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Abstract

Nuclear magnetic resonance (NMR) spectroscopy is an essential analytic technique in
chemical, pharmaceutical, and biomedical research and materials sciences. The informa-
tion that NMR provides about the molecular structure of novel compounds is detailed
but indirect, hidden behind the two main quantities that determine the shape of the
spectrum: the shielding tensor (observed as a chemical shift) and the indirect spin—spin
coupling tensor. Thus, computational methods are often used to predict these properties
from first principles and correctly interpret complex spectra. The challenge is to develop
methods which are both accurate and robust enough to resolve truly complicated struc-
tures, and efficient enough to be routinely applicable to large molecular systems. This
work aims to facilitate the fast and accurate calculation of NMR shielding tensors in three
complementary ways.

First, two popular approaches for speeding up Hartree—Fock (HF) and density func-
tional theory (DFT) calculations, the resolution of the identity (RI) and chain-of-spheres
exchange (COSX) approximations, are applied to NMR shielding calculations using gauge-
including atomic orbitals (GIAOs). A benchmark study is performed to assess the errors
thus introduced in the calculated shieldings, in comparison to the inherent errors due
to the level of theory. After selection of appropriate basis sets and integration grids, it
is shown that the RI approximation for Coulomb interactions, combined with either the
same for exchange interactions (RIJK), or with COSX (RIJCOSX), are both sufficiently
accurate. However, for systems with more than 100 electrons and 1000 basis functions,
RIJCOSX is more efficient.

Next, NMR shielding calculations with GIAOs are implemented for RI-based second
order Mgller—Plesset perturbation theory (RI-MP2) and also, for the first time, for double-
hybrid DET (DHDFT). The latter is shown to be substantially more accurate than either
MP2 or regular DFT, reproducing NMR, chemical shifts within 2% of the CCSD(T)
(coupled clusters with single, double, and perturbative triple excitations) reference values.
The accuracy and efficiency of the RI-MP2 approximation is also assessed and it is shown
that the implementation is suitable for systems with up to 400 electrons and 2500 basis
functions.

Finally, the applicability of MP2 and DHDFT is extended to even larger systems by
employing the concepts of local electron correlation within the framework of the domain-
based local pair natural orbital (DLPNO) approximation. The formally complete analytic
second derivatives of DLPNO-MP2 are derived and implemented for both NMR shieldings
and electric dipole polarizabilites. Some numerical stability issues, potentially relevant
to other local correlation methods, and their avoidance are discussed. The effect of the
DLPNO approximation is assessed for medium-sized systems and it is shown that relative
deviations from the RI-MP2 reference result are below 0.5% for both properties when
using the default truncation thresholds. For large systems, the implementation achieves
quadratic effective scaling of the computational effort with system size. It is more efficient



than RI-MP2 starting at 280 correlated electrons and is never more than 5-20 times slower
than the equivalent HF or hybrid DFT calculation. The largest system treated here at
the DLPNO-DHDFT level is the vancomycin molecule with 176 atoms, 542 correlated
electrons, and 4700 basis functions.
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Chapter 1

Introduction

1.1 The nuclear magnetic resonance shielding tensor

Nuclear magnetic resonance (NMR) spectroscopy is an essential tool in modern chemistry
with a myriad of applications including characterization of novel compounds, measuring
reaction kinetics and binding constants, assessing the purity of synthetic products, etc.
NMR is very sensitive to changes in the chemical environment of the studied nuclei, how-
ever, this structural information is indirect. While advanced experimental techniques,
such as two-dimensional NMR spectroscopy, are very powerful in deconvoluting compli-
cated spectra, computational modeling is often necessary in order to interpret the exper-
imental data. The main two observables obtained from NMR spectra are the chemical
shift and the indirect nuclear spin—spin coupling both of which can be calculated from first
principles for model systems. However, the methods presented in this work are mainly
directed at the ab initio computation of chemical shifts.

The chemical shift, d, is defined as the relative difference of the nuclear magnetic res-
onance frequency of a sample nucleus, Vsample, With respect to that of a reference nucleus,
Veef, €xpressed in parts per million (ppm):'

5= Vsample — Vref (11)
Vref

The resonance frequency is proportional to the nuclide’s magnetogyric ratio v and the
applied magnetic field By:
UV =

%Bo (1-0) (1.2)

This equation defines the shielding constant ¢ as a dimensionless quantity, usually re-
ported in ppm, which reflects how the magnetic field acting on the nucleus is affected by
the induced currents in the surrounding electron density. This dependence on the local
electronic environment makes o and J sensitive probes for the chemical structure around
a given nucleus. In principle, the value of ¢ depends on the orientation of the molecule in
the external magnetic field and therefore both o and 8 are three-dimensional second-rank
tensors. However, due to rapid tumbling in the liquid state, only an average isotropic
value is observed, which can be calculated from the trace of the tensor:

1
Oiso = g(o'xm + Oyy + Uzz) (13)

The anisotropy of the tensor can also be measured in solid state experiments.



1.2 Ab initio calculation of NMR shielding

The theory behind the computation of NMR parameters from first principles dates back to
the 1950s” and progress in the field has been the subject of many monographs, reviews,
and conference proceedings over the years.”'® The following sections point out some
of the relevant works, focusing in particular on improvements in the accuracy and/or
computational cost of NMR shielding calculations.

Formally, the NMR shielding tensor o of nucleus K can be expressed as the second
derivative of the energy with respect to the magnetic field B and the magnetic moment
the nucleus, mg: %'

OBa = 75 17— ,
P dB,dmg,

B,mg=0

a,B=x,y,z2 (1.4)

In principle, energy derivatives can be obtained using numerical differentiation techniques,
i.e. finite differences. However, such an approach suffers from limited numerical precision,
as well a high computational cost due to the large number of energy calculations that
must be performed. In addition, it is particularly ill-suited for magnetic properties, as
these would require parameterizing the wave function using complex variables, which is
not possible in most electronic structure programs. Thus, practical implementations for
NMR shielding calculations rely on analytic derivative techniques, which resolve these
issues. The downside, however, is that the derivation and implementation of each specific
property for each electronic structure method requires significant effort.

1.2.1 The gauge origin problem
An additional complication is the so-called “gauge origin problem”,'*'” which requires
special treatment. The external magnetic field is introduced into the Hamiltonian through

a vector potential:
1
Af(r,B) = §B x (r—Rp) (1.5)

where r is the electron position and Ry is the gauge origin, which can be chosen arbitrarily
as long as it satisfies the condition

B =V x A*(r,B) (1.6)

In contrast, observable properties of the system, such as the shielding tensor, must be
independent of this choice. That is indeed the case for the exact wave function, however,
not so for the approximate wave functions used in practice. In fact, not only do the
calculated shieldings vary with R, the convergence towards the complete basis set (CBS)
limit is very slow as the basis set is increased.'® Several methods have been devised to
tackle this problem:

e Individual Gauge for Localized Orbitals (IGLO);'®"
e Localized Orbitals/Localized Origins (LORG)*’ and its second order variant SOLO;*!
e Individual Gauges for Atoms in Molecules (IGAIM);**

e Continuous Set of Gauge Transformations (CSGT)* and the related Continuous
Transformation of the Current Density (CTOCD) variations;?" %"
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e Gauge-Including Atomic Orbitals (GIAOs).*" 3!

Of these, the GIAO approach has been established as the de facto standard, as it formally
(and practically) ensures gauge-origin independence of the result, does not require orbital
localization (which may fail for delocalized systems), and can be applied to correlated
wave function-based methods. Within the GIAO approach a magnetic field dependence
is introduced as a phase factor in the definition of the basis functions:

Xx(B,r) = exp [-1A°(Rk, B) - r] . (r) (1.7)

where ¢, is a regular Gaussian-type orbital (GTO), centered on atom K and AS is
the local representation of the external field at coordinates Ry, as given by eq. 1.5.
In integrals over GIAOs the dependence on Ry cancels out,**** making the calculated
properties gauge origin-independent. Note that derivatives of these integrals with respect
to B (at the zero-field limit) are strictly imaginary. In practice, the imaginary unit is
factored out and thus a real representation is sufficient for the perturbed integrals with
the minor complication that the resulting matrices are antisymmetric.'%

1.2.2 Wave function theory

In the field of wave function theory, the Hartree-Fock (HF) method has undoubtedly pro-
vided useful insights but it has been shown to predict NMR shieldings rather far from the
experimental observations, due to a lack of electron correlation effects. Shielding calcu-
lations using correlated wave function-based methods and analytic derivative techniques
were pioneered by Gauss, first at the level of second order Mgller—Plesset perturbation
theory (MP2),%%% and subsequently at higher orders of perturbation theory and coupled
cluster (CC) theory,”**! as well as configuration interaction (CI) up to full CT (FCI).**
While calculations at high levels of CC theory are only feasible for rather small molecules,
they provide accurate reference values, against which to benchmark other computational
methods. In this respect, CC with single, double, and perturbative triple excitations
(CCSD(T)) has been established as the “gold standard”. MP2 has been shown to offer
a good balance between cost and accuracy in the calculated NMR shieldings, **%%437 al-
though it can fail completely for systems with significant static correlation. In these cases
a multiconfigurational approach may be more appropriate,® " though single reference
CC calculations are usually also successful. **!

A somewhat empirical way to improve MP2 results is to scale the same-spin (SS) and
opposite-spin (OS) contributions to the energy by different factors in the so-called spin-
component-scaled MP2 (SCS-MP2) approach.”'>® The related spin-opposite-scaled MP2
(SOS-MP2) method completely neglects the SS contribution and yields similar accuracy
with the added benefit of reduced formal scaling of the computational effort with system
size from O (N%) to O (N*), provided a Laplace transform-based implementation is used.
Fitting the scaling parameters in SCS-MP2 (or SOS-MP2) to better reproduce CCSD(T)
NMR shielding constants is also possible,”* although this somewhat obscures the physical
meaning behind these parameters.

1.2.3 Density functional theory

A rather more popular approach to the calculation of chemical shifts is density func-
tional theory (DFT), which has a significantly lower computational cost.'”*>°" The proper



treatment of magnetic perturbations in the context DFT is the subject of ongoing discus-
sion.”® % Most common density functionals (DFs) do not depend on the external magnetic
field, and therefore produce exchange and correlation (XC) energies, which are unphysi-
cally constant in the presence of such. While it is possible to introduce an explicit mag-
netic field dependence, % the more widely-accepted approach is current density functional
theory (CDFT), pioneered by Vignale and Rasolt, "% who introduced the paramagnetic
current density as an independent variable, although this choice is also subject to debate. °°
CDFT is still actively developed and was recently extended to functionals based on the
meta-generalized-gradient approximation (meta-GGA). %" However, while the current
density contributions to NMR shieldings can be substantial,””> CDFT results are not
necessarily substantially better than those obtained with standard current-independent
DFs.%% 7972 Therefore, for pragmatic reasons the latter are widely used for the calculation
of magnetic properties, with different functionals showing varying degrees of accuracy.*""
While there are DFs specifically optimized for NMR shielding calculations, "™ some gen-
eral application meta-GGAs like VS98, and M06-L. have been shown to be particularly
well-suited for NMR chemical shifts.

According to the “Jacob’s ladder” classification, introduced by Perdew, " the highest
level (fifth rung) DFT methodologies include a non-local correlation energy contribution
by taking into account the virtual molecular orbitals (MOs). One possible approach
of this type is double-hybrid DFT (DHDFT), whereby an MP2-like term is added to
the total energy. ™™ Combining this with SCS-MP2 and the empirical dispersion correc-
tion (denoted D3BJ in its most popular formulation), introduced by Grimme,*’** gives
the general formulation of dispersion-corrected spin-component-scaled double-hybrid DFT
(DSD-DFT), developed by Kozuch and Martin.® ®° In extensive benchmark studies of
themochemistry, kinetics and noncovalent interactions, double-hybrid density functionals
(DHDFs) have been clearly shown to outperform lower-rung DFs, with DSD-BLYP and
DSD-PBEPS86 among the most accurate.***” DSD-DFT functionals also perform better
than other common DFs or MP2 in calculations of properties, for which they were not
specifically optimized, such as harmonic vibrational frequencies,***" dipole moments,”
and polarizabilities.”! This suggests they may be sufficiently “universal” to also produce
high quality results for other response properties. Note that, as discussed above, the
XC functionals used in DHDFT are independent of the magnetic field. While it may
be expected that this deficiency is partly offset by the inclusion of Hartree-Fock (HF)
exchange and MP2 correlation, this issue is not examined in the current work. Analytic
derivatives for DHDFT have been derived and implemented previously for geometric gra-
dients,”?% as well as NMR shieldings,”* however, without proper treatment of the gauge
origin problem.

1.3 Shielding calculations for large systems

A fundamental challenge of computational chemistry is how to apply its methods to
ever larger systems. This is also relevant to NMR shielding calculations, as particularly
biomolecules and natural products can have hundreds or thousands of atoms, while sim-
ulations of condensed phases may require inclusion of many molecules to obtain reliable
results. Thus, it is worthwhile to improve the efficiency of computational methods as
much as possible, in terms of both formal scaling with system size and overall time and
resources required.

One possibility is to exploit the local nature of NMR shielding by dividing the system
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into fragments and performing separate calculations for these fragments, accounting in
some approximate way for their interaction with the rest of the system.’” ' Such ap-
proaches have been successfully applied to chemical shift calculations of entire proteins. A
benefit of methods based on simple electrostatic embedding of the target fragment within
the surroundings, such as quantum-mechanics/molecular mechanics (QM/MM)?%97%9 or
ONIOM-like schemes, 0105103104 45 that one can in principle apply arbitrary levels of
theory for the individual sub-calculations. This implies that any efficiency improvements
in the underlying computational method can be carried over to much larger systems, pro-
vided the latter lend themselves to such fragmentation. Alternatively, if only a few nuclei
in the system are of interest, it is possible to reformulate the methodology to selectively
calculate only their shielding constants, thereby dramatically reducing the computation
time, 105,106

Complementary to these techniques is the use of efficient integral evaluation algo-
rithms. As is the case for self-consistent field (SCF) calculations of the energy, the com-
putational effort for NMR property calculations is also dominated by the evaluation of
two-electron repulsion integrals. Therefore a number of approaches have been developed
to reduce the cost of this step, including prescreening procedures, which reduce the number
of integrals to be computed, and approximate calculation of the integrals themselves. "
Ochsenfeld and coworkers have applied advanced screening techniques in combination with
the continuous fast multipole method (CFMM) to SCF-level NMR shielding calculations
and demonstrated asymptotic linear scaling with system size. %109

Two other popular approaches are the resolution of the identity (RI) and chain-of-
spheres (COS) approximations, which have been applied successfully to energy calcu-
lations, as well as first and second order geometric perturbations (gradients and Hes-
sians). !’ Both approximations provide significant speedups and only introduce small
deviations in the results (e.g. errors in the energy up to 100 pEy/atom). 11511516 For
energy calculations on medium to large systems at the HF and hybrid DFT levels, the
COS approximation of the exact exchange (COSX) has been shown to be more efficient
than the RI approximation of the latter (RIK), due to the more favorable scaling of the
COSX algorithm with system size (formally linear, quadratic in practice, as opposed to
O (N%) for RIK, albeit with a small prefactor).''® Conversely, the RI approximation of
the Coulomb terms (RIJ) usually provides a better balance of cost vs efficiency than the
respective COS approximation (COSJ).'"? While the RI approximation has also been
employed for the calculation of NMR shielding constants using GIAOs, %" no such im-
plementation of the COS scheme has been reported prior to the present work, although
it is similar to the pseudospectral approach of Friesner et al.''®!!

As part of this thesis deals with extending the applicability of MP2 to much larger
systems, it should be viewed as part of an ongoing effort to reduce the computational
cost of MP2 response property calculations. Works in this context are the integral-direct
GIAO-MP2 implementation for NMR shieldings of Kollwitz, Haser, and Gauss, *"'?! the
derivation of RI-MP2 second derivatives in combination with COSX,”* and the Laplace-
based approaches of Ochsenfeld, Hittig, and their coworkers,'?*'?* as well as the local
correlation methods discussed in the next section.



1.4 Property calculations with local correlation meth-
ods

When it comes to reducing the rather steep formal scaling of correlated wave function-
based methods such as CC, local correlation approaches, which exploit the “near-sight-
edness” of dynamic correlation, have been a great success. The early development of
local electron correlation methods is due to Pulay and Saebg,'?*'?° although the ini-
tial ideas date further back.'?”'?® Thanks to recent advancements in several research
groups, ?#1297165 the popularity and applicability of these methods for the calculation of
relative energies have grown tremendously. With modern approximations, the “gold stan-
dard” CCSD(T) method '® has become available at a computational cost only a few times
higher than that of DFT.!9"1% Considering the massive progress that has been made in
this field for the calculation of electronic energies, there are comparatively few works that
make use of local correlation approximations to compute molecular properties, such as the
dipole polarizability, NMR shielding, etc., which are related to derivatives of the energy.
This is, in part, because analytic derivatives of local correlation methods are challenging,
due to the complexity of the theories.

This is not to say that nothing has been accomplished on this subject. Werner, Schiitz,
and coworkers have derived and implemented analytic nuclear gradients for several lo-
cal correlation methods'%*'™ based on projected atomic orbitals (PAOs),'*»** including
MP2, and have also used them to semi-numerically calculate vibrational frequencies. ™17
Gauss and Werner also presented a pilot implementation for NMR shielding calculations
with PAO-based local MP2 (LMP2).'™ The first efficient such implementation, also em-
ploying the RI approximation, was later reported by Loibl and Schiitz, '™ and also adapted
to magnetizabilities. '™ Another study by Werner and coworkers examines the accuracy
of PAO-based local correlation methods for polarizability calculations via finite differ-
ences, ™ an approach which is difficult to apply to magnetic properties, as it requires
an implementation based on complex algebra. Maurer and Ochsenfeld developed an AO-
based Laplace-transformed MP2 method for the computation of NMR shieldings, which
can asymptotically achieve linear scaling, or even sub-linear if only a few nuclei are of in-
terest. %2 Static and dynamic polarizabilities have also been implemented for MP2 and the
approximate coupled cluster method CC2, using both RI and a Laplace-transformation. '**
Frank et al. reported analytic gradients for a local MP2 variant, based on pair natural
orbitals (PNOs), although they neglected the PNO relaxation.'®® The complete analytic
gradient for an orbital-specific virtual (OSV) local MP2 method was also published re-
cently by Yang and coworkers.'®* We should also mention here the work by Crawford
and coworkers in the field of local coupled cluster linear response theory for the calcula-
tion of molecular properties, including frequency-dependent polarizabilities and specific
optical rotations. ™ '*® Work in the Neese group has focused on the domain-based local
pair natural orbital (DLPNO) approximation and has resulted in orbital-unrelaxed first
derivatives of DLPNO-CCSD, which can be used to calculate, e.g., dipole moments and
HFCs. #9190 Fully orbital-relaxed first derivatives and nuclear gradients were also imple-
mented for the DLPNO-MP2 method, "% and those results highlight the importance
of the PNO relaxation contributions, e.g. for electric field gradients. !



1.5 Relativistic, rovibrational, and environmental ef-
fects

The discussion so far dealt with the accurate and efficient calculation of NMR shieldings
of static molecules in the gas phase within the non-relativistic and Born—-Oppenheimer
approximations. However, NMR experiments are performed at a finite temperature and
represent averaged parameters for an ensemble of vibrating and rotating conformers of
the target molecule, usually in a liquid or frozen solution. Therefore, a direct compar-
ison between computed and measured chemical shifts is only possible if the relativistic,
conformational, rovibrational, and environmental (i.e. solvent/crystal) effects are either
negligibly small, or properly accounted for in the calculations.

Relativistic effects in general are only significant if the system contains heavy atoms.
In these cases, both scalar relativistic and spin—orbit coupling contributions can become
substantial, resulting, for example, in the observable “heavy atom-light atom” (HALA)
and “heavy atom-heavy atom” (HAHA) effects. Both scalar and spin—orbit relativistic
corrections can be computed using an appropriate modification to the theory, such as the
full four-component Dirac-Fock treatment, '”*" approximate two-component approaches
such as the zeroth-order regular approximation (ZORA)?""*"? or the Douglas-Kroll-Hess
(DKH) transformation,?”**"* as well as exact two-component (X2C) methods. > 27

Different conformers of the same system can have drastically different NMR shieldings.
In addition, chemically equivalent nuclei, such as the three hydrogen atoms of a methyl
group, appear as a single signal in the spectrum, while they are non-equivalent in static cal-
culations. Therefore, for flexible molecules, which can exist in multiple conformations at
room temperature, it is absolutely essential to correctly average the computed properties
over the whole conformer-rotamer ensemble. This can be done via some (manual or au-
tomatic) sampling procedure, together with accurate estimates of the Boltzmann weights
of individual conformers.?"®*"Y Alternatively, molecular dynamics (MD) approaches can
be used, including ab initio MD (AIMD), to compute a time average of the NMR shield-
ings.?!Y The effects of rovibrational averaging can also be substantial.?’! In many cases,
they can be estimated using second order vibrational perturbation theory (VPT2),"%2!2
while AIMD simulations are another option. !’

Finally, the effects of the molecular environment are most noticeable in the solid state
or in strongly polar and protic solvents.?'*?!* In these cases, it may be necessary to
explicitly include the surrounding molecules in the model system (often within an MD
simulation) in order to obtain accurate predictions.?” " For weakly polar and aprotic
solvents, an implicit solvent model is often sufficient.*'®

9,194-197

1.6 Scope of the present work

This thesis encompasses three main projects. The first is a detailed study of the accuracy
and efficiency of the RI and COS approximations applied to NMR shielding calculations at
the SCF (HF and DFT) level with GIAOs. To put the errors due to these approximations
in context, a test set of small molecules is assembled and the comparatively larger errors
due to basis set incompleteness and the level of theory are assessed. The findings are
presented in Chapter 2.

The second project deals with the derivation and implementation of the RI-MP2 and
DHDFT methods for NMR shielding calculations using GIAOs. The accuracy of various



double-hybrid functionals, as well as the other sources of error (RI, basis sets, etc.), are
assessed using the same set of molecules, which is why these results are also grouped in
Chapter 2.

The third project, discussed in Chapter 3, is the derivation and implementation of
analytic second derivatives of DLPNO-MP2, applicable to field-response properties, such
as dipole polarizabilities and NMR shieldings. A detailed benchmark study of the accuracy
and efficiency of the method is also reported. This is the first implementation of formally
complete analytic second derivatives of a PNO-based local correlation method and on the
one hand it serves as a stepping stone towards DLPNO-CCSD second derivatives. On the
other hand, it allows the application of MP2 and DHDFT, which have been shown to be
very accurate for polarizabilities and NMR shieldings,*>*"?! to even larger systems.

All software implementations related to this thesis are included in the ORCA electronic
structure program.?!?-2?!

Note that the derivations and implementations discussed in this work are not directly
applicable to harmonic vibrational frequencies, as the efficient evaluation of the nuclear
Hessian requires substantially different algorithms.

In addition, relativistic effects are entirely neglected throughout this thesis. Rovibra-
tional influences are circumvented by comparing between equilibrium values computed
using various methods and approximations. However, the techniques discussed here are
in principle also applicable within schemes such as VPT2 or AIMD. Finally, the results in
this work are computed in vacuum, although implicit solvent models are briefly discussed
and once again, inclusion of explicit solvent molecules is also possible with the presented
methods.



