
KL

[
(ia|K)B (V−1

)
KL

(L|jb) + (ia|K)
(
V−1

)
KL

(L|jb)B
]

(2.114)

(pq|K)B =
∑
µν

[
c∗µpcνq (µν|K)B +

(
c∗µpc

B
νq + cB∗µp cνq

)
(µν|K)

]
(2.115)

Note once again that the auxiliary basis functions are independent of the magnetic field.
As pointed out by Loibl et al.,117,179 using GIAO-type fitting functions instead would
violate gauge invariance, because the explicit dependence on the gauge origin would not
cancel out in the perturbed three index integrals.

The derivatives of the MO rotation stationarity conditions can be expressed as follows,
using eqs. 2.14, and 2.105:

0 ≡ d∂L
dB∂U

∣∣∣∣
B=0

=
d∂L-MOO

dB∂U

∣∣∣∣
B=0

+
(
S(B)∗ + UB∗)x + xB

=
d∂L-MOO

dB∂U

∣∣∣∣
B=0

+ UB,T d∂L-MOO

dB∂U

∣∣∣∣
U=I

+ xB

(2.116)

and likewise for the complex conjugate. The second term reintroduces the MO response
which is “missing” in eqs. 2.93–2.94. We then take the linear combination in which xB

cancels out:

0 ≡ d∂L
dB∂Upq

− d∂L
dB∂U∗qp

=
d

dB

{∑
Kbj

[
δqb (jp|K) ΓKjq + δqj (bp|K) ΓK∗qb

− δpb (qj|K) ΓK∗jp − δpj (qb|K) ΓKpb
]

+

[
F∗
(

D′ +
1

2
z +

1

2
z̄

)
−
(

D′ +
1

2
z +

1

2
z̄

)
F∗
]
pq

+ 2δqig
∗
pq[D]− 2δpig

∗
pq[D]

}
(2.117)

We note in passing that after solving eq. 2.117, eq. 2.116 can be solved for the perturbed
Lagrange multipliers xB, which are, however, not needed to calculate the NMR shielding
tensor. The virtual–virtual, core–core, and valence–valence blocks of eq. 2.117 are zero.
The core–valence block gives the perturbed Z-CV equations which give a closed-form
solution for z̄B

im in the case of canonical orbitals:

z̄B
im = (εi − εm)−1

[
2
∑
Kb

(
(mb|K)B ΓKib + (mb|K) ΓK,Bib

)
−
∑
j

FB
ji z̄jm +

∑
n

FB
mnz̄in

]
(2.118)

The occupied–virtual block gives the equations for zB
ai,

(εa − εi) zB
ai + 2g∗ai

[
zB
]

= XB
ai (2.119)

XB
ai = 2

∑
Kj

[
(ij|K)B ΓK∗ja + (ij|K) ΓK∗Bja

]
− 2

∑
Kb

[
(ba|K)B ΓK∗ib + (ba|K) ΓK∗Bib

]
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−
∑
b

FB
bazbi +

∑
j

zajF
B
ij − 4

(
g∗ai

[
D′ +

1

2
z̄ +

1

2
z(0)

])B

(2.120)

where the derivative of two-electron Fock response operator (for an arbitrary MO matrix
Q) is

(g∗[Q])B
ai = g

(B)∗
ai [Q] + g∗ai

[
QB + UB∗Q + QUB,T

]
+
(
g∗[Q]UB∗ + UB,Tg∗[Q]

)
ai
(2.121)

and the derivative of the three-index density is

ΓK,Bia =
∑
jbL

(1 + δij)
[
T̃ ij,Bab (jb|L) + T̃ ijab (jb|L)B

] (
V−1

)
LK

(2.122)

2.1.3.4 Perturbed canonical orbitals

Due to the last two terms in eq. 2.113, the calculation of the MP2 response density
becomes a formally O (N6) scaling step. In addition, if the amplitudes are calculated in
multiple batches, such that T ijab are only available for i within the batch, the last term in
eq. 2.113 requires amplitudes outside the batch. This was noted by Kollwitz and Gauss in
their direct GIAO-MP2 implementation,120 who suggested the use of perturbed canonical
orbitals,39,238,241 i.e. choosing UB

ij coefficients such that the internal block of FB vanishes:

0 ≡ FB
ij = UB

ij εi − UB
ji εj + F

(B)
ij

= UB
ij εi −

(
UB
ij + S

(B)
ij

)
εj + F

(B)
ij (2.123)

UB
ij =

F
(B)
ij − S

(B)
ij εj

εj − εi
(2.124)

Thus the internal Fock matrix contribution to Tij,B vanishes and the formal scaling is
reduced to O (N5). A complication arises when (near-)degenerate orbitals i and j are
present which would make the denominator of eq. 2.124 (near-)zero. In these cases UB

ij

are chosen according to eq. 2.111 and the corresponding contributions to the perturbed
amplitudes are calculated. Hence, only those amplitudes Tkj (Tik) are required for which
εk ≈ εi (εk ≈ εj), or, after assigning UB

ij , those for which
∣∣FB

ki

∣∣ (
∣∣FB

kj

∣∣) is greater than
some threshold, e.g. 10−5. In our implementation these amplitudes are either precalcu-
lated and stored on disk or reevaluated on the fly. The latter option leads to significant
computational overhead and should only be used in the unlikely case (for feasible system
sizes) of insufficient disk space.

2.1.4 Exchange–correlation functional terms

For brevity in the previous sections, we have focused on the HF and MP2 methods because
the treatment of (hybrid) KS-DFT and DHDFT is analogous, with some additional details.
In this section, we examine the terms that arise due to the XC functional. The DFT XC
energy contribution is

EDFT
XC =

∫
fXC[ρ(r), γ(r)]dr (2.125)
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where we have assumed that fXC is a GGA functional which depends, in the closed-shell
case, on the electronic density ρ and its gradient invariant γ expressed using the SCF
density matrix DSCF as

ρSCF =
∑
µν

DSCF
µν Ωµν (2.126)

Ωµν = χ∗µχν (2.127)

γSCF = |∇ρSCF|2 (2.128)

∇ρSCF =
∑
µν

DSCF
µν ∇Ωµν (2.129)

The Fock matrix therefore also contains an XC potential term:242

Fµν ← V XC
µν = 〈µ|VXC |ν〉 =

∫ [
∂fXC

∂ρ
Ωµν + 2

∂fXC

∂γ
∇ρSCF∇Ωµν

]
dr (2.130)

In addition, the two-electron operator is redefined as:

gµν [D] = Jµν [D]− cX

2
Kµν [D] (2.131)

Thus, for hybrid DFT all exact exchange contributions to the CPSCF equations (i.e.
KB
[
DSCF

]
, K
[
UB
]
, and K

[
S(B)

]
) have to be scaled by 0 < cX ≤ 1, which is the amount

of exact exchange that should be included for the given functional. For “pure” func-
tionals cX = 0 and these terms do not need to be calculated, resulting in a closed-form
expression for the CPSCF equations. The same applies to the respective contributions in
DHDFT. Note that the DFT exchange and correlation scaling coefficients, (1− cX) and
cC, respectively (cf. eq. 2.71), are implicitly included in the definition of fXC.

VXC depends on the MO coefficients through DSCF and therefore minimizing the
DHDFT Lagrangian with respect to orbital rotations gives rise to an additional Fock
response term in the Z-CPSCF equations eq. 2.101:

0 ≡
[
∂L
∂Uai

− ∂L
∂U∗ia

]∣∣∣∣
U=I

← 2RXC
ai [D] (2.132)

where

RXC
ai [D] =

∑
µν

cµac
∗
νi

∫ {[
∂2fXC

∂ρ2

[
DSCF

]
+ 2

∂2fXC

∂ρ∂γ

[
DSCF

]]
ρDΩµν

+

[
∂2fXC

∂γ∂ρ
[P] + 2

∂2fXC

∂γ2

[
DSCF

]]
γSCF∇ρD∇Ωµν

}
dr

(2.133)

with ρD =
∑

µν DµνΩµν .
As discussed in the Introduction, most common XC functionals do not have an explicit

dependence on the external magnetic field. However, when using GIAOs, the electronic
density and its gradient depend on the magnetic field through both DSCF and the basis
functions:

ΩB
µν =

i

2
(RMN × r) Ω(0)

µν = −ΩB
νµ (2.134)
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(∇Ωµν)
B =

i

2
(RMN × r)

(
Ω(0)
µν + ∇Ω(0)

µν

)
= − (∇Ωνµ)B (2.135)

where RMN is the distance vector between the centers of AOs µ and ν. Due to the anti-
symmetry of the perturbed quantities, the full derivatives of the density and its gradient
vanish:

ρB
SCF =

∑
µν

DSCF,B
µν Ωµν +

∑
µν

DSCF
µν ΩB

µν = 0 (2.136)

(∇ρSCF)B =
∑
µν

DSCF,B
µν ∇Ωµν +

∑
µν

DSCF
µν (∇Ωµν)

B = 0 (2.137)

γB
SCF = 2∇ρSCF (∇ρSCF)B = 0 (2.138)

Hence, using the notation of Section 2.1.2.3, the XC contribution to the perturbed Fock
matrix is:

FB
µν ← V XC,B

µν =
i

2
〈µM |OMNrVXC |νN〉

=

∫ [
∂fXC

∂ρ
ΩB
µν + 2

∂fXC

∂γ
∇ρSCF (∇Ωµν)

B

]
dr

(2.139)

Finally, the contributions to the perturbed Z-CPSCF equations are:

0 ≡
[

d∂L
dB∂Uai

− d∂L
dB∂U∗ia

]∣∣∣∣
B=0

← 2
(
UB,TRXC[D] + RXC[D]UB∗ + RXC(B)[D]

)
ai

(2.140)
where

RXC(B)
ai [D] =

∑
µν

cµac
∗
νi

∫ {[
∂2fXC

∂ρ2

[
DSCF

]
+ 2

∂2fXC

∂ρ∂γ

[
DSCF

]]
ρDΩB

µν

+

[
∂2fXC

∂γ∂ρ
[P] + 2

∂2fXC

∂γ2

[
DSCF

]]
γSCF∇ρD (∇Ωµν)

B

}
dr

(2.141)

Note that, unlike for electric or geometric perturbations,92 terms which include third
derivatives of the XC functional vanish.

A complication arises for meta-GGA functionals that depend on the kinetic energy
density τ , which in the closed-shell case can be expressed as:

τ =
1

2

∑
µν

DSCF
µν ∇χ∗µ ·∇χν (2.142)

This quantity is known to not be gauge-invariant, even if GIAOs are used (as defined
above), unless modified appropriately.67,68,243 Two such modifications are proposed in the
literature: one by Maximoff and Scuseria (τMS),68 and one by Dobson (τD),244 and have
also been compared in the context of NMR shielding.62,72 In particular, the following term
is relevant:(

∇χ∗µ ·∇χν
)Bα

=
i

2
(RMN × r)α∇ϕ∗µ ·∇ϕν

+
i

2
ϕ∗µ (B×RMO)Bα ·∇ϕν −

i

2
∇ϕ∗µ · (B×RNO)Bα ϕν
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It is the last two terms that violate the gauge-invariance. In all calculations discussed
here, these terms are simply neglected. This ad-hoc gauge-invariant approach, while not
justified theoretically, has been shown to produce results that are no worse, and in some
cases even better, than the τMS and τD ansätze, when compared to CCSD(T) reference
data.72 In addition, it does not introduce unphysical components in the shielding tensor,
as is the case for τMS, and it does not require iterative solution of the CPSCF equations
for pure DFT, as is the case for τD. All of these approaches were implemented in ORCA
subsequent to the publication of ref. 72 but are not discussed further in this thesis.

2.1.5 Implicit solvent terms

If an implicit solvation model is used, such as the conductor-like polarizable continuum
model (CPCM) implemented in ORCA,245,246 the Fock matrix is corrected with an addi-
tional term:

Fµν ← V sol
µν = 〈µ|Vsol |ν〉 =

∫ (
vsol

nuc + vsol
el

[
DSCF

])
Ωµνdr (2.143)

vsol
nuc = −fε

∑
st

(
A−1

)
st
| r− rs |−1

∑
K

ZK
|RK − rt |

(2.144)

vsol
el

[
DSCF

]
= fε

∑
st

(
A−1

)
st
| r− rs |−1

∫
ρSCF(r′)

| r′ − rt |
dr′ (2.145)

where ZK is the charge of nucleus K and RK is its position; the indices s and t denote
surface elements; fε is a function, which depends on the dielectric constant of the solvent;
and the matrix A (defined as S in ref. 245) depends on the areas and relative positions of
the surface elements. Both the nuclear and the electronic terms, vsol

nuc and vsol
el respectively,

contribute to the CPSCF equations, due to the GIAO response:

FB
µν ← V sol,B

µν =
i

2
〈µM |OMNrVsol | νN〉

=

∫ (
vsol

nuc + vsol
el

[
DSCF

])
ΩB
µνdr

(2.146)

Only vsol
el contributes to the Fock response in the Z-CPSCF equations:

0 ≡
[
∂L
∂Uai

− ∂L
∂U∗ia

]∣∣∣∣
U=I

← 2Rsol
ai [D] (2.147)

Rsol
ai [D] =

∑
µν

cµac
∗
νi

∫
vsol

el [D]Ωµνdr (2.148)

where vsol
el [D] (for any matrix D) is defined as in eq. 2.145 with ρD substituted for ρSCF.

Finally, the contributions to the perturbed Z-CPSCF equations are:

0 ≡
[

d∂L
dB∂Uai

− d∂L
dB∂U∗ia

]∣∣∣∣
B=0

← 2
(
UB,TRsol[D] + Rsol[D]UB∗ + Rsol(B)[D]

)
ai

(2.149)
where

Rsol(B)
ai [D] =

∑
µν

cµac
∗
νi

∫
vsol

el [D]ΩB
µνdr (2.150)
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Note that the solvent potential is self-consistently optimized with the SCF electron
density, rather than the full MP2 density. This approach, often denoted “PTE”, is not
only more convenient to derive and implement, but is actually the theoretically consistent
choice for second order perturbation theory, according to an analysis by Ángyán.247

2.2 Implementation of the RI-MP2 response density

calculation

In ORCA the relaxed RI-MP2 difference density D is evaluated as discussed in ref. 92. The
algorithm is similar to that of Weigend and Häser,237 with some notable differences. For
detailed descriptions of these implementations, the reader is referred to those publications.
Here we briefly summarize the main steps:

1. The integrals (ip|K) are calculated and stored on disk.

2. The occupied MOs are split into batches according to available memory.

3. In each batch of i, integrals are read and amplitudes Tij and T̃ij are calculated
(eqs. 2.91 and 2.75).

4. Contributions to D′ (eqs. 2.76–2.77), ΓK (eq. 2.96), and X (eq. 2.103) are accumu-
lated.

5. After the main loop, the two-electron response operator g∗[D′] (eq. 2.17) is con-
structed and added to X.

6. The Z-CPSCF equations (eq. 2.102) are solved and the relaxed density matrix D is
stored on disk.

The expressions for the magnetic field-perturbed quantities D′B, ΓK,B, Tij,B (first
term), and XB (first four terms) – eqs. 2.109, 2.110, 2.122, 2.113, and 2.120, respectively
– are analogous to the respective unperturbed quantities D′, Γi, Tij, and X – eqs. 2.76,
2.77, 2.96, 2.91, and 2.103, respectively – except that the former contain six times as many
contributions (recalling that the magnetic field has three components). Therefore, the
algorithm to calculate these terms is also analogous to that for first DHDFT and RI-MP2
derivatives, discussed above and in refs. 92 and 237, with six times as many operations
(seven times as many in case the unperturbed quantity needs to be recalculated as well
– this is the case for Tij and ΓK) and four times higher memory requirements (including
the unperturbed quantities), leading to an expected increase of the computation cost by a
factor of up to 20–30. Both unperturbed and perturbed three index integrals, (ip|K) and
(ip|K)B, are precalculated and stored on disk. The similarities and differences between
the algorithms for the calculation of D and DB can be seen in Scheme 2.1.

The last two terms in eq. 2.113 require special treatment, which is discussed in Sec-
tion 2.1.3.4. As explained there, it is usually more efficient to store the unperturbed
amplitudes on disk. Another potential bottleneck are the contributions to D′Bkj (eq. 2.109)

where all Tij and Tij,B are required for a given i. One approach, which is used for the
equivalent contributions to D′kj is to keep these amplitudes in memory. However, due to
the higher memory requirements, more batches would be needed, resulting in additional
overhead. Alternatively, the amplitudes for the batch can be stored on disk and processed
in a second loop over i. This also produces overhead in the form of disk input/output
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Scheme 2.1: Algorithms for the calculation of D (left) and DB (right), aligned to high-
light the analogous steps. Frozen-core and XC contributions are omitted for simplicity.

Make and store all (ip|K)

for batch I ∈ {occupied} do

for i ∈ I do

for j ∈ {occupied} do

Make Tij (and T̃ij).

if j ≤ i then

Tij contribs. to EMP2 and D′

end if

Tij contribs. to ΓKia

end for (j)

for j ∈ {occupied} do

for k ≤ j do

Tik contribs. to D′

end for (k)

end for (j)

3-internal ΓK contribs. to X

end for (i)

3-external ΓK contribs. to X

end for (I)

Fock response contribs. to X

Solve Z-CPSCF equations and complete D

Make and store all (ip|K) and (ip|K)B

Map L(i→ k) where Fki > FCut

Read D and all UB
ai. Complete UB and FB

for batch I ∈ {occupied} do

for i ∈ I do

for j ∈ {occupied} do

Make Tij (and T̃ij).

Kij∗, Kij∗B, and Tij contribs. to Tij,B

for k ∈ L(i→ k) do

Make/read Tkj

Tkj contrib. to Tij,B

end for(k)

for k ∈ L(j → k) do

Make/read Tik

Tik contrib. to Tij,B

end for(k)

Complete Tij,B (and T̃ij,B).

if j ≤ i then

Tij and Tij,B contribs. to D′B

end if

Tij and Tij,B contribs. to ΓKia and ΓK,Bia

end for (j)

for j ∈ {occupied} do

for k ≤ j do

Tik, Tij , Tik,B, and Tij,B contribs. to D′B

end for (k)

end for (j)

3-internal ΓK and ΓK,B contribs. to XB

end for (i)

3-external ΓK and ΓK,B contribs. to XB

end for (I)

Fock response contribs. to XB

Solve perturbed Z-CPSCF equations and complete DB
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(I/O) and recalculation of the contravariant amplitudes T̃ij and T̃ij,B and is therefore
only necessary when memory is a limiting factor.

As is the case for X,92 the three external index contributions to XB (second and third
terms in eq. 2.120) are evaluated by partially transforming ΓK and ΓK,B to the AO basis,

ΓKiµ =
∑
b

cµbΓ
K
ib (2.151)

ΓK,Biµ =
∑
b

[
cBµbΓ

K
ib + cµbΓ

K,B
ib

]
(2.152)

and contracting them with AO-basis three index integrals, generated on the fly:

XB
ai ← −2

∑
ν

cBνa
∑
Kµ

(µν|K) ΓK∗iµ − 2
∑
ν

cνa
∑
Kµ

[
(µν|K)B ΓK∗iµ + (µν|K) ΓK∗Biµ

]
(2.153)

As in the DHDFT gradient implementation in ORCA,92 but unlike the original algorithm
by Weigend and Häser,237 ΓKia and ΓK,Bia for the whole batch are kept in memory, although
in principle it is also possible to store them on disk to reduce memory demands at the
cost of a higher I/O overhead.

A final point to consider is the evaluation of two-electron Fock response terms in
eqs. 2.102 and 2.119, as well as those in the perturbed Fock matrix FB. The latter were
discussed at length in Section 2.1.2 and that discussion largely applies also to the GIAO
integrals g(B)∗[D]. Theoretically it is most consistent to apply to these terms the same ap-
proximation (e.g. RIJK or RIJCOSX) that was used in the SCF procedure. However, the
RI approximation to the exchange integrals offers no computational advantage when the
latter are to be contracted with a density matrix defined in the entire MO space. There-
fore, in our implementation the LHS terms are treated with the RIJONX approximation,
which allows for better prescreening. An alternative is to store the required (aj|bi) and
(ab|ji) integrals on disk, rather than recalculate them at each CPSCF iteration. This is
most efficiently done via an RI transformation during the first run through the RI-MP2
program, where the integrals (ia|K) and (ij|K) are already available, although (ab|K)
are normally not. Note, however, that the RI-MP2 auxiliary basis set (denoted AuxC)
is used, rather than the one used for the SCF (denoted AuxJ). In Section 2.3.10.2 we
compare the efficiency of these two approaches.

2.3 Results and discussion

2.3.1 Test set

While multiple authors have performed benchmark studies on the calculation of NMR
properties and have proposed different test sets of molecules,47,73,76 we chose to compile
a new test set with the following requirements in mind: (i) it should include magneti-
cally active nuclei of several different (and chemically important) elements; (ii) for each
element, a broad range of shielding values should be covered; (iii) the size and number
of molecules should still allow for quick optimization of computational parameters; and
(iv) experimental gas-phase absolute shielding constants should ideally be available for
most, if not all, nuclei. We propose the following set of 15 molecules: C4H4O (furan), CF4,
CH3COCH3, CH4, CO, F2, OF2, H2O, HF, N2, N2O, NH3, PF3, PH3, and PN. The test set
includes a total of 34 chemically inequivalent shielding constants – 8 for 1H, 7 for 13C, 5 for
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15N, 6 for 17O, 5 for 19F, and 3 for 31P – which span most of the range of possible shielding
values for each element. High-quality GIAO-CCSD(T) calculations, including zero-point
vibrational corrections have previously been performed for all of these molecules.43–46,73

In addition, experimental data for absolute gas-phase shielding constants are available for
29 of the 34 shielding constants (all except C and H in C4H4O and H in CH3COCH3) (see
Table 2.1 for references).

Note that the experimental value quoted for the 1H shielding of PH3 in the initial
publication of these results (ref. 261)) was 27.89 ppm, taken from ref. 262. This value
was not actually used in the benchmark calculations, as comparisons were made with
respect to the CCSD(T) values and the empirical equilibrium estimates, for those nuclei
for which a vibrational correction was available. However, it is likely the experimental
shielding of 27.89 ppm is erroneous as it disagrees significantly form the CCSD(T) result
and is more than 1 ppm away from the value of 29.24 ppm quoted in ref. 248. ref. 262
also quotes the 1H shielding in NH3 as 32.10 ppm, which also appears to be in error.

2.3.2 Computational details

Software. Molecular geometries were optimized at the CCSD(T)/cc-pVTZ level263–265

using the program CFOUR.266 The latter was also used to perform canonical GIAO-
MP234,35 and GIAO-CCSD(T)37,39 calculations for reference (see Table 2.1 and Sec-
tions 2.3.3 and 2.3.5). All other calculations were performed with a development version
of ORCA 4.219–221 Figures in this work were predominantly generated using Matplotlib,267

and depictions of molecules – using Avogadro.268

Electronic structure methods. NMR shielding tensors were calculated with var-
ious methods to compare the accuracy of the latter (vs reference data) and to put
other errors (due to basis sets, etc.) in perspective. In addition to HF, MP2 was
used, as well as two spin-component-scaled variants: Grimme’s original SCS-MP251 and
Fink’s S2-MP2 parametrization.52 Several well-established DFT functionals were included
at various rungs of “Jacob’s Ladder”: GGA (BLYP,269,270 PBE,271 B97-D3,80 KT2,74

and KT375), global hybrid GGA (B3LYP272 and PBE0273), meta-GGA (TPSS,274 M06-
L,275 and r2SCAN276), hybrid meta-GGA (TPSSh,277 M06,278 and M06-2X278), range-
separated hybrid with and without non-local correlation (ωB97X-V279 and ωB97X-D3BJ280),
and double hybrid (B2PLYP,78 B2GP-PLYP,281 DSD-BLYP,85 DSD-PBEP86,85 and ωB97X-
2282). For functionals that are not implemented natively in ORCA, the interface to LibXC
was used.283

Note that there are multiple slightly different parametrizations of DSD-PBEP86, some
of which were unfortunately introduced with the same names.83–85,89 We denote with
“DSD-PBEP86” the 2013 version parametrized together with the D3BJ dispersion correc-
tion (the latter does not contribute to calculated shielding) and the version parametrized
without an empirical dispersion correction – with “NoDSD-PBEP86”.85 Where applica-
ble, we use the prefixes “ae-” and “fc-” to signify all-electron and frozen-core calculations
(with the same functional parameters). A more recent work re-parametrized the DSD-
PBEP86 functional over the whole GMTKN55 dataset, introducing “revDSD-PBEP86”
(here we use the D3BJ version) and the partially re-optimized “revωB97X-2”.89 The same
article includes different versions with and without core correlation for some functionals,
but here we use the same parameters. For clarity, the actual parameters for all DHDFs
used in this work are listed in Table C.15.
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Table 2.1: Benchmark set and gas phase shielding constants (ppm), calculated at the
CCSD(T)/pcSseg-4 level in this work, compared to two previously published theoretical
estimates T1 and T2, including vibrational corrections (VC), and to experimental gas
phase data. Empirical equilibrium shielding constants are calculated by subtracting the
VC from the experimental results.

Molecule CCSD(T) T1 Eq.a T2 Eq. T1 VCb T2 VC Exp. Emp. Eq. Exp. Ref.

1H PH3 29.46 29.24 248
HF 28.82 28.83 −0.33 28.64 28.97b 249, 250
H2O 30.65 30.65 30.87em −0.52 −0.54jm 30.05 30.57b 249
NH3 31.44 31.44 −0.61 30.68 31.29b 249
CH4 31.39 31.30 −0.63 30.80 31.43b 249, 251
(CH3)2CO 29.53 29.64em −0.64jm

furan (at C2/5) 24.03 24.15em −0.45jm

furan (at C3/4) 25.02 25.14em −0.42jm

13C (CH3)2CO −10.84 −10.0c −0.8h −13.2 −12.4h 252, 253
CO 2.56 2.24 3.0c −0.18 −1.0h 0.9 1.9h 253
CF4 65.96 65.3c −1.4h 64.4 65.8h 252, 253
furan (C2/5) 47.36 48.9em −3.6jm

furan (C3/4) 81.67 83.0em −3.4jm

(CH3)2CO 162.88 163.1c −3.3h 157.9 161.2h 252, 253
CH4 199.39 198.93 198.8c −3.7 −2.6h 195.0 197.6h 252, 253

15N PN −344.71 −343.97 −5.3 −349 −343.7b 254
N2 −61.16 −60.43 −59.8d −4.3 −3.3i −61.6 −58.3i 255
NNO 11.74 12.56 12.8d −3.9 −3.1i 11.3 14.4i 255
NNO 106.22 106.45 107.6d −8.4 −6.8i 99.5 106.3i 255
NH3 270.40 270.66 270.7d −8.7 −6.8i 264.5 271.3i 255

17O OF2 −446.32 −447.09 −439.8e −44.3 −34.0j −493.6 −459.6j 256
(CH3)2CO −297.91 −301.6e −3.8j −309.1 −305.3j 256
CO −55.42 −55.05 −56.3e −5.8 −3.8j −62.7 −58.9j 256
furan 64.82 64.7e −11.6j 50.3 61.9j 256
NNO 198.77 199.02 198.2e −12.9 −8.2j 181.0 189.2j 256
H2O 337.63 338.01 338.2e −14.2 −9.6j 323.5 333.1j 256

19F F2 −192.76 −191.3f −23.6k −233.2 −209.6k 253, 257
OF2 −24.28 −23.95 −22.6f −25.0 −23.7k −59.7 −36.0k 253, 258, 259
PF3 231.81 230.8 253, 257
CF4 267.58 266.8f −7.3k 258.6 265.9k 253, 257
HF 419.91 420.31 418.9f −11.8 −8.6k 409.6 418.2k 253

31P PN 51.61 50.59 53.4g −6.9 −4.4l 53.0 57.4l 254
PF3 224.80 230.1g −2.3l 222.7 225.0l 260
PH3 604.51 607.1g −9.5l 594.5 604.0l 260

a Geometry: CCSD(T)/cc-pVTZ; NMR shielding: CCSD(T)/extrapolated aug-cc-pCV[TQ]Z.73
b ZPV corrections: B3LYP/aug-cc-pCVTZ.73
c Geometry: CCSD(T)/cc-pVTZ; NMR shielding: CCSD(T)/13s9p4d3f.43
d Geometry: CCSD(T)/cc-pVQZ; NMR shielding: CCSD(T)/13s9p4d3f.46
e Geometry: CCSD(T)/cc-pVTZ; NMR shielding: CCSD(T)/pz3d2f.45
f Geometry: CCSD(T)/cc-pVTZ; NMR shielding: CCSD(T)/13s9p4d3f.44
g Geometry: CCSD(T)/cc-pVQZ; NMR shielding: CCSD(T)/15s12p4d3f2g.46
h ZPV corrections: MP2/cc-pVTZ (force field) + MP2/qz2p (NMR shielding).43
i ZPV corrections: CCSD(T)/cc-pVTZ (force field) + CCSD(T)/qz2p (NMR shielding).46
j ZPV and thermal corrections: MP2/cc-pVTZ (force field) + MP2/qz2p (NMR shielding).45
k ZPV and thermal corrections: MP2/cc-pVTZ (force field) + MP2/qz2p (NMR shielding).44
l ZPV corrections: CCSD(T)/cc-pVTZ (force field) + CCSD(T)/qz3d1f (NMR shielding).46
m Previously unpublished value.
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Basis sets. Despite the use of GIAOs, basis set convergence of calculated shielding
constants towards the complete basis set (CBS) limit can be fairly slow.13,284 Therefore,
it is important when assessing the performance of different methods to make an effort
to reduce the basis set error. For this study, the pcSseg-n (n =0–4) family of basis
sets was chosen (further denoted pSn for the sake of brevity),284 a segmented contracted
version of the pcS-n basis sets.285 Both basis set families were optimized for DFT-level
NMR calculations but the latter have also been shown to converge rapidly towards the
CBS limit at the MP2-level.47,286 The pcSseg-4 basis set is very close to this limit, with
a residual basis set error estimated at ∼ 0.2 % in the original publication,284 which is
within the margin of error in the experimental data and also significantly smaller than
e.g. the size of the vibrational corrections. In Table 2.1 our CCSD(T)/pcSseg-4 results
are compared to the extrapolated aug-cc-pCV[TQ]Z data by Teale et al.73 The differences
are on the order of 0.01–0.1 ppm for H and less than 1 ppm for heavier nuclei, which
translates to a relative deviation of ∼ 0.5 %. It should be noted that Teale et al. used
an extrapolation scheme fitted for total energies and this choice has been criticized by
Jensen et al. who suggest a lower exponent for the extrapolation (1.05 rather than 1.63)
based on comparison with accurate calculations in a multiwavelet basis.287 The latter also
estimated that the B3LYP/pcSseg-4 shielding constants for hydrogen and for second row
elements are accurate to ∼ 0.01 ppm and ∼ 0.1 ppm, respectively. A comparison of the
HF/pcSseg-4 shielding constants in our test set to the data of Teale et al. and Jensen et
al. (see Table C.17) also suggests that the pcSseg-4 basis set is a better estimate of the
CBS limit than the aug-cc-pCV[TQ]Z extrapolation. However, the pcSseg-4 basis set is
too large for routine applications and it is also worth pointing out that when calculating
chemical shifts, one can often rely on error cancellation and achieve accurate results with
much more modest basis sets. Hence, the smaller pcSseg-2 and pcSseg-3 basis sets were
used for most of this study. The additional basis set incompleteness error thus introduced
is evaluated in Section 2.3.4. It has been shown that for larger systems the computational
effort can be further reduced, with minimal loss of accuracy, by using smaller basis sets
for atoms far from the nuclei of interest.286 However, because the molecules in our test
set are small and all their shielding constants are to be calculated, no such scheme was
used.

Various auxiliary basis sets are used for the RI approximation and their efficiency
and accuracy are studied in detail in Sections 2.3.5, 2.3.7, and 2.3.8. For RIJ and RIJK
the “universal” basis sets by Weigend are compared, labeled def2-J and def2-JK, respec-
tively.115,288 The latter is larger and while it was optimized to fit exchange integrals it
also leads to smaller errors in the Coulomb contributions, as was noted in the original
publication. Results are also presented for an auxiliary basis set, generated by the Au-
toAux procedure implemented in ORCA, which creates a large, uncontracted fitting basis,
suitable for all types of two-electron integrals, albeit not as economical as the optimized
auxiliary basis sets.289 Auxiliary basis sets used for the RI-MP2 approximation (abbrevi-
ated as “AuxC basis sets”) are usually specific to the fitted orbital basis set (OBS). The
chosen pS2, pS3, and pS4 OBSs are of triple-, quadruple-, and quintuple-zeta quality,
respectively, and contain tight functions to better describe the core region. Regrettably,
no auxiliary basis sets have been specifically optimized for these OBSs. Hence, we have
chosen the AuxC basis sets, here denoted cwnC (n = 3, 4, 5),290 optimized for Peterson’s
cc-pwCVXZ (X = T, Q, 5) basis sets,291 which also contain additional tight functions.
Alternatively, we employ the AutoAux scheme to generate large fitting basis sets for each
OBS.
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Numerical precision. In order to reduce numerical noise, tight convergence thresholds
were used for the iterative SCF and CPSCF solutions, and a dense DFT grid (g7, ε = 5.67
– see below, ORCA keyword “grid7”) was employed for the evaluation of DFT functionals
(unless otherwise noted). Thus, the isotropic shielding constants are calculated with a
precision of at least 4 significant figures.

The grids used for the COS approximation are constructed from spherical atom-
centered grids and their accuracy is controlled by two main parameters: (1) ε, which deter-
mines the number of radial “shells” nr according to the formula nr = max [13, 15ε+ 5r − 40],
where r is the row in the periodic table for a given element (cf. eq. 14 in ref. 292); (2) gn
(n = 1–7), which signifies the Lebedev angular grids used (26–590 points, respectively, see
Table S1 for details). The pruning algorithm of Gill et al. is applied,293 whereby an atom
is partitioned into five regions and a denser angular grid is used for radial shells in the
valence region than in the core and outermost regions (see Table C.16). In addition, the
atomic size adjustment and the M3 mapping, proposed by Treutler and Ahlrichs (eqs. 13
and 18 in ref. 294), are employed.

Error measurement. We use several statistical measures of the deviation of the shield-
ings, σ or chemical shifts, δ, calculated according to a given protocol (method, basis, etc.)
with respect to a given reference (e.g. CCSD(T) data). The mean error (ME), mean
absolute error (MAE), mean relative error (MRE), mean absolute relative error (MARE),
maximum errors and relative errors (MaxAE and MaxARE, respectively), and standard
deviation of the (relative) errors (SDE and SDRE) are defined as:

∆σi = σi − σref
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σi − σref
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(2.154)

The same quantities (with an index δ) are defined analogously for the chemical shifts,
which are given by δi = σstd − σi, where σstd is the shielding of the given nucleus in a
“standard” compound, calculated at the same level of theory. We use CH4 as a standard
for 13C and 1H, NH3 for 15N, H2O for 17O, HF for 19F, and PH3 for 31P.

In the box-and-whiskers plots used throughout the rest of this work boxes show the
interquartile range (IQRE or IQRRE), i.e. the range of errors (or relative errors), excluding
the top and bottom 25 %; whiskers show the minimum and maximum errors (MinE and
MaxE) or relative errors (MinRE and MaxRE); and lines show the median errors (MedE)
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or relative errors (MedRE) and the ME or MRE. The Range of (relative) errors (RanE or
RanRE), defined as the difference between the minimum and maximum, is also discussed.
Note that wherever relative errors are calculated, those data with small reference values
(less than 10 ppm for shieldings and 1 ppm for chemical shifts) were excluded from the
analysis because they disproportionately skew the results. The excluded nuclei are listed
in the figure captions.

Because systematic deviations in the absolute shielding may partially cancel out in
practical applications, it is more pragmatic to look at errors in the chemical shifts. On
the other hand, the orders of magnitude of both shieldings and shifts vary significantly for
different nuclides, so some form of scaling is necessary in order to combine all benchmark
data into a single convenient statistic. The mean absolute relative error in the chemi-
cal shifts (MAREδ) is one such possible measure. However, in addition to the need to
eliminate data with small reference values, as mentioned above, the MAREδ is inevitably
biased by the choice of standard nucleus. Therefore, we also introduce the following
measure, denoted as “mean relative range of errors” (MRRE):

MRREσ =
1

Nelem

elem∑
A

maxi∈A [∆σi]−mini∈A [∆σi]

maxi∈A
[
σref
i

]
−mini∈A

[
σref
i

] (2.155)

The full range of shielding errors for a given nuclide gives an the upper bound for the
chemical shift error. The range of shieldings for the respective element (in our carefully
selected test set) is close to the experimentally observed range and thus provides an
appropriate scaling factor, giving a “relative range” of errors. The average of these relative
ranges over all elements is the MRRE.

In the following Section 2.3.3 we will assess the accuracy of HF, RI-MP2, and (DH)DFT
NMR shielding calculations that is inherent to the methods themselves, by comparing to
the reference data in Table 2.1. In subsequent sections we will examine errors due to basis
set incompleteness in the orbital (Section 2.3.4) and AuxC (Section 2.3.5) basis sets, the
frozen core approximation (Section 2.3.6), and two-electron integral approximations in
the Fock matrix (Sections 2.3.7 and 2.3.8).

2.3.3 Method accuracy

In this section we evaluate the deviations, inherent to the methods used, in the calculated
shieldings from the CCSD(T) data presented in Table 2.1. The latter are very close to
the empirical equilibrium data, so similar conclusions can be drawn from either refer-
ence. Therefore, only the CCSD(T) reference is discussed here and a comparison to the
empirical equilibrium data is given in Appendix C. While HF and DFT methods are com-
putationally inexpensive, they are not particularly accurate or precise for the calculation
of magnetic properties in comparison to correlated wave function-based approaches such
as CCSD(T), and in the case of DFT, results may vary significantly between function-
als. The performance of these methods has been discussed extensively,43–47,62,73 but for
consistency they are also compared here. A direct comparison with previously published
results, e.g., those of Teale et al.,73 is difficult because of the different sets of molecules.
Nevertheless, similar trends can be observed in our study, as shown below. The chemical
shielding constants for all nuclei in the test set were calculated using the methods listed
in Section 2.3.2, with the pcSseg-4 basis set (and the cc-pwCV5Z/C AuxC set, where ap-
plicable), which is assumed to be sufficiently close to the CBS limit. No approximations
were employed for the two-electron integrals. It is important to note that no vibrational
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or thermal corrections were applied. These, however are not expected to significantly
improve the agreement with experiment at this level of theory and indeed for DFT, would
likely worsen it.73 It is useful to separately discuss mean field (SCF) methods and those
including second order perturbation theory (PT2) contributions, i.e. (SCS-)MP2 and
DHDFT, due to the rather large differences in both cost and accuracy between the two
categories.

2.3.3.1 SCF methods

The errors in the shieldings for different groups of nuclides are shown in Figure 2.1, where
the mean field methods are grouped in the top subplot. The data for 15N, 17O, 19F, and 31P
nuclei are analyzed together because they span similar ranges of shielding values. From
the figure, it is apparent that the errors are very widely distributed. In addition, DFT
tends to underestimate the shielding constants with the exception of 1H (and possibly
M06-L for other nuclides). In relative chemical shifts this bias would cancel out only
partially due to the large variance in the errors.

As expected, the missing electron correlation in HF leads to rather poor results, despite
the fairly small mean error. On the other hand, comparing BLYP, PBE, and TPSS with
their hybrid counterparts shows that the inclusion of exact exchange eliminates some
outliers and leads to overall narrower error distributions. Especially interesting is the
performance of the M06 group of functionals, of which M06-L is indeed quite accurate
for our test set, confirming the conclusions of Zhao and Truhlar.76 However, M06 and
M06-2X show by far the poorest performance in our test set, worse even than HF (except
for hydrogen). There is no mention of this discrepancy in ref. 76, indeed the hybrid
functionals in the M06 family are not discussed at all. In any case, this result simply
confirms that a DFT functional, which is accurate for a certain property, e.g. the energy,
is not necessarily also good for others. The r2SCAN functional stands out as particularly
accurate, especially for 13C shieldings. Note, however, that the good performance of meta-
GGA functionals (M06-L in particular) may be somewhat fortuitous, due to the ad-hoc
treatment of τ (see Section 2.1.4), as suggested in ref. 72.

The effect of error cancellation when calculating chemical shifts – which are the ex-
perimentally measured quantities – can be seen in Figure 2.2, which shows the relative
errors in the shifts for all nuclei. There is still a significant systematic deviation for some
methods, indicating that the shielding for the standard nucleus happened to carry a rather
extreme (either small or large) error. Thus, we turn to the MRREσ measure, shown in
Figure 2.3, which does not carry this bias. A numerical comparison of the MRREσ and
MAREδ is also presented in Table 2.2. While the ranking of methods changes slightly,
depending on the statistical criterion, some trends seem consistent:

• HF, M06-2X, and M06 perform rather poorly.

• Hybrid functionals are somewhat more accurate than their pure counterparts.

• KT2, KT3, TPSS, TPSSh, and M06-L are more robust than BLYP, B3LYP, PBE,
and PBE0.

• The VV10 non-local correlation contribution does not significantly affect the ωB97X
results.

• The most accurate mean-field methods employed here have a MAREδ of 4–6 % and
MRREσ of 5–7 %.
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Figure 2.1: Deviations of isotropic shielding constants (ppm) for groups of nuclei, cal-
culated using different methods and the pcSseg-4 basis set, from CCSD(T) results. The
number of nuclei in each group is given in parentheses. Boxes show the IQREσ, whiskers
show the MinEσ and MaxEσ, and lines show the MedEσ. Pure functionals are shown in
blue, hybrids and HF in orange, MP2 variants in yellow, and DHDFs in green. Note the
different scales used for the abscissa.
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Figure 2.2: Relative deviations of chemical shifts (%), calculated using different methods
and the pcSseg-4 basis set, from CCSD(T) results. The number of data points is given
in parentheses. Excluded: NH3 and H2O. Boxes show the IQRREδ, whiskers show the
MinREδ and MaxREδ, lines show the MedREδ, and diamonds show the MAREδ. Pure
functionals are shown in blue, hybrids and HF in orange, MP2 variants in yellow, and
DHDFs in green.
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Figure 2.3: Mean relative range of shielding errors (MRREσ, see eq. 2.155) in percent,
calculated using different methods and the pcSseg-4 basis set, from CCSD(T) results.
Pure functionals are shown in blue, hybrids and HF in orange, MP2 variants in yellow,
and DHDFs in green.

• The r2SCAN functional performs remarkably well with MAREδ = 4 %.

Thus, while HF and DFT can be invaluable and efficient tools for the estimation of
NMR shielding constants, they are far from quantitatively accurate. Any errors introduced
by further approximations – including smaller basis sets, RI, etc. – should therefore be
viewed in comparison to the errors inherent in the methods.

2.3.3.2 PT2 methods

The data for MP2 variants and DHDFs are also shown in Figures 2.1 (shielding error dis-
tributions), 2.2 (relative chemical shift error distributions), 2.3 (MRREσ), and Table 2.2
(shielding error ranges, MRREσ, and MAREδ). While the effect of the frozen-core ap-
proximation will be examined separately in Section 2.3.6, we include both all-electron and
frozen-core alternatives of MP2 and DHDFT here, in order to account for possible error
compensation and because some DHDFs were in fact parametrized for use with frozen
core electrons.

MP2 shows a significant improvement over HF and is mostly better than DFT – the
systematic deviation is consistently small for all elements and the error distributions are
narrower, except for N and P shieldings where r2SCAN, M06-L, TPSSh, and the KT
functionals perform better. Note the particularly good performance of MP2 for carbon
shieldings, which has been discussed before.43,47 The frozen core approximation introduces
a small systematic deviation, which is fortuitous for proton shieldings, but overall fc-MP2
is slightly less accurate than the all-electron approach. SCS-MP2 improves the results
for 1H shieldings but does not appear significantly better for the other nuclides, while
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Table 2.2: Summary of shielding errors vs CCSD(T) data for different methods. The
full range of errors for different nuclides is given in ppm. The MAREδ (see eq. 2.154) and
MRREσ, (see eq. 2.155) are given in percent.

Method MAREδ MRREσ H C N O F P

HF 10.76 18.08 1.12 42.5 159.0 33.9 49.4 192.7
BLYP 10.53 13.26 1.01 18.5 69.5 189.1 77.5 50.2
B3LYP 9.05 12.17 0.56 18.4 93.0 137.2 59.3 79.7
PBE 11.32 13.74 1.18 17.3 66.5 179.8 73.0 69.9
PBE0 9.08 12.13 0.64 17.4 94.2 112.8 48.1 101.6
KT2 6.73 8.35 1.26 14.4 30.5 90.6 38.6 18.9
KT3 5.80 7.81 1.16 12.3 28.8 108.2 39.8 1.5
TPSS 6.36 7.69 0.93 12.5 36.9 94.4 34.7 21.9
TPSSh 5.90 7.20 0.74 9.8 49.4 76.8 24.1 37.6
r2SCAN 3.88 5.37 0.76 11.6 6.6 72.9 24.0 11.9
M06-L 5.42 6.50 0.88 10.6 22.4 75.7 30.3 21.1
M06 14.39 21.35 0.47 35.5 175.3 202.1 99.2 190.2
M06-2X 18.12 26.77 0.99 44.6 243.3 201.9 94.7 250.6
B97-D3 7.49 10.67 0.91 10.4 46.5 164.1 72.7 35.9
ωB97X-D3BJ 6.50 9.66 0.53 14.3 79.3 73.8 26.5 96.0
ωB97X-V 6.69 9.74 0.55 14.5 79.7 73.4 25.9 97.2

ae-MP2 4.12 6.71 0.26 8.3 79.3 45.9 15.5 63.9
fc-MP2 4.29 7.82 0.29 10.1 93.4 47.4 17.4 77.8
ae-SCS-MP2 3.90 6.72 0.20 7.1 86.9 31.2 18.9 72.4
ae-S2-MP2 4.00 7.63 0.19 10.7 96.6 40.8 16.0 80.4
ae-B2PLYP 4.29 5.23 0.26 9.8 21.7 91.3 28.9 18.0
ae-B2GP-PLYP 3.37 3.97 0.19 8.4 14.1 71.6 18.1 15.9
ae-DSD-BLYP 2.73 3.05 0.19 7.3 8.7 54.2 9.3 13.6
ae-DSD-PBEP86 1.91 2.36 0.13 4.1 12.4 44.4 7.8 8.5
fc-DSD-PBEP86 1.76 2.64 0.17 5.0 13.7 49.2 7.1 8.5
ae-NoDSD-PBEP86 2.31 2.46 0.12 3.2 15.9 44.5 6.4 12.8
ae-revDSD-PBEP86 1.53 2.13 0.14 3.2 12.4 34.7 6.6 10.5
fc-revDSD-PBEP86 1.39 2.22 0.13 2.6 15.6 34.0 5.3 14.4
ae-ωB97X-2 3.60 4.09 0.34 8.6 9.4 58.5 15.3 24.2
fc-ωB97X-2 3.15 3.51 0.34 7.3 6.9 56.8 13.4 13.8
ae-revωB97X-2 3.07 3.45 0.34 7.1 6.2 52.1 13.7 15.8
fc-revωB97X-2 2.74 3.22 0.34 5.9 7.9 50.5 13.4 11.4

the S2-MP2 variant is overall no better than standard MP2. Maurer and Ochsenfeld
have shown that the accuracy of SCS-MP2 for shieldings can be substantially improved
by optimizing the cSS and cOS coefficients.54 However, the vastly different optimal values
for each combination of basis set and target element, makes it impossible to attach any
physical interpretation to these parameters, essentially turning SCS-MP2 into a rather
expensive semi-empirical method.

Transitioning into DHDFT, it is interesting to compare B3LYP, MP2, and B2PLYP:
the former two show systematic deviations in the calculated shieldings with opposite signs,
while the latter is somewhere in between. While this is not surprising, one can suppose
that optimizing the cC parameter can further reduce the systematic error in B2PLYP
shieldings. The resulting functional would be analogous to B2K-PLYP and B2T-PLYP,295

optimized for kinetics and thermochemistry, respectively. At the very least, an analysis
similar to that performed in the optimization of the B2GP-PLYP functional,281 could
provide insight into the dependence of the calculated shieldings on the parameters cC

and cX (as well as cOS and cSS). Such an analysis is outside the scope of the current
work, however, B2GP-PLYP and the more flexible DSD-BLYP do represent incremental
quantitative improvements over B2PLYP. This suggests that the more flexible training
sets used for the parametrization resulted in more accurate methods, even for properties
not included in the training data, as was observed for vibrational frequencies.85

Next, we note the outstanding performance of the DSD-PBEP86 functional: it pro-
duces the narrowest error distributions of all methods tested here and while there is a
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significant systematic deviation in the carbon shieldings, this is expected to cancel out
in relative chemical shifts. Indeed both the MAREδ and MRREσ measures are low-
est for the DSD-PBEP86 variants (1.4–1.9 % and 2.1–2.6 %, respectively). The revised
parametrization (revDSD-PBEP86) slightly improves the results with marginally nar-
rower error distributions and decreased systematic error (except for 1H). On the other
hand, the NoDSD-PBEP86 version, parametrized without a dispersion correction and
with 10 % more same-spin MP2 correlation, is notably worse. Even though the semi-
empirical dispersion term does not contribute to the shielding, including its parameters
in the optimization produces a more flexible functional form, which allows for better ac-
curacy in the target quantity, and apparently also in NMR shieldings. The frozen-core
approximation has a smaller influence on DHDFT than on MP2, due to the smaller pro-
portion of PT2 correlation. For the DSD-PBEP86 variants it leads to a lower MAREδ

(by about 0.15 %) but a higher MRREσ (by 0.1–0.2 %), which makes it difficult to decide
for or against it based on these data alone.

Finally, the range-separated DHDF ωB97X-2 is a marked improvement over the related
ωB97X-D3BJ, although it does not outperform DSD-PBEP86. Its reparametrized version
is also somewhat more accurate, as is the case for the other DHDFs, and in this case
the frozen-core approximation appears to be advantageous, regardless of the statistical
measure employed. A minor exception is the small systematic deviation in 1H shieldings,
which should cancel out for chemical shifts.

In summary, the most accurate conventional functionals explored here – r2SCAN, M06-
L, KT3, and TPSSh – result in MAREδ of 3.9, 5.4, 5.8, and 5.9 % and MRREσ of 5.4, 6.5,
7.8, and 7.2 %, respectively. MP2 and SCS-MP2 are an improvement (except perhaps over
r2SCAN) with a MAREδ of 3.9 and 4.1 %, respectively, and MRREσ = 6.7 % for both.
B2PLYP is not particularly better with MAREδ = 4.3 % and MRREσ = 5.2 %. However,
the best DHDF tested, revDSD-PBEP86, shows remarkable accuracy with MAREδ =
1.5 % and MRREσ = 2.1 %, which enables, for example, the confident assignment of
carbon shifts only a few ppm apart.

2.3.4 Basis Set Error

After a critical assessment of the errors due to the method, we turn our attention to
the choice of basis set, which is usually the second largest source of error. The pcSseg-4
basis set allows for results very close to the CBS limit, however it is probably too large
for routine applications. Hence, the smaller pcSseg-2 and pcSseg-3 basis sets were used
for the rest of this study. An estimate of the error introduced by this choice is made
by comparing the shielding constants obtained with pcSseg-2, respectively with pcSseg-
3, to the ones obtained with pcSseg-4. This gives a lower bound of the basis set error
because there is still some degree of incompleteness in the pcSseg-4 basis set (as discussed
in Section 2.3.2). In addition, a slower convergence can be expected for correlated wave
function-based methods, than for mean-field approaches. Likewise, DHDFs should exhibit
a stronger dependence on the basis set size than other DFs, as is the case for energies.86

Note that basis set names are abbreviated to pSn (n =2–4 ) in the figures. Calculations in
this section were performed with no approximation for the two-electron part of the Fock
matrix, while the RI-MP2 approximation was used together with the cc-pwCVQZ/C and
cc-pwCV5Z/C AuxC basis sets for the pcSseg-2 and pcSseg-3 OBSs, respectively, which
introduces only negligible additional errors as shown in Section 2.3.5.

The deviations of shielding constants for groups of nuclei are presented in Figure 2.4

40



0.0 0.2

        HF/pS2
        HF/pS3

     B3LYP/pS2
     B3LYP/pS3
      TPSS/pS2
      TPSS/pS3
       MP2/pS2
       MP2/pS3

DSD-PBEP86/pS2
DSD-PBEP86/pS3

H (N = 8)

0 2 4
Errors in  vs pS4 / ppm

C (N = 7)

10 0 10

N,O,F,P (N = 19)

Figure 2.4: Deviations of shielding constants (ppm) for groups of nuclei, calculated using
different methods and basis sets, from pS4 results for the same method. The number of
nuclei in each group is given in parentheses. Boxes show the IQREσ, whiskers show the
MinEσ and MaxEσ, and lines show the MedEσ.

for a representative set of methods – HF, B3LYP, TPSS, ae-MP2, and ae-DSD-PBEP86.
While there is some variation between the SCF-level results, pcSseg-2 predictably leads to
larger errors than pcSseg-3, with MAREσ values vs pcSseg-4 of 0.8–1.4 % and 0.2–0.4 %,
respectively, which is in good agreement with Jensen’s original results.284 Therefore, the
basis set incompleteness error is more than an order of magnitude smaller than the method
error and insignificant in comparison. On the other hand, the basis set errors for MP2/pS2
are more than twice as large as for HF/pS2 and fall within the same order of magnitude
as the method error, which is due also to the superior accuracy of MP2. As expected, the
basis set errors for DSD-PBEP86 are between those for HF/B3LYP and MP2 and also
within the same order of magnitude as the method error.

6 4 2 0 2 4 6
Relative errors in  vs pS4 / %

        HF/pS2
        HF/pS3

     B3LYP/pS2
     B3LYP/pS3
      TPSS/pS2
      TPSS/pS3
       MP2/pS2
       MP2/pS3

DSD-PBEP86/pS2
DSD-PBEP86/pS3

All nuclei (N = 26)

Figure 2.5: Relative deviations of chemical shifts (%), calculated using different methods
and basis sets, from pS4 results for the same method. The number of data points is given
in parentheses. Excluded: NH3 and H2O. Boxes show the IQRREδ, whiskers show the
MinREδ and MaxREδ, lines show the MedREδ, and diamonds show the MAREδ.

Because of the significant systematic deviations in the shieldings, it can be expected
that the basis set incompleteness errors for chemical shifts will be smaller. The lat-
ter are shown in Figure 2.5. Apparently, the systematic errors do cancel out for the
SCF methods but not entirely for the perturbative approaches. Therefore it cannot be
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claimed that either MP2 or DSD-PBEP86 chemical shifts are sufficiently converged at
the triple-zeta (pS2) level. However, due to fortuitous error compensation, the deviations
for both approaches with respect to the CCSD(T)/pS4 reference are actually smaller for
pS2 than for pS3 with MAREδ of 3.70, 1.41, 4.00, and 1.84 % for MP2/pS2/cw4C, DSD-
PBEP86/pS2/cw4C, MP2/pS3/cw5C, and DSD-PBEP86/pS3/cw5C, respectively. This
error cancellation has been noted before – e.g. in refs. 296, 43, and 47 – and while it is
not necessarily reliable, it provides some justification for the use of the smaller pS2 basis
set. Note, however, that because SCS-MP2 already underestimates the chemical shifts
at the pS4 level, a reduction of the basis set size to pS2 leads to an increase in the total
error versus CCSD(T)/pS4 with MAREδ = 5.2 %.