Chapter 2

Efficient NMR shielding calculations
at the SCF, MP2, and double-hybrid
DFT levels

2.1 Theory

2.1.1 Notation and general considerations

Throughout this chapter u, v, ... label atomic orbitals (AOs), 4, 7,... and a,b,... label
occupied and virtual molecular orbitals (MOs), respectively, and p, g, ... label any MOs.

Where a matrix quantity is defined using the same symbol in both the AO and MO
basis sets, for example F},, and F,,, to distinguish these in matrix notation, the index
“AQ” is added to the former, i.e. Fpo and F, respectively. A matrix trace is denoted as

When expressing derivatives in matrix form the following notation is used:

0A 0A
oy, ~ b~ © 21)
dA;; dA
b = Y — .. b = —
Al = W | Cy & A= Wl C (2.2)

A perturbation index in parenthesis, i.e. A® is used to imply that not the full derivative
is taken but, e.g., derivatives of the MO coefficients are excluded. In the following, these
symbols are defined at first occurrence. In addition, the following shorthand is used to
explicitly denote unperturbed quantities:

AD = A|,_, (2.3)

In the case of magnetic properties, special attention must be paid to complex con-
jugation: the superscripts “x”, “T” and “f” are used to denote the complex conjugate,
matrix transpose, and complex transpose of a quantity. Because the independent param-
eters in the derivations are considered complex quantities, Wirtinger derivatives are used
throughout,?*” i.e. for a complex parameter z = x + iy and a function f(z, z*):

df 1df idf df_ldf+idf

dz  2dz 2dy dz  2dz  2dy

(2.4)



In addition to the ordinary product and chain rules, the following equalities hold:

af\"_ df aF\ dr

<$> Cdz (dz*) C o dz (2:5)

In general, z and z* are viewed as independent parameters until a point where they
become fully real (z = z*) or fully imaginary (z = —z*).

Atomic units are used in all equations throughout this work.

2.1.2 NMR shielding at the self-consistent field level

In the following, a brief overview is given of the basic theory underlying the calculation of
the NMR shielding tensor using analytic derivative techniques, in particular, at the SCF
level. For a more thorough discussion the reader is referred to the lecture by Gauss,'® as

well as the extensive review by Helgaker et al.'® and references therein.

2.1.2.1 The NMR shielding tensor as a derivative of the energy

As mentioned in Section 1.2, the NMR shielding tensor o of nucleus K can be expressed
as the second derivative of the energy with respect to the magnetic field B and the
magnetic moment of the nucleus, mg:

K A°E

Og, = ——— a,f=x,y,z2
Ba ) ) s I
dBadeB Bm =0

(2.6)

The energy F is the expectation value of the Hamiltonian, the one-electron part of which
is parametrized to depend explicitly on B and mg in the following manner:*

h(r, B, m) — %n? _V(r), 7m=—iV+A(r,B m) (2.7)

where the vector potential A is given by

mpyg X (I' — RK)
r — R|

A(r,B,m) = %B x (r—Rp) + o Z (2.8)

where the first term corresponds to the external field, the second arises due to the nuclear
magnetic moments. In the above equations, r and R are the coordinates of the electron
and nucleus K, respectively, « is the fine-structure constant, and R is the arbitrarily
chosen gauge origin.

Using a density matrix-based formalism, equation 2.6 can be evaluated as

d2h dD,, dh
Dyt o 2.9
Z " ABodmy, ; dB, dmy, (2.9)

where D is the density matrix. Note that for non-variational methods, the proper defi-
nitions of the density matrices must be used.***"3%223227 The first and second terms in
eq. 2.6 are referred to as the “diamagnetic” and “paramagnetic” parts of the shielding
tensor. To compute the latter, the perturbed or “response” density matrix D® is required
— its evaluation at the HF level is discussed in the following section. The extension to
(hybrid) Kohn—Sham DFT (KS-DFT) is given in Section 2.1.4.

X« d2E

75 = ABndmy,

Bmg=0

10



2.1.2.2 Coupled perturbed self-consistent field equations
For SCF methods (HF or DFT), the density matrix is defined as:

DY =2 " chicy (2.10)

We can parametrize the dependence of the MO coefficients on the magnetic field as
c(B) = cVU(B) (2.11)

Hence, the perturbed density becomes

DESF’B =2 Z (chU;’*c,,i + cZiUﬁcyp) (2.12)
pi
where the superscript B denotes a magnetic field derivative (at B = 0).

For any value of the external perturbation, the MO coefficients must fulfill the or-
thonormality condition S,, = d,, and the Brillouin condition Fj; = 0 where S,, and F,,
are elements of the overlap and Fock matrices in the MO basis. The unknown coefficients
UB are constrained by the derivative of these conditions:

d d
dB Spa =0 dB~ 0 (2.13)
The former gives:
B+ B B _ . B) _ 0)x B (0
Up + Sl(,q) +U,, =0, with Sz()q) = 5 CELp) S”Vcl(,q) (2.14)
uv

while the latter results in the so-called coupled perturbed self-consistent field (CPSCF)
equations:

0= F; = (UPTF + FU® + c¢'hiyc + cfglio [D¥F]c + g[D*FB]) (2.15)
P = (1) 216
1 1
0ID] = D] = 30ID] = 3 Do (o) = 5 (uAler) 2.17)
KA

where (uv|sA) are the two-electron repulsion integrals in Mulliken (1*1|2*2) notation
and hyao, gao D], Jao[DF], and Kao[DF] are respectively the one-electron,
two-electron, Coulomb and exchange parts of the Fock matrix in AO basis. The same
symbols without the “AO” index denote the matrices transformed to the MO basis,
e.g. g[DSCF} =clgro [DSCF]C. The two-electron operators are also defined analogously
for (pseudo-)density matrices in the MO basis, as determined from context.

We evaluate the terms in eq. 2.15 one by one using eq. 2.14 and assuming canonical
orbitals, i.e. Fj,; = 0pgq:

(UPTF),, = UB'e; = (=S5 — UB) = (2.18)

(FU®),, = el (2.19)

(cTth)ai = Zczacm% (2.20)
uv

11



guy [DSCF] — JB [DSCF] . ;KE} [DSCF]

2 dB

92 [DSFB] = — Z (U (ajilbd) + Uy} (ablj)] + > S (aklgi) — (2.22)
bj kj

Kos[UB] Koi[SB]

where we have used eq. 2.14 to express the perturbed density matrix as
SCF,B __ Bx B B).
DR =Y (et 3 2 0 oy

Note that for magnetic perturbations, all integral derivatives are purely imaginary and
so are the perturbed MO coefficients, i.e. UB* = —UB. All perturbed Hermitian matrices
such as D5“F:B are therefore antisymmetric, which is why the Coulomb contributions in
eq. 2.22 drop out. The term denoted K,; [UB] in the same equation is not consistent with
the definition of the K[D] operator above but we use this notation for convenience.

Collecting all terms in eq. 2.15 containing U in the left-hand side we obtain the final
form of the CPSCF equations in the canonical MO basis. These can be formulated in
matrix form by combining the indices ai into a single index:

AUP = _LB (2.24)
Aai bi = (5a —€;) Oaipj + (aj | bi) — (ab]| ji) (2.25)
m L Z [ (ailjj)® (aj|jz‘)(B)} — siS(B + Z S ) (ak|ji)  (2.26)
)7, B
ZCW hW Vq (2.27)
(palrs)™® = Z (OO el (pv]i))® (2.28)
LUK

The discussion above also applies to KS-DFT, however, some additional terms arise due
to the XC functional, which are discussed in Section 2.1.4. Inclusion of implicit solvent
effects is discussed in Section 2.1.5.

2.1.2.3 GIAOQO Integrals

The dependence of the AOs on B and of the Hamiltonian on both B and my leads to
non-zero derivatives of molecular integrals with respect to these quantities. The exact
form of the derivative GIAO integrals was derived in detail by Helgaker and Jgrgensen.??
We summarize the working equations here for completeness:

d([,LMVN|KK)\L) 1

= — (/LMVN| [OMer + OKLI‘Q] T1_21 |I<LK>\L) (229)
dB b 2
dS,, i
= — 2-
B |, "2 (par| Omnr o) (2.30)
dh,, i 1
1B LT3 (arl Onwrh [vw) + 5 {par| Ly |vw) (2.31)

12



dh,, L

" = o ( piar | - | v (2.32)

de m =0 N

d*hy, o iOyNtLY + (ra - ry) 1 —Tyr)
_— = — 2.33
dBdmy g,y 2 <“M =3 ”N> (233)
LN = —iI'N x V (234)
Ruyvn =Ry —Ry= [XMN Yun ZMN} (235)
0 —Zun  Yun

Oun=1| Zun 0 —XunN (236)

—Yun Xun 0

Note that the definition of the matrix O allows for integral derivatives with respect to
the magnetic field to be calculated similarly to geometric derivative integrals, required
for analytic gradient calculations. The evaluation of the contributions involving the two-
electron integrals (eq. 2.29) can be carried out efficiently using either RI or COS, both of
which are discussed in the following sections.

2.1.2.4 Resolution of the identity approximation

In the RI or density fitting approximation, a product of Gaussian-type orbitals (GTOs)
is expanded as a linear combination of auxiliary basis functions (denoted K, L,...). In
the present case, the unperturbed Coulomb integrals can be approximated using RI as?*®

T [DS] = ZdK (uv|K) (2.37)
di = Z ) kL ZDSCF (KAL) (2.38)
L

where the integrals involved are defined as

(| ) = / L (1) 0 (1) Fia s (r2) drydry (2.39)
VKL = /nK(rl) T12 UL(I‘Q) dI‘ldI'Q (240)

Several efficient algorithms exist for the evaluation of the Coulomb term, in this work
the Split-RI-J algorithm is used.?* The exchange matrix is evaluated using the expres-
- 110,230

sion "'

K[DYF] = 23 (uilk) (vi | K) (2.41)
(il K) = 3" ex (uAIK) (2.42)
(wi | )= 3" (V7)o (il) (2.43)

It should be noted that RI does not reduce the formal scaling (only the prefactor) of the
evaluation of the exchange term, unlike it does for the Coulomb contribution. The RI
metric V does not need to be explicitly inverted. Instead, eqs. 2.38 and 2.43 are solved
using a Cholesky decomposition of V.

13



In order to apply the RI approximation to the two-electron integrals in the CPSCF
equations, several modifications are made. The K[S(B)] term can be assembled from
stored four-index MO basis integrals evaluated using RI:

KR[S® Z Sk (aklji)™ (2.44)
(palrs)™ = (pal K) (V7). (rs|L) (2.45)
(pgl K) = €hyvq (10| K) (2.46)

Likewise, the K [UB} term on the left-hand side of the CPSCF equation can be assembled
at every iteration from stored integrals:

KR [UP] ZUbj[aﬂbz (ab|ji)RI] (2.47)

While it significantly speeds up the calculation (see Section 2.3.10.1), storing the
four-index integrals on disk also leads to large disk space requirements. In case these
become prohibitive, K [UB] may instead be computed on-the-fly in each iteration using
standard integral-direct techniques. An integral-direct RIK implementation for this term
is not discussed here, however it is not expected to be very efficient. Unlike the exchange
contribution in the SCF (eq. 2.41), where only the integrals (ui|K') are evaluated at every
iteration, for eq. 2.47 it is also required to recalculate (ua|K), which significantly increases
the computational effort.

Somewhat more involved are the gB [DSCF ] terms, where the three-index perturbed
integrals are required:

(i ) =3 " ) (| )P (2.48)
V| K i
a0 = LA b Onerri 1K) (2.49)
B=0
JB[DF] = ZdK (uv|K)P (2.50)
KRLB[DSOF] —22 [ 1l K)® (i | K) — (ui | K) (m’|K)(B)] (2.51)

The fitting coefficients dx are independent of the perturbation because D3{* is symmetric,
while (kA|L)® is antisymmetric in & and A and therefore the trace of their product is zero.
Note that the auxiliary basis functions are not field-dependent to ensure gauge invariance
of the three-index integrals.''”

2.1.2.5 Chain of spheres approximation

Unlike RI, the COS approximation does lower the formal scaling of the exchange term, for
the evaluation of which it is especially well suited. The COS method is a seminumerical
technique, in which the integration over ry is done numerically as a sum over grid points
g, weighted by w, "

KOS [DS¥) = ZWMGW (2.52)

14



Gy = Z FoyAl,, (2.53)

= \/_QOu(rg) (2.54)
Z DSSEWy, (2.55)

Ad = /gp,{(r) o, (r) |r — rg|_1 dr (2.56)

The numerical error can be reduced by employing the so-called “overlap-fitting” proce-
dure,?*! whereby the following expression is used instead of eq. 2.52:

KOS D] =) QuGuy (2.57)
g

where the matrix Q is defined as
Q= Sx0 (WWT) ' W (2.58)

where Spo is the analytic overlap matrix in the AO basis.
The Coulomb term can also be approximated (COSJ):

JOO8 [DSF] = ZDKA (| KA) =) WigWi,l, (2.59)
g

I, = Z DSSF A9, (2.60)

While the evaluation of eq. 2.59 can be implemented very efficiently, a large number of
grid points is required to achieve sufficient accuracy, making this approach inferior to
the RIJ approximation (eq. 2.37),''* and hence it is not employed in this work (for the
unperturbed integrals).

The K[U®B] and K[S®)] terms require no special attention — they are evaluated
using equations 2.53-2.58 by replacing D5 with the appropriate effective density matrix,
i.e. the first or second term of eq. 2.23, respectively, transformed to the AO basis. Note
that special care must be taken when evaluating 2.55 because the perturbed density is
antisymmetric.

The GIAO terms are also evaluated in the AO-basis. We first split the derivative
integrals into two parts in order to make use of permutational symmetry:

(kL] Onrriryy [kxvn) + (L] Oxnroryy [kxvn)
— (X wv)® + (uA[Fm)® (2.61)
J— B _
= (uA|rr)~ — (TR|Au)P
A bar over the AO labels signifies that a derivative is taken only of those basis functions.

Exploiting also the symmetry of the density matrix, we obtain for KB D3]

KB DSCF ZDSCF u)\|/w ZDSCF (TR|A)®P —[?E’V—[?l]i (2.62)

where the last equality defines KB. It is useful to look at the perturbation along one
coordinate:

- i B -

Kl == " DX [Yar (padel 200 [6cvw) = Zar (padnl s [excvw)]

2
KA
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COS i
Z DX Z Wepu(ry) pu(re) AL, [Yarzg — Yi2g — Znyg + Z1y,]
=3 Z (W ,,Gog + WG, (2.63)
9

and finally, introducing overlap-fitting:

[\]

KCOSPs = — Z Q,yGug + QueG,,) (2.64)
g

where the barred quantities are defined as

W g = V0epp (tg) Yarzg — Zaryy) (2.65)

ZF rg A (2.66)

FZQ = Z DggFW)\g [ZLyg - YLZg] (267)
A

@Zg = Qug [Yarzg — Zny,) (2.68)

KB [DSCF] is therefore approximated as
KCOS:B[DSCF] — KCOSB _ [gCOSB,T (2.69)

The perturbed Coulomb term can also be approximated using COS:

JoO5 P [DSOF] = " DS (mw|kA) ™ Z WooWog Yarnzg — Zaryg) I, (2.70)

KA

The (;w‘ﬁ)B term vanishes because it is antisymmetric in k and A while the density is
symmetric, so the trace of their product is zero.

2.1.3 Analytic derivatives of RI-MP2 and RI-DHDFT

The theory of MP2-level NMR shielding calculations is well known?***>!?Y and adapta-
tions to SCS-,* local,'*>'™ and Rl-accelerated local MP2'™ have been developed and
implemented. The extension to DHDFT is rather simple and in general presents fewer
difficulties than geometric DHDFT derivatives.’*?* In this section, a derivation of RI-MP2
analytic second derivatives for NMR shieldings is presented, in the context of DSD-DFT
for the sake of generality.

2.1.3.1 Lagrangian formulation

The general DSD-DFT energy expression is® %

EPSPPIT — Br 4 By 4 Ene + ex EX" + (1 — ex) EX™" + ccEG™ + seEp

TV
ESCF

2.71
+ co By + cs B (2.71)

EMP2
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where the terms are, respectively, the kinetic energy, the electron—electron and electron—
nuclear Coulomb energies, exact (HF) exchange, exchange and correlation DF contri-
butions, empirical dispersion correction, and opposite-spin and same-spin MP2 corre-
lation energies. Depending on the values of the coefficients in eq. 2.71, one may also
obtain e.g. “pure” dispersion-corrected DFT (c¢x = co = ¢s = 0), pure HF (cx = 1,
co=cs=cc=8=0), pure MP2 (¢cx = co =cs =1, cc = s¢ = 0), as well as simpler
DHDFs like B2PLYP (co = ¢s = 1 — ¢¢, s¢ = 0). These coefficients are assumed to be
included in the definitions of ESF and EMP2. The DSD-DFT shielding tensor may also
be split into SCF and MP2 contributions:

DSD-DFT SCF | __MP2
o4 =0, +oy, (2.72)

Note that the empirical dispersion correction only depends on the nuclear coordinates
and therefore does not contribute to the shielding tensor. The SCF contribution o5°* is
calculated as described in Section 2.1.2 with the only difference that the DFT correlation
terms (discussed in Section 2.1.4) are scaled by cc.

Because the usual RI-MP2 energy expression is not variational, it is convenient to use

the following Lagrangian formulation:

L = E5¢F + Egu + Ciri + Cyioo + Ceov (2.73)
where EX is the Hylleraas functional,*” in the generator state matrix formulation,
Chgyi is the Brillouin condition, Cyipo is the MO orthonormality constraint, and Cey is
the core—valence separation condition in the case of the frozen-core approximation. These
terms will be described in detail below. The Hylleraas functional:

233,234

ER =37 tr (KDY + KT + tr(D'EY) (2.74)
i>]
depends on the spin-adapted excitation amplitudes Téi = Tbjal and introduces the con-
travariant amplitudes 7%, defined as

T% =214 6;) " [(es + co) T — esT ] (2.75)

where 9;; is the Kronecker delta symbol. Eq. 2.75 is obtained as in refs. 233 and 234, em-
ploying in addition the SCS-MP2 ansatz.’! The orbital-unrelaxed MP2 difference density
matrix D’, contracted with the Fock matrix F, only has occupied-occupied and virtual—
virtual blocks given by

Dl ==Y (145t (T’“j*Tik) (2.76)
k

) o
i>j

Finally, the two electron repulsion integrals in the RI-MP22%>?%¢ approximation are de-
fined as

Ky =D (ia] K) (V1) ¢, (L]jD) (2.78)

with Vi = (K|L) being the auxiliary basis Coulomb metric.
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Turning to the constraints in eq. 2.73,

1
Crri = 5 Z (20iFui + 25, F) = tr(2"F) (2.79)

valence core

Cov =+ Z Z Zim Fom + 250 i) = tr(2"F) (2.80)

Cymoo = prq g — Opg) = tr(x (S — 1)) (2.81)

where 24, Tpq, Zim, and their complex conjugates are the undetermined Lagrange multi-
pliers, which can be arranged in Hermitian matrices z, x, and z, defined in the respective
blocks with

Zia = Zy; (2.82)
Tgp = Tpyy q<P (2.84)

The arbitrary factors of l in Cg; and Cey are added for consistency with derivations for
nuclear gradients where the complex conjugates 2z, and z;  are not necessary. Note that
special care needs to be taken regarding complex conJugatlon, as the magnetic perturba-
tion leads to imaginary matrix elements.

2.1.3.2 First derivatives

The derivative of the Lagrangian in eq. 2.73 with respect to the nuclear magnetic moment
component mgpg is

dc 0L i oL ourt n oL ou* Z . oL 8Tij’T+ oL OTw*

- oL ox" oL 0z" oL 0z"
aX 8ng 0z ang 0z (9ng

deg N (9ng

8mK5 Z (DSCF + Dy) byt (2.85)
where the orbital-relaxed difference density matrix D, is defined as:**%2%%2%7
* / ]' 1 = T
D=c"|D +§z+§z c (2.86)

The second equality in eq. 2.85 holds when the Lagrangian is made stationary with respect
to variation in all parameters, i.e. the conditions 9£/gu = 9L Jorii = 0L Jgx = OL [g5 = OL oz =
0 (and their complex conjugates) are fulfilled. These conditions also provide the necessary
expressions for T%, z and z which we will derive below.

Taking first the amplitude stationarity conditions, it can easily be shown using eq. 2.75
that
oL oL

oTy, oty
ab ba

=2(1+40;) "

aTZ] - (CS + CO) (287)
ab
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Therefore, instead of the conditions 9£/o1ii = 0 we will use 9£/oT% = 0, because the latter
are more concise:

oL g N - ‘ | )
0 = afz]* - K(Zz{)* + Z (TaléFbc + FacTCZZ) - Z (ijTaZlg + Flebe> = RZJb (288)
ab c A
o (2.89)
ot “

eq. 2.89 comes from the properties of Wirtinger derivatives (see Section 2.1.1) and the fact
that the Lagrangian is real. At the stationary point R} = 0 and if we substitute it back
into the Hylleraas functional we can recognize the expression for the RI-MP2 correlation
energy.

ER = SN (KATS + T RY) (2.90)

i>j ab

If the Fock matrix is expanded in terms of canonical orbitals in eq. 2.88, i.e. F,; = €50,
we obtain the familiar closed-form expression for the amplitudes:

Ty =K (ci+ej—ca—eb) (2.91)
Next, we derive the orbital rotation stationarity conditions:

_ oL QEST
T oU  9U
N——

0

0Cwyoo
ou

+% Z tr (Kjir_N[\ij + Kji*r]f\ij*) + i tr<DF£0) +

G (2.92)

1]

where Fpo is the AO-basis Fock matrix F),,. The first term is zero because the SCF
energy is already variational. Proceeding with the other terms:

0
OUp,

>t (KT KT ) = 37 (o (oK) Tl + 6 (0| K) TH] - (2.93)

i>j Kbj
11
tr(DF o) = [c(o)vTF;goc* (D’ +52F 52)]
rq

+ 20, (C(O)’ngo [D]c*)

OUp,
(2.94)

pq

0Cnio0

By~ Sho)

(2.95)

pq

where Spo is the AO-basis overlap matrix S,,, g*[D] is the complex conjugate of the
two-electron repulsion operator defined in eq. 2.17 over the MP2 difference density D,
and the three-index two-particle density I'Y is defined as: %37

Fg - Z (1 + 5%’]‘) lejb (]b‘L) (V_I)LK (2-96)
JbL

(qp(0)|K) = Z czqcl(g,) (uv|K) (2.97)
uv

The contributions coming from the XC functional in the case of DHDFT are given in Sec-
tion 2.1.4 and drop out in the case of pure MP2. Note two peculiarities in eqs. 2.93-2.95:
first, some of the MO coefficient matrices no longer depend on the external perturbation
(i.e., we have c¥ instead of ¢) for subsequent derivatives, and second, eq. 2.92 (as well as
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its complex conjugate) depends on the Lagrange multipliers x. Therefore, we construct
the linear combination:

oL oL
oUy,  OUy,

0= - Z [0 (70| K) TE + 645 (bp© | K) T

Kbj
= 0 (03| K) T = 0y (40| ) T3

1 1 1 1
- {c(o)’TFZOc* (D’ +-z+ —Z) — (D’ +-z+ —Z> cTFZOc(O)*]

2 2 2 2 -
+ 26qz (C(O),ngo [D]c*)pq . 25])1 (CTgZO [D]C(O)*)pq
+ (C(O)’TSZOC*X)M — (XTCTSZOC(O)*)M
(2.98)

At U =1 the last two terms cancel out and the virtual-virtual, core—core, and valence—
valence blocks are trivially zero. The core—valence block gives the equations for Zz,
(referred to as “Z-CV equations” below): 179237238

1 1
1 =3 ; FjiZjm — 5 ; FrnZin — Z (mb|K) T}, (2.99)

Kb

oo [0 o
~ v, oup,

U=

which yield a closed-form solution for canonical orbitals:

Zim =2(g5 — &)1 Y _ (mb|K) T (2.100)
Kb

The occupied—virtual block of eq. 2.98 gives the equations for z,;,

oo [oc _ or
~ |ov.  ou,

1 1 .
= 5 Z FbaZbi - 5 Z Za]Ej + 2gaz[D]
b J

+ Y (balK) TR =Y (6| K) Tjy
Kb

Kj

v (2.101)

which take the following form, assuming canonical orbitals, and must be solved iteratively:

(€a — €i) Zai + 2g,;12] = X (2.102)
. . * * * 1 =
X = QZ (if] )Tl =2 (ba| K) T~ — 4g;, {D’ + iz] (2.103)
Kj Kb
These are equivalent to Handy and Schifer’s “z-vector equations”,?* which here arise

naturally from the Lagrangian formulation and are referred to as “Z-CPSCF equations”.
The two-electron Fock response term may be approximated using the RIJK,''! RIJONX,
or RIJCOSX ! approaches, of which the latter is the most efficient for large systems, due
to its more favorable scaling behavior.?%!'6

Note that evaluation of the Lagrange multipliers for the orthonormality condition z,,
is not necessary for the first derivative, eq. 2.85, because the basis functions do not depend
on the nuclear magnetic moment. Nevertheless, x,, are needed for the evaluation of the
second derivative as shown in the next section. Defining for convenience:

»C-MOO =L - CMOO (2.104)
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we get the following equations for x,,:

0L noo
= — 2.105
qu aqu U=I ( )
9L no0
= — 2.106
A N 2100

These solutions are identical, provided that eq. 2.98 is fulfilled.

2.1.3.3 Second derivatives

The second derivative of the RI-MP2 Lagrangian with respect to the nuclear magnetic
moment component mgs and the external magnetic field component B,, is equal to the
derivative of eq. 2.85:

2L S L
B, :HZ(DESWDW) By +;(DESF’B DBy A (2.107)

where the SCF response density matrix DESF’B‘* is defined in eq. 2.12. The RI-MP2
response difference density is defined as the derivative of eq. 2.86:

1 1 1 1 1 1

DB =¢* (D’B + 5zB + 52‘3) ¢t 4 cB* (D’ + 57 + 52) ¢t +¢* (D’ + 37 + 52) BT
(2.108)

where
D =3 (1+35) (o (T’“j*BT“f) ot (Tkj*T““B» (2.109)

k
D;]g. _ Z (Ffji*BTij i PGBy i i+ B i rIwz’j*Tji,B> b (2.110)
i>j ¢

The perturbed parameters ¢B, T%B, zB and zB are obtained from magnetic field deriva-
tives of the Lagrangian stationarity conditions, which we present below. Analogous equa-
tions are derived in refs. 34, 35, 120, and 179

The coefficients UB are computed as solutions to the CPSCF equations,?* 2.24, which
come about from the condition CB. = 0. The UZ-]? and UB blocks are also required and are
only constrained by the perturbed orthonormality condition Cyo = 0, eq. 2.14. Thus,

they can be chosen in different ways, the most common being

1

B _ (B)

UR =555 (2.111)
l B

UB — —éséb) (2.112)

However, a computationally more efficient alternative choice of Ui?,
canonical orbitals,*”!?":?*! is presented in Section 2.1.3.4.

The magnetic field derivative of the amplitude stationarity conditions, eq. 2.88, gives
the equations for T¥®B, which take the following form, assuming canonical orbitals:

resulting in perturbed

THP = (e ey e — ) | KSR 3 (TR + FRTY) - Y (FETE + FETY)
c k

(2.113)
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where the perturbed exchange integrals in the RI approximation are

KgP =Y [(z‘a|K ) (VY o, (L) + (ia] K) (V7Y ., (I jb)B} (2.114)
(pal )% = 3 [ (V1P + (el By + By (] )| (2.115)

Note once again that the auxiliary basis functions are independent of the magnetic field.
As pointed out by Loibl et al.,''"'™ using GIAO-type fitting functions instead would
violate gauge invariance, because the explicit dependence on the gauge origin would not
cancel out in the perturbed three index integrals.

The derivatives of the MO rotation stationarity conditions can be expressed as follows,
using eqs. 2.14, and 2.105:

doL doL nmoo (B B
0= ——— = — + (S®B)* 4 UB*) x + xB
dBoU |z,  dBOU |g_, ( ) (2.116)
_ daﬁ_MOO 4 UB’T daC—MOO + XB
dBOU |5_, dBOU |y ;

and likewise for the complex conjugate. The second term reintroduces the MO response
which is “missing” in egs. 2.93-2.94. We then take the linear combination in which xB
cancels out:

_doc oc  d , p .
0= dBAU,, dBOU;, dB{Z[%b (JpIK) Ty 4 dq; (bp| K) Ty

Kbj
— 0 (@7 | K) T3, = 65 (gb| K) Ty

11 11 (2.117)
F* D/ - T . D/ - - F*
f|F (o g ) - (D g )R]

+ 204i9p,[D] — 26419, [D]}

We note in passing that after solving eq. 2.117, eq. 2.116 can be solved for the perturbed
Lagrange multipliers xB, which are, however, not needed to calculate the NMR shielding
tensor. The virtual-virtual, core—core, and valence—valence blocks of eq. 2.117 are zero.
The core-valence block gives the perturbed Z-CV equations which give a closed-form
solution for zB in the case of canonical orbitals:

(2.118)

The occupied-—virtual block gives the equations for zB,
(ea —&i) 2 + 205 [2°] = X©, (2.119)
X2 =23 |K)° Tl + (i1 K) T4 2
Kj

-2y [(bayK)B TE* 4 (ba| K) rfg*B}
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11 B
B B * — 0
—%jﬂ&m+§'%ﬂm—4(%{ﬂ+5z+§ﬂq)
J
(2.120)

where the derivative of two-electron Fock response operator (for an arbitrary MO matrix
Q) is
(&"[Q)z = 9o [Q] +92:[Q° + U Q + QU] + (g7(QIU™ + UP"g’(Q]),

(2.121)
and the derivative of the three-index density is

M S () [FAP GUD) < TS GHDP] (V) (2122)
GbL

2.1.3.4 Perturbed canonical orbitals

Due to the last two terms in eq. 2.113, the calculation of the MP2 response density
becomes a formally O (N) scaling step. In addition, if the amplitudes are calculated in
multiple batches, such that T;g are only available for ¢ within the batch, the last term in
eq. 2.113 requires amplitudes outside the batch. This was noted by Kollwitz and Gauss in
their direct GIAO-MP2 implementation, '* who suggested the use of perturbed canonical
orbitals,***! i.e. choosing U} coefficients such that the internal block of F® vanishes:

_ B _ /B B (B)

— 0Bz = (UB+5P) e+ FP (2:123)
FB _ B,
Ui]? BV (2.124)
€j — &;

Thus the internal Fock matrix contribution to T%B vanishes and the formal scaling is
reduced to O (N®). A complication arises when (near-)degenerate orbitals ¢ and j are
present which would make the denominator of eq. 2.124 (near-)zero. In these cases Ug’
are chosen according to eq. 2.111 and the corresponding contributions to the perturbed
amplitudes are calculated. Hence, only those amplitudes T* (T) are required for which
ex ~ & (ex & g;), or, after assigning UB, those for which |FE| (|FB|) is greater than
some threshold, e.g. 107°. In our implementation these amplitudes are either precalcu-
lated and stored on disk or reevaluated on the fly. The latter option leads to significant
computational overhead and should only be used in the unlikely case (for feasible system

sizes) of insufficient disk space.

2.1.4 Exchange—correlation functional terms

For brevity in the previous sections, we have focused on the HF and MP2 methods because
the treatment of (hybrid) KS-DFT and DHDFT is analogous, with some additional details.
In this section, we examine the terms that arise due to the XC functional. The DFT XC
energy contribution is

BRET = [ fclpte). (o)l (2.125)
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where we have assumed that fxc is a GGA functional which depends, in the closed-shell
case, on the electronic density p and its gradient invariant v expressed using the SCF
density matrix D5¢F as

pscr = Y DCFQ,, (2.126)
nv

scr = |Vpscr|? (2.128)

Vpscr = »_ DIFVQ,, (2.129)
pv

The Fock matrix therefore also contains an XC potential term:?*?

G, 0
Fly Vot = {ulVxclv) = / [%Quﬁ gXCVpSCFVQW dr (2.130)

In addition, the two-electron operator is redefined as:

9[D] = J,[D] = S K, [D] (2.131)
Thus, for hybrid DFT all exact exchange contributions to the CPSCF equations (i.e.
KB [DSF], K[U®], and K[S®]) have to be scaled by 0 < cx < 1, which is the amount
of exact exchange that should be included for the given functional. For “pure” func-
tionals cx = 0 and these terms do not need to be calculated, resulting in a closed-form
expression for the CPSCF equations. The same applies to the respective contributions in
DHDFT. Note that the DFT exchange and correlation scaling coefficients, (1 — cx) and
cc, respectively (cf. eq. 2.71), are implicitly included in the definition of fxc.
VXC depends on the MO coefficients through DSCY and therefore minimizing the
DHDFT Lagrangian with respect to orbital rotations gives rise to an additional Fock
response term in the Z-CPSCF equations eq. 2.101:

oL oL
U,  oU

o
Il

« 2RXC[D] (2.132)

where

0% f 0% f:
RXC ZCWCW/{{ XC DSCF} +2@p@xo [DSCF}:| Pp

82fXC a fXC
P|+2
" {873/)[ I+ 0?

(2.133)

[DSCF}]VSCFVpDVQW}dr

with pp = Zuu D,

As discussed in the Introduction, most common XC functionals do not have an explicit
dependence on the external magnetic field. However, when using GIAOs, the electronic
density and its gradient depend on the magnetic field through both DSCF and the basis
functions:

OB = 3 " Ry X 1) Q) = —0B, (2.134)
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i
(VQ,)° = 3 (Rarv x 1) () + vQO)) = — (VQ,,)° (2.135)

where R,y is the distance vector between the centers of AOs p and v. Due to the anti-
symmetry of the perturbed quantities, the full derivatives of the density and its gradient
vanish:

pler = Z DiSFBQ,, + Z DSCFQB, = (2.136)
(Vpscr)® Z DTBVQ,, + Z D3CF (V)% =0 (2.137)
VSoF = 2VpSCF (Vpscr)® =0 (2.138)

Hence, using the notation of Section 2.1.2.3, the XC contribution to the perturbed Fock
matrix is:

1
F;B/ — V,fzic’B =5 (] OmnrVxe |vn)

df df
:/|: a;(CQEV-i-Q aXCVpSCF (VQM,) ]dr

Finally, the contributions to the perturbed Z-CPSCF equations are:

- [doc  doc
dBoU,; dBOU;,

(2.139)

2 (UB,TRXC [D] + RXC [D]UB* + RXC(B) [D])

at

(2.140)
where
0 0?
_ Z Cuacl /{ { aixc [DSCF] 42 - J:;(C [DSCF}:| O,
" (2.141)
. 0 fxc P + 232fxc [DSCF] Voo (VQ,)B Ldr
a,}/ap 872 YSCF V PD %%

Note that, unlike for electric or geometric perturbations,”” terms which include third
derivatives of the XC functional vanish.

A complication arises for meta-GGA functionals that depend on the kinetic energy
density 7, which in the closed-shell case can be expressed as:

Z DSCFV Y - Vi (2.142)

This quantity is known to not be gauge-invariant, even if GIAOs are used (as defined
above), unless modified appropriately.®"%%?** Two such modifications are proposed in the
literature: one by Maximoff and Scuseria (7ys),”® and one by Dobson (7p),*** and have
also been compared in the context of NMR shielding.%>™ In particular, the following term
is relevant:

(VX# : VXV) = 5 (RMN X r)a V(,O# -V,

1 1
+ 580;3 (B x Ruo)™ - Vi, — §V‘PZ - (B x Ryo)™ ¢,
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It is the last two terms that violate the gauge-invariance. In all calculations discussed
here, these terms are simply neglected. This ad-hoc gauge-invariant approach, while not
justified theoretically, has been shown to produce results that are no worse, and in some
cases even better, than the mys and 7 ansétze, when compared to CCSD(T) reference
data.™ In addition, it does not introduce unphysical components in the shielding tensor,
as is the case for g, and it does not require iterative solution of the CPSCF equations
for pure DF'T, as is the case for my. All of these approaches were implemented in ORCA
subsequent to the publication of ref. 72 but are not discussed further in this thesis.

2.1.5 Implicit solvent terms

If an implicit solvation model is used, such as the conductor-like polarizable continuum
model (CPCM) implemented in ORCA,?*>%!% the Fock matrix is corrected with an addi-
tional term:

Fu < Vi = (| Veal |v) = / (vo, + v [DF]) Q. dr (2.143)
sol —1 -1 ZK
— —r, B S 2.144
e = 2 (AT I D R (2.144)
sol [ySCF] _ -1 -1 pscr(r’) .,
v DS = £ (AT, I - I (2.145)

st

where Zk is the charge of nucleus K and R is its position; the indices s and ¢ denote
surface elements; f. is a function, which depends on the dielectric constant of the solvent;
and the matrix A (defined as S in ref. 245) depends on the areas and relative positions of

the surface elements. Both the nuclear and the electronic terms, v3°, and v%! respectively,
contribute to the CPSCF equations, due to the GIAO response:
SO. i
F,L]L?l’/ — V,LWLB = 5 <,U/M | OMNerol | VN)
(2.146)
_ / (v, + 0 [DSCF]) OB dr
Only v%! contributes to the Fock response in the Z-CPSCF equations:
oL oL
0= - «— 2R D 2.147
- 5 } < 2mreD) (2.147)

RD Zcuacm / v D]Q,, dr (2.148)

where vS[D] (for any matrix D) is defined as in eq. 2.145 with pp substituted for pscr.
Finally, the contributions to the perturbed Z-CPSCF equations are:

0=

doc  doc
dBoU,; dBOU;,

2 <UB,TRSOI [D] + RSO] [D}UB* + RSOI(B) [D])

ai

(2.149)

RIB Zc,wcm / v D]QB dr (2.150)

where
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Note that the solvent potential is self-consistently optimized with the SCF electron
density, rather than the full MP2 density. This approach, often denoted “PTE”, is not
only more convenient to derive and implement, but is actually the theoretically consistent
choice for second order perturbation theory, according to an analysis by Angyan.?!”

2.2 Implementation of the RI-MP2 response density
calculation

In ORCA the relaxed RI-MP2 difference density D is evaluated as discussed in ref. 92. The
algorithm is similar to that of Weigend and Héser,”*” with some notable differences. For
detailed descriptions of these implementations, the reader is referred to those publications.
Here we briefly summarize the main steps:

1. The integrals (ip|K) are calculated and stored on disk.
2. The occupied MOs are split into batches according to available memory.

3. In each batch of i, integrals are read and amplitudes T and T¥ are calculated
(egs. 2.91 and 2.75).

4. Contributions to D’ (eqs. 2.76-2.77), T™ (eq. 2.96), and X (eq. 2.103) are accumu-
lated.

5. After the main loop, the two-electron response operator g*[D'] (eq. 2.17) is con-
structed and added to X.

6. The Z-CPSCF equations (eq. 2.102) are solved and the relaxed density matrix D is
stored on disk.

The expressions for the magnetic field-perturbed quantities DB, T%B T¥B (first
term), and X®B (first four terms) — eqs. 2.109, 2.110, 2.122, 2.113, and 2.120, respectively
— are analogous to the respective unperturbed quantities D’, I'*, T%, and X — egs. 2.76,
2.77,2.96, 2.91, and 2.103, respectively — except that the former contain six times as many
contributions (recalling that the magnetic field has three components). Therefore, the
algorithm to calculate these terms is also analogous to that for first DHDFT and RI-MP2
derivatives, discussed above and in refs. 92 and 237, with six times as many operations
(seven times as many in case the unperturbed quantity needs to be recalculated as well
— this is the case for T¥ and I'") and four times higher memory requirements (including
the unperturbed quantities), leading to an expected increase of the computation cost by a
factor of up to 20-30. Both unperturbed and perturbed three index integrals, (ip|K) and
(ip|K)®, are precalculated and stored on disk. The similarities and differences between
the algorithms for the calculation of D and DB can be seen in Scheme 2.1.

The last two terms in eq. 2.113 require special treatment, which is discussed in Sec-
tion 2.1.3.4. As explained there, it is usually more efficient to store the unperturbed
amplitudes on disk. Another potential bottleneck are the contributions to D;g (eq. 2.109)
where all T¥ and T¥®B are required for a given i. One approach, which is used for the
equivalent contributions to D;j is to keep these amplitudes in memory. However, due to
the higher memory requirements, more batches would be needed, resulting in additional
overhead. Alternatively, the amplitudes for the batch can be stored on disk and processed
in a second loop over i. This also produces overhead in the form of disk input/output
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Scheme 2.1: Algorithms for the calculation of D (left) and D® (right), aligned to high-
light the analogous steps. Frozen-core and XC contributions are omitted for simplicity.

Make and store all (ip| K) Make and store all (ip|K) and (ip|K)B
Map L(i — k) where Fy; > Fcut
Read D and all U(E. Complete UB and FB

for batch I € {occupied} do for batch I € {occupied} do
for i € I do for i € I do
for j € {occupied} do for j € {occupied} do
Make T% (and T%). Make T% (and T%).

K* K%*B and T contribs. to T¥-B
for k € L(i — k) do
Make/read T*J
Tk contrib. to T B
end for(k)
for k € L(j — k) do
Make/read T**
T contrib. to T-B

end for(k)
Complete T>B (and ’i‘ij*B).
if j <ithen if j < i then
T% contribs. to EMP2 and D’ T and T%B contribs. to D'B
end if end if
T contribs. to T'E T% and T¥B contribs. to 'K and I8
end for (j) end for (j)
for j € {occupied} do for j € {occupied} do
for £ < j do for £ < j do
T contribs. to D’ Tik i TB and TWB contribs. to D'B
end for (k) end for (k)
end for (j) end for (j)
3-internal '’ contribs. to X 3-internal ' and T'’>B contribs. to XB
end for (7) end for (7)
3-external T contribs. to X 3-external 'K and T'>B contribs. to XB
end for (I) end for (1)

Fock response contribs. to X Fock response contribs. to XB

Solve Z-CPSCF equations and complete D Solve perturbed Z-CPSCF equations and complete DB
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(1/O) and recalculation of the contravariant amplitudes T% and T%B and is therefore
only necessary when memory is a limiting factor.

As is the case for X, the three external index contributions to X®B (second and third
terms in eq. 2.120) are evaluated by partially transforming I'* and T'**B to the AO basis,

T =Y cully (2.151)
b

i

NP [cfbrfg + c#brf,f’B] (2.152)
b

and contracting them with AO-basis three index integrals, generated on the fly:

R * B * *
XE =23 B3 (KT =23 e > [(ulK)PTE + (] K) ™| (2.153)

Kup Ku

As in the DHDFT gradient implementation in ORCA,“? but unlike the original algorithm
by Weigend and Haser, " I'K and TP for the whole batch are kept in memory, although
in principle it is also possible to store them on disk to reduce memory demands at the
cost of a higher I/O overhead.

A final point to consider is the evaluation of two-electron Fock response terms in
egs. 2.102 and 2.119, as well as those in the perturbed Fock matrix FB. The latter were
discussed at length in Section 2.1.2 and that discussion largely applies also to the GIAO
integrals g®*[D]. Theoretically it is most consistent to apply to these terms the same ap-
proximation (e.g. RIJK or RIJCOSX) that was used in the SCF procedure. However, the
RI approximation to the exchange integrals offers no computational advantage when the
latter are to be contracted with a density matrix defined in the entire MO space. There-
fore, in our implementation the LHS terms are treated with the RIJONX approximation,
which allows for better prescreening. An alternative is to store the required (aj|bi) and
(ablji) integrals on disk, rather than recalculate them at each CPSCF iteration. This is
most efficiently done via an RI transformation during the first run through the RI-MP2
program, where the integrals (ia|K) and (ij|K) are already available, although (ab|K)
are normally not. Note, however, that the RI-MP2 auxiliary basis set (denoted AuxC)
is used, rather than the one used for the SCF (denoted AuxJ). In Section 2.3.10.2 we
compare the efficiency of these two approaches.

2.3 Results and discussion

2.3.1 Test set

While multiple authors have performed benchmark studies on the calculation of NMR
properties and have proposed different test sets of molecules,*”"*" we chose to compile
a new test set with the following requirements in mind: (i) it should include magneti-
cally active nuclei of several different (and chemically important) elements; (i) for each
element, a broad range of shielding values should be covered; (7ii) the size and number
of molecules should still allow for quick optimization of computational parameters; and
(iv) experimental gas-phase absolute shielding constants should ideally be available for
most, if not all, nuclei. We propose the following set of 15 molecules: C4H4O (furan), CFy,
CH3COCH;3, CHy, CO, Fy, OF3, H,O, HF, N5, NoO, NH3, PF3, PH3, and PN. The test set
includes a total of 34 chemically inequivalent shielding constants — 8 for *H, 7 for '3C, 5 for
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15N, 6 for 170, 5 for F, and 3 for 3'P — which span most of the range of possible shielding
values for each element. High-quality GIAO-CCSD(T) calculations, including zero-point
vibrational corrections have previously been performed for all of these molecules.** 07
In addition, experimental data for absolute gas-phase shielding constants are available for
29 of the 34 shielding constants (all except C and H in C4;H,O and H in CH3COCH3) (see
Table 2.1 for references).

Note that the experimental value quoted for the 'H shielding of PHj in the initial
publication of these results (ref. 261)) was 27.89 ppm, taken from ref. 262. This value
was not actually used in the benchmark calculations, as comparisons were made with
respect to the CCSD(T) values and the empirical equilibrium estimates, for those nuclei
for which a vibrational correction was available. However, it is likely the experimental
shielding of 27.89 ppm is erroneous as it disagrees significantly form the CCSD(T) result
and is more than 1 ppm away from the value of 29.24 ppm quoted in ref. 248. ref. 262
also quotes the 'H shielding in NH;s as 32.10 ppm, which also appears to be in error.

2.3.2 Computational details

Software. Molecular geometries were optimized at the CCSD(T)/cc-pVTZ level 29329
using the program CFOUR.?® The latter was also used to perform canonical GIAO-
MP2%%% and GIAO-CCSD(T)*"*" calculations for reference (see Table 2.1 and Sec-
tions 2.3.3 and 2.3.5). All other calculations were performed with a development version
of ORCA 4.%'9?2! Figures in this work were predominantly generated using Matplotlib, 2%
and depictions of molecules — using Avogadro.?®

Electronic structure methods. NMR shielding tensors were calculated with var-
ious methods to compare the accuracy of the latter (vs reference data) and to put
other errors (due to basis sets, etc.) in perspective. In addition to HF, MP2 was
used, as well as two spin-component-scaled variants: Grimme’s original SCS-MP2°! and
Fink’s S2-MP2 parametrization.®” Several well-established DFT functionals were included
at various rungs of “Jacob’s Ladder”: GGA (BLYP,?*** PBE,*"t B97-D3,*" KT2,™
and KT3™), global hybrid GGA (B3LYP?™ and PBE0*™), meta-GGA (TPSS,*™ M06-
L,?"™ and r?SCAN?™®), hybrid meta-GGA (TPSSh,?”” M06,*™® and M06-2X*™), range-
separated hybrid with and without non-local correlation (wB97X-V*™ and wB97X-D3BJ**"),
and double hybrid (B2PLYP, ™ B2GP-PLYP,**! DSD-BLYP,*> DSD-PBEPS&6,* and wB97X-
2252). For functionals that are not implemented natively in ORCA, the interface to LibXC
was used. ?*?