These results suggest that any further errors in SCF-level calculations (e.g. as intro-
duced by the RIJK/RIJCOSX approximations) should be below 1 %, preferably by at
least an order of magnitude, especially for the more accurate perturbative approaches.
This would ensure that they are insignificant compared to the other errors associated
with the calculation (due to the method, the basis set, vibrational corrections, etc.).

2.3.5 RI-MP2 auxiliary basis sets

In order to reliably evaluate the accuracy of DHDFT NMR shielding calculations, we
selected suitable AuxC basis sets to make sure that the errors due to the RI-MP2 ap-
proximation are negligible. For our benchmarking purposes we have decided on a very
conservative threshold of 0.01 and 0.1 % for the MAREσ and MaxAREσ, respectively. In
routine applications less stringent thresholds and therefore smaller AuxC basis sets may
be sufficient. In this section we show that the AuxC choices in Sections 2.3.3 and 2.3.4
are justified, and discuss more efficient alternatives.

As explained in Section 2.3.2, we use the cc-pwCVXZ/C (X = T, Q, 5) AuxC basis
sets (denoted cwnC, n =3–5 ), as well as large even-tempered fitting basis sets, generated
with the AutoAux scheme. As well as the default settings for the latter, denoted AA,
we generate a near-complete AuxC basis (using the ORCA keywords AutoAuxSize=3

and AutoAuxLMax=true), denoted AA3l, which encompasses the full product space of the
atomic OBS.a This allows us to validate the correctness of our implementation at the
limit of very large AuxC basis sets by comparing our RI-MP2 NMR shielding results to
canonical MP2 values.

The results of the comparison are presented in Figure 2.6. The first thing to note is
that for very large AuxC sets, the errors are vanishingly small, i.e. the RI-MP2 shielding
constants converge to the canonical MP2 values. Second, the pS2/cw3C and pS3/cw4C
combinations result in errors slightly above our chosen thresholds (MAREσ of 0.03 and
0.02 % and MaxAREσ of 0.17 and 0.13 %, respectively). As mentioned above, these errors
are quite acceptable for most applications, especially when compared to the other sources
of error (method, OBS, etc.). However, in order to accurately estimate these other errors,
we have chosen the pS2/cw4C, pS3/cw5C, and pS4/cw5C combinations as default for the
rest of this study. It is also worth noting that although not parametrized for shielding
calculations, the AutoAux scheme produces sufficiently accurate AuxC basis sets for the
purpose, albeit around 1.5 times larger than the cwnC sets of similar quality.

aNote that the pcSseg-4 basis set contains functions with an angular momentum of l = 5 so fitting
its full product space in principle requires auxiliary basis functions up to l = 10, while the maximum
allowed in ORCA is l = 7.
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Figure 2.6: Relative deviations (%) of shielding constants (left) and chemical shifts
(right), calculated at the RI-MP2 level using different OBS/AuxC combinations, from
canonical MP2 results with the same OBS. Excluded, left: CO, CH3COCH3, and F2O;
right: NH3 and H2O. The average AuxC/OBS size ratios are given in parentheses. Boxes
show the IQRRE, whiskers show the MinRE and MaxRE, and lines show the MedRE.

2.3.6 Frozen core approximation

The usual justification for using the frozen-core (FC) approximation is that the core elec-
tron contribution to the correlation energy does not change significantly during chemical
bonding and therefore cancels out in the calculation of relative energies (between systems
of the same chemical composition). However, this argumentation does not necessary apply
to calculated NMR properties for several reasons. First, the shielding tensor is inherently
sensitive to changes in the electron density near the nucleus. Second, in the calculation
of chemical shifts the reference system can, and often does, have completely different
chemical structure from the studied system and may therefore exhibit very different core
correlation effects. While the FC approximation is employed for shielding calculations in
the local RI-MP2 implementation of Loibl and Schütz,179 little justification is given for
its use. In this section we attempt to gauge the size of the errors introduced by the FC
approximation. It is important to note that our test set does not include heavy nuclei or
other systems for which core correlation is known to be important. Hence, the FC errors
reported here are likely underestimated and should only be used as a guideline.

Figure 2.7 shows the FC error in the shieldings for MP2 and DSD-PBEP86. Note that
in this plot the nuclei are grouped by rows in the periodic table to highlight the larger
errors for heavier elements. In addition, hydrogen only has valence electrons, hence for 1H
shielding the FC error is due to the influence of the core electrons from neighboring atoms.
Naturally, the deviations are smaller for DSD-PBEP86 because of the overall scaling of the
MP2 contribution, hence we will only discuss the MP2 results. One important observation
is that all FC errors are positive, i.e. the shieldings are always overestimated in the FC
approximation. Such a systematic deviation would cancel out in chemical shifts, which
is a point in favor of the approximation. However, note also the wide range of errors:
depending on the chosen reference, the expected error cancellation might be very different.
There is also a clear basis set dependence of the FC error. This is due to the inability
of the smaller basis sets, especially pS2, to adequately describe the core region. The pS4
values should therefore be considered the mosts representative.
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Figure 2.7: Deviations of shielding constants (ppm) for groups of nuclei, calculated with
the frozen-core approximation, from all-electron results for the same method. The number
of nuclei in each group is given in parentheses. Boxes show the IQREσ, whiskers show the
MinEσ and MaxEσ, and lines show the MedEσ.
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Figure 2.8: Relative deviations of chemical shifts (%), calculated with the frozen-core
approximation, from all-electron results for the same method. The number of data points
is given in parentheses. Excluded: NH3 and H2O. Boxes show the IQRREδ, whiskers show
the MinREδ and MaxREδ, and lines show the MedREδ.

Table 2.3: Analysis of the frozen core (FC) errors in the shielding constants and chemical
shifts of 31P in PN. All values, except in the last two columns, are in ppm.

HF ae-MP2 fc-MP2 ae-MP2−HF fc-MP2−HF ∆FC
∆FC

ae-MP2/% ∆FC

ae-MP2−HF/%

σ(PH3) 584 609 616 26 32 7 1 26
σ(PN) -110 107 135 217 246 28 27 13
δ(PN) 694 502 480 -192 -213 -22 -4 11
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The chemical shift data in Figure 2.8 show that in fact the systematic deviations do
not cancel out, at least using the chosen references. This is perhaps best understood by
an example: the largest frozen core error in our test set – 28 ppm – is for the phosphorus
shielding in PN, which is 27 % of the total shielding constant and 13 % of the MP2
contribution (see Table 2.3). The FC error for the reference nucleus in PH3 is only 7 ppm
(26 % of the MP2 contribution). Therefore the final absolute error in the chemical shift
is 22 ppm, which is only 4 % of the total shift value but 11 % of the MP2 contribution.
While an error of 4 % might be considered acceptable in some cases, it is of the same
order of magnitude as the method error, thereby increasing the deviation with respect to
CCSD(T)/pS4 from 9 to 13 %. Moreover, it is apparent that one cannot rely on error
cancellation in the chemical shifts, as the absolute FC error is not much smaller and the
relative error decreases only because the denominator is larger for the shifts than for the
shieldings (694 vs 107 ppm).

While this is the most extreme example in our test set, similar observations can be
made for most of the other nuclei. Therefore, we conclude that use of the FC approx-
imation is not justified for NMR chemical shift calculations, as the resultant errors –
MAREδ = 1.268 and 0.457 % for MP2 and DSD-PBEP86, respectively – are of the same
order of magnitude as the inherent accuracies of the methods. A final point to make
is that while the FC errors are smaller for lighter elements, so are the computational
savings gained by the approximation. Conversely, calculations on heavier nuclei could
benefit more from freezing the core electrons, but the errors thus introduced would also
be greater.

2.3.7 RIJK or RIJCOSX approximations

As outlined in Section 2.1.2, the RI and COS approximations can be applied to two-
electron integrals at several different stages of the calculation: the Coulomb (J[D]) and
exchange (K[D]) parts of the Fock matrix, and to the JB[D], KB[D], and g

[
DB
]

con-
tributions to the CPSCF equations, the latter of which is split into an occupied-virtual
K
[
UB
]

block on the left-hand side, which is evaluated at every iteration and an occupied-

occupied block K
[
S(B)

]
on the right-hand side, which is only evaluated once, as are the

JB[D] and KB[D] terms. The error in the NMR shielding constants, caused by fitting
each of these contributions by means of the RI or COS approximations is analyzed in this
section.

For the perturbed integrals over GIAOs, gB[D], all combinations of RI and COS for
the Coulomb and exchange parts, as well as exact evaluation, have been implemented.
For the regular two-electron integrals only the exact, RIJK, RIJONX (RI for Coulomb
and analytic exchange) and RIJCOSX approaches are available.

2.3.7.1 RI

The errors in the calculated shielding constants, introduced by the RI approximation are
presented in Figure 2.9. Not surprisingly, errors in the shielding constants are smaller
with the def2-JK fitting basis than with def2-J for the J[D] contribution. For JB[D],
however, at first glance def2-J seems to performs about as well as def2-JK. In fact, the
larger MaxREσ for def2-JK is due to a negligible error of 0.033 ppm for F2O, which
has a small reference value of ≈ 22 ppm. Overall, errors with def2-JK are smaller than
with def2-J. The former are two orders of magnitude smaller than the basis set errors
discussed in Section 2.3.4 and therefore perfectly acceptable. Hence, def2-JK basis set is
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preferred over def2-J and is used in the following calculations. AutoAux results in smaller
errors than def2-JK but it is also significantly larger: the average ratio of auxiliary to
orbital basis functions is 5.1 for AutoAux and 2.0 for def2-JK. For this reason, it is only
recommended when a no suitable optimized auxiliary basis set is available.
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Figure 2.9: Mean absolute relative errors (boxes) and maximal absolute relative errors
(whiskers) in the HF/pcSseg-2 shielding constants due to applying the RI approximation
to different two-electron integrals: a) only the J[D] term in the SCF (eq. 2.37); b) both
the J[D] and K[D] terms in the SCF (eqs. 2.37 and 2.41); c) only the JB[D] term in the
CPSCF (eq. 2.50); d) only the KB[D] term in the CPSCF (eq. 2.51); e) both the JB[D]
and KB[D] terms in the CPSCF (eqs. 2.50 and 2.51); f) only the K

[
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term in the
CPSCF (eqs. 2.44 and 2.47). Note the logarithmic scale.

It is important to point out that the def2-JK fitting basis set was not designed to fit
integrals with external indices, yet at least in combination with the orbital basis sets used
here it only introduces small errors even when fitting (ab|ji) and (aj|bi). This implies
that it contains both tight enough exponents in the core region and polarization functions
with high enough angular momentum to fit the pcSseg-2 basis set (E.g. pcSseg-2 has up
to f-functions for carbon, while def2-JK and pcSseg-3 extend up to g-functions).

Applying the RI approximation to both Coulomb and exchange contributions results
in somewhat larger errors than fitting Coulomb alone, but nevertheless in the same order
of magnitude. A detailed analysis shows that the errors coming from the different con-
tributions are linearly additive. This makes it easy to predict the accumulation of errors
from approximating different integrals. Note however that the errors may have different
signs, so they partially cancel out.

Overall, the accuracy of the RIJK approximation in conjunction with the pcSseg-2 and
def2-JK basis sets is more than sufficient, i.e. errors are more than an order of magnitude
below the basis set incompleteness error.

2.3.7.2 COS

The COS approximation allows for practically arbitrary accuracy if a sufficiently tight grid
is used, with the angular grid having the largest impact. Hence, in order to study the
effect of the latter, the radial accuracy parameter ε was set to 5.0, which is high enough
to eliminate the additional error. The optimal value of ε is discussed further below.

The errors in the calculated shielding constants, introduced by the COS approximation
with different angular grids are presented in Figure 2.10. The first conclusion one can
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Figure 2.10: Mean absolute relative errors (boxes) and maximal absolute relative errors
(whiskers) in the HF/pcSseg-2 shielding constants due to applying the following approxi-
mations, with angular grids g1–g5, to different two-electron integrals: a) RI for the J[D]
term and COS for the K[D] term in the SCF (eqs. 2.37 and 2.57); b) COS for the JB[D]
term in the CPSCF (eq. 2.70); c) RI for the JB[D] term and COS for the KB[D] term in
the CPSCF (eqs. 2.50 and 2.69); d) COS for the KB[D] term in the CPSCF (eq. 2.69); e)
COS for the K
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term in the CPSCF (eq. 2.57). The radial integration accuracy was
set to ε = 5.0. The def2-JK basis set was used for the RIJ parts. Note the logarithmic
scale.
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reach from these results is that the COSJ approximation of JB[D] is only acceptably
accurate for very dense grids, starting around g4. Preliminary estimates of the efficiency
showed that with grids of this size, the COSJ approximation is no longer competitive
with the RIJ algorithm. This was noted for the SCF Coulomb integrals in the original
publication.113 Hence, use of COSJ for the GIAO integrals is also discouraged. However,
one advantage of COS over RI is the possibility to reach arbitrary precision, albeit with
huge grids. While this work was in progress, the analytic integrals over GIAOs in ORCA
were not sufficiently optimized, so calculations employing the COSJX approximation with
the largest possible grid (g7) took a fraction of the time and produced numerically identical
results.

On the other hand, using COSX for either of K[D] and KB[D], one finds that g3 is
sufficiently tight to reach an accuracy comparable with RIJK. This is much larger than
the default grids used for energies and gradients, but can still be preferable over RIK for
large systems (see timings in Section 2.3.10.1). The K

[
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]

contributions to the CPSCF
equations are much less demanding: g1 provides accuracy, comparable to that of the other
contributions.

Combining the RIJ and COSX approximation, the linear additivity of the errors is
once again apparent: with a dense enough grid the RIJCOSX error is virtually identical
to the RIJ error. Note than the def2-JK basis set was also used for RIJCOSX, as it was
determined to be more accurate.
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Figure 2.11: Convergence of the mean absolute relative error (vs exact evaluation) in the
HF/pcSseg-2 shielding constants, due to applying the RIJCOSX approximation to different
two-electron integrals, with the increase of the radial integration accuracy parameter ε.
“gn” denotes the angular grid used.

Having selected the optimal angular grids for each contribution, it is appropriate to
determine the smallest possible value for the radial integration accuracy parameter ε.
Figure 2.11 shows the convergence of the error with the increase of ε for the grids selected
above. For both terms fitted with the g3 angular grid a value of 4.0 is sufficient and for
g1 the error is already converged at a radial accuracy of 3.3.

In summary, while the COSJ approximation is not recommended, because of the high
requirements for grid size, the RIJCOSX approximation is shown to be of comparable
accuracy to RIJK, provided that appropriate grids are used. The optimal grid settings
are g3 with ε = 4.01 for the K[D] and KB[D] terms and g1 with ε = 3.34 for K

[
DB
]
.
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2.3.7.3 Effect of basis set size and application to DFT

An increase in the RI-error is to be expected if a basis set with higher angular momentum
functions is fitted with the same auxiliary basis set. Indeed, as shown in Table 2.4, errors
for the pcSseg-3 basis set are slightly larger but still within the imposed limits. Conversely,
the COSX errors tend to be smaller for the larger basis set. This is fortunate because it
implies they are consistently smaller than the basis set incompleteness error.

Table 2.4: Basis set dependence of the errors in the HF shielding constants due to
applying the RI and COS approximations to different integrals. MEσ, SDEσ, MAEσ, and
MaxEσ are given in ppm and MREσ, SDREσ, MAREσ, and MaxREσ are given in percent
(see eq 2.154).

Approximation Basis MEσ SDEσ MAEσ MaxEσ MREσ SDREσ MAREσ MaxREσ

SCF: Approximate J[D]

RIJ/def2-JK pcSseg-2 0.002 0.027 0.010 −0.113 0.003 0.008 0.005 0.029
RIJ/def2-JK pcSseg-3 0.008 0.034 0.017 0.138 0.009 0.017 0.011 0.079

SCF: Approximate J[D] and K[D]

RIJCOSX/g2a,b pcSseg-2 0.013 0.055 0.035 0.179 0.029 0.075 0.038 0.326
RIJCOSX/g2a,b pcSseg-3 0.004 0.030 0.017 0.109 0.003 0.020 0.013 −0.084
RIJCOSX/g3a,b pcSseg-2 0.002 0.026 0.012 −0.110 0.004 0.016 0.010 0.060
RIJCOSX/g3a,b pcSseg-3 0.009 0.035 0.018 0.134 0.010 0.022 0.013 0.113
RIJK/def2-JK pcSseg-2 0.013 0.025 0.016 0.102 0.012 0.019 0.014 0.067
RIJK/def2-JK pcSseg-3 0.022 0.035 0.025 0.146 0.020 0.027 0.022 0.102

CPSCF: Approximate JB[D]

RIJ/def2-JK pcSseg-2 −0.005 0.016 0.007 −0.075 −0.005 0.025 0.007 −0.147
RIJ/def2-JK pcSseg-3 −0.005 0.014 0.007 −0.053 −0.005 0.027 0.007 −0.157

CPSCF: Approximate KB[D]

COSX/g2a pcSseg-2 −0.100 0.499 0.149 −2.842 −0.049 0.185 0.075 −0.930
COSX/g2a pcSseg-3 −0.021 0.214 0.062 −1.171 −0.005 0.044 0.021 −0.201
COSX/g3a pcSseg-2 0.002 0.021 0.010 −0.082 −0.001 0.018 0.010 −0.073
COSX/g3a pcSseg-3 0.001 0.007 0.004 0.026 −0.001 0.008 0.004 −0.038
RIK/def2-JK pcSseg-2 −0.010 0.030 0.022 −0.091 −0.011 0.029 0.020 −0.087
RIK/def2-JK pcSseg-3 −0.012 0.036 0.025 −0.113 −0.013 0.034 0.023 0.103

CPSCF: Approximate JB[D] and KB[D]

RIJCOSX/g2a,b pcSseg-2 −0.105 0.511 0.152 −2.918 −0.054 0.206 0.080 −1.077
RIJCOSX/g2a,b pcSseg-3 −0.026 0.223 0.067 −1.225 −0.011 0.055 0.027 −0.210
RIJCOSX/g3a,b pcSseg-2 −0.003 0.033 0.016 −0.157 −0.006 0.033 0.015 −0.161
RIJCOSX/g3a,b pcSseg-3 −0.004 0.014 0.008 −0.042 −0.006 0.029 0.010 −0.167
RIJK/def2-JK pcSseg-2 −0.015 0.035 0.025 −0.129 −0.016 0.026 0.021 −0.087
RIJK/def2-JK pcSseg-3 −0.017 0.041 0.028 −0.158 −0.018 0.028 0.023 −0.096

CPSCF: Approximate K
[
DB

]
COSX/g1a pcSseg-2 0.008 0.041 0.022 0.212 0.006 0.034 0.019 0.124
COSX/g1a pcSseg-3 −0.000 0.010 0.007 0.033 0.003 0.007 0.005 0.024
RIK/def2-JK pcSseg-2 −0.002 0.006 0.005 −0.014 −0.003 0.011 0.007 0.031
RIK/def2-JK pcSseg-3 −0.003 0.010 0.007 −0.042 −0.003 0.012 0.008 0.039

a The radial integration accuracy was set to ε = 5.0.
b The def2-JK basis set was used for the RIJ part.

All calculations so far were performed at the HF level for simplicity. A comparison
with DFT results employing the B3LYP and TPSS functionals is given in Table 2.5. A
significant difference is that the RIK and COSX errors are lower for DFT compared to
HF, by a factor of 4–5 in the MAEσ and MaxEσ values. Assuming the apparent linear
additivity of error, discussed in the previous sections, this can be rationalized by the fact
that in hybrid DFT the HF exchange contributions, and any errors introduced therein,
get scaled by a factor cX smaller than unity (0.2 in the case of B3LYP). On the other
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hand, the fact that the RI errors due to the JB[D] term are also smaller for DFT, is simply
a statistical artifact. A close examination reveals that the difference in absolute errors
is due to a single large error in the HF chemical shielding value for phosphorus in PH3,
while the difference in relative errors is due to the smaller HF reference value for fluorine
in F2O. Approximating both Coulomb- and exchange-type contributions results in total
errors for DFT which are still somewhat lower than for HF. This effect, along with the
conclusions from the previous paragraph means that for hybrid DFT calculations with
the pcSseg-3 basis set it might be feasible to use somewhat smaller COSX grids (e.g. g2
instead of g3).

Table 2.5: Method dependence of the errors in the shielding constants due to applying the
RI and COS approximations to different integrals. All calculations employ the pcSseg-2
basis set. MEσ, SDEσ, MAEσ, and MaxEσ are given in ppm and MREσ, SDREσ, MAREσ,
and MaxREσ are given in percent (see eq 2.154).

Approximation Method MEσ SDEσ MAEσ MaxEσ MREσ SDREσ MAREσ MaxREσ

SCF: Approximate J[D]

RIJ/def2-JK HF 0.002 0.027 0.010 −0.113 0.003 0.008 0.005 0.029
RIJ/def2-JK B3LYP 0.003 0.019 0.008 0.101 0.003 0.010 0.006 0.044
RIJ/def2-JK TPSS 0.003 0.019 0.008 0.086 0.002 0.012 0.007 −0.048

SCF: Approximate J[D] and K[D]

RIJCOSX/g2a,b HF 0.013 0.055 0.035 0.179 0.029 0.075 0.038 0.326
RIJCOSX/g2a,b B3LYP 0.005 0.017 0.010 0.066 0.010 0.029 0.012 0.168
RIJCOSX/g3a,b HF 0.002 0.026 0.012 −0.110 0.004 0.016 0.010 0.060
RIJCOSX/g3a,b B3LYP 0.003 0.019 0.009 0.097 0.004 0.015 0.008 0.075
RIJK/def2-JK HF 0.013 0.025 0.016 0.102 0.012 0.019 0.014 0.067
RIJK/def2-JK B3LYP 0.006 0.019 0.009 0.101 0.007 0.014 0.007 0.081

CPSCF: Approximate JB[D]

RIJ/def2-JK HF −0.005 0.016 0.007 −0.075 −0.005 0.025 0.007 −0.147
RIJ/def2-JK B3LYP −0.003 0.010 0.005 −0.035 −0.002 0.008 0.004 −0.037
RIJ/def2-JK TPSS −0.003 0.010 0.005 −0.037 −0.002 0.008 0.004 −0.041

CPSCF: Approximate KB[D]

COSX/g2a HF −0.100 0.499 0.149 −2.842 −0.049 0.185 0.075 −0.930
COSX/g2a B3LYP −0.021 0.111 0.034 −0.626 −0.005 0.028 0.015 −0.111
COSX/g3a HF 0.002 0.021 0.010 −0.082 −0.001 0.018 0.010 −0.073
COSX/g3a B3LYP 0.000 0.004 0.002 −0.017 −0.001 0.006 0.003 −0.031
RIK/def2-JK HF −0.010 0.030 0.022 −0.091 −0.011 0.029 0.020 −0.087
RIK/def2-JK B3LYP −0.002 0.006 0.004 −0.018 −0.003 0.006 0.004 −0.022

CPSCF: Approximate JB[D] and KB[D]

RIJCOSX/g2a,b HF −0.105 0.511 0.152 −2.918 −0.054 0.206 0.080 −1.077
RIJCOSX/g2a,b B3LYP −0.024 0.114 0.036 −0.647 −0.006 0.031 0.016 −0.115
RIJCOSX/g3a,b HF −0.003 0.033 0.016 −0.157 −0.006 0.033 0.015 −0.161
RIJCOSX/g3a,b B3LYP −0.002 0.012 0.006 −0.038 −0.002 0.011 0.005 −0.044
RIJK/def2-JK HF −0.015 0.035 0.025 −0.129 −0.016 0.026 0.021 −0.087
RIJK/def2-JK B3LYP −0.005 0.013 0.007 −0.053 −0.005 0.009 0.006 −0.036

CPSCF: Approximate K
[
DB

]
COSX/g1a HF 0.008 0.041 0.022 0.212 0.006 0.034 0.019 0.124
COSX/g1a B3LYP 0.002 0.010 0.005 0.054 0.000 0.010 0.005 −0.044
RIK/def2-JK HF −0.002 0.006 0.005 −0.014 −0.003 0.011 0.007 0.031
RIK/def2-JK B3LYP −0.001 0.001 0.001 −0.005 −0.001 0.003 0.001 −0.013

a The radial integration accuracy was set to ε = 5.0.
b The def2-JK basis set was used for the RIJ part.
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2.3.7.4 Approximating all terms (RIJK vs RIJCOSX)

After evaluating the errors coming from approximating each term, in the following we com-
pare the accuracy of the RIJK and RIJCOSX approximations in a more realistic scenario,
where the same approximation is used throughout the calculation. The selected settings
are summarized in Table 2.6. Two grid combinations have been defined, labeled small
(S) and large (L). Option L represents the grid settings accurate enough for HF/pcSseg-2
calculations as discussed above, while option S employs looser grids and is expected to be
applicable for hybrid DFT calculations, where the COSX errors are smaller. In ORCA 4,
the two grid combinations can quickly be requested using the simple input commands
“gridx6 nofinalgridx” and “gridx8 nofinalgridx”,arespectively. The def2-JK aux-
iliary basis set is used throughout for both RIJK and RIJCOSX. As noted previously, the
RI-based transformation of (aj|bi) and (ab|ji) needed for K

[
UB
]

can introduce a storage
bottleneck, hence this term can instead be calculated in an AO-direct fashion using exact
4-index integrals at each CPSCF iteration. This procedure is denoted “RIJK*”. For
pure DFT functionals, only the Coulomb term is approximated using RI and the def2-JK
auxiliary basis set – this is denoted “RIJ”.

Table 2.6: Recommended combinations of approximations for the different two-
electron terms, given in the form ”COS/[angular grid]/[radial integration accuracy]” or
”RI/[auxiliary basis set]”

Term RIJCOSX-S RIJCOSX-L RIJK RIJK*

SCF J[D] RI/def2-JK RI/def2-JK RI/def2-JK RI/def2-JK

K[D] COS/g2/ε = 4.01 COS/g3/ε = 4.01 RI/def2-JK RI/def2-JK

CPSCF JB[D] RI/def2-JK RI/def2-JK RI/def2-JK RI/def2-JK

KB[D] COS/g2/ε = 4.01 COS/g3/ε = 4.01 RI/def2-JK RI/def2-JK

K
[
S(B)

]
COS/g1/ε = 3.34 COS/g1/ε = 3.34 RI/def2-JK RI/def2-JK

K
[
UB
]

COS/g1/ε = 3.34 COS/g1/ε = 3.34 RI/def2-JK Exact

The distributions of shielding errors and relative errors in chemical shifts, calculated
using these approximations, are shown in Figures 2.12 and 2.13, respectively. These
data should be viewed in comparison to the basis set incompleteness errors presented
in Figures 2.4 and 2.5, summarized as a MAREδ of 0.8 % and 0.1 % for pcSseg-2 and
pcSseg-3, respectively. Overall, the RIJK approximation with the def2-JK auxiliary basis
set is robust, resulting in consistently small errors with MAREδ ≈ 0.01–0.03 %, which
is an order of magnitude less than the basis set error. For HF, RIJCOSX-L is roughly
as accurate as RIJK, while RIJCOSX-S is not recommended with a MAREδ of 0.16 and
0.08 % for pcSseg-2 and pcSseg-3, respectively. For hybrid DFT, largely due to the exact
exchange scaling factor, RIJCOSX-S already produces errors well below the basis set error
at MAREδ ≈ 0.04 % for both basis sets.

2.3.8 RI-MP2 combined with approximate Fock matrix forma-
tion

In this section we apply the RIJK and RIJCOSX approximations to the two-electron
Fock matrix terms in MP2 and DHDFT and assess the additional errors thus introduced.

aThe given keywords actually correspond to ε = 3.67 for g1, instead of 3.34 but this difference is
largely immaterial.
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Figure 2.12: Deviations of shielding constants (ppm) for groups of nuclei, calculated
using different methods, basis sets, and two-electron integral approximations, from results
for the same method and basis without the approximations. The number of nuclei in
each group is given in parentheses. Boxes show the IQREσ, whiskers show the MinEσ
and MaxEσ, and lines show the MedEσ. Note that some whiskers extend beyond the axis
limits.
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Figure 2.13: Relative deviations of chemical shifts (%), calculated using different meth-
ods, basis sets, and two-electron integral approximations, from results for the same method
and basis without the approximations. The number of data points is given in parenthe-
ses. Excluded: NH3 and H2O. Boxes show the IQRREδ, whiskers show the MinREδ and
MaxREδ, lines show the MedREδ, and diamonds show the MAREδ. Note the broken
x-axis: the limits on both sides of the gap are the same but the scale is different.
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Ideally, the latter should be at least an order of magnitude below the method and basis
set errors. Here we extend the definitions from Table 2.6 such that the grid used for
the CPSCF RHS is also used for the Fock response terms in the RHS of the Z-CPSCF
equations, while the grid used for the CPSCF LHS is also used for the LHS of the Z-CPSCF
equations. In order to minimize additional errors due to the RI-MP2 approximation, the
cc-pwCVQZ/C and cc-pwCV5Z/C AuxC basis sets were used for pcSseg-2 and pcSseg-3,
respectively.
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Figure 2.14: Deviations of shielding constants (ppm) for groups of nuclei, calculated
using the RIJK and RIJCOSX approximations for the two-electron Fock matrix contri-
butions, from results using exact two-electron integrals for these terms. The number of
nuclei in each group is given in parentheses. Boxes show the IQREσ, whiskers show the
MinEσ and MaxEσ, and lines show the MedEσ. Note that some whiskers extend beyond
the axis limits.

The shielding errors are shown in Figure 2.14. The first thing to notice is that the
RIJK errors are very small, which confirms that the def2-JK basis set is large enough to be
used with pS2 and pS3. On the other hand, RIJCOSX-S errors are an order of magnitude
larger. RIJCOSX-L errors are smaller with pS2 but not with pS3, which is unexpected,
as we had previously observed that the COSX errors (with a given grid setting) decrease
with increasing basis set size (see Section 2.3.7.3). Additional testing revealed that a
large part to the error is due to the smaller grid used in the Z-CPSCF equations LHSs.
Therefore, we propose a third set of grid parameters, denoted RIJCOSX-XL, whereby
g3/ε = 4.0 is used for the CPSCF and Z-CPSCF equations RHSs, as in RIJCOSX-L, and
g2/ε = 4.0 is used for the LHSs. Using these settings, the RIJCOSX errors are roughly
of the same magnitude as the RIJK errors. It should be stressed however, that for pS2
the RIJCOSX-S errors are already an order of magnitude below the basis set error and
for pS3 the RIJCOSX-L errors are several times smaller then the basis set error, albeit
not a whole order of magnitude. Therefore, the RIJCOSX-L settings should be quite
sufficient for regular applications and the RIJCOSX-XL settings need only be used when
very precise results are required.
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Figure 2.15: Relative deviations of chemical shifts (%), calculated using the RIJK and
RIJCOSX approximations for the two-electron Fock matrix contributions, from results
using exact two-electron integrals for these terms. The number of data points is given
in parentheses. Excluded: NH3 and H2O. Boxes show the IQRREδ, whiskers show the
MinREδ and MaxREδ, lines show the MedREδ, and diamonds show the MAREδ. Note the
broken x-axis: the limits on both sides of the gap are the same but the scale is different.

Because the shielding errors are rather unsystematic, they do not cancel out in chemical
shifts (Figure 2.15). Hence, the conclusion above applies here as well: RIJCOSX-S may
be used with the pS2 basis set, as the resultant errors are far below the basis set error
(MAREδ = 0.17 and 0.12 % for MP2 and DSD-PBEP86, respectively), while RIJCOSX-L
is more robust overall with MAREδ of 0.04, 0.03, 0.10 and 0.04 % for MP2/pS2/cw4C,
DSD-PBEP86/pS2/cw4C, MP2/pS3/cw5C, and DSD-PBEP86/pS3/cw5C, respectively.
RIJK results in negligible errors (MAREδ < 0.03 % in all cases) and is therefore the
preferred approximation for smaller systems, while RIJCOSX should be used for larger
calculations due to its more favorable scaling behavior.

2.3.9 Combined effect of all error sources

The magnitude of errors, coming from different sources, in the calculated chemical shifts
can be easily compared in Table 2.7. Largest are the deviations of different methods
from the CCSD(T)/pS4 reference, discussed in Section 2.3.3. Close to the CBS limit the
ranking of the chosen methods is (from highest to lowest accuracy): DSD-PBEP86, MP2,
TPSS, B3LYP, and HF.

When the RI-MP2 and RIJCOSX errors are compared to those from the method and
basis set, pS2/cw3C, pS3/cw4C, and RIJCOSX-L can be seen as a good balance of cost
and accuracy. Although not discussed above, the effect of the DF integration grid was
also studied: while the default grid for energy calculations (grid 2) may be somewhat
unreliable for chemical shifts, the values obtained with grids 3 and 4 are an order of
magnitude more accurate, hence these grid settings are recommended.

Finally, the last two rows of Table 2.7 show the total error versus CCSD(T)/pS4, when
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Table 2.7: MAREδ (%) due to different sources of error (excluding H shifts in H2O and
NH3).

Source of error Basisa HF B3LYP TPSS MP2 DSD-PBEP86

Methodb pS4 10.762 9.048 6.362 4.118 1.914

Frozen corec pS4 1.268 0.457

Basis setd pS2 0.766 0.836 0.838 1.860 1.129
pS3 0.105 0.133 0.606 0.359 0.228

RIJKe pS2 0.023 0.013 0.023g 0.019 0.022
pS3 0.025 0.019 0.025g 0.026 0.020

RIJCOSX-Sef pS2 0.159 0.042 0.165 0.115
pS3 0.082 0.035 0.158 0.071

RIJCOSX-Lef pS2 0.033 0.016 0.039 0.030
pS3 0.025 0.018 0.104 0.042

RIJCOSX-XLef pS2 0.035 0.031
pS3 0.054 0.031

RI-MP2 pS2/cw3C 0.016h 0.009i

pS2/cw4C 0.005h 0.004i

pS3/cw4C 0.025h 0.011i

pS3/cw5C 0.002h 0.001i

pS4/cw5C 0.009h

DFT grid 1j pS2 0.275 0.086
DFT grid 2j pS2 0.218 0.076
DFT grid 3j pS2 0.034 0.010
DFT grid 4j pS2 0.028 0.002
DFT grid 5j pS2 0.012 0.001
DFT grid 6j pS2 0.009 0.001

Totalbk pS2/cw3C 11.055 9.123 6.271 3.695 1.420
Totalbk pS3/cw4C 10.832 9.048 6.075 4.064 1.863
a The pS2/cw4C, pS3/cw5C, and pS4/cw5C OBS/AuxC combinations were used for the RI-MP2
approximation (where applicable), except where explicitly specified. b Vs CCSD(T)/pS4. c Vs
all-electron calculations with the same basis set. d Vs pS4. e Using the def2-JK AuxJ basis, vs the
same method/basis with no approximation in the two-electron Fock contributions. f See Table 2.6
and Section 2.3.8 for grid settings used. g No exact exchange – RI used only for Coulomb terms.
h Vs canonical MP2 results obtained using CFOUR. i Vs AA3l near-complete AuxC basis. j Vs
grid 7. Grids 1–7 employ 50-, 110-, 194-, 302-, 434-, 590-, and 770-point Lebedev angular grids and
radial integration parameters of 4.34, 4.34, 4.34, 4.67, 5.01, 5.34, and 5.67, respectively. Default
pruning settings in ORCA were used. k All-electron calculations using RIJCOSX-L (just RIJ for
TPSS) and DFT grid 4.
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all the relevant approximations (RIJCOSX, RI-MP2, smaller basis sets and DFT grid, but
not FC) have been applied. As noted in Section 2.3.4, some methods benefit from error
compensation when a smaller basis set is used, while others suffer from an accumulation
of errors. Even so, the final ranking of the given methods does not change in this case.

2.3.10 Comparison of efficiency

2.3.10.1 SCF methods

In previous sections we discussed the accuracy of the RIJK and RIJCOSX approxima-
tions and settled on recommended auxiliary basis set and grid settings. In the follow-
ing we compare the computational efficiency of both approaches for the calculation of
shielding constants of larger systems at the HF level (the conclusions should also be ap-
plicable to hybrid DFT). The systems selected are benzene, coronene, and a “tweezer”
host-guest complex (see Figure 2.16). The latter was investigated by Brown et al. in
a proof-of-concept paper on the advantages of combining solid-state NMR experiments
with quantum-chemical calculations.297 Coronene and the tweezer complex were also used
as test cases by Loibl, Manby and Schütz for their local GIAO-HF and GIAO-MP2 im-
plementations.117,179 Because of the different approximations employed, as well as the
different basis sets used, no direct comparison is attempted here. The benzene molecule
was optimized at the RIJK-B3LYP-D3BJ/def2-TZVP/def2-JK level and the structures
of the other two systems were optimized at the RI-BP86-D3BJ/def2-SVP/def2-J level.
The final MO coefficients from the optimization were used as a guess for subsequent cal-
culations. Wall-clock times for different parts of the calculation are shown in Figure 2.16
along with the number of electrons Nel, basis functions Nbas, and auxiliary basis functions
Naux for each example. The recommended grid settings and basis sets were used (see
Table 2.6).

The efficiency of the RIJCOSX and RIJK approximations for SCF calculations has
been compared previously,116 and as expected, especially with the large grids employed
here, the RIJCOSX approximation is only faster for the largest system. With the chosen
settings, the COSX approximation to KB[D] takes roughly the same amount of time as
the RIJ approximation to JB[D]. However, the poor scaling of the RIK method already
shows for the coronene molecule and for the tweezer system it is a significant bottleneck.

The solution of the CPSCF equations using RIJCOSX is much less time consuming
than the SCF iterations, mostly because a small grid is used for the repeated evalua-
tion of K

[
UB
]
. If the two-electron integrals are evaluated exactly in an integral-direct

fashion (case “RIJK*” in Figure 2.16), the CPSCF dominates the computation time.
Pre-calculating the integrals (case “RIJK”) drastically reduces the time spent on CPSCF
iterations for the smaller systems, even considering the time required for the calcula-
tion and storage of the necessary integrals. However, disk space becomes a bottleneck
for large systems: the calculation on the tweezer could not be performed because the
available 400 GB of scratch space were insufficient.

The additional computational effort required due to the inclusion of exact (HF) ex-
change can be estimated by comparing to timings for a “pure” DFT functional such as
TPSS (see Table 2.8 below). In that case, not only are the KB[D] and K

[
DB
]

terms
omitted from the CPSCF equations, but the iterative solution of the latter is skipped en-
tirely. Considering also that “pure” functionals are only slightly less accurate than their
hybrid counterparts (as shown in Section 2.3.3), it seems reasonable to only include exact
exchange if the SCF solution is required for further treatment within correlated methods.
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Figure 2.16: Wall-clock time for different parts of the calculation (adding up to over
99 % of the total time): SCF iterations, RI- and COSX-contributions to gB[D] (“GIAO-
RI” and “GIAO-COSX”, respectively), RIK/COSX evaluation of the K

[
S(B)

]
term, pre-

computation of the (ab|ji) and (aj|bi) integrals in the RIJK case, and convergence of the
CPSCF equations to 1× 10−6. See Table 2.6 for the settings used. Calculations were
performed for benzene, coronene, and the “tweezer” complex (depicted in the figure). All
calculations ran on 8 CPU cores with 2 GB memory per core.
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In summary the RIJK approximation is especially efficient for smaller systems with
large basis sets. For systems over 100 electrons and 1000 basis functions, the RIJCOSX
approach is recommended. It is worth noting that using the looser grid (RIJCOSX-S) only
provides significant speedups for the smallest calculations (where RIJK is even faster) and
considering the larger errors involved, it is advisable to use a denser grid (RIJCOSX-L).

2.3.10.2 RI-MP2 and DHDFT

In Section 2.3.3 we have shown the superior accuracy of DHDFs (DSD-PBEP86 in par-
ticular) for the computation of NMR chemical shifts, compared to SCF-level methods
and MP2. However, it must be stressed that, although applicable to much larger sys-
tems than coupled cluster theory would be feasible for, these calculations are significantly
more time-consuming than the hybrid DFT equivalents, and even more so than pure DFT
shielding calculations, where even the iterative solution of the CPSCF equations is not
needed. Therefore, in this section we evaluate the performance of our implementation
for larger systems. The (all-electron) DSD-PBEP86/pS2/cw3C level of theory was used
throughout this section.
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Figure 2.17: Wall-clock computation times for DSD-PBEP86/pS2/cw3C NMR shielding
calculations on linear alkane chains (CnH(2n+2)) using different approximations for the
Fock matrix contributions (as defined in Table 2.6). (a) Total computation times. (b-d)
Timings for separate calculation parts using each of the approximations; the numbers on
the right denote the effective scaling exponent determined from the last five points in each
series. The calculations were performed on 8 Intel Xeon E7-8837 2.67 GHz cores with 8 GB
RAM per core.

The computational effort is dominated by the evaluation of the MP2 response density
DB (a detailed breakdown of contributions to the total computation time is given in
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Appendix C). The latter formally scales as O (N5) with system size and can be up to 20–
30 times more expensive than the evaluation of D, as discussed in Section 2.2. However,
the approximation used for the two-electron integrals, originating from the Fock operator,
also has an effect on the timing. Figure 2.17 shows the total computation times for
DSD-PBEP86 NMR shielding calculations on idealized linear alkane chains (H(CH2)nH).
Here we compare the “RIJCOSX-L”, “RIJK”, and “RIJK*” approaches, as defined in
Section 2.3.7.4. The effective scaling with system size is determined as the slope of a
linear fit (on a log–log scale) of the last five points in each series. The RIJK option is
fastest up to about C10H22, beyond which the RIJCOSX-L approach is more efficient.
RIJK* is slightly faster than RIJCOSX-L for the two smallest systems but for C15H32

it already takes about 44 % more time. For the larger systems, the RIJK computation
times are between those of the other two options. However, this result depends on the
speed of disk I/O operations (a RAID 0 hard disk configuration was used in this case).
Therefore it can be concluded that for very small systems the choice of approximation is
largely immaterial, while for larger systems of about 100 electrons or more the RIJCOSX-
L approximation is recommended.

A further illustration is given in Table 2.8 for several “real world” systems: the ben-
zene, caffeine, coronene, and penicillin G molecules and the “tweezer” host–guest complex
discussed in Section 2.3.10.1.a The latter is the largest system studied in this section with
374 electrons and 2520 basis functions. Note that, to reduce memory requirements, the
perturbed amplitudes for each batch were stored on disk, as discussed in Section 2.2.
For comparison, TPSS/pS2 calculations were also performed on these systems. Table 2.8
provides separate timings for different calculation parts: the SCF solution, assembly of
the CPSCF RHS, solution of the CPSCF equations, and calculation of the MP2 relaxed
density and response density matrices. Note that for TPSS only the first two steps are
necessary. The final lines of the table allow for a quick comparison of the total computa-
tion time required for NMR shielding calculations with a pure DF (TPSS), a hybrid DF
(here taken as the SCF part of DSD-PBEP86), and a DHDF (DSD-PBEP86). Due to the
efficiency of the RIJCOSX approximation, hybrid DFT calculations are consistently only
a few times more expensive than pure DFT ones. However, the cost of DHDFT quickly
grows to more than an order of magnitude above hybrid DFT, with the largest calculation
taking 6 days to complete and requiring 1 TB of disk space. It is clear that in order to
apply DHDFT to much larger systems, a local correlation approximation is needed.

aFor benzene, RCC = 1.3908 �A and RCH = 1.0828 �A. Cartesian coordinates for the other systems are
provided in Appendix E.
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Table 2.8: System size indicators and wall-clock computation times (in minutes) for some
medium-sized systems. Grid 4 was used for XC functional integration. The calculations
were performed on 8 Intel Xeon E5-2687 v4 3.0 GHz cores with 8 GB RAM per core.

Benzene Caffeine Coronene Penicillin Tweezer

Atoms 12 24 36 41 92
Electrons 42 102 156 176 374
Basis functions (pS2) 300 644 1032 1087 2520
AuxC functions (cw3C) 846 1854 3024 3158 7296
AuxJ functions (def2-JK) 558 1242 2016 2114 4852
Grid points (COSX-L) 23218 47803 74108 78287 172573

TPSS

SCF (RI) 0.1 0.6 1.4 1.7 10.7
RHS (RI) 0.1 0.7 2.3 1.6 13.5

DSD-PBEP86/RIJCOSX-L

SCF (RIJCOSX) 0.4 2.8 9.2 7.6 63.1
RHS (RIJCOSX) 0.2 1.3 4.3 3.7 32.2
CPSCF (RIJCOSX) 0.1 1.0 3.0 4.3 48.0
RI-MP2: D 0.3 2.9 14.0 18.4 668.0
RI-MP2: DB 1.7 19.0 108.7 144.4 7831.2

DSD-PBEP86/RIJK(RITrafo)

SCF (RIJK) 0.2 1.4 5.5 6.0
RHS (RIJK) 0.1 0.7 2.6 3.2
CPSCF (RITrafo) 0.0 0.1 0.9 1.6
RI-MP2: D 0.2 3.5 27.9 39.5
RI-MP2: DB 1.5 21.1 133.8 185.6

Comparison

Total TPSS 0.3 1.3 3.8 3.4 25.4
Total PBEP86/RIJCOSX-L 0.7 5.1 16.5 15.6 143.4
Total DSD-PBEP86/RIJCOSX-L 2.7 27.0 139.2 178.3 8642.7
Total PBEP86/RIJK(RITrafo)a 0.3 4.1 26.2 35.4
Total DSD-PBEP86/RIJK(RITrafo) 2.0 26.9 170.8 236.0
a Including the RI transformation and storage of (ia|jb) and (ij|ab) integrals.
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Chapter 3

Computation of polarizabilities and
NMR shieldings with domain-based
local pair natural orbital MP2

3.1 Theory

The focus of this thesis is the computation of NMR shielding tensors and therefore the
goal of the following section is the derivation of analytic second derivatives of DLPNO-
MP2 in that context. However, with small generalizations, it is possible to simultaneously
derive other second order properties such as the electric dipole polarizability. Similar to
the shielding tensor for nucleus K, σK , the polarizability tensor α can also be obtained
as a second derivative of the energy:298

σKβα =
d2E

dBext
α dmK

β

=
∑
µν

[
Dµν

d2hµν
dBext

α dmK
β

+
dDµν

dBext
α

dhµν
dmK

β

]
(3.1)

ααβ = − d2E

dF ext
α dF ext

β

= −
∑
µν

dDµν

dF ext
α

dhµν
dF ext

β

(3.2)

where, as in the previous chapter, E, D, and h are the method-specific energy expression,
density matrix, and one-electron part of the Fock matrix, respectively; α and β denote
arbitrary Cartesian directions; Fext, Bext (the superscript “ext” is used in this chapter
for consistency between the two fields), and mK are the external electric and magnetic
fields and the nuclear magnetic moment of K, respectively. Note that the expressions in
eqs. 3.1 and 3.2 are not symmetric with respect to the perturbation and thus not the only
possible expressions for these properties. Notice also that h only contains terms that are
linear in Fext:

h
(
r,Fext

)
=

1

2
∇2 − V(r)− Fext · µ (3.3)

µ = −r +
nuc∑
K

ZKRK (3.4)

dhµν
dF ext

α

= −〈µ| rα |ν〉 (3.5)

d2hµν
dF ext

α dF ext
β

= 0 (3.6)
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where r is the electronic coordinate with respect to the global origin and ZK and RK are
the charge and position of nucleus K. In the following discussion, λ will denote a generic
multi-dimensional perturbation (like Fext or Bext).

As the derivations below are already rather complicated, they are limited to pure MP2.
However, the extension to DHDFT and the extra terms required are identical to those
discussed in Chapter 2 (see Section 2.1.4). Similarly, the inclusion of an implicit solvent
model is analogous to the RI-MP2 case (see Section 2.1.5).

3.1.1 Notation

Due to the many basis transformations and domain truncations involved in local corre-
lation methods, mathematical notation can quickly become cumbersome, imprecise, or
both. Here we try to give a brief explanation of the symbols used in the present deriva-
tions. Table 3.1 lists the symbols used to denote different sets of orbitals. Note that
virtual orbitals belonging to a specific orbital or pair domain, are usually denoted with
corresponding lower indices, e.g. µ̃i or ãij. However, the occupied orbital indices are often
obvious from context, or are added as upper indices of a matrix, e.g. F i

µ̃ or T ij
ãb̃

, and thus
the repetition is avoided to simplify the notation.

Be aware that despite the similar notation, the symbols Kij

ãb̃
, T ij

ãb̃
, F ij

ãb̃
, and Sij

ãb̃
have

rather different meanings: the first denotes the two-electron repulsion integral (iãij | jb̃ij),
the second parametrizes excitations from orbitals i and j into PNOs ã and b̃, while the
last two are simply the Fock and overlap matrix elements in the PNO basis of pair ij.

The conventions introduced in Section 2.1.1 also apply here. Note that, while consis-
tency with Chapter 2 is preserved as much as possible, some symbols are redefined in this
chapter.

Table 3.1: Notation

Indices Basis set

i, j, k, l (localized) occupied orbitals, or valence orbitals in particular
m,n (localized) core orbitals
a, b, c, d canonical virtual orbitals
p, q, r, s occupied or virtual molecular orbitals
µ, ν, η atomic orbitals (AOs)
µ̃′, ν̃ ′, η̃′ normalized redundant projected atomic orbitals (PAOs)
µ̃, ν̃, η̃ orbital/pair domain of orthonormal pseudo-canonical non-

redundant projected atomic orbitals (NPAOs)

ã, b̃, c̃, d̃ pair natural orbitals (PNOs)

ã′, b̃′, c̃′, d̃′ discarded/“complementary” pair natural orbitals (CPNOs)

ã′′, b̃′′, c̃′′, d̃′′ union of PNOs and CPNOs

3.1.2 The domain-based local pair natural orbital MP2 method

Here we provide a brief review of the closed-shell (spin-restricted) DLPNO-MP2 method,
which has been described in significant detail elsewhere.144,193 The following steps are
taken to obtain the DLPNO-MP2 energy:
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1. The SCF equations are solved, giving the HF energy, EHF, and canonical molecular
orbitals (CMOs).

2. The occupied orbitals are localized according to the Foster–Boys (FB) criterion,
as modified by Boys (referred to below as FB localization).299,300 Core and valence
orbitals are localized separately.

3. PAOs µ̃′u (“u” stands for unnormalized) are obtained as

|µ̃′u〉 =
(

1−
∑
i

|i〉 〈i|
)
|µ〉 ≡

∑
ν

P̃ u
νµ̃′u
|ν〉 (3.7)

and then normalized using the factor Nµ̃′ = 〈µ̃′u|µ̃′u〉
− 1

2 :

|µ̃′〉 = Nµ̃′ |µ̃′u〉 ≡
∑
ν

P̃ νµ̃′ |ν〉 (3.8)

4. For each occupied orbital, a correlation domain of PAOs is selected, based on the
differential overlap criterion

DOIiµ̃′ =
√〈
| i |2

∣∣| µ̃′ |2〉 > TCutDOPre (3.9)

with the default value of the parameter TCutDOPre = 0.03. These domains are then
extended to all PAOs coming from the included atoms.

5. Non-redundant orthonormal PAOs (NPAOs) are constructed by diagonalizing the
overlap matrix of each PAO domain, discarding eigenvectors with eigenvalues below
TS (10−8 by default) and normalizing the rest. These are then transformed into
pseudo-canonical NPAOs {µ̃} by diagonalizing the NPAO Fock matrix.

6. Strongly correlated electron pairs are determined using a three-step procedure. A
pair ij is kept if the differential overlap between the two orbitals, DOIij, is greater
than TCutDOij = 10−5 and the semi-canonical pair energy estimate, eq. 3.10, us-

ing the collinear dipole approximation to the exchange integrals (i.e. M ij,col
µ̃ν̃ from

eq. 3.12 instead of M ij
µ̃ν̃),

301 is greater than TCutPre = 10−6. The energy contribution
from the screened-out pairs, ∆EPre, is estimated using the more accurate dipole
approximation to the exchange integrals,136 eq. 3.11.

εdip
ij = −4

∑
µ̃ν̃

M ij
µ̃ν̃M

ij∗
µ̃ν̃

F i
µ̃ + F j

ν̃ − Fii − Fjj
(3.10)

M ij
µ̃ν̃ =

riµ̃rjν̃

|Rij|3
− 3

(riµ̃Rij) (rjν̃Rij)

|Rij|5
(3.11)

M ij,col
µ̃ν̃ = 4

riµ̃rjν̃

|Rij|3
(3.12)

Rij = rii − rjj (3.13)

riµ̃ = 〈i| r |µ̃i〉 (3.14)

F i
µ̃ and F j

ν̃ are NPAO orbital energies in the domain of orbitals i and j, respectively,
while Fii and Fjj are elements of the Fock matrix in the localized MO (LMO) basis.
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7. The correlation domains are reconstructed as in step 4 but with a tighter threshold
TCutDO = 0.01. Pair domains are then made as the union of orbital domains. The
pair domain PAOs are later orthonormalized as in step 5.

8. PNOs are constructed by diagonalizing the semi-canonical pair density
^
Dij in the

basis of NPAOs for the given orbital pair:

^
Dij
µ̃ν̃ =

∑
η̃

[˜̂
T ij∗µ̃η̃

^
T ijν̃η̃ +

˜̂
T ij∗η̃µ̃

^
T ijη̃ν̃

]
(3.15)

^
T ijµ̃ν̃ = − (µ̃iji|ν̃ijj)

F ij
µ̃ + F ij

ν̃ − Fii − Fjj
(3.16)

˜̂
T ijµ̃ν̃ =

1

1 + δij

(
4
^
T ijµ̃ν̃ − 2

^
T ijν̃µ̃

)
(3.17)

where F ij
µ̃ and F ij

ν̃ are NPAO orbital energies in the ij pair domain and δij is the
Kronecker delta. PNOs with an occupation number greater than TCutPNO = 10−8

are kept, while the rest form the “complementary” PNO (CPNO) basis referred to
below. A tighter threshold, TCutPNO × TScalePNOCore = 10−10, is used for pairs which
include core orbitals.302 The PAO to PNO transformation matrices are stored on
disk. A correction to the energy, ∆EPNO, is computed as the difference between the
semi-canonical correlation energy, calculated in the NPAO and PNO basis sets.

9. The full amplitude equations ∂EDLPNO
2 /∂T̃ ij∗

ãb̃
= 0 (see Section 3.1.3 for definitions)

are solved iteratively in the PNO basis and the final DLPNO-MP2 energy is calcu-
lated:

EDLPNO-MP2 = EHF + EDLPNO
2 + ∆EPNO + ∆EPre (3.18)

The following sections list the steps necessary to compute analytic derivatives, based on
the DLPNO-MP2 energy.

3.1.3 DLPNO-MP2 Lagrangian

Because the DLPNO-MP2 energy expression is non-variational, a Lagrangian formulation
is used for analytic derivatives,226 which is slightly different from the one used previ-
ously:191,192

L = EHF + EDLPNO
2 + ∆EPNO + ∆EPre

+ CBri + CLoc + CCV + CSC + CPNO

+ CMOO + CPNOO + CNPAOO

(3.19)

The first four terms are the energy contributions, the next five are the Brillouin, local-
ization, core–valence, semicanonical, and PNO Lagrangian constraints, and the last three
are orthonormality conditions for the MOs, PNOs and NPAOs. The various terms will
be explained in the present section. EHF is the HF energy expression:

EHF = 2
∑
i

hii +
∑
ij

[2 (ii|jj)− (ij|ji)] (3.20)

with two-electron integrals in the Mulliken (1∗1|2∗2) notation. EDLPNO
2 is the PNO-basis

Hylleraas functional in the spin-adapted form:234

EDLPNO
2 =

∑
i≥j

∑
ãb̃

[
Kij

ãb̃
T̃ ij
ãb̃

+Kij∗
ãb̃
T̃ ij∗
ãb̃

+Dij

ãb̃
F ij

ãb̃

]
−
∑
ij

DijFij (3.21)
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Dij

ãb̃
=
∑
c̃

[
T̃ ij∗ãc̃ T

ij

b̃c̃
+ T̃ ij∗c̃ã T

ij

c̃b̃

]
(3.22)

Dij =
∑
k

(1 + δjk)
∑
ãb̃c̃d̃

Sik,kj∗
ãb̃

T̃ kj∗
b̃c̃
Skj,ik
c̃d̃

T ik
d̃ã

(3.23)

Kij

ãb̃
=
(
iãij

∣∣∣jb̃ij) (3.24)

Sij,kl
ãb̃

=
〈
ãij

∣∣∣b̃kl〉 (3.25)

T̃ ij
ãb̃

=
1

1 + δij

(
4T ij

ãb̃
− 2T ij

b̃ã

)
(3.26)

∆EPNO is an estimate for the error due to the PNO truncation, calculated as the difference
between the correlation energy computed from the semicanonical amplitudes in the full
NPAO basis and in the truncated PNO basis:

∆EPNO =
1

2

∑
i≥j

∑
ã′′b̃′′

(
Kij

ã′′b̃′′

˜̂
T ij
ã′′b̃′′

+Kij∗
ã′′b̃′′

˜̂
T ij∗
ã′′b̃′′

)
−
∑
ãb̃

(
Kij

ãb̃

˜̂
T ij
ãb̃

+Kij∗
ãb̃

˜̂
T ij∗
ãb̃

)
(3.27)

The energy contribution of the screened-out pairs takes the form of an approximate Hyller-
aas functional:

∆EPre = 4
∑
i>j

1S(ij)
∑
µ̃ν̃

[
M ij

µ̃ν̃t
ij
µ̃ν̃ +M ij∗

µ̃ν̃ t
ij∗
µ̃ν̃ − (Fii + Fjj) t

ij∗
µ̃ν̃ t

ij
µ̃ν̃

+
∑
η̃

(
F i
µ̃ν̃t

ij∗
µ̃η̃ t

ij
ν̃η̃ + F j

µ̃ν̃t
ij∗
η̃µ̃ t

ij
η̃ν̃

)] (3.28)

where 1S(ij) = 1 if pair ij was screened out, 0 otherwise. The dipole approximation to
the exchange integrals is given in eq. 3.11. The Brillouin condition is formulated as

CBri =
1

2

∑
ai

(zaiFai + z∗aiF
∗
ai) (3.29)

where zai is the required Lagrange parameter. Introducing a magnetic field means that
all quantities throughout the formalism are necessarily complex. Therefore, for any La-
grangian condition, it is necessary to constrain both its real and imaginary part or, equiv-
alently, the condition and its complex conjugate. We favor the latter approach here, which
also leads to complex Lagrange multipliers and their conjugates as separate optimization
parameters, which can be arranged in Hermitian matrices, e.g. zia ≡ z∗ai. For infinitesi-
mal perturbations, the final working equations in the first order of the perturbation are
always fully real (e.g. for electric fields) or fully imaginary (e.g. for magnetic fields), and
are therefore over-parametrized. Thus, linear combinations are formed to obtain separate
equations for the real and imaginary components of the Lagrange multipliers, of which
one provides the required solution, and the other trivially gives zero. The factors of one
half in eq. 3.29 as well as eqs. 3.32, 3.34, 3.39, and 3.43 (see below) are introduced for
consistency with the definitions of the Lagrange multipliers in ref. 192. We also note in
passing that eq. 3.19 is formulated such that all terms are real.

In the present derivation, the molecular orbital (MO) response to perturbations is
parametrized as:303

c(λ) = c(0)U(λ), U(0) = I (3.30)
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where c denotes the LMO coefficients. In contrast to the exponential parametrization
used in refs. 191 and 192, U is not constrained to be unitary but is instead constrained
by the MO orthonormality condition

CMOO =
∑
pq

xpq (Spq − δpq) (3.31)

which is fulfilled by the CMO coefficients and the unperturbed LMO coefficients c(0). Here,
xpq are the associated Lagrange multipliers. The term CLoc enforces the FB localization
condition separately on the core and valence orbitals and introduces the required Lagrange
multipliers lij:

CLoc =
1

2

valence∑
i<j

(
lijsij + l∗ijs

∗
ij

)
+

1

2

core∑
m<n

(lmnsmn + l∗mns
∗
mn) (3.32)

sij = (rii − rjj) rij = −s∗ji (3.33)

The final MO constraint is the core-valence separation condition with an associated La-
grange parameter z̄im:

CCV =
1

2

valence∑
i

core∑
m

(z̄imFim + z̄∗imF
∗
im) (3.34)

Recall that the core and valence orbitals are localized separately because different PNO
truncation thresholds are used for pairs which include core orbitals.302 Therefore, the core-
valence separation condition is necessary even if all electrons are included in the correlation
treatment. On the other hand, the localization condition for core orbitals is not needed
if the latter are not localized, which is the case in the frozen-core approximation.

We denote the PNOs by ã, b̃, c̃, d̃, the CPNOs by ã′, b̃′, c̃′, d̃′ and the union of the two
spaces with ã′′, b̃′′, c̃′′, d̃′′. The transformation matrices from redundant PAOs to each of
these sets (for orbital pair ij) are denoted by dijµ̃′ã, d

′ij
µ̃′ã′ , and d′′ijµ̃′ã′′ , respectively. The

PNOs and CPNOs combined span the same space as the NPAOs. In the presence of a
perturbation, we allow the PNOs to relax within the entire PNO+CPNO space. Rotations
within each domain are thus parametrized as

d′′ij(λ) = d′′ij(0)θij(λ), θij(0) = I (3.35)

Analogously to U, the matrices θij are not necessarily unitary but rather are constrained
by the PNO (and CPNO) orthonormality condition:

CPNOO =
∑
i≥j

∑
ã′′b̃′′

xij
ã′′b̃′′

(
Sij
ã′′b̃′′
− δã′′b̃′′

)
with Sij ≡ Sij,ij (3.36)

Note that below, Sij is expanded as

Sij = θij†Sijθij = θij†d′′ij(0)†S̃d′′ij(0)θij (3.37)

S̃µ̃′ν̃′ = 〈µ̃′|ν̃ ′〉 (3.38)

where Sij is the PAO overlap matrix transformed to the unperturbed PNO+CPNO basis.

A further PNO constraint ensures that the semi-canonical pair densities
^
Dij remain block-

diagonal:

CPNO =
1

2

∑
i≥j

∑
ãb̃′

(
vij
ãb̃′

^
Dij

ãb̃′
+ vij∗

ãb̃′

^
Dij∗
ãb̃′

)
(3.39)
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where vij
ãb̃′

are unknown Lagrange multipliers. An orthonormality condition also applies
to the orbital domain NPAOs used for the prescreening correction, parametrized as

πi(λ) = πi(0)θi(λ), θi(0) = I (3.40)

CNPAOO =
∑
i

∑
µ̃ν̃

xiµ̃ν̃
(
Siµ̃ν̃ − δµ̃ν̃

)
(3.41)

where πiµ̃′ν̃ are the transformation matrices from redundant to non-redundant orbital
domain PAOs, Si is the overlap matrix in the latter basis, and xiµ̃ν̃ are the necessary
Lagrange multipliers. Finally, the semi-canonical amplitudes are parametrized as

^
Tij = θij†

_
Tijθij∗ (3.42)

and the semi-canonical residual conditions CSC are included in the Lagrangian:

CSC =
1

2

∑
i≥j

∑
ã′′b̃′′

(
wij
ã′′b̃′′

^
Rij

ã′′b̃′′
+ wij∗

ã′′b̃′′

^
Rij∗
ã′′b̃′′

)
(3.43)

where wij
ã′′b̃′′

are Lagrange multipliers and the semi-canonical residuals
^
Rij

ã′′b̃′′
are defined

as

^
Rij

ã′′b̃′′
= Kij∗

ã′′b̃′′
+
∑
c̃′′

(
^
T ijã′′c̃′′F

ij

b̃′′c̃′′
+ F ij

ã′′c̃′′
^
T ij
c̃′′b̃′′

)
−

^
T ij
ã′′b̃′′

(Fii + Fjj) (3.44)

The optimization parameters in the present DLPNO-MP2 Lagrangian are thus: Upq, T
ij

ãb̃
,

_
T ij
ã′′b̃′′

, θij
ã′′b̃′′

, θiµ̃ν̃ , t
ij
µ̃ν̃ , zai, z̄im, lij, xpq, v

ij

ãb̃′
, xij

ã′′b̃′′
, xiµ̃ν̃ , w

ij

ã′′b̃′′
and their complex conjugates.

3.1.4 Equations for first derivatives

The derivative of the DLPNO-MP2 energy with respect to the first external perturbation
κ (in this work either an electric field or nuclear magnetic moment, on which only the
one-electron part of the Hamiltonian depends) is equal to the respective partial derivative
of the Lagrangian

dEDLPNO-MP2

dκ
=
∂L
∂κ

=
∑
µν

(
DSCF
µν +Dµν

)
hκµν (3.45)

if and only if the Lagrangian is made stationary with respect to all parameters. The
equations for the necessary stationarity conditions will be presented in this section. De-
spite the slightly different formulation of the Lagrangian, the final working equations are
completely equivalent to those derived in ref. 192. Note that eq. 3.45 is only valid if the
basis functions do not depend on the perturbation κ. Therein, DSCF is the SCF density
matrix:

DSCF
µν = 2

∑
i

c∗µicνi (3.46)

while D is the orbital-relaxed DLPNO-MP2 difference density matrix:

D = D′ +
1

2
c∗ (z + z̄) cT (3.47)
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where, as stated above, only the occupied-virtual and virtual-occupied blocks of z are non-
zero with zia ≡ z∗ai. Analogously, z̄ only has non-zero core-valence blocks with z̄mi ≡ z̄∗im.
D′ is the “PNO-relaxed” difference density matrix:

D′ = P̃∗D′vP̃T − c∗D′ocT (3.48)

D′oij = Dij +
1

2

∑
k≥l

δij (δik + δil) tr
(
wkl^Tlk + wkl∗^Tlk∗

)
+D

o(Pre)
ij (3.49)

D′vµ̃′ν̃′ =
∑
i≥j

D′ijµ̃′ν̃′ +D
v(Pre)
µ̃′ν̃′ (3.50)

D′ij = dij∗Dijdij,T +
1

2
d′′ij∗

(
wij^Tji + wij,T^Tij +

^
Tji∗wij∗ +

^
Tij∗wij†

)
d′′ij,T (3.51)

The prescreening contributions are defined as:

D
o(Pre)
ij = 4δij

∑
k

1S(ik) tr
(
tik∗tki

)
(3.52)

Dv(Pre) = 4
∑
ij

1S(ij)πi∗tij∗tjiπi,T (3.53)

The values of the required variables are obtained by solving the stationarity conditions
equations (and their complex conjugates):

0 ≡ ∂L
∂T ij

ãb̃

=
∂L

∂wij
ã′′b̃′′

=
∂L
∂vij

ãb̃′

=
∂L
∂zai

=
∂L
∂z̄im

=
∂L
∂lij

=
∂L
∂tijµ̃ν̃

=
∂L

∂xij
ã′′b̃′′

=
∂L
∂xiµ̃ν̃

=
∂L
∂xpq

=
∂L

∂
_
T ij
ã′′b̃′′

=
∂L

∂θij
ã′′b̃′′

=
∂L
∂θiµ̃ν̃

=
∂L
∂Upq

(3.54)

The first ten are already fulfilled at the end of the DLPNO-MP2 energy calculation. The
PNO amplitudes are obtained by iteratively solving the amplitude equations:

0 ≡ ∂L
∂T̃ ij∗

ãb̃

=
∂EDLPNO

2

∂T̃ ij∗
ãb̃

= Kij∗
ãb̃

+
∑
c̃

(
T ijãc̃F

ij

b̃c̃
+ F ij

ãc̃T
ij

c̃b̃

)
−
∑
kc̃d̃

(
FkjS

ij,ik
ãc̃ T ik

c̃d̃
Sik,ij∗
d̃b̃

+ FkiS
ij,kj
ãc̃ T kj

c̃d̃
Skj,ij∗
d̃b̃

) (3.55)

Note that the equations obtained from the derivative with respect to the contravariant
amplitudes, ∂L/∂T̃ij, are equivalent to a linear combination of ∂L/∂Tij and ∂L/∂Tji

but produce a more convenient expression (as was shown for RI-MP2 in Section 2.1.3.2).
As explained in refs. 130 and 144, terms in the sum over k in eq. 3.55 are skipped if
the corresponding element of the Fock matrix has an absolute value below a threshold
FCut = 10−5.

The semi-canonical amplitude stationarity conditions take the form:

0 ≡ ∂L
∂
_
Tij

= θij∗

[
1

1 + δij

(
2Kij −Kji − 2NijKijNij + NijKjiNij

)
+

1

2

(
vij,T

˜̂
Tij∗ +

˜̂
Tij∗vij + Fij∗wij + wijFij −wij (Fjj + Fii)

)]
θij†

(3.56)
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0 ≡ ∂L
∂
_
Tij∗

=

(
∂L
∂
_
Tij

)∗
(3.57)

The matrix N ij

ã′′b̃′′
=
∑

c̃ δc̃ã′′δc̃b̃′′ is introduced to “select” the truncated PNO basis.
eq. 3.56 can be transformed to the pseudo-canonical NPAO basis using the unitary matrix
S
ij(0)
ã′′µ̃ and solved for wij at λ = 0 (i.e. θij = I):

(
F ij
µ̃ + F ij

ν̃ − Fjj − Fii
)
wijµ̃ν̃ = −

∑
ã′′b̃′′

S
ij(0)
ã′′µ̃

[
1− δãã′′δb̃b̃′′

1 + δij

(
4Kij − 2Kji

)
+

(
vij,T

˜̂
Tij∗ +

˜̂
Tij∗vij

)]
ã′′b̃′′

S
ij(0)

b̃′′ν̃

(3.58)

with
wijµ̃ν̃ =

∑
ã′′b̃′′

S
ij(0)
ã′′µ̃ w

ij

ã′′b̃′′
S
ij(0)

b̃′′ν̃
(3.59)

Equations for vij are obtained from the Lagrangian stationarity conditions with respect
to θijab′ :∑

c̃

vij
c̃b̃′

^
Dij
c̃ã −

∑
c̃′

^
Dij

b̃′c̃′
vijãc̃′ = 2

∂EDLPNO
2

∂θij
b̃′ã

∣∣∣∣
λ=0

−
∑
c̃

[
Kji

b̃′c̃

_̃
T ijc̃ã +Kij

b̃′c̃

_̃
T ijãc̃ +Kij∗

ãc̃

_̃
T ij∗
b̃′c̃

+Kij∗
c̃ã

_̃
T ij∗
c̃b̃′

] (3.60)

These can be solved in the PNO+CPNO basis, which diagonalizes
^
Dij. A detailed deriva-

tion, as well as expressions for xij is given in Appendix D. The remaining Lagrange mul-
tipliers z, z̄, and x are determined from the MO rotation stationarity conditions. As
expected, the Lagrangian is invariant to rotations among virtual orbitals, but occupied–
virtual and occupied–occupied (core–core or valence–valence) rotations lead to the so-
called z-vector coupled perturbed self-consistent field (Z-CPSCF)239 and z-vector coupled
perturbed localization (Z-CPL)169 equations for z and l, respectively, while rotations be-
tween core and valence orbitals result in the z-vector core–valence (Z-CV) equations for
z̄. For rotations within a block of localized orbitals (either core or valence), we obtain the
Z-CPL equations:

Rloc
ij [l]−

(
Rloc
ji [l]

)∗
= −Lij (3.61)

Lij = 2
∑
k

D′oikFjk − 2
∑
k

FkiD
′o
kj

+
∑
Kµ̃′

ΓK∗jµ̃′ (K|iµ̃′)−
∑
Kµ̃′

ΓKiµ̃′ (jµ̃
′|K) + LPre

ij

(3.62)

where i, j, k are all within the same (core or valence) block. The localization response
operator is defined as follows (note the change in sign and indexing compared to ref. 192):

Rloc
pi [l] =

∑
k

[
lkirkp(rkk − rii)− rip(rkilki + r∗kil

∗
ki)
]

with l† = −l (3.63)

ΓKiµ̃′ is the two-body density matrix:

ΓKiµ̃′ =
∑
j

(1 + δij)G
i(ij)
Kµ̃′ (3.64)
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G
i(ij)
Kµ̃′ =

∑
Lã′′b̃′′

d′′ijµ̃′ã′′g
ij

ã′′b̃′′

(
jb̃′′
∣∣∣L) (V−1

)
LK

with VKL = (K|L) (3.65)

gij
ã′′b̃′′

= δã′′ãδb̃′′b̃

(
2T̃ ij

ãb̃
− ˜̂T ij

ãb̃

)
+
˜̂
T ij
ã′′b̃′′

+ wij∗
ã′′b̃′′

(3.66)

LPre
ij contains contributions from the approximate exchange integrals in the prescreening

correction:

LPre
ij =

∑
x

[∑
µ̃′

(
rx∗iµ̃′y

α,x∗
jµ̃′ − r

x
jµ̃′y

α,x
iµ̃′

)
+

1

2
rx∗ij

(
yβ,xj + yβ,x∗j − yβ,xi − y

β,x∗
i

)]
(3.67)

where

yα,xiµ̃′ = 8
∑
j

1S(ij)
∑
ν̃η̃

πiµ̃′ν̃t
ij
ν̃η̃

[
rxjη̃

|Rij|3
− 3

Rx
ij (rjη̃Rij)

|Rij|5

]
(3.68)

yβ,xi =
∑
j

1S(ij)
∑
µ̃ν̃

tijµ̃ν̃

[(
48

riµ̃rjν̃

|Rij|5
− 240

(riµ̃Rij) (rjν̃Rij)

|Rij|7

)
Rx
ji

− 48
rxiµ̃ (rjν̃Rij) + rxjν̃ (riµ̃Rij)

|Rij|5

]
(3.69)

The Z-CPL eqs. 3.61 must be solved iteratively. The stationarity condition w.r.t. rotations
between core and valence MOs gives the Z-CV equations:∑

k

z̄mkFjk −
∑
n

Fnmz̄nj = LCV
mj (3.70)

LCV
mj =

∑
Kµ̃′

ΓK∗jµ̃′ (K|mµ̃′)−
∑
Kµ̃′

ΓKmµ̃′ (jµ̃
′|K) +Rloc

mj[l]−
(
Rloc
jm[l]

)∗
+ LPre

mj (3.71)

These are solved in the CMO basis. Note that in frozen-core calculations the terms
involving ΓKmµ̃′ , y

α,x
mµ̃′ , and yβ,xm drop out.

Finally, the Z-CPSCF equations are obtained from the occupied-virtual block of
eq. D.22: ∑

b

zibFab −
∑
j

Fjizja + 2gai[z] = Lia (3.72)

with the two-electron operator defined as:

gai[z] ≡
∑
pq

zpq (ai || pq) =
∑
jb

[
zjb (ai || jb) + z∗jb (ai || bj)

]
(3.73)

(rs || pq) = (rs|pq)− 1

2
(rq|ps) (3.74)

and likewise for matrices in the AO basis. The right-hand side of eq. 3.72 contains several
terms:

Lia = Y α
ia +

∑
µ̃′

[
S∗iµNµ̃′Y

β
aµ̃′ + SaµNµ̃′Y

β∗
iµ̃′ − S

∗
iµNµ̃′Y

γ
µ̃′Saµ̃′

]
(3.75)

Note that the sum in eq. 3.75 assumes a one-to-one correspondence between PAOs and
their parent AOs and that Saµ̃′ = Saµ. The intermediates Yα, Yβ, and Yγ are defined as
follows:

Y α
ia = −

∑
Kµ̃′

ΓKiµ̃′ (aµ̃
′|K)− 4gai

[
D′ +

1

2
c∗z̄cT

]
−
(
Rloc
ai [l]

)∗
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−
∑
xµ̃′

rxaµ̃′y
α,x
iµ̃′ −

1

2

∑
x

rxai

(
yβ,xi + yβ,x∗i

)
(3.76)

Y β
pµ̃′ =

∑
Ki

ΓK∗iµ̃′ (K|ip) + 2
∑
ν̃′

D′vµ̃′ν̃′Fpν̃′ +
∑
ν̃′

Y δ
µ̃′ν̃′Spν̃′ +

∑
xi

rxpiy
α,x∗
iµ̃′ (3.77)

Y γ
µ̃′ =

1

2

∑
Ki

ΓKiµ̃′ (iµ̃
′|K) +

∑
ν̃′

D′vµ̃′ν̃′Fµ̃′ν̃′ +
1

2

∑
ν̃′

Y δ
µ̃′ν̃′Sµ̃′ν̃′ +

1

2

∑
xi

yα,xiµ̃′ r
x
iµ̃′

+ complex conjugate (3.78)

Y δ
µ̃′ν̃′ =

∑
i≥j

(
ξijµ̃′ν̃′ + ξij∗ν̃′µ̃′ − 2

∑
ã

dij∗µ̃′ãτ
ij
ãν̃′

)
− yδµ̃′ν̃′ − yδ∗ν̃′µ̃′ (3.79)

ξijµ̃′ν̃′ =
(
d′′ij∗xijd′′ij,T

)
µ̃′ν̃′

=
∑
b̃′′λ̃′

d′′ij∗
µ̃′b̃′′

d′′ij
λ̃′b̃′′

[
−1

2

∑
K

(
G
i(ij)
Kν̃′

(
iλ̃′
∣∣∣K)+G

j(ij)
Kν̃′

(
jλ̃′
∣∣∣K))

−
∑
κ̃′

Fκ̃′λ̃′D
′v
κ̃′ν̃′ +

∑
κ̃′ã

Sκ̃′λ̃′τ
ij∗
ãκ̃′d

ij
ν̃′ã

]
(3.80)

τ ijãκ̃′ =
∑
k

[
Fkj

(
T̃ij∗Sij,kiTki + T̃ji∗Sij,kiTik

)
dki,T

+ Fki

(
T̃ij∗Sij,jkTjk + T̃ji∗Sij,jkTkj

)
djk,T

]
ãκ̃′

(3.81)

yδ = −
∑
i

πi∗xiπi,T = 4
∑
ij

1S(ij)πi∗
(
Mij + Fi∗tij∗

)
tjiπi,T (3.82)

As discussed in Appendix D, xij is already Hermitian if eqs. 3.58 and 3.60 are fulfilled, so
the first two terms in eq. 3.79 are actually equivalent. The same applies to the multipliers
xi, which are obtained analogously by solving ∂L/∂θi = ∂L/∂θi† = 0. We note that the
first term in eq. 3.82 is missing from eq. 56 of ref. 192, which appears to be an error in
the publication as the term was in fact implemented in the DLPNO-MP2 gradient code.
This is the final major step of the DLPNO-MP2 density calculation, after which D can
be completed.

3.1.5 Equations for second derivatives

The second derivative of the DLPNO-MP2 energy with respect to perturbations κ and
λ, the latter being an electric or magnetic field in this work, is equal to the derivative of
eq. 3.45:

d2EDLPNO-MP2

dλdκ
=

d

dλ

∂L
∂κ

=
∑
µν

(
DSCF
µν +Dµν

)
hκ,λµν +

∑
µν

(
DSCF,λ
µν +Dλ

µν

)
hκµν (3.83)

Apart from the second derivative integrals hκ,λ (which are zero for the polarizability,
i.e. when κ = λ = Fext), evaluating this expression requires derivatives of the Lagrange
parameters and unknown multipliers w.r.t. λ, which are obtained by taking derivatives of
the constraints and stationarity conditions discussed in the previous section. Note that all
λ-derivatives in this section are real for electric perturbations and imaginary for magnetic
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ones. The SCF response density DSCF,λ requires the MO response coefficients Uλ:

DSCF,λ
µν = 2

∑
pi

(
c∗µpU

λ∗
pi cνi + c∗µiU

λ
picνp

)
= 2

∑
ai

(
c∗µaU

λ∗
ai cνi + c∗µiU

λ
aicνa

)
− 2

∑
ij

c∗µjS
(λ)
ij cνi

(3.84)

where in the second line we have used the perturbed MO orthonormality constraint:

Uλ
pq + Uλ∗

qp + S(λ)
pq = 0 with S(λ)

pq =
∑
µν

c(0)∗
µp S

λ
µνc

(0)
νq (3.85)

We note in passing that the AOs depend on the external magnetic field when GIAOs
are used, but not on the external electric field, thus SFext

µν = 0. Uλ
ai are obtained from

the perturbed Brillouin condition, which in conjunction with eq. 3.85 gives the CPSCF
equations:303

∑
b

FabU
λ
bi −

∑
j

Uλ
ajFji + 2

∑
bj

[
Uλ∗
bj (ai || bj) + Uλ

bj (ai || jb)
]

=
∑
j

S
(λ)
aj Fji − F

(λ)
ai + 2

∑
kj

S
(λ)
jk (ai || kj) (3.86)

where F(λ) excludes derivatives of the MO coefficients. In the electric (magnetic) field
case the right-hand side is real (imaginary) and therefore so are Uλ

ai. The equations are
solved in the CMO basis as usual, and the solution is transformed to the LMO basis.
The remaining blocks of Uλ, which are needed below, are obtained from the perturbed
localization, core–valence separation, and MO orthonormality constraints as follows. The
core-valence block is obtained from the condition F λ

im = 0 (in conjunction with eq. 3.85):∑
j

FijU
λ
jm −

∑
n

Uλ
inFnm =

∑
n

S
(λ)
in Fnm − F

(λ)
im − gim

[
DSCF,λ

]
(3.87)

which can be solved in the CMO basis. The valence-valence block of Uλ is obtained from
the perturbed localization condition sλij = 0, which gives the CPL equations:169

∑
k<l

Uλ
klA

loc,±
kl,ij = −Bλ,±

ij (3.88)

Bλ,±
ij = s

(λ)
ij −

∑
k<l

S
(λ)
lk

(
dsij
dUlk

± dsji
dUlk

)
+
∑
pk

(δpm + δpa)U
λ
pk

(
dsij
dUpk

± dsji
dUpk

) (3.89)

where the plus/minus signs are used in the magnetic/electric field case, respectively, and

Aloc,±
pq,rs =

dsrs
dUpq

+
dssr
dUqp

± dssr
dUpq

± dsrs
dUqp

(3.90)

dsrs
dUpq

= rrs(rrpδqr − rspδqs) + δqsrrp(rrr − rss) (3.91)
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s(λ) excludes derivatives of the MO coefficients and is only non-zero in the GIAO case,
where it contains the perturbed dipole integrals:

rBαµν,β =
i

2
〈µ| (RMN × r)α rβ |ν〉 (3.92)

which can be calculated as linear combinations of quadrupole integrals. If all electrons
are included in the MP2 treatment, an analogous set of CPL equations must be solved for
the core-core block, which can be obtained from eq. 3.88 by substituting core for valence
indices and vice versa. In the frozen-core approximation, the core-core block of Uλ is only
constrained by eq. 3.85, which can be solved as

Uλ
mn = Uλ∗

nm = −1

2
S(λ)
mn (3.93)

The same solution is used for the virtual-virtual block of Uλ . Note that the left-hand side
of CPL equations in the electric field case is equivalent to that of the Z-CPL eqs. 3.61,
which can be written as ∑

k<l

lklA
loc,−
ij,kl = −Lij (3.94)

and Aloc,±
ij,kl = Aloc,±

kl,ij if sij = 0. Therefore, the same solver can be used for both equations
(with some modifications for magnetic perturbations).

The expression for the DLPNO-MP2 response difference density Dλ is obtained by
straightforward differentiation of eqs. 3.47–3.53 and requires the perturbed Lagrange pa-

rameters Uλ, zλ, z̄λ, Tij,λ,
_
Tij,λ, wij,λ, θij,λ, tij,λ, and θi,λ. The PAO coefficients P̃ also

depend on the perturbation through U:

P̃ λ
νµ̃′ = P̃ u,λ

νµ̃′u
Nµ̃′ + P̃ u

νµ̃′u
Nλ
µ̃′ (3.95)

P̃ u,λ
νµ̃′u

= −1

2

∑
η

(
P λ
νηSηµ + PνηS

λ
ηµ

)
(3.96)

Nλ
µ̃′ = −1

2
N3
µ̃′S

λ
µ̃′uµ̃

′
u

(3.97)

For magnetic perturbations Nλ
µ̃′ = 0. The perturbed (C)PNO orthonormality condition

gives a relationship analogous to eq. 3.85

θij,λ
ã′′b̃′′

+ θij,λ∗
b̃′′ã′′

+ S ij,λ
ã′′b̃′′

= 0 with S ij,λ
ã′′b̃′′

=
∑
µ̃′ν̃′

d
′′ij(0)∗
µ̃′ã′′ S̃λ

µ̃′ν̃′d
′′ij(0)

ν̃′b̃′′
(3.98)

Note that the perturbed PAO overlap S̃λ
µ̃′ν̃′ includes the PAO response, eq. 3.95, and is

non-zero even for electric perturbations, unlike the perturbed AO overlap. We use eq. 3.98
to remove the dependence on θij,λ in the perturbed SC residual equations:

(Fii + Fjj)
_
Tij,λ −

_
Tij,λF ij∗ −F ij_Tij,λ = Kij,λ∗ −

_
Tij
(
F λ
ii + F λ

jj

)
+

_
Tij
(
F ij,λ∗ − Sij,λ∗F ij∗)+

(
F ij,λ −F ijSij,λ

)_
Tij (3.99)

where

Kij,λ
ã′′b̃′′

=
∑
µ̃′ν̃′

d
′′ij(0)
µ̃′ã′′ K

ij,λ
µ̃′ν̃′d

′′ij(0)

ν̃′b̃′′
(3.100)
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F ij,λ
ã′′b̃′′

=
∑
µ̃′ν̃′

d
′′ij(0)∗
µ̃′ã′′ F λ

µ̃′ν̃′d
′′ij(0)

ν̃′b̃′′
(3.101)

eq. 3.99 is once again solved in the pseudo-canonical NPAO basis. Next, the perturbed
PNO constraint gives the PNO-CPNO block of θij,λ:∑

c̃

^
Dij
ãc̃θ

ij,λ

b̃′c̃
−
∑
c̃′

θij,λc̃′ã

^
Dij

c̃′b̃′
=

(
_̃
Tij,λ∗_Tji +

_̃
Tji,λ∗_Tij +

_̃
Tij∗_Tji,λ +

_̃
Tji∗_Tij,λ

−
^
DijSij,λ∗ −

_̃
Tij∗Sij,λ_Tji −

_̃
Tji∗Sij,λ_Tij

)
ãb̃′

(3.102)

These equations are solved in the basis which diagonalizes
^
Dij. The PNO-PNO and

CPNO-CPNO blocks of θij,λ are only constrained by eq. 3.98 and can be assigned “sym-
metrically” analogously to eq. 3.93, although an alternative choice will be discussed in
Section 3.2.2. The perturbed PNO amplitudes Tij,λ are then obtained from the perturbed
PNO residual equations:

0 ≡ d

dλ

∂L
∂T̃ ij∗

ãb̃

= X ij,λ

ãb̃
+
∑
c̃

(
T ij,λãc̃ F ij

b̃c̃
+ F ij

ãc̃T
ij,λ

c̃b̃

)
−
∑
kc̃d̃

(
FkjS

ij,ik
ãc̃ T ik,λ

c̃d̃
Sik,ij∗
d̃b̃

+ FkiS
ij,kj
ãc̃ T kj,λ

c̃d̃
Skj,ij∗
d̃b̃

)
(3.103)

X ij,λ

ãb̃
= Kij,λ∗

ãb̃
+
∑
c̃

(
T ijãc̃F

ij,λ

b̃c̃
+ F ij,λ

ãc̃ T ij
c̃b̃

)
(3.104)

−
∑
kc̃d̃

[(
FkjS

ij,ik
ãc̃ Sik,ij∗

d̃b̃

)λ
T ik
c̃d̃

+
(
FkiS

ij,kj
ãc̃ Skj,ij∗

d̃b̃

)λ
T kj
c̃d̃

]
(3.105)

which can be solved iteratively with the same solver as eq. 3.55. The prescreening contri-
butions to the response density, Do(Pre),λ and Dv(Pre),λ require the NPAO response coeffi-
cients θi,λ, which are only constrained by the perturbed NPAO orthonormality condition
with the possible solution:

θi,λµ̃ν̃ = θi,λ∗ν̃µ̃ = −1

2
S i,λµ̃ν̃ with S i,λµ̃ν̃ =

∑
µ̃′ν̃′

π
i(0)∗
µ̃′µ̃ S̃λ

µ̃′ν̃′π
i(0)
ν̃′ν̃ (3.106)

Also required are the perturbed prescreening amplitudes, obtained from the equations
d

dλ
∂L
∂tij∗

= 0 giving:

tij,λµ̃ν̃ = (Fii + Fjj − F i
µ̃ − F i

ν̃)
−1
[
M ij,λ∗

µ̃ν̃

− (F λ
ii + F λ

jj)t
ij
µ̃ν̃ +

∑
η̃

(
F i,λ
µ̃η̃ t

ij
η̃ν̃ + tijµ̃η̃F

j,λ
ν̃η̃

)]
(3.107)

M ij,λx
µ̃ν̃ =

rλxiµ̃ rjν̃ + riµ̃r
λx
jν̃

|Rij|3
− 3

(
rλxiµ̃Rij

)
(rjν̃Rij) + (riµ̃Rij)

(
rλxjν̃Rij

)
|Rij|5

− 3

(
riµ̃R

λx
ij

)
(rjν̃Rij) + (riµ̃Rij)

(
rjν̃R

λx
ij

)
|Rij|5

− 3
(
RijR

λx
ij

)(riµ̃rjν̃

|Rij|5
− 5

(riµ̃Rij) (rjν̃Rij)

|Rij|7

)
(3.108)
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For magnetic perturbations Rλ
ij = 0. The perturbed Lagrange multipliers wij,λ are ob-

tained from the equations:∑
c̃′′

(
wij,λã′′c̃′′F

ij

c̃′′b̃′′
+ F ij

c̃′′ã′′w
ij,λ

c̃′′b̃′′

)
− (Fii + Fjj)w

ij,λ

ã′′b̃′′
= −W ij,λ

ã′′b̃′′
(3.109)

which are solved in the pseudo-canonical NPAO basis with

Wij,λ =
d

dλ

{
θij∗

[
Fij∗wij(0) + wij(0)Fij − (Fii + Fjj) wij(0)

+
2

1 + δij

(
2Kij −Kji − 2NijKijNij + NijKjiNij

)
+
˜̂
Tij∗vij,T + vij

˜̂
Tij∗

]
θij†

} (3.110)

The equations for the perturbed multipliers vij,λ are derived in Appendix D and have the
form: ∑

c̃

vij,λ
c̃b̃′

^
Dij
c̃ã −

∑
c̃′

^
Dij

b̃′c̃′
vij,λãc̃′ = −V ij,λ

b̃′ã
(3.111)

with

V ij,λ

b̃′ã
=

d

dλ

[
vij(0),T^

Dij −
^
Dijvij(0),T

+ KjiNij ˜̂Tij + KijNij ˜̂Tji +
˜̂
Tij∗NijKji∗ +

˜̂
Tji∗NijKij∗

− 2
(
KjiT̃ij + KijT̃ji + Fij∗Dij − d′′ij,TS̃∗τij†

)]
b̃′ã

(3.112)

The perturbed localization condition multiplier lλ is obtained from the perturbed Z-CPL
equations:

Rloc
ij [lλ]−

(
Rloc
ji [lλ]

)∗
=
(
Rloc,λ
ji [l(0)]

)∗
−Rloc,λ

ij [l(0)]− Lλ
ij (3.113)

where Lλ
ij and Rloc,λ

ij [l(0)] are straightforwardly derived from eqs. 3.62 and 3.63. The

derivatives of the prescreening contributions yα,xiµ̃′ and yβ,xi are somewhat more involved,
so we provide them here:

yα,x,λiµ̃′ = 8
∑
j

1S(ij)
∑
ν̃η̃

{(
πiµ̃′ν̃t

ij
ν̃η̃

)λ [ rxjη̃

|Rij|3
− 3

Rx
ij (rjη̃Rij)

|Rij|5

]

+ πiµ̃′ν̃t
ij
ν̃η̃

[
rx,λjη̃

|Rij|3
− 3

Rx,λ
ij (rjη̃Rij) +Rx

ij

(
rλjη̃Rij + rjη̃R

λ
ij

)
|Rij|5

]

− πiµ̃′ν̃t
ij
ν̃η̃

[
3
rxjη̃

|Rij|5
− 15

Rx
ij (rjη̃Rij)

|Rij|7

] (
Rλ
ijRij

)}
(3.114)

yβ,x,λi = 48
∑
j

1S(ij)
∑
µ̃ν̃

{
tij,λµ̃ν̃

[(
riµ̃rjν̃

|Rij|5
− 5

(riµ̃Rij) (rjν̃Rij)

|Rij|7

)
Rx
ji

−
rxiµ̃ (rjν̃Rij) + rxjν̃ (riµ̃Rij)

|Rij|5

]
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+ tijµ̃ν̃

[(
riµ̃rjν̃

|Rij|5
− 5

(riµ̃Rij) (rjν̃Rij)

|Rij|7

)
Rx,λ
ji

−
rx,λiµ̃ (rjν̃Rij) + rx,λjν̃ (riµ̃Rij)

|Rij|5

+

(
(riµ̃rjν̃)

λ

|Rij|5
− 5

(riµ̃Rij)
λ (rjν̃Rij) + (riµ̃Rij) (rjν̃Rij)

λ

|Rij|7

)
Rx
ji

−
rxiµ̃ (rjν̃Rij)

λ + rxjν̃ (riµ̃Rij)
λ

|Rij|5

]

− tijµ̃ν̃

[(
5
riµ̃rjν̃

|Rij|7
− 35

(riµ̃Rij) (rjν̃Rij)

|Rij|9

)
Rx
ji

− 5
rxiµ̃ (rjν̃Rij) + rxjν̃ (riµ̃Rij)

|Rij|7

] (
Rλ
jiRji

)}
(3.115)

The perturbed Z-CV equations have the form:∑
k

z̄λmkFjk −
∑
n

Fnmz̄
λ
nj =

∑
n

F λ
nmz̄nj −

∑
k

z̄mkF
λ
jk + LCV,λ

mj (3.116)

where LCV,λ
mj is the derivative of eq. 3.71. Finally, the perturbed Z-CPSCF equations must

be solved for zλ:∑
b

zλibFab −
∑
j

Fjiz
λ
ja + 2gai

[
zλ
]

= Lλ
ia −

∑
b

zibF
λ
ab +

∑
j

F λ
jizja − 2

(
gai
[
z(0)
])λ

(3.117)

Thus, the full response density can be assembled and contracted with the property inte-
grals to obtain the second derivative.

At the end of this section, we briefly summarize the order of computational steps
needed to obtain the DLPNO-MP2 response density in Table 3.2. The actual procedure
used in our implementation is given in more detail in Section 3.3.
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Table 3.2: Interdependencies between the main Lagrange multipliers and target quanti-
ties with references to relevant equations. Some terms are excluded for brevity, e.g. those
related to the prescreening correction. Wherever a perturbed quantity is required as input
(e.g. cλ), so is the unperturbed one (i.e. c).

In Equations Out

SCF, FB-loc. → c, EHF

c → LMP2 guess (3.15–3.17) →
^
Tij,d′′ij,∆EPNO

dij → LMP2 iter. (3.55) → Tij, EDLPNO
2

^
Tij,d′′ij,Tij → PNO cond. (3.60) → vij
^
Tij,d′′ij,vij → SC cond. (3.58) → wij

^
Tij,d′′ij,Tij,wij → eq. 3.64 → ΓK

c,
^
Tij,d′′ij,Tij,wij → eq. 3.48 → D′

D′,ΓK → Z-CPL (3.61) → l
l,ΓK → Z-CV (3.70) → z̄

c, l,ΓK ,D′, z̄ → Z-CPSCF (3.72) → z
c,D′, z̄, z → eq. 3.47 → D

c → CPSCF (3.86), CV (3.87),
CPL (3.88), Cλ

MOO (3.85)
→ Uλ, cλ

cλ,
^
Tij,d′′ij → PNO resp. (3.99,3.102,3.98) →

^
Tij,λ,θij,λ,d′′ij,λ

dij,λ,Tij → eq. 3.103 → Tij,λ

^
Tij,λ,d′′ij,λ,Tij,λ,vij → Pert. PNO cond. (3.111) → vij,λ
^
Tij,λ,d′′ij,λ,vij,λ,wij → Pert. SC cond. (3.109) → wij,λ

^
Tij,λ,d′′ij,λ,Tij,λ,wij,λ → Deriv. of eq. 3.64 → ΓK,λ

cλ,
^
Tij,λ,d′′ij,λ,Tij,λ,wij,λ → Deriv. of eq. 3.48 → D′λ

D′λ,ΓK,λ, l → Pert. Z-CPL (3.113) → lλ

lλ,ΓK,λ, z̄ → Pert. Z-CV (3.116) → z̄λ

cλ, lλ,ΓK,λ,D′λ, z̄λ, z → Pert. Z-CPSCF (3.117) → zλ

cλ,D′λ, z̄λ, zλ → Deriv. of eq. 3.47 → Dλ

cλ,Dλ → Property eqs. 3.2,3.1,3.83 → α,σA
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3.2 Treatment of numerical instabilities

3.2.1 Localization response singularities

It was discussed at some length in ref. 192 that for some systems the Z-CPL (as well
as the CPL and perturbed Z-CPL) equations can be (near-)singular. In other words,
the left-hand side matrix Aloc,± can have (near-)zero eigenvalues. This happens when a
continuous degeneracy exists among the LMOs, i.e. when some subset of the localized
orbitals can be arbitrarily rotated without changing the value of the localization sum.
Formally, continuous degeneracies are only possible for certain point groups,304–306 how-
ever even local pseudosymmetry can result in small eigenvalues of Aloc,± and thus prevent
convergence of the CPL/Z-CPL equations or negatively impact the results, as shown for
the (CH3)3P(CO)4Os· · ·Cr(CO)5 molecule (reference code KAMDOR)307 in ref. 192. To
systematically treat this problem here we take the same approach as for the DLPNO-
MP2 gradient, namely, to modify the Lagrangian so as to obtain a nonsingular problem
with the nullspace projected out. Note that the matrix Aloc,−, which occurs in the Z-
CPL equations (3.61) and in the CPL (3.88) and perturbed Z-CPL (3.113) equations for
electric perturbations, is different from the matrix Aloc,+, which occurs in the CPL and
perturbed Z-CPL equations for magnetic perturbations. Thus, the two matrices have
different eigenvalues and eigenvectors. In order to ensure both types of equations are
properly treated, it is most convenient to reformulate the localization constraint in the
Lagrangian using separate real and imaginary terms:

Cvalence
Loc =

valence∑
i<j

(
l<ij<[sij] + l=ij=[sij]

)
=

1

2

valence∑
i<j

[
l<ij
(
sij + s∗ij

)
+ il=ij

(
sij − s∗ij

)]
(3.118)

=
1

2

valence∑
i<j

[(
l<ij + il=ij

)︸ ︷︷ ︸
lij

sij +
(
l<ij − il=ij

)︸ ︷︷ ︸
l∗ij

s∗ij

]
(3.119)

where the equivalence of the two formulations is demonstrated for the valence orbitals.
The core orbital terms are analogous, so for simplicity we will omit them in this section.
Note that both of the newly introduced Lagrange multiplier matrices l< and l= are real
by definition. Using this definition of CLoc, eq. 3.94 becomes∑

k<l

l<ijA
loc,<
ij,kl + i

∑
k<l

l=klA
loc,=
ij,kl = −Lij (3.120)

where

Aloc,<
ij,kl =

[
dskl
dUij

+

(
dslk
dUji

)∗
− dslk

dUij
−
(

dskl
dUji

)∗]
(3.121)

Aloc,=
ij,kl =

[
dskl
dUij

+

(
dslk
dUji

)∗
+

dslk
dUij

+

(
dskl
dUji

)∗]
(3.122)

The real and imaginary parts of eq. 3.120 can be separated and the latter yields l= =
0 because Lij is real. Note that as the unperturbed quantities are purely real, Aloc,<

coincides with Aloc,− and Aloc,= – with Aloc,+. We then define the eigendecompositions of
these matrices as: ∑

i<j

Aloc,<
kl,ij u

<
ij,u′′ = u<kl,u′′ω

<
u′′ (3.123)
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∑
i<j

Aloc,=
kl,ij u

=
ij,u′′ = u=kl,u′′ω

=
u′′ (3.124)

where the index u′′ denotes the eigenvectors of either matrix (determined from context),
u′ denotes those with (near-)zero eigenvalues and u denotes the rest. We change the
Lagrangian constraint to

Cvalence
Loc =

<∑
u

l<u<[su] +
=∑
u

l=u=[su] +
<∑
u′

l<u′<[Uu′ ] +
=∑
u′

l=u′=[Uu′ ]

=
1

2

valence∑
i<j

valence∑
k<l

[
l<ij
(
δij,kl −O<ij,kl

)
(skl + s∗kl) + il=ij

(
δij,kl −O=ij,kl

)
(skl − s∗kl)

+ l<ijO<ij,kl (Ukl + U∗kl) + il=ijO=ij,kl (Ukl − U∗kl)
]

(3.125)

where δij,kl = δikδjl and the projectors onto the nullspace of Aloc,</= are:

O</=ij,kl =
∑
u′

u
</=
ij,u′u

</=
kl,u′ (3.126)

Thus, the Z-CPL equations become:∑
k<l

l<klÃ
loc,<
ij,kl + i

∑
k<l

l=klÃ
loc,=
ij,kl = −Lij (3.127)

where

Ãloc,< =
(
I−O<

)
Aloc,< (I−O<

)
+ O< (3.128)

Ãloc,= =
(
I−O=

)
Aloc,= (I−O=

)
+ O= (3.129)

Once again, l= is zero, while the contributions of l< to eqs. 3.71, 3.76, 3.116, and 3.117
must be calculated with the projected matrix:

l̃<ij =
∑
k<l

(
δij,kl −O<ij,kl

)
l<kl (3.130)

The electric/magnetic CPL equations become:∑
k<l

Uλ
klÃ

loc,</=
kl,ij = −

∑
k<l

(
I−O</=

)
ij,kl

Bloc,λ
kl (3.131)

Bloc,λ
ij = s

(λ)
ij −

∑
k<l

[
dsij
dUlk

S
(λ)
lk −

(
dsji
dUlk

)∗
S

(λ)∗
lk

]

+
∑
pk

(δpm + δpa)

[
dsij
dUpk

Uλ
pk −

(
dsji
dUpk

)∗
Uλ∗
pk

]
(3.132)

I.e., the nullspace must first be projected out of the right-hand side in eq. 3.131, the
equations are solved, and afterwards, the nullspace is also projected out of the solution
before the perturbed orthonormality constraint is used to obtain the upper triangle of the
matrix:

Ũλ
ij =

∑
k<l

(
δij,kl −O</=ij,kl

)
Uλ
kl (3.133)
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The perturbed Z-CPL equations become:∑
k<l

l<,λkl Ã
loc,<
ij,kl + i

∑
k<l

l=,λkl Ã
loc,=
ij,kl = −

∑
k<l

l̃<klA
loc,<,λ
ij,kl − L

λ
ij (3.134)

with

Aloc,<,λ
pq,ij =

[(
rij + r∗ij

)
(δpjrqj + δqirip − δpirqi − δqjrjp)

+ (rii − rjj) (δqjrip + δqirjp − δpirqj − δpjrqi)
]λ

(3.135)

eq. 3.134 is separated into real and imaginary parts, of which only the former/latter
yields a nonzero solution for electric/magnetic perturbations, respectively. Note that for

magnetic perturbations (rii − rjj)λ = 0 and
(
rij + r∗ij

)λ
= 0. The contributions of l</=,λ

to eqs. 3.116 and 3.117 must be calculated with the projected matrices:

l̃
</=,λ
ij =

∑
k<l

(
δij,kl −O</=ij,kl

)
l
</=,λ
kl (3.136)

Table 3.3: (Maximum) absolute errors vs RI-MP2 in the isotropic polarizability (α) and
19F shielding (σF) for the systems SF6 and SeF6 from frozen-core (FC) and all-electron
(AE) NormalPNO calculations with and without projection of the localization response
nullspace.

System SF6 SeF6

FC AE FC AE
Aloc,< nullspace 6 9 16 22
Aloc,= nullspace 0 0 10 10

Errors without projection:
|∆α|/Å3 8× 105 —a 17 —a

max(|∆σF|)/ppm 0.26 0.28 2.1 29
Errors with projection:

|∆α|/Å3 <0.001 <0.001 <0.001 <0.001
max(|∆σF|)/ppm 0.26 0.28 0.47 0.55
aThe calculation did not converge.

Finally, we demonstrate the numerical instabilities which can occur if the localization
response matrix, Aloc,< or Aloc,=, is singular, as well as the effectiveness of the procedure
to remove the near-zero eigenvalues. We chose the octahedral molecules SF6 and SeF6

with bond lengths 1.560 and 1.688 Å, respectively. SF6 has 6 eigenvalues of Aloc,< smaller
than 10−4 due to a continuous degeneracy in the FB LMOs among the 18 fluorine sp3-
hybridized orbitals (3 on each F atom) directed away from the S atom. A further 3 singular
eigenvalues are associated with the sulfur 2sp shell, which is treated as core orbitals. In
addition to these, SeF6 has a further 10 singular eigenvalues in the valence and 3 in the
core region, associated with the 3d and 3sp shells, respectively. The magnetic response
matrix Aloc,= only has 10 singular eigenvalues for SeF6, due to the 3d orbitals, and none
for SF6. Table 3.3 shows that if no measures are taken to remove the singularities, the
iterative solution of the perturbed CPL, Z-CPL, or PNO amplitude equations may not
converge, or large errors may occur in the calculated properties, which is arguably worse.
However, if the singular eigenvectors are projected out, the iterative solutions are stable
and the results are in line with the expected accuracy for DLPNO-MP2.

80



3.2.2 PAO domain redundancy

While testing our initial implementation, we discovered large errors due to numerical
instabilities related to the domain truncation. After thorough investigation, we found
that the source was the appearance of near-linear dependencies in the “non-redundant”
PAO domains. Recall that the full PAO space is linearly dependent because it is of
the same size as the full AO basis, NAO, but it only represents the Nvirt virtual orbitals.
Therefore there are exactly Nocc redundant PAOs. However, any subset (domain) of PAOs
is not exactly linearly dependent, which becomes obvious when inspecting the eigenvalue
spectrum of the overlap matrix of a domain of PAOs - see Figure 3.1. While the spectrum
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Figure 3.1: Eigenvalues of the PAO domain overlap matrix, for different domains in a
pentane molecule with the def2-TZVP basis set. The atoms included in each domain are
depicted graphically with matching colors.

of the full overlap matrix clearly reveals the Nocc redundant eigenvectors, all smaller
domains have virtually continuous eigenvalue spectra, i.e. the matrix is ill-conditioned.
By default, eigenvectors with eigenvalues greater than TS = 10−8 form the NPAO domain.
It is apparent that the lowest remaining eigenvalue sn will be very close to the threshold,

and thus the normalization coefficient of that eigenvector will be s
− 1

2
n ≈ 104. This is not

cause for concern, and indeed the energy and gradient calculations do not suffer. It is,
however, a problem for second derivatives due to the perturbed PNO/CPNO coefficients
d′′ij,λ. To illustrate this, we express the latter as:

d′′ij,λ = USs−
1
2 USDθij,λ (3.137)

where US is the unitary matrix that diagonalizes the PAO domain overlap matrix, s is
the diagonal matrix of eigenvalues, and USD is a unitary transformation from the overlap
eigenbasis to the SC pair density eigenbasis. We will drop the ij indices in the rest of this
section for simplicity of notation. Let us also assume for now that no PNO truncation is
used, thus using eq. 3.98 we can express:

θλ = −1

2
d′′(0)†S̃λd′′(0) = −1

2
USD†s−

1
2 US†S̃λUSs−

1
2 USD ∝ s−1 ≈ 108 (3.138)

and therefore
d′′λ ∝ s−

3
2 ≈ 1012 (3.139)
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The largest elements of the matrices are estimated based on s−
1
2 ≈ T

− 1
2

S = 104. These large
numbers lead to a loss of numerical precision, which gets amplified during the multiple
iterative procedures, especially the solution of the CPSCF equations. An example of this
problem in its purest form is illustrated in Table 3.4 for a toy model of two water molecules
in a triangular prism configuration with C2v symmetry at a distance of 10.5 Bohr between
the two molecular planes. No truncations were used other than the domain truncation
with TCutDO = 10−2. Ignoring the line “Analytic v2” for now, the large error in the analytic

Table 3.4: Isotropic polarizability (Bohr3) of the water dimer model (see text) calculated
semi-numerically and analytically using RI-MP2 and DLPNO-MP2 with the “symmetric”
solution for θij

ã′′b̃′′
(v1) or the alternative solution discussed in the text (v2). Only the

domain truncation was used. The maximal absolute deviation of the MP2 density matrix
elements (max(|∆Dµν |)) is also given.

TS = 10−8 TS = 10−7 TS = 10−6 TS = 10−5 RI-MP2

Numeric 19.1393 19.0770 19.1034 19.1146 19.1190
Analytic v1 17.5287 19.0675 19.0973 19.1149 19.1190
Analytic v2 19.1033 19.0688 19.0974 19.1149

max(|∆Dµν |) 0.0117 0.0110 0.0055 0.0010

polarizability at TS = 10−8 is apparent. This disappears at higher values of the cutoff
and at TS = 10−5, there is very good agreement with both the semi-numeric polarizability
(calculated from analytic dipole moment calculations with an explicit electric field of
10−4 a.u.), and the RI-MP2 value. Note that even the errors in the relaxed MP2 density
get larger with lower values of TS, hinting at the underlying numerical instability, although
of course these errors are negligible.

After some experimentation, we found an alternative solution for eq. 3.98, which par-
tially alleviates the problem and results in the line “Analytic v2” in Table 3.4. First we
express θλ as

θλ = −1

2
d′′(0)†S̃λd′′(0) + θ1,λ + θ2,λ (3.140)

where both θ1,λ and θ2,λ are defined as skew-Hermitian matrices and the latter only has
elements in the PNO-CPNO block. Thus the first and last terms in eq. 3.140 are used
to ensure that the perturbed orthonormality, and SC conditions (eqs. 3.98 and 3.102)
are fulfilled, respectively, while the second term is arbitrary. We got the best results
by choosing it so as to minimize the norm of the perturbed PNO/CPNO coefficients,
excluding the θ2,λ part:∣∣∣∣USs−

1
2 USD

(
−1

2
d′′(0)†S̃λd′′(0) + θ1,λ

)∣∣∣∣2 → min (3.141)

which is solved in the overlap eigenbasis as:(
USDθ1,λUSD†)

µ̃ν̃
=

(sν̃ − sµ̃)

2
√
sµ̃sν̃ (sν̃ + sµ̃)

(
US†S̃λUS

)
µ̃ν̃

(3.142)

All of the above also applies to the orbital-specific PAO domains used for the prescreening
contributions and their response parametrized by θi,λ. Of course, in that case θi,2,λ = 0.