Note that there are multiple slightly different parametrizations of DSD-PBEP86, some
of which were unfortunately introduced with the same names.* *>* We denote with
“DSD-PBEPS86” the 2013 version parametrized together with the D3BJ dispersion correc-
tion (the latter does not contribute to calculated shielding) and the version parametrized
without an empirical dispersion correction — with “NoDSD-PBEP86”.%° Where applica-
ble, we use the prefixes “ae-” and “fc-” to signify all-electron and frozen-core calculations
(with the same functional parameters). A more recent work re-parametrized the DSD-
PBEPS86 functional over the whole GMTKN55 dataset, introducing “revDSD-PBEP&6”
(here we use the D3BJ version) and the partially re-optimized “revwB97X-2".% The same
article includes different versions with and without core correlation for some functionals,
but here we use the same parameters. For clarity, the actual parameters for all DHDF's
used in this work are listed in Table C.15.
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Table 2.1: Benchmark set and gas phase shielding constants (ppm), calculated at the
CCSD(T)/pcSseg-4 level in this work, compared to two previously published theoretical
estimates T1 and T2, including vibrational corrections (VC), and to experimental gas
phase data. Empirical equilibrium shielding constants are calculated by subtracting the
VC from the experimental results.

Molecule CCSD(T) T1Eq® T2Eq T1VCtl T2VC Exp. Emp. Eq. Exp. Ref.

1H PH3 29.46 29.24 248
HF 28.82 28.83 —0.33 28.64 28.97% 249, 250
H>0 30.65 30.65 30.87¢™ —0.52  —0.549™ 30.05 30.57% 249
NH; 31.44 31.44 —0.61 30.68 31.20% 249
CH4 31.39 31.30 —0.63 30.80 31.43% 249, 251
(CH3)2CO 29.53 29.64¢™ —0.649™
furan (at C2/5) 24.03 24.15¢™ —0.459™
furan (at C3/4) 25.02 25.14¢m —0.427™

3¢ (CH3)2CO —10.84 —10.0¢ —0.8" —13.2 —12.4% 252, 253
CcO 2.56 2.24 3.0¢ -0.18 —1.0" 0.9 1.9" 253
CFy4 65.96 65.3¢ —1.4" 644 65.8" 252, 253
furan (C2/5) 47.36 48.9°™ —3.69™
furan (C3/4) 81.67 83.0°™ —3.49m
(CH3)2CO 162.88 163.1¢ -3.3%  157.9 161.2% 252, 253
CHy 199.39 198.93  198.8¢ -3.7 —2.6"  195.0 197.6" 252, 253

15N PN —344.71 —343.97 —5.3 —349 —343.7% 254
N2 —61.16 —60.43 —59.8¢ —4.3 —3.3" —61.6 —58.3% 255
NNO 11.74 12.56 12.8¢ -3.9 —3.1° 11.3 14.4° 255
NNO 106.22 106.45  107.6% -84 —6.8° 99.5 106.3¢ 255
NH3 270.40 270.66  270.7¢ —8.7 —6.8"  264.5 271.3° 255

170 OF, —446.32 —447.09 —439.8¢ —44.3 —34.07 —493.6 —459.67 256
(CH3)2CO —297.91 —301.6¢ —3.87 —309.1 —305.37 256
CcO —55.42  —55.05 —56.3¢ -5.8 —3.87 —62.7 —58.97 256
furan 64.82 64.7¢ —11.67  50.3 61.97 256
NNO 198.77 199.02 198.2¢  —12.9 —8.27  181.0 189.27 256
H>0 337.63 338.01 338.2¢ —14.2 —9.67  323.5 333.19 256

YEF  Fy —192.76 —191.3f —23.6F —233.2 —209.6F 253, 257
OF2 —24.28 —23.95 —22.6f —250 —23.7% —59.7 —36.0F 253, 258, 259
PF3 231.81 230.8 253, 257
CFy4 267.58 266.81 —7.3k  258.6 265.9% 253, 257
HF 419.91 420.31 418.9f —11.8 —8.6F  409.6 418.2F 253

31p PN 51.61 50.59 53.49 —6.9 —4.4! 53.0 57.4L 254
PF3 224.80 230.19 —2.3L 2227 225.0 260
PH;3 604.51 607.19 —9.5t 5945 604.00 260

@ Geometry: CCSD(T)/cc-pVTZ; NMR shielding: CCSD(T)/extrapolated aug-cc-pCV[TQ]Z. 73
b ZPV corrections: B3LYP/aug-cc-pCVTZ."?

¢ Geometry: CCSD(T)/cc-pVTZ; NMR shielding: CCSD(T)/13s9p4d3f.

@ Geometry: CCSD(T)/cc-pVQZ; NMR shielding: CCSD(T)/13s9p4d3f. 46

¢ Geometry: CCSD(T)/cc-pVTZ; NMR shielding: CCSD(T)/pz3d2f.*°

I Geometry: CCSD(T)/cc-pVTZ; NMR shielding: CCSD(T)/13s9p4d3f. **

9 Geometry: CCSD(T)/cc-pVQZ; NMR shielding: CCSD(T)/15s12p4d3f2g. ¢

h ZPV corrections: MP2/cc-pVTZ (force field) + MP2/qz2p (NMR shielding). *?

¢ ZPV corrections: CCSD(T)/cc-pVTZ (force field) + CCSD(T)/qz2p (NMR shielding).

J ZPV and thermal corrections: MP2/cc-pVTZ (force field) + MP2/qz2p (NMR shielding). *®
k ZPV and thermal corrections: MP2/cc-pVTZ (force field) + MP2/qz2p (NMR shielding). **
L ZPV corrections: CCSD(T)/cc-pVTZ (force field) + CCSD(T)/qz3d1f (NMR shielding). 46
™ Previously unpublished value.
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Basis sets. Despite the use of GIAOs, basis set convergence of calculated shielding
constants towards the complete basis set (CBS) limit can be fairly slow.'*?% Therefore,
it is important when assessing the performance of different methods to make an effort
to reduce the basis set error. For this study, the pcSseg-n (n =0-4) family of basis
sets was chosen (further denoted pSn for the sake of brevity),*** a segmented contracted
version of the pcS-n basis sets.?® Both basis set families were optimized for DFT-level
NMR calculations but the latter have also been shown to converge rapidly towards the
CBS limit at the MP2-level.*"-**® The pcSseg-4 basis set is very close to this limit, with
a residual basis set error estimated at ~ 0.2% in the original publication,”®* which is
within the margin of error in the experimental data and also significantly smaller than
e.g. the size of the vibrational corrections. In Table 2.1 our CCSD(T)/pcSseg-4 results
are compared to the extrapolated aug-cc-pCV|[TQ|Z data by Teale et al.”™ The differences
are on the order of 0.01-0.1 ppm for H and less than 1ppm for heavier nuclei, which
translates to a relative deviation of ~ 0.5%. It should be noted that Teale et al. used
an extrapolation scheme fitted for total energies and this choice has been criticized by
Jensen et al. who suggest a lower exponent for the extrapolation (1.05 rather than 1.63)
based on comparison with accurate calculations in a multiwavelet basis.?*” The latter also
estimated that the B3LYP /pcSseg-4 shielding constants for hydrogen and for second row
elements are accurate to ~ 0.01 ppm and ~ 0.1 ppm, respectively. A comparison of the
HF /pcSseg-4 shielding constants in our test set to the data of Teale et al. and Jensen et
al. (see Table C.17) also suggests that the pcSseg-4 basis set is a better estimate of the
CBS limit than the aug-cc-pCV[TQ|Z extrapolation. However, the pcSseg-4 basis set is
too large for routine applications and it is also worth pointing out that when calculating
chemical shifts, one can often rely on error cancellation and achieve accurate results with
much more modest basis sets. Hence, the smaller pcSseg-2 and pcSseg-3 basis sets were
used for most of this study. The additional basis set incompleteness error thus introduced
is evaluated in Section 2.3.4. It has been shown that for larger systems the computational
effort can be further reduced, with minimal loss of accuracy, by using smaller basis sets
for atoms far from the nuclei of interest.?*® However, because the molecules in our test
set are small and all their shielding constants are to be calculated, no such scheme was
used.

Various auxiliary basis sets are used for the RI approximation and their efficiency
and accuracy are studied in detail in Sections 2.3.5, 2.3.7, and 2.3.8. For RIJ and RIJK
the “universal” basis sets by Weigend are compared, labeled def2-J and def2-JK, respec-
tively. 1'22% The latter is larger and while it was optimized to fit exchange integrals it
also leads to smaller errors in the Coulomb contributions, as was noted in the original
publication. Results are also presented for an auxiliary basis set, generated by the Au-
toAux procedure implemented in ORCA, which creates a large, uncontracted fitting basis,
suitable for all types of two-electron integrals, albeit not as economical as the optimized
auxiliary basis sets.”® Auxiliary basis sets used for the RI-MP2 approximation (abbrevi-
ated as “AuxC basis sets”) are usually specific to the fitted orbital basis set (OBS). The
chosen pS2, pS3, and pS4 OBSs are of triple-, quadruple-, and quintuple-zeta quality,
respectively, and contain tight functions to better describe the core region. Regrettably,
no auxiliary basis sets have been specifically optimized for these OBSs. Hence, we have
chosen the AuxC basis sets, here denoted cwnC (n = 3,4,5),?” optimized for Peterson’s
ce-pwCVX7Z (X =T, Q, 5) basis sets,?! which also contain additional tight functions.
Alternatively, we employ the AutoAux scheme to generate large fitting basis sets for each

OBS.
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Numerical precision. In order to reduce numerical noise, tight convergence thresholds
were used for the iterative SCF and CPSCF solutions, and a dense DFT grid (g7, ¢ = 5.67
—see below, ORCA keyword “grid7”) was employed for the evaluation of DFT functionals
(unless otherwise noted). Thus, the isotropic shielding constants are calculated with a
precision of at least 4 significant figures.

The grids used for the COS approximation are constructed from spherical atom-
centered grids and their accuracy is controlled by two main parameters: (1) e, which deter-
mines the number of radial “shells” n, according to the formula n, = max [13, 15¢ + 5r — 40],
where 7 is the row in the periodic table for a given element (cf. eq. 14 in ref. 292); (2) gn
(n = 1-7), which signifies the Lebedev angular grids used (26-590 points, respectively, see
Table S1 for details). The pruning algorithm of Gill et al. is applied,*” whereby an atom
is partitioned into five regions and a denser angular grid is used for radial shells in the
valence region than in the core and outermost regions (see Table C.16). In addition, the
atomic size adjustment and the M3 mapping, proposed by Treutler and Ahlrichs (egs. 13
and 18 in ref. 294), are employed.

Error measurement. We use several statistical measures of the deviation of the shield-
ings, o or chemical shifts, d, calculated according to a given protocol (method, basis, etc.)
with respect to a given reference (e.g. CCSD(T) data). The mean error (ME), mean
absolute error (MAE), mean relative error (MRE), mean absolute relative error (MARE),
maximum errors and relative errors (MaxAE and MaxARE, respectively), and standard
deviation of the (relative) errors (SDE and SDRE) are defined as:

ref

Ao; = 0; — cr“’f Ac; = i 9
‘O.ref|
1 & _
= N;A@ MRE, = N;Am

N N
| LA
MAE, = — ;:1 Aol MARE, = — ;:1 )Aai

) (2.154)
MaxAE, = max [|Aai\] MaxARE, = max “Aai 1

N
SDE,,:\ Z (Ag;)? — (ME,)?

SDRE, = ¥ ZN: (AJZ) (MRE, )’

The same quantities (with an index ) are defined analogously for the chemical shifts,
which are given by 0; = o4q — 0;, Where og4q is the shielding of the given nucleus in a
“standard” compound, calculated at the same level of theory. We use CH, as a standard
or ¥C and 'H, NH; for N, H,0 for 'O, HF for '°F, and PHj for 3'P.

In the box-and-whiskers plots used throughout the rest of this work boxes show the
interquartile range (IQRE or IQRRE), i.e. the range of errors (or relative errors), excluding
the top and bottom 25 %; whiskers show the minimum and maximum errors (MinE and
MaxE) or relative errors (MinRE and MaxRE); and lines show the median errors (MedE)
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or relative errors (MedRE) and the ME or MRE. The Range of (relative) errors (RanE or
RanRE), defined as the difference between the minimum and maximum, is also discussed.
Note that wherever relative errors are calculated, those data with small reference values
(less than 10 ppm for shieldings and 1ppm for chemical shifts) were excluded from the
analysis because they disproportionately skew the results. The excluded nuclei are listed
in the figure captions.

Because systematic deviations in the absolute shielding may partially cancel out in
practical applications, it is more pragmatic to look at errors in the chemical shifts. On
the other hand, the orders of magnitude of both shieldings and shifts vary significantly for
different nuclides, so some form of scaling is necessary in order to combine all benchmark
data into a single convenient statistic. The mean absolute relative error in the chemi-
cal shifts (MARE;s) is one such possible measure. However, in addition to the need to
eliminate data with small reference values, as mentioned above, the MARE;s is inevitably
biased by the choice of standard nucleus. Therefore, we also introduce the following
measure, denoted as “mean relative range of errors” (MRRE):

] Lem maxX;e 4 [Ao;| — minge 4 [Aoy]

MRRE, = (2.155)

Nelem “* MaXica (o] — minea [o7f]
The full range of shielding errors for a given nuclide gives an the upper bound for the
chemical shift error. The range of shieldings for the respective element (in our carefully
selected test set) is close to the experimentally observed range and thus provides an
appropriate scaling factor, giving a “relative range” of errors. The average of these relative
ranges over all elements is the MRRE.

In the following Section 2.3.3 we will assess the accuracy of HF, RI-MP2, and (DH)DFT
NMR shielding calculations that is inherent to the methods themselves, by comparing to
the reference data in Table 2.1. In subsequent sections we will examine errors due to basis
set incompleteness in the orbital (Section 2.3.4) and AuxC (Section 2.3.5) basis sets, the
frozen core approximation (Section 2.3.6), and two-electron integral approximations in
the Fock matrix (Sections 2.3.7 and 2.3.8).

2.3.3 Method accuracy

In this section we evaluate the deviations, inherent to the methods used, in the calculated
shieldings from the CCSD(T) data presented in Table 2.1. The latter are very close to
the empirical equilibrium data, so similar conclusions can be drawn from either refer-
ence. Therefore, only the CCSD(T) reference is discussed here and a comparison to the
empirical equilibrium data is given in Appendix C. While HF and DFT methods are com-
putationally inexpensive, they are not particularly accurate or precise for the calculation
of magnetic properties in comparison to correlated wave function-based approaches such
as CCSD(T), and in the case of DFT, results may vary significantly between function-
als. The performance of these methods has been discussed extensively,** #7027 but for
consistency they are also compared here. A direct comparison with previously published
results, e.g., those of Teale et al.,” is difficult because of the different sets of molecules.
Nevertheless, similar trends can be observed in our study, as shown below. The chemical
shielding constants for all nuclei in the test set were calculated using the methods listed
in Section 2.3.2, with the pcSseg-4 basis set (and the cc-pwCV5Z/C AuxC set, where ap-
plicable), which is assumed to be sufficiently close to the CBS limit. No approximations
were employed for the two-electron integrals. It is important to note that no vibrational
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or thermal corrections were applied. These, however are not expected to significantly
improve the agreement with experiment at this level of theory and indeed for DFT, would
likely worsen it. ™ It is useful to separately discuss mean field (SCF) methods and those
including second order perturbation theory (PT2) contributions, i.e. (SCS-)MP2 and
DHDFT, due to the rather large differences in both cost and accuracy between the two
categories.

2.3.3.1 SCF methods

The errors in the shieldings for different groups of nuclides are shown in Figure 2.1, where
the mean field methods are grouped in the top subplot. The data for *N, 170, 1F, and 3'P
nuclei are analyzed together because they span similar ranges of shielding values. From
the figure, it is apparent that the errors are very widely distributed. In addition, DFT
tends to underestimate the shielding constants with the exception of 'H (and possibly
MO06-L for other nuclides). In relative chemical shifts this bias would cancel out only
partially due to the large variance in the errors.

As expected, the missing electron correlation in HF leads to rather poor results, despite
the fairly small mean error. On the other hand, comparing BLYP, PBE, and TPSS with
their hybrid counterparts shows that the inclusion of exact exchange eliminates some
outliers and leads to overall narrower error distributions. Especially interesting is the
performance of the M06 group of functionals, of which M06-L is indeed quite accurate
for our test set, confirming the conclusions of Zhao and Truhlar.”® However, M06 and
MO06-2X show by far the poorest performance in our test set, worse even than HF (except
for hydrogen). There is no mention of this discrepancy in ref. 76, indeed the hybrid
functionals in the M06 family are not discussed at all. In any case, this result simply
confirms that a DF'T functional, which is accurate for a certain property, e.g. the energy,
is not necessarily also good for others. The r2SCAN functional stands out as particularly
accurate, especially for *C shieldings. Note, however, that the good performance of meta-
GGA functionals (M06-L in particular) may be somewhat fortuitous, due to the ad-hoc
treatment of 7 (see Section 2.1.4), as suggested in ref. 72.

The effect of error cancellation when calculating chemical shifts — which are the ex-
perimentally measured quantities — can be seen in Figure 2.2, which shows the relative
errors in the shifts for all nuclei. There is still a significant systematic deviation for some
methods, indicating that the shielding for the standard nucleus happened to carry a rather
extreme (either small or large) error. Thus, we turn to the MRRE, measure, shown in
Figure 2.3, which does not carry this bias. A numerical comparison of the MRRE, and
MARE;y is also presented in Table 2.2. While the ranking of methods changes slightly,
depending on the statistical criterion, some trends seem consistent:

e HF, M06-2X, and M06 perform rather poorly.
e Hybrid functionals are somewhat more accurate than their pure counterparts.

e KT2, KT3, TPSS, TPSSh, and M06-L are more robust than BLYP, B3LYP, PBE,
and PBEO.

e The VV10 non-local correlation contribution does not significantly affect the wB97X
results.

e The most accurate mean-field methods employed here have a MARE; of 4-6 % and
MRRE, of 5-7%.
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H (N = 8) C(N=7) N,O,F,P (N = 19)

HF —— ——m— ——
BLYP — il ——H
B3LYP HE— - —-
PBE — il ———H
PBEO HEm— I —H
KT2 —— —- —l
KT3 —— —H —i
TPSS o — —lk
TPSSh T Hik —ib
r2SCAN —— —H i
MO06-L — I HiH H—
MO06 —H — ——
M06-2X +——lH —— - ——
B97-D3 o ik —
wB97X-D3BJ I HIH —ihH
wB97X-V HI HI- —k
-1 0 1 -60 —40 -20 O —-200 0
ae-MP2 {1 —I— ——
fc-MP2 — HOIT— —— ——
ae-SCS-MP2 —- HI— HI—
ae-S2-MP2 Lo I I —— HO—
ae-B2PLYP —— —I— ———H
ae-B2GP-PLYP —E- — —
ae-DSD-BLYP L I - +—ih
ae-DSD-PBEP86 —llkH Hl— —H
fc-DSD-PBEP86 —h g —+
ae-NoDSD-PBEP86 —IH HE— —H
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fc-revwB97X-2 —— HEE— —H
-0.2 0.0 0.2 -10 0 —-100 0 100

Errors in o vs CCSD(T) / ppm

Figure 2.1: Deviations of isotropic shielding constants (ppm) for groups of nuclei, cal-
culated using different methods and the pcSseg-4 basis set, from CCSD(T) results. The
number of nuclei in each group is given in parentheses. Boxes show the IQRE,, whiskers
show the MinE, and MaxE,, and lines show the MedE,. Pure functionals are shown in
blue, hybrids and HF in orange, MP2 variants in yellow, and DHDFs in green. Note the
different scales used for the abscissa.

36



All nuclei (N = 26)
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Relative errors in 6 vs CCSD(T) / %
Figure 2.2: Relative deviations of chemical shifts (%), calculated using different methods
and the pcSseg-4 basis set, from CCSD(T) results. The number of data points is given
in parentheses. Excluded: NHs and HsO. Boxes show the IQRREs, whiskers show the
MinREs and MaxREs, lines show the MedREs, and diamonds show the MAREs;. Pure
functionals are shown in blue, hybrids and HF in orange, MP2 variants in yellow, and
DHDFs in green.
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Figure 2.3: Mean relative range of shielding errors (MRRE,, see eq. 2.155) in percent,
calculated using different methods and the pcSseg-4 basis set, from CCSD(T) results.

Pure functionals are shown in blue, hybrids and HF in orange, MP2 variants in yellow,
and DHDFs in green.

e The r2SCAN functional performs remarkably well with MARE; = 4 %.

Thus, while HF and DFT can be invaluable and efficient tools for the estimation of
NMR shielding constants, they are far from quantitatively accurate. Any errors introduced
by further approximations — including smaller basis sets, RI, etc. — should therefore be
viewed in comparison to the errors inherent in the methods.

2.3.3.2 PT2 methods

The data for MP2 variants and DHDF's are also shown in Figures 2.1 (shielding error dis-
tributions), 2.2 (relative chemical shift error distributions), 2.3 (MRRE, ), and Table 2.2
(shielding error ranges, MRRE,, and MAREs). While the effect of the frozen-core ap-
proximation will be examined separately in Section 2.3.6, we include both all-electron and
frozen-core alternatives of MP2 and DHDFT here, in order to account for possible error
compensation and because some DHDFs were in fact parametrized for use with frozen
core electrons.

MP2 shows a significant improvement over HF and is mostly better than DFT — the
systematic deviation is consistently small for all elements and the error distributions are
narrower, except for N and P shieldings where r2SCAN, M06-L, TPSSh, and the KT
functionals perform better. Note the particularly good performance of MP2 for carbon
shieldings, which has been discussed before.***” The frozen core approximation introduces
a small systematic deviation, which is fortuitous for proton shieldings, but overall fc-MP2
is slightly less accurate than the all-electron approach. SCS-MP2 improves the results
for 'H shieldings but does not appear significantly better for the other nuclides, while
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Table 2.2: Summary of shielding errors vs CCSD(T) data for different methods. The
full range of errors for different nuclides is given in ppm. The MARE;s (see eq. 2.154) and
MRRE,, (see eq. 2.155) are given in percent.