This approach basically serves to better distribute the large floating point numbers
throughout d′′λ, and seems to reduce the error in the calculated properties as evidenced by
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the toy example in Table 3.4. However, agreement with the numeric polarizability is still
not perfect, and in fact large, unpredictable errors still occur in calculations for realistic
systems when the default value of TS is used, as will be shown in Section 3.4. Therefore,
in addition to the “Analytic v2” ansatz presented above, we have settled on a cutoff of
TS = 10−5, with which the issue no longer occurs. The reduced NPAO domains do lead to a
slightly increased error in the correlation energy, but the difference is negligible compared
to the deviations due to the domain and PNO approximations, which are themselves
sufficiently small by design, so as to obtain results with chemical accuracy.

We note in passing that the entire problem disappears if a linearly independent set
of virtual orbitals is used, such as FB-localized MOs. In fact, we implemented this op-
tion and confirmed the instability does not occur. However, on the one hand, localizing
virtual orbitals to a true maximum, rather than a saddle point, of the FB condition is
very difficult and time-consuming, even with the augmented Hessian solver used in our
implementation. On the other hand, much larger domains were necessary to obtain accu-
rate results, corroborating recent observations.308,309 Therefore, we will not discuss this
approach further.

A final approach to mention here is to perform the entire calculation with extended
numerical precision for the floating point numbers, i.e. more than 64 bit IEEE 754 double
precision. Unfortunately, this is not supported by any linear algebra libraries and only by
some C++ compilers. Attempting, as a proof of concept, to convert only the DLPNO-
MP2 response density module to quadruple precision, using the hand-coded linear algebra
routines available in ORCA, did not resolve the problem. It is possible that converting
the entire DLPNO-MP2 code might be successful but this was not attempted. In any
case, it would be very inefficient.

3.2.3 PNO response singularities

To solve eqs. 3.60, 3.102, and 3.111, which follow from the PNO constraint
^
Dij

ãb̃′
, it is

necessary to divide by the difference (nijã −n
ij

b̃′
) between occupation numbers of PNOs and

CPNOs. Evidently, if this difference approaches zero, the equations become near-singular,

which may lead to numeric instability. Usually, the eigenvalue spectrum of
^
Dij is nearly

continuous and thus, both the smallest PNO and the largest CPNO occupation numbers
are of the same order of magnitude as TCutPNO, and it is not uncommon for the threshold
to fall between two nearly degenerate PNOs. In our tests, we found rare cases, where this
instability caused spurious, sometimes very large, errors in the calculated properties. In all
of these cases, the smallest relative difference (nijã −n

ij

b̃′
)/nijã was smaller than 10−2, which

can be taken as a necessary, but not sufficient, condition for problems to occur. Clearly,
it is necessary to treat this problem systematically, since it is not possible to know when
the results will be, or indeed have been, affected, without reference calculations, e.g. at
other values of TCutPNO.

We investigated two approaches, which were both successful in alleviating the problem
in all cases, where we observed it. The first one is likely not always applicable in general
and is only described here for completeness. It consists of a pair-specific adjustment of
TCutPNO, within a narrow range, so as to find the largest gap between occupation numbers
in that range. I.e., we find

nijã −n
ij
ã+1 → max, for nijã ≥ nijã+1 and frangeTCutPNO > nijã > f−1

rangeTCutPNO (3.143)

and keep PNOs up to and including the index ã. This is illustrated in Figure 3.2. frange is
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an input parameter greater than 1 – we used 1.1. On the one hand, frange should be small,
so as to keep the cutoff threshold close to the chosen value of TCutPNO. On the other hand,
the wider the range, the more likely it is to find two sequential PNO occupation numbers
suitably far apart. In fact, there is no guarantee that two such PNOs exist for every
occupied orbital pair of every system, particularly if large basis sets are used. Thus, even
though this solution requires no modification of the Lagrangian and avoids the instability
problem entirely, it is rather ad hoc and is not guaranteed to work so we will not discuss
it further (except for the proof-of-concept example in Figure 3.3).
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Figure 3.2: PNO/CPNO occupation numbers in a single pair domain of caffeine with
LoosePNO settings. The right subplot illustrates the range-based adjustment of TCutPNO

(see text).

The second approach we propose is to introduce a level shift ε in the denominator of
eqs. 3.60, 3.102, and 3.111, thus ensuring that (nijã −n

ij

b̃′
+ ε) > ε. To that end, we modify

the PNO condition as follows:

CPNO =
1

2

∑
i≥j

∑
ãb̃′

[
vij
ãb̃′

(
^
Dij

ãb̃′
+ Ξij

ãb̃′

)
+ vij∗

ãb̃′

(
^
Dij∗
ãb̃′

+ Ξij∗
ãb̃′

)]
(3.144)

Ξij = θij∗Ξ ijθij,T (3.145)

Ξ ij

ã′′b̃′′
=
∑
c̃

δc̃ã′′δc̃b̃′′ε (3.146)

In effect, we shift all kept PNO occupation numbers up by ε. This modification has no
effect on the DLPNO-MP2 energy, as the occupation numbers are only used for PNO
truncation. It does, however, lead to extra terms in the right-hand sides of eqs. 3.102
and 3.111 (given below in the pair density-diagonalizing basis):(

nijã − n
ij

b̃′
+ ε
)
θij,λ
b̃′ã

= −
(
nijã + ε

)
S ij,λ
b̃′ã
−
(
_̃
Tij∗Sij,λ_Tji +

_̃
Tji∗Sij,λ_Tij

−
_̃
Tij,λ∗_Tji −

_̃
Tji,λ∗_Tij −

_̃
Tij∗_Tji,λ −

_̃
Tji∗_Tij,λ

)
ãb̃′

(3.147)

(
nijã − n

ij

b̃′
+ ε
)
vij,λ
ãb̃′

= −V ij,λ

b̃′ã
+ ε

∑
c̃

S ij,λãc̃ v
ij

c̃b̃′
(3.148)

An appropriate value of the level shift parameter ε must be chosen: if it is too low,
it will have no effect. However, if it is too large, it can introduce additional round-off
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errors. It makes sense to choose a value proportional to TCutPNO, i.e. ε = εscale× TCutPNO.
After some experimentation (see below) we found that εscale = 0.1 provides stable results
without introducing additional errors. Note that because the value of TCutPNO is different
for occupied pairs, which include core orbitals, the value of ε reflects that. In principle,
it is also possible for the level shift to be pair-specific, e.g. only applied to “problematic”
domains, but we did not find that to be necessary.
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Figure 3.3: Maximum absolute errors vs RI-MP2 in the shieldings of caffeine from
LoosePNO calculations with varying TCutPNO and different level shift scaling parameters
εscale in the PNO response equations (εscale = 0 is equivalent to no level shift), or using
the range-based adjustment. The legend applies to both subplots.

We demonstrate a rather extreme example of the instability discussed above in Fig-
ure 3.3. In shielding calculations for caffeine with LoosePNO default thresholds, TS =
10−5, and TCutPNO = 10−7, as well as with TCutPNO = 5.96× 10−7, the maximal absolute
errors with respect to RI-MP2 are huge (40.5 and 106.3 ppm, respectively). The level
shift scheme with εscale in the range 0.05–0.1 is successful in resolving the problem and
producing a smooth curve. A value of 0.01 is not sufficient to remove the singularity at
TCutPNO = 10−7, while εscale = 1.0 results in a smooth curve but with an additional small
deviation for all values of TCutPNO. Thus, we consider εscale = 0.1 to be an appropriate
value. We mention in passing that the range-based adjustment of TCutPNO discussed above
is also successful for this system.

Initially, no adjustment or level shift was applied to the calculations in sections 3.4.2
and 3.4.3. Consequently, we encountered several calculations with conspicuously large
errors, which are discussed whenever they occur in the following sections. In all of these
cases the level shift approach (with εscale = 0.1) was successful in reducing the errors to
within the expected bounds.

3.3 Implementation

We have implemented the DLPNO-MP2 response density calculation in the ORCA pack-
age,221 closely following the algorithm for the DLPNO-MP2 gradient.192 The code is
structured as follows:

1. First the SCF equations are solved.
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2. Then, the DLPNO-MP2 energy and relaxed density calculation is performed. The
PNO coefficients dij and amplitudes Tij are kept on disk, as well as the list of active
orbital pairs and the domain information.

3. Next, the SCF-level property calculation is performed and the CPSCF solution Uλ
ai

is stored.

4. The remaining blocks of Uλ are calculated, according to eqs. 3.85, 3.87, 3.88,
and 3.93. Fλ and cλ are completed, as well as P̃λ.

5. The 3-index integrals (iµ̃′|K) and (iµ̃′|K)λ are calculated and stored.

6. In a loop over orbital pairs, the CPNO coefficients d′ij are reconstructed, and
^
Tij

and
_
Tij,λ are calculated according to eqs. 3.16 and 3.99. θij,λ are computed and the

perturbed PNO coefficients dij,λ are stored on disk.

7. The perturbed PNO amplitude equations, 3.103 are solved iteratively, separately
for each perturbation.

8. The contributions to the response density matrix from Dij, Dij, and their derivatives
is calculated.

9. The PNO-dependent terms are evaluated in a loop over orbital pairs:

9.1. The full d′′ij,
^
Tij, d′′ij,λ, and

^
Tij,λ are reconstructed.

9.2. The intermediates τij and τij,λ are calculated.

9.3. eqs. 3.60 and 3.111 are solved to obtain vij and vij,λ.

9.4. eqs. 3.58 and 3.109 are solved to obtain wij and wij,λ. Their contributions to
D′o, D′ij, and their derivatives are evaluated.

9.5. Gi(ij), Gj(ij), Gi(ij),λ, and Gj(ij),λ and their contributions to ΓK , ξij, Yγ, and
their derivatives are computed.

9.6. Terms related to ξij and τij and their derivatives are added to Yδ and Yδ,λ.

10. ΓK and ΓK,λ are read from disk and their contributions to Lλ
ij, L

λ
mj, Yα,λ, Yβ, and

Yβ,λ are evaluated in the AO basis by generating the required 3-index integrals on
the fly.

11. The prescreening contributions to Lλ
ij, L

λ
mj, L

λ
ia, and D′ are calculated.

12. Lλ
mj is completed and the Z-CV eqs. 3.116 are solved to obtain zλmj.

13. Lλ
ij is completed and the Z-CPL eqs. 3.113 are solved to obtain zλij. In our imple-

mentation a conjugate gradient solver is used.

14. Lλ
ia is completed and the Z-CPSCF eqs. 3.72 are solved to obtain zλia. This is most

conveniently done in the CMO basis using a standard CPSCF solver.

15. The full response density Dλ is assembled and the DLPNO-MP2-level properties
are calculated.
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As the goal here is the calculation of field-response properties, the algorithm has been
optimized for a small number of perturbations. The loop over the three Cartesian compo-
nents of the external field is the innermost one in most cases, such that the unperturbed
and a single perturbed quantity are kept in memory at any given time. In some situations,
e.g. step 9.2., it is faster to calculate all perturbed quantities at the same time, at the
cost of higher memory usage. Likewise, all intermediates which are stored on disk – such
as (iµ̃′|K)λ, dij,λ, and Tij,λ – are kept for all perturbations simultaneously. For these
reasons, the implemented algorithm is not suitable for a number of perturbations that
grows with the system size, e.g. nuclear Hessians.

It is also worth pointing out that the NPAO domains and the SC amplitudes are
calculated four times in total – in steps 2. (twice), 6., and 9.1. – while their response
is calculated twice – in steps 6., and 9.1.. This is not an insignificant computational
overhead, as shown in Section 3.4.4, but is done intentionally to avoid the storage and I/O
of quantities in the full NPAO domains, which are much larger than the PNO domains.
Taking the vancomycin example from that section, with 22 265 kept pairs and average
NPAO and PNO domain sizes of 1007 and 22, respectively: about 1.2 TB of disk space
was required in total, of which the PNO coefficients (dij and dij,B) were about 12.8 GB
and the PNO amplitudes (Tij and Tij,λ) – about 960 MB. A back-of-the-envelope estimate

suggests that if the NPAO coefficients (d′′ij and d′′ij,B) and SC amplitudes (
_
Tij and

_
Tij,λ)

were stored in addition, a further 2.5 TB of disk space would be required just for those
quantities. In the end, less than 20 % of the total computation time would be saved, at
the cost of additional I/O overhead.

The asymptotic scaling behavior of the DLPNO-MP2 gradient algorithm was discussed
in ref. 192 and that discussion applies here as well. Briefly, the number of orbital pairs that
survive the dipole-based prescreening scales linearly with system size in the asymptotic
limit, while the PAO correlation domains reach a finite size for large systems. This allows
for asymptotic linear scaling of most major steps in the algorithm, provided sparsity
is properly exploited using the sparse maps infrastructure introduced in ref. 144. In
particular, the RI integral transformation, PNO generation, and iterative solution of the
amplitude equations are asymptotically linear scaling. Two-electron contributions coming
from the Fock matrix, e.g. in the CPSCF and Z-CPSCF equations, can be calculated
with effective quadratic scaling using the RIJCOSX approximation.113 The calculation
of terms involving (K|ip) integrals in the Z-CPSCF equations (eq. 3.77) right-hand sides
asymptotically scales as O(N2). Together with the (iµ̃′|K) contributions (eq. 3.78) these
terms take about 10–15% of the computation time for the largest systems discussed here.
Contributions from the screened-out pairs scale quadratically, while localization, CPL,
and Z-CPL equations scale as O(N3) but these steps constitute a very small part of the
overall computation time.

Alongside MP2, the implementation can be used for DHDFT – the relevant modi-
fications are identical to the RI-MP2 case, discussed in Section 2.1.4. Spin-component
scaling is also implemented.51 Implicit solvent effects can be included using CPCM,245,246

as discussed in Section 2.1.5
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3.4 Results and discussion

3.4.1 Computational details

To examine how quickly DLPNO-MP2 response properties converge towards the RI-MP2
results as the various thresholds are tightened, we performed a series of polarizability and
NMR shielding calculations on the molecules depicted in Figure 3.4.

For the shielding calculations, the pcSseg-2284 basis set was used, along with the
cc-pwCVTZ/C111,290,310 auxiliary basis set, which was shown to be an appropriate com-
bination in Chapter 2. RI was used only for Coulomb integrals in all Fock matrix builds
with no approximation for the exchange integrals, while RIJK was used for the perturbed
two-electron integrals over GIAOs. In both cases, the def2-JK115 auxiliary basis set was
employed. All orbitals were included in the MP2 treatment.

For the polarizability calculations, we used the def2-TZVPD311,312 basis set together
with the aug-cc-pVTZ/C111 auxiliary basis set. Once again, def2-JK115 was used for
Coulomb fitting and all electrons were correlated.

In order to isolate the influences of the different DLPNO parameters, we performed
several sets of calculations as follows:

1. Varying TCutPNO for the valence orbitals with very conservative values of TCutPNO =
10−12 for the core orbitals and FCut = 10−8. We set TS = 10−8 and all other DLPNO
thresholds to 0.

2. Varying TCutPNO for the core orbitals with TCutPNO = 10−10 for the valence orbitals,
FCut = 10−8, TS = 10−8 and all other DLPNO thresholds equal to 0.

3. Varying FCut with TCutPNO = 10−12 for the core and TCutPNO = 10−10 for the valence
orbitals, TS = 10−8 and all other DLPNO thresholds equal to 0.

4. Same as above but also fixing FCut = 10−5 and varying TCutDO. Two values were
used for TS to examine the numerical stability: 10−8 and 10−5.

5. Same as above but also fixing TCutDO = 10−3, TCutDOPre = 0.03, and TS = 10−5 and
varying TCutPre. We set TCutDOij = 0.05, a large value, so as to allow as many pairs
as possible to be screened out without the dipole approximation breaking down.

6. Setting all thresholds to the default (“NormalPNO”) values used for energy and
gradient calculations: TCutPNO = 10−8 (10−10 for core orbitals), FCut = 10−5,
TCutDO = 10−2, TCutDOPre = 0.03, TCutDOij = 10−5, TCutPre = 10−6, TCutMKN = 10−3,
TCutC = 10−3, but with TS = 10−5 and a PNO level shift εscale = 0.1.

7. Same as above with the “LoosePNO” default thresholds: TCutPNO = 10−7 (10−9 for
core orbitals) and TCutDO = 2× 10−2.

8. We also performed shielding calculations with RI-MP2, NormalPNO, LoosePNO,
and TightPNO (TCutPNO = 10−9 for valence and 10−11 for core orbitals, TCutDO =
5 × 10−3), together with the RIJCOSX approximation to see how the COSX and
DLPNO errors stack up. The keyword DefGrid3 was used to choose finer COSX
integration grids than the default. Note that the grids in ORCA were updated for
version 5 of the program and the DefGrid3 settings are similar to the “RIJCOSX-
XL” settings used in Chapter 2.
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caffeine ebselen coronene penicillin
102 el., 644 b.f. 136 el., 729 b.f. 156 el., 1032 b.f. 176 el., 1087 b.f.

anthracene dimer sitagliptin+ ATP4− tweezer complex
188 el., 1288 b.f. 208 el., 1232 b.f. 260 el., 1305 b.f. 374 el., 2520 b.f.

Figure 3.4: Models of the benchmark systems with number of electrons and pcSseg-2
basis functions.268

To investigate the efficiency of the implementation for larger system sizes, we used
idealized glycine chains in either a linear (φ = 180°, ψ = 180°) or α-helix (φ = −57°,
ψ = −47°) conformation. The neutral form of the molecules was used, rather than the
zwitterion. The structures were generated using Gabedit.313 As above, these calculations
were performed with NormalPNO (and RI-MP2) and RIJCOSX. These calculations ran
in a node-exclusive fashion on 8 Intel Xeon E5-2690v2@3.00GHz CPU cores with 6 GB
of RAM per core.

To showcase all the capabilities of the implementation, another large shielding cal-
culation was performed on the vancomycin molecule using the DSD-PBEP86 DHDFT
functional,85 NormalPNO thresholds, RIJCOSX, frozen core orbitals, and CPCM for
implicit solvation in dimethylsulfoxide (DMSO). This calculation ran on 12 Intel Xeon
E5-2687Wv4@3.00GHz CPU cores with 15 GB RAM per core.

Finally, a series of DLPNO-MP2 polarizability calculations were performed on [n]he-
licene (n = 7, 9, 11, 13, 15) molecules using the aug-cc-pVTZ,265,314 aug-cc-pVTZ/C, and
def2-JK basis sets, NormalPNO thresholds, frozen core orbitals, and RIJCOSX. The ge-
ometries were optimized with RI-MP2 (for n=7–11) and DLPNO-MP2 (for n=13–15)
using the cc-pVTZ265,315 and cc-pVTZ/C111 basis sets. These calculations ran on 12 Intel
Xeon E5-2687Wv3@3.10GHz CPU cores with 8 GB of RAM per core.

3.4.2 Accuracy: NMR shieldings

In this section we use some of the systems in Figure 3.4 to examine how much the DLPNO-
MP2 isotropic shielding constants deviate from the RI-MP2 values, as we tighten the
DLPNO thresholds. The mean absolute errors (MAEs) vs RI-MP2 for different values of
TCutPNO are shown in Figure 3.5a for the different nuclides in the systems ATP4−, caffeine,
ebselen, and penicillin. We note that the errors diminish rapidly with decreasing TCutPNO

and at the default value of 10−8 for valence orbitals, they are much lower than the inherent
error in MP2. For example, the MAE for C is 0.1 ppm, which is an order of magnitude
smaller than the average deviation from CCSD(T) (see Section 2.3.3 and ref. 47). It is
also noteworthy that the results are insensitive to core PNO truncation, except for the
heavier elements, particularly P and Se. This may be in part because the pcSseg-2 basis
set does not fully capture core correlation effects (see Section 2.3.6).

For simplicity in the discussion we want a single measure of the DLPNO error, however,
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Figure 3.5: Mean absolute error (a) and mean absolute weighted error (b) vs RI-MP2 in
the shieldings of different nuclei in the systems ATP4−, caffeine, ebselen, and penicillin.
TCutPNO was varied for either the valence (left) or core (right) orbitals, with the other
parameter set to 10−12 and 10−10, respectively. The line and marker styles in the legend
apply to all subplots.
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the shielding constants have very different magnitudes for different nuclides. Thus, we
define an absolute weighted error (AWE), whereby we scale the error in the calculated
isotropic shielding (e.g. vs RI-MP2) by a factor wA, derived from the experimental range
of chemical shifts for nuclide A:

AWE =

∣∣σDLPNO-MP2
i − σRI-MP2

i

∣∣
wA

× 100%, i ∈ A (3.149)

wA =
1

2

(
δAmax − δAmin

)
(3.150)

We use the values for δAmin and δAmax shown in Table 3.5. A reasonable target accuracy
is a mean AWE (MAWE) below 0.5%, which corresponds to 0.5 ppm for 13C, 0.03 ppm
for 1H, and about 1 ppm for 15N and 17O. As can be seen from Figure 3.5b, the MAWE

Table 3.5: Experimental chemical shift ranges (ppm) for different nuclides used for scaling
in MAWE calculations.

A δAmin δAmax wA

1H -1 12 6.5
13C 0 200 100
15N 0 900 450
17O -40 1120 580
19F -300 400 350
33S -290 670 480
31P -180 250 215
77Se -1000 2000 1500

faithfully represents the trends in Figure 3.5a, while also allowing us to combine the data
for different nuclides, as they now have the same order of magnitude. The same data
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Figure 3.6: Mean absolute weighted error vs RI-MP2 in the shieldings of the systems
ATP4−, caffeine, ebselen, and penicillin. TCutPNO was varied for either the valence (left)
or core (right) orbitals, with the other parameter set to 10−12 and 10−10, respectively.
The line and marker styles in the legend apply to both subplots.

are displayed in Figure 3.6, separating the different systems and averaging over all nuclei.
Here we can see that ATP4− is slightly more sensitive to core PNO truncation, probably
because it contains all the phosphorus atoms in the dataset. The same system also suffers
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from a PNO response instability at valence TCutPNO = 10−9 with MaxAE = 1.51 ppm for
15N vs 0.59 and 0.04 ppm for the same nucleus at TCutPNO = 10−8 and TCutPNO = 10−10,
respectively. With the level shift-based adjustment (see Section 3.2.3), this error drops to
0.17 ppm at valence TCutPNO = 10−9.
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Figure 3.7: Mean absolute weighted error vs RI-MP2 in the shieldings of the systems
ATP4−, caffeine, ebselen, and penicillin. TCutDO was varied and TS was set to either 10−8

(left) or 10−5 (right). The line and marker styles in the legend apply to both subplots.

The influence of TCutDO (at a conservative value of TCutPNO) is shown in Figure 3.7 for
the same set of molecules. In the left subplot the redundant PAO domains were truncated
with the default eigenvalue threshold TS = 10−8, which leads to some numerical issues, as
discussed in Section 3.2.2, seen in the figure as large kinks in the curves for some molecules.
In the right subplot a value of TS = 10−5 was used which leads to smooth convergence
of the results towards the RI-MP2 reference. At the default value of TCutDO = 10−2, the
MAWE over the whole dataset is under 0.05%.
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Setting TCutPNO to a conservative value, we examine the effect of FCut in Figure 3.8.

92



Apparently, it imparts negligible errors on the shieldings, especially at the default value
of 10−5.

Turning to the pair prescreening threshold TCutPre, its effect on the shielding MAWE
is shown in Figure 3.9. Despite the relatively small systems, using a large TDOij = 0.05
leads a significant number of pairs to be screened-out: 50–80% at TCutPre = 10−4 and
20–50% at TCutPre = 10−6. Even so, the effect on the shieldings is minor. Neglecting
the contributions from the prescreening correction ∆EPre also does not worsen the results
significantly for TCutPre ≤ 10−4, however, calculating these contributions takes a very
small proportion of the computation time, so there are no savings to be made by skipping
them. On the other hand, the default threshold values of TDOij = 10−5 and TCutPre = 10−6

might be too conservative for NMR shielding calculations.
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terquartile range, and minimum/maximum values, respectively. The number of nuclei of
each element are indicated in parentheses.

Having separately examined the effects of the most important DLPNO parameters
on the shieldings, we now see what happens when all parameters are set to their default
(NormalPNO) values. Figure 3.10 shows the error distributions for different nuclides
over all 8 test systems in Figure 3.4. The NormalPNO/RIJONX distributions are fairly
narrow and both the medians and the ranges (which are more relevant for chemical shift
calculations) are much smaller than the inherent error in MP2. There is an overall bias
towards overestimation of the shielding constants, so some error compensation can be
expected in chemical shift calculations. The same figure also contains results with the
LoosePNO threshold settings, which produce both larger systematic deviations and wider
error distributions, at the borderline of what we may consider tolerable.

All calculations discussed so far were performed using the RIJONX approximation.
In practice, it is preferable to also approximate the exchange part of the Fock matrix,
e.g. using the COSX approximation, as this significantly reduces the computation time.
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However, the semi-numerical integration used in COSX introduces additional errors and
numerical noise to the calculation, which may get amplified in DLPNO calculations.
Therefore, we have included in Figure 3.10 the error distributions from calculations em-
ploying the RIJCOSX approximation with a rather large set of integration grids (corre-
sponding to the DefGrid3 keyword). Though the DLPNO and COSX errors are basically
cumulative, the latter are fairly small so the conclusions from the previous paragraph
still apply for the most part. One exception is the 1H shieldings, where the combined
NormalPNO and COSX errors lead to a maximum deviation of 0.2 ppm and a spread
of almost 0.4 ppm, which is larger than the method error and could in principle lead
to a wrong assignment, compared to RI-MP2. This can be remedied by using larger
COSX grids, in particular for the CPSCF and Z-CPSCF equations, which appear to be
the main source of the deviations. As expected, tightening TCutPNO and TCutDO from
LoosePNO to NormalPNO to TightPNO systematically reduces the errors towards the
RI-MP2 reference.
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Figure 3.11: Maximum absolute errors in the shieldings of different nuclides from Nor-
malPNO calculations vs RI-MP2 for polyglycine chains in either linear (dotted lines) or
α-helix conformation (solid lines). RIJCOSX was used throughout.

As the effect of the local approximations becomes more significant with increasing
system size, the relative error in the properties can also be expected to increase, up to the
point where all approximations are fully active: orbital domains have reached a constant
size, etc. For an intrinsic (i.e. local) property like NMR shielding this means that absolute
errors should also reach an upper limit for large enough systems. To examine this rela-
tionship, we use the calculations on the glycine chain systems, discussed in Section 3.4.4.
Figure 3.11 shows the maximum absolute errors in the shieldings of different nuclides, as
a function of the chain length. Apparently, the errors do increase slightly with the system
size and the effect is more pronounced for the less sparse α-helix conformation. However,
the errors do not grow indefinitely, leveling off around (gly)10, and are within the ranges
shown in Figure 3.10. A notable outlier is an oxygen nucleus in linear (gly)3 with a rather
large error of 0.97 ppm for 17O vs 0.25 and 0.41 ppm for (gly)2 and (gly)4, respectively.
Using the level shift-based adjustment, discussed in Section 3.2.3, the MaxAE for 17O in
linear (gly)3 is reduced to 0.42 ppm, consistent with the slightly oscillating trend.
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3.4.3 Accuracy: dipole polarizabilities

As evident from Section 3.1, the same general procedure can be used to calculate both
magnetic shielding and dipole polarizability tensors. It is worth noting, that the polariz-
ability is an extensive global property of the system and as such is less useful to obtain
for large molecules, which are the main targets of local correlation methods. Nonetheless,
we have included the capability in our implementation and will evaluate the accuracy of
the DLPNO-MP2 polarizabilities in this section. It is most convenient to use the relative
error (RE) in the isotropic polarizability:

RE =
αDLPNO-MP2 − αRI-MP2

αRI-MP2
× 100% (3.151)

and its absolute value (ARE). This should be compared to the inherent error of MP2 vs
more accurate methods such as CCSD(T), which is around 2% for closed-shell species.91

DHDFT performs slightly better but still over 1%. Therefore, we consider a DLPNO
error of up to 0.5% to be reasonable.
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Figure 3.12: Absolute relative errors vs RI-MP2 in the isotropic polarizability of the
systems ATP4−, caffeine, coronene, and penicillin. TCutPNO was varied for either the
valence (left) or core (right) orbitals, with the other parameter set to 10−12 and 10−10,
respectively. TS was set to 10−5. The line and marker styles in the legend apply to both
subplots.

Figure 3.12 shows the dependence of the error on TCutPNO for several molecules. The
DLPNO-MP2 polarizabilities correctly converge towards the RI-MP2 reference values
and are accurate enough for TCutPNO ≤ 10−7. The influence of PNO truncation for
core electrons is almost negligible, which is to be expected, since they do not contribute
significantly to the polarizability, especially since we did not include core-polarization basis
functions in these calculations. We also note a number of kinks in the curves on the left –
one for coronene at TCutPNO = 10−12 and two for ATP4− at 10−7 and 10−10 (the latter also
leads to the slightly larger error in the right subplot). We associate these discrepancies
with numerical instabilities due to small differences in the occupation numbers of PNOs
and CPNOs, as discussed in Section 3.2.3. Indeed, applying the level shift introduced in
that section reduces these errors to fit the downwards trend (see Table F.55).

The effect of domain truncation on the polarizability is shown in Figure 3.13. As for
the shieldings, a low value of TS results in erratic behavior and huge errors, especially
for coronene. At TS = 10−5, however, convergence towards the RI-MP2 reference is
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Figure 3.13: Absolute relative errors vs RI-MP2 in the isotropic polarizability of the
systems ATP4−, caffeine, coronene, and penicillin. TCutDO was varied and TS was set to
either 10−8 (left) or 10−5 (right). The line and marker styles in the legend apply to both
subplots.

much smoother and the errors are already sufficiently small at TCutDO = 3× 10−2. The
issue is exacerbated by near-linear dependencies in the AO basis: the threshold used for
the orthonormalization of the MOs was 10−8 and the lowest AO overlap eigenvalues for
caffeine, penicillin, coronene, and ATP4− were 2.7× 10−7, 4.2× 10−7, 2.2× 10−8, and
4.6× 10−7 respectively. Increasing this threshold to 10−6 results in smooth convergence
of the error for coronene, even with TS = 10−8 (see Table F.56).
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Figure 3.14: Absolute relative errors vs
RI-MP2 in the isotropic polarizability of
the systems ATP4−, caffeine, coronene, and
penicillin with varying FCut.
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Figure 3.15: Absolute relative errors
vs RI-MP2 in the isotropic polarizability
of the systems ATP4−, caffeine, coronene,
and penicillin. TCutPre was varied and
dipole estimate-based contributions from
the screened-out pairs were either included
(solid lines) or excluded (dotted lines).

The influence of FCut on the polarizability, shown in Figure 3.14, is rather small.
Apparently, the default value of 10−5 is more than conservative enough.

Convergence with the pair prescreening threshold TCutPre, as well as the significance of
the terms derived from ∆EPre, is shown in Figure 3.15. With the default parameters, only
18% of pairs are skipped for the largest system, ATP4−, however with the high value of
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TCutDOij used here, between 35 and 67% of pairs are screened out already at TCutPre = 10−5

and the errors in the polarizability are below 0.2%. As for the shieldings, the dipole-
based correction terms only make a difference for very high values of the threshold. The
somewhat larger errors for coronene at TCutPre ≥ 10−4 are probably due to the strong
delocalization in the system, together with the large value of TCutDOij.
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Figure 3.16: Relative errors in the isotropic polarizability from NormalPNO calculations
vs RI-MP2 for the systems caffeine, ebselen, penicillin, coronene, ATP4−, and (anth)2,
ordered by increasing polarizability.

The combined effect of all DLPNO approximations with the default NormalPNO pa-
rameters (and TS = 10−5, εscale = 0) is shown in Figure 3.16. The signed error is plotted to
illustrate that DLPNO-MP2 consistently underestimates the RI-MP2 polarizabilities. In
turn, MP2 tends towards overestimation with respect to CCSD(T),91 so some fortuitous
error compensation can be expected with DLPNO-MP2. In any case, the DLPNO-MP2
values only deviate from the RI-MP2 reference by 0.1–0.2%, which is well within our 0.5%
tolerance.

3.4.4 Computational efficiency

To compare the efficiency of our RI-MP2 and DLPNO-MP2 implementations, we per-
formed calculations on a series of polyglycine chains in both linear and α-helical con-
formations (see Figure 3.17). The latter are much denser and expected to be a bigger
challenge for the local approximations. The total wall-clock times for the shielding cal-
culations, including SCF and CPSCF solutions, are presented in Figure 3.18a. The steep
scaling of the RI-MP2 calculations is apparent and there is no difference between the
two conformations, which is expected, as sparsity is not exploited apart from basic and
rather conservative prescreening. In contrast, both series of DLPNO calculations achieve
quadratic effective scaling, although the prefactor for the helical conformation is about
4.5 times higher. The crossover point between RI- and DLPNO-MP2 is thus surpassed at
(gly)5 (38 atoms, 160 electrons, 994 basis functions) and (gly)9 (66 atoms, 280 electrons,
1738 basis functions) in the linear and helical series, respectively. In other words, calcula-
tions that take more than a day or two (on 8 cores) with RI-MP2 can be performed more
efficiently with DLPNO-MP2. For the largest system reported here – (gly)15 (108 atoms,
460 electrons, 3040 basis functions) – the difference is substantial: 1–3 days with DLPNO-
MP2 (depending on the conformation) vs 36 days with RI-MP2. Before the crossover
point, the DLPNO-MP2 calculation is at most 2 times slower (for the helical (gly)5) than
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(gly)15, linear: 108 at., 460 el., 3050 b.f.

(gly)15, α-helix: 108 at., 460 el., 3050 b.f.

[15]helicene: 96 at., 406 el. (FC), 3634 b.f. vancomycin: 176 at., 542 el. (FC), 4700 b.f.

Figure 3.17: Models of some of the large systems used to test the efficiency of the
implementation.268 The numbers of atoms, correlated electrons (frozen-core is indicated),
and basis functions (aug-cc-pVTZ for [15]helicene, pcSseg-2 for the rest) are given.

the RI-MP2 one. Another worthwhile comparison is given in Figure 3.18b, namely, how
much more expensive a shielding calculation is at the MP2-level vs the SCF-level (HF or
hybrid DFT). Apparently, with NormalPNO and RIJCOSX, the DLPNO-MP2 shieldings
are obtained at only 5–20 times the cost of the preceding HF shielding calculation (the
latter is included in the DLPNO-MP2 timings) and the ratio is still going down at (gly)15.
This is in stark contrast to RI-MP2, where the calculations with 400 correlated electrons
are already more than 100 times more expensive than HF or hybrid DFT and hardly
feasible beyond that. Based on the calculations performed for Figure 3.10, the TightPNO
(LoosePNO) settings increase (decrease) the total computation time by a factor of 1.3–2.2,
compared to NormalPNO.
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Figure 3.18: (a) Wall clock times (on 8 CPU cores) for shielding calculations on polyg-
lycine chains in either linear (dotted lines) or α-helix (solid lines) conformation using
either DLPNO-MP2 with NormalPNO or RI-MP2. (b) Ratio of the wall clock times for
MP2 vs HF shielding calculations on the same systems. The legend applies to both plots.
RIJCOSX was used throughout.

An in-depth look at the computational cost of different parts of the DLPNO-MP2
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response density calculation for the linear polyglicine chains is presented in Figure 3.19.
Based on these data, one can see that most major contributions to the wall-clock time (left

plot) – the construction of
_
Tij,λ and d′′ij,λ, the PNO-specific contributions to the Z-CPSCF

RHS, the construction of the two-body density, the NPAO space reconstruction, and the
PNO amplitude equations – reach an effective scaling (right plot) better than O(N1.5

gly ).
The Fock response terms scale as O(N2

gly), as expected for RIJCOSX. The transformations
involving three-index integrals only achieve O(N2.5

gly ) scaling, which suggests that either
(gly)15 is not a large enough system, or some improvements to the algorithm are possible
for these terms. Somewhat surprising is the worse-than-cubic scaling of the Z-CPSCF
solution, which should, in principle, match the scaling of the Fock response terms. The
source of this discrepancy might be hardware-related or an issue in the CPSCF module
of ORCA. Either way, it is not directly related to the implementation described in the
present work.
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Figure 3.19: Left: contributions to the wall clock time for the DLPNO-MP2 response
density calculation on linear polyglycine chains. Right: effective scaling of different cal-
culation parts, as estimated by the slope of a linear fit (on a log–log scale) for the five
preceding data points, i.e. the datum at n= 10 is based on the data for n= 6–10. The
colors in the legend apply to both plots.

Detailed information on the most time-consuming steps for an even larger system –
the vancomycin molecule – are given in Table 3.6. In this case a frozen-core calculation
was performed with a DHDFT functional (DSD-PBEP86), also including implicit solvent
(DMSO) effects using CPCM. Some key takeaways from the data are: (1) The total time
for the DLPNO-DHDFT calculation is only 8 times longer than an equivalent hybrid
DFT calculation (SCF plus SCF-level NMR timings). (2) The cost to calculate the
DLPNO-MP2 response densities is roughly 6 times higher than the DLPNO-MP2 energy
and density calculation. (3) Reconstructing the SC amplitudes, NPAO space, and the
perturbed (C)PNO coefficients twice, takes about a third of the DLPNO-MP2 response
time. (4) The equations related to orbital localization make up less than 1% of the
computational time. (5) Timings for the evaluation of DFT functional, CPCM, and
dipole-based prescreening terms are almost negligible and therefore not shown.

99



Table 3.6: System size indicators and wall-clock times (min) for a frozen-core DLPNO-
DSD-PBEP86 NMR shielding calculation on vancomycin using RIJCOSX. The calculation
was performed on 12 Intel Xeon E5-2687Wv4@3.00GHz CPU cores with 15 GB RAM per
core. Subparts of calculation steps are marked with “→”.

Atoms 176
Basis size (pcSseg-2) 4700
AuxJ size (def2-JK) 9097
AuxC size (cc-pwCVTZ/C) 13591
Core electrons 218
Valence electrons 542
Kept orbital pairs 22265
Mean PAO domain size 1013
Mean PNO domain size 22
Mean AuxC domain size 1852

Total time 4791

SCF (15 cycles) 355

SCF-level NMR 242
→ CPSCF right-hand size 56
→ CPSCF (8 cycles) 175

DLPNO-MP2 energy+density 579
→ (iµ̃′|K) transformation 23

→
^
Tij and dij construction 88

→ PNO amplitude iterations 35
→ NPAO space reconstruction 163
→ PNO-specific terms 70
→ ΓKiµ̃′ contributions 84

→ Fock response terms 10
→ Z-CPSCF (10 cycles) 56
→ Localization + Z-CPL 5

DLPNO-MP2 response density 3603

→ (iµ̃′|K)λ transformation 276

→
_
Tij,λ and d′′ij,λ construction 809

→ Tij,λ iterations 160
→ NPAO space reconstruction 270
→ PNO-specific terms 671

→ ΓKiµ̃′ and ΓK,λiµ̃′ contributions 748

→ Fock response terms 127
→ Perturbed Z-CPSCF (8 cycles) 176
→ CPL + perturbed Z-CPL 27

Table 3.7: Isotropic polarizability (αiso/Bohr3) and wall-clock time (t/hours) for calcu-
lations on [n]helicene using DLPNO-MP2, compared to RI-MP2 data from ref. 123. The
number of (aug-cc-pVTZ) basis functions (Nbas) is also given.

DLPNO-MP2 RI-MP2123

n Nbas αiso ta αiso tb

7 1794 357.7 11 357 65
9 2254 436.4 30 437 134

11 2714 516.5 66 518 425
13 3174 596.5 104
15 3634 675.7 150
aOn 12 Intel Xeon E5-2687Wv3@3.10GHz CPU cores with 8 GB of RAM per core.
bOn 12 Intel Xeon X5670@2.93GHz CPU cores.
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A final test is shown in Table 3.7. Here, DLPNO-MP2 polarizability calculations
were carried out for a series of [n]helicene molecules. The results are compared to those
obtained by Friese et. al. with their Laplace-based RI-MP2 implementation.123 The
calculated isotropic polarizabilities agree to within 0.3%, as expected. It is not fair to
compare the timings directly due to the different computer architectures, but we can look
at the trends and effective scaling of both implementations with system size. Based on
the calculations for n=7–11, the RI-MP2 algorithm scales as O(N4.5

bas), roughly equiva-
lent to the O(N4.3

bas) scaling of our DLPNO-MP2 code for the same systems. The poor
performance of the DLPNO approximations here can be explained by the high degree of
delocalization in the helicenes, combined with the diffuse basis sets, which leads to large
correlation domains, and to practically all occupied orbital pairs surviving the dipole-
based prescreening. Regardless, the performance of DLPNO-MP2 improves for the larger
systems and the effective scaling for n=11-15 drops to O(N2.8

bas).
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Chapter 4

Conclusion

This thesis encompasses several complementary approaches, which aim to reduce the
computational cost of NMR shielding calculations, whilst preserving or improving the
accuracy of the results. We focused on the SCF level of theory – HF and DFT – as
well as methods including PT2 correlation – MP2 and DHDFT. Chapter 2 recapitulates
the known theory of NMR shielding tensors as analytic derivatives of the SCF or MP2
energies. The de facto standard GIAO approach was used to deal with the gauge origin
problem. With small modifications, we generalized the GIAO-NMR theory to DHDFT
for the first time (a previously reported implementation could only handle a common
gauge origin,94 which is not appropriate for NMR shielding). We discussed the RI and
COS approximations to the two-electron terms of the Fock operator, which comprise the
computational bottleneck at the SCF level, as well as the RI approximation applied to the
MP2 correlation contributions, which also leads to a large speedup compared to a canon-
ical implementation. Similar work has been done before: for example, the linear and
sub-linear scaling GIAO-SCF implementations of Ochsenfeld and coworkers,105,108,109 and
the RI-based GIAO-HF program of Loibl et al.117 In the context of reducing the computa-
tional cost of MP2 response property calculations, one should mention the integral-direct
GIAO-MP2 implementation for NMR shieldings of Kollwitz, Häser, and Gauss,,120,121 the
derivation of RI-MP2 second derivatives in combination with COSX,94 and the Laplace-
based approaches of Ochsenfeld, Hättig and their coworkers.122,123

When examining the accuracy of the various approximations, we compared them to the
other error sources in NMR chemical shift calculations – primarily due to the method itself
and basis set incompleteness. For this purpose, a benchmark set of 15 small molecules was
assembled, comprising 34 1H, 13C, 15N,17O, 19F, and 31P shielding constants, which were
calculated at the CCSD(T)/pcSseg-4 level. The accuracy of standard DFT functionals –
as measured by the MAREδ – varied greatly in the range of 4–18 %, while MP2 and its
SCS variants is somewhat more robust at about 4 %, which is in agreement with other
similar benchmarks.47,73 DHDFT stands out in comparison with errors between 1.5 and
4.3 %, depending on the functional, the most accurate being revDSD-PBEP86 (closely
followed by its slightly different parameterizations).

When it comes to basis set convergence, it is unsurprisingly faster for SCF- than
for PT2-based methods: HF and DFT shieldings are already sufficiently converged at
the pcSseg-2 level with a residual error of about 0.8 %, while MP2 still has a significant
1.9 % error with this basis, reduced to 0.4 % with pcSseg-3. DHDFT (DSD-PBEP86)
has intermediate basis set errors of 1.1 % and 0.2 % at the pcSseg-2 and pcSseg-3 levels,
respectively.
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An appropriate target for the error due to the two-electron integral approximations is
thus an order of magnitude lower than the basis set errors and it is readily achieved with
either the RIJK or RIJCOSX approximations in combination with the def2-JK auxiliary
basis set and appropriate COSX grids. The cc-pwCV[T,Q,5]Z/C RI-MP2 fitting basis
sets were shown to be appropriate for the pcSseg-[2,3,4] orbital basis sets, respectively.

The efficiency of the algorithms was tested on realistic systems between 10 and 100
atoms, as well as on idealized linear alkane chains. The RIJK method is hence recom-
mended for calculations on small molecules (up to about 100 electrons and 1000 basis
functions), while for larger systems, the RIJCOSX method is more efficient. RI-MP2
(and DHDFT) NMR shielding calculations were shown to be feasible for systems of up to
about 400 electrons with the present implementation within a few days of computation
time.

Chapter 3 focused on a way to relax this restriction and enable MP2 and DHDFT
chemical shift calculations for even larger systems via the DLPNO-MP2 approximation.
We discussed the theory and implementation of the DLPNO-MP2 response density, based
on previous work on the energy and gradient.144,191–193 Similar efforts by others to apply
local correlation approaches to NMR shielding calculations have yielded a proof-of-concept
GIAO-LMP2 implementation,178 as well as an efficient RI-based version of the latter.179,180

However, the present work describes the first complete analytic second derivative imple-
mentation for a PNO-based method.

The present derivation is applicable both to NMR shieldings and other analytic sec-
ond derivatives, for which the AOs are independent of at least one of the two perturba-
tions, such as dipole polarizabilities. Based on a benchmark set of several medium-sized
molecules, we assessed the errors due to the DLPNO approximations and found them
to be sufficiently small. Setting the relevant thresholds to the default (“NormalPNO”)
values used in energy and gradient calculations results in errors in the calculated shield-
ings an order of magnitude smaller than the inherent error of MP2. For example, the
maximum absolute deviations from the RI-MP2 reference for 13C and 1H shieldings in the
test set are 0.3 and 0.04 ppm, respectively. The DLPNO-MP2 isotropic polarizabilities
with default thresholds are also within 0.2% of the RI-MP2 reference values

Comparing the computational cost of DLPNO-MP2 and RI-MP2 property calculations
for linear and helical polyglycine, we found that the DLPNO-MP2 implementation be-
comes more efficient for systems larger than 38 atoms/160 electrons and 66 atoms/280 elec-
trons, respectively. Due to the asymptotic linear scaling of the major post-SCF steps,
DLPNO-MP2 property calculations are never more than about 20 times more expensive
than equivalent HF or hybrid DFT calculations. The largest DLPNO-MP2 NMR shield-
ing calculation reported here – on vancomycin (176 atoms, 542 correlated electrons, 4700
basis functions) – took 80 hours on 12 CPU cores, compared to 10 hours for hybrid DFT.
Thus, the implementation allows accurate MP2 and DHDFT property calculations for
virtually all systems that could be treated at the hybrid DFT level.

It is important to note that MP2, DHDFT, and any approximate variants thereof can
fail fundamentally for certain systems, such as those with a small HOMO-LUMO gap
(e.g. transition metal complexes) or high degree of static correlation, whereas many of
these cases can be treated accurately with coupled cluster methods. In this regard, the
developments presented here set the stage for analytic second derivatives of higher level
local correlation methods such as DLPNO-CCSD. In particular, the pitfalls encountered
here and their proposed solutions, discussed in Section 3.2, are also likely relevant for
other local correlation methods.
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Another avenue of interest is multi-layer schemes like those reported in ref. 316, in
which some orbital pair interactions are treated with lower accuracy in the DLPNO ap-
proximations or completely neglected in the correlation treatment. Such an approach may
be particularly well suited to NMR shielding calculations of solvated systems, or cluster
models of molecular crystals. Fragment-based and QM/MM schemes can also be applied
on top of the approximations discussed in this thesis, further increasing the size of the
systems within reach.
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List of acronyms

AA auxiliary basis set generated with AutoAux
AE absolute error
AIMD ab initio molecular dynamics
AO atomic orbital
ATP adenosine triphosphate
AuxC auxiliary basis set used for the RI-MP2 approximation
AuxJ auxiliary basis set used for the RIJ approximation
AWE absolute weighted error
B2GP-PLYP “general purpose” version of the B2PLYP functional by J.M.L. Martin

and coworkers
B2K-PLYP version of the B2PLYP functional for kinetics by J.M.L. Martin and

coworkers
B2PLYP double-hybrid functional based on BLYP by S. Grimme
B2T-PLYP version of the B2PLYP functional for thermochemistry by J.M.L. Mar-

tin and coworkers
B3LYP three-parameter hybrid functional, based on BLYP
B97-D3 version of the Becke 1997 functional by S. Grimme
BLYP combination of Becke 1988 exchange and Lee–Yang–Parr 1988 corre-

lation functionals
CBS complete basis set
CC coupled cluster theory
CC2 second order approximate coupled cluster method
CCSD(T) coupled cluster theory with single, double, and perturbative triple

excitations
CDFT current density functional theory
CFOUR electronic structure program
CI configuration interaction
CMO canonical molecular orbital
COS chain-of-spheres (approximation)
COSJ chain-of-spheres for Coulomb
COSJX chain-of-spheres for Coulomb and exchange
COSX chain-of-spheres for exchange
CPCM conductor-like polarizable continuum model
CPL coupled perturbed localization
CPNO complementary pair natural orbitals
CPSCF coupled perturbed self-consistent field
CPU central processing unit
CV core–valence

106



D3BJ S. Grimme’s empirical dispersion correction with Becke–Johnson
damping

DF density functional
DFT density functional theory
DHDF double-hybrid density functional
DHDFT double-hybrid density functional theory
DLPNO domain-based local pair natural orbital (approximation)
DSD dispersion-corrected spin-component-scaled double-hybrid
DSD-BLYP DSD functional based on BLYP by J.M.L. Martin and coworkers
DSD-PBEP86 DSD functional based on PBE exchange and Perdew 1986 correlation

by J.M.L. Martin and coworkers
FB Foster–Boys (orbital localization method)
FC frozen core (approximation)
FCI full configuration interaction
GGA generalized gradient approximation
GIAO gauge-including atomic orbitals
GTO Gaussian-type orbital
HF Hartree–Fock method
HFC hyperfine coupling
HOMO highest occupied molecular orbital
I/O input/output
IQR interquartile range
IQRE interquartile range of errors
IQRRE interquartile range of relative errors
KS-DFT Kohn–Sham density functional theory
KT2, KT3 Keal–Tozer functionals for NMR shielding
LHS left-hand side
LMO localized molecular orbital
LMP2 local (approximate) MP2
LUMO lowest unoccupied molecular orbital
M06, M06-2X Minnesota 2006 hybrid functionals by D. Truhlar and coworkers
M06-L Minnesota 2006 local functional by D. Truhlar and coworkers
MAE mean absolute error
MARE mean absolute relative error
MAWE mean absolute weighted error
ME mean error
MD molecular dynamics
MO molecular orbital
MP2 second order Møller–Plesset perturbation theory
MRE mean relative error
MRRE mean range of relative errors
NMR nuclear magnetic resonance
NPAO non-redundant projected atomic orbitals
OBS orbital basis set
ONIOM “our own n-layered integrated molecular orbital and molecular me-

chanics” method by K. Morokuma and coworkers
ORCA electronic structure program
OS opposite-spin
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PAO projected atomic orbital
PBE Perdew–Burke–Ernzerhof 1996 density functional
PBE0 hybrid functional based on PBE
PNO pair natural orbital
PT2 second order perturbation theory
QM/MM quantum mechanics/molecular mechanics
RAID redundant array of independent disks
RAM random-access memory
RHS right-hand side
RI resolution of the identity
RIJ RI approximation for Coulomb
RIJCOSX RI approximation for Coulomb and chain-of-spheres for exchange
RIJCOSX-S RIJCOSX using “small” grid settings
RIJCOSX-L RIJCOSX using “large” grid settings
RIJCOSX-XL RIJCOSX using “extra large” grid settings
RIJK RI approximation for Coulomb and exchange
RIJONX RI approximation for Coulomb and analytic exchange
RIK RI approximation for exchange
RI-MP2 RI-based MP2 method
S2-MP2 variant of SCS-MP2 with different parameters
SCF self-consistent field
SCS spin-component scaling
SCS-MP2 spin-component-scaled MP2
SDRE standard deviation of relative errors
SOS-MP2 spin-opposite-scaled MP2
SS same-spin
TPSS Tao–Perdew–Staroverov–Scuseria 2003 density functional
VPT2 second order vibrational perturbation theory
VS98 Van Voorhis–Scuseria 1998 density functional
VV10 Vydrov–Van Voorhis 2010 non-local density functional
XC exchange–correlation
Z-CPL coupled perturbed localization z-vector (equations)
Z-CPSCF coupled perturbed self-consistent field z-vector (equations)
Z-CV core–valence z-vector (equations)
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Appendices

Appendix A Coordinates of the test set molecules

from Chapter 2

The coordinates below are given in Angstrøm in XYZ format. All systems are neutral
singlets. The CCSD(T)/pcSseg-4 shieldings (in ppm) are provided in the comment line.

9

C4H4O O(64.82) C2,3(47.36) C4,5(81.67) H6,7(24.03) H8,9(25.02)

O 0.000000 0.000000 -1.132414

C 0.000000 1.089600 -0.317680

C 0.000000 -1.089600 -0.317680

C 0.000000 0.716737 0.986182

C 0.000000 -0.716737 0.986182

H 0.000000 -2.041237 -0.808438

H 0.000000 2.041237 -0.808438

H 0.000000 -1.371142 1.834814

H 0.000000 1.371142 1.834814

5

CF4 C(64.96) F(267.58)

F 0.000000 -1.074800 0.759998

C 0.000000 0.000000 0.000000

F 0.000000 1.074800 0.759998

F 1.074800 0.000000 -0.759998

F -1.074800 0.000000 -0.759998

10

CH3COCH3 O(-297.91) C2(-10.84) C3,4(162.88) H5,6(29.70) H7-10(29.44)

O 0.000000 0.000000 1.312747

C 0.000000 0.000000 0.100560

C 0.000000 1.280014 -0.697250

C 0.000000 -1.280014 -0.697250

H 0.000000 2.132916 -0.028110

H 0.000000 -2.132916 -0.028110

H 0.876773 1.314696 -1.342826

H -0.876773 1.314696 -1.342826

H -0.876773 -1.314696 -1.342826

H 0.876773 -1.314696 -1.342826

5

CH4 C(199.39) H(31.39)

H 0.000000 -0.884131 0.625175

C 0.000000 0.000000 0.000000

H 0.000000 0.884131 0.625175

H 0.884131 0.000000 -0.625175

H -0.884131 0.000000 -0.625175

2

CO C(2.56) O(-55.42)

C 0.000000 0.000000 0.646590

O 0.000000 0.000000 -0.485097
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3

F2O F(-24.28) O(-446.32)

O 0.000000 0.000000 0.615029

F 0.000000 -1.102008 -0.258899

F 0.000000 1.102008 -0.258899

2

F2 F(-192.76)

F 0.000000 0.000000 0.706799

F 0.000000 0.000000 -0.706799

3

H2O O(337.63) H(30.65)

O 0.000000 0.000000 0.066196

H 0.000000 -0.753371 -0.525286

H 0.000000 0.753371 -0.525286

2

HF F(419.91) H(28.82)

H 0.000000 0.000000 0.870030

F 0.000000 0.000000 -0.046153

3

N2O N1(11.74) N2(106.22) O(198.77)

N 0.000000 0.000000 -0.071438

N 0.000000 0.000000 -1.200428

O 0.000000 0.000000 1.113481

2

N2 N(-61.16)

N 0.000000 0.000000 0.550296

N 0.000000 0.000000 -0.550296

4

NH3 N(270.40) H(31.44)

N 0.000000 0.000000 0.069289

H 0.807968 0.466482 -0.320910

H 0.000002 -0.932962 -0.320910

H -0.807969 0.466479 -0.320910

4

PF3 P(224.80) F(231.81)

P 0.000000 0.506017 0.000000

F 0.683058 -0.274992 1.183091

F -1.366116 -0.274992 0.000000

F 0.683058 -0.274992 -1.183091

4

PH3 P(604.51) H(29.46)

P 0.068293 0.000000 0.000000

H -0.699620 0.593802 -1.028495

H -0.699620 -1.187603 0.000000

H -0.699620 0.593802 1.028495

2

PN P(51.61) N(-344.71)

P 0.000000 0.000000 0.468029

N 0.000000 0.000000 -1.035245
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Appendix B Benchmark data from Chapter 2

Table B.2: Isotropic NMR shieldings (ppm) calculated with CCSD(T) and variants of
MP2 and the pcSseg-4 basis set.