Method MARE; MRRE, H C N O F P
HF 10.76 18.08 1.12 42.5 159.0 33.9 49.4 192.7
BLYP 10.53 13.26 1.01 18.5 69.5 189.1 77.5 50.2
B3LYP 9.05 12.17 0.56 18.4 93.0 137.2 59.3 79.7
PBE 11.32 13.74 1.18 17.3 66.5 179.8 73.0 69.9
PBEO 9.08 12.13 0.64 17.4 94.2 112.8 48.1 101.6
KT2 6.73 8.35 1.26 14.4 30.5 90.6 38.6 18.9
KT3 5.80 7.81 1.16 12.3 28.8 108.2 39.8 1.5
TPSS 6.36 7.69 0.93 12.5 36.9 94.4 34.7 21.9
TPSSh 5.90 7.20 0.74 9.8 49.4 76.8 24.1 37.6
r2SCAN 3.88 5.37 0.76 11.6 6.6 72.9 24.0 11.9
MO6-L 5.42 6.50 0.88 10.6 22.4 75.7 30.3 21.1
MO06 14.39 21.35 0.47 35.5 175.3 202.1 99.2 190.2
MO06-2X 18.12 26.77 0.99 44.6 243.3 201.9 94.7 250.6
B97-D3 7.49 10.67 0.91 10.4 46.5 164.1 2.7 35.9
wB97X-D3BJ 6.50 9.66 0.53 14.3 79.3 73.8 26.5 96.0
wB97X-V 6.69 9.74 0.55 14.5 79.7 73.4 25.9 97.2
ae-MP2 4.12 6.71 0.26 8.3 79.3 45.9 15.5 63.9
fc-MP2 4.29 7.82 0.29 10.1 93.4 47.4 17.4 77.8
ae-SCS-MP2 3.90 6.72 0.20 7.1 86.9 31.2 18.9 72.4
ae-S2-MP2 4.00 7.63 0.19 10.7 96.6 40.8 16.0 80.4
ae-B2PLYP 4.29 5.23 0.26 9.8 21.7 91.3 28.9 18.0
ae-B2GP-PLYP 3.37 3.97 0.19 8.4 14.1 71.6 18.1 15.9
ae-DSD-BLYP 2.73 3.05 0.19 7.3 8.7 54.2 9.3 13.6
ae-DSD-PBEPS86 1.91 2.36 0.13 4.1 12.4 44.4 7.8 8.5
fc-DSD-PBEP86 1.76 2.64 0.17 5.0 13.7 49.2 7.1 8.5
ae-NoDSD-PBEP86 2.31 2.46 0.12 3.2 15.9 44.5 6.4 12.8
ae-revDSD-PBEP86 1.53 2.13 0.14 3.2 12.4 34.7 6.6 10.5
fc-revDSD-PBEP86 1.39 2.22 0.13 2.6 15.6 34.0 5.3 14.4
ae-wB97X-2 3.60 4.09 0.34 8.6 9.4 58.5 15.3 24.2
fc-wB97X-2 3.15 3.51 0.34 7.3 6.9 56.8 13.4 13.8
ae-revwB97X-2 3.07 3.45 0.34 7.1 6.2 52.1 13.7 15.8
fc-revwB97X-2 2.74 3.22 0.34 5.9 7.9 50.5 13.4 11.4

the S2-MP2 variant is overall no better than standard MP2. Maurer and Ochsenfeld
have shown that the accuracy of SCS-MP2 for shieldings can be substantially improved
by optimizing the cgg and cog coefficients. > However, the vastly different optimal values
for each combination of basis set and target element, makes it impossible to attach any
physical interpretation to these parameters, essentially turning SCS-MP2 into a rather
expensive semi-empirical method.

Transitioning into DHDF'T, it is interesting to compare B3LYP, MP2, and B2PLYP:
the former two show systematic deviations in the calculated shieldings with opposite signs,
while the latter is somewhere in between. While this is not surprising, one can suppose
that optimizing the cc parameter can further reduce the systematic error in B2PLYP
shieldings. The resulting functional would be analogous to B2K-PLYP and B2T-PLYP,?"
optimized for kinetics and thermochemistry, respectively. At the very least, an analysis
similar to that performed in the optimization of the B2GP-PLYP functional,?®! could
provide insight into the dependence of the calculated shieldings on the parameters cc
and cx (as well as cos and cgg). Such an analysis is outside the scope of the current
work, however, B2GP-PLYP and the more flexible DSD-BLYP do represent incremental
quantitative improvements over B2PLYP. This suggests that the more flexible training
sets used for the parametrization resulted in more accurate methods, even for properties
not included in the training data, as was observed for vibrational frequencies.®’

Next, we note the outstanding performance of the DSD-PBEP86 functional: it pro-
duces the narrowest error distributions of all methods tested here and while there is a
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significant systematic deviation in the carbon shieldings, this is expected to cancel out
in relative chemical shifts. Indeed both the MARE; and MRRE, measures are low-
est for the DSD-PBEPS86 variants (1.4-1.9% and 2.1-2.6 %, respectively). The revised
parametrization (revDSD-PBEPS86) slightly improves the results with marginally nar-
rower error distributions and decreased systematic error (except for 'H). On the other
hand, the NoDSD-PBEPS86 version, parametrized without a dispersion correction and
with 10 % more same-spin MP2 correlation, is notably worse. Even though the semi-
empirical dispersion term does not contribute to the shielding, including its parameters
in the optimization produces a more flexible functional form, which allows for better ac-
curacy in the target quantity, and apparently also in NMR shieldings. The frozen-core
approximation has a smaller influence on DHDFT than on MP2, due to the smaller pro-
portion of PT2 correlation. For the DSD-PBEPS86 variants it leads to a lower MARE;
(by about 0.15 %) but a higher MRRE, (by 0.1-0.2 %), which makes it difficult to decide
for or against it based on these data alone.

Finally, the range-separated DHDF wB97X-2 is a marked improvement over the related
wBI97X-D3BJ, although it does not outperform DSD-PBEPS86. Its reparametrized version
is also somewhat more accurate, as is the case for the other DHDFs, and in this case
the frozen-core approximation appears to be advantageous, regardless of the statistical
measure employed. A minor exception is the small systematic deviation in 'H shieldings,
which should cancel out for chemical shifts.

In summary, the most accurate conventional functionals explored here — r2SCAN, M06-
L, KT3, and TPSSh — result in MARE; of 3.9, 5.4, 5.8, and 5.9 % and MRRE, of 5.4, 6.5,
7.8, and 7.2 %, respectively. MP2 and SCS-MP2 are an improvement (except perhaps over
r?’SCAN) with a MAREs of 3.9 and 4.1 %, respectively, and MRRE, = 6.7% for both.
B2PLYP is not particularly better with MAREs = 4.3 % and MRRE, = 5.2 %. However,
the best DHDF tested, revDSD-PBEP86, shows remarkable accuracy with MAREs; =
1.5% and MRRE, = 2.1%, which enables, for example, the confident assignment of
carbon shifts only a few ppm apart.

2.3.4 Basis Set Error

After a critical assessment of the errors due to the method, we turn our attention to
the choice of basis set, which is usually the second largest source of error. The pcSseg-4
basis set allows for results very close to the CBS limit, however it is probably too large
for routine applications. Hence, the smaller pcSseg-2 and pcSseg-3 basis sets were used
for the rest of this study. An estimate of the error introduced by this choice is made
by comparing the shielding constants obtained with pcSseg-2, respectively with pcSseg-
3, to the ones obtained with pcSseg-4. This gives a lower bound of the basis set error
because there is still some degree of incompleteness in the pcSseg-4 basis set (as discussed
in Section 2.3.2). In addition, a slower convergence can be expected for correlated wave
function-based methods, than for mean-field approaches. Likewise, DHDF's should exhibit
a stronger dependence on the basis set size than other DFs, as is the case for energies.
Note that basis set names are abbreviated to pSn (n =2-4) in the figures. Calculations in
this section were performed with no approximation for the two-electron part of the Fock
matrix, while the RI-MP2 approximation was used together with the cc-pwCVQZ/C and
cc-pwCV5HZ/C AuxC basis sets for the peSseg-2 and pcSseg-3 OBSs, respectively, which
introduces only negligible additional errors as shown in Section 2.3.5.

The deviations of shielding constants for groups of nuclei are presented in Figure 2.4
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Figure 2.4: Deviations of shielding constants (ppm) for groups of nuclei, calculated using
different methods and basis sets, from pS4 results for the same method. The number of

nuclei in each group is given in parentheses. Boxes show the IQRE,, whiskers show the
MinE, and MaxE,, and lines show the MedE,.

for a representative set of methods — HF, B3LYP, TPSS, ae-MP2, and ae-DSD-PBEPS&6.
While there is some variation between the SCF-level results, pcSseg-2 predictably leads to
larger errors than pcSseg-3, with MARE, values vs pcSseg-4 of 0.8-1.4 % and 0.2-0.4 %,
respectively, which is in good agreement with Jensen’s original results.?** Therefore, the
basis set incompleteness error is more than an order of magnitude smaller than the method
error and insignificant in comparison. On the other hand, the basis set errors for MP2/pS2
are more than twice as large as for HF /pS2 and fall within the same order of magnitude
as the method error, which is due also to the superior accuracy of MP2. As expected, the
basis set errors for DSD-PBEP86 are between those for HF /B3LYP and MP2 and also
within the same order of magnitude as the method error.

All nuclei (N = 26)

HF/pS2 ——— i —
HF/pS3 [ -
B3LYP/pS2 ———— - —
B3LYP/pS3 i
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Relative errors in 6 vs pS4 / %

Figure 2.5: Relative deviations of chemical shifts (%), calculated using different methods
and basis sets, from pS4 results for the same method. The number of data points is given
in parentheses. Excluded: NHs and HsO. Boxes show the IQRREs, whiskers show the
MinREs and MaxREg, lines show the MedREs, and diamonds show the MARE .

Because of the significant systematic deviations in the shieldings, it can be expected
that the basis set incompleteness errors for chemical shifts will be smaller. The lat-
ter are shown in Figure 2.5. Apparently, the systematic errors do cancel out for the
SCF methods but not entirely for the perturbative approaches. Therefore it cannot be
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claimed that either MP2 or DSD-PBEPS86 chemical shifts are sufficiently converged at
the triple-zeta (pS2) level. However, due to fortuitous error compensation, the deviations
for both approaches with respect to the CCSD(T)/pS4 reference are actually smaller for
pS2 than for pS3 with MARE; of 3.70, 1.41, 4.00, and 1.84 % for MP2/pS2/cw4C, DSD-
PBEP86/pS2/cw4dC, MP2/pS3/cw5C, and DSD-PBEP86/pS3/cw5C, respectively. This
error cancellation has been noted before — e.g. in refs. 296, 43, and 47 — and while it is
not necessarily reliable, it provides some justification for the use of the smaller pS2 basis
set. Note, however, that because SCS-MP2 already underestimates the chemical shifts
at the pS4 level, a reduction of the basis set size to pS2 leads to an increase in the total
error versus CCSD(T)/pS4 with MARE; = 5.2 %.

These results suggest that any further errors in SCF-level calculations (e.g. as intro-
duced by the RIJK/RIJCOSX approximations) should be below 1%, preferably by at
least an order of magnitude, especially for the more accurate perturbative approaches.
This would ensure that they are insignificant compared to the other errors associated
with the calculation (due to the method, the basis set, vibrational corrections, etc.).

2.3.5 RI-MP2 auxiliary basis sets

In order to reliably evaluate the accuracy of DHDFT NMR shielding calculations, we
selected suitable AuxC basis sets to make sure that the errors due to the RI-MP2 ap-
proximation are negligible. For our benchmarking purposes we have decided on a very
conservative threshold of 0.01 and 0.1 % for the MARE, and MaxARE,, respectively. In
routine applications less stringent thresholds and therefore smaller AuxC basis sets may
be sufficient. In this section we show that the AuxC choices in Sections 2.3.3 and 2.3.4
are justified, and discuss more efficient alternatives.

As explained in Section 2.3.2, we use the cc-pwCVXZ/C (X =T, Q, 5) AuxC basis
sets (denoted cwnC, n =3-5), as well as large even-tempered fitting basis sets, generated
with the AutoAux scheme. As well as the default settings for the latter, denoted AA,
we generate a near-complete AuxC basis (using the ORCA keywords AutoAuxSize=3
and AutoAuxLMax=true), denoted AA3Il, which encompasses the full product space of the
atomic OBS.* This allows us to validate the correctness of our implementation at the
limit of very large AuxC basis sets by comparing our RI-MP2 NMR shielding results to
canonical MP2 values.

The results of the comparison are presented in Figure 2.6. The first thing to note is
that for very large AuxC sets, the errors are vanishingly small, i.e. the RI-MP2 shielding
constants converge to the canonical MP2 values. Second, the pS2/cw3C and pS3/cw4C
combinations result in errors slightly above our chosen thresholds (MARE, of 0.03 and
0.02% and MaxARE, of 0.17 and 0.13 %, respectively). As mentioned above, these errors
are quite acceptable for most applications, especially when compared to the other sources
of error (method, OBS, etc.). However, in order to accurately estimate these other errors,
we have chosen the pS2/cw4C, pS3/cw5C, and pS4/cw5C combinations as default for the
rest of this study. It is also worth noting that although not parametrized for shielding
calculations, the AutoAux scheme produces sufficiently accurate AuxC basis sets for the
purpose, albeit around 1.5 times larger than the cwnC sets of similar quality.

?Note that the pcSseg-4 basis set contains functions with an angular momentum of [ = 5 so fitting
its full product space in principle requires auxiliary basis functions up to [ = 10, while the maximum
allowed in ORCA is [ =T.
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Figure 2.6: Relative deviations (%) of shielding constants (left) and chemical shifts
(right), calculated at the RI-MP2 level using different OBS/AuxC combinations, from
canonical MP2 results with the same OBS. Excluded, left: CO, CH3COCH3, and F»O;
right: NH3 and HoO. The average AuxC/OBS size ratios are given in parentheses. Boxes
show the IQRRE, whiskers show the MinRE and MaxRE, and lines show the MedRE.

2.3.6 Frozen core approximation

The usual justification for using the frozen-core (FC) approximation is that the core elec-
tron contribution to the correlation energy does not change significantly during chemical
bonding and therefore cancels out in the calculation of relative energies (between systems
of the same chemical composition). However, this argumentation does not necessary apply
to calculated NMR properties for several reasons. First, the shielding tensor is inherently
sensitive to changes in the electron density near the nucleus. Second, in the calculation
of chemical shifts the reference system can, and often does, have completely different
chemical structure from the studied system and may therefore exhibit very different core
correlation effects. While the FC approximation is employed for shielding calculations in
the local RI-MP2 implementation of Loibl and Schiitz, '™ little justification is given for
its use. In this section we attempt to gauge the size of the errors introduced by the FC
approximation. It is important to note that our test set does not include heavy nuclei or
other systems for which core correlation is known to be important. Hence, the FC errors
reported here are likely underestimated and should only be used as a guideline.

Figure 2.7 shows the FC error in the shieldings for MP2 and DSD-PBEP86. Note that
in this plot the nuclei are grouped by rows in the periodic table to highlight the larger
errors for heavier elements. In addition, hydrogen only has valence electrons, hence for 'H
shielding the FC error is due to the influence of the core electrons from neighboring atoms.
Naturally, the deviations are smaller for DSD-PBEPS86 because of the overall scaling of the
MP2 contribution, hence we will only discuss the MP2 results. One important observation
is that all FC errors are positive, i.e. the shieldings are always overestimated in the FC
approximation. Such a systematic deviation would cancel out in chemical shifts, which
is a point in favor of the approximation. However, note also the wide range of errors:
depending on the chosen reference, the expected error cancellation might be very different.
There is also a clear basis set dependence of the FC error. This is due to the inability
of the smaller basis sets, especially pS2, to adequately describe the core region. The pS4
values should therefore be considered the mosts representative.
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Figure 2.7: Deviations of shielding constants (ppm) for groups of nuclei, calculated with
the frozen-core approximation, from all-electron results for the same method. The number
of nuclei in each group is given in parentheses. Boxes show the IQRE,, whiskers show the
MinE, and MaxE,, and lines show the MedE,,.

All nuclei (N = 26)
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Figure 2.8: Relative deviations of chemical shifts (%), calculated with the frozen-core
approximation, from all-electron results for the same method. The number of data points
is given in parentheses. Excluded: NH3 and HoO. Boxes show the IQRRE;, whiskers show
the MinREs and MaxREs, and lines show the MedREs.

Table 2.3: Analysis of the frozen core (FC) errors in the shielding constants and chemical
shifts of 3'P in PN. All values, except in the last two columns, are in ppm.

HF ae-MP2 fc-MP2 ae-MP2 — HF fc-MP2 — HF Apc —2ES_ /% Src /%

ae-MP2 ae-MP2—HF
o(PH3) 584 609 616 26 32 7 1 26
o(PN) -110 107 135 217 246 28 27 13
0(PN) 694 502 480 -192 =213 -22 -4 11
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The chemical shift data in Figure 2.8 show that in fact the systematic deviations do
not cancel out, at least using the chosen references. This is perhaps best understood by
an example: the largest frozen core error in our test set — 28 ppm — is for the phosphorus
shielding in PN, which is 27% of the total shielding constant and 13 % of the MP2
contribution (see Table 2.3). The FC error for the reference nucleus in PHj is only 7 ppm
(26 % of the MP2 contribution). Therefore the final absolute error in the chemical shift
is 22 ppm, which is only 4 % of the total shift value but 11 % of the MP2 contribution.
While an error of 4% might be considered acceptable in some cases, it is of the same
order of magnitude as the method error, thereby increasing the deviation with respect to
CCSD(T)/pS4 from 9 to 13%. Moreover, it is apparent that one cannot rely on error
cancellation in the chemical shifts, as the absolute FC error is not much smaller and the
relative error decreases only because the denominator is larger for the shifts than for the
shieldings (694 vs 107 ppm).

While this is the most extreme example in our test set, similar observations can be
made for most of the other nuclei. Therefore, we conclude that use of the FC approx-
imation is not justified for NMR chemical shift calculations, as the resultant errors —
MARE; = 1.268 and 0.457 % for MP2 and DSD-PBEPS8G6, respectively — are of the same
order of magnitude as the inherent accuracies of the methods. A final point to make
is that while the FC errors are smaller for lighter elements, so are the computational
savings gained by the approximation. Conversely, calculations on heavier nuclei could
benefit more from freezing the core electrons, but the errors thus introduced would also
be greater.

2.3.7 RIJK or RIJCOSX approximations

As outlined in Section 2.1.2, the RI and COS approximations can be applied to two-
electron integrals at several different stages of the calculation: the Coulomb (J[D]) and
exchange (K[D]) parts of the Fock matrix, and to the JB[D], KB[D], and g[D®] con-
tributions to the CPSCF equations, the latter of which is split into an occupied-virtual
K [UB} block on the left-hand side, which is evaluated at every iteration and an occupied-
occupied block K[S(B)] on the right-hand side, which is only evaluated once, as are the
JB[D] and KB[D] terms. The error in the NMR shielding constants, caused by fitting
each of these contributions by means of the RI or COS approximations is analyzed in this
section.

For the perturbed integrals over GIAOs, gB[D], all combinations of RI and COS for
the Coulomb and exchange parts, as well as exact evaluation, have been implemented.
For the regular two-electron integrals only the exact, RIJK, RIJONX (RI for Coulomb
and analytic exchange) and RIJCOSX approaches are available.

2.3.7.1 RI

The errors in the calculated shielding constants, introduced by the RI approximation are
presented in Figure 2.9. Not surprisingly, errors in the shielding constants are smaller
with the def2-JK fitting basis than with def2-J for the J[D] contribution. For JB[D],
however, at first glance def2-J seems to performs about as well as def2-JK. In fact, the
larger MaxRE, for def2-JK is due to a negligible error of 0.033 ppm for F,O, which
has a small reference value of ~ 22 ppm. Overall, errors with def2-JK are smaller than
with def2-J. The former are two orders of magnitude smaller than the basis set errors
discussed in Section 2.3.4 and therefore perfectly acceptable. Hence, def2-JK basis set is
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preferred over def2-J and is used in the following calculations. AutoAux results in smaller
errors than def2-JK but it is also significantly larger: the average ratio of auxiliary to
orbital basis functions is 5.1 for AutoAux and 2.0 for def2-JK. For this reason, it is only
recommended when a no suitable optimized auxiliary basis set is available.

SCF: SCF: CPSCEF: CPSCF: CPSCEF: CPSCEF:
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Figure 2.9: Mean absolute relative errors (boxes) and maximal absolute relative errors
(whiskers) in the HF /pcSseg-2 shielding constants due to applying the RI approximation
to different two-electron integrals: a) only the J[D] term in the SCF (eq. 2.37); b) both
the J[D] and K[D] terms in the SCF (eqgs. 2.37 and 2.41); ¢) only the JB[D] term in the
CPSCF (eq. 2.50); d) only the KB[D] term in the CPSCF (eq. 2.51); e) both the JB[D]
and KB[D] terms in the CPSCF (egs. 2.50 and 2.51); f) only the K[D®] term in the
CPSCF (egs. 2.44 and 2.47). Note the logarithmic scale.

It is important to point out that the def2-JK fitting basis set was not designed to fit
integrals with external indices, yet at least in combination with the orbital basis sets used
here it only introduces small errors even when fitting (ab|ji) and (aj|bi). This implies
that it contains both tight enough exponents in the core region and polarization functions
with high enough angular momentum to fit the pcSseg-2 basis set (E.g. pcSseg-2 has up
to f-functions for carbon, while def2-JK and pcSseg-3 extend up to g-functions).

Applying the RI approximation to both Coulomb and exchange contributions results
in somewhat larger errors than fitting Coulomb alone, but nevertheless in the same order
of magnitude. A detailed analysis shows that the errors coming from the different con-
tributions are linearly additive. This makes it easy to predict the accumulation of errors
from approximating different integrals. Note however that the errors may have different
signs, so they partially cancel out.

Overall, the accuracy of the RIJK approximation in conjunction with the pcSseg-2 and
def2-JK basis sets is more than sufficient, i.e. errors are more than an order of magnitude
below the basis set incompleteness error.

2.3.7.2 COS

The COS approximation allows for practically arbitrary accuracy if a sufficiently tight grid
is used, with the angular grid having the largest impact. Hence, in order to study the
effect of the latter, the radial accuracy parameter ¢ was set to 5.0, which is high enough
to eliminate the additional error. The optimal value of ¢ is discussed further below.

The errors in the calculated shielding constants, introduced by the COS approximation
with different angular grids are presented in Figure 2.10. The first conclusion one can
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Figure 2.10: Mean absolute relative errors (boxes) and maximal absolute relative errors
(whiskers) in the HF /pcSseg-2 shielding constants due to applying the following approxi-
mations, with angular grids gl—gb, to different two-electron integrals: a) RI for the J[D]
term and COS for the K[D] term in the SCF (egs. 2.37 and 2.57); b) COS for the JB[D]
term in the CPSCF (eq. 2.70); ¢) RI for the JB[D] term and COS for the KB[D] term in
the CPSCF (egs. 2.50 and 2.69); d) COS for the KB[D] term in the CPSCF (eq. 2.69); e)
COS for the K[DB] term in the CPSCF (eq. 2.57). The radial integration accuracy was
set to € = 5.0. The def2-JK basis set was used for the RIJ parts. Note the logarithmic

scale.
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reach from these results is that the COSJ approximation of JB[D] is only acceptably
accurate for very dense grids, starting around g4. Preliminary estimates of the efficiency
showed that with grids of this size, the COSJ approximation is no longer competitive
with the RIJ algorithm. This was noted for the SCF Coulomb integrals in the original
publication. ' Hence, use of COSJ for the GIAO integrals is also discouraged. However,
one advantage of COS over RI is the possibility to reach arbitrary precision, albeit with
huge grids. While this work was in progress, the analytic integrals over GIAOs in ORCA
were not sufficiently optimized, so calculations employing the COSJX approximation with
the largest possible grid (g7) took a fraction of the time and produced numerically identical
results.

On the other hand, using COSX for either of K[D] and KB[D], one finds that g3 is
sufficiently tight to reach an accuracy comparable with RIJK. This is much larger than
the default grids used for energies and gradients, but can still be preferable over RIK for
large systems (see timings in Section 2.3.10.1). The K[D®] contributions to the CPSCF
equations are much less demanding: gl provides accuracy, comparable to that of the other
contributions.