Element Nucleus CCSD(T) ae-MP2 fc-MP2 ae-SCS-MP2 ae-S2-MP2

1H furan (at C2/5) 24.03 23.78 23.82 24.10 23.90
furan (at C3/4) 25.02 24.77 24.83 25.11 24.90
HF 28.82 28.55 28.59 28.72 28.66
PH3 29.46 29.45 29.52 29.52 29.47
(CH3)2CO 29.53 29.46 29.49 29.63 29.51
H2O 30.65 30.40 30.43 30.56 30.47
CH4 31.39 31.35 31.38 31.42 31.37
NH3 31.43 31.28 31.31 31.40 31.32

13C (CH3)2CO -10.84 -10.63 -7.59 -7.30 -8.27
CO 2.56 7.68 11.15 8.69 10.21
furan (C2/5) 47.36 46.03 48.68 48.69 47.79
CF4 65.96 62.76 64.48 65.02 62.93
furan (C3/4) 81.67 81.20 83.67 83.13 82.48
(CH3)2CO 162.88 163.16 164.19 163.58 163.39
CH4 199.39 201.06 201.61 199.30 200.59

15N PN -344.70 -259.92 -245.40 -255.09 -243.15
N2 -61.16 -44.01 -40.24 -41.58 -38.72
NNO 11.74 29.34 32.19 28.75 32.83
NNO 106.22 128.78 131.93 127.04 131.89
NH3 270.40 275.85 276.29 273.14 275.39

17O OF2 -446.32 -468.62 -463.25 -431.49 -452.61
(CH3)2CO -297.91 -274.33 -267.48 -265.20 -266.71
CO -55.42 -48.72 -45.20 -42.01 -43.12
furan 64.82 46.88 50.05 66.33 55.21
NNO 198.77 216.33 218.68 217.77 219.48
H2O 337.63 345.53 345.83 342.55 345.19

19F F2 -192.76 -177.27 -173.27 -170.63 -174.36
OF2 -24.28 -15.88 -12.96 -9.67 -15.05
PF3 231.81 231.79 235.29 240.79 234.59
CF4 267.58 268.35 269.63 273.49 269.94
HF 419.91 425.36 425.46 423.17 424.99

31P PN 51.61 106.63 135.14 119.14 124.92
PF3 224.80 215.96 230.57 224.70 217.71
PH3 604.50 609.03 615.63 599.59 606.15
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Table B.3: Isotropic NMR shieldings (ppm) calculated with CCSD(T) and different DHDFs and the pcSseg-4 basis set.
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1H furan (at C2/5) 24.03 23.94 23.93 23.94 23.97 23.90 23.99 24.04 24.05 23.90 23.92 23.97 23.99
furan (at C3/4) 25.02 24.94 24.92 24.93 24.96 24.88 24.98 25.04 25.06 24.90 24.93 24.96 24.99
HF 28.82 28.99 28.81 28.70 28.89 28.80 28.89 28.96 28.97 29.03 29.05 29.09 29.11
PH3 29.46 29.57 29.54 29.53 29.48 29.46 29.51 29.50 29.53 29.56 29.60 29.57 29.61
(CH3)2CO 29.53 29.55 29.55 29.56 29.54 29.50 29.55 29.58 29.59 29.57 29.59 29.60 29.62
H2O 30.65 30.78 30.66 30.60 30.70 30.64 30.71 30.75 30.75 30.77 30.79 30.81 30.82
CH4 31.39 31.50 31.47 31.45 31.45 31.42 31.46 31.46 31.47 31.50 31.52 31.51 31.53
NH3 31.43 31.54 31.48 31.45 31.49 31.45 31.50 31.52 31.52 31.54 31.56 31.56 31.58

13C (CH3)2CO -10.84 -26.08 -23.18 -20.96 -17.27 -17.41 -16.13 -16.80 -15.79 -21.04 -19.49 -19.86 -18.38
CO 2.56 -10.30 -8.75 -7.07 -3.27 -3.27 -2.00 -2.65 -1.52 -4.24 -2.54 -2.84 -1.21
furan (C2/5) 47.36 35.57 37.53 39.15 42.15 42.01 43.12 42.62 43.51 39.03 40.37 39.85 41.13
CF4 65.96 53.23 56.88 59.84 59.94 60.37 60.66 60.17 60.80 57.65 58.61 57.62 58.55
furan (C3/4) 81.67 70.60 72.77 74.60 76.68 76.75 77.60 77.14 77.97 74.83 76.08 75.43 76.64
(CH3)2CO 162.88 155.33 157.38 159.00 159.67 160.00 160.08 159.74 160.11 159.22 159.77 159.28 159.81
CH4 199.39 193.92 195.43 196.56 197.06 197.78 197.28 196.62 196.81 197.74 198.03 197.46 197.74

15N PN -344.70 -371.20 -361.97 -354.57 -336.88 -335.73 -332.03 -335.92 -331.50 -353.86 -347.41 -345.55 -339.28
N2 -61.16 -76.50 -74.03 -71.63 -65.74 -65.86 -64.36 -64.74 -63.51 -68.10 -66.32 -65.38 -63.65
NNO 11.74 3.24 4.81 6.45 12.48 12.92 13.51 12.66 13.59 7.92 9.25 9.65 10.94
NNO 106.22 99.32 101.60 103.08 108.12 108.81 109.26 107.84 108.85 106.45 107.92 108.17 109.59
NH3 270.40 265.56 267.18 268.66 268.94 269.82 269.12 268.44 268.59 269.74 269.95 269.53 269.73

17O OF2 -446.32 -542.16 -520.66 -501.40 -490.94 -495.38 -488.83 -481.09 -479.20 -504.00 -501.28 -495.91 -493.28
(CH3)2CO -297.91 -315.02 -308.61 -305.90 -298.57 -298.79 -295.97 -299.08 -296.81 -308.15 -304.65 -303.97 -300.61
CO -55.42 -72.47 -69.92 -66.99 -62.64 -63.43 -61.30 -60.74 -59.53 -66.56 -64.89 -63.71 -62.07
furan 64.82 33.42 38.15 42.83 48.01 45.26 49.25 52.06 53.22 37.57 39.17 41.41 42.98
NNO 198.77 189.28 192.85 195.44 198.50 198.93 199.42 198.65 199.53 199.62 200.65 201.28 202.32
H2O 337.63 333.05 334.89 336.72 336.68 337.69 336.83 336.11 336.23 337.81 337.94 337.67 337.80

19F F2 -192.76 -225.17 -212.82 -202.60 -201.79 -200.20 -200.27 -201.01 -199.67 -195.40 -193.35 -193.90 -191.94
OF2 -24.28 -51.99 -39.58 -29.69 -29.47 -28.10 -28.32 -28.92 -27.86 -31.89 -30.37 -31.34 -29.86
PF3 231.81 213.79 220.45 225.80 224.61 224.32 226.05 226.02 227.42 216.06 217.98 217.40 219.28
CF4 267.58 253.27 258.28 262.20 262.22 262.31 262.78 262.87 263.43 257.38 258.06 258.16 258.84
HF 419.91 416.45 417.98 419.35 418.70 419.49 418.79 418.26 418.32 419.41 419.46 419.22 419.27

31P PN 51.61 10.06 17.54 24.05 44.38 43.04 54.32 47.38 56.06 17.07 31.02 26.30 39.55
PF3 224.80 191.99 200.82 207.99 209.12 209.32 214.76 210.03 215.07 196.40 204.50 197.07 204.76
PH3 604.50 580.92 586.31 590.53 594.52 597.48 596.98 592.57 594.58 594.21 597.72 592.61 595.89
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Table B.4: Isotropic NMR shieldings (ppm) calculated with CCSD(T), HF, and different hybrid functionals and the pcSseg-4 basis set.

Element Nucleus CCSD(T) HF B3LYP PBE0 TPSSh M06 M06-2X ωB97X-D3BJ ωB97X-V

1H furan (at C2/5) 24.03 24.28 24.00 23.83 24.22 23.97 23.22 24.02 23.99
furan (at C3/4) 25.02 25.30 25.00 24.81 25.29 24.85 24.07 25.01 24.98
HF 28.82 28.11 29.34 29.25 29.74 28.95 28.71 29.33 29.32
PH3 29.46 29.68 29.64 29.47 29.67 29.63 29.50 29.60 29.58
(CH3)2CO 29.53 29.95 29.57 29.44 29.75 29.64 29.30 29.65 29.63
H2O 30.65 30.49 31.05 30.97 31.41 30.86 30.49 31.03 31.03
CH4 31.39 31.64 31.59 31.51 31.77 31.70 31.40 31.60 31.59
NH3 31.43 31.57 31.72 31.66 32.04 31.70 31.28 31.73 31.73

13C (CH3)2CO -10.84 -24.95 -39.81 -33.95 -25.90 -51.84 -64.32 -30.04 -29.93
CO 2.56 -28.07 -22.94 -21.33 -6.22 -46.00 -57.90 -16.10 -15.94
furan (C2/5) 47.36 36.85 26.50 31.69 40.04 14.17 6.14 34.12 34.24
CF4 65.96 77.82 44.64 51.23 51.06 38.98 46.60 55.12 55.19
furan (C3/4) 81.67 74.51 61.64 66.43 73.35 51.42 44.73 69.67 69.89
(CH3)2CO 162.88 162.51 148.83 153.45 156.02 145.99 142.44 156.53 156.65
CH4 199.39 195.13 188.84 192.87 194.17 186.38 183.53 194.54 194.80

15N PN -344.70 -511.98 -448.36 -446.50 -400.48 -532.81 -603.90 -430.57 -430.64
N2 -61.16 -116.14 -97.32 -96.95 -77.57 -140.84 -154.69 -88.56 -88.41
NNO 11.74 -35.81 -14.54 -9.89 0.89 -33.55 -43.51 -10.30 -10.21
NNO 106.22 60.96 79.03 81.60 91.63 59.25 47.37 85.15 85.37
NH3 270.40 262.08 259.70 262.84 264.04 257.62 254.46 263.88 264.18

17O OF2 -446.32 -449.03 -594.65 -567.82 -529.24 -661.19 -666.43 -527.18 -526.57
(CH3)2CO -297.91 -333.41 -356.15 -357.38 -316.75 -377.66 -496.74 -336.78 -338.14
CO -55.42 -92.00 -88.12 -89.37 -69.34 -116.70 -154.71 -77.19 -77.29
furan 64.82 58.15 15.02 19.10 32.06 3.69 -23.56 34.01 33.70
NNO 198.77 173.25 171.29 172.67 176.52 149.44 134.43 182.66 183.11
H2O 337.63 327.58 326.56 328.98 331.53 324.88 319.44 330.58 330.81

19F F2 -192.76 -174.56 -260.45 -247.88 -219.84 -300.28 -301.34 -225.02 -224.34
OF2 -24.28 19.51 -76.86 -59.60 -53.74 -78.98 -73.47 -42.87 -42.80
PF3 231.81 255.25 198.89 202.93 208.49 203.44 193.36 211.46 210.19
CF4 267.58 281.91 241.29 245.67 250.16 244.97 233.35 251.41 250.92
HF 419.91 414.32 411.49 412.90 414.58 411.59 406.05 414.15 414.25

31P PN 51.61 -110.39 -71.26 -72.02 -2.00 -195.36 -255.65 -68.22 -67.99
PF3 224.80 255.52 168.12 182.81 197.76 160.85 156.57 191.56 191.15
PH3 604.50 583.52 561.38 582.47 588.47 547.76 547.82 580.69 582.14
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Table B.5: Isotropic NMR shieldings (ppm) calculated with CCSD(T) and different pure DFT methods and the pcSseg-4 basis set.

Element Nucleus CCSD(T) BLYP PBE KT2 KT3 TPSS r2SCAN M06-L B97-D3

1H furan (at C2/5) 24.03 24.02 23.80 23.78 23.97 24.25 24.45 24.68 24.04
furan (at C3/4) 25.02 25.03 24.79 24.89 25.07 25.33 25.45 25.73 25.07
HF 28.82 29.81 29.77 29.83 29.92 29.96 29.80 30.09 29.73
PH3 29.46 29.70 29.50 29.57 29.70 29.70 29.69 29.86 29.65
(CH3)2CO 29.53 29.53 29.34 29.43 29.60 29.76 29.78 30.12 29.56
H2O 30.65 31.30 31.23 31.29 31.39 31.54 31.48 31.93 31.28
CH4 31.39 31.65 31.55 31.60 31.68 31.81 31.82 32.11 31.66
NH3 31.43 31.84 31.76 31.80 31.89 32.11 32.11 32.48 31.85

13C (CH3)2CO -10.84 -42.27 -36.99 -18.33 -18.28 -26.15 -10.94 -11.18 -31.88
CO 2.56 -19.20 -17.24 3.27 1.75 -3.42 7.97 2.37 -11.08
furan (C2/5) 47.36 25.17 30.00 43.03 43.38 40.40 51.12 50.16 33.11
CF4 65.96 36.05 41.05 52.26 52.84 47.68 59.76 60.12 44.35
furan (C3/4) 81.67 59.63 63.90 77.62 77.12 73.25 82.18 80.22 66.58
(CH3)2CO 162.88 145.04 148.99 156.23 155.53 154.86 162.75 160.82 149.17
CH4 199.39 186.49 190.57 195.22 192.79 193.64 202.17 191.60 188.18

15N PN -344.70 -426.12 -419.72 -378.39 -375.19 -388.08 -345.51 -365.59 -401.33
N2 -61.16 -90.09 -88.59 -64.66 -66.29 -73.09 -55.33 -65.30 -82.00
NNO 11.74 -7.63 -1.22 8.58 10.11 4.97 16.84 13.22 1.63
NNO 106.22 85.33 89.22 99.55 98.96 95.08 106.86 105.31 90.34
NH3 270.40 258.47 261.89 264.52 261.85 263.89 270.73 254.14 258.86

17O OF2 -446.32 -647.49 -635.45 -544.24 -555.13 -546.86 -475.19 -457.26 -622.30
(CH3)2CO -297.91 -350.92 -352.38 -305.22 -298.48 -311.92 -253.91 -233.13 -324.00
CO -55.42 -83.95 -84.92 -63.17 -61.02 -66.41 -43.70 -50.69 -71.81
furan 64.82 8.09 10.20 27.06 29.74 30.41 51.49 59.99 19.75
NNO 198.77 172.20 174.11 175.61 173.38 177.18 195.41 195.16 173.03
H2O 337.63 325.53 328.28 328.58 326.29 331.49 340.39 327.17 325.71

19F F2 -192.76 -280.23 -274.22 -218.45 -233.03 -225.05 -171.71 -162.39 -275.00
OF2 -24.28 -105.32 -94.37 -70.03 -73.42 -64.71 -22.78 -11.85 -89.95
PF3 231.81 182.48 181.38 185.25 195.76 201.76 228.86 236.75 195.56
CF4 267.58 229.92 231.05 237.15 241.28 245.70 264.90 268.15 238.31
HF 419.91 409.96 411.42 411.92 410.60 414.14 421.80 420.01 410.34

31P PN 51.61 -49.46 -47.15 32.29 34.21 12.25 63.92 46.58 -23.07
PF3 224.80 149.17 159.14 197.09 207.07 191.50 230.52 240.87 175.22
PH3 604.50 553.65 575.62 595.68 588.28 587.02 622.10 615.52 565.70
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Table B.6: Isotropic NMR shielding constants, calculated with different methods and the pcSseg-4 basis set (denoted “pS4”) and deviations
from these values due to smaller basis sets (∆pSn). All values are in ppm. No RI/COS approximations were employed for the two-electron
integrals.

HF B3LYP TPSS DSD-PBEP86 MP2

Nucleus pS4 ∆pS3 ∆pS2 pS4 ∆pS3 ∆pS2 pS4 ∆pS3 ∆pS2 pS4 ∆pS3 ∆pS2 pS4 ∆pS3 ∆pS2

1H PH3 29.68 −0.00 0.05 29.64 0.00 0.01 29.70 0.02 0.05 29.48 0.02 0.09 29.45 0.04 0.15
HF 28.12 0.01 0.14 29.34 0.01 0.11 29.96 −0.16 −0.03 28.89 0.04 0.20 28.55 0.06 0.31
H2O 30.49 0.00 0.11 31.05 0.00 0.10 31.54 −0.13 0.00 30.70 0.03 0.18 30.40 0.04 0.27
NH3 31.57 0.00 0.10 31.72 0.01 0.12 32.11 −0.09 0.05 31.49 0.02 0.16 31.28 0.03 0.23
CH4 31.64 −0.00 0.04 31.60 −0.00 0.03 31.81 −0.04 0.04 31.45 0.00 0.07 31.35 0.01 0.10
(CH3)2CO 29.95 −0.00 0.07 29.57 0.00 0.08 29.76 −0.04 0.08 29.54 0.01 0.13 29.46 0.02 0.18
furan (at C2/5) 24.28 0.00 0.06 24.00 0.00 0.09 24.25 −0.01 0.09 23.97 −0.00 0.12 23.78 0.03 0.19
furan (at C3/4) 25.30 −0.00 0.05 25.00 0.00 0.06 25.33 −0.05 0.05 24.96 0.00 0.10 24.77 0.02 0.16

13C (CH3)2CO −24.95 −0.08 1.54 −39.81 0.05 1.10 −26.15 0.34 0.77 −17.27 −0.04 2.43 −10.63 0.30 4.50
CO −28.07 −0.09 1.50 −22.94 −0.01 0.68 −3.42 −0.38 −0.31 −3.27 0.32 2.68 7.68 0.34 4.69
CF4 77.82 −0.01 1.15 44.64 0.06 0.73 47.68 −0.21 0.01 59.94 0.11 1.62 62.76 0.12 2.44
furan (C2/5) 36.85 −0.06 1.27 26.50 0.04 0.79 40.40 −0.25 −0.02 42.15 0.02 1.83 46.03 0.22 3.31
furan (C3/4) 74.51 −0.06 1.02 61.64 0.04 0.62 73.25 0.65 0.63 76.68 0.11 1.66 81.20 0.16 2.75
(CH3)2CO 162.51 −0.03 0.96 148.83 0.03 0.64 154.86 0.86 0.76 159.67 0.14 1.23 163.16 0.06 1.76
CH4 195.14 −0.00 0.60 188.84 0.04 0.35 193.64 0.21 −0.19 197.07 −0.03 0.52 201.06 −0.04 0.78

15N PN −511.98 −2.29 −9.20 −448.36 −2.20 −6.69 −388.08 −0.89 −4.02 −336.88 −1.58 2.04 −259.92 −1.53 11.92
N2 −116.14 −0.43 1.28 −97.32 −0.64 0.22 −73.09 −0.16 0.25 −65.74 −0.14 2.59 −44.01 −0.10 4.81
NNO −35.81 −0.05 1.05 −14.54 0.12 0.98 4.97 0.80 1.34 12.49 0.09 2.23 29.34 0.41 4.11
NNO 60.96 −0.07 0.71 79.04 0.15 0.46 95.08 0.90 0.84 108.12 0.46 2.18 128.78 0.50 3.95
NH3 262.09 −0.01 1.45 259.70 0.05 2.01 263.89 1.03 2.57 268.94 −0.07 1.71 275.85 0.00 2.16

17O OF2 −449.03 0.32 4.15 −594.65 0.60 3.40 −546.86 −0.01 1.79 −490.94 1.30 9.66 −468.62 2.15 16.30
(CH3)2CO −333.41 −0.49 −2.33 −356.16 −0.18 −2.76 −311.92 0.24 −2.72 −298.58 −1.15 −2.65 −274.33 −0.45 0.30
CO −92.00 −0.33 1.10 −88.12 −0.19 0.27 −66.41 0.25 2.22 −62.64 0.24 2.30 −48.72 −0.03 3.87
furan 58.15 −0.15 0.28 15.02 0.02 1.02 30.41 −0.39 0.47 48.01 −0.37 1.86 46.88 0.09 4.76
NNO 173.25 −0.20 −0.02 171.29 −0.07 −0.36 177.18 −0.07 0.06 198.50 −0.49 0.70 216.33 0.13 2.55
H2O 327.59 −0.07 1.21 326.56 −0.07 1.98 331.49 0.43 2.98 336.68 −0.16 1.54 345.53 −0.17 2.04

19F F2 −174.56 1.28 3.58 −260.46 1.86 2.78 −225.05 1.07 1.89 −201.79 1.92 6.24 −177.27 2.56 10.52
OF2 19.51 0.88 2.86 −76.86 1.66 4.16 −64.71 1.34 4.02 −29.47 1.54 5.77 −15.88 2.03 8.90
PF3 255.25 0.04 3.26 198.89 0.24 4.45 201.76 −0.02 3.90 224.61 0.35 6.02 231.79 0.82 8.42
CF4 281.91 −0.09 0.55 241.29 0.04 1.15 245.70 −0.42 0.49 262.22 0.00 1.93 268.35 0.21 3.19
HF 414.32 −0.14 0.16 411.49 −0.21 −0.20 414.14 −0.09 1.14 418.70 −0.12 −0.13 425.36 −0.42 −0.38

31P PN −110.40 −2.26 −17.16 −71.26 −2.94 −10.39 12.25 −2.33 −7.24 44.38 −1.69 −6.55 106.63 −0.92 −1.74
PF3 255.52 −0.13 0.97 168.12 −0.64 0.37 191.50 −0.54 0.82 209.12 0.64 2.55 215.96 1.33 3.94
PH3 583.52 0.15 2.25 561.38 −0.28 0.38 587.02 −0.02 0.73 594.52 −0.12 −1.73 609.04 −0.06 −3.85
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Table B.7: Isotropic NMR shielding constants, calculated at the HF/pcSseg-2 and
HF/pcSseg-3 levels and errors due to different approximations for the two-electron in-
tegrals. All values are in ppm.

HF/pcSseg-2 HF/pcSseg-3

Nucleus Exact
∆RIJ-

COSX-S
∆RIJ-

COSX-L
∆RIJK Exact

∆RIJ-
COSX-S

∆RIJ-
COSX-L

∆RIJK

1H PH3 29.73 −0.02 −0.00 −0.00 29.68 −0.01 −0.00 0.00
HF 28.26 −0.00 0.00 −0.00 28.12 −0.00 0.00 −0.00
H2O 30.61 −0.00 0.00 0.00 30.49 −0.00 0.00 0.00
NH3 31.67 −0.00 0.00 −0.00 31.57 0.00 0.00 0.00
CH4 31.67 −0.00 0.00 0.00 31.63 0.00 0.00 −0.00
(CH3)2CO 30.02 −0.00 0.00 0.00 29.94 0.00 0.00 0.00
furan (at C2/5) 24.34 0.00 −0.01 −0.01 24.28 0.00 0.00 −0.00
furan (at C3/4) 25.35 −0.01 0.00 0.00 25.30 0.00 0.00 0.00

13C (CH3)2CO −23.41 0.04 0.00 −0.01 −25.03 0.00 0.01 −0.01
CO −26.57 −0.01 −0.01 −0.03 −28.16 0.00 0.00 −0.03
CF4 78.97 0.03 0.00 −0.01 77.82 0.02 0.01 −0.01
furan (C2/5) 38.12 0.03 0.04 −0.02 36.79 0.01 −0.01 −0.01
furan (C3/4) 75.53 0.17 0.01 −0.00 74.45 −0.00 −0.01 0.00
(CH3)2CO 163.47 0.02 0.01 0.01 162.48 −0.02 −0.00 0.01
CH4 195.74 0.09 0.04 0.01 195.13 −0.01 0.02 0.01

15N PN −521.17 0.03 0.04 −0.04 −514.26 −0.03 −0.00 −0.04
N2 −114.86 −0.01 0.00 −0.01 −116.57 0.01 0.01 0.01
NNO −34.76 −0.00 −0.01 −0.00 −35.86 0.00 0.01 0.02
NNO 61.66 −0.01 −0.02 −0.01 60.89 0.00 0.01 −0.00
NH3 263.53 −0.35 0.07 0.00 262.08 0.10 −0.00 0.01

17O OF2 −444.88 0.03 0.05 −0.04 −448.72 −0.01 0.07 −0.02
(CH3)2CO −335.73 −0.25 0.08 0.03 −333.90 0.19 0.02 0.07
CO −90.90 −0.02 −0.02 −0.03 −92.33 0.02 0.02 −0.02
furan 58.42 0.09 −0.04 0.03 58.00 −0.03 0.01 0.05
NNO 173.23 −0.05 −0.05 −0.03 173.05 0.01 0.01 −0.03
H2O 328.79 0.42 0.04 −0.01 327.52 0.41 0.04 −0.00

19F F2 −170.97 0.00 0.12 −0.03 −173.27 −0.02 0.04 −0.02
OF2 22.37 −0.13 0.00 0.00 20.39 −0.02 0.00 0.01
PF3 258.51 −0.09 −0.03 0.13 255.29 −0.02 −0.01 0.17
CF4 282.46 −0.05 −0.03 0.07 281.82 −0.01 0.01 0.10
HF 414.48 0.00 −0.03 −0.01 414.18 0.01 −0.01 −0.01

31P PN −127.56 0.05 0.00 −0.09 −112.66 −0.04 0.00 −0.13
PF3 256.49 −0.02 −0.03 0.05 255.39 −0.02 −0.01 0.05
PH3 585.77 −3.09 −0.25 −0.10 583.67 −1.30 −0.13 −0.10
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Table B.8: Isotropic NMR shielding constants, calculated at the B3LYP/pcSseg-2 and
B3LYP/pcSseg-3 levels and errors due to different approximations for the two-electron
integrals. All values are in ppm.

B3LYP/pcSseg-2 B3LYP/pcSseg-3

Nucleus Exact
∆RIJ-

COSX-S
∆RIJ-

COSX-L
∆RIJK Exact

∆RIJ-
COSX-S

∆RIJ-
COSX-L

∆RIJK

1H PH3 29.66 −0.01 −0.00 −0.00 29.64 −0.00 0.00 0.00
HF 29.45 0.00 0.00 0.00 29.35 −0.00 0.00 0.00
H2O 31.15 0.00 0.00 0.00 31.05 −0.00 0.00 0.00
NH3 31.84 0.00 0.00 0.00 31.73 0.00 0.00 0.00
CH4 31.63 0.00 0.00 0.00 31.59 0.00 0.00 0.00
(CH3)2CO 29.65 0.00 0.00 0.00 29.57 0.00 0.00 0.00
furan (at C2/5) 24.09 0.00 0.00 0.00 24.00 0.00 0.00 0.00
furan (at C3/4) 25.06 0.00 0.00 0.00 25.00 0.00 0.00 0.00

13C (CH3)2CO −38.71 0.01 0.00 −0.00 −39.76 0.00 0.00 0.00
CO −22.26 0.00 0.00 −0.01 −22.95 0.00 0.01 −0.00
CF4 45.37 0.01 0.00 0.00 44.70 0.01 0.01 0.01
furan (C2/5) 27.29 0.00 0.01 0.00 26.54 0.01 0.00 0.00
furan (C3/4) 62.25 0.04 0.01 0.00 61.67 0.01 0.00 0.01
(CH3)2CO 149.47 0.01 0.01 0.01 148.86 0.01 0.01 0.01
CH4 189.20 0.03 0.02 0.02 188.88 0.02 0.02 0.02

15N PN −455.05 0.00 0.00 −0.01 −450.56 0.00 0.01 0.01
N2 −97.10 −0.01 −0.00 −0.00 −97.96 0.01 0.01 0.01
NNO −13.56 −0.00 −0.00 −0.00 −14.42 0.00 0.00 0.01
NNO 79.50 −0.00 −0.01 −0.00 79.19 0.00 0.00 0.00
NH3 261.70 −0.07 0.02 0.01 259.74 0.04 0.00 0.01

17O OF2 −591.24 0.06 0.07 0.04 −594.04 0.08 0.10 0.08
(CH3)2CO −358.92 −0.05 0.03 0.02 −356.33 0.07 0.03 0.03
CO −87.85 −0.00 −0.00 −0.00 −88.31 0.02 0.02 0.01
furan 16.04 0.03 −0.00 0.01 15.04 −0.00 0.01 0.02
NNO 170.93 −0.01 −0.01 −0.01 171.22 0.01 0.01 0.00
H2O 328.54 0.13 0.02 0.01 326.48 0.12 0.02 0.01

19F F2 −257.67 −0.00 0.02 −0.01 −258.60 0.02 0.03 0.01
OF2 −72.69 −0.05 −0.02 −0.03 −75.19 −0.01 −0.01 −0.01
PF3 203.34 −0.03 −0.01 0.02 199.12 0.00 0.00 0.04
CF4 242.44 −0.01 −0.01 0.01 241.33 0.01 0.01 0.03
HF 411.29 0.01 0.00 0.00 411.29 0.02 0.01 0.01

31P PN −81.65 0.01 −0.00 −0.01 −74.20 0.00 0.01 0.00
PF3 168.49 −0.01 −0.01 0.01 167.48 −0.01 −0.00 0.01
PH3 561.76 −0.70 −0.07 −0.06 561.09 −0.27 −0.02 −0.03
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Table B.9: Isotropic NMR shielding constants, calculated at the TPSS/pcSseg-2 and
TPSS/pcSseg-3 levels and errors due to RI approximation for the two-electron integrals
with the def2-J (RI/J) or def2-JK (RI/JK) auxiliary basis sets. All values are in ppm.

TPSS/pcSseg-2 TPSS/pcSseg-3

Nucleus Exact ∆RI/J ∆RI/JK Exact ∆RI/J ∆RI/JK

1H PH3 29.75 −0.01 −0.00 29.72 −0.01 −0.00
HF 29.93 −0.01 0.00 29.81 −0.01 0.00
H2O 31.54 −0.01 0.00 31.41 −0.01 0.00
NH3 32.17 −0.00 0.00 32.02 −0.00 0.00
CH4 31.85 −0.00 0.00 31.77 −0.00 0.00
(CH3)2CO 29.84 −0.00 0.00 29.72 −0.00 0.00
furan (at C2/5) 24.34 −0.00 0.00 24.24 −0.00 0.00
furan (at C3/4) 25.39 −0.00 0.00 25.29 −0.00 0.00

13C (CH3)2CO −25.38 −0.01 0.00 −25.81 −0.00 0.00
CO −3.73 0.00 0.00 −3.80 0.01 0.00
CF4 47.69 −0.00 0.00 47.48 0.00 0.01
furan (C2/5) 40.37 0.00 0.00 40.15 −0.01 0.01
furan (C3/4) 73.89 −0.01 0.01 73.90 −0.01 0.01
(CH3)2CO 155.61 0.00 0.01 155.72 −0.01 0.01
CH4 193.45 −0.03 0.02 193.84 −0.05 0.03

15N PN −392.10 0.55 −0.01 −388.97 0.70 0.01
N2 −72.85 0.09 −0.00 −73.25 0.10 0.00
NNO 6.31 0.02 −0.00 5.77 0.02 0.00
NNO 95.92 −0.03 −0.00 95.99 −0.02 0.00
NH3 266.46 −0.04 0.01 264.91 −0.05 0.01

17O OF2 −545.07 0.77 0.06 −546.87 0.75 0.10
(CH3)2CO −314.64 −0.04 0.02 −311.69 −0.03 0.03
CO −64.20 0.04 0.00 −66.17 0.05 0.02
furan 30.88 −0.01 0.00 30.02 0.00 0.01
NNO 177.24 −0.00 −0.00 177.12 0.00 0.01
H2O 334.47 −0.03 0.01 331.92 −0.05 0.02

19F F2 −223.16 0.53 −0.01 −223.98 0.44 0.02
OF2 −60.69 0.30 −0.03 −63.38 0.25 −0.01
PF3 205.66 0.20 −0.01 201.75 0.23 0.00
CF4 246.19 0.03 −0.00 245.29 0.03 0.01
HF 415.28 −0.02 0.01 414.06 −0.00 0.03

31P PN 5.01 0.68 0.00 9.92 0.81 0.01
PF3 192.31 −0.01 −0.00 190.96 −0.03 0.00
PH3 587.75 −0.48 −0.10 587.00 −0.48 −0.11
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Table B.10: Isotropic NMR shielding constants, calculated at the RI-MP2/pcSseg-2 and RI-MP2/pcSseg-3 levels and errors due to different
approximations for the two-electron Fock matrix contributions. All values are in ppm.

MP2 pcSseg-2 cc-pwCVQZ/C MP2 pcSseg-3 cc-pwCV5Z/C

Nucleus Exact
∆RIJ-

COSX-S
∆RIJ-

COSX-L
∆RIJ-

COSX-XL
∆RIJK Exact

∆RIJ-
COSX-S

∆RIJ-
COSX-L

∆RIJ-
COSX-XL

∆RIJK

1H PH3 29.61 −0.02 −0.00 −0.00 −0.00 29.49 −0.00 −0.00 0.00 −0.00
HF 28.86 0.01 0.01 0.00 0.00 28.62 0.01 0.00 −0.01 0.00
H2O 30.67 −0.00 0.00 0.00 0.00 30.45 0.01 0.01 0.00 0.00
NH3 31.51 −0.00 0.00 0.00 0.00 31.31 0.00 0.01 0.00 0.00
CH4 31.45 −0.00 0.00 0.00 0.00 31.36 0.01 0.00 0.00 0.00
(CH3)2CO 29.64 −0.00 0.00 0.00 0.00 29.48 0.01 −0.01 0.00 0.00
furan (at C2/5) 23.97 0.02 −0.00 −0.01 0.00 23.81 −0.00 −0.01 −0.01 0.00
furan (at C3/4) 24.93 −0.02 −0.00 0.00 0.00 24.80 −0.07 −0.01 0.01 0.00

13C (CH3)2CO −6.13 0.01 0.00 −0.00 −0.01 −10.33 0.47 0.48 0.06 −0.02
CO 12.36 −0.00 0.00 0.01 −0.01 8.02 0.01 0.01 0.00 −0.03
CF4 65.20 0.02 −0.01 0.00 0.00 62.88 −0.03 −0.01 0.01 0.02
furan (C2/5) 49.34 −0.05 0.02 0.02 −0.01 46.25 −0.54 −0.22 −0.01 −0.02
furan (C3/4) 83.96 0.14 0.02 0.02 0.00 81.36 0.52 −0.04 −0.02 0.00
(CH3)2CO 164.91 0.08 0.01 0.00 0.01 163.22 0.39 0.24 0.04 −0.00
CH4 201.84 0.09 0.05 0.05 0.01 201.02 0.23 0.16 0.05 0.01

15N PN −248.00 0.03 0.01 −0.00 0.04 −261.45 0.03 0.04 0.04 0.03
N2 −39.20 −0.00 0.01 −0.01 −0.00 −44.11 −0.09 −0.07 0.01 0.02
NNO 33.44 −0.01 −0.02 −0.01 0.00 29.75 −0.11 −0.09 −0.00 0.04
NNO 132.73 0.02 0.03 −0.00 −0.01 129.28 0.02 −0.02 0.01 0.03
NH3 278.01 −0.31 0.08 0.07 0.00 275.86 −0.36 −0.17 −0.07 0.00

17O OF2 −452.33 0.03 0.02 0.03 −0.06 −466.48 −0.11 −0.23 0.01 −0.04
(CH3)2CO −274.04 0.14 0.17 0.12 0.03 −274.78 1.61 2.17 0.49 −0.01
CO −44.85 0.06 0.07 −0.00 −0.01 −48.75 0.07 0.06 0.00 −0.07
furan 51.64 0.58 −0.10 −0.01 0.02 46.98 1.58 −0.05 −0.15 0.04
NNO 218.89 −0.00 −0.01 −0.01 −0.01 216.46 0.27 0.10 0.01 −0.02
H2O 347.57 0.43 0.03 0.02 −0.01 345.37 0.51 −0.13 0.06 −0.01

19F F2 −166.75 −0.02 0.10 0.01 −0.04 −174.71 −0.38 −0.23 0.03 −0.04
OF2 −6.98 −0.11 −0.01 −0.01 −0.00 −13.85 0.24 0.20 0.05 0.01
PF3 240.21 −0.09 −0.04 −0.02 0.15 232.62 0.10 −0.11 −0.06 0.20
CF4 271.54 −0.10 −0.11 0.01 0.08 268.56 −0.47 −0.39 0.01 0.13
HF 424.98 0.06 0.03 0.05 −0.01 424.94 0.11 −0.03 0.21 −0.01

31P PN 104.89 −0.01 −0.04 −0.00 0.02 105.71 −0.06 −0.03 0.05 0.00
PF3 219.90 −0.02 −0.03 −0.00 0.07 217.29 0.00 −0.03 −0.03 0.09
PH3 605.18 −2.86 −0.25 −0.16 −0.06 608.98 −1.26 −0.05 −0.01 −0.02
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Table B.11: Isotropic NMR shielding constants, calculated at the RI-DSD-PBEP86/pcSseg-2 and RI-DSD-PBEP86/pcSseg-3 levels and
errors due to different approximations for the two-electron Fock matrix contributions. All values are in ppm.

DSD-PBEP86 pcSseg-2 cc-pwCVQZ/C DSD-PBEP86 pcSseg-3 cc-pwCV5Z/C

Nucleus Exact
∆RIJ-

COSX-S
∆RIJ-

COSX-L
∆RIJ-

COSX-XL
∆RIJK Exact

∆RIJ-
COSX-S

∆RIJ-
COSX-L

∆RIJ-
COSX-XL

∆RIJK

1H PH3 29.57 −0.01 −0.00 −0.00 −0.00 29.50 −0.01 −0.00 −0.00 0.00
HF 29.08 0.00 0.00 0.00 0.00 28.92 0.00 −0.00 −0.00 0.00
H2O 30.88 −0.00 0.00 0.00 0.00 30.73 0.00 0.00 0.00 0.00
NH3 31.65 −0.00 0.00 0.00 0.00 31.50 0.00 0.00 0.00 0.00
CH4 31.51 0.00 0.00 0.00 0.00 31.45 0.00 0.00 0.00 0.00
(CH3)2CO 29.66 −0.00 0.00 0.00 0.00 29.54 0.00 −0.00 0.00 0.00
furan (at C2/5) 24.09 0.01 −0.00 −0.00 0.00 23.97 0.00 −0.00 0.00 0.00
furan (at C3/4) 25.06 −0.01 0.00 0.00 0.00 24.96 −0.02 0.00 0.01 0.00

13C (CH3)2CO −14.83 0.01 −0.00 −0.00 −0.01 −17.31 0.17 0.16 0.02 −0.01
CO −0.59 −0.00 −0.00 0.00 −0.01 −2.95 0.00 0.01 0.00 −0.01
CF4 61.56 0.02 −0.00 0.00 0.00 60.06 −0.00 0.00 0.01 0.01
furan (C2/5) 43.98 −0.02 0.02 0.02 −0.00 42.16 −0.18 −0.05 0.00 −0.01
furan (C3/4) 78.34 0.10 0.01 0.01 0.00 76.79 0.17 −0.01 −0.01 0.01
(CH3)2CO 160.90 0.03 0.01 0.00 0.01 159.81 0.09 0.06 0.01 0.01
CH4 197.58 0.06 0.03 0.04 0.01 197.04 0.06 0.05 0.03 0.02

15N PN −334.84 0.01 0.01 −0.00 0.01 −338.46 −0.00 0.01 0.02 0.02
N2 −63.15 −0.01 0.00 −0.01 −0.00 −65.88 −0.02 −0.02 0.01 0.01
NNO 14.72 −0.00 −0.01 −0.01 0.00 12.58 −0.04 −0.03 0.00 0.02
NNO 110.30 0.00 0.00 −0.00 −0.01 108.59 0.02 0.00 0.01 0.01
NH3 270.66 −0.21 0.06 0.05 0.01 268.87 −0.02 −0.04 −0.01 0.01

17O OF2 −481.29 0.08 0.09 0.04 −0.01 −489.65 −0.02 −0.02 0.06 0.01
(CH3)2CO −301.23 −0.06 0.09 0.09 0.03 −299.73 0.53 0.68 0.16 0.03
CO −60.34 0.01 0.02 −0.00 −0.01 −62.40 0.03 0.03 0.01 −0.02
furan 49.87 0.24 −0.03 0.00 0.02 47.64 0.39 −0.05 −0.07 0.04
NNO 199.20 −0.02 −0.02 −0.01 −0.02 198.01 0.10 0.05 0.01 −0.01
H2O 338.23 0.33 0.03 0.02 0.00 336.53 0.35 −0.01 0.04 0.00

19F F2 −195.55 −0.02 0.06 0.01 −0.03 −199.87 −0.13 −0.06 0.03 −0.03
OF2 −23.71 −0.11 −0.04 −0.02 −0.02 −27.93 0.07 0.06 0.01 −0.01
PF3 230.64 −0.07 −0.02 −0.01 0.10 224.97 0.03 −0.04 −0.02 0.13
CF4 264.16 −0.05 −0.05 0.01 0.05 262.23 −0.17 −0.13 0.01 0.08
HF 418.58 0.03 0.01 0.03 −0.00 418.58 0.06 −0.00 0.08 0.00

31P PN 37.83 0.00 −0.02 0.00 −0.01 42.70 −0.04 −0.01 0.03 −0.01
PF3 211.67 −0.01 −0.02 −0.00 0.04 209.76 −0.01 −0.01 −0.02 0.06
PH3 592.79 −2.01 −0.19 −0.13 −0.08 594.40 −0.82 −0.07 −0.05 −0.05
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Table B.12: Isotropic NMR shielding constants, calculated at the canonical MP2 level (“Exact”) with different pcSseg-n basis sets and
deviations from these reference values due to the RI-MP2 approximation with different auxiliary basis sets (“AA”, “AA3l”, “cwnC”). All
values are in ppm.

pcSseg-2 pcSseg-3 pcSseg-4

Nucleus Exact ∆cw3C ∆cw4C ∆cw5C ∆AA ∆AA3l Exact ∆cw4C ∆cw5C ∆AA ∆AA3l Exact ∆cw5C ∆AA ∆AA3l

1H PH3 29.61 0.00 0.00 0.00 0.00 0.00 29.49 −0.00 0.00 0.00 0.00 29.45 0.00 0.00 0.00
HF 28.86 0.00 −0.00 0.00 0.00 0.00 28.62 −0.00 0.00 0.00 0.00 28.55 −0.00 0.00 0.00
H2O 30.67 0.00 0.00 0.00 0.00 0.00 30.45 −0.00 0.00 0.00 0.00 30.40 0.00 0.00 0.00
NH3 31.51 0.00 0.00 0.00 0.00 0.00 31.31 −0.00 0.00 0.00 0.00 31.28 0.00 0.00 0.00
CH4 31.45 0.00 0.00 0.00 0.00 0.00 31.36 −0.00 0.00 0.00 0.00 31.35 0.00 0.00 0.00
(CH3)2CO 29.64 −0.00 −0.00 −0.00 −0.00 −0.00 29.48 −0.00 0.00 0.00 0.00 29.46 −0.00 0.00 0.00
furan (at C2/5) 23.97 0.00 0.00 0.00 0.00 0.00 23.81 −0.00 0.00 0.00 0.00 23.78 0.00 0.00 0.00
furan (at C3/4) 24.93 −0.00 0.00 0.00 −0.00 0.00 24.80 −0.00 0.00 0.00 0.00 24.77 0.00 0.00 0.00

13C (CH3)2CO −6.13 −0.04 −0.00 0.00 −0.02 −0.00 −10.33 −0.02 0.00 −0.01 0.00 −10.62 −0.01 −0.01 −0.00
CO 12.37 −0.03 −0.00 −0.00 −0.01 −0.00 8.02 −0.02 −0.00 −0.01 −0.00 7.69 −0.01 −0.01 −0.00
CF4 65.20 −0.00 0.00 0.00 −0.00 0.00 62.88 −0.01 −0.00 −0.00 0.00 62.76 −0.00 −0.00 0.00
furan (C2/5) 49.34 −0.02 −0.00 0.00 −0.01 −0.00 46.25 −0.02 −0.00 −0.00 0.00 46.04 −0.01 −0.00 −0.00
furan (C3/4) 83.96 −0.03 −0.00 0.00 −0.01 0.00 81.36 −0.02 0.00 −0.00 0.00 81.21 −0.01 −0.00 0.00
(CH3)2CO 164.91 −0.02 −0.00 −0.00 −0.01 −0.00 163.22 0.00 −0.00 −0.00 −0.00 163.16 −0.00 −0.00 −0.00
CH4 201.84 −0.01 −0.00 −0.00 −0.01 −0.01 201.01 0.03 0.00 0.00 0.00 201.06 0.00 0.00 0.00

15N PN −247.98 −0.11 −0.02 −0.00 −0.01 −0.02 −261.44 −0.06 −0.01 −0.03 −0.01 −259.88 −0.04 −0.03 −0.01
N2 −39.19 −0.03 −0.01 −0.00 −0.01 −0.00 −44.10 −0.02 −0.00 −0.01 −0.00 −44.00 −0.01 −0.00 0.00
NNO 33.44 0.00 0.00 −0.00 0.00 −0.00 29.75 −0.00 0.00 −0.00 0.00 29.34 −0.00 −0.00 −0.00
NNO 132.74 −0.02 −0.01 −0.00 −0.00 −0.00 129.28 −0.01 0.00 −0.00 0.00 128.79 −0.01 −0.00 −0.00
NH3 278.02 −0.04 −0.00 −0.00 −0.01 −0.01 275.85 0.03 0.00 0.00 0.00 275.85 0.00 −0.00 −0.00

17O OF2 −452.30 −0.27 −0.02 −0.00 −0.09 −0.00 −466.46 −0.09 −0.02 −0.04 −0.00 −468.57 −0.05 −0.04 −0.02
(CH3)2CO −274.02 −0.24 −0.02 0.00 −0.07 −0.01 −274.77 −0.08 −0.01 −0.03 −0.00 −274.28 −0.06 −0.02 −0.01
CO −44.84 −0.06 −0.01 −0.00 −0.01 −0.00 −48.75 −0.04 −0.00 −0.01 −0.00 −48.69 −0.03 −0.01 −0.00
furan 51.65 −0.09 −0.01 −0.01 −0.04 −0.01 46.98 −0.06 −0.01 −0.02 −0.01 46.91 −0.03 −0.01 −0.01
NNO 218.88 −0.00 0.00 0.01 −0.01 0.00 216.46 −0.01 −0.00 −0.01 0.00 216.34 −0.01 −0.00 0.00
H2O 347.58 −0.04 −0.00 −0.01 −0.01 −0.01 345.37 0.03 −0.00 0.00 0.00 345.53 0.00 0.00 0.00

19F F2 −166.74 −0.05 −0.01 0.01 −0.05 −0.01 −174.70 −0.02 −0.01 −0.02 −0.00 −177.25 −0.02 −0.02 −0.01
OF2 −6.98 0.05 −0.00 0.00 −0.03 0.00 −13.84 0.00 −0.01 −0.01 0.00 −15.86 −0.01 −0.01 −0.00
PF3 240.22 −0.08 −0.01 −0.00 −0.04 −0.01 232.63 −0.04 −0.01 −0.02 −0.01 231.82 −0.03 −0.02 −0.01
CF4 271.54 −0.04 −0.00 −0.00 −0.02 −0.00 268.56 −0.03 −0.01 −0.02 −0.00 268.37 −0.02 −0.01 −0.01
HF 424.98 0.00 0.00 −0.00 −0.01 −0.01 424.94 0.02 0.00 0.00 0.00 425.36 0.01 0.01 0.01

31P PN 104.91 −0.09 −0.01 −0.00 −0.02 −0.01 105.72 −0.05 −0.00 −0.03 0.00 106.67 −0.04 −0.02 −0.01
PF3 219.90 −0.02 −0.01 −0.00 −0.03 −0.01 217.29 −0.02 −0.00 −0.01 −0.00 215.98 −0.02 −0.02 −0.01
PH3 605.17 −0.06 0.01 −0.00 −0.02 −0.01 608.98 0.08 −0.00 −0.01 −0.01 609.05 −0.01 −0.01 −0.01
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Table B.13: Isotropic NMR shielding constants, calculated at the DSD-PBEP86 level
with the pcSseg-2 and pcSseg-3 basis sets and a large AutoAux-generated AuxC basis
(“AA3l”), as well as deviations from these reference values due to smaller auxiliary basis
sets (“cwnC”). All values are in ppm.

pcSseg-2 pcSseg-3

Nucleus AA3l ∆cw3C ∆cw4C AA3l ∆cw4C ∆cw5C

1H PH3 29.57 0.00 −0.00 29.50 −0.00 0.00
HF 29.08 0.00 −0.00 28.92 −0.00 0.00
H2O 30.88 0.00 0.00 30.73 −0.00 0.00
NH3 31.65 0.00 0.00 31.50 −0.00 0.00
CH4 31.51 0.00 −0.00 31.45 −0.00 0.00
(CH3)2CO 29.66 0.00 0.00 29.54 −0.00 0.00
furan (at C2/5) 24.09 0.00 0.00 23.97 −0.00 0.00
furan (at C3/4) 25.06 0.00 0.00 24.96 −0.00 0.00

13C (CH3)2CO −14.83 −0.02 0.00 −17.31 −0.01 0.00
CO −0.59 −0.02 −0.00 −2.95 −0.01 0.00
CF4 61.56 −0.01 −0.00 60.06 −0.00 0.00
furan (C2/5) 43.98 −0.01 0.00 42.16 −0.01 0.00
furan (C3/4) 78.35 −0.01 −0.00 76.80 −0.01 −0.00
(CH3)2CO 160.90 −0.01 0.00 159.81 0.00 0.00
CH4 197.58 −0.00 0.00 197.04 0.01 0.00

15N PN −334.83 −0.12 −0.01 −338.46 −0.05 −0.00
N2 −63.15 −0.03 −0.01 −65.87 −0.01 −0.00
NNO 14.71 −0.01 0.00 12.58 −0.00 0.00
NNO 110.31 −0.02 −0.00 108.59 −0.01 −0.00
NH3 270.66 −0.03 0.00 268.87 0.01 0.00

17O OF2 −481.27 −0.11 −0.01 −489.64 −0.04 −0.01
(CH3)2CO −301.22 −0.16 −0.01 −299.72 −0.05 −0.00
CO −60.33 −0.05 −0.00 −62.40 −0.03 −0.00
furan 49.88 −0.05 −0.00 47.64 −0.03 −0.00
NNO 199.20 −0.03 0.00 198.01 −0.01 −0.00
H2O 338.23 −0.03 0.00 336.53 0.01 −0.00

19F F2 −195.54 −0.10 −0.01 −199.86 −0.03 −0.01
OF2 −23.70 −0.05 −0.00 −27.93 −0.02 −0.00
PF3 230.64 −0.06 −0.00 224.97 −0.02 −0.00
CF4 264.16 −0.03 −0.00 262.23 −0.01 −0.01
HF 418.58 −0.01 0.00 418.58 0.00 0.00

31P PN 37.83 −0.10 0.00 42.70 −0.04 −0.00
PF3 211.67 −0.04 −0.00 209.76 −0.02 −0.00
PH3 592.78 −0.04 0.00 594.41 0.04 −0.01
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Table B.14: Isotropic NMR shielding constants (in ppm), calculated at the RI-DSD-PBEP86 and RI-MP2 levels with different basis sets
(pcSseg-n, denoted pSn, and cc-pwCVnZ/C, denoted cwnC) and with either all electrons correlated (AE) or with a frozen core (FC).

MP2 DSD-PBEP86

pS2 cwQC pS3 cw5C pS4 cw5C pS2 cwQC pS3 cw5C pS4 cw5C

Nucleus FC AE FC AE FC AE FC AE FC AE FC AE

1H PH3 29.65 29.61 29.55 29.49 29.52 29.45 29.59 29.57 29.53 29.50 29.51 29.48
HF 28.87 28.86 28.65 28.62 28.59 28.55 29.08 29.08 28.93 28.92 28.89 28.89
H2O 30.68 30.67 30.48 30.45 30.44 30.40 30.88 30.88 30.74 30.73 30.71 30.70
NH3 31.52 31.51 31.34 31.31 31.31 31.28 31.65 31.65 31.51 31.50 31.50 31.49
CH4 31.47 31.45 31.39 31.36 31.38 31.35 31.52 31.51 31.46 31.45 31.46 31.45
(CH3)2CO 29.66 29.64 29.51 29.48 29.49 29.46 29.67 29.66 29.56 29.54 29.55 29.54
furan (at C2/5) 24.00 23.97 23.85 23.81 23.82 23.78 24.10 24.09 23.99 23.97 23.99 23.97
furan (at C3/4) 24.97 24.93 24.85 24.80 24.83 24.77 25.07 25.06 24.98 24.96 24.98 24.96

13C (CH3)2CO −4.99 −6.13 −7.58 −10.33 −7.59 −10.63 −14.49 −14.83 −16.30 −17.31 −16.13 −17.27
CO 13.30 12.36 11.19 8.02 11.15 7.68 −0.35 −0.59 −1.81 −2.95 −2.00 −3.27
CF4 65.95 65.20 64.44 62.88 64.48 62.76 61.83 61.56 60.69 60.06 60.66 59.94
furan (C2/5) 50.39 49.34 48.66 46.25 48.68 46.03 44.31 43.98 43.04 42.16 43.12 42.15
furan (C3/4) 84.96 83.96 83.61 81.36 83.67 81.20 78.67 78.34 77.62 76.79 77.60 76.68
(CH3)2CO 165.29 164.91 164.16 163.22 164.19 163.16 161.03 160.90 160.18 159.81 160.08 159.67
CH4 202.00 201.84 201.51 201.02 201.61 201.06 197.63 197.58 197.23 197.04 197.28 197.07

15N PN −240.75 −248.00 −248.16 −261.45 −245.40 −259.92 −332.72 −334.84 −334.10 −338.46 −332.03 −336.88
N2 −38.24 −39.20 −40.83 −44.11 −40.24 −44.01 −62.92 −63.15 −64.73 −65.88 −64.36 −65.74
NNO 34.32 33.44 32.21 29.75 32.19 29.34 14.96 14.72 13.43 12.58 13.51 12.49
NNO 133.81 132.73 132.07 129.28 131.93 128.78 110.62 110.30 109.55 108.59 109.26 108.12
NH3 278.12 278.01 276.22 275.86 276.29 275.85 270.70 270.66 269.01 268.87 269.12 268.94

17O OF2 −451.31 −452.33 −461.96 −466.48 −463.25 −468.62 −481.08 −481.29 −487.94 −489.65 −488.84 −490.94
(CH3)2CO −271.61 −274.04 −268.75 −274.78 −267.48 −274.33 −300.53 −301.23 −297.56 −299.73 −295.97 −298.58
CO −43.86 −44.85 −45.72 −48.75 −45.20 −48.72 −60.06 −60.34 −61.30 −62.40 −61.30 −62.64
furan 52.90 51.64 49.79 46.98 50.05 46.88 50.30 49.87 48.74 47.64 49.25 48.01
NNO 219.76 218.89 218.54 216.46 218.68 216.33 199.52 199.20 198.81 198.01 199.42 198.50
H2O 347.62 347.57 345.60 345.37 345.83 345.53 338.26 338.23 336.63 336.53 336.83 336.68

19F F2 −166.03 −166.75 −171.41 −174.71 −173.27 −177.27 −195.44 −195.55 −198.68 −199.87 −200.27 −201.79
OF2 −6.36 −6.98 −11.41 −13.85 −12.96 −15.88 −23.55 −23.71 −27.01 −27.93 −28.32 −29.47
PF3 242.35 240.21 235.77 232.62 235.29 231.79 231.53 230.64 226.26 224.97 226.05 224.61
CF4 272.05 271.54 269.68 268.56 269.64 268.35 264.36 264.16 262.71 262.23 262.78 262.22
HF 424.98 424.98 425.01 424.94 425.47 425.36 418.60 418.58 418.64 418.58 418.79 418.70

31P PN 127.07 104.89 131.73 105.71 135.14 106.63 45.30 37.83 51.57 42.70 54.32 44.38
PF3 230.88 219.90 230.28 217.29 230.57 215.96 215.78 211.67 214.68 209.76 214.76 209.12
PH3 610.74 605.18 614.86 608.98 615.63 609.04 594.83 592.79 596.55 594.40 596.98 594.52
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Appendix C Additional data for Chapter 2

Table C.15: Parameters of the used double-hybrid functionals (see eq. 2.71 for defini-
tions).