Combining the RIJ and COSX approximation, the linear additivity of the errors is
once again apparent: with a dense enough grid the RIJCOSX error is virtually identical
to the RIJ error. Note than the def2-JK basis set was also used for RIJCOSX, as it was
determined to be more accurate.
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Figure 2.11: Convergence of the mean absolute relative error (vs exact evaluation) in the
HF /pcSseg-2 shielding constants, due to applying the RIJCOSX approximation to different
two-electron integrals, with the increase of the radial integration accuracy parameter €.
“gn” denotes the angular grid used.

Having selected the optimal angular grids for each contribution, it is appropriate to
determine the smallest possible value for the radial integration accuracy parameter e.
Figure 2.11 shows the convergence of the error with the increase of € for the grids selected
above. For both terms fitted with the g3 angular grid a value of 4.0 is sufficient and for
gl the error is already converged at a radial accuracy of 3.3.

In summary, while the COSJ approximation is not recommended, because of the high
requirements for grid size, the RIJCOSX approximation is shown to be of comparable
accuracy to RIJK, provided that appropriate grids are used. The optimal grid settings
are g3 with ¢ = 4.01 for the K[D] and K®[D] terms and gl with ¢ = 3.34 for K[D®].
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2.3.7.3 Effect of basis set size and application to DFT

An increase in the Rl-error is to be expected if a basis set with higher angular momentum
functions is fitted with the same auxiliary basis set. Indeed, as shown in Table 2.4, errors
for the pcSseg-3 basis set are slightly larger but still within the imposed limits. Conversely,
the COSX errors tend to be smaller for the larger basis set. This is fortunate because it

implies they are consistently smaller than the basis set incompleteness error.

Table 2.4: Basis set dependence of the errors in the HF shielding constants due to
applying the RI and COS approximations to different integrals. ME,, SDE,, MAE,, and
MaxE, are given in ppm and MRE,, SDRE,, MARE,, and MaxRE, are given in percent

(see eq 2.154).

Approximation Basis ME, SDE, MAE, MaxE, MRE, SDRE, MARE, MaxRE,
SCF: Approximate J[D]

RIJ/def2-JK pcSseg-2 0.002 0.027 0.010 —-0.113 0.003 0.008 0.005 0.029
RIJ/def2-JK pcSseg-3 0.008 0.034 0.017 0.138 0.009 0.017 0.011 0.079
SCF: Approximate J[D] and K[D]

RIJCOSX/gZ“'b pcSseg-2 0.013 0.055 0.035 0.179 0.029 0.075 0.038 0.326
RIJCOSX/g2%®  pcSseg-3 0.004 0.030 0.017 0.109 0.003 0.020 0.013 —0.084
RIJCOSX/g3%?  pcSseg-2 0.002 0.026 0.012  —0.110 0.004 0.016 0.010 0.060
RIJCOSX/g3%"  pcSseg-3 0.009 0.035 0.018 0.134 0.010 0.022 0.013 0.113
RIJK/def2-JK pcSseg-2 0.013 0.025 0.016 0.102 0.012 0.019 0.014 0.067
RIJK/def2-JK pcSseg-3 0.022 0.035 0.025 0.146 0.020 0.027 0.022 0.102
CPSCF: Approximate JB[D]

RIJ/def2-JK pcSseg-2  —0.005 0.016 0.007  —-0.075  —0.005 0.025 0.007 —0.147
RIJ/def2-JK pcSseg-3  —0.005 0.014 0.007  —0.053  —0.005 0.027 0.007 —0.157
CPSCF: Approximate KB[D]

COSX/g2* pcSseg-2  —0.100 0.499 0.149 —2.842 —0.049 0.185 0.075 —0.930
COSX /g2 pcSseg-3 —0.021 0.214 0.062 —1.171 —0.005 0.044 0.021 —0.201
COSX/g3* pcSseg-2 0.002 0.021 0.010 —0.082 —0.001 0.018 0.010 —0.073
COSX/g3* pcSseg-3 0.001 0.007 0.004 0.026  —0.001 0.008 0.004 —0.038
RIK/def2-JK pcSseg-2  —0.010 0.030 0.022  —0.091 —0.011 0.029 0.020 —0.087
RIK/def2-JK pcSseg-3 —0.012 0.036 0.025 —0.113 —0.013 0.034 0.023 0.103
CPSCF: Approximate JB[D] and KB[D]

RIJCOSX/g2%?  pcSseg-2  —0.105 0.511 0.152  —-2.918 —0.054 0.206 0.080 —-1.077
RIJCOSX/g2%? pcSseg-3  —0.026 0.223 0.067 —1.225 —0.011 0.055 0.027 —0.210
RIJCOSX/g3%? pcSseg-2  —0.003 0.033 0.016 —0.157  —0.006 0.033 0.015 —0.161
RIJCOSX/g3a'b pcSseg-3 —0.004 0.014 0.008 —0.042 —0.006 0.029 0.010 —0.167
RIJK/def2-JK pcSseg-2 —0.015 0.035 0.025 —-0.129 —0.016 0.026 0.021 —0.087
RIJK/def2-JK pcSseg-3  —0.017 0.041 0.028 —0.158 —0.018 0.028 0.023 —0.096
CPSCF: Approximate K [DB}

COSX/gl® pcSseg-2 0.008 0.041 0.022 0.212 0.006 0.034 0.019 0.124
COSX/gl® pcSseg-3  —0.000 0.010 0.007 0.033 0.003 0.007 0.005 0.024
RIK/def2-JK pcSseg-2  —0.002 0.006 0.006 —0.014 —0.003 0.011 0.007 0.031
RIK/def2-JK pcSseg-3  —0.003 0.010 0.007  —0.042  —0.003 0.012 0.008 0.039

@ The radial integration accuracy was set to € = 5.0.

b The def2-JK basis set was used for the RIJ part.

All calculations so far were performed at the HF level for simplicity. A comparison
with DFT results employing the BSLYP and TPSS functionals is given in Table 2.5. A
significant difference is that the RIK and COSX errors are lower for DFT compared to
HF, by a factor of 4-5 in the MAE, and MaxE, values. Assuming the apparent linear
additivity of error, discussed in the previous sections, this can be rationalized by the fact
that in hybrid DFT the HF exchange contributions, and any errors introduced therein,
get scaled by a factor cx smaller than unity (0.2 in the case of B3LYP). On the other
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hand, the fact that the RI errors due to the JB[D] term are also smaller for DFT, is simply
a statistical artifact. A close examination reveals that the difference in absolute errors
is due to a single large error in the HF chemical shielding value for phosphorus in PHj,
while the difference in relative errors is due to the smaller HF reference value for fluorine
in F2O. Approximating both Coulomb- and exchange-type contributions results in total
errors for DF'T which are still somewhat lower than for HF. This effect, along with the
conclusions from the previous paragraph means that for hybrid DFT calculations with
the pcSseg-3 basis set it might be feasible to use somewhat smaller COSX grids (e.g. g2
instead of g3).

Table 2.5: Method dependence of the errors in the shielding constants due to applying the
RI and COS approximations to different integrals. All calculations employ the pcSseg-2
basis set. ME,, SDE,, MAE,, and MaxE, are given in ppm and MRE,, SDRE,, MARE,,
and MaxRE, are given in percent (see eq 2.154).

Approximation Method ME, SDE, MAE, MaxE, MRE, SDRE, MARE, MaxRE,

SCF: Approximate J[D]

RI1J/def2-JK HF 0.002 0.027 0.010 —-0.113 0.003 0.008 0.005 0.029
RIJ/def2-JK B3LYP 0.003 0.019 0.008 0.101 0.003 0.010 0.006 0.044
RIJ/def2-JK TPSS 0.003 0.019 0.008 0.086 0.002 0.012 0.007 —0.048

SCF: Approximate J[D] and K[D]

RIJCOSX/g2%® HF 0.013 0.055 0.035 0.179 0.029 0.075 0.038 0.326
RIJCOSX/g2%? B3LYP 0.005 0.017 0.010 0.066 0.010 0.029 0.012 0.168
RIJCOSX/g3%* HF 0.002 0.026 0.012  -0.110 0.004 0.016 0.010 0.060
RIJCOSX/g3%? B3LYP 0.003 0.019 0.009 0.097 0.004 0.015 0.008 0.075
RIJK/def2-JK HF 0.013 0.025 0.016 0.102 0.012 0.019 0.014 0.067
RIJK/def2-JK B3LYP 0.006 0.019 0.009 0.101 0.007 0.014 0.007 0.081

CPSCF: Approximate JB[D]

RIJ/def2-JK HF —0.005 0.016 0.007 —0.075  —0.005 0.025 0.007 —0.147
RIJ/def2-JK B3LYP —0.003 0.010 0.005 —0.035 —0.002 0.008 0.004 —0.037
RIJ/def2-JK TPSS —0.003 0.010 0.005 —0.037  —0.002 0.008 0.004 —0.041

CPSCF: Approximate KB[D]

COSX/g2* HF —0.100 0.499 0.149 —2.842 —0.049 0.185 0.075 —0.930
COSX/g2* B3LYP —0.021 0.111 0.034 —-0.626  —0.005 0.028 0.015 —0.111
COSX/g3* HF 0.002 0.021 0.010 —0.082 —0.001 0.018 0.010 —0.073
COSX/g3* B3LYP 0.000 0.004 0.002  —-0.017  —0.001 0.006 0.003 —0.031
RIK/def2-JK HF —0.010 0.030 0.022  —0.091 —0.011 0.029 0.020 —0.087
RIK/def2-JK B3LYP —0.002 0.006 0.004 —0.018 —0.003 0.006 0.004 —0.022

CPSCF: Approximate JB[D] and KB[D]

RIJCOSX/g2%® HF —0.105 0.511 0.152  —-2918 —0.054 0.206 0.080 —-1.077
RIJCOSX/g2%? B3LYP —0.024 0.114 0.036  —0.647  —0.006 0.031 0.016 —0.115
RIJCOSX/g3*? HF —0.003 0.033 0.016  —0.157  —0.006 0.033 0.015 —0.161
RIJCOSX/g3%® B3LYP —0.002 0.012 0.006  —0.038  —0.002 0.011 0.005 —0.044
RIJK/def2-JK HF —0.015 0.035 0.025 —-0.129 —0.016 0.026 0.021 —0.087
RIJK/def2-JK B3LYP —0.005 0.013 0.007  —0.0563  —0.005 0.009 0.006 —0.036

CPSCF: Approximate K [DB}

COSX/gl® HF 0.008 0.041 0.022 0.212 0.006 0.034 0.019 0.124
COSX/gl® B3LYP 0.002 0.010 0.005 0.054 0.000 0.010 0.005 —0.044
RIK/def2-JK HF —0.002 0.006 0.005 —0.014 —0.003 0.011 0.007 0.031
RIK/def2-JK B3LYP —0.001 0.001 0.001  —-0.006  —0.001 0.003 0.001 —-0.013

@ The radial integration accuracy was set to € = 5.0.
b The def2-JK basis set was used for the RIJ part.
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2.3.7.4 Approximating all terms (RIJK vs RIJCOSX)

After evaluating the errors coming from approximating each term, in the following we com-
pare the accuracy of the RIJK and RIJCOSX approximations in a more realistic scenario,
where the same approximation is used throughout the calculation. The selected settings
are summarized in Table 2.6. Two grid combinations have been defined, labeled small
(S) and large (L). Option L represents the grid settings accurate enough for HF /pcSseg-2
calculations as discussed above, while option S employs looser grids and is expected to be
applicable for hybrid DFT calculations, where the COSX errors are smaller. In ORCA 4,
the two grid combinations can quickly be requested using the simple input commands
“gridx6 nofinalgridx” and “gridx8 nofinalgridx”,’respectively. The def2-JK aux-
iliary basis set is used throughout for both RIJK and RIJCOSX. As noted previously, the
Rl-based transformation of (aj|bi) and (ab|ji) needed for K[U®] can introduce a storage
bottleneck, hence this term can instead be calculated in an AO-direct fashion using exact
4-index integrals at each CPSCF iteration. This procedure is denoted “RIJK*”. For
pure DF'T functionals, only the Coulomb term is approximated using RI and the def2-JK
auxiliary basis set — this is denoted “RIJ”.

Table 2.6: Recommended combinations of approximations for the different two-
electron terms, given in the form ”COS/[angular grid]/[radial integration accuracy|” or
"RI/[auxiliary basis set]”

Term RIJCOSX-S RIJCOSX-L RIJK RIJK*
SCF  J[D] RI/def2-JK RI/def2-JK  RI/def2-JK RI/def2-JK
K[D] COS/g2/e =4.01 COS/g3/e =4.01 RI/def2-JK RI/def2-JK
CPSCF  JB[D] RI/def2-JK RI/def2-JK  RI/def2-JK RI/def2-JK
KB[D] COS/g2/e =4.01 COS/g3/e =4.01 RI/def2-JK RI/def2-JK
K[S®®)] COS/gl/e =3.34 COS/gl/e =3.34 RI/def2-JK RI/def2-JK

K[UB] COS/gl/e =3.34 COS/gl/e =3.34 RI/def2-JK  Exact

The distributions of shielding errors and relative errors in chemical shifts, calculated
using these approximations, are shown in Figures 2.12 and 2.13, respectively. These
data should be viewed in comparison to the basis set incompleteness errors presented
in Figures 2.4 and 2.5, summarized as a MARE;s of 0.8% and 0.1% for pcSseg-2 and
pcSseg-3, respectively. Overall, the RIJK approximation with the def2-JK auxiliary basis
set is robust, resulting in consistently small errors with MAREs ~ 0.01-0.03 %, which
is an order of magnitude less than the basis set error. For HF, RIJCOSX-L is roughly
as accurate as RIJK, while RIJCOSX-S is not recommended with a MARE; of 0.16 and
0.08 % for pcSseg-2 and pcSseg-3, respectively. For hybrid DFT, largely due to the exact
exchange scaling factor, RIJCOSX-S already produces errors well below the basis set error
at MARE;s ~ 0.04 % for both basis sets.

2.3.8 RI-MP2 combined with approximate Fock matrix forma-
tion

In this section we apply the RIJK and RIJCOSX approximations to the two-electron
Fock matrix terms in MP2 and DHDF'T and assess the additional errors thus introduced.

?The given keywords actually correspond to € = 3.67 for gl, instead of 3.34 but this difference is
largely immaterial.
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Figure 2.12: Deviations of shielding constants (ppm) for groups of nuclei, calculated
using different methods, basis sets, and two-electron integral approximations, from results
for the same method and basis without the approximations. The number of nuclei in
each group is given in parentheses. Boxes show the IQRE,, whiskers show the MinE,
and MaxE,, and lines show the MedE,. Note that some whiskers extend beyond the axis
limits.

All nuclei (N = 26)
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Relative errors in 6 vs exact / %

Figure 2.13: Relative deviations of chemical shifts (%), calculated using different meth-
ods, basis sets, and two-electron integral approximations, from results for the same method
and basis without the approximations. The number of data points is given in parenthe-
ses. Excluded: NHs and H5O. Boxes show the IQRREs, whiskers show the MinREs and
MaxRE;s, lines show the MedREg, and diamonds show the MAREs. Note the broken
x-axis: the limits on both sides of the gap are the same but the scale is different.
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Ideally, the latter should be at least an order of magnitude below the method and basis
set errors. Here we extend the definitions from Table 2.6 such that the grid used for
the CPSCF RHS is also used for the Fock response terms in the RHS of the Z-CPSCF
equations, while the grid used for the CPSCF LHS is also used for the LHS of the Z-CPSCF
equations. In order to minimize additional errors due to the RI-MP2 approximation, the
cc-pwCVQZ/C and cc-pwCV5Z/C AuxC basis sets were used for pcSseg-2 and pcSseg-3,
respectively.

H (N = 8) C(N=7) N,O,F,P (N = 19)

MP2/pS2/RIJCOSX-S
MP2/pS2/RIJCOSX-L
MP2/pS2/RIJCOSX-XL
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MP2/pS3/RIJCOSX-L
MP2/pS3/RIJCOSX-XL
MP2/pS3/RIJIK

DSD-PBEP86/pS2/RIJCOSX-S

DSD-PBEP86/pS2/RIJCOSX-L

DSD-PBEP86/pS2/RIJCOSX-XL

DSD-PBEP86/pS2/RIJK

DSD-PBEP86/pS3/RIJCOSX-S

DSD-PBEP86/pS3/RIJCOSX-L

DSD-PBEP86/pS3/RIJCOSX-XL

DSD-PBEP86/pS3/RIJK
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-0.01 0.00 0.01 -0.1 0.0 0.1 -0.5 0.0 0.5

Errors in o vs exact Fock / ppm
Figure 2.14: Deviations of shielding constants (ppm) for groups of nuclei, calculated
using the RIJK and RIJCOSX approximations for the two-electron Fock matrix contri-
butions, from results using exact two-electron integrals for these terms. The number of
nuclei in each group is given in parentheses. Boxes show the IQRE,, whiskers show the
MinE, and MaxE,, and lines show the MedE,. Note that some whiskers extend beyond
the axis limits.

The shielding errors are shown in Figure 2.14. The first thing to notice is that the
RIJK errors are very small, which confirms that the def2-JK basis set is large enough to be
used with pS2 and pS3. On the other hand, RIJCOSX-S errors are an order of magnitude
larger. RIJCOSX-L errors are smaller with pS2 but not with pS3, which is unexpected,
as we had previously observed that the COSX errors (with a given grid setting) decrease
with increasing basis set size (see Section 2.3.7.3). Additional testing revealed that a
large part to the error is due to the smaller grid used in the Z-CPSCF equations LHSs.
Therefore, we propose a third set of grid parameters, denoted RIJCOSX-XL, whereby
g3/e = 4.0 is used for the CPSCF and Z-CPSCF equations RHSs, as in RIJCOSX-L, and
g2/e = 4.0 is used for the LHSs. Using these settings, the RIJCOSX errors are roughly
of the same magnitude as the RIJK errors. It should be stressed however, that for pS2
the RIJCOSX-S errors are already an order of magnitude below the basis set error and
for pS3 the RIJCOSX-L errors are several times smaller then the basis set error, albeit
not a whole order of magnitude. Therefore, the RIJCOSX-L settings should be quite
sufficient for regular applications and the RIJCOSX-XL settings need only be used when
very precise results are required.



All nuclei (N = 26)
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Relative errors in 6 vs exact Fock / %
Figure 2.15: Relative deviations of chemical shifts (%), calculated using the RIJK and
RIJCOSX approximations for the two-electron Fock matrix contributions, from results
using exact two-electron integrals for these terms. The number of data points is given
in parentheses. Excluded: NHs and HsO. Boxes show the IQRREs, whiskers show the
MinREs and MaxREjs, lines show the MedREs, and diamonds show the MARE;s. Note the
broken x-axis: the limits on both sides of the gap are the same but the scale is different.

Because the shielding errors are rather unsystematic, they do not cancel out in chemical
shifts (Figure 2.15). Hence, the conclusion above applies here as well: RIJCOSX-S may
be used with the pS2 basis set, as the resultant errors are far below the basis set error
(MAREs = 0.17 and 0.12 % for MP2 and DSD-PBEPS6, respectively), while RIJCOSX-L
is more robust overall with MARE; of 0.04, 0.03, 0.10 and 0.04 % for MP2/pS2/cw4C,
DSD-PBEP86/pS2/cw4C, MP2/pS3/cw5C, and DSD-PBEP86/pS3/cw5C, respectively.
RIJK results in negligible errors (MARE; < 0.03% in all cases) and is therefore the
preferred approximation for smaller systems, while RIJCOSX should be used for larger
calculations due to its more favorable scaling behavior.

2.3.9 Combined effect of all error sources

The magnitude of errors, coming from different sources, in the calculated chemical shifts
can be easily compared in Table 2.7. Largest are the deviations of different methods
from the CCSD(T)/pS4 reference, discussed in Section 2.3.3. Close to the CBS limit the
ranking of the chosen methods is (from highest to lowest accuracy): DSD-PBEP86, MP2,
TPSS, B3LYP, and HF.

When the RI-MP2 and RIJCOSX errors are compared to those from the method and
basis set, pS2/cw3C, pS3/cw4C, and RIJCOSX-L can be seen as a good balance of cost
and accuracy. Although not discussed above, the effect of the DF integration grid was
also studied: while the default grid for energy calculations (grid 2) may be somewhat
unreliable for chemical shifts, the values obtained with grids 3 and 4 are an order of
magnitude more accurate, hence these grid settings are recommended.

Finally, the last two rows of Table 2.7 show the total error versus CCSD(T)/pS4, when
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Table 2.7: MARE; (%) due to different sources of error (excluding H shifts in HoO and
NH;).

Source of error Basis® HEF B3LYP TPSS MP2 DSD-PBEPS86
Method? pS4 10.762 9.048 6.362 4.118 1.914
Frozen core® pS4 1.268 0.457
Basis set? pS2 0.766 0.836 0.838 1.860 1.129
pS3 0.105 0.133 0.606 0.359 0.228
RIJK® pS2 0.023 0.013 0.0239  0.019 0.022
pS3 0.025 0.019 0.0259  0.026 0.020
RIJCOSX-S¢f pS2 0.159 0.042 0.165 0.115
pS3 0.082 0.035 0.158 0.071
RIJCOSX-L¢f  pS2 0.033 0.016 0.039 0.030
pS3 0.025 0.018 0.104 0.042
RIJCOSX-XL¢f  pS2 0.035 0.031
pS3 0.054 0.031
RI-MP2 pS2/cw3C 0.016" 0.009!
pS2/cw4C 0.005" 0.004!
pS3/cw4C 0.025" 0.011°
pS3/cw5C 0.002" 0.001°
pS4/cw5C 0.009"
DFT grid 17 pS2 0.275 0.086
DFT grid 2/ pS2 0.218 0.076
DFT grid 37 pS2 0.034 0.010
DFT grid 47 pS2 0.028 0.002
DFT grid 5/ pS2 0.012 0.001
DFT grid 6 pS2 0.009 0.001
Total* pS2/cw3C  11.055 9.123 6.271 3.695 1.420
Total®* pS3/cwdC  10.832 9.048 6.075 4.064 1.863

@ The pS2/cw4C, pS3/cw5C, and pS4/cw5C OBS/AuxC combinations were used for the RI-MP2
approximation (where applicable), except where explicitly specified. * Vs CCSD(T)/pS4. ¢ Vs
all-electron calculations with the same basis set. ¢ Vs pS4. ¢ Using the def2-JK AuxJ basis, vs the
same method /basis with no approximation in the two-electron Fock contributions. / See Table 2.6
and Section 2.3.8 for grid settings used. 9 No exact exchange — RI used only for Coulomb terms.
h Vs canonical MP2 results obtained using CFOUR. * Vs AA3l near-complete AuxC basis. 7 Vs
grid 7. Grids 1-7 employ 50-, 110-, 194-, 302-, 434-, 590-, and 770-point Lebedev angular grids and
radial integration parameters of 4.34, 4.34, 4.34, 4.67, 5.01, 5.34, and 5.67, respectively. Default
pruning settings in ORCA were used. * All-electron calculations using RIJCOSX-L (just RIJ for
TPSS) and DFT grid 4.
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all the relevant approximations (RIJCOSX, RI-MP2, smaller basis sets and DFT grid, but
not FC) have been applied. As noted in Section 2.3.4, some methods benefit from error
compensation when a smaller basis set is used, while others suffer from an accumulation
of errors. Even so, the final ranking of the given methods does not change in this case.

2.3.10 Comparison of efficiency
2.3.10.1 SCF methods

In previous sections we discussed the accuracy of the RIJK and RIJCOSX approxima-
tions and settled on recommended auxiliary basis set and grid settings. In the follow-
ing we compare the computational efficiency of both approaches for the calculation of
shielding constants of larger systems at the HF level (the conclusions should also be ap-
plicable to hybrid DFT). The systems selected are benzene, coronene, and a “tweezer”
host-guest complex (see Figure 2.16). The latter was investigated by Brown et al. in
a proof-of-concept paper on the advantages of combining solid-state NMR experiments
with quantum-chemical calculations.?’” Coronene and the tweezer complex were also used
as test cases by Loibl, Manby and Schiitz for their local GIAO-HF and GIAO-MP2 im-
plementations. '™ Because of the different approximations employed, as well as the
different basis sets used, no direct comparison is attempted here. The benzene molecule
was optimized at the RIJK-B3LYP-D3BJ/def2-TZVP /def2-JK level and the structures
of the other two systems were optimized at the RI-BP86-D3BJ/def2-SVP /def2-J level.
The final MO coefficients from the optimization were used as a guess for subsequent cal-
culations. Wall-clock times for different parts of the calculation are shown in Figure 2.16
along with the number of electrons N, basis functions Ny, and auxiliary basis functions
Naux for each example. The recommended grid settings and basis sets were used (see
Table 2.6).

The efficiency of the RIJCOSX and RIJK approximations for SCF calculations has
been compared previously,''® and as expected, especially with the large grids employed
here, the RIJCOSX approximation is only faster for the largest system. With the chosen
settings, the COSX approximation to KB[D] takes roughly the same amount of time as
the RIJ approximation to JB[D]. However, the poor scaling of the RIK method already
shows for the coronene molecule and for the tweezer system it is a significant bottleneck.

The solution of the CPSCF equations using RIJCOSX is much less time consuming
than the SCF iterations, mostly because a small grid is used for the repeated evalua-
tion of K[UB]. If the two-electron integrals are evaluated exactly in an integral-direct
fashion (case “RIJK*” in Figure 2.16), the CPSCF dominates the computation time.
Pre-calculating the integrals (case “RIJK”) drastically reduces the time spent on CPSCF
iterations for the smaller systems, even considering the time required for the calcula-
tion and storage of the necessary integrals. However, disk space becomes a bottleneck
for large systems: the calculation on the tweezer could not be performed because the
available 400 GB of scratch space were insufficient.

The additional computational effort required due to the inclusion of exact (HF) ex-
change can be estimated by comparing to timings for a “pure” DFT functional such as
TPSS (see Table 2.8 below). In that case, not only are the KB[D] and K[D®] terms
omitted from the CPSCF equations, but the iterative solution of the latter is skipped en-
tirely. Considering also that “pure” functionals are only slightly less accurate than their
hybrid counterparts (as shown in Section 2.3.3), it seems reasonable to only include exact
exchange if the SCF solution is required for further treatment within correlated methods.
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Figure 2.16: Wall-clock time for different parts of the calculation (adding up to over
99 % of the total time): SCF iterations, RI- and COSX-contributions to gB[D] (“GIAO-
RI” and “GIAO-COSX?”, respectively), RIK/COSX evaluation of the K[S(B)} term, pre-
computation of the (ab|ji) and (aj|bi) integrals in the RIJK case, and convergence of the
CPSCF equations to 1 x 1076, See Table 2.6 for the settings used. Calculations were
performed for benzene, coronene, and the “tweezer” complex (depicted in the figure). All

calculations ran on 8 CPU cores with 2 GB memory per core.
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In summary the RIJK approximation is especially efficient for smaller systems with
large basis sets. For systems over 100 electrons and 1000 basis functions, the RIJCOSX
approach is recommended. It is worth noting that using the looser grid (RIJCOSX-S) only
provides significant speedups for the smallest calculations (where RIJK is even faster) and
considering the larger errors involved, it is advisable to use a denser grid (RIJCOSX-L).

2.3.10.2 RI-MP2 and DHDFT

In Section 2.3.3 we have shown the superior accuracy of DHDFs (DSD-PBEPS86 in par-
ticular) for the computation of NMR chemical shifts, compared to SCF-level methods
and MP2. However, it must be stressed that, although applicable to much larger sys-
tems than coupled cluster theory would be feasible for, these calculations are significantly
more time-consuming than the hybrid DFT equivalents, and even more so than pure DFT
shielding calculations, where even the iterative solution of the CPSCF equations is not
needed. Therefore, in this section we evaluate the performance of our implementation
for larger systems. The (all-electron) DSD-PBEP86/pS2/cw3C level of theory was used
throughout this section.

1000
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3 250 o RIJCOSX-L a) Total o— SCF b) RIJCOSX L
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£ 200 . Rk —— SCF NMR e
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Figure 2.17: Wall-clock computation times for DSD-PBEP86/pS2/cw3C NMR shielding
calculations on linear alkane chains (C,Hg,42)) using different approximations for the
Fock matrix contributions (as defined in Table 2.6). (a) Total computation times. (b-d)
Timings for separate calculation parts using each of the approximations; the numbers on
the right denote the effective scaling exponent determined from the last five points in each
series. The calculations were performed on 8 Intel Xeon E7-8837 2.67 GHz cores with 8 GB
RAM per core.

The computational effort is dominated by the evaluation of the MP2 response density
DB (a detailed breakdown of contributions to the total computation time is given in
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Appendix C). The latter formally scales as O (N°) with system size and can be up to 20—
30 times more expensive than the evaluation of D, as discussed in Section 2.2. However,
the approximation used for the two-electron integrals, originating from the Fock operator,
also has an effect on the timing. Figure 2.17 shows the total computation times for
DSD-PBEP86 NMR shielding calculations on idealized linear alkane chains (H(CH,),H).
Here we compare the “RIJCOSX-L”, “RIJK”, and “RIJK*” approaches, as defined in
Section 2.3.7.4. The effective scaling with system size is determined as the slope of a
linear fit (on a log-log scale) of the last five points in each series. The RIJK option is
fastest up to about CigHss, beyond which the RIJCOSX-L approach is more efficient.
RIJK* is slightly faster than RIJCOSX-L for the two smallest systems but for C;5Hgso
it already takes about 44 % more time. For the larger systems, the RIJK computation
times are between those of the other two options. However, this result depends on the
speed of disk I/O operations (a RAID 0 hard disk configuration was used in this case).
Therefore it can be concluded that for very small systems the choice of approximation is
largely immaterial, while for larger systems of about 100 electrons or more the RIJCOSX-
L approximation is recommended.

A further illustration is given in Table 2.8 for several “real world” systems: the ben-
zene, caffeine, coronene, and penicillin G molecules and the “tweezer” host—guest complex
discussed in Section 2.3.10.1.% The latter is the largest system studied in this section with
374 electrons and 2520 basis functions. Note that, to reduce memory requirements, the
perturbed amplitudes for each batch were stored on disk, as discussed in Section 2.2.
For comparison, TPSS/pS2 calculations were also performed on these systems. Table 2.8
provides separate timings for different calculation parts: the SCF solution, assembly of
the CPSCF RHS, solution of the CPSCF equations, and calculation of the MP2 relaxed
density and response density matrices. Note that for TPSS only the first two steps are
necessary. The final lines of the table allow for a quick comparison of the total computa-
tion time required for NMR shielding calculations with a pure DF (TPSS), a hybrid DF
(here taken as the SCF part of DSD-PBEP86), and a DHDF (DSD-PBEPS86). Due to the
efficiency of the RIJCOSX approximation, hybrid DFT calculations are consistently only
a few times more expensive than pure DFT ones. However, the cost of DHDFT quickly
grows to more than an order of magnitude above hybrid DFT, with the largest calculation
taking 6 days to complete and requiring 1 TB of disk space. It is clear that in order to
apply DHDFT to much larger systems, a local correlation approximation is needed.

“For benzene, Rcc = 1.3908 A and Rcy = 1.0828 A. Cartesian coordinates for the other systems are
provided in Appendix E.
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Table 2.8: System size indicators and wall-clock computation times (in minutes) for some
medium-sized systems. Grid 4 was used for XC functional integration. The calculations
were performed on 8 Intel Xeon E5-2687 v4 3.0 GHz cores with 8 GB RAM per core.

Benzene Caffeine Coronene Penicillin Tweezer

Atoms 12 24 36 41 92
Electrons 42 102 156 176 374
Basis functions (pS2) 300 644 1032 1087 2520
AuxC functions (cw3C) 846 1854 3024 3158 7296
AuxJ functions (def2-JK) 558 1242 2016 2114 4852
Grid points (COSX-L) 23218 47803 74108 78287 172573
TPSS
SCF (RI) 0.1 0.6 14 1.7 10.7
RHS (RI) 0.1 0.7 2.3 1.6 13.5
DSD-PBEP86/RIJCOSX-L
SCF (RIJCOSX) 0.4 2.8 9.2 7.6 63.1
RHS (RIJCOSX) 0.2 1.3 4.3 3.7 32.2
CPSCF (RIJCOSX) 0.1 1.0 3.0 4.3 48.0
RI-MP2: D 0.3 2.9 14.0 18.4 668.0
RI-MP2: DB 1.7 19.0 108.7 144 .4 7831.2
DSD-PBEP86/RIJK(RITrafo)
SCF (RLJK) 0.2 1.4 5.5 6.0
RHS (RIJK) 0.1 0.7 2.6 3.2
CPSCF (RITrafo) 0.0 0.1 0.9 1.6
RI-MP2: D 0.2 3.5 27.9 39.5
RI-MP2: DB 1.5 21.1 133.8 185.6
Comparison
Total TPSS 0.3 1.3 3.8 3.4 25.4
Total PBEPSG/RIJCOSX—L 0.7 5.1 16.5 15.6 143.4
Total DSD-PBEP86/RIJCOSX-L 2.7 27.0 139.2 178.3  8642.7
Total PBEP86/RIJK(RITrafo)® 0.3 4.1 26.2 35.4
Total DSD-PBEP86/RIJK(RITrafo) 2.0 26.9 170.8 236.0

@ Including the RI transformation and storage of (ia|jb) and (ij|ab) integrals.
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Chapter 3

Computation of polarizabilities and
NMR  shieldings with domain-based
local pair natural orbital MP2

3.1 Theory

The focus of this thesis is the computation of NMR shielding tensors and therefore the
goal of the following section is the derivation of analytic second derivatives of DLPNO-
MP2 in that context. However, with small generalizations, it is possible to simultaneously
derive other second order properties such as the electric dipole polarizability. Similar to
the shielding tensor for nucleus K, o, the polarizability tensor & can also be obtained
as a second derivative of the energy:*”®

A2E d2h dD,, dh
K _ = D, r i 4 3.1
75e = ABgtdmE ; W ABedmE | ABe dmk (8:1)
d’E dD,, dh,,
o _ 2
NPT TARARyT T L Rt dFgT (3.2

where, as in the previous chapter, E/, D, and h are the method-specific energy expression,
density matrix, and one-electron part of the Fock matrix, respectively; a and S denote
arbitrary Cartesian directions; F™' B (the superscript “ext” is used in this chapter
for consistency between the two fields), and m® are the external electric and magnetic
fields and the nuclear magnetic moment of K, respectively. Note that the expressions in
egs. 3.1 and 3.2 are not symmetric with respect to the perturbation and thus not the only
possible expressions for these properties. Notice also that h only contains terms that are
linear in Fe*¢:

1
h(r, Fo) = 5V2 —V(r) - F* . u (3.3)
u= —I‘—I—ZZKRK (34)
K

dh,,

dF/;Xt = - <ILL| TOZ |V> (35)
d?h,,

dFexthngt =0 (3.6)
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where r is the electronic coordinate with respect to the global origin and Zx and Rk are
the charge and position of nucleus K. In the following discussion, A will denote a generic
multi-dimensional perturbation (like F* or B®*t).

As the derivations below are already rather complicated, they are limited to pure MP2.
However, the extension to DHDFT and the extra terms required are identical to those
discussed in Chapter 2 (see Section 2.1.4). Similarly, the inclusion of an implicit solvent
model is analogous to the RI-MP2 case (see Section 2.1.5).

3.1.1 Notation

Due to the many basis transformations and domain truncations involved in local corre-
lation methods, mathematical notation can quickly become cumbersome, imprecise, or
both. Here we try to give a brief explanation of the symbols used in the present deriva-
tions. Table 3.1 lists the symbols used to denote different sets of orbitals. Note that
virtual orbitals belonging to a specific orbital or pair domain, are usually denoted with
corresponding lower indices, e.g. fi; or a;;. However, the occupied orbital indices are often
obvious from context, or are added as upper indices of a matrix, e.g. F ;3 or T ;i, and thus
the repetition is avoided to simplify the notation.

Be aware that despite the similar notation, the symbols Kg), ng, FZZ, and S;Jb have
rather different meanings: the first denotes the two-electron repulsion integral (ia;; | j lN)ij),
the second parametrizes excitations from orbitals ¢ and j into PNOs & and b, while the
last two are simply the Fock and overlap matrix elements in the PNO basis of pair 7.

The conventions introduced in Section 2.1.1 also apply here. Note that, while consis-
tency with Chapter 2 is preserved as much as possible, some symbols are redefined in this
chapter.

Table 3.1: Notation

Indices Basis set

1,7, k,1 (localized) occupied orbitals, or valence orbitals in particular

m,n (localized) core orbitals

a,b,c,d canonical virtual orbitals

D,q,T, S occupied or virtual molecular orbitals

Wy vy 1 atomic orbitals (AOs)

o, v normalized redundant projected atomic orbitals (PAOs)

[, U, orbital/pair domain of orthonormal pseudo-canonical mnon-
redundant projected atomic orbitals (NPAOs)

a,b,éd pair natural orbitals (PNOs)

a,v,&,d  discarded/“complementary” pair natural orbitals (CPNOs)
a’,v’,&,d" union of PNOs and CPNOs

3.1.2 The domain-based local pair natural orbital MP2 method

Here we provide a brief review of the closed-shell (spin-restricted) DLPNO-MP2 method,
which has been described in significant detail elsewhere.**'% The following steps are
taken to obtain the DLPNO-MP2 energy:
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1. The SCF equations are solved, giving the HF energy, Fur, and canonical molecular
orbitals (CMOs).

2. The occupied orbitals are localized according to the Foster-Boys (FB) criterion,
as modified by Boys (referred to below as FB localization).*’**" Core and valence
orbitals are localized separately.

3. PAOs fi/, (“u” stands for unnormalized) are obtained as
) = (1=D10 Gil) 1) = 3 P I0) (3.7
1
and then normalized using the factor Nz = (f)|f]) 2:

) = Nyl = 3 P ) (3.8)

4. For each occupied orbital, a correlation domain of PAOs is selected, based on the
differential overlap criterion

DOLz = /(| ||| i |*) > Teunopre (3.9)

with the default value of the parameter Touwipopre = 0.03. These domains are then
extended to all PAOs coming from the included atoms.

5. Non-redundant orthonormal PAOs (NPAOs) are constructed by diagonalizing the
overlap matrix of each PAO domain, discarding eigenvectors with eigenvalues below
Ts (107® by default) and normalizing the rest. These are then transformed into
pseudo-canonical NPAOs {} by diagonalizing the NPAO Fock matrix.

6. Strongly correlated electron pairs are determined using a three-step procedure. A
pair 47 is kept if the differential overlap between the two orbitals, DOI;;, is greater
than Towpoi; = 107° and the semi-canonical pair energy estimate, eq. 3.10, us-
ing the collinear dipole approximation to the exchange integrals (i.e. M }%’COI from
eq. 3.12 instead of Mg{;),"jm is greater than Tcupre = 107%. The energy contribution
from the screened-out pairs, AFEp,., is estimated using the more accurate dipole
approximation to the exchange integrals, " eq. 3.11.

i 1%
MM

dip
s _ | ' (3.10)
j %};Fi—i—Fg—Fii—F}j
iy _ Tt 5 (riaRy)) (rg,;Rl-j) (3.11)
fj:COl _ 4I'Z‘I]I'jg 3.12
o - a3 3.12)
Rij=ri—rj; (3.13)
rip = (i|r|f:) (3.14)

F li and F,f are NPAO orbital energies in the domain of orbitals ¢ and j, respectively,
while F; and F}j; are elements of the Fock matrix in the localized MO (LMO) basis.
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7. The correlation domains are reconstructed as in step 4 but with a tighter threshold
Tcwpo = 0.01. Pair domains are then made as the union of orbital domains. The
pair domain PAOs are later orthonormalized as in step 5.

8. PNOs are constructed by diagonalizing the semi-canonical pair density D% in the
basis of NPAOs for the given orbital pair:

D= {T%Tyﬁ - TZ]J:T%{,} (3.15)
n
FY + F7 — Fy; — Fy;
= 1 o -
Tl (4TZ?~ _ 2T’i) 3.17
2% 1 +5’Lj Qv vp ( )

where F ;j and Féj are NPAO orbital energies in the 7j pair domain and 9;; is the
Kronecker delta. PNOs with an occupation number greater than Toupno = 1078
are kept, while the rest form the “complementary” PNO (CPNO) basis referred to
below. A tighter threshold, Tcupno X TsealePNOCore = 10710, is used for pairs which
include core orbitals.*’” The PAO to PNO transformation matrices are stored on
disk. A correction to the energy, AFEpno, is computed as the difference between the
semi-canonical correlation energy, calculated in the NPAO and PNO basis sets.

9. The full amplitude equations EPYFNO / 8T” * = 0 (see Section 3.1.3 for definitions)
are solved iteratively in the PNO basis and the final DLPNO-MP2 energy is calcu-
lated:

Eprpnompz = Enp + E3VNC + AEpno + AEpy. (3.18)

The following sections list the steps necessary to compute analytic derivatives, based on
the DLPNO-MP2 energy.

3.1.3 DLPNO-MP2 Lagrangian

Because the DLPNO-MP2 energy expression is non-variational, a Lagrangian formulation
is used for analytic derivatives,?° which is slightly different from the one used previ-
ously: 191,192
L = Eup + Ey*N° 4+ AEpno + AEpre

+ Cii + Croc + Cev + Cse + Cpro (3.19)

+ Cmoo + Cpnoo + Cnpaco
The first four terms are the energy contributions, the next five are the Brillouin, local-
ization, core—valence, semicanonical, and PNO Lagrangian constraints, and the last three
are orthonormality conditions for the MOs, PNOs and NPAOs. The various terms will
be explained in the present section. Fyp is the HF energy expression:

Eyr = QZ hi; + Z (3)77) — (17|79)] (3.20)

with two-electron integrals in the Mulliken (1*1|2*2) notation. EPYPNO is the PNO-basis
Hylleraas functional in the spin-adapted form:?***

E%)LPNO _ ZZ |:Kz]ng + sz*Tz]* + Dz] Fz]] _ ZDijEj (3‘21)
ij

ab’ ab
25 ab
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DY =3 | T + T4 | (3.22)

C

Dy =D (14 8) 3 S T ST (3.23)
k abed
KC% = <i&ij ﬂ;ij> (3.24)
S;]bkl _ <&ij Bkl> (3.25)
o 1 3 3
T — (4sz . 2sz) 3.26
ab 1 + 51']' ab ba ( )

A Epno is an estimate for the error due to the PNO truncation, calculated as the difference

between the correlation energy computed from the semicanonical amplitudes in the full
NPAO basis and in the truncated PNO basis:

Ao = 0 |30 (K0 T + K250 ) = X (K0TS + KT )
=5 |anp ab
(3.27)
The energy contribution of the screened-out pairs takes the form of an approximate Hyller-
aas functional:
ABpye = 43 15(i) 30| ML, + MG — (Fy+ Fyy) 65543,
i>] 1%

o (3.28)
+ 0 (Flatitdy + Flotiits)|
7

where 1g(7j) = 1 if pair ij was screened out, 0 otherwise. The dipole approximation to
the exchange integrals is given in eq. 3.11. The Brillouin condition is formulated as

1 * *
Chii = 5 Z (2qiFai + 25, F) (3.29)

ai

where z, is the required Lagrange parameter. Introducing a magnetic field means that
all quantities throughout the formalism are necessarily complex. Therefore, for any La-
grangian condition, it is necessary to constrain both its real and imaginary part or, equiv-
alently, the condition and its complex conjugate. We favor the latter approach here, which
also leads to complex Lagrange multipliers and their conjugates as separate optimization
parameters, which can be arranged in Hermitian matrices, e.g. 2z, = zJ,. For infinitesi-
mal perturbations, the final working equations in the first order of the perturbation are
always fully real (e.g. for electric fields) or fully imaginary (e.g. for magnetic fields), and
are therefore over-parametrized. Thus, linear combinations are formed to obtain separate
equations for the real and imaginary components of the Lagrange multipliers, of which
one provides the required solution, and the other trivially gives zero. The factors of one
half in eq. 3.29 as well as eqs. 3.32, 3.34, 3.39, and 3.43 (see below) are introduced for
consistency with the definitions of the Lagrange multipliers in ref. 192. We also note in
passing that eq. 3.19 is formulated such that all terms are real.

In the present derivation, the molecular orbital (MO) response to perturbations is
parametrized as:*"?

cA) =cP%UR), UO) =1 (3.30)



where ¢ denotes the LMO coefficients. In contrast to the exponential parametrization
used in refs. 191 and 192, U is not constrained to be unitary but is instead constrained
by the MO orthonormality condition

Cnoo = Z Zpg (Spg — Opg) (3.31)
Pq

which is fulfilled by the CMO coefficients and the unperturbed LMO coefficients c(?). Here,
x,, are the associated Lagrange multipliers. The term Cf,. enforces the FB localization
condition separately on the core and valence orbitals and introduces the required Lagrange
multipliers [;;:

valence core

1 * ok 1 * *
C'Loc - 5 Z (lijsij + lijsij) + 5 Z (lmnsmn + lmnsmn> (332)
1<J m<n

The final MO constraint is the core-valence separation condition with an associated La-
grange parameter Z,:

Valence core

Cov =+ Z Z (Zom Fom + Zha F) (3.34)

Recall that the core and valence orbitals are localized separately because different PNO
truncation thresholds are used for pairs which include core orbitals.®"? Therefore, the core-
valence separation condition is necessary even if all electrons are included in the correlation
treatment. On the other hand, the localization condition for core orbitals is not needed
if the latter are not localized, which is the case in the frozen-core approximation.

We denote the PNOs by a,b, ¢, d, the CPNOs by @,V,&,d and the union of the two
spaces with @”, 8", ,d". The transformation matrices from redundant PAOs to each of

these sets (for orbital pair ij) are denoted by difa, dgfa,, and dg’fg//, respectively. The

PNOs and CPNOs combined span the same space as the NPAOs. In the presence of a
perturbation, we allow the PNOs to relax within the entire PNO+CPNO space. Rotations
within each domain are thus parametrized as

d"i(A) = d"7OeU(A), 09(0) =1 (3.35)

Analogously to U, the matrices 0 are not necessarily unitary but rather are constrained
by the PNO (and CPNO) orthonormality condition:

C’PNOO - Z Z 'Iw/b// (Sg/bu - 6&”5”) Wlth Sl] = SZ]J] (336)
1>7 Gy
Note that below, S¥ is expanded as
Qi — @it giigii — giitqriiO1gqrii©) gis (3.37)
S = (i|7) (3.38)

where 8 is the PAO overlap matrix transformed to the unperturbed PNO+CPNO basis.
A further PNO constraint ensures that the semi-canonical pair densities D¥ remain block-

diagonal:
z] Z]* 7]%
Cpyo = Z Z ( a Dy T Ve Dab’> (3.39)

z>] ab’
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where v;% are unknown Lagrange multipliers. An orthonormality condition also applies
to the orbital domain NPAOs used for the prescreening correction, parametrized as

m(A) = Pe'(A), 0'(0) =1 (3.40)

Cnpaoo = Z Z 255 (Sho — O) (3.41)
i v

where 77, are the transformation matrices from redundant to non-redundant orbital
domain PAQs, S’ is the overlap matrix in the latter basis, and xiw are the necessary

Lagrange multipliers. Finally, the semi-canonical amplitudes are parametrized as
T = 07T 0" (3.42)

and the semi-canonical residual conditions Cg¢ are included in the Lagrangian:

Cue =5 305 (wlly Ry + i R (3.4)

127 Gy

where w-,,b,, are Lagrange multipliers and the semi-canonical residuals R~,,b,, are defined
as

R”’b” = KE‘Z;;)// + Z ( b//~// + F T~//b//> - T~//b// (EZ + F]J) (344)

The optimization parameters in the present DLPNO-MP2 Lagrangian are thus: U,,, T

g
it ij i 44 0 Y j
T2 Qs Orios tins Zaiy Zims Ly Tpgs Vg Touprs Ty wwb,, and their complex conjugates.