Functional cX cC cO cS Ref.

B2PLYP 0.53 0.73 0.27 0.27 78
B2GP-PLYP 0.65 0.64 0.36 0.36 281
DSD-BLYP 0.71 0.54 0.47 0.40 85
DSD-PBEP86 0.69 0.44 0.52 0.22 85
NoDSD-PBEP86 0.72 0.44 0.51 0.36 85
revDSD-PBEP86 0.69 0.4296 0.5785 0.0799 89
ωB97X-2 0.636158a 1.00b 0.447105 0.529319 282
revωB97X-2 0.636158a 0.9518b 0.5123 0.4294 89
a At long range; 0.315503 at short range; ω = 0.3.
b DFT correlation also scaled via internal functional parameters.

Table C.16: Number of angular grid points per radial shell belonging to one of the five
atomic regions. Smaller grid sizes are used for H and He.

H–He Li–Lr
gn Innermost −→ Outermost Innermost −→ Outermost

g1 12 26 26 26 26 12 26 50 50 26
g2 12 12 26 50 26 12 26 50 110 50
g3 12 26 50 110 50 26 50 110 194 110
g4 26 50 110 194 110 26 110 194 302 194
g5 50 110 194 302 194 50 194 302 434 302
g6 50 194 302 434 302 50 302 434 590 434
g7 110 302 434 590 434 110 434 590 770 590

124



Table C.17: Shielding constants, calculated with HF using different basis sets: pcSseg-
4, extrapolated aug-cc-pCV[TQ]Z with extrapolation exponent α = 1.63 ([TQ1.63]),73

extrapolated aug-cc-pCV[TQ]Z with α = 1.05 ([TQ1.05])73,287 and a large multiwavelet
basis set (MW6).287 ME and MAE with respect to MW6 are given in ppm and MRE and
MARE are given in percent

Nucleus pcSseg-4 [TQ1.63] [TQ1.05] MW6

1H PH3 29.68
HF 28.12 28.15 28.09 28.12
H2O 30.49 30.55 30.49 30.51
NH3 31.57 31.68 31.65 31.59
CH4 31.64 31.60 31.60 31.55
(CH3)2CO 29.95
furan (at C2/5) 24.28
furan (at C3/4) 25.30

13C (CH3)2CO −24.95
CO −28.07 −27.40 −28.38 −28.41
CF4 77.82
furan (C2/5) 36.85
furan (C3/4) 74.51
(CH3)2CO 162.51
CH4 195.14 194.73 194.41 194.61

15N PN −511.98 −508.57 −511.08 −511.80
N2 −116.14 −114.39 −115.84 −116.07
NNO −35.81 −34.37 −35.55 −35.73
NNO 60.96 61.97 61.09 61.04
NH3 262.09 262.41 262.17 262.23

17O OF2 −449.03 −445.85 −448.32 −449.10
(CH3)2CO −333.41
CO −92.00 −90.84 −92.58 −92.83
furan 58.15
NNO 173.25 174.19 173.45 173.41
H2O 327.59 327.93 327.72 327.78

19F F2 −174.56
OF2 19.51 21.08 19.49 19.38
PF3 255.25
CF4 281.91
HF 414.32 414.63 414.54 414.56

31P PN −110.40 −107.79 −107.05 −109.37
PF3 255.52
PH3 583.52

ME 0.01 −1.01 −0.25
MAE 0.23 1.01 0.29
MRE −0.09 −1.41 −0.23
MARE 0.29 1.41 0.27
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Figure C.1: Deviations of isotropic shielding constants (ppm) for groups of nuclei, cal-
culated using different methods and the pcSseg-4 basis set, from empirical equilibrium
values. The number of nuclei in each group is given in parentheses. Boxes show the
IQREσ, whiskers show the MinEσ and MaxEσ, and lines show the MedEσ. Pure function-
als are shown in blue, hybrids and HF in orange, MP2 variants in yellow, and DHDFs in
green. Note the different scales used for the abscissa.
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Figure C.2: Relative deviations of chemical shifts (%), calculated using different methods
and the pcSseg-4 basis set, from empirical equilibrium values. The number of data points is
given in parentheses. Excluded: NH3 and H2O. Boxes show the IQRREδ, whiskers show
the MinREδ and MaxREδ, lines show the MedREδ, and diamonds show the MAREδ.
Pure functionals are shown in blue, hybrids and HF in orange, MP2 variants in yellow,
and DHDFs in green.
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Figure C.3: Deviations of isotropic shielding constants (ppm) for groups of nuclei, cal-
culated using different methods and the pcSseg-4 basis set, from experimental values. The
number of nuclei in each group is given in parentheses. Boxes show the IQREσ, whiskers
show the MinEσ and MaxEσ, and lines show the MedEσ. Pure functionals are shown in
blue, hybrids and HF in orange, MP2 variants in yellow, and DHDFs in green. Note the
different scales used for the abscissa.
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Figure C.4: Relative deviations of chemical shifts (%), calculated using different methods
and the pcSseg-4 basis set, from experimental values. The number of data points is given
in parentheses. Excluded: NH3 and H2O. Boxes show the IQRREδ, whiskers show the
MinREδ and MaxREδ, lines show the MedREδ, and diamonds show the MAREδ. Pure
functionals are shown in blue, hybrids and HF in orange, MP2 variants in yellow, and
DHDFs in green.
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RI integral transformation
Derivative Fock matrix
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TB: Internal Fock contribution
TB: External Fock contribution
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Figure C.5: Contributions, adding up to over 97 % of the total DB computation time
at the DSD-PBEP86/pS2/cw3C level for linear alkane chains (CnH(2n+2)), using different
approximations for the Fock matrix two-electron integrals (see Table 2.6). The calculations
were performed on 8 Intel Xeon E7-8837 2.67 GHz cores with 8 GB RAM per core. The
legend applies to all subplots.
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Appendix D Derivation of the PNO rotation station-

arity conditions

In Chapter 3, the MO and PNO response is parametrized using full, complex-valued
matrices, constrained with an explicit orthonormality condition, in contrast to the expo-
nential parametrization used previously for DLPNO-MP2.192 This has the consequence
that the final working equations for electric/magnetic perturbations, which are purely
real/imaginary, must be obtained as linear combinations of several Lagrangian stationar-
ity conditions. In this section we show a detailed derivation of the equations related to
PNO rotations and briefly discuss the analogous treatment of MO rotations.

The PNO rotation stationarity conditions have the following form:

0 ≡ ∂L
∂θij

=
∂EDLPNO

2

∂θij
+
∂∆EPNO

∂θij
+
∂CPNO

∂θij
+
∂CPNOO

∂θij
+
∂CSC

∂θij
(D.1)

0 ≡ ∂L
∂θij†

=

(
∂L
∂θij

)†
(D.2)

The separate terms are as follows:

∂EDLPNO
2

∂θij
= KjiθijT̃ij + KijθijT̃ji + F ij∗θij∗Dij − d′′ij(0),TS̃∗τij† (D.3)

∂∆EPNO

∂θij
=

1

2

(
Kjiθij

˜̂
Tij + Kijθij

˜̂
Tji +

_̃
Tij∗θijKji∗ +

_̃
Tji∗θjiKij∗

)
− 1

2

(
KjiθijNij ˜̂Tij + KijθijNij ˜̂Tji

+
_̃
Tij∗θijNijKji∗ +

_̃
Tji∗θjiNijKij∗

)
Nij (D.4)

∂CPNO

∂θij
=

1

2

_̃
Tij∗θij

(
^
Tjivij,T + vij

^
Tji
)

+
1

2

_̃
Tji∗θij

(
^
Tijvij,T + vij

^
Tij
)

(D.5)

∂CPNOO

∂θij
= Sij∗θij∗xij (D.6)

∂CSC

∂θij
=

1

2

[
F ij∗θij∗wij,T^Tij + F ij∗θij∗wij^Tji +

_
Tji∗θijwij∗Fij∗

+
_
Tij∗θijwij†Fij∗ +

_
Rij∗θijwij† +

_
Rij†θijwij∗

]
(D.7)

where quantities in the full PNO+CPNO basis are expanded as

Kij = θij,TKijθij (D.8)
^
Rij = θij†

_
Rijθij∗ (D.9)

Sij = θij†Sijθij = θij†d′′ij(0)†S̃d′′ij(0)θij (D.10)

Fij = θij†F ijθij (D.11)

The index µ̃′ of the intermediate τ ijãµ̃′ spans the PAO domains of all pairs ik and jk included
in the sum, i.e. those for which |Fkj | or |Fki |, respectively, is greater than FCut. Note
also that the amplitudes Tij are implicitly non-zero only in the PNO block. To obtain
equations for vij, we take the following linear combination, where the contributions from
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CSC and CPNOO drop out:

0 ≡
[
∂L
∂θij

− ∂L
∂θij†

]∣∣∣∣
λ=0

=

[
∂EDLPNO

2

∂θij
− ∂EDLPNO

2

∂θij†

+
∂∆EPNO

∂θij
− ∂∆EPNO

∂θij†
+
∂CPNO

∂θij
− ∂CPNO

∂θij†

]∣∣∣∣
λ=0

(D.12)

Only rotations between PNOs and CPNOs result in the non-zero equations shown in
eq. 3.60. In addition, we use eq. 3.57 (at λ = 0) to express eq. D.5 as

∂CPNO

∂θij
=

1

2

[
_̃
Tij∗θij

(
NijKji∗Nij −Kji∗)+

_̃
Tji∗θij

(
NijKij∗Nij −Kij∗)

+
_
Tij∗θij

(
wij† (Fjj + Fii)− Fijwij† −wij†Fij∗)

+
_
Tji∗θij

(
wij∗ (Fjj + Fii)− Fijwij∗ −wij∗Fij∗)] (D.13)

and after expanding the semi-canonical residuals in eq. D.7 we obtain a different expression
for eq. D.1:

0 ≡ ∂L
∂θij

=
1

2
Kjiθijgij +

1

2
Kijθijgij,T + F ij∗θij∗D′′ij − d′′ij(0),TS̃∗τij†

+ Sij∗θij∗xij
(D.14)

where, padding Dij with zeros up to the full PNO+CPNO basis, we have substituted

D′′ij = Dij +
1

2

(
wij^Tji + wij,T^Tij +

^
Tji∗wij∗ +

^
Tij∗wij†

)
(D.15)

If we define L−PNOO = L − CPNOO we obtain a solution for xij:

xij = − ∂L−PNOO

∂θij

∣∣∣∣
λ=0

= −1

2
Kjigij − 1

2
Kijgij,T −F ij∗D′′ij + d′′ij(0),TS̃∗τij† (D.16)

Note that we obtain a different expression from the Hermitian conjugate:

xij = − ∂L−PNOO

∂θij†

∣∣∣∣
λ=0

= −1

2
gij†Kij∗ − 1

2
gij∗Kji∗ −D′′ijF ij∗ + τijS̃∗d′′ij(0)∗ (D.17)

but both equations are equivalent, provided that eq. D.12 is fulfilled.
To obtain the perturbed multipliers vij,λ, we first express the perturbed PNO/CPNO

stationarity conditions as:

0 ≡ d

dλ

∂L
∂θij

=
d

dλ

(
∂L−PNOO

∂θij
+ Sij∗θij∗xij

)
=

d

dλ

∂L−PNOO

∂θij
+ θij,λ,T

∂L−PNOO

∂θij
+ xij,λ (D.18)

0 ≡ d

dλ

∂L
∂θij†

=
d

dλ

∂L−PNOO

∂θij†
+
∂L−PNOO

∂θij†
θij,λ∗ + xij,λ (D.19)

where we have used eqs. D.16, D.17, and 3.98. We then take the linear combination

0 ≡ d

dλ

(
∂L
∂θij

− ∂L
∂θij†

)
(D.20)
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in which xij,λ cancels out to obtain eq. 3.111. A solution for xij,λ can also be obtained
from eq. D.18:

xij,λ =
d

dλ

(
−1

2
Kjigij − 1

2
Kijgij,T − Fij∗D′′ij + d′′ij,TS̃∗τij†

)
(D.21)

This is equal to the Hermitian conjugate, obtained from eq. D.19, if eq. D.20 is fulfilled.
The derivation of the MO rotation stationarity conditions in analogous to the above

and to that given for RI-MP2 in Section 2.1.3: the contributions from CMOO cancel in the
linear combination:

0 ≡
[
∂L
∂U
− ∂L
∂U†

]∣∣∣∣
λ=0

(D.22)

which gives the Z-CPL, Z-CV, and Z-CPSCF equations 3.61, 3.70, and 3.72, respectively,
while solutions for x can be obtained from either equation separately:

x =
∂L−MOO

∂U

∣∣∣∣
λ=0

(D.23)

x = −∂L−MOO

∂U†

∣∣∣∣
λ=0

(D.24)

L−MOO ≡ L− CMOO (D.25)

which are equivalent, provided that eq. D.22 is fulfilled. The second derivatives are also
treated analogously – we first express the stationarity conditions as:

0 ≡ d

dλ

∂L
∂U

=
d

dλ

∂L−MOO

∂U
+ Uλ,T∂L−MOO

∂U
+ xλ (D.26)

0 ≡ d

dλ

∂L
∂U†

=
d

dλ

∂L−MOO

∂U†
+
∂L−MOO

∂U†
Uλ∗ + xλ (D.27)

and then obain the perturbed Z-CPL, Z-CV, and Z-CPSCF equations 3.113, 3.116,
and 3.117, respectively, from the linear combination in which xλ cancels:

0 ≡ d

dλ

(
∂L
∂U
− ∂L
∂U†

)
(D.28)

Equivalent solutions for xλ can be obtained from either eq. D.26 or eq. D.27, however,
this is not necessary for the properties discussed in the present work.
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Appendix E Coordinates of the test set molecules

from Chapter 3

The coordinates below are given in Angstrøm in XYZ format. All systems are closed-shell;
the charge, if any, is given in the comment line. In the interest of space, the coordinates
of the glycine chains, [n]helicenes, and vancomycin are not included here. However, they
are published in the supplementary material of ref. 317.

Toy systems

These are the pentane and water dimer examples from Section 3.2.2.

17

C5H12

H -0.629312 0.000000 -0.889981

C 0.000000 0.000000 0.000000

H 0.629312 0.889981 0.000000

H 0.629312 -0.889981 0.000000

C -0.889120 0.000000 1.257405

H -1.518432 0.889981 1.257405

H -1.518432 -0.889981 1.257405

C 0.000000 0.000000 2.514809

H 0.629312 0.889981 2.514809

H 0.629312 -0.889981 2.514809

C -0.889120 0.000000 3.772214

H -1.518432 0.889981 3.772214

H -1.518432 -0.889981 3.772214

C 0.000000 0.000000 5.029618

H 0.629312 0.889981 5.029618

H 0.629312 -0.889981 5.029618

H -0.629312 0.000000 5.919599

6

H2O dimer

O 0.000000 0.066196 0.000000

H -0.753371 -0.525286 0.000000

H 0.753371 -0.525286 0.000000

O 0.000000 0.066196 5.556361

H -0.753371 -0.525286 5.556361

H 0.753371 -0.525286 5.556361

Benchmark systems

Below are the systems shown in Figure 3.4.

48

anthracene dimer

C -0.014583 0.019296 0.019945

C 0.015588 -0.068948 1.443598

C 1.208832 -0.159702 2.117976

C 2.443170 -0.148967 1.406576

C 2.456414 -0.051249 0.036071

C 1.238642 0.023672 -0.703387

H -0.933051 -0.091030 1.982926

H 1.217494 -0.244434 3.206160

H 3.381052 -0.219349 1.959877

H 3.399668 -0.054392 -0.513591

C 1.217474 0.034863 -2.103734

C 0.014635 0.019250 -2.819884

C -0.015532 -0.068969 -4.243543

C -1.208778 -0.159768 -4.917910

C -2.443113 -0.149069 -4.206502

C -2.456361 -0.051288 -2.836005

C -1.238592 0.023661 -2.096550

H 0.933094 -0.090928 -4.782895
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H -1.217449 -0.244447 -6.006098

H -3.380994 -0.219490 -4.759800

H -3.399615 -0.054408 -2.286346

C -1.217421 0.034906 -0.696204

H 2.162529 -0.004165 -2.650377

H -2.162476 -0.004140 -0.149558

C -0.703878 -3.284869 -2.617432

C 0.696466 -3.273651 -2.638699

C 1.435837 -3.198719 -3.856521

C 2.806340 -3.100991 -3.843368

C 3.517838 -3.090271 -2.609087

C 2.843545 -3.181031 -1.415797

C 1.419887 -3.269194 -1.385525

H 0.886131 -3.195668 -4.799748

H 3.359574 -3.030627 -4.781292

H 4.606024 -3.005588 -2.617834

H 3.382930 -3.158990 -0.467189

C 0.703825 -3.284846 -0.182633

C -0.696518 -3.273661 -0.161364

C -1.435880 -3.198650 1.056460

C -2.806382 -3.100920 1.043305

C -3.517886 -3.090313 -0.190975

C -2.843602 -3.181112 -1.384269

C -1.419936 -3.269212 -1.414541

H -0.886171 -3.195567 1.999686

H -3.359614 -3.030494 1.981225

H -4.606081 -3.005735 -0.182223

H -3.383030 -3.159234 -2.332856

H -1.250586 -3.245821 -3.562449

H 1.250536 -3.245742 0.762382

43

ATP 4-

C -1.576263 -0.517809 2.519624

C -0.276695 -0.324338 1.699527

C 0.170085 1.053123 2.240267

C -2.160128 0.906512 2.443712

O -0.961931 1.740809 2.672654

H -2.549650 1.151734 1.447172

C -3.179900 1.261980 3.507566

O -2.362141 -1.588395 2.126323

H -1.280915 -0.686451 3.579680

O -0.480541 -0.246479 0.331972

H 0.486952 -1.093046 1.950055

H 0.744435 1.609638 1.483768

N 1.072530 0.921789 3.426385

H -3.413428 2.339915 3.440196

O -4.339268 0.485202 3.376433

H -2.739445 1.051486 4.507253

C 2.433704 0.794584 3.432716

C 0.678306 0.933581 4.733082

P -5.562986 1.005339 2.269894

C 2.793834 0.731090 4.803949

N 1.691462 0.821820 5.609339

H -0.373020 1.058708 4.979027

N 3.305034 0.780254 2.407718

C 4.572584 0.696625 2.806657

N 5.049509 0.632133 4.080068

H 5.332192 0.683992 2.018977

C 4.169548 0.645449 5.085612

N 4.630466 0.560140 6.397104

H 5.563089 0.940948 6.512641

H 3.953764 0.903838 7.072690

H -2.781009 -1.312077 1.228226

H -1.493075 -0.342211 0.068413

O -6.811305 0.290873 2.778470

O -5.095988 0.288930 0.880527

P -4.028231 0.482544 -0.456995

O -5.465387 2.528477 2.257689

O -3.424283 1.878520 -0.399735

O -4.974096 0.073789 -1.626388
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O -2.950942 -0.644556 -0.135518

P -5.029839 -0.194823 -3.536341

O -6.271131 0.660424 -3.886431

O -5.234160 -1.727200 -3.590803

O -3.663597 0.342050 -4.008795

24

caffeine

C -0.490943 -0.681235 -0.009146

C 0.886732 -0.693286 -0.028792

N 1.611792 0.468546 -0.022553

C 0.956284 1.689004 -0.021661

O 1.570890 2.738760 -0.043216

N -0.446090 1.663514 0.014463

C -1.269203 0.515951 0.008722

O -2.489808 0.585225 0.019443

N -0.865045 -2.015012 0.001624

N 1.372812 -1.959365 -0.041383

C 0.286618 -2.723561 -0.022453

C -2.224959 -2.528249 0.017743

C 3.068854 0.463776 -0.034295

C -1.094299 2.973845 0.050119

H 0.295187 -3.802474 -0.024229

H -2.198207 -3.579230 0.300206

H -2.815272 -1.966459 0.736260

H -2.687554 -2.420281 -0.963490

H 3.444711 0.803847 -1.000088

H 3.399593 -0.552853 0.156699

H 3.440040 1.137974 0.733649

H -2.142240 2.817758 0.283048

H -0.612916 3.591470 0.803892

H -0.996979 3.472333 -0.914563

36

coronene

C -0.515149 -1.337548 0.000025

C 0.900713 -1.114666 0.000032

C -1.415886 -0.222738 0.000019

C 1.415903 0.222760 0.000031

C -0.900696 1.114688 0.000018

C 0.515165 1.337570 0.000025

C -1.030023 -2.674617 0.000026

C 1.801114 -2.229165 0.000038

C -2.831321 -0.445493 0.000013

C 2.831338 0.445515 0.000038

C -1.801097 2.229187 0.000012

C 1.030040 2.674639 0.000024

C -0.107792 -3.767248 0.000032

C -2.446919 -2.866601 0.000020

C 1.259004 -3.552179 0.000038

C 3.208445 -1.976781 0.000044

C -3.316572 -1.790447 0.000013

C -3.705806 0.685730 0.000006

C 3.705822 -0.685708 0.000044

C 3.316588 1.790469 0.000037

C -3.208428 1.976803 0.000006

C -1.258987 3.552201 0.000011

C 2.446935 2.866624 0.000030

C 0.107809 3.767270 0.000017

H -0.507491 -4.793413 0.000033

H -2.838757 -3.895787 0.000020

H 1.954169 -4.406366 0.000043

H 3.897339 -2.835959 0.000049

H -4.405014 -1.957667 0.000009

H -4.793104 0.511169 0.000002

H 4.793120 -0.511146 0.000049

H 4.405030 1.957689 0.000042

H -3.897322 2.835981 0.000000

H -1.954152 4.406388 0.000006

H 2.838774 3.895810 0.000030

H 0.507508 4.793435 0.000017
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25

ebselen

N 2.481307 -0.087176 -0.031100

Se 1.673417 -1.784765 -0.135544

C 0.204002 0.510065 0.032788

C 0.018085 -0.867037 -0.051633

C 1.600713 0.987318 0.041298

C -1.253926 -1.427248 -0.066799

C -2.345689 -0.573089 0.003615

C -2.173916 0.811611 0.090274

C -0.900103 1.355753 0.105849

O 1.949332 2.152132 0.109884

C 5.912907 1.128072 -0.731882

C 6.680949 0.137548 -0.129669

C 6.047907 -0.918836 0.513168

C 4.661836 -0.981277 0.557670

C 3.892898 0.009082 -0.055316

C 4.526533 1.070054 -0.706499

H -1.396692 -2.498164 -0.132061

H -3.344909 -0.989678 -0.008681

H -3.040350 1.456986 0.145706

H -0.732819 2.423244 0.173681

H 6.395528 1.955790 -1.236071

H 7.761742 0.189355 -0.160562

H 6.630775 -1.695455 0.991602

H 4.174955 -1.792896 1.083471

H 3.934759 1.842863 -1.169308

41

penicillin

C 1.814441 -2.014653 1.677276

C 2.751715 -1.233401 -0.388794

C 2.138807 -0.809522 2.284277

C 3.076985 -0.022979 0.216660

C 2.771540 0.191161 1.553980

C 1.667551 -3.521913 -0.329014

C -1.714202 2.521143 0.690571

C -3.479206 1.266532 1.963304

H 0.150356 -1.582582 -0.862633

C 2.113751 -2.242055 0.332194

O -5.627607 0.713883 -0.467330

O -2.166551 -0.749140 -2.976585

O -0.476631 -4.627656 -0.401192

O -4.671233 2.731713 -0.745328

C -4.643931 1.384928 -0.596520

C 0.152359 -3.597655 -0.540633

C -3.207780 0.891835 -0.586697

C -1.832471 -2.216218 -0.915471

C -2.363871 -1.101738 -1.850571

H -5.602901 3.003190 -0.725273

N -0.422818 -2.411369 -0.907075

C -2.469567 -1.344879 0.220884

C -2.501996 1.217551 0.787368

S -1.322527 -0.193886 1.048091

N -3.110169 -0.530400 -0.817715

H -2.675547 1.406914 -1.389084

H -3.148162 -1.834275 0.915601

H -2.397423 3.345792 0.482727

H -1.199947 2.732300 1.629140

H -0.972750 2.473656 -0.107075

H -4.057133 0.346832 2.052516

H -2.921831 1.414721 2.887730

H -4.179599 2.098053 1.854934

H -2.326034 -3.178111 -1.039800

H 2.144610 -3.638712 -1.305126

H 1.931147 -4.394226 0.267425

H 1.307948 -2.785701 2.246264

H 2.994348 -1.393576 -1.432788

H 1.886752 -0.644752 3.323995

H 3.569692 0.750455 -0.358844

H 3.026828 1.131279 2.025928
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44

sitagliptin 1+

C 5.189277 7.529162 33.837135

C 4.952310 7.809722 31.072724

C 4.049120 8.441443 31.922171

C 4.168620 8.308206 33.293071

H 3.439273 8.803646 33.921066

F 4.822361 7.952372 29.757234

F 3.062560 9.172486 31.402763

C 5.353161 7.336853 35.321380

H 4.456410 7.696293 35.833185

H 5.451570 6.268227 35.536210

H 5.972194 8.007749 37.896298

C 5.457028 11.892804 34.133521

C 4.558883 12.008786 32.946245

N 5.025834 11.848874 31.675758

C 6.372742 11.391942 31.334068

N 3.287724 12.308961 32.944339

C 3.922966 12.077753 30.894698

N 2.883913 12.358035 31.630456

C 3.956979 12.010358 29.398295

F 4.812174 12.935152 28.902639

F 4.420070 10.805396 28.990833

F 2.762899 12.208794 28.866922

H 5.485610 9.929321 35.880900

H 4.902225 11.437253 34.945177

H 6.333434 10.337672 31.059197

C 6.069540 6.911136 32.957517

C 5.979025 7.035584 31.586267

H 6.678915 6.539084 30.929260

F 7.055534 6.149250 33.477532

C 6.583223 8.073538 35.853990

N 6.761310 7.691696 37.326331

O 8.078408 9.381641 33.965184

H 7.490145 7.726135 35.361439

H 7.614767 8.102524 37.712143

H 6.828689 6.675295 37.425510

C 6.507131 9.589957 35.728672

C 7.125094 10.018088 34.384829

N 6.639653 11.118856 33.767324

C 7.282801 11.599246 32.539926

H 7.127003 10.076431 36.489591

H 5.763491 12.889939 34.468088

H 6.743097 11.956428 30.479901

H 8.214693 11.060749 32.402233

H 7.501144 12.662034 32.669261

92

tweezer complex

N 5.323376 8.894292 15.683438

H 6.008335 5.939395 14.844914

H 6.728273 6.998069 12.237493

H 6.392142 9.727046 13.165319

C 6.262998 8.852781 16.387144

H 6.051308 5.626441 20.711084

H 5.997106 6.772760 23.401417

H 5.617173 9.514511 22.461966

H 6.237570 8.810903 19.088449

H 6.792653 12.530158 13.779448

H 6.146629 12.155297 16.583965

H 5.919504 12.377819 21.940614

H 5.887650 12.104602 19.050723

C 9.377810 6.257590 14.164567

C 9.926215 5.682276 15.310076

H 11.016157 5.625785 15.456396

C 9.043718 5.168591 16.287568

H 9.453991 4.700972 17.193732

C 7.653156 5.254527 16.118705

H 6.982243 4.857714 16.895181

C 7.098333 5.850326 14.964286

C 7.971701 6.334060 13.992072
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C 7.734770 7.093126 12.681579

C 10.002059 6.977921 12.959177

H 11.070414 6.772643 12.766310

C 8.962299 6.579807 11.862203

H 9.107111 7.132495 10.912229

H 8.930308 5.487680 11.674779

C 9.615596 8.451991 13.149839

C 10.361156 9.570561 13.551983

H 11.450394 9.514603 13.705777

C 9.647310 10.759931 13.767308

C 8.238262 10.815569 13.615030

C 7.489468 9.695039 13.230985

C 8.207833 8.518363 12.984638

C 9.822090 8.807060 17.515059

H 10.830319 8.810852 17.079487

C 8.704796 8.801295 16.680516

H 8.825175 8.794557 15.590961

C 7.409615 8.815193 17.246689

N 11.744423 8.894566 20.484590

C 7.689681 6.257865 22.003064

C 7.141251 5.682810 20.857440

C 8.023735 5.169353 19.879815

H 7.613453 4.702048 18.973497

C 9.414299 5.255172 20.048710

H 10.085188 4.858583 19.272100

C 9.969149 5.850705 21.203255

H 11.059154 5.939670 21.322668

C 9.095797 6.334290 22.175558

C 9.332758 7.093158 23.486168

H 10.339256 6.998017 23.930233

C 7.065467 6.978023 23.208564

C 7.451967 8.452089 23.018039

C 6.706388 9.570635 22.615891

C 7.420209 10.760032 22.400636

C 8.829257 10.815687 22.552950

C 9.578069 9.695153 22.936969

H 10.675398 9.727174 23.002606

C 8.859721 8.518453 23.183282

C 7.245799 8.807116 18.652873

C 8.363097 8.801538 19.487410

H 8.242844 8.795009 20.576979

C 9.658272 8.815336 18.921232

C 10.804862 8.853097 19.780803

C 8.105225 6.579754 24.305478

H 7.960428 7.132316 25.255527

H 8.137203 5.487602 24.492756

C 7.801513 12.203787 14.087750

C 10.077315 12.123644 14.325068

H 11.148005 12.377749 14.227276

C 9.032288 13.039536 13.608919

H 9.029798 14.077357 13.998843

H 9.146406 13.040106 12.506286

C 9.500504 12.159341 15.745115

C 10.085405 12.124874 16.993644

H 11.179915 12.104696 17.117201

C 7.813286 12.136269 18.007769

C 7.242342 12.157645 16.694460

C 8.075197 12.193467 15.595946

C 9.265995 12.203911 22.080216

H 10.274844 12.530296 22.388538

C 6.990201 12.123729 21.842854

C 8.035195 13.039648 22.559005

H 8.037675 14.077461 22.169059

H 7.921053 13.040238 23.661635

C 7.567042 12.159396 20.422822

C 6.982154 12.124844 19.174292

C 9.254279 12.136280 18.160177

C 9.825212 12.157730 19.473495

H 10.920926 12.155458 19.583996

C 8.992346 12.193556 20.572007
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Appendix F Benchmark data from Chapter 3

In the following tables, the data a grouped by element and indexed according to the order
in the structures given in Appendix E.

F.1 RI-MP2 NMR shieldings and DLPNO-MP2 errors

Table F.18: Isotropic NMR shieldings (in ppm) for the anthracene dimer calculated with
RI-MP2/RIJONX and deviations due to COSX and DLPNO-MP2 using the LoosePNO,
NormalPNO, and TightPNO settings, with or without COSX.

El. Ind.
RI-MP2
RIJONX

RI-MP2
RIJCOSX

LoosePNO
RIJONX

LoosePNO
RIJCOSX

NormalPNO
RIJONX

NormalPNO
RIJCOSX

TightPNO
RIJCOSX

1H 7 23.513 -0.006 -0.006 -0.021 0.011 0.010 0.010
8 23.474 0.001 0.047 0.060 0.014 0.021 0.004
9 23.474 -0.004 0.049 0.028 0.016 0.008 -0.010

10 23.508 -0.001 -0.002 -0.012 0.010 -0.003 0.011
18 23.510 -0.004 0.000 0.012 0.012 0.021 0.010
19 23.470 0.003 0.056 0.081 0.016 0.029 0.008
20 23.472 -0.006 0.056 0.040 0.016 0.011 -0.010
21 23.508 0.002 0.002 0.000 0.013 0.001 0.023
23 24.437 -0.009 -0.007 -0.045 -0.011 -0.053 -0.022
24 24.438 -0.005 -0.016 -0.072 -0.010 -0.048 -0.019
32 23.504 0.001 -0.003 -0.010 0.010 -0.019 0.017
33 23.471 -0.005 0.048 0.030 0.023 0.026 -0.009
34 23.471 0.003 0.048 0.081 0.018 0.032 0.007
35 23.510 -0.001 -0.006 0.011 0.008 0.022 0.016
43 23.508 -0.003 0.004 -0.016 0.009 -0.026 0.018
44 23.474 -0.008 0.055 0.026 0.019 0.022 -0.011
45 23.472 0.006 0.054 0.091 0.021 0.034 0.014
46 23.509 -0.001 -0.002 0.023 0.007 0.030 0.015
47 24.432 -0.002 -0.017 0.000 -0.016 -0.033 -0.026
48 24.436 0.002 -0.007 -0.013 -0.013 -0.024 -0.012

13C 1 57.591 -0.026 0.345 0.288 0.113 0.055 -0.047
2 62.189 -0.014 0.317 0.283 0.103 0.085 0.023
3 67.346 0.008 0.442 0.440 0.204 0.167 0.034
4 67.292 0.041 0.446 0.506 0.198 0.272 0.101
5 62.300 -0.052 0.308 0.240 0.092 0.029 -0.045
6 57.624 -0.051 0.355 0.324 0.101 0.082 -0.026

11 67.319 -0.040 0.384 0.251 0.122 -0.009 -0.077
12 57.591 -0.028 0.479 0.466 0.147 0.151 0.008
13 62.189 0.007 0.326 0.294 0.094 0.062 0.026
14 67.345 0.002 0.500 0.538 0.223 0.230 0.073
15 67.292 0.039 0.497 0.537 0.221 0.242 0.061
16 62.301 -0.030 0.340 0.344 0.104 0.111 -0.008
17 57.621 -0.034 0.470 0.402 0.165 0.101 -0.041
22 67.320 -0.049 0.381 0.329 0.130 0.104 0.042
25 67.314 -0.089 0.373 0.188 0.118 -0.082 -0.140
26 57.623 -0.058 0.353 0.295 0.107 0.081 -0.035
27 62.298 -0.054 0.317 0.245 0.092 -0.025 -0.070
28 67.293 0.060 0.444 0.534 0.202 0.274 0.112
29 67.344 -0.014 0.448 0.467 0.204 0.160 0.016
30 62.186 0.005 0.306 0.331 0.098 0.102 0.048
31 57.587 -0.019 0.354 0.272 0.093 0.043 -0.053
36 67.314 -0.083 0.392 0.302 0.128 0.068 -0.004
37 57.621 -0.043 0.477 0.378 0.136 0.064 -0.078
38 62.298 -0.019 0.325 0.305 0.092 0.055 0.004
39 67.294 0.042 0.497 0.516 0.219 0.215 0.053
40 67.344 -0.008 0.496 0.549 0.232 0.246 0.077
41 62.186 0.000 0.337 0.307 0.098 0.066 0.006
42 57.590 -0.028 0.477 0.432 0.161 0.158 0.018
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Table F.19: Isotropic NMR shieldings (in ppm) for the ATP4− anion calculated with
RI-MP2/RIJONX and deviations due to COSX and DLPNO-MP2 using the LoosePNO,
NormalPNO, and TightPNO settings, with or without COSX.

El. Ind.
RI-MP2
RIJONX

RI-MP2
RIJCOSX

LoosePNO
RIJONX

LoosePNO
RIJCOSX

NormalPNO
RIJONX

NormalPNO
RIJCOSX

TightPNO
RIJCOSX

1H 6 23.457 -0.010 0.033 0.033 0.038 0.032 0.008
9 27.740 -0.004 0.033 0.036 0.018 0.014 0.006

11 27.843 -0.005 0.018 0.015 0.009 0.000 0.006
12 25.194 -0.004 0.008 0.008 0.010 -0.004 0.003
14 25.934 0.001 0.038 0.039 0.028 0.030 0.013
16 28.322 0.002 0.019 0.021 0.022 0.022 0.008
22 22.261 -0.011 0.007 -0.004 0.004 -0.010 -0.005
26 23.194 0.000 0.000 -0.002 0.001 -0.002 -0.001
29 27.971 0.004 0.011 0.016 0.004 0.010 0.006
30 26.499 0.000 0.010 0.011 0.005 0.005 0.002
31 18.947 -0.001 0.005 0.009 0.009 0.008 0.006
32 16.596 -0.019 -0.003 -0.025 0.017 0.001 -0.023

13C 1 105.419 0.007 0.555 0.568 0.244 0.258 0.106
2 101.577 0.003 0.484 0.490 0.190 0.187 0.079
3 89.349 0.025 0.529 0.551 0.208 0.237 0.102
4 107.791 0.002 0.474 0.476 0.195 0.192 0.078
7 118.635 0.001 0.397 0.399 0.157 0.154 0.065

17 41.294 0.027 -0.099 -0.061 -0.115 -0.073 -0.050
18 44.344 0.044 -0.256 -0.223 -0.142 -0.120 -0.039
20 60.801 0.019 0.599 0.626 0.205 0.246 0.090
24 48.234 0.020 -0.029 0.007 -0.049 -0.033 -0.009
27 37.560 0.005 -0.061 -0.047 -0.114 -0.102 -0.051

15N 13 38.796 0.003 1.841 1.854 0.671 0.673 0.187
21 35.050 -0.084 0.778 0.683 0.213 0.129 -0.063
23 -6.911 -0.007 1.973 1.943 0.656 0.618 0.178
25 15.556 0.005 1.405 1.401 0.430 0.432 0.081
28 207.756 0.045 0.597 0.649 0.213 0.266 0.115

17O 5 262.737 0.018 2.550 2.538 1.041 1.025 0.384
8 309.005 -0.126 1.588 1.472 0.689 0.545 0.156

10 284.746 0.053 1.736 1.791 0.778 0.852 0.393
15 246.285 0.019 1.721 1.725 0.801 0.813 0.328
33 215.724 0.054 0.726 0.795 0.100 0.159 0.090
34 161.339 -0.055 1.611 1.560 0.669 0.622 0.161
36 219.767 -0.049 0.891 0.853 0.440 0.409 0.141
37 189.743 -0.018 1.555 1.511 0.614 0.582 0.248
38 159.565 -0.052 1.628 1.583 0.598 0.557 0.119
39 173.954 -0.018 1.893 1.872 0.794 0.781 0.257
41 198.226 -0.046 0.905 0.861 0.309 0.266 0.068
42 198.466 -0.023 0.974 0.967 0.399 0.388 0.113
43 199.661 -0.048 0.765 0.725 0.284 0.244 0.067

31P 19 327.365 0.033 0.601 0.641 0.326 0.371 0.163
35 332.481 0.020 0.598 0.625 0.217 0.251 0.144
40 283.618 0.026 0.467 0.495 0.204 0.232 0.132

Table F.20: Isotropic NMR shieldings (in ppm) for the caffeine molecule calculated with
RI-MP2/RIJONX and deviations due to COSX and DLPNO-MP2 using the LoosePNO,
NormalPNO, and TightPNO settings, with or without COSX.

El. Ind.
RI-MP2
RIJONX

RI-MP2
RIJCOSX

LoosePNO
RIJONX

LoosePNO
RIJCOSX

NormalPNO
RIJONX

NormalPNO
RIJCOSX

TightPNO
RIJCOSX

1H 15 24.380 0.001 0.006 0.002 -0.002 -0.003 0.000
16 27.905 0.001 0.010 0.014 0.001 0.005 0.001
17 27.029 0.002 0.038 0.037 0.006 0.005 0.003
18 27.710 0.003 0.021 0.020 0.006 0.007 0.005
19 28.497 0.001 0.002 0.003 0.002 0.003 0.003
20 27.211 0.000 0.002 0.000 0.000 -0.002 0.000
21 28.131 0.000 0.006 0.006 0.001 0.000 0.002
22 27.031 0.000 -0.018 -0.009 0.003 0.003 -0.002
23 28.427 0.000 0.001 0.005 0.003 0.002 0.001
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El. Ind.
RI-MP2
RIJONX

RI-MP2
RIJCOSX

LoosePNO
RIJONX

LoosePNO
RIJCOSX

NormalPNO
RIJONX

NormalPNO
RIJCOSX

TightPNO
RIJCOSX

24 28.906 0.000 -0.002 -0.004 0.004 0.004 0.002

13C 1 79.290 0.009 0.463 0.461 0.118 0.129 0.033
2 42.996 0.031 0.214 0.248 0.020 0.050 -0.004
4 39.940 0.016 -0.066 -0.058 -0.054 -0.033 -0.047
7 35.484 0.028 0.098 0.119 0.005 0.036 0.007

11 58.463 0.009 -0.147 -0.123 -0.130 -0.127 -0.063
12 158.823 0.004 0.279 0.281 0.100 0.102 0.030
13 163.889 0.003 0.285 0.282 0.097 0.095 0.034
14 166.511 0.000 0.301 0.276 0.115 0.113 0.038

15N 3 144.119 0.001 1.613 1.629 0.574 0.574 0.174
6 103.247 -0.012 1.470 1.471 0.469 0.451 0.143
9 95.032 0.011 1.169 1.159 0.382 0.378 0.132

10 18.531 -0.042 1.048 1.029 0.293 0.251 0.008

17O 5 37.086 0.012 0.867 0.798 0.305 0.305 -0.005
8 -3.137 -0.067 1.558 1.472 0.379 0.323 0.000

Table F.21: Isotropic NMR shieldings (in ppm) for the coronene molecule calculated with
RI-MP2/RIJONX and deviations due to COSX and DLPNO-MP2 using the LoosePNO,
NormalPNO, and TightPNO settings, with or without COSX.

El. Ind.
RI-MP2
RIJONX

RI-MP2
RIJCOSX

LoosePNO
RIJONX

LoosePNO
RIJCOSX

NormalPNO
RIJONX

NormalPNO
RIJCOSX

TightPNO
RIJCOSX

1H 25 21.554 0.003 0.038 0.064 0.011 0.019 -0.012
26 21.554 0.005 0.050 0.051 0.015 0.028 -0.014
27 21.553 0.000 0.040 0.044 0.012 0.011 0.026
28 21.554 0.002 0.046 0.041 0.013 0.030 0.023
29 21.554 0.009 0.053 0.080 0.019 0.017 0.037
30 21.555 0.000 0.051 0.066 0.013 0.024 0.012
31 21.555 -0.002 0.051 0.065 0.013 0.024 0.011
32 21.554 0.008 0.053 0.079 0.019 0.015 0.036
33 21.554 0.001 0.046 0.040 0.013 0.029 0.021
34 21.553 0.003 0.040 0.045 0.012 0.013 0.028
35 21.554 0.006 0.050 0.053 0.015 0.030 -0.013
36 21.554 0.001 0.038 0.062 0.011 0.019 -0.014

13C 1 64.829 0.017 0.194 0.235 0.098 0.086 -0.016
2 64.835 -0.042 0.190 0.100 0.101 0.085 -0.078
3 64.832 0.021 0.179 0.188 0.098 0.115 0.034
4 64.831 0.027 0.180 0.193 0.099 0.124 0.039
5 64.835 -0.031 0.190 0.114 0.101 0.102 -0.067
6 64.829 0.012 0.194 0.228 0.098 0.083 -0.022
7 58.397 0.022 0.385 0.453 0.169 0.184 0.070
8 58.409 -0.011 0.383 0.353 0.162 0.092 -0.055
9 58.406 0.009 0.391 0.329 0.169 0.166 -0.012

10 58.406 0.026 0.391 0.348 0.169 0.185 0.005
11 58.409 -0.020 0.383 0.346 0.162 0.087 -0.061
12 58.397 0.031 0.385 0.463 0.169 0.191 0.078
13 63.311 -0.062 0.413 0.347 0.181 0.069 -0.044
14 63.313 0.087 0.401 0.460 0.175 0.219 0.107
15 63.326 0.119 0.408 0.529 0.179 0.281 0.169
16 63.313 0.024 0.400 0.442 0.179 0.215 0.067
17 63.329 -0.004 0.421 0.427 0.171 0.168 0.065
18 63.329 0.032 0.425 0.428 0.172 0.195 0.068
19 63.329 0.039 0.425 0.435 0.173 0.204 0.074
20 63.329 -0.005 0.421 0.427 0.171 0.174 0.063
21 63.313 0.065 0.400 0.477 0.179 0.254 0.107
22 63.327 0.084 0.407 0.499 0.178 0.245 0.135
23 63.313 0.060 0.401 0.430 0.175 0.201 0.080
24 63.311 -0.036 0.413 0.377 0.181 0.095 -0.018
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Table F.22: Isotropic NMR shieldings (in ppm) for the ebselen molecule calculated with
RI-MP2/RIJONX and deviations due to COSX and DLPNO-MP2 using the LoosePNO,
NormalPNO, and TightPNO settings, with or without COSX.

El. Ind.
RI-MP2
RIJONX

RI-MP2
RIJCOSX

LoosePNO
RIJONX

LoosePNO
RIJCOSX

NormalPNO
RIJONX

NormalPNO
RIJCOSX

TightPNO
RIJCOSX

1H 17 23.561 0.001 0.012 0.011 0.008 0.012 0.004
18 23.683 0.001 0.002 0.004 0.010 0.010 0.003
19 23.630 0.001 0.019 0.017 0.005 0.005 0.004
20 22.956 0.000 -0.014 -0.014 0.008 0.002 0.002
21 23.760 0.007 0.021 0.027 0.005 0.009 0.002
22 23.983 0.005 0.013 0.014 0.000 -0.003 -0.003
23 23.825 0.005 0.016 0.015 -0.009 0.000 0.003
24 23.940 0.000 -0.005 -0.009 -0.010 -0.001 0.006
25 22.646 0.000 0.020 0.014 0.005 -0.001 0.000

13C 3 59.074 0.026 0.229 0.252 0.015 0.040 0.003
4 50.287 0.015 0.504 0.517 0.123 0.145 0.034
5 28.897 0.011 -0.149 -0.122 -0.111 -0.098 -0.048
6 67.139 0.022 0.358 0.383 0.093 0.124 0.029
7 63.404 0.000 0.144 0.141 0.045 0.040 0.001
8 63.808 0.013 0.352 0.357 0.102 0.111 0.021
9 64.699 0.010 0.236 0.253 0.058 0.066 0.030

11 64.249 0.019 0.264 0.270 0.032 0.039 0.018
12 66.635 -0.033 0.365 0.330 0.101 0.069 -0.016
13 64.510 0.014 0.267 0.286 0.057 0.070 0.016
14 68.853 0.017 0.341 0.336 0.083 0.125 0.028
15 49.589 0.011 0.362 0.369 0.112 0.132 0.032
16 65.060 0.000 0.281 0.284 0.109 0.119 0.014

15N 1 138.602 0.004 2.472 2.474 0.998 1.030 0.378

17O 10 3.671 -0.077 1.339 1.134 0.410 0.252 0.021

77Se 2 960.699 -0.040 9.478 9.355 3.074 2.693 -0.094

Table F.23: Isotropic NMR shieldings (in ppm) for the penicillin molecule calculated with
RI-MP2/RIJONX and deviations due to COSX and DLPNO-MP2 using the LoosePNO,
NormalPNO, and TightPNO settings, with or without COSX.

El. Ind.
RI-MP2
RIJONX

RI-MP2
RIJCOSX

LoosePNO
RIJONX

LoosePNO
RIJCOSX

NormalPNO
RIJONX

NormalPNO
RIJCOSX

TightPNO
RIJCOSX

1H 9 26.163 -0.003 -0.046 -0.049 -0.007 -0.010 -0.007
20 25.599 0.005 -0.001 0.001 -0.002 0.003 0.005
26 27.470 -0.001 0.004 0.000 0.018 0.016 0.001
27 26.339 0.002 0.014 0.014 0.012 0.019 0.000
28 29.646 -0.001 -0.005 -0.008 -0.010 -0.013 0.002
29 30.240 -0.001 0.013 0.013 0.013 0.012 0.002
30 30.378 -0.001 -0.002 -0.003 0.003 0.004 0.002
31 29.918 0.001 -0.012 -0.017 0.014 0.015 0.003
32 30.237 0.000 0.007 0.005 -0.002 -0.004 0.003
33 30.434 0.002 0.013 0.010 0.005 0.006 0.004
34 25.730 0.001 -0.003 -0.008 0.003 0.005 -0.003
35 28.061 0.001 -0.017 -0.023 0.008 0.004 0.003
36 27.885 -0.002 -0.023 -0.023 0.013 0.004 0.002
37 23.890 0.002 -0.019 -0.012 0.001 0.006 0.006
38 23.919 0.000 -0.003 -0.007 -0.005 -0.004 -0.003
39 23.747 0.001 0.055 0.052 0.003 0.002 0.003
40 23.759 0.001 -0.014 -0.019 -0.001 0.000 0.000
41 23.838 0.000 0.045 0.049 0.006 0.007 -0.001

13C 1 61.737 -0.010 0.171 0.173 0.053 0.048 -0.028
2 62.156 0.014 0.115 0.134 0.019 0.039 -0.023
3 62.013 0.043 0.286 0.329 0.057 0.105 0.052
4 63.031 0.000 0.249 0.252 0.075 0.074 0.004
5 64.463 -0.005 0.313 0.322 0.064 0.070 -0.003
6 147.085 -0.014 0.330 0.326 0.124 0.111 0.025
7 165.032 -0.005 0.294 0.287 0.134 0.129 0.040
8 165.168 0.004 0.256 0.257 0.110 0.117 0.039

10 53.703 -0.008 0.227 0.226 0.088 0.080 0.008
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El. Ind.
RI-MP2
RIJONX

RI-MP2
RIJCOSX

LoosePNO
RIJONX

LoosePNO
RIJCOSX

NormalPNO
RIJONX

NormalPNO
RIJCOSX

TightPNO
RIJCOSX

15 25.590 0.022 0.059 0.062 -0.015 0.001 0.005
16 24.368 0.009 -0.160 -0.150 -0.116 -0.099 -0.042
17 119.831 0.014 0.515 0.518 0.206 0.214 0.054
18 131.744 -0.008 0.384 0.377 0.122 0.116 0.033
19 19.618 0.018 -0.072 -0.028 -0.055 -0.020 -0.021
22 116.919 -0.010 0.660 0.644 0.246 0.232 0.063
23 123.580 -0.007 0.852 0.839 0.333 0.321 0.089

15N 21 148.137 0.000 1.299 1.307 0.524 0.533 0.179
25 91.492 0.018 1.497 1.510 0.470 0.484 0.128

17O 11 -49.917 0.035 1.304 1.287 0.450 0.429 0.036
12 -53.145 -0.005 1.550 1.512 0.316 0.236 -0.059
13 -42.477 0.023 1.139 1.218 0.299 0.312 0.056
14 154.944 -0.016 1.003 1.034 0.230 0.239 0.046

33S 24 397.143 0.087 3.293 3.377 1.355 1.442 0.396

Table F.24: Isotropic NMR shieldings (in ppm) for the sitagliptin cation calculated with
RI-MP2/RIJONX and deviations due to COSX and DLPNO-MP2 using the LoosePNO,
NormalPNO, and TightPNO settings, with or without COSX.

El. Ind.
RI-MP2
RIJONX

RI-MP2
RIJCOSX

LoosePNO
RIJONX

LoosePNO
RIJCOSX

NormalPNO
RIJONX

NormalPNO
RIJCOSX

TightPNO
RIJCOSX

1H 5 24.706 0.008 -0.047 -0.074 -0.015 -0.064 -0.009
9 29.167 0.011 -0.033 0.024 -0.017 -0.014 0.006

10 28.051 0.010 -0.024 -0.036 0.004 0.006 0.011
11 26.990 0.020 -0.011 0.031 -0.005 0.019 0.027
23 28.357 0.021 -0.023 0.045 -0.023 0.003 0.024
24 26.626 0.052 -0.032 0.037 -0.027 0.039 0.050
25 28.524 0.005 -0.001 0.016 0.011 0.005 0.003
28 24.132 0.001 0.022 0.093 0.014 0.019 0.018
33 26.037 -0.004 -0.042 -0.038 -0.028 0.006 0.011
34 26.741 -0.003 -0.019 -0.042 -0.005 -0.012 0.000
35 26.638 -0.004 -0.016 -0.018 -0.011 -0.021 -0.013
40 29.463 0.043 -0.007 0.030 -0.001 0.034 0.023
41 26.980 0.024 -0.006 0.013 -0.009 0.020 0.014
42 27.421 0.001 0.027 0.120 0.018 0.066 0.008
43 26.781 -0.021 -0.005 -0.052 -0.001 -0.036 -0.039
44 28.573 0.036 -0.009 -0.007 -0.007 0.038 0.038

13C 1 81.234 -0.109 0.469 0.406 0.183 0.086 -0.104
2 34.188 0.097 0.172 0.321 0.015 0.062 0.069
3 38.789 0.040 0.368 0.437 0.099 0.095 0.052
4 75.593 0.020 0.137 0.198 -0.012 -0.008 -0.056
8 155.175 -0.121 0.365 0.229 0.178 0.008 -0.073

12 147.474 -0.032 0.388 0.399 0.121 0.052 -0.004
13 50.795 0.038 -0.192 -0.085 -0.116 -0.071 -0.047
15 148.616 0.071 0.415 0.510 0.195 0.254 0.105
17 47.149 0.073 0.122 0.206 -0.030 0.023 0.028
19 64.867 0.003 0.329 0.341 0.152 0.158 0.063
26 30.790 0.027 0.233 0.224 0.093 0.085 0.012
27 83.066 0.047 0.445 0.517 0.141 0.136 0.087
30 133.212 0.093 0.331 0.445 0.146 0.260 0.139
36 157.909 -0.195 0.300 0.207 0.102 0.004 -0.148
37 34.091 0.127 -0.101 0.097 -0.084 0.018 0.069
39 151.780 0.119 0.420 0.586 0.168 0.320 0.191

15N 14 90.036 -0.138 1.481 1.414 0.511 0.358 0.033
16 -62.997 0.264 1.016 1.657 0.247 0.601 0.298
18 -72.654 -0.156 1.496 1.355 0.396 0.238 -0.096
31 211.277 -0.088 0.351 0.204 0.131 0.078 -0.078
38 146.346 0.121 1.445 1.602 0.560 0.667 0.304

17O 32 -21.919 0.197 1.724 2.262 0.512 1.068 0.541

19F 6 329.991 -0.684 1.716 1.648 0.652 0.284 -0.310
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El. Ind.
RI-MP2
RIJONX

RI-MP2
RIJCOSX

LoosePNO
RIJONX

LoosePNO
RIJCOSX

NormalPNO
RIJONX

NormalPNO
RIJCOSX

TightPNO
RIJCOSX

7 342.186 0.051 2.175 2.165 0.837 0.736 0.478
20 261.626 -0.220 1.316 1.285 0.598 0.620 -0.104
21 261.293 0.006 1.704 1.816 0.574 0.807 0.374
22 279.560 0.108 1.176 1.508 0.654 0.847 0.260
29 326.760 0.006 1.501 0.280 0.502 0.130 0.054

Table F.25: Isotropic NMR shieldings (in ppm) for the tweezer complex calculated with
RI-MP2/RIJONX and deviations due to COSX and DLPNO-MP2 using the LoosePNO,
NormalPNO, and TightPNO settings, with or without COSX.

El. Ind.
RI-MP2
RIJONX

RI-MP2
RIJCOSX

LoosePNO
RIJONX

LoosePNO
RIJCOSX

NormalPNO
RIJONX

NormalPNO
RIJCOSX

TightPNO
RIJCOSX

1H 2 23.563 -0.009 0.050 0.081 0.005 0.043 0.051
3 26.633 -0.038 0.036 0.085 -0.008 0.005 0.005
4 23.083 -0.048 0.051 -0.057 0.006 -0.029 0.019
6 24.007 -0.027 0.062 0.117 0.035 0.033 -0.038
7 26.744 -0.034 0.017 -0.060 -0.019 -0.140 -0.041
8 23.534 -0.025 -0.011 0.035 -0.006 0.000 -0.024
9 25.602 -0.064 -0.021 0.202 0.019 0.081 0.017

10 26.739 -0.006 0.030 -0.069 -0.006 -0.087 -0.031
11 23.830 -0.016 -0.010 0.060 -0.007 -0.064 0.024
12 26.810 -0.003 0.016 -0.045 -0.017 -0.088 -0.053
13 23.943 -0.011 0.010 -0.031 0.013 -0.042 -0.024
16 23.987 0.030 0.054 0.068 0.021 0.031 0.043
18 24.581 0.014 -0.019 0.040 -0.008 0.105 0.114
20 24.526 -0.017 0.018 0.037 0.014 -0.006 0.015
25 26.745 0.002 0.018 0.065 -0.006 0.019 0.031
27 28.292 -0.007 0.050 -0.059 0.032 -0.046 0.007
28 28.385 -0.022 0.043 0.036 0.026 0.028 0.019
31 23.526 0.005 -0.004 -0.052 -0.019 -0.029 -0.017
37 25.583 0.058 0.003 -0.310 -0.006 -0.197 -0.062
39 29.413 -0.025 -0.045 -0.091 -0.043 -0.097 -0.060
45 24.597 -0.010 -0.017 -0.069 0.019 0.011 0.025
47 24.526 0.008 0.025 -0.012 0.016 0.043 0.028
49 23.538 -0.006 0.045 0.101 0.014 0.048 0.040
52 26.571 0.039 0.015 -0.014 -0.012 0.005 0.056
59 23.039 0.037 0.021 0.197 -0.004 0.175 0.031
63 29.439 -0.001 -0.042 -0.009 -0.045 -0.061 -0.087
67 28.227 -0.015 0.029 0.176 0.005 0.103 -0.005
68 28.347 0.001 0.039 0.077 -0.004 0.064 0.021
71 26.803 0.015 0.012 0.116 0.003 0.068 0.024
73 28.538 -0.010 0.036 0.038 0.004 -0.027 -0.025
74 28.356 -0.002 0.070 -0.050 0.008 -0.100 -0.028
77 23.921 0.063 -0.003 -0.030 0.001 0.107 0.137
82 26.688 0.035 0.015 0.103 -0.023 0.091 0.010
85 28.530 0.027 0.042 0.044 -0.021 -0.018 -0.014
86 28.294 0.030 0.042 0.188 0.011 0.146 0.026
91 23.801 0.022 -0.012 -0.062 -0.023 -0.026 -0.040

13C 5 64.124 -0.012 -0.062 -0.671 0.014 -0.354 -0.117
14 36.176 0.045 0.328 0.413 0.083 0.150 0.089
15 68.217 -0.071 0.368 0.470 0.112 0.184 0.048
17 64.900 -0.138 0.242 0.167 0.097 0.098 0.050
19 64.271 -0.114 0.262 0.146 0.082 0.040 -0.030
21 65.133 -0.018 0.374 0.399 0.084 0.091 0.015
22 35.801 0.020 0.370 0.481 0.065 0.052 0.037
23 134.514 0.070 0.858 0.938 0.311 0.422 0.211
24 134.154 0.006 0.825 0.847 0.330 0.229 0.158
26 120.594 -0.055 0.571 0.386 0.181 0.084 -0.012
29 38.203 -0.126 0.549 0.287 0.201 -0.078 -0.158
30 73.221 0.125 0.270 0.461 -0.016 0.182 0.169
32 39.663 0.028 0.368 0.575 0.096 0.292 -0.017
33 39.602 -0.040 0.228 0.327 -0.045 0.046 -0.086
34 68.107 -0.023 0.339 0.248 0.051 -0.056 -0.035
35 37.813 -0.076 0.449 0.476 0.088 0.037 -0.106
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El. Ind.
RI-MP2
RIJONX

RI-MP2
RIJCOSX

LoosePNO
RIJONX

LoosePNO
RIJCOSX

NormalPNO
RIJONX

NormalPNO
RIJCOSX

TightPNO
RIJCOSX

36 60.976 -0.030 0.155 -0.244 -0.069 -0.129 -0.006
38 60.968 0.018 0.358 0.195 0.175 0.142 0.063
40 75.953 -0.102 -0.129 -0.010 -0.183 -0.031 -0.075
42 36.166 -0.030 0.370 0.331 0.099 0.060 -0.055
43 68.217 0.034 0.403 0.383 0.128 0.068 -0.070
44 64.872 0.200 0.208 0.353 0.091 0.253 0.202
46 64.257 0.106 0.259 0.377 0.093 0.154 0.119
48 65.128 -0.011 0.394 0.465 0.079 0.111 0.037
50 35.813 -0.024 0.400 0.331 0.093 0.139 0.041
51 134.499 -0.095 0.835 0.840 0.303 0.224 0.042
53 134.140 -0.112 0.844 0.802 0.308 0.247 -0.071
54 38.169 0.050 0.581 0.411 0.206 0.032 0.041
55 73.216 -0.053 0.291 0.231 0.047 -0.013 -0.130
56 39.636 -0.126 0.382 0.072 0.085 -0.240 -0.256
57 39.588 -0.002 0.224 0.226 -0.060 -0.191 -0.043
58 68.073 0.043 0.296 0.466 0.050 0.344 0.275
60 37.801 0.088 0.459 0.448 0.063 0.122 0.192
61 61.002 -0.067 0.149 0.383 0.087 -0.030 -0.135
62 60.995 0.013 0.008 0.170 -0.158 0.069 0.013
64 75.959 0.175 0.167 0.177 0.100 0.159 0.117
65 64.098 0.028 -0.111 0.494 -0.055 0.305 0.266
66 120.592 0.134 0.554 0.672 0.149 0.261 0.155
69 135.058 -0.020 0.871 0.913 0.326 0.303 0.136
70 134.756 -0.154 0.848 0.570 0.336 0.043 -0.044
72 122.054 0.160 0.547 0.761 0.207 0.408 0.232
75 40.466 0.080 0.474 0.774 0.155 0.314 0.088
76 69.527 0.073 0.444 0.635 0.149 0.314 0.125
78 58.051 0.081 0.266 0.168 0.018 0.019 0.078
79 67.988 0.080 0.475 0.627 0.124 0.322 0.178
80 40.272 0.091 0.510 0.574 0.194 0.203 0.005
81 135.043 -0.294 0.862 0.468 0.315 -0.101 -0.290
83 134.747 -0.090 0.857 0.848 0.322 0.274 -0.048
84 122.048 0.190 0.520 0.655 0.170 0.231 0.141
87 40.456 0.085 0.491 0.660 0.176 0.388 0.079
88 69.551 -0.058 0.461 0.410 0.161 0.124 -0.019
89 58.068 0.045 0.268 0.372 0.022 0.132 0.174
90 67.979 0.143 0.475 0.513 0.098 0.202 0.089
92 40.291 0.085 0.550 0.604 0.200 0.273 0.203

15N 1 14.811 -0.279 0.691 0.350 0.290 0.224 -0.411
41 14.792 -0.225 0.758 0.772 0.438 0.058 0.066

F.2 NMR shielding errors due to PNO truncation

Results with different values of TCutPNO for valence orbitals are shown in Tables F.26–F.29
and for core orbitals – in Tables F.30–F.33.

Table F.26: Errors (in ppm) in isotropic NMR shieldings vs RI-MP2 for the ATP4−

anion at different values of TCutPNO for valence orbitals, with TCutPNO = 10−12 for core
orbitals, FCut = 10−8, TS = 10−8, and all other DLPNO thresholds equal to 0.

TCutPNO(valence)

El. Ind. 10−5 10−6 10−7 10−8 10−9 10−10 10−11 10−12

1H 6 0.073 0.033 0.014 0.007 0.000 0.000 -0.001 -0.001
9 0.095 0.053 0.017 0.006 0.002 0.000 -0.001 -0.001

11 0.083 0.042 0.018 0.007 0.001 0.000 0.000 0.000
12 0.103 0.050 0.020 0.006 -0.002 0.000 0.000 0.000
14 0.067 0.026 0.015 0.005 0.002 0.000 0.000 0.000
16 0.054 0.034 0.011 0.003 0.001 0.000 0.000 -0.001
22 0.030 0.007 0.006 -0.001 0.003 0.000 0.001 0.000
26 0.130 0.042 0.006 0.000 -0.007 -0.001 0.000 0.000
29 0.043 0.014 0.006 0.002 -0.002 0.000 0.000 0.000
30 0.022 0.010 0.005 0.000 -0.001 0.000 0.000 0.000
31 -0.069 -0.022 -0.006 -0.003 -0.001 -0.001 -0.001 0.000
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El. Ind. 10−5 10−6 10−7 10−8 10−9 10−10 10−11 10−12

32 -0.073 -0.023 -0.010 -0.004 -0.003 -0.001 -0.001 -0.001

13C 1 2.228 1.208 0.693 0.203 0.089 0.035 0.012 0.005
2 2.106 1.111 0.505 0.145 0.062 0.016 0.010 0.002
3 2.473 1.214 0.542 0.202 0.067 0.019 0.011 0.000
4 2.117 1.063 0.491 0.171 0.074 0.019 0.009 0.001
7 1.690 1.028 0.444 0.159 0.067 0.021 0.007 0.000

17 -0.992 -0.176 0.010 -0.062 -0.991 -0.019 -0.028 -0.012
18 -0.922 0.022 -0.146 -0.107 0.027 -0.023 -0.007 -0.001
20 3.516 1.757 0.599 0.115 0.085 -0.010 0.000 0.002
24 0.640 0.199 0.026 -0.043 -0.038 0.005 -0.010 -0.004
27 -0.230 -0.463 -0.137 -0.084 -0.065 -0.028 -0.006 -0.001

15N 13 8.861 4.108 1.740 0.697 0.033 0.043 0.017 0.001
21 4.286 3.877 0.735 -0.023 0.135 0.018 0.011 0.007
23 13.759 6.078 1.840 0.589 -1.509 0.042 -0.020 -0.016
25 10.077 3.820 1.383 0.415 0.126 0.070 0.010 0.004
28 2.117 1.220 0.572 0.216 0.060 0.004 0.002 -0.001

17O 5 9.910 5.103 2.346 1.030 0.403 0.164 0.036 0.013
8 5.568 3.137 1.448 0.665 0.284 0.133 0.051 0.018

10 6.519 3.531 1.613 0.683 0.248 0.094 0.029 0.009
15 6.782 3.760 1.560 0.599 0.263 0.106 0.044 0.021
33 5.762 3.179 1.066 0.399 0.133 0.044 0.013 0.004
34 6.511 3.310 1.266 0.575 0.188 0.069 0.015 0.006
36 5.761 3.141 1.181 0.428 0.168 0.060 0.020 0.002
37 7.505 3.965 1.558 0.704 0.279 0.102 0.026 0.010
38 6.712 3.464 1.294 0.533 0.171 0.056 0.022 0.008
39 7.013 3.598 1.495 0.643 0.249 0.074 0.030 0.009
41 5.632 3.048 0.951 0.393 0.115 0.032 0.011 0.003
42 5.642 3.080 1.050 0.388 0.113 0.012 0.012 0.001
43 5.686 2.992 0.783 0.325 0.140 0.035 0.005 -0.001

31P 19 2.788 1.231 0.670 0.335 0.126 0.047 0.013 0.004
35 2.357 1.112 0.623 0.263 0.092 0.051 0.015 0.005
40 1.395 1.105 0.496 0.168 0.089 0.038 0.012 0.002

Table F.27: Errors (in ppm) in isotropic NMR shieldings vs RI-MP2 for the caffeine
molecule at different values of TCutPNO for valence orbitals, with TCutPNO = 10−12 for core
orbitals, FCut = 10−8, TS = 10−8, and all other DLPNO thresholds equal to 0.

TCutPNO(valence)

El. Ind. 10−5 10−6 10−7 10−8 10−9 10−10 10−11 10−12

1H 15 0.029 0.010 -0.001 -0.003 -0.001 0.000 0.000 0.001
16 0.046 0.019 0.007 0.001 0.000 0.000 0.000 0.000
17 0.060 0.027 0.012 0.005 0.002 0.001 0.000 0.000
18 0.054 0.025 0.010 0.004 0.001 0.000 0.000 0.000
19 0.028 0.014 0.005 0.003 0.001 0.001 0.000 0.000
20 0.047 0.021 0.009 0.003 0.001 0.000 0.000 0.000
21 0.049 0.025 0.008 0.003 0.001 0.000 0.000 0.000
22 0.040 0.020 0.007 0.003 0.001 0.000 0.000 0.000
23 0.042 0.020 0.008 0.001 0.001 0.000 0.000 0.000
24 0.020 0.010 0.005 0.002 0.001 0.000 0.000 0.000

13C 1 2.620 1.293 0.504 0.121 0.034 -0.013 -0.005 -0.004
2 1.093 0.759 0.253 -0.006 -0.019 -0.015 -0.017 -0.009
4 -0.037 0.312 0.150 -0.020 -0.046 -0.025 -0.009 -0.004
7 0.283 0.400 0.069 -0.037 -0.026 -0.021 -0.008 -0.004

11 0.138 0.032 -0.079 -0.096 -0.030 -0.022 -0.004 -0.001
12 1.158 0.590 0.273 0.109 0.033 0.006 0.002 0.003
13 1.167 0.641 0.283 0.104 0.023 0.008 0.001 0.000
14 1.202 0.633 0.303 0.100 0.040 0.012 0.004 0.002

15N 3 6.520 3.630 1.447 0.523 0.133 0.044 0.007 0.008
6 6.130 3.446 1.207 0.322 0.108 0.033 0.003 0.005
9 6.229 2.613 1.147 0.340 0.095 0.009 0.007 0.006

10 6.163 2.758 1.069 0.303 0.035 -0.018 -0.004 -0.007
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El. Ind. 10−5 10−6 10−7 10−8 10−9 10−10 10−11 10−12

17O 5 6.398 3.996 -1.483 0.297 -0.009 -0.010 -0.006 0.018
8 8.903 4.933 1.159 0.351 0.100 0.006 -0.044 -0.031

Table F.28: Errors (in ppm) in isotropic NMR shieldings vs RI-MP2 for the ebselen
molecule at different values of TCutPNO for valence orbitals, with TCutPNO = 10−12 for core
orbitals, FCut = 10−8, TS = 10−8, and all other DLPNO thresholds equal to 0.

TCutPNO(valence)

El. Ind. 10−5 10−6 10−7 10−8 10−9 10−10 10−11 10−12

1H 17 0.061 0.030 0.017 0.002 0.001 -0.001 -0.001 -0.001
18 0.030 0.014 0.012 0.001 -0.003 0.000 0.000 0.000
19 0.055 0.033 0.005 0.003 0.001 0.000 -0.001 -0.001
20 0.034 0.015 0.001 0.001 -0.001 0.000 -0.001 0.000
21 0.036 0.017 0.008 0.004 0.001 -0.001 0.000 -0.001
22 0.070 0.027 0.012 0.001 0.001 -0.001 0.000 0.000
23 0.041 0.019 0.007 0.005 0.000 0.001 0.001 0.001
24 0.083 0.034 0.010 0.006 0.002 0.001 0.001 0.001
25 0.083 0.033 0.015 0.010 0.000 0.000 0.001 0.001

13C 3 1.888 0.804 0.150 0.058 0.033 0.006 -0.003 0.001
4 1.993 1.253 0.685 0.136 0.024 -0.024 -0.020 -0.011
5 -0.573 -0.087 -0.039 -0.049 -0.048 -0.012 -0.004 0.000
6 1.752 1.147 0.439 0.128 0.016 -0.003 -0.001 -0.005
7 0.669 0.464 0.264 0.030 -0.012 -0.011 -0.001 -0.002
8 1.676 1.045 0.558 0.114 -0.007 0.010 0.002 -0.003
9 1.047 0.704 0.205 -0.012 0.015 0.012 -0.001 -0.003

11 0.966 0.627 0.316 0.053 0.031 -0.021 -0.002 -0.003
12 2.057 0.932 0.360 0.116 0.047 -0.026 0.000 -0.009
13 1.085 0.689 0.245 0.079 -0.003 -0.007 0.000 0.004
14 2.471 1.077 0.412 0.127 0.008 -0.001 -0.007 0.006
15 1.765 0.891 0.375 0.155 0.002 -0.007 -0.007 0.000
16 1.941 0.931 0.317 0.107 0.005 0.007 -0.005 0.001

15N 1 11.318 5.433 2.564 1.037 0.340 0.149 0.054 0.029

17O 10 4.539 3.268 1.389 0.473 0.076 0.011 0.004 -0.002

77Se 2 25.833 19.327 10.879 3.545 0.333 -0.471 -0.710 -0.743

Table F.29: Errors (in ppm) in isotropic NMR shieldings vs RI-MP2 for the penicillin
molecule at different values of TCutPNO for valence orbitals, with TCutPNO = 10−12 for core
orbitals, FCut = 10−8, TS = 10−8, and all other DLPNO thresholds equal to 0.

TCutPNO(valence)

El. Ind. 10−5 10−6 10−7 10−8 10−9 10−10 10−11 10−12

1H 9 0.119 0.034 0.017 0.006 0.001 0.002 0.000 0.000
20 0.026 0.010 0.009 0.003 0.001 0.001 0.000 0.000
26 0.082 0.041 0.019 0.006 0.003 0.000 0.000 0.000
27 0.108 0.047 0.020 0.009 0.002 0.000 -0.001 0.000
28 0.044 0.023 0.009 -0.007 0.001 0.000 0.000 0.000
29 0.049 0.024 0.010 0.007 0.002 0.000 0.000 0.000
30 0.043 0.019 0.009 0.002 0.000 0.000 0.000 0.000
31 0.048 0.025 0.010 0.008 0.002 0.000 0.000 0.000
32 0.043 0.023 0.010 0.004 0.001 0.001 0.000 0.000
33 0.046 0.023 0.010 0.004 0.002 0.001 0.000 0.000
34 0.075 0.034 0.012 0.002 0.001 0.001 0.000 0.000
35 0.054 0.028 0.017 0.003 0.002 0.000 0.000 0.000
36 0.061 0.029 0.014 0.004 0.001 0.001 0.000 0.000
37 0.049 0.027 0.015 0.003 0.000 -0.001 0.000 0.000
38 0.052 0.025 0.013 0.001 -0.001 -0.001 -0.001 -0.001
39 0.033 0.018 0.013 0.003 0.000 0.001 0.000 0.000
40 0.040 0.021 0.008 0.002 0.000 0.001 0.000 0.000
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El. Ind. 10−5 10−6 10−7 10−8 10−9 10−10 10−11 10−12

41 0.049 0.023 0.011 0.001 0.000 0.000 0.000 0.000

13C 1 1.533 0.776 0.266 0.074 -0.024 -0.001 -0.002 -0.003
2 1.650 0.747 0.253 0.034 0.001 -0.007 -0.011 -0.006
3 1.046 0.620 0.299 0.066 0.007 -0.005 -0.002 -0.004
4 1.264 0.692 0.264 0.077 0.007 0.000 -0.005 -0.004
5 1.530 0.783 0.309 0.088 0.000 0.001 -0.003 -0.004
6 1.587 0.795 0.354 0.132 0.036 0.010 0.004 0.001
7 1.303 0.661 0.289 0.040 0.026 0.015 0.005 0.002
8 1.267 0.637 0.262 0.073 0.044 0.019 0.006 0.001

10 1.700 0.892 0.382 0.086 0.002 -0.004 -0.007 -0.002
15 0.759 0.506 0.131 0.008 0.010 -0.001 0.002 0.002
16 0.533 0.142 0.000 -0.086 -0.034 -0.020 -0.007 -0.004
17 2.410 1.183 0.565 0.183 0.055 0.012 -0.002 -0.002
18 1.949 0.958 0.419 0.131 0.056 0.000 0.007 0.003
19 0.653 0.238 0.060 -0.065 -0.047 -0.016 -0.011 -0.004
22 3.077 1.385 0.626 0.262 0.066 0.022 0.009 0.002
23 3.571 1.626 0.695 0.210 0.072 0.019 0.012 0.004

15N 21 6.019 2.741 1.243 0.424 0.144 0.019 0.016 0.003
25 7.465 3.522 1.378 0.466 0.084 0.007 -0.005 0.004

17O 11 8.046 4.212 1.686 0.404 0.089 0.015 0.001 -0.006
12 9.426 4.307 1.321 0.382 0.100 -0.008 -0.034 -0.023
13 8.501 3.547 1.631 0.370 0.147 0.035 0.002 0.001
14 5.927 2.852 0.961 0.215 0.095 0.016 0.010 0.003

33S 24 13.983 6.656 2.779 1.079 0.328 0.054 0.010 0.009

Table F.30: Errors (in ppm) in isotropic NMR shieldings vs RI-MP2 for the ATP4−

anion at different values of TCutPNO for core orbitals, with TCutPNO = 10−10 for valence
orbitals, FCut = 10−8, TS = 10−8, and all other DLPNO thresholds equal to 0.

TCutPNO(core)

El. Ind. 10−5 10−6 10−7 10−8 10−9 10−10 10−11 10−12

1H 6 0.000 0.000 0.000 0.000 0.000 -0.001 0.000 0.000
9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

11 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000
12 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000
14 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
16 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
22 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
26 -0.002 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001
29 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
30 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
31 -0.002 -0.002 -0.002 -0.002 -0.001 -0.001 -0.001 -0.001
32 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001

13C 1 0.044 0.052 0.039 0.036 0.035 0.035 0.035 0.035
2 0.025 0.033 0.019 0.016 0.016 0.016 0.016 0.016
3 0.023 0.033 0.024 0.020 0.019 0.019 0.019 0.019
4 0.018 0.034 0.024 0.020 0.019 0.019 0.019 0.019
7 0.027 0.033 0.026 0.023 0.022 0.022 0.021 0.021

17 -0.036 -0.018 -0.018 -0.019 -0.019 -0.019 -0.019 -0.019
18 -0.041 -0.028 -0.021 -0.023 -0.023 -0.022 -0.023 -0.023
20 -0.010 0.006 -0.010 -0.010 -0.010 -0.010 -0.010 -0.010
24 -0.021 0.008 0.005 0.005 0.005 0.005 0.005 0.005
27 -0.054 -0.032 -0.025 -0.028 -0.028 -0.028 -0.029 -0.028

15N 13 0.070 0.077 0.051 0.045 0.043 0.043 0.043 0.043
21 0.001 0.022 0.021 0.018 0.017 0.018 0.018 0.018
23 0.007 0.081 0.040 0.044 0.042 0.042 0.042 0.042
25 0.075 0.095 0.073 0.071 0.070 0.070 0.070 0.070
28 0.008 0.009 0.008 0.005 0.005 0.005 0.004 0.004

17O 5 0.219 0.211 0.179 0.168 0.165 0.165 0.164 0.164
8 0.152 0.158 0.141 0.134 0.134 0.133 0.133 0.133
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El. Ind. 10−5 10−6 10−7 10−8 10−9 10−10 10−11 10−12

10 0.113 0.116 0.100 0.095 0.095 0.094 0.094 0.094
15 0.316 0.294 0.164 0.143 0.128 0.122 0.109 0.106
33 0.291 0.164 0.121 0.088 0.063 0.053 0.045 0.044
34 0.409 0.280 0.157 0.122 0.110 0.094 0.068 0.069
36 0.309 0.171 0.133 0.098 0.073 0.066 0.060 0.060
37 0.356 0.209 0.187 0.150 0.127 0.111 0.102 0.102
38 0.476 0.316 0.164 0.118 0.094 0.072 0.059 0.056
39 0.289 0.218 0.136 0.111 0.095 0.077 0.075 0.074
41 0.301 0.177 0.102 0.079 0.050 0.044 0.034 0.032
42 0.281 0.157 0.082 0.059 0.029 0.023 0.013 0.012
43 0.298 0.176 0.102 0.080 0.054 0.045 0.036 0.035

31P 19 2.124 0.885 0.379 0.257 0.102 0.058 0.048 0.047
35 2.209 1.826 0.404 0.263 0.083 0.049 0.052 0.051
40 1.987 0.938 0.284 0.261 0.014 0.038 0.038 0.038

Table F.31: Errors (in ppm) in isotropic NMR shieldings vs RI-MP2 for the caffeine
molecule at different values of TCutPNO for core orbitals, with TCutPNO = 10−10 for valence
orbitals, FCut = 10−8, TS = 10−8, and all other DLPNO thresholds equal to 0.

TCutPNO(core)

El. Ind. 10−5 10−6 10−7 10−8 10−9 10−10 10−11 10−12

1H 15 -0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
16 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
17 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
18 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
19 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
20 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000
21 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
22 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000
23 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
24 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000

13C 1 -0.014 0.004 -0.012 -0.013 -0.013 -0.013 -0.013 -0.013
2 -0.025 -0.009 -0.013 -0.015 -0.015 -0.015 -0.015 -0.015
4 -0.025 -0.024 -0.009 -0.024 -0.024 -0.025 -0.025 -0.025
7 -0.029 -0.021 -0.019 -0.021 -0.022 -0.021 -0.021 -0.021

11 0.252 0.012 -0.022 -0.022 -0.022 -0.021 -0.021 -0.022
12 0.003 0.009 0.008 0.007 0.006 0.006 0.006 0.006
13 0.004 0.011 0.009 0.008 0.008 0.008 0.008 0.008
14 0.008 0.015 0.013 0.012 0.012 0.012 0.012 0.012

15N 3 0.079 0.072 0.057 0.047 0.044 0.044 0.044 0.044
6 0.073 0.060 0.044 0.035 0.034 0.033 0.033 0.033
9 0.050 0.053 0.015 0.009 0.009 0.009 0.009 0.009

10 0.027 0.014 -0.016 -0.018 -0.018 -0.018 -0.018 -0.018

17O 5 0.058 -0.024 0.003 -0.009 -0.009 -0.009 -0.010 -0.010
8 0.059 -0.006 0.009 0.007 0.005 0.006 0.006 0.006

Table F.32: Errors (in ppm) in isotropic NMR shieldings vs RI-MP2 for the ebselen
molecule at different values of TCutPNO for core orbitals, with TCutPNO = 10−10 for valence
orbitals, FCut = 10−8, TS = 10−8, and all other DLPNO thresholds equal to 0.

TCutPNO(core)

El. Ind. 10−5 10−6 10−7 10−8 10−9 10−10 10−11 10−12

1H 17 -0.001 0.001 -0.002 0.002 -0.001 -0.001 -0.001 -0.001
18 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.000
19 -0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
21 -0.001 -0.002 -0.001 -0.002 -0.001 -0.001 -0.001 -0.001
22 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001
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El. Ind. 10−5 10−6 10−7 10−8 10−9 10−10 10−11 10−12

23 0.001 0.001 0.002 0.000 0.001 0.001 0.001 0.001
24 0.001 -0.001 0.002 -0.001 0.001 0.001 0.001 0.001
25 0.001 0.000 0.001 -0.001 0.001 0.000 0.000 0.000

13C 3 0.003 0.010 0.008 0.015 0.005 0.005 0.005 0.006
4 -0.043 -0.019 -0.036 -0.022 -0.020 -0.018 -0.021 -0.024
5 -0.018 -0.016 -0.008 -0.012 -0.012 -0.012 -0.013 -0.012
6 -0.005 0.010 -0.002 0.007 -0.004 -0.002 -0.001 -0.003
7 -0.025 -0.007 -0.009 -0.010 -0.011 -0.011 -0.011 -0.011
8 0.002 0.016 0.014 0.020 0.008 0.010 0.010 0.010
9 0.000 0.015 0.010 0.010 0.013 0.012 0.012 0.012

11 -0.031 -0.019 -0.022 -0.024 -0.022 -0.022 -0.022 -0.021
12 -0.036 -0.018 -0.024 -0.026 -0.026 -0.026 -0.026 -0.026
13 -0.016 -0.004 -0.005 -0.007 -0.007 -0.007 -0.007 -0.007
14 -0.012 0.010 0.005 -0.001 0.001 0.000 0.000 -0.001
15 -0.016 -0.002 -0.005 -0.012 -0.006 -0.007 -0.007 -0.007
16 -0.004 0.012 0.007 0.004 0.007 0.007 0.007 0.007

15N 1 0.124 0.183 0.168 0.163 0.158 0.149 0.151 0.149

17O 10 0.080 -0.012 0.033 0.042 0.009 0.013 0.013 0.011

77Se 2 8.438 4.733 1.337 -0.083 -0.415 -0.168 -0.305 -0.471

Table F.33: Errors (in ppm) in isotropic NMR shieldings vs RI-MP2 for the penicillin
molecule at different values of TCutPNO for core orbitals, with TCutPNO = 10−10 for valence
orbitals, FCut = 10−8, TS = 10−8, and all other DLPNO thresholds equal to 0.

TCutPNO(core)

El. Ind. 10−5 10−6 10−7 10−8 10−9 10−10 10−11 10−12

1H 9 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
20 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001
26 0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.000
27 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.000
28 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
29 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000
30 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000
31 0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.000
32 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001
33 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
34 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
35 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
36 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
37 -0.001 0.000 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001
38 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001
39 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
40 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001
41 -0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000

13C 1 -0.009 0.007 0.000 -0.001 -0.001 -0.001 -0.001 -0.001
2 -0.018 0.000 -0.006 -0.007 -0.007 -0.007 -0.007 -0.007
3 -0.016 0.000 -0.004 -0.005 -0.005 -0.005 -0.005 -0.005
4 -0.012 0.004 0.000 0.000 0.000 0.000 0.000 0.000
5 -0.009 0.008 0.002 0.001 0.001 0.001 0.001 0.001
6 0.016 0.022 0.013 0.011 0.010 0.010 0.010 0.010
7 0.020 0.023 0.018 0.016 0.015 0.015 0.015 0.015
8 0.019 0.024 0.021 0.019 0.019 0.019 0.019 0.019

10 -0.012 0.006 -0.001 -0.004 -0.004 -0.004 -0.004 -0.004
15 -0.006 0.000 0.000 -0.001 -0.001 -0.002 -0.001 -0.001
16 -0.024 -0.020 -0.019 -0.020 -0.020 -0.020 -0.020 -0.020
17 0.028 0.034 0.020 0.015 0.014 0.013 0.013 0.012
18 0.017 0.023 0.006 0.001 0.001 0.001 0.000 0.000
19 -0.023 -0.014 -0.012 -0.015 -0.016 -0.015 -0.016 -0.016
22 0.079 0.090 0.046 0.033 0.030 0.026 0.024 0.022
23 0.095 0.104 0.048 0.033 0.028 0.023 0.020 0.019

15N 21 0.041 0.041 0.024 0.021 0.020 0.019 0.019 0.019
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El. Ind. 10−5 10−6 10−7 10−8 10−9 10−10 10−11 10−12

25 0.056 0.058 0.030 0.015 0.012 0.009 0.008 0.007

17O 11 0.112 0.004 0.023 0.018 0.016 0.015 0.015 0.015
12 0.095 -0.022 -0.003 -0.004 -0.007 -0.007 -0.008 -0.008
13 0.118 0.015 0.029 0.035 0.035 0.035 0.035 0.035
14 0.161 0.027 0.019 0.017 0.017 0.016 0.016 0.016

33S 24 1.129 1.020 0.257 0.143 0.090 0.064 0.056 0.054

F.3 NMR shielding errors due to Fock matrix-based screening

Table F.34: Errors (in ppm) in isotropic NMR shieldings vs RI-MP2 for the ATP4−

anion at different values of FCut, with TCutPNO = 10−12 for core and TCutPNO = 10−10 for
valence orbitals, TS = 10−8, and all other DLPNO thresholds equal to 0.

FCut

El. Ind. 10−2 10−3 10−4 10−5 10−6 10−7 10−8

1H 6 -0.120 -0.003 -0.001 0.000 0.000 0.000 0.000
9 -0.020 0.000 -0.001 0.000 0.000 0.000 0.000

11 -0.053 -0.001 0.000 0.000 0.000 0.000 0.000
12 -0.072 -0.003 0.000 0.001 0.000 0.000 0.000
14 -0.012 0.000 0.000 0.000 0.000 0.000 0.000
16 0.020 0.001 0.000 0.000 0.000 0.000 0.000
22 0.003 0.001 0.000 0.000 0.000 0.000 0.000
26 -0.016 -0.003 -0.001 -0.001 -0.001 -0.001 -0.001
29 0.030 0.000 0.000 0.000 0.000 0.000 0.000
30 0.011 0.001 0.000 0.000 0.000 0.000 0.000
31 -0.083 -0.004 -0.002 -0.001 -0.001 -0.001 -0.001
32 -0.105 -0.004 -0.001 -0.001 -0.001 -0.001 -0.001

13C 1 -0.095 0.029 0.034 0.034 0.035 0.035 0.035
2 -0.123 0.005 0.016 0.016 0.016 0.016 0.016
3 -0.123 0.014 0.018 0.018 0.019 0.019 0.019
4 -0.124 0.019 0.019 0.020 0.019 0.019 0.019
7 -0.077 0.015 0.021 0.021 0.021 0.021 0.021

17 -1.130 0.018 -0.022 -0.019 -0.019 -0.019 -0.019
18 -0.513 -0.014 -0.023 -0.024 -0.023 -0.023 -0.023
20 0.214 -0.016 -0.008 -0.010 -0.010 -0.010 -0.010
24 -0.361 -0.020 0.008 0.005 0.005 0.005 0.005
27 -0.448 -0.014 -0.033 -0.029 -0.028 -0.028 -0.028

15N 13 0.426 0.019 0.042 0.045 0.043 0.043 0.043
21 -0.889 -0.001 0.016 0.017 0.018 0.018 0.018
23 2.337 -0.099 0.030 0.042 0.042 0.042 0.042
25 1.021 0.045 0.067 0.070 0.070 0.070 0.070
28 -0.131 0.016 0.003 0.004 0.004 0.004 0.004

17O 5 0.066 0.148 0.160 0.160 0.164 0.164 0.164
8 0.110 0.136 0.128 0.134 0.133 0.133 0.133

10 -0.165 0.084 0.091 0.090 0.094 0.094 0.094
15 0.233 0.077 0.106 0.106 0.106 0.106 0.106
33 0.385 0.025 0.042 0.044 0.045 0.045 0.044
34 -0.188 0.073 0.063 0.069 0.069 0.069 0.069
36 0.653 0.050 0.060 0.060 0.060 0.060 0.060
37 0.188 0.117 0.102 0.102 0.102 0.102 0.102
38 -0.240 0.035 0.057 0.057 0.056 0.056 0.056
39 0.236 0.071 0.072 0.074 0.074 0.074 0.074
41 0.635 0.024 0.029 0.032 0.032 0.032 0.032
42 0.352 0.014 0.013 0.011 0.012 0.012 0.012
43 0.231 0.032 0.036 0.035 0.035 0.035 0.035

31P 19 0.414 0.037 0.046 0.047 0.047 0.047 0.047
35 -0.041 0.047 0.051 0.051 0.051 0.051 0.051
40 0.985 0.033 0.039 0.039 0.038 0.038 0.038
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Table F.35: Errors (in ppm) in isotropic NMR shieldings vs RI-MP2 for the caffeine
molecule at different values of FCut, with TCutPNO = 10−12 for core and TCutPNO = 10−10

for valence orbitals, TS = 10−8, and all other DLPNO thresholds equal to 0.

FCut

El. Ind. 10−2 10−3 10−4 10−5 10−6 10−7 10−8

1H 15 0.002 0.000 0.000 0.000 0.000 0.000 0.000
16 0.010 0.000 0.000 0.000 0.000 0.000 0.000
17 0.002 0.001 0.001 0.001 0.001 0.001 0.001
18 0.005 0.000 0.000 0.000 0.000 0.000 0.000
19 0.002 0.001 0.001 0.001 0.001 0.001 0.001
20 0.001 0.001 0.001 0.001 0.000 0.000 0.000
21 0.002 0.000 0.000 0.000 0.000 0.000 0.000
22 0.009 0.000 0.001 0.000 0.000 0.000 0.000
23 0.003 0.000 0.000 0.000 0.000 0.000 0.000
24 -0.003 0.000 0.000 0.000 0.000 0.000 0.000

13C 1 0.073 -0.020 -0.015 -0.012 -0.013 -0.013 -0.013
2 -0.226 -0.007 -0.015 -0.015 -0.015 -0.015 -0.015
4 -0.204 -0.014 -0.026 -0.025 -0.025 -0.025 -0.025
7 -0.105 -0.029 -0.024 -0.021 -0.021 -0.021 -0.021

11 -0.262 -0.018 -0.021 -0.022 -0.022 -0.022 -0.022
12 -0.018 0.006 0.006 0.006 0.006 0.006 0.006
13 -0.049 0.005 0.008 0.008 0.008 0.008 0.008
14 -0.071 0.014 0.013 0.012 0.012 0.012 0.012

15N 3 0.013 0.042 0.042 0.043 0.044 0.044 0.044
6 0.021 0.029 0.029 0.033 0.033 0.033 0.033
9 -0.310 0.009 0.011 0.009 0.009 0.009 0.009

10 0.074 -0.034 -0.023 -0.018 -0.018 -0.018 -0.018

17O 5 -0.492 0.056 -0.011 -0.011 -0.010 -0.010 -0.010
8 0.053 -0.025 -0.005 0.007 0.006 0.006 0.006

Table F.36: Errors (in ppm) in isotropic NMR shieldings vs RI-MP2 for the ebselen
molecule at different values of FCut, with TCutPNO = 10−12 for core and TCutPNO = 10−10

for valence orbitals, TS = 10−8, and all other DLPNO thresholds equal to 0.

FCut

El. Ind. 10−2 10−3 10−4 10−5 10−6 10−7 10−8

1H 17 -0.010 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001
18 -0.001 0.000 0.000 0.000 0.000 0.000 0.000
19 -0.003 -0.001 0.000 0.000 0.000 0.000 0.000
20 -0.012 0.000 0.000 0.000 0.000 0.000 0.000
21 0.012 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001
22 0.019 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001
23 0.018 0.002 0.001 0.001 0.001 0.001 0.001
24 -0.018 0.002 0.001 0.001 0.001 0.001 0.001
25 -0.004 0.001 0.001 0.000 0.000 0.000 0.000

13C 3 -0.074 0.016 0.006 0.006 0.006 0.006 0.006
4 -0.161 -0.030 -0.024 -0.024 -0.024 -0.024 -0.024
5 0.171 -0.077 -0.013 -0.012 -0.012 -0.012 -0.012
6 -0.013 -0.003 -0.003 -0.003 -0.003 -0.003 -0.003
7 -0.114 -0.016 -0.011 -0.011 -0.011 -0.011 -0.011
8 -0.028 0.009 0.010 0.010 0.010 0.010 0.010
9 -0.153 0.007 0.012 0.012 0.012 0.012 0.012

11 0.007 -0.024 -0.022 -0.022 -0.022 -0.022 -0.021
12 -0.201 -0.020 -0.026 -0.026 -0.026 -0.026 -0.026
13 0.037 -0.009 -0.007 -0.007 -0.007 -0.007 -0.007
14 -0.346 0.017 0.000 0.000 0.000 0.000 -0.001
15 -0.149 -0.015 -0.007 -0.007 -0.007 -0.007 -0.007
16 -0.084 0.010 0.007 0.007 0.007 0.007 0.007

15N 1 -0.232 0.249 0.150 0.149 0.149 0.149 0.149

17O 10 0.419 -0.184 0.010 0.011 0.011 0.011 0.011

77Se 2 -2.723 -0.746 -0.481 -0.477 -0.476 -0.476 -0.471
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Table F.37: Errors (in ppm) in isotropic NMR shieldings vs RI-MP2 for the penicillin
molecule at different values of FCut, with TCutPNO = 10−12 for core and TCutPNO = 10−10

for valence orbitals, TS = 10−8, and all other DLPNO thresholds equal to 0.

FCut

El. Ind. 10−2 10−3 10−4 10−5 10−6 10−7 10−8

1H 9 -0.097 -0.001 0.001 0.001 0.002 0.002 0.002
20 0.019 0.001 0.001 0.001 0.001 0.001 0.001
26 -0.056 -0.001 0.000 0.000 0.000 0.000 0.000
27 -0.007 -0.001 0.000 0.000 0.000 0.000 0.000
28 -0.020 -0.001 0.000 0.000 0.000 0.000 0.000
29 -0.029 0.000 0.000 0.000 0.000 0.000 0.000
30 -0.054 -0.001 0.000 0.000 0.000 0.000 0.000
31 0.002 0.000 0.000 0.000 0.000 0.000 0.000
32 -0.007 0.001 0.001 0.001 0.001 0.001 0.001
33 0.014 0.000 0.001 0.001 0.001 0.001 0.001
34 0.009 0.001 0.001 0.001 0.001 0.001 0.001
35 -0.008 0.000 0.000 0.000 0.000 0.000 0.000
36 0.023 0.001 0.001 0.001 0.001 0.001 0.001
37 0.013 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001
38 -0.028 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001
39 0.019 0.001 0.001 0.001 0.001 0.001 0.001
40 -0.018 0.000 0.001 0.001 0.001 0.001 0.001
41 -0.042 -0.001 0.000 0.000 0.000 0.000 0.000

13C 1 -0.181 -0.007 -0.001 -0.001 -0.001 -0.001 -0.001
2 -0.214 -0.009 -0.007 -0.007 -0.007 -0.007 -0.007
3 0.102 -0.006 -0.005 -0.005 -0.005 -0.005 -0.005
4 0.107 0.000 0.000 0.000 0.000 0.000 0.000
5 -0.191 -0.004 0.001 0.001 0.001 0.001 0.001
6 -0.075 0.007 0.010 0.010 0.010 0.010 0.010
7 -0.049 0.013 0.015 0.015 0.015 0.015 0.015
8 -0.086 0.018 0.019 0.019 0.019 0.019 0.019

10 -0.225 -0.002 -0.004 -0.004 -0.004 -0.004 -0.004
15 -0.006 -0.009 -0.002 -0.002 -0.001 -0.001 -0.001
16 -0.103 -0.027 -0.022 -0.022 -0.020 -0.020 -0.020
17 -0.072 0.012 0.013 0.013 0.012 0.012 0.012
18 -0.019 -0.001 0.001 0.001 0.000 0.000 0.000
19 -0.313 -0.015 -0.017 -0.016 -0.016 -0.016 -0.016
22 -0.077 0.025 0.023 0.023 0.022 0.022 0.022
23 -0.078 0.019 0.019 0.019 0.019 0.019 0.019

15N 21 -0.026 0.026 0.022 0.020 0.019 0.019 0.019
25 -0.307 -0.014 0.007 0.007 0.007 0.007 0.007

17O 11 0.227 0.030 0.016 0.016 0.015 0.015 0.015
12 -0.995 -0.074 -0.007 -0.007 -0.008 -0.008 -0.008
13 -0.042 0.000 0.020 0.028 0.035 0.035 0.035
14 -0.106 0.023 0.016 0.015 0.016 0.016 0.016

33S 24 -1.212 0.022 0.053 0.054 0.054 0.054 0.054

F.4 NMR shielding errors due to domain truncation

Results with TS = 10−8 are shown in Tables F.38–F.41 and with TS = 10−5 – in Ta-
bles F.42–F.45.

Table F.38: Errors (in ppm) in isotropic NMR shieldings vs RI-MP2 for the ATP4−

anion at different values of TCutDO, with TCutPNO = 10−12 for core and TCutPNO = 10−10

for valence orbitals, FCut = 10−5, TS = 10−8, and all other DLPNO thresholds equal to 0.

TCutDO

El. Ind. 0.001 0.002 0.003 0.006 0.010 0.020 0.030 0.060 0.100

1H 6 0.000 -0.001 0.002 -0.004 0.003 0.011 0.003 -0.001 0.066
9 0.000 -0.001 0.000 0.005 0.009 0.014 0.017 0.070 0.084

11 0.000 0.002 0.002 0.005 0.006 0.003 0.013 0.082 0.097
12 0.000 0.000 0.000 -0.009 -0.014 -0.018 -0.009 0.064 0.143
14 0.000 0.000 0.001 0.004 0.015 0.026 0.023 0.034 0.100
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El. Ind. 0.001 0.002 0.003 0.006 0.010 0.020 0.030 0.060 0.100

16 0.000 -0.001 0.000 0.004 0.011 0.018 0.019 0.040 0.086
22 0.000 -0.001 0.000 -0.002 -0.003 0.005 0.005 0.047 0.142
26 -0.001 -0.001 0.001 0.002 0.011 -0.005 0.009 -0.024 0.011
29 0.000 0.000 0.001 0.003 0.000 0.012 -0.004 0.020 -0.001
30 0.000 0.001 0.001 0.004 -0.002 0.001 -0.011 0.033 0.067
31 -0.001 -0.001 -0.002 0.005 0.012 0.012 0.024 0.018 -0.012
32 -0.001 0.000 0.003 0.004 0.000 -0.023 -0.006 0.044 0.035

13C 1 0.034 0.035 0.037 0.045 0.044 0.042 0.055 0.799 1.591
2 0.016 0.016 0.017 0.021 0.015 0.024 0.057 0.608 1.424
3 0.018 0.017 0.016 0.011 -0.002 -0.014 -0.028 0.346 1.357
4 0.020 0.020 0.020 0.022 0.010 0.021 -0.001 0.559 1.176
7 0.022 0.020 0.023 0.003 -0.002 0.015 0.018 0.493 1.280

17 -0.022 -0.019 -0.018 -0.046 -0.053 -0.051 -0.112 -1.250 0.107
18 -0.024 -0.024 -0.026 -0.029 -0.037 -0.069 -0.106 -0.943 0.010
20 -0.009 -0.012 -0.011 -0.014 -0.001 0.001 -0.008 0.814 1.227
24 0.005 0.006 -0.002 -0.008 0.006 -0.003 -0.058 -1.554 -1.987
27 -0.027 -0.033 -0.031 -0.037 -0.035 -0.005 -0.051 -0.690 -4.421

15N 13 0.046 0.044 0.041 0.031 0.021 0.142 0.247 2.004 4.992
21 0.013 0.016 0.017 0.016 0.061 0.095 0.121 0.935 4.798
23 0.037 0.043 0.044 0.027 0.017 0.082 0.133 2.154 -4.691
25 0.075 0.057 0.074 0.066 0.077 0.010 -0.020 2.548 2.450
28 0.003 0.000 0.000 0.006 0.011 0.025 0.008 0.165 1.367

17O 5 0.160 0.156 0.158 0.098 0.128 0.339 0.548 2.018 5.246
8 0.135 0.143 0.150 0.171 0.127 0.195 0.401 1.454 2.407

10 0.092 0.087 0.096 0.145 0.237 0.281 0.492 2.021 3.502
15 0.107 0.103 0.123 0.124 0.134 0.189 0.325 1.575 2.845
33 0.041 0.044 0.042 0.005 -0.006 -0.021 -0.046 -0.049 0.095
34 0.069 0.080 0.075 0.127 0.170 0.208 0.620 1.555 3.087
36 0.063 0.072 0.081 0.031 0.058 0.014 -0.196 0.613 1.160
37 0.102 0.103 0.122 0.180 0.128 0.053 0.103 1.874 2.277
38 0.055 0.050 0.054 0.072 0.314 0.134 0.311 1.107 2.120
39 0.076 0.079 0.075 0.149 0.262 0.348 0.463 2.179 5.055
41 0.032 0.027 0.037 0.046 -0.056 0.101 0.155 0.122 0.511
42 0.013 0.023 0.027 0.023 0.140 0.179 0.065 0.279 0.654
43 0.034 0.034 0.037 0.081 -0.428 0.269 0.196 -0.506 -0.381

31P 19 0.044 0.027 0.052 0.197 0.370 0.304 0.203 -0.269 0.492
35 0.031 -0.041 0.053 0.157 0.191 1.887 1.131 -2.047 -1.274
40 0.041 0.036 0.027 0.077 0.325 0.023 0.112 1.635 0.252

Table F.39: Errors (in ppm) in isotropic NMR shieldings vs RI-MP2 for the caffeine
molecule at different values of TCutDO, with TCutPNO = 10−12 for core and TCutPNO = 10−10

for valence orbitals, FCut = 10−5, TS = 10−8, and all other DLPNO thresholds equal to 0.

TCutDO

El. Ind. 0.001 0.002 0.003 0.006 0.010 0.020 0.030 0.060 0.100

1H 15 0.000 0.001 0.001 0.002 0.005 0.017 0.020 0.004 0.026
16 0.000 -0.001 -0.002 -0.002 -0.005 0.001 0.006 0.034 0.134
17 0.001 0.000 0.000 0.000 -0.002 0.023 0.027 0.059 0.160
18 0.000 0.001 0.003 0.003 0.006 0.019 0.019 0.055 0.150
19 0.001 0.001 0.000 0.001 -0.002 -0.002 -0.002 0.024 0.128
20 0.001 0.001 0.000 0.000 -0.003 -0.005 0.000 0.029 0.147
21 0.000 0.000 -0.001 -0.001 -0.002 -0.003 0.000 0.020 0.128
22 0.000 0.000 0.001 0.000 -0.001 -0.027 -0.006 -0.007 0.113
23 0.000 0.000 0.000 -0.001 -0.004 -0.010 -0.010 0.005 0.104
24 0.000 0.000 0.001 0.000 -0.001 -0.007 -0.006 0.007 0.107

13C 1 -0.012 -0.013 -0.013 -0.015 -0.027 -0.027 -0.028 0.219 1.262
2 -0.015 -0.014 -0.015 -0.014 -0.019 -0.032 -0.073 -0.629 -1.560
4 -0.025 -0.025 -0.025 -0.029 -0.029 -0.057 -0.107 -0.423 -3.014
7 -0.021 -0.021 -0.021 -0.024 -0.061 -0.046 -0.079 -0.638 -3.091

11 -0.022 -0.021 -0.020 -0.015 -0.006 -0.007 -0.043 -0.517 -1.761
12 0.006 0.007 0.007 0.005 0.044 0.018 0.023 0.168 1.084
13 0.008 0.008 0.007 0.008 0.004 0.005 -0.008 0.355 1.219
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El. Ind. 0.001 0.002 0.003 0.006 0.010 0.020 0.030 0.060 0.100

14 0.012 0.012 0.012 0.013 0.007 0.011 -0.023 0.250 1.214

15N 3 0.043 0.043 0.042 0.046 0.046 0.098 0.168 1.071 5.808
6 0.033 0.032 0.032 0.034 0.038 0.104 0.175 0.453 4.867
9 0.009 0.009 0.011 0.008 0.004 0.072 0.080 0.343 5.240

10 -0.018 -0.018 -0.016 -0.011 0.019 0.014 0.073 1.307 4.782

17O 5 -0.010 -0.009 -0.008 -0.011 0.030 -0.117 -0.376 -0.450 -10.227
8 0.007 0.008 0.012 0.012 0.030 -0.132 -0.325 -2.037 -13.229

Table F.40: Errors (in ppm) in isotropic NMR shieldings vs RI-MP2 for the ebselen
molecule at different values of TCutDO, with TCutPNO = 10−12 for core and TCutPNO = 10−10

for valence orbitals, FCut = 10−5, TS = 10−8, and all other DLPNO thresholds equal to 0.

TCutDO

El. Ind. 0.001 0.002 0.003 0.006 0.010 0.020 0.030 0.060 0.100

1H 17 -0.001 -0.001 -0.002 -0.005 -0.009 -0.045 -0.018 0.045 0.055
18 0.000 0.000 0.000 0.003 -0.002 0.024 0.023 -0.044 0.097
19 0.000 0.000 -0.001 -0.003 -0.006 0.060 0.040 0.044 0.049
20 0.000 -0.001 0.000 -0.001 -0.026 -0.124 -0.047 0.002 0.132
21 -0.001 -0.001 0.000 0.007 0.034 0.081 0.043 0.067 0.096
22 -0.001 -0.001 -0.001 -0.001 0.041 0.176 0.019 -0.013 0.018
23 0.001 0.001 0.002 0.010 0.042 0.196 0.012 0.033 0.112
24 0.001 0.001 0.001 0.002 -0.024 -0.202 -0.029 0.017 0.053
25 0.000 0.000 0.000 -0.001 -0.033 -0.166 -0.018 0.077 0.063

13C 3 0.006 0.006 0.005 0.002 -0.036 -0.130 -0.072 0.570 -0.729
4 -0.024 -0.024 -0.028 -0.025 -0.033 -0.246 -0.082 0.302 1.185
5 -0.012 -0.013 -0.013 -0.019 -0.063 -0.183 -0.121 -0.577 -0.396
6 -0.003 -0.003 -0.003 -0.011 -0.005 -0.047 0.016 0.490 -0.290
7 -0.011 -0.011 -0.012 -0.015 -0.027 -0.031 0.011 -0.422 0.624
8 0.010 0.010 0.012 0.005 0.004 0.071 0.046 0.154 -0.572
9 0.011 0.011 0.012 0.005 -0.029 -0.130 -0.050 -0.715 1.231

11 -0.022 -0.022 -0.020 -0.014 -0.014 -0.054 0.071 -0.222 0.976
12 -0.026 -0.024 -0.025 -0.013 0.038 0.138 0.068 -0.283 -1.193
13 -0.006 -0.005 -0.008 -0.001 -0.014 0.016 0.003 -0.041 1.191
14 0.000 0.000 -0.002 -0.011 -0.085 -0.413 -0.042 -0.037 -0.663
15 -0.007 -0.006 -0.009 -0.025 -0.115 -0.360 -0.074 -0.364 0.437
16 0.007 0.008 0.005 -0.010 -0.089 -0.392 -0.035 0.005 -0.346

15N 1 0.149 0.150 0.150 0.148 0.088 -0.021 0.229 1.758 5.261

17O 10 0.011 0.010 0.008 0.019 0.029 0.031 -0.555 -3.296 -4.444

77Se 2 -0.472 -0.473 -0.529 -0.834 -0.737 -0.629 -1.544 6.231 20.089

Table F.41: Errors (in ppm) in isotropic NMR shieldings vs RI-MP2 for the penicillin
molecule at different values of TCutDO, with TCutPNO = 10−12 for core and TCutPNO = 10−10

for valence orbitals, FCut = 10−5, TS = 10−8, and all other DLPNO thresholds equal to 0.

TCutDO

El. Ind. 0.001 0.002 0.003 0.006 0.010 0.020 0.030 0.060 0.100

1H 9 0.001 -0.002 -0.006 -0.024 -0.050 -0.099 -0.032 0.173 0.234
20 0.001 0.001 0.001 -0.001 -0.006 -0.018 -0.018 0.010 0.019
26 0.000 0.002 0.000 0.002 0.003 -0.029 -0.039 0.079 0.131
27 0.000 -0.001 -0.004 0.000 0.001 -0.018 -0.009 0.049 0.090
28 0.000 0.001 0.001 -0.001 -0.023 -0.016 -0.020 0.042 0.092
29 0.000 -0.001 -0.002 0.000 0.014 -0.003 0.000 0.066 0.105
30 0.000 0.000 -0.003 -0.007 0.003 -0.015 -0.026 0.088 0.133
31 0.000 0.002 -0.001 -0.002 0.003 -0.046 -0.042 0.003 0.026
32 0.001 0.001 0.000 0.000 -0.005 -0.020 -0.003 0.009 0.030
33 0.001 0.001 0.002 0.003 -0.001 -0.007 -0.006 0.044 0.077
34 0.000 0.000 -0.002 0.004 -0.016 -0.028 -0.035 0.062 0.124
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El. Ind. 0.001 0.002 0.003 0.006 0.010 0.020 0.030 0.060 0.100

35 0.001 -0.002 -0.002 -0.018 -0.033 -0.079 -0.037 0.026 0.103
36 0.001 0.001 0.002 -0.013 -0.043 -0.096 -0.066 0.031 0.156
37 -0.001 0.000 -0.003 -0.022 -0.044 -0.093 -0.048 0.009 0.057
38 -0.001 0.000 -0.002 0.003 -0.019 -0.103 -0.043 0.023 0.043
39 0.001 0.001 0.001 -0.005 0.003 0.020 0.055 0.008 0.083
40 0.001 0.000 0.001 0.003 -0.002 0.080 -0.006 0.039 0.113
41 -0.001 0.001 0.001 0.005 0.034 0.092 0.051 0.017 0.065

13C 1 0.003 -0.004 -0.006 -0.031 -0.090 -0.246 -0.093 -0.131 -0.109
2 -0.003 -0.026 -0.031 -0.025 -0.069 -0.279 -0.112 -0.274 -0.624
3 -0.017 -0.002 -0.036 -0.100 -0.139 -0.112 0.116 -0.100 0.554
4 -0.014 -0.001 -0.039 -0.053 -0.111 -0.004 0.045 0.146 0.805
5 -0.006 0.007 -0.014 -0.006 0.004 -0.026 0.124 -0.150 -0.473
6 0.010 0.008 0.003 -0.019 -0.054 -0.068 0.003 0.453 1.468
7 0.014 0.015 0.013 0.005 0.017 -0.007 0.060 0.675 1.546
8 0.018 0.019 0.017 0.018 0.003 -0.064 -0.036 0.603 1.440

10 0.006 -0.018 -0.019 -0.066 -0.135 -0.258 -0.114 -0.302 0.206
15 -0.002 -0.006 -0.002 0.000 -0.023 -0.072 -0.094 -0.074 0.163
16 -0.022 -0.025 -0.028 -0.043 -0.060 -0.113 -0.125 0.058 -0.084
17 0.012 0.014 0.015 0.010 0.010 -0.027 -0.043 0.507 1.745
18 0.000 0.000 -0.005 -0.016 -0.029 -0.020 -0.032 0.542 1.295
19 -0.016 -0.013 0.008 -0.016 -0.028 -0.044 -0.169 0.082 0.092
22 0.022 0.022 0.017 0.006 -0.008 0.106 0.243 1.489 2.637
23 0.019 0.018 0.020 0.028 0.036 0.126 0.275 2.100 3.038

15N 21 0.019 0.018 -0.002 -0.008 0.034 0.075 0.283 1.151 3.600
25 0.007 0.006 0.001 0.019 0.013 0.153 0.279 2.155 5.145

17O 11 0.012 0.009 0.012 0.070 0.155 0.215 0.308 0.704 0.565
12 -0.007 0.003 -0.049 0.016 0.064 0.230 0.127 1.100 1.873
13 0.026 0.004 -0.018 0.094 -0.008 0.013 -0.253 0.390 0.614
14 0.011 0.012 0.014 0.025 0.025 0.047 0.263 0.691 1.269

33S 24 0.049 0.138 0.309 0.262 1.731 -3.487 -3.241 -11.060 -13.433

Table F.42: Errors (in ppm) in isotropic NMR shieldings vs RI-MP2 for the ATP4−

anion at different values of TCutDO, with TCutPNO = 10−12 for core and TCutPNO = 10−10

for valence orbitals, FCut = 10−5, TS = 10−5, and all other DLPNO thresholds equal to 0.

TCutDO

El. Ind. 0.001 0.002 0.003 0.006 0.010 0.020 0.030 0.060 0.100

1H 6 0.001 0.003 0.005 0.014 0.032 0.018 0.006 0.015 0.073
9 0.001 0.002 0.002 0.006 0.010 0.012 0.016 0.073 0.084

11 0.001 0.003 0.004 0.007 0.001 0.000 0.011 0.084 0.097
12 0.001 0.003 0.002 0.004 0.004 -0.012 -0.008 0.066 0.144
14 0.001 0.007 0.005 0.010 0.021 0.023 0.019 0.043 0.104
16 0.001 0.000 0.000 0.008 0.018 0.008 0.013 0.046 0.089
22 0.002 0.003 0.005 0.005 0.004 0.005 0.002 0.049 0.143
26 -0.001 -0.001 -0.001 -0.001 0.000 -0.009 0.009 -0.021 0.011
29 0.000 0.000 0.000 0.001 0.002 0.005 -0.005 0.017 -0.001
30 0.000 0.000 -0.001 0.005 0.003 0.005 -0.012 0.040 0.067
31 -0.001 0.001 0.000 0.009 0.011 0.011 0.012 0.020 -0.016
32 -0.001 0.000 -0.005 0.002 0.020 0.006 -0.009 0.047 0.037

13C 1 0.035 0.032 0.036 0.037 0.040 0.039 0.049 0.804 1.592
2 0.018 0.017 0.024 0.029 0.020 0.019 0.049 0.611 1.424
3 0.019 0.018 0.020 0.014 0.018 -0.011 -0.026 0.350 1.358
4 0.020 0.018 0.019 0.030 0.011 0.005 0.001 0.571 1.182
7 0.020 0.023 0.022 0.018 0.004 0.002 0.021 0.502 1.284

17 -0.024 -0.027 -0.032 -0.054 -0.055 -0.119 -0.175 -1.256 0.107
18 -0.021 -0.018 -0.016 -0.015 -0.032 -0.075 -0.119 -0.941 0.011
20 -0.009 0.000 0.005 0.028 -0.015 -0.032 -0.034 0.816 1.227
24 0.008 0.013 0.016 0.025 -0.020 -0.056 -0.076 -1.563 -1.987
27 -0.031 -0.023 -0.038 -0.051 -0.016 -0.006 -0.032 -0.696 -4.421

15N 13 0.050 0.052 0.056 0.057 0.076 0.140 0.250 2.004 4.993
21 0.019 0.026 0.028 0.035 0.042 0.097 0.124 0.929 4.797
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El. Ind. 0.001 0.002 0.003 0.006 0.010 0.020 0.030 0.060 0.100

23 0.029 0.030 0.030 0.028 0.035 -0.014 -0.012 2.144 -4.690
25 0.070 0.085 0.065 0.063 0.036 0.002 0.011 2.546 2.450
28 0.009 0.008 0.007 0.007 0.043 0.053 0.048 0.144 1.367

17O 5 0.174 0.170 0.178 0.137 0.173 0.350 0.565 2.030 5.250
8 0.149 0.152 0.134 0.152 0.130 0.210 0.424 1.456 2.412

10 0.098 0.091 0.120 0.178 0.213 0.244 0.490 2.033 3.514
15 0.116 0.095 0.108 0.164 0.192 0.229 0.521 1.601 2.829
33 0.066 0.084 0.069 -0.098 -0.268 -0.275 -0.224 0.074 0.244
34 0.055 0.075 0.080 0.103 0.137 0.273 0.658 1.508 3.065
36 0.045 0.083 0.146 0.012 0.018 -0.176 -0.235 0.717 1.219
37 0.125 0.122 0.125 0.056 0.056 0.126 0.512 1.988 2.329
38 0.061 0.039 0.037 0.061 0.120 0.352 0.479 1.168 2.168
39 0.099 0.110 0.136 0.169 0.285 0.470 0.648 2.238 5.119
41 0.045 0.029 0.021 0.025 -0.017 0.020 0.063 0.305 0.606
42 0.030 0.022 0.025 0.034 0.062 0.054 0.079 0.416 0.792
43 -0.004 0.003 0.008 0.035 -0.009 -0.124 -0.089 -0.519 -0.350

31P 19 0.043 0.048 0.040 0.068 0.070 -0.040 0.003 0.092 0.138
35 0.051 0.053 0.051 0.040 0.016 -0.003 -0.085 0.154 -0.363
40 0.028 0.029 0.029 0.044 0.042 0.091 0.115 0.107 0.502

Table F.43: Errors (in ppm) in isotropic NMR shieldings vs RI-MP2 for the caffeine
molecule at different values of TCutDO, with TCutPNO = 10−12 for core and TCutPNO = 10−10

for valence orbitals, FCut = 10−5, TS = 10−5, and all other DLPNO thresholds equal to 0.

TCutDO

El. Ind. 0.001 0.002 0.003 0.006 0.010 0.020 0.030 0.060 0.100

1H 15 0.000 0.000 0.001 0.002 0.000 0.009 0.018 0.004 0.026
16 0.000 -0.001 0.000 -0.001 -0.001 0.003 0.005 0.033 0.134
17 0.001 0.001 0.001 0.001 0.002 0.027 0.026 0.060 0.160
18 0.000 0.000 0.000 0.000 0.001 0.010 0.017 0.055 0.150
19 0.001 0.000 0.000 0.002 0.000 -0.004 -0.004 0.024 0.128
20 0.001 0.001 0.000 0.000 -0.002 -0.006 0.001 0.030 0.147
21 0.000 0.000 0.000 0.001 -0.002 -0.003 -0.001 0.020 0.128
22 0.001 0.001 0.000 0.000 0.001 -0.024 -0.003 -0.007 0.113
23 0.000 0.000 0.000 0.000 0.000 -0.007 -0.003 0.005 0.104
24 0.000 0.000 0.001 0.001 0.002 -0.007 -0.003 0.007 0.107

13C 1 -0.012 -0.012 -0.011 -0.019 -0.022 -0.052 -0.062 0.221 1.262
2 -0.015 -0.014 -0.014 -0.016 -0.015 -0.029 -0.075 -0.629 -1.560
4 -0.025 -0.025 -0.025 -0.020 -0.027 -0.083 -0.126 -0.423 -3.014
7 -0.021 -0.020 -0.021 -0.025 -0.017 -0.053 -0.080 -0.635 -3.091

11 -0.021 -0.023 -0.022 -0.022 -0.019 -0.046 -0.048 -0.520 -1.761
12 0.006 0.005 0.003 0.001 0.000 0.021 0.028 0.165 1.084
13 0.008 0.007 0.007 0.001 0.004 0.006 -0.006 0.354 1.219
14 0.012 0.011 0.009 0.005 0.009 0.009 -0.017 0.250 1.214

15N 3 0.043 0.043 0.042 0.057 0.069 0.094 0.165 1.071 5.808
6 0.033 0.033 0.035 0.035 0.045 0.055 0.185 0.452 4.867
9 0.009 0.009 0.009 0.014 0.033 0.056 0.085 0.340 5.240

10 -0.018 -0.019 -0.019 -0.022 -0.005 0.020 0.073 1.310 4.782

17O 5 -0.010 -0.006 0.005 0.017 0.001 -0.099 -0.309 -0.451 -10.227
8 0.007 0.007 0.003 0.003 -0.008 -0.094 -0.315 -2.031 -13.229
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Table F.44: Errors (in ppm) in isotropic NMR shieldings vs RI-MP2 for the ebselen
molecule at different values of TCutDO, with TCutPNO = 10−12 for core and TCutPNO = 10−10

for valence orbitals, FCut = 10−5, TS = 10−5, and all other DLPNO thresholds equal to 0.

TCutDO

El. Ind. 0.001 0.002 0.003 0.006 0.010 0.020 0.030 0.060 0.100

1H 17 -0.001 -0.001 0.001 0.001 0.004 0.002 -0.003 0.039 0.052
18 0.000 0.000 0.001 0.007 0.010 0.000 0.013 -0.044 0.092
19 0.000 0.000 0.001 0.003 0.003 0.012 0.024 0.045 0.046
20 0.000 0.001 0.001 0.006 0.008 -0.017 -0.022 0.001 0.122
21 0.000 -0.001 -0.001 0.000 0.003 0.016 0.033 0.069 0.094
22 -0.001 -0.001 -0.002 -0.004 0.000 0.007 0.003 -0.011 0.018
23 0.001 0.001 0.000 -0.003 -0.011 0.011 0.012 0.031 0.113
24 0.002 0.001 0.000 -0.005 -0.014 -0.018 -0.024 0.032 0.057
25 0.001 0.001 0.000 0.001 0.002 0.007 0.012 0.080 0.056

13C 3 0.006 0.005 0.000 -0.016 -0.036 -0.035 -0.021 0.588 -0.796
4 -0.017 -0.016 -0.019 -0.029 -0.044 -0.059 0.010 0.240 1.060
5 -0.013 -0.017 -0.016 -0.020 -0.045 -0.069 -0.100 -0.609 -0.480
6 -0.007 -0.008 -0.005 -0.005 -0.008 0.020 0.060 0.563 -0.250
7 -0.013 -0.013 -0.014 -0.006 0.002 -0.011 0.007 -0.474 0.582
8 0.009 0.010 0.010 0.019 0.027 0.044 0.062 0.200 -0.551
9 0.010 0.010 0.010 0.019 0.027 0.002 -0.014 -0.761 1.190

11 -0.021 -0.023 -0.028 0.014 -0.007 0.053 0.072 -0.218 0.987
12 -0.026 -0.025 -0.024 0.013 -0.006 0.044 0.074 -0.261 -1.184
13 -0.006 -0.007 -0.011 -0.016 -0.022 0.037 0.028 -0.055 1.190
14 0.000 -0.001 -0.006 -0.004 -0.028 -0.023 0.033 -0.013 -0.686
15 -0.006 -0.007 -0.003 0.004 0.000 -0.033 -0.039 -0.378 0.398
16 0.008 0.006 0.000 0.013 0.025 -0.010 0.008 0.044 -0.337

15N 1 0.150 0.150 0.158 0.146 0.173 0.181 0.287 2.059 5.465

17O 10 0.010 0.016 0.034 0.127 0.198 0.196 -0.383 -3.425 -4.635

77Se 2 -0.487 -0.453 -0.535 -0.381 -0.016 0.592 0.737 11.252 27.770

Table F.45: Errors (in ppm) in isotropic NMR shieldings vs RI-MP2 for the penicillin
molecule at different values of TCutDO, with TCutPNO = 10−12 for core and TCutPNO = 10−10

for valence orbitals, FCut = 10−5, TS = 10−5, and all other DLPNO thresholds equal to 0.

TCutDO

El. Ind. 0.001 0.002 0.003 0.006 0.010 0.020 0.030 0.060 0.100

1H 9 0.001 0.001 0.003 -0.003 -0.015 -0.065 -0.040 0.125 0.195
20 0.001 0.000 0.002 0.001 -0.004 -0.006 -0.012 0.003 0.016
26 0.000 0.001 0.000 0.003 0.012 -0.014 -0.022 0.027 0.081
27 -0.001 -0.001 -0.002 -0.003 0.004 -0.006 -0.009 0.102 0.149
28 0.000 0.000 0.000 -0.001 -0.014 -0.014 -0.003 0.019 0.076
29 0.001 0.001 0.001 0.002 0.008 0.003 0.022 0.044 0.092
30 0.000 0.000 -0.002 0.004 0.000 -0.011 -0.007 0.024 0.079
31 0.001 0.001 0.001 0.000 0.010 -0.023 -0.012 0.056 0.093
32 0.001 0.001 0.003 0.001 -0.006 -0.002 0.027 0.061 0.096
33 0.001 0.000 0.000 0.003 0.002 0.004 0.017 0.057 0.097
34 0.000 0.002 0.001 -0.003 0.000 -0.015 -0.047 0.054 0.117
35 0.000 0.000 0.000 0.002 0.003 -0.029 -0.041 0.019 0.094
36 0.001 0.002 0.003 0.002 0.009 -0.036 -0.070 0.031 0.153
37 0.000 0.000 0.001 -0.001 -0.003 -0.028 -0.058 0.026 0.059
38 -0.001 -0.001 -0.002 -0.002 -0.005 -0.011 -0.042 0.008 0.025
39 0.001 0.002 0.002 0.006 0.002 0.050 0.029 0.014 0.076
40 0.000 -0.001 0.000 0.000 -0.002 -0.020 0.002 0.024 0.093
41 -0.001 -0.001 0.000 0.001 0.004 0.040 0.044 0.005 0.047

13C 1 0.005 0.007 0.008 -0.014 -0.009 -0.078 -0.093 -0.131 -0.127
2 -0.007 -0.008 -0.010 -0.009 -0.017 -0.118 -0.116 -0.288 -0.645
3 -0.005 0.000 0.001 0.008 0.003 0.082 0.087 -0.108 0.528
4 0.000 -0.003 -0.007 -0.001 0.002 0.001 0.055 0.131 0.780
5 -0.003 -0.004 -0.009 -0.023 0.000 0.078 0.133 -0.162 -0.499
6 0.011 0.011 0.014 0.009 0.008 0.000 -0.005 0.448 1.459
7 0.014 0.014 0.015 0.014 0.022 0.012 0.074 0.638 1.533
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El. Ind. 0.001 0.002 0.003 0.006 0.010 0.020 0.030 0.060 0.100

8 0.018 0.019 0.015 0.012 -0.001 -0.030 0.010 0.642 1.495
10 0.001 0.005 0.015 0.021 0.012 -0.078 -0.114 -0.306 0.195
15 -0.002 -0.001 0.004 -0.009 -0.030 -0.074 -0.082 -0.085 0.153
16 -0.024 -0.020 -0.013 -0.042 -0.047 -0.124 -0.138 0.051 -0.094
17 0.015 0.015 0.006 0.001 0.022 -0.008 -0.019 0.454 1.698
18 0.001 0.001 -0.027 0.002 -0.014 -0.031 -0.063 0.517 1.287
19 -0.014 0.004 -0.008 -0.022 -0.037 -0.125 -0.181 0.031 0.052
22 0.024 0.018 0.007 0.005 0.006 0.054 0.192 1.499 2.642
23 0.021 0.021 0.022 0.027 0.061 0.147 0.289 2.076 3.013

15N 21 0.021 0.023 0.019 0.062 0.089 0.099 0.267 1.136 3.586
25 0.007 -0.002 -0.004 0.055 0.047 0.144 0.322 2.125 5.132

17O 11 0.014 0.008 0.025 0.014 0.075 0.153 0.245 0.690 0.552
12 -0.010 -0.012 0.018 0.003 0.030 0.317 0.149 1.087 1.865
13 0.046 0.012 0.019 0.013 0.022 0.001 -0.285 0.380 0.599
14 0.014 0.008 0.025 0.025 0.019 0.074 0.262 0.695 1.264

33S 24 0.064 0.070 0.068 0.184 0.317 0.287 -1.255 3.327 7.608

F.5 NMR shielding errors due to pair prescreening

Calculations including terms due to ∆EPre are shown in Tables F.46–F.49 and those
neglecting these terms – in Tables F.50–F.53.

Table F.46: Errors (in ppm) in isotropic NMR shieldings vs RI-MP2 for the ATP4− anion
at different values of TCutPre, including terms due to ∆EPre, with TCutPNO = 10−12 for core
and TCutPNO = 10−10 for valence orbitals, TCutDOij = 0.05, TCutDO = 10−3, FCut = 10−5,
TS = 10−8, and the remaining DLPNO thresholds equal to 0.

TCutPre

El. Ind. 10−2 10−3 10−4 10−5 10−6 10−7 10−8

1H 6 0.007 0.075 0.012 0.000 0.001 0.001 0.001
9 -0.231 0.089 0.036 0.007 0.002 0.001 0.001

11 0.200 0.141 0.032 0.007 0.002 0.001 0.001
12 -0.034 0.138 0.040 0.007 0.001 0.001 0.001
14 -0.317 -0.019 0.025 0.003 0.001 0.001 0.001
16 0.175 0.161 0.030 0.004 0.001 0.001 0.001
22 0.140 0.114 0.036 0.007 0.002 0.002 0.002
26 0.499 0.082 0.010 0.001 -0.001 -0.001 -0.001
29 -0.402 -0.016 0.005 0.000 0.000 0.000 0.000
30 0.292 0.086 0.020 0.000 0.000 0.000 0.000
31 0.093 0.056 -0.022 -0.008 -0.001 -0.001 -0.001
32 -1.016 -0.238 -0.070 -0.015 -0.002 -0.001 -0.001

13C 1 7.291 2.557 0.719 0.107 0.036 0.035 0.035
2 6.174 2.153 0.648 0.099 0.018 0.019 0.018
3 4.078 2.204 0.596 0.067 0.018 0.019 0.019
4 6.726 2.376 0.551 0.105 0.027 0.021 0.020
7 6.681 2.093 0.669 0.064 0.024 0.020 0.020

17 -4.177 -2.535 0.078 -0.115 -0.041 -0.025 -0.024
18 0.264 -1.723 -0.581 -0.097 -0.031 -0.022 -0.021
20 8.079 1.401 0.522 0.012 -0.008 -0.010 -0.009
24 0.460 -1.932 -0.325 -0.025 0.003 0.008 0.008
27 -2.431 -2.226 -0.161 -0.165 -0.032 -0.031 -0.031

15N 13 16.616 9.455 2.117 0.190 0.068 0.049 0.050
21 6.681 5.717 0.122 0.105 0.013 0.020 0.019
23 37.400 10.822 1.115 0.192 0.061 0.029 0.029
25 25.704 6.467 1.266 0.180 0.094 0.070 0.070
28 -9.273 1.181 0.431 -0.007 0.017 0.009 0.009

17O 5 14.468 9.213 2.184 0.490 0.188 0.176 0.174
8 5.530 1.187 0.802 0.253 0.155 0.151 0.149

10 4.652 3.339 0.895 0.246 0.104 0.100 0.098
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El. Ind. 10−2 10−3 10−4 10−5 10−6 10−7 10−8

15 16.872 8.374 1.203 0.291 0.108 0.119 0.116
33 -1.117 1.192 0.657 0.165 0.070 0.069 0.066
34 29.712 13.341 0.454 0.055 0.029 0.044 0.054
36 21.164 5.771 0.936 0.203 0.051 0.045 0.046
37 27.581 9.639 2.730 0.287 0.134 0.129 0.125
38 18.235 10.119 1.425 0.096 0.067 0.053 0.061
39 17.737 9.672 1.353 0.254 0.109 0.098 0.099
41 17.300 6.113 1.109 0.257 0.054 0.047 0.045
42 11.231 4.870 1.003 0.223 0.037 0.034 0.031
43 12.410 3.515 0.732 0.154 0.000 -0.001 -0.004

31P 19 -7.545 -6.453 1.077 0.344 0.054 0.045 0.043
35 -6.074 -0.760 1.924 0.291 0.072 0.055 0.051
40 -9.875 -11.138 1.512 0.343 0.040 0.033 0.028

Table F.47: Errors (in ppm) in isotropic NMR shieldings vs RI-MP2 for the caffeine
molecule at different values of TCutPre, including terms due to ∆EPre, with TCutPNO =
10−12 for core and TCutPNO = 10−10 for valence orbitals, TCutDOij = 0.05, TCutDO = 10−3,
FCut = 10−5, TS = 10−8, and the remaining DLPNO thresholds equal to 0.

TCutPre

El. Ind. 10−2 10−3 10−4 10−5 10−6 10−7 10−8

1H 15 0.300 0.058 0.009 0.001 0.000 0.000 0.000
16 0.079 0.074 0.015 0.001 0.000 0.000 0.000
17 0.045 0.089 0.023 0.002 0.001 0.001 0.001
18 -0.011 0.065 0.015 0.001 0.000 0.000 0.000
19 0.019 0.031 0.012 0.002 0.001 0.001 0.001
20 0.188 0.079 0.020 0.002 0.001 0.001 0.001
21 0.096 0.060 0.015 0.002 0.000 0.000 0.000
22 0.185 0.100 0.020 0.002 0.001 0.001 0.001
23 0.015 0.037 0.008 0.001 0.000 0.000 0.000
24 -0.033 0.014 0.004 0.000 0.000 0.000 0.000

13C 1 3.251 1.517 0.198 -0.021 -0.013 -0.013 -0.012
2 1.070 -1.304 -0.123 -0.025 -0.020 -0.015 -0.015
4 -0.495 -1.302 -0.158 -0.041 -0.033 -0.025 -0.025
7 -0.357 -1.525 0.018 -0.079 -0.027 -0.022 -0.021

11 0.808 -0.700 -0.386 -0.039 -0.030 -0.021 -0.021
12 3.745 1.122 0.221 0.025 0.006 0.007 0.006
13 2.599 0.965 0.359 0.026 0.009 0.008 0.008
14 2.215 0.732 0.281 0.011 0.013 0.012 0.012

15N 3 18.347 8.683 1.893 0.168 0.064 0.046 0.043
6 21.258 7.035 1.061 0.081 0.036 0.029 0.033
9 20.577 6.988 1.381 0.052 0.006 0.010 0.009

10 17.380 6.027 1.584 -0.021 -0.015 -0.017 -0.018

17O 5 -11.433 -7.645 0.187 -0.135 -0.053 -0.013 -0.010
8 -8.138 -2.105 1.339 -0.134 0.014 0.003 0.007

Table F.48: Errors (in ppm) in isotropic NMR shieldings vs RI-MP2 for the ebselen
molecule at different values of TCutPre, including terms due to ∆EPre, with TCutPNO =
10−12 for core and TCutPNO = 10−10 for valence orbitals, TCutDOij = 0.05, TCutDO = 10−3,
FCut = 10−5, TS = 10−8, and the remaining DLPNO thresholds equal to 0.

TCutPre

El. Ind. 10−2 10−3 10−4 10−5 10−6 10−7 10−8

1H 17 -0.043 0.037 0.008 0.000 -0.001 -0.001 -0.001
18 0.115 -0.011 0.001 0.000 0.000 0.000 0.000
19 0.144 0.060 0.013 0.002 0.000 0.000 0.000
20 0.148 0.053 0.000 0.002 0.000 0.000 0.000
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El. Ind. 10−2 10−3 10−4 10−5 10−6 10−7 10−8

21 0.099 0.107 0.012 0.004 0.000 0.000 0.000
22 0.127 -0.016 0.007 -0.002 -0.001 -0.001 -0.001
23 0.339 0.131 0.023 0.007 0.002 0.002 0.001
24 0.251 -0.055 0.003 0.000 0.002 0.001 0.002
25 -0.226 0.009 0.011 0.003 0.001 0.001 0.001

13C 3 2.945 0.367 0.000 -0.091 -0.004 0.003 0.006
4 -1.009 -0.367 -0.146 0.094 0.017 -0.011 -0.017
5 3.838 -1.524 -0.274 -0.107 -0.024 -0.014 -0.013
6 5.417 0.999 0.260 -0.041 -0.010 -0.008 -0.007
7 -0.105 -0.755 0.023 -0.047 -0.025 -0.014 -0.013
8 4.706 1.060 0.365 0.038 0.014 0.009 0.009
9 3.249 0.528 -0.001 -0.001 0.006 0.009 0.010

11 2.979 1.665 0.193 0.024 -0.017 -0.020 -0.021
12 3.908 -0.369 0.455 -0.035 -0.025 -0.027 -0.026
13 2.172 2.165 0.313 0.084 0.000 -0.005 -0.006
14 1.543 -1.791 -0.011 -0.087 -0.005 -0.002 0.000
15 2.897 0.993 0.354 0.063 -0.001 -0.005 -0.006
16 -0.920 -0.387 0.032 -0.013 0.005 0.007 0.008

15N 1 3.326 14.081 3.910 0.817 0.232 0.154 0.150

17O 10 -17.337 -16.236 -3.304 -0.711 -0.027 0.004 0.010

77Se 2 103.915 21.336 4.411 -0.826 -0.498 -0.501 -0.488

Table F.49: Errors (in ppm) in isotropic NMR shieldings vs RI-MP2 for the penicillin
molecule at different values of TCutPre, including terms due to ∆EPre, with TCutPNO =
10−12 for core and TCutPNO = 10−10 for valence orbitals, TCutDOij = 0.05, TCutDO = 10−3,
FCut = 10−5, TS = 10−8, and the remaining DLPNO thresholds equal to 0.

TCutPre

El. Ind. 10−2 10−3 10−4 10−5 10−6 10−7 10−8

1H 9 0.260 0.166 0.041 0.005 0.001 0.001 0.001
20 -0.158 -0.009 -0.016 0.001 0.001 0.001 0.001
26 0.639 0.192 0.032 0.004 0.000 0.000 0.000
27 0.161 0.130 0.031 0.001 -0.001 -0.001 -0.001
28 -0.769 -0.019 0.004 0.002 0.000 0.000 0.000
29 0.541 0.170 0.035 0.003 0.001 0.001 0.001
30 0.379 0.106 0.020 0.001 0.000 0.000 0.000
31 0.392 0.134 0.027 0.003 0.001 0.001 0.001
32 0.245 0.118 0.019 0.002 0.001 0.001 0.001
33 -0.230 0.054 0.021 0.004 0.001 0.001 0.001
34 0.385 0.139 0.030 0.003 0.000 0.000 0.000
35 0.027 0.083 0.021 0.002 0.000 0.000 0.000
36 0.162 0.130 0.032 0.003 0.001 0.001 0.001
37 0.379 0.073 0.019 0.002 0.000 0.000 0.000
38 -0.074 -0.055 -0.009 -0.001 -0.001 -0.001 -0.001
39 0.225 0.080 0.017 0.002 0.001 0.001 0.001
40 0.331 0.109 0.016 0.001 0.000 0.000 0.000
41 -0.253 -0.067 -0.012 -0.001 -0.001 -0.001 -0.001

13C 1 2.157 -0.510 -0.097 -0.030 0.001 0.005 0.005
2 -1.370 -1.483 -0.261 -0.035 -0.013 -0.007 -0.007
3 3.065 1.324 0.257 -0.017 -0.001 -0.005 -0.005
4 2.696 1.540 0.264 -0.008 0.005 0.000 0.000
5 -2.603 -1.181 0.052 -0.013 -0.007 -0.004 -0.003
6 -0.539 0.984 0.270 0.023 0.009 0.011 0.011
7 11.267 2.154 0.485 0.030 0.013 0.014 0.014
8 12.950 2.281 0.328 0.049 0.018 0.017 0.018

10 3.719 1.400 0.343 0.010 0.005 0.001 0.001
15 3.009 -0.443 0.124 -0.020 -0.002 -0.002 -0.002
16 2.137 -0.722 -0.183 -0.067 -0.025 -0.025 -0.024
17 8.508 3.181 0.585 0.101 0.015 0.015 0.015
18 8.080 2.532 0.606 0.039 0.003 0.001 0.001
19 1.407 0.110 0.236 -0.037 -0.015 -0.014 -0.014

Continued on next page

162



Continued from previous page

El. Ind. 10−2 10−3 10−4 10−5 10−6 10−7 10−8

22 8.390 3.132 1.087 0.099 0.038 0.024 0.024
23 12.636 4.065 1.598 0.153 0.039 0.022 0.021

15N 21 14.103 5.944 1.349 0.144 0.036 0.021 0.021
25 20.379 8.060 1.512 0.143 0.015 0.007 0.007

17O 11 15.412 2.944 1.196 -0.028 0.027 0.013 0.014
12 -9.632 -6.500 -1.092 -0.349 -0.014 -0.011 -0.010
13 9.009 -1.442 -0.217 -0.147 0.036 0.047 0.046
14 19.181 6.357 0.621 0.105 0.018 0.014 0.014

33S 24 63.719 15.333 3.685 0.179 0.106 0.067 0.064

Table F.50: Errors (in ppm) in isotropic NMR shieldings vs RI-MP2 for the ATP4−

anion at different values of TCutPre, neglecting terms due to ∆EPre, with TCutPNO = 10−12

for core and TCutPNO = 10−10 for valence orbitals, TCutDOij = 0.05, TCutDO = 10−3,
FCut = 10−5, TS = 10−8, and the remaining DLPNO thresholds equal to 0.

TCutPre

El. Ind. 10−2 10−3 10−4 10−5 10−6 10−7 10−8

1H 6 0.660 0.168 0.032 0.002 0.001 0.001 0.001
9 0.718 0.226 0.050 0.009 0.002 0.001 0.001

11 0.623 0.183 0.039 0.008 0.002 0.001 0.001
12 0.686 0.212 0.053 0.008 0.001 0.001 0.001
14 0.522 0.154 0.047 0.005 0.001 0.001 0.001
16 0.427 0.125 0.030 0.004 0.001 0.001 0.001
22 0.455 0.098 0.034 0.007 0.002 0.002 0.002
26 0.584 0.080 0.011 0.002 -0.001 -0.001 -0.001
29 0.041 0.055 0.012 0.000 0.000 0.000 0.000
30 -0.047 0.088 0.021 0.000 0.000 0.000 0.000
31 -0.528 -0.096 -0.041 -0.009 -0.001 -0.001 -0.001
32 -0.486 -0.122 -0.053 -0.013 -0.002 -0.001 -0.001

13C 1 11.503 3.071 0.814 0.117 0.036 0.036 0.035
2 11.538 2.980 0.784 0.114 0.019 0.019 0.018
3 12.074 3.381 0.800 0.086 0.019 0.019 0.019
4 9.722 2.701 0.607 0.111 0.028 0.021 0.020
7 7.277 2.510 0.677 0.067 0.024 0.021 0.020

17 -5.969 -3.287 0.027 -0.125 -0.043 -0.025 -0.024
18 -2.398 -3.120 -0.749 -0.114 -0.032 -0.022 -0.021
20 13.827 1.763 0.589 0.019 -0.007 -0.010 -0.009
24 -3.724 -2.799 -0.419 -0.028 0.003 0.008 0.008
27 -20.879 -3.116 -0.195 -0.193 -0.034 -0.031 -0.031

15N 13 33.909 12.273 2.512 0.226 0.072 0.049 0.050
21 8.186 6.660 0.108 0.116 0.014 0.020 0.019
23 56.777 12.709 1.177 0.227 0.067 0.030 0.029
25 36.615 7.745 1.424 0.189 0.096 0.070 0.070
28 1.951 2.873 0.644 0.030 0.022 0.009 0.009

17O 5 32.097 12.036 2.579 0.525 0.190 0.176 0.174
8 13.313 4.382 1.175 0.299 0.157 0.151 0.149

10 18.636 7.243 1.773 0.354 0.107 0.101 0.098
15 24.689 8.088 1.057 0.302 0.108 0.120 0.116
33 26.522 7.335 1.537 0.327 0.081 0.069 0.066
34 35.495 12.152 0.512 0.059 0.029 0.044 0.054
36 26.425 4.477 0.799 0.171 0.047 0.045 0.046
37 36.822 9.213 2.691 0.290 0.134 0.129 0.125
38 36.760 13.196 1.813 0.140 0.071 0.053 0.061
39 32.575 11.386 1.715 0.274 0.110 0.098 0.099
41 28.732 5.712 1.144 0.273 0.055 0.047 0.045
42 28.988 5.696 1.157 0.252 0.039 0.034 0.031
43 29.498 4.768 0.791 0.178 0.001 -0.001 -0.004

31P 19 25.352 -6.948 1.391 0.396 0.056 0.046 0.043
35 23.320 -0.652 2.218 0.308 0.074 0.055 0.051
40 21.238 -14.023 1.393 0.343 0.041 0.033 0.028
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Table F.51: Errors (in ppm) in isotropic NMR shieldings vs RI-MP2 for the caffeine
molecule at different values of TCutPre, neglecting terms due to ∆EPre, with TCutPNO =
10−12 for core and TCutPNO = 10−10 for valence orbitals, TCutDOij = 0.05, TCutDO = 10−3,
FCut = 10−5, TS = 10−8, and the remaining DLPNO thresholds equal to 0.

TCutPre

El. Ind. 10−2 10−3 10−4 10−5 10−6 10−7 10−8

1H 15 0.229 0.029 0.006 0.001 0.000 0.000 0.000
16 0.334 0.104 0.018 0.001 0.000 0.000 0.000
17 0.432 0.145 0.027 0.003 0.001 0.001 0.001
18 0.388 0.127 0.020 0.002 0.000 0.000 0.000
19 0.144 0.069 0.015 0.002 0.001 0.001 0.001
20 0.291 0.112 0.022 0.003 0.001 0.001 0.001
21 0.271 0.100 0.019 0.002 0.000 0.000 0.000
22 0.254 0.118 0.022 0.002 0.001 0.001 0.001
23 0.197 0.069 0.010 0.001 0.001 0.000 0.000
24 0.036 0.029 0.004 0.000 0.000 0.000 0.000

13C 1 9.797 2.035 0.268 -0.020 -0.013 -0.013 -0.012
2 3.389 -1.399 -0.107 -0.023 -0.020 -0.015 -0.015
4 0.448 -1.233 -0.181 -0.041 -0.033 -0.025 -0.025
7 -1.207 -1.695 0.000 -0.078 -0.027 -0.022 -0.021

11 -1.396 -1.018 -0.424 -0.039 -0.030 -0.021 -0.021
12 4.124 1.005 0.215 0.023 0.006 0.007 0.006
13 2.659 0.954 0.351 0.026 0.009 0.008 0.008
14 1.998 0.668 0.267 0.010 0.013 0.012 0.012

15N 3 28.625 9.716 1.988 0.171 0.065 0.046 0.043
6 26.007 7.387 1.123 0.080 0.036 0.029 0.033
9 24.849 7.263 1.467 0.055 0.006 0.010 0.009

10 19.205 6.540 1.705 -0.020 -0.015 -0.017 -0.018

17O 5 -0.717 -4.560 0.560 -0.118 -0.053 -0.013 -0.010
8 7.738 -0.068 1.609 -0.131 0.015 0.003 0.007

Table F.52: Errors (in ppm) in isotropic NMR shieldings vs RI-MP2 for the ebselen
molecule at different values of TCutPre, neglecting terms due to ∆EPre, with TCutPNO =
10−12 for core and TCutPNO = 10−10 for valence orbitals, TCutDOij = 0.05, TCutDO = 10−3,
FCut = 10−5, TS = 10−8, and the remaining DLPNO thresholds equal to 0.

TCutPre

El. Ind. 10−2 10−3 10−4 10−5 10−6 10−7 10−8

1H 17 0.350 0.098 0.018 0.002 -0.001 -0.001 -0.001
18 0.281 -0.007 0.002 -0.001 0.000 0.000 0.000
19 0.319 0.087 0.016 0.002 0.000 0.000 0.000
20 0.419 0.046 0.002 0.002 0.000 0.000 0.000
21 0.340 0.105 0.017 0.004 0.000 0.000 0.000
22 0.350 -0.010 0.008 -0.003 -0.001 -0.001 -0.001
23 0.342 0.147 0.025 0.008 0.002 0.002 0.001
24 0.500 -0.024 0.009 0.000 0.002 0.001 0.002
25 0.450 0.070 0.024 0.004 0.001 0.001 0.001

13C 3 5.207 0.686 0.036 -0.088 -0.003 0.003 0.006
4 5.129 -0.295 -0.119 0.092 0.016 -0.011 -0.017
5 -3.983 -1.360 -0.316 -0.109 -0.024 -0.014 -0.013
6 4.496 1.408 0.323 -0.032 -0.010 -0.008 -0.007
7 0.979 -1.043 0.019 -0.051 -0.025 -0.014 -0.013
8 4.133 1.357 0.377 0.042 0.014 0.009 0.009
9 3.906 0.195 0.000 -0.001 0.006 0.009 0.010

11 2.820 1.642 0.185 0.019 -0.017 -0.020 -0.021
12 4.423 -0.633 0.438 -0.037 -0.025 -0.027 -0.026
13 3.071 2.482 0.373 0.093 0.000 -0.005 -0.006
14 7.378 -1.555 0.047 -0.085 -0.005 -0.002 0.000
15 3.365 1.281 0.384 0.062 -0.001 -0.005 -0.006
16 3.937 -0.327 0.078 -0.007 0.005 0.007 0.008

15N 1 43.368 17.632 4.400 0.845 0.234 0.154 0.150
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El. Ind. 10−2 10−3 10−4 10−5 10−6 10−7 10−8

17O 10 -16.418 -3.734 -2.077 -0.600 -0.019 0.005 0.010

77Se 2 77.451 18.174 3.487 -0.964 -0.505 -0.501 -0.488

Table F.53: Errors (in ppm) in isotropic NMR shieldings vs RI-MP2 for the penicillin
molecule at different values of TCutPre, neglecting terms due to ∆EPre, with TCutPNO =
10−12 for core and TCutPNO = 10−10 for valence orbitals, TCutDOij = 0.05, TCutDO = 10−3,
FCut = 10−5, TS = 10−8, and the remaining DLPNO thresholds equal to 0.

TCutPre

El. Ind. 10−2 10−3 10−4 10−5 10−6 10−7 10−8

1H 9 0.571 0.177 0.038 0.005 0.001 0.001 0.001
20 0.215 0.061 0.003 0.002 0.001 0.001 0.001
26 0.583 0.181 0.026 0.004 0.000 0.000 0.000
27 0.761 0.204 0.040 0.002 -0.001 -0.001 -0.001
28 0.332 0.111 0.031 0.002 0.000 0.000 0.000
29 0.395 0.136 0.031 0.003 0.001 0.001 0.001
30 0.321 0.105 0.016 0.001 0.000 0.000 0.000
31 0.398 0.138 0.024 0.003 0.001 0.001 0.001
32 0.314 0.113 0.017 0.002 0.001 0.001 0.001
33 0.359 0.132 0.027 0.005 0.001 0.001 0.001
34 0.521 0.158 0.031 0.003 0.000 0.000 0.000
35 0.352 0.121 0.028 0.002 0.000 0.000 0.000
36 0.500 0.147 0.035 0.004 0.001 0.001 0.001
37 0.421 0.024 0.008 0.001 0.000 0.000 0.000
38 0.375 -0.030 -0.005 0.000 -0.001 -0.001 -0.001
39 0.279 0.104 0.018 0.002 0.001 0.001 0.001
40 0.315 0.112 0.015 0.001 0.000 0.000 0.000
41 0.343 -0.007 0.005 0.000 -0.001 -0.001 -0.001

13C 1 4.341 -0.924 -0.134 -0.031 0.001 0.005 0.005
2 4.660 -1.600 -0.232 -0.032 -0.013 -0.007 -0.007
3 1.895 1.491 0.234 -0.014 -0.001 -0.005 -0.005
4 2.988 1.936 0.301 -0.003 0.005 0.000 0.000
5 3.976 -0.953 0.198 -0.006 -0.007 -0.003 -0.003
6 7.324 2.012 0.462 0.042 0.010 0.011 0.011
7 4.937 1.270 0.306 0.025 0.012 0.014 0.014
8 4.990 1.051 0.194 0.034 0.017 0.017 0.018

10 3.948 1.904 0.384 0.012 0.005 0.001 0.001
15 1.844 -0.431 0.108 -0.020 -0.001 -0.002 -0.002
16 1.868 -0.857 -0.234 -0.072 -0.025 -0.025 -0.024
17 11.546 3.600 0.639 0.106 0.015 0.015 0.015
18 8.135 2.576 0.580 0.036 0.003 0.001 0.001
19 1.812 0.173 0.215 -0.037 -0.015 -0.014 -0.014
22 13.835 4.003 1.164 0.103 0.038 0.024 0.024
23 18.589 5.003 1.728 0.159 0.040 0.022 0.021

15N 21 20.513 6.852 1.425 0.148 0.036 0.021 0.021
25 34.132 9.997 1.762 0.156 0.016 0.007 0.007

17O 11 9.468 -2.759 0.421 -0.072 0.018 0.013 0.014
12 11.533 0.774 0.632 -0.243 -0.009 -0.010 -0.010
13 5.476 -2.200 -0.100 -0.140 0.038 0.047 0.046
14 23.451 7.036 0.585 0.105 0.019 0.014 0.014

33S 24 53.518 11.197 3.418 0.184 0.105 0.067 0.064
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F.6 DLPNO-MP2 polarizabilities

Table F.54: Isotropic polarizabilities (in Bohr3) for the benchmark systems calculated
at the HF, RI-MP2, and DLPNO-MP2 (NormalPNO) levels using different values for the
MO orthonormalization threhsold TS,MO.

Method TS,MO caffeine ebselen penicillin coronene ATP4− (anth)2

HF 10−6 120.19 182.80 209.80 295.52 272.93 322.47
HF 10−8 120.19 182.79 209.80 295.54 272.95 322.44
RI-MP2 10−6 131.56 194.16 224.98 310.76 319.42 330.42
RI-MP2 10−8 131.56 194.16 224.97 310.82 319.47 330.36
DLPNO-MP2 εscale = 0 10−6 131.46 193.94 224.68 310.03 318.76 330.46
DLPNO-MP2 εscale = 0.1 10−6 131.42 193.91 224.59 310.18 318.82 329.79
DLPNO-MP2 εscale = 0 10−8 131.41 193.88 224.57 310.29 318.80 329.80

Table F.55: Errors (in Bohr3) in the isotropic polarizabilities for the benchmark systems,
calculated using different DLPNO-MP2 thresholds (set to zero unless noted), with respect
to RI-MP2. The MO orthonormalization threhsold was set to 10−8. No PNO level shift
was applied, unless otherwise noted.

Settings caffeine penicillin coronene ATP4−

TCutPNO = 10−5 (valence)a -1.110 -1.455 -4.275 -2.771
TCutPNO = 10−6 (valence)a -0.473 -0.711 -2.522 -0.575
TCutPNO = 10−7 (valence)a -0.173 -0.349 -0.893 -0.804
TCutPNO = 10−8 (valence)a -0.071 -0.153 -0.486 -0.269
TCutPNO = 10−9 (valence)a -0.034 -0.067 -0.219 -0.127
TCutPNO = 10−10 (valence)a -0.011 -0.027 -0.098 -0.219
TCutPNO = 10−11 (valence)a 0.000 -0.014 -0.053 -0.016
TCutPNO = 10−12 (valence)a -0.001 -0.007 -0.147 -0.002

TCutPNO = 10−7 (valence), εscale = 0.1 a -0.568
TCutPNO = 10−10 (valence), εscale = 0.1 a -0.047
TCutPNO = 10−12 (valence), εscale = 0.1 a -0.078

TCutPNO = 10−5 (core)b -0.004 -0.008 -0.083 -0.175
TCutPNO = 10−6 (core)b -0.011 -0.025 -0.095 -0.243
TCutPNO = 10−7 (core)b -0.011 -0.041 -0.102 -0.235
TCutPNO = 10−8 (core)b -0.011 -0.027 -0.100 -0.227
TCutPNO = 10−9 (core)b -0.011 -0.028 -0.098 -0.221
TCutPNO = 10−10 (core)b -0.011 -0.028 -0.098 -0.220
TCutPNO = 10−11 (core)b -0.011 -0.028 -0.098 -0.219
TCutPNO = 10−12 (core)b -0.011 -0.027 -0.098 -0.219

FCut = 10−2 c -0.027 -0.039 -0.104 0.526
FCut = 10−3 c -0.012 -0.027 -0.146 -0.248
FCut = 10−4 c -0.011 -0.029 -0.098 -0.220
FCut = 10−5 c -0.011 -0.029 -0.098 -0.219
FCut = 10−6 c -0.011 -0.029 -0.098 -0.219
FCut = 10−7 c -0.011 -0.029 -0.098 -0.219
FCut = 10−8 c -0.011 -0.027 -0.098 -0.219

TCutDO = 0.100, TS = 10−5 d -2.212 -2.816 -14.145 -6.184
TCutDO = 0.060, TS = 10−5 d -0.557 -1.597 -12.220 -2.130
TCutDO = 0.030, TS = 10−5 d -0.184 -0.517 -0.619 -0.831
TCutDO = 0.020, TS = 10−5 d -0.117 -0.368 -0.397 -0.682
TCutDO = 0.010, TS = 10−5 d -0.066 -0.268 -0.203 -0.423
TCutDO = 0.006, TS = 10−5 d -0.029 -0.191 -0.122 -0.269
TCutDO = 0.003, TS = 10−5 d -0.031 -0.126 -0.103 -0.212
TCutDO = 0.002, TS = 10−5 d -0.025 -0.101 -0.104 -0.237
TCutDO = 0.001, TS = 10−5 d -0.014 -0.065 -0.097 -0.172

TCutDO = 0.100, TS = 10−8 d -2.096 -2.393 -13.495 -5.836
TCutDO = 0.060, TS = 10−8 d -0.420 -1.261 -11.761 -1.815
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Settings caffeine penicillin coronene ATP4−

TCutDO = 0.030, TS = 10−8 d -0.042 -0.268 -0.229 -0.578
TCutDO = 0.020, TS = 10−8 d -0.052 -0.203 2.036 -0.498
TCutDO = 0.010, TS = 10−8 d 0.013 -0.137 124.915 -0.248
TCutDO = 0.006, TS = 10−8 d -0.011 -0.110 -18178.146 -0.284
TCutDO = 0.003, TS = 10−8 d -0.043 -0.048 618.034 -0.352
TCutDO = 0.002, TS = 10−8 d -0.006 -0.031 -1052.010 -0.236
TCutDO = 0.001, TS = 10−8 d -0.012 -0.032 -65.782 -0.269

TCutPre = 10−2 e -6.417 -9.497 -31.996 -21.716
TCutPre = 10−3 e -2.545 -4.084 -18.865 -8.638
TCutPre = 10−4 e -0.573 -1.099 -7.745 -2.484
TCutPre = 10−5 e -0.052 -0.169 -0.603 -0.588
TCutPre = 10−6 e -0.019 -0.075 -0.165 -0.210
TCutPre = 10−7 e -0.015 -0.067 -0.105 -0.177
TCutPre = 10−8 e -0.015 -0.065 -0.095 -0.173

TCutPre = 10−2 (+∆EPre)e -0.138 2.440 -9.773 11.753
TCutPre = 10−3 (+∆EPre)e -1.635 -2.365 -14.040 -4.509
TCutPre = 10−4 (+∆EPre)e -0.474 -0.837 -7.132 -1.915
TCutPre = 10−5 (+∆EPre)e -0.048 -0.150 -0.580 -0.509
TCutPre = 10−6 (+∆EPre)e -0.019 -0.074 -0.163 -0.204
TCutPre = 10−7 (+∆EPre)e -0.015 -0.066 -0.105 -0.177
TCutPre = 10−8 (+∆EPre)e -0.015 -0.065 -0.095 -0.173

a TCutPNO = 10−12 (core), FCut = 10−8, TS = 10−5

b TCutPNO = 10−10 (valence), FCut = 10−8, TS = 10−5

c TCutPNO = 10−10 (valence), TCutPNO = 10−12 (core), TS = 10−8 (10−5 for coronene)
d TCutPNO = 10−10 (valence), TCutPNO = 10−12 (core), FCut = 10−5

e TCutPNO = 10−10 (valence), TCutPNO = 10−12 (core), FCut = 10−5, TCutDO = 0.001, TS = 10−5

Table F.56: Errors (in Bohr3) in the isotropic polarizabilities for the benchmark systems,
calculated using different DLPNO-MP2 thresholds (set to zero unless noted), with respect
to RI-MP2. The MO orthonormalization threhsold was set to 10−6. No PNO level shift
was applied.

Settings caffeine penicillin coronene ATP4−

TCutPNO = 10−5 (valence)a -1.115 -1.460 -4.214 -2.724
TCutPNO = 10−6 (valence)a -0.477 -0.717 -2.461 -0.528
TCutPNO = 10−7 (valence)a -0.178 -0.355 -0.833 -0.757
TCutPNO = 10−8 (valence)a -0.075 -0.159 -0.426 -0.222
TCutPNO = 10−9 (valence)a -0.038 -0.073 -0.158 -0.080
TCutPNO = 10−10 (valence)a -0.015 -0.033 -0.037 -0.171
TCutPNO = 10−11 (valence)a -0.004 -0.020 0.007 0.031
TCutPNO = 10−12 (valence)a -0.005 -0.013 -0.086 0.045

TCutPNO = 10−5 (core)b -0.009 -0.014 -0.023 -0.128
TCutPNO = 10−6 (core)b -0.015 -0.031 -0.034 -0.196
TCutPNO = 10−7 (core)b -0.016 -0.047 -0.042 -0.187
TCutPNO = 10−8 (core)b -0.015 -0.033 -0.040 -0.180
TCutPNO = 10−9 (core)b -0.015 -0.034 -0.038 -0.173
TCutPNO = 10−10 (core)b -0.015 -0.034 -0.037 -0.173
TCutPNO = 10−11 (core)b -0.015 -0.033 -0.037 -0.172
TCutPNO = 10−12 (core)b -0.015 -0.033 -0.037 -0.171

TCutDO = 0.100, TS = 10−8 c -13.552
TCutDO = 0.030, TS = 10−8 c -0.409
TCutDO = 0.020, TS = 10−8 c -0.385
TCutDO = 0.010, TS = 10−8 c -0.356
TCutDO = 0.006, TS = 10−8 c 0.013
TCutDO = 0.003, TS = 10−8 c 0.031
TCutDO = 0.002, TS = 10−8 c 0.057
TCutDO = 0.001, TS = 10−8 c 0.102

TCutDO = 0.100, TS = 10−5 c -14.100
TCutDO = 0.030, TS = 10−5 c -0.635
TCutDO = 0.020, TS = 10−5 c -0.348

Continued on next page

167



Continued from previous page

Settings caffeine penicillin coronene ATP4−

TCutDO = 0.010, TS = 10−5 c -0.154
TCutDO = 0.006, TS = 10−5 c -0.079
TCutDO = 0.003, TS = 10−5 c -0.079
TCutDO = 0.002, TS = 10−5 c -0.057
TCutDO = 0.001, TS = 10−5 c -0.051

a TCutPNO = 10−12 (core), FCut = 10−8, TS = 10−5

b TCutPNO = 10−10 (valence), FCut = 10−8, TS = 10−5

c TCutPNO = 10−10 (valence), TCutPNO = 10−12 (core), FCut = 10−5
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[237] Weigend, F.; Häser, M. Theor. Chem. Acc. 1997, 97, 331–340.

[238] Lee, T. J.; Racine, S. C.; Rice, J. E.; Rendell, A. P. Mol. Phys. 1995, 85, 561–571.

[239] Handy, N. C.; Schaefer, H. F. J. Chem. Phys. 1984, 81, 5031–5033.

[240] Pople, J. A.; Krishnan, R.; Schlegel, H. B.; Binkley, J. S. Int. J. Quantum Chem.
1979, 16, 225–241.

[241] Lee, T. J.; Rendell, A. P. J. Chem. Phys. 1991, 94, 6229–6236.

[242] Pople, J. A.; Gill, P. M.; Johnson, B. G. Chem. Phys. Lett. 1992, 199, 557–560.

[243] Bates, J. E.; Furche, F. J. Chem. Phys. 2012, 137, 164105.

[244] Dobson, J. F. J. Chem. Phys. 1993, 98, 8870–8872.

[245] Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. J. Comput. Chem. 2003, 24, 669–681.

[246] Garcia-Ratés, M.; Neese, F. J. Comput. Chem. 2020, 41, 922–939.
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