3.1.4 Equations for first derivatives

The derivative of the DLPNO-MP2 energy with respect to the first external perturbation
K (in this work either an electric field or nuclear magnetic moment, on which only the
one-electron part of the Hamiltonian depends) is equal to the respective partial derivative
of the Lagrangian

dEprpnomp2 0L SCF K
dk T ok Z (D/w + D) Py (3.45)

1%

if and only if the Lagrangian is made stationary with respect to all parameters. The
equations for the necessary stationarity conditions will be presented in this section. De-
spite the slightly different formulation of the Lagrangian, the final working equations are
completely equivalent to those derived in ref. 192. Note that eq. 3.45 is only valid if the
basis functions do not depend on the perturbation k. Therein, DSF is the SCF density
matrix:

Dyt =2 " et (3.46)
while D is the orbital-relaxed DLPNO-MP2 difference density matrix:

1
D=D+ §c* (z+2z)c" (3.47)
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where, as stated above, only the occupied-virtual and virtual-occupied blocks of z are non-
zero with z;, = 2,. Analogously, z only has non-zero core-valence blocks with z,,,; = z; .
D’ is the “PNO-relaxed” difference density matrix:

D' = P'D"P" — ¢*D"”c" (3.48)
1 _ _
D;g = Dij + 5 Z 5ij (5zk + 5zl) tr <Wlelk + Wkl*le*> + D%(Pre) (349)
k>1
v 1 v(Pre)
Dy =Y Dy + Dy, (3.50)
2]

D — 47 DU guT 4 %d//ij* <WijTji + Wij7Trj/_1ij + Tji*wij* + Tz‘j*wz‘jT) d"9T (3_51)
The prescreening contributions are defined as:

v

DY = 45y > 15(ik) tr (£ 6) (3.52)
k

DY) = 43 " 1g(if)m It (3.53)

ij

The values of the required variables are obtained by solving the stationarity conditions
equations (and their complex conjugates):

oL oL oL oL oL oL oL

0= aT? — ow?_ vl 0za  OZm  Oly  OtY.
ab @y ab’ fii (3.54)
oL oL oL oL 0L oL oL '
0z, Orp, O (ﬁg@u 00, 005, OUpy

The first ten are already fulfilled at the end of the DLPNO-MP2 energy calculation. The
PNO amplitudes are obtained by iteratively solving the amplitude equations:

oL QEP-PNO

_ _ poig ij rij ij rpij
0= 9T 9rhr Kaz} T Z <Td5F be T FdéTaE)
ab ab ¢ (3.55)
. Z B Quikpik gikijs | @ gidkipki gkiiix
N\ TkiPac 1edP kiac < aq P dp
kéd

Note that the equations obtained from the derivative with respect to the contravariant
amplitudes, OL/JT¥, are equivalent to a linear combination of OL/0T% and OL/OT
but produce a more convenient expression (as was shown for RI-MP2 in Section 2.1.3.2).
As explained in refs. 130 and 144, terms in the sum over k in eq. 3.55 are skipped if
the corresponding element of the Fock matrix has an absolute value below a threshold
Fouw = 1075,

The semi-canonical amplitude stationarity conditions take the form:

0=25 _gir| 1 (9K K  INYKYNY 4 NUKINY)
OTii 1+ 05
(3.56)
+ 5 (sz,TTz]* + Tz]*vz] 4 sz*wz] 4 Wngz] o Wz] (Fjj + F’“>> GZJT
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oL oL\~

0= — :< A,) (3.57)
oTi* T

The matrix Nj,b,, = > .00z, is introduced to “select” the truncated PNO basis.

eq. 3.56 can be transformed to the pseudo-canonical NPAO basis using the unitary matrix

549 and solved for w at A =0 (i.e. 87 =1):

a'fi

— daar Ogiy (4K — 2K

( +F FJJ_ [u;: ZS 1+(5”

l/b//

+ (Vij,TrTij* + Tij*vij)] S}'j(~0)
III;H

(3.58)
by

with
z : i, z 0
S]” ~//b// b‘/j/(~) (359)

//b//
Equations for v “ are obtained from the Lagrangian stationarity conditions with respect
to 0;%/'

aEDLPNO

2 v D= 2 Djovie =2

¢

A=0

(3.60)

Z [Kg,{ T + Kljff_r” + K”*T;{i‘ + KT

These can be solved in the PNO+CPNO basis, which diagonalizes D%. A detailed deriva-
tion, as well as expressions for x% is given in Appendix D. The remaining Lagrange mul-
tipliers z, z, and x are determined from the MO rotation stationarity conditions. As
expected, the Lagrangian is invariant to rotations among virtual orbitals, but occupied—
virtual and occupied—occupied (core—core or valence—valence) rotations lead to the so-
called z-vector coupled perturbed self-consistent field (Z-CPSCF)?* and z-vector coupled
perturbed localization (Z-CPL)!'® equations for z and 1, respectively, while rotations be-
tween core and valence orbitals result in the z-vector core-valence (Z-CV) equations for
z. For rotations within a block of localized orbitals (either core or valence), we obtain the
7Z-CPL equations:

R — (R°))" = — Ly (3.61)

Li; =2 Z DipFy —2)  FuDj,
k
+ Z Ui (Kl = Y _ T G [K) + L
K/

where i, 7, k are all within the same (core or valence) block. The localization response
operator is defined as follows (note the change in sign and indexing compared to ref. 192):

Ryl =) [lkirkp(rkk = 7ii) = Tip(Trilei + T’Z,-l?;-)} with 17 = —1 (3.63)
k

(3.62)

rx v 18 the two-body density matrix:

T =" (1+6;) G (3.64)

J
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G = 37 ¢ (ﬂS“ L) (V7Y with Vi, = (K|L) (3.65)
L&'y’
g;]//B/l == 5&”&65”5 (QT’;‘% - TZ;B) + Tij//b// + wij/:kb// (366)

LZP]-]re contains contributions from the approximate exchange integrals in the prescreening
correction:

Q,T* x o, 1 €Tk X Tk T ,T*
ijre — Z [Z ( 'f:/yj“ le]/yiljj/ ) + 57"” (y_]ﬁ7 + y]7 - yzﬁ, - yzﬁ )] (367)

T o
where
R (r;7Ry;)
O =8y 1g(if) Y 7 — 3 3.68
I =8 1) Bty | o 59
il jo iRij) (rjoR;
DI (48 - EpyL &i(‘ﬁ ﬂ>)R;;
2] 1j

T (rngij) + 75 (riﬁRU‘)] (3.69)

—48-2 :
IRy

The Z-CPL eqgs. 3.61 must be solved iteratively. The stationarity condition w.r.t. rotations
between core and valence MOs gives the Z-CV equations:

Z FARY o Z FomZnj = LS (3.70)

oV K* loc loc * Pre
LEY =S T (K|mji') ZF G K) + Ryl = (Rin ) + Ly, (3.71)

Kji/

These are solved in the CMO basis. Note that in frozen-core calculations the terms
involving Tk, yo,, and y* drop out.

Finally, the Z-CPSCF equations are obtained from the occupied-virtual block of
eq. D.22:

Z ZivFop — Z iZja + 24i|z) = Liq (3.72)
with the two-electron operator defined as:

YailZ Zzpq (ai || pg) = Z (20 (ai || jb) + 25, (ai || b)) (3.73)

(rs11pa) = (rslpa) — 3 (ralps) (3.7

and likewise for matrices in the AO basis. The right-hand side of eq. 3.72 contains several
terms:
Lia =Y+ Z SN Y+ SauNue Y = S, Niw¥ih Sage (3.75)

Note that the sum in eq. 3.75 assumes a one-to-one correspondence between PAOs and

their parent AOs and that S, = Sg,. The intermediates Y€, Y#, and Y” are defined as
follows:

Zr (afi'|K) — 4Ga; {D + ;c zc } — (R’
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N Z rtw’yw - % Z Tai (yzﬁx +Y; x*) (3.76)

Y), = Zr (K|ip) +22D o Foi +Z K +Zr§zyff* (3.77)
K (. v a,T x
Vi = 5 ST GHIK) + 3 DB+ S VS S
Ki I
+ complex conjugate (3.78)
Vi = Z (559/ gt - 2Zdjj*; ;5) — Yo — Yo (3.79)
(2]

fzj _ (dl/ij*xideIZj,T)

oo

//z]* //z] z : z]) /
- /b// )\’b” [__ <G ( A
K

) + GJ(ZJ <]:\/

©))

b//)\/
- Z F5 Do+ Z S5 Tixdy (3.80)
T;f;, _ Z [ij <rIwij*Sij,kiTki i Tji*simiTik) 4T
k
+ Fi (’f“*s“’j’“Tﬂ“ + Tﬁ*siﬂ%jkT’W’) dj’“’T} (3.81)
=Y T =4 1g(ig)m (MY 4 FreUr) ¢t (3.82)
: -

As discussed in Appendix D, x¥ is already Hermitian if egs. 3.58 and 3.60 are fulfilled, so
the first two terms in eq. 3.79 are actually equivalent. The same applies to the multipliers
x’, which are obtained analogously by solving 0£/00" = 0L/ 90" = 0. We note that the
first term in eq. 3.82 is missing from eq. 56 of ref. 192, which appears to be an error in
the publication as the term was in fact implemented in the DLPNO-MP2 gradient code.
This is the final major step of the DLPNO-MP2 density calculation, after which D can
be completed.

3.1.5 Equations for second derivatives

The second derivative of the DLPNO-MP2 energy with respect to perturbations k and
A, the latter being an electric or magnetic field in this work, is equal to the derivative of
eq. 3.45:

dQEDLPNo_MPQ . d aﬁ DSCF hKA DSCF,?\ D?\ hK 3 83
e~ anax — 2 (D Z o D) by, (3.83)

Apart from the second derivative integrals h** (which are zero for the polarizability,
i.e. when k = A = F®'), evaluating this expression requires derivatives of the Lagrange
parameters and unknown multipliers w.r.t. A, which are obtained by taking derivatives of
the constraints and stationarity conditions discussed in the previous section. Note that all
A-derivatives in this section are real for electric perturbations and imaginary for magnetic
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ones. The SCF response density DS¢F? requires the MO response coefficients U?:

DSCF)‘ =2 Z UN ey + ciUlcup)

MP pt

\ \ (3.84)
=2 Z CraUai Cui + chmcya -2 Z ) U Cui

where in the second line we have used the perturbed MO orthonormality constraint:

A Ax A : A 0)* QA
UM+ UM+ S =0 with SN =Y 09 (3.85)

Cup Puv vq
uv

We note in passing that the AOs depend on the external magnetic field when GIAOs
are used, but not on the external electric field, thus SE;“ = 0. U] are obtained from
the perturbed Brillouin condition, which in conjunction with eq. 3.85 gives the CPSCF
equations:*%?

> FuUp =Y UNF;; +2Z 7 (ai || bf) + U} (ai || 5b)]
b J
=Y SVF; - F{ +2Zs (ai || kj) (3.86)
J

where F®) excludes derivatives of the MO coefficients. In the electric (magnetic) field
case the right-hand side is real (imaginary) and therefore so are UX. The equations are
solved in the CMO basis as usual, and the solution is transformed to the LMO basis.
The remaining blocks of U*, which are needed below, are obtained from the perturbed
localization, core—valence separation, and MO orthonormality constraints as follows. The
core-valence block is obtained from the condition F} = 0 (in conjunction with eq. 3.85):

S F UL =Y UNFun =Y S Fun — FY) — gin [DS] (3.87)
7 n n
which can be solved in the CMO basis The valence-valence block of U? is obtained from
the perturbed localization condition s}; = 0, which gives the CPL equations:'*
> UNASST = -BY* (3.88)
k<l
ds; ds i
B-)\-’i g A\) Z_] UoSgi
g ; e\ a0y * U
ds, ds. (3.89)
Opm + Opa U L i

where the plus/minus signs are used in the magnetic/electric field case, respectively, and

drs dsr dST dT’S
S +S :|:8 :|:S

Aot — 3.90
pers AU,  dUg,,  dU,,  dU,, ( )
d s

ors _ Trs(TrpOqr — TspOgs) & OgsTrp(Trr — T'ss) (3.91)
dUp
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s excludes derivatives of the MO coefficients and is only non-zero in the GIAO case,

where it contains the perturbed dipole integrals:

w8 T

i
Mg = 5 (1l (Rary x 1), 75 |1) (3.92)

which can be calculated as linear combinations of quadrupole integrals. If all electrons
are included in the MP2 treatment, an analogous set of CPL equations must be solved for
the core-core block, which can be obtained from eq. 3.88 by substituting core for valence
indices and vice versa. In the frozen-core approximation, the core-core block of U? is only
constrained by eq. 3.85, which can be solved as

1
U =UM =—-5W (3.93)

2 mn
The same solution is used for the virtual-virtual block of U? . Note that the left-hand side
of CPL equations in the electric field case is equivalent to that of the Z-CPL eqs. 3.61,

which can be written as
> A =— (3.94)
k<l

and Aicj’ckli = ALOZC; if s;; = 0. Therefore, the same solver can be used for both equations
(with some modifications for magnetic perturbations).

The expression for the DLPNO-MP2 response difference density D? is obtained by
straightforward differentiation of eqs. 3.47-3.53 and requires the perturbed Lagrange pa-
rameters UM, z}, z}, T9A T witA @i A and 0°*. The PAO coefficients P also
depend on the perturbation through U:

P, = P Ny + P, N, (3.95)
~u 1
Py = 9 > (BhySun+ PoySy,) (3.96)
n
A 1 A
Nﬂ/ - 2 NISMHIJ’H (397)

For magnetic perturbations N, /é‘, = 0. The perturbed (C)PNO orthonormality condition
gives a relationship analogous to eq. 3.85

0N 4N L SN () with S Zd"” S prd" Y (3.98)

~llb// b// 1 "//bll "//bll l’;/bll

Note that the perturbed PAO overlap gi‘]/l;, includes the PAO response, eq. 3.95, and is

non-zero even for electric perturbations, unlike the perturbed AO overlap. We use eq. 3.98
to remove the dependence on 0 in the perturbed SC residual equations:

(Fi+ Fyy) T — TIAFE: — ia — j0o™ T (F) 4 F)
T (FiN — SUNFU) 4 (FUN — FUSIN T (3.99)
where

}CU A Z d”ZJ(O)KUQ\ d’”] (3100)

~ / ~
//b// /_L 1% /b//
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z] A Z d//zj(O)*FA ,d”ZJ (3101)

"llb// "’/bll

eq. 3.99 is once again solved in the pseudo-canonical NPAO basis. Next, the perturbed
PNO constraint gives the PNO-CPNO block of 6%

ZDjzjc93~)\ Zem }\Dljbl _ <rfij,)\*,fji + rfji,x*rfij + rfij*.sz',)\ + Tji*rfij,)\
¢ N N (3.102)
_f)ijsij,)\* N Tij*sij,ATji _ r’fji*sz‘j,xr’[‘w‘j

ab’

These equations are solved in the basis which diagonalizes D%. The PNO-PNO and
CPNO-CPNO blocks of 87 are only constrained by eq. 3.98 and can be assigned “sym-
metrically” analogously to eq. 3.93, although an alternative choice will be discussed in
Section 3.2.2. The perturbed PNO amplitudes T%* are then obtained from the perturbed
PNO residual equations:

o d (9/:, o 1]7\ ©J,A 18] Z] l]}\
o= S (e )
o Z (Fk] Szg szzk ?\Szk RV + F SU kJTkJ ASkJ U*) (31()3)
kéd
X KU My Z (ngészzA + F}z 7\TQ> (3.104)

_Z{( s;ﬂ;’fsﬂ“f*> T2 + (FuSEosv°) T’ﬂ (3.105)

ked

which can be solved iteratively with the same solver as eq. 3.55. The prescreening contri-
butions to the response density, D™ and D¥(Fr)A require the NPAO response coeffi-
cients 0", which are only constrained by the perturbed NPAO orthonormality condition
with the possible solution:
PN piAe iAo iA 2(0)
O = U5 = _28,&17 with  S;7 = Z Su 1T (3.106)
v
Also required are the perturbed prescreening amplitudes, obtained from the equations
4 0L _ () giving:
A Btis gLving:
tﬁljg\ = (Fyu + Fj; — FE - )7 [Méjﬁ’A*

— (P} + P, Z(FA £ 4 {13 ‘)} (3.107)

pn tnp T CERT R

M ritis + 1:;11“?9 s (rsz Ri;) (rjsRi;) + (;“mRz'j) (rjzRi)
IR IRy
(rizR?) (rjsRiy) + (riaRij) (rjsRY)
Ri;I°

Tipljo (rizRyj) (rjoR;)
a(umy) (e sl e 08
ij ij

-3
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For magnetic perturbations Rg} = 0. The perturbed Lagrange multipliers w** are ob-
tained from the equations:

> (w?ﬂ‘, Fii_ 4+ F3_wih ) — (Fi+ Fjj)wi? = -wi? (3.109)

a'’ ”‘//b/l "’//bll d//bll //bll

é//

which are solved in the pseudo-canonical NPAO basis with

Wz]?\ d {ezj* Fz]* i7(0) WZ](O)Flj i (Ez + F]]) WZ](O)

dA

2
1+ 0y

+

(2K7 — K7 — 2NYTKNY 4 NVK/'NV) (3.110)

eij’r}

The equations for the perturbed multipliers v¥* are derived in Appendix D and have the

form:
2]?\ iJ ij zg?\ iJ,A
2 i D~~—§ DY i} = v (3.111)

rij* ., ij,T i g *
+ TY*v +vYT

with

g dr o

A 2 i (0), T _ TV «,4(0), T

Vi = 0 |:V D D%v%
+ K/'NYTY + KINYTI + TH*NYKI™ + TI*NTK* (3.112)
_9 (sz‘ff‘ij | KU 1 R d//z'j,T“S’*Tz‘jTﬂ

ba
The perturbed localization condition multiplier 1* is obtained from the perturbed Z-CPL
equations:

R — (REY)" = (RIF’-C’A[I(O’]) — RSN — I, (3.113)

Jt

where L;‘j and REC’)‘[I(O)] are straightforwardly derived from egs. 3.62 and 3.63. The

derivatives of the prescreening contributions ¥ and Be are somewhat more involved
b 7 )
so we provide them here:

7 R (rj7R5)

ocx?\_g 1 Zj { V;j;)‘lrjﬁ -3 tj
Z ; Z maotin) IR;;|° IR;;|°

[ r?@ RiM (rjaRyy) + RE (1R —i—rmRA)]

+ gt | Ly — 32

PRy IRy
— Thpton | 3= — i ) (R2Ry;) (3.114)
IR IR

Mx _ 482 15 (i Z{ fiI [(riﬁ,rjg _ 5(I'iﬁRz'j) (I';'DRz’j))R;ci
IR IR

i (rpRag) + 15 (riﬁRij)]
IR;;|°
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i, (rmrgu _ 5 raRy) (rngij)) R
7 [
Ry;|° R !
i (eeRy) + 155 (riaRyy)
IRy
(riarjn)” 5(rmRz‘j)A (r;pRy) + (riaRyy) (r5Rs5)" Re
LR Ryl 7
i (rjoRy) + 1%, (riﬂRij)}\]
IRy [°
i | [ =Tiakjo (riRij) (rjsRij) | Lo
_t[{[, (5 NJ7_35 (oY) ; J Rji
IRy IRy
r VRZ + 7 \Lif Rz
_5 zu( J J) 7”] ( u ]) (Rz‘»R-Z—) (3.115)
IRi;|" Y

The perturbed Z-CV equations have the form:

Z i — Zan Z mFng = Y Fmk T+ L (3.116)

k

LCV,)\

where is the derivative of eq. 3.71. Finally, the perturbed Z-CPSCF equations must

be solved for z*:
Zzzb ab — ZFMN +2g.i[2"] = Zzzb b T Z Aoja — 2 (0ai[2%])" (3.117)

Thus, the full response density can be assembled and contracted with the property inte-
grals to obtain the second derivative.

At the end of this section, we briefly summarize the order of computational steps
needed to obtain the DLPNO-MP2 response density in Table 3.2. The actual procedure
used in our implementation is given in more detail in Section 3.3.
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Table 3.2: Interdependencies between the main Lagrange multipliers and target quanti-
ties with references to relevant equations. Some terms are excluded for brevity, e.g. those
related to the prescreening correction. Wherever a perturbed quantity is required as input
(e.g. ¢), so is the unperturbed one (i.e. c).

In Equations Out
SCF, FB-loc. — ¢, Fyr
c— LMP2 guess (3.15-3.17) — T, d"4, ABEpno
dii — LMP? iter. (3.55) — T, FPLPNO
Tii 4", T4 — PNO cond. (3.60) —y i
T4, d"4, vii — SC cond. (3.58) — wii
Tis, 4", T4, wii — eq. 3.64 — T
c, T4, d"i, T4 wi — eq. 3.48 — D’
D', T* — Z-CPL (3.61) — 1
L, TX - Z-CV (3.70) — Z
¢, T D'z — Z-CPSCF (3.72) —z
c, D z,z — eq. 3.47 — D
CPSCF (3.86), CV (3.87),
©7  cPL (3.8(8), (;ﬁoo (2.85)) - U et
¢, T, d"i —  PNO resp. (3.99,3.102,3.98) — T4 g9* A
diid T eq. 3.103 TN
TisA @"i9A THA vid Pert. PNO cond. (3.111) — viA
T4, Q"N viiA wid — Pert. SC cond. (3.109) — wiih
TN @"i0A TN wiid Deriv. of eq. 3.64 — KA
e, TUA @"GA TidA wiih Deriv. of eq. 3.48 — D?
DA THEA ] - Pert. Z-CPL (3.113) —
MTEA 7 — Pert. Z-CV (3.116) -z
MM TEA Dz 2 — Pert. Z-CPSCF (3.117) — z
DMz 2t — Deriv. of eq. 3.47 — D?
DM - Property egs. 3.2,3.1,3.83 — o, 04
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3.2 Treatment of numerical instabilities

3.2.1 Localization response singularities

It was discussed at some length in ref. 192 that for some systems the Z-CPL (as well
as the CPL and perturbed Z-CPL) equations can be (near-)singular. In other words,
the left-hand side matrix A°“* can have (near-)zero eigenvalues. This happens when a
continuous degeneracy exists among the LMOs, i.e. when some subset of the localized
orbitals can be arbitrarily rotated without changing the value of the localization sum.
Formally, continuous degeneracies are only possible for certain point groups,** "¢ how-
ever even local pseudosymmetry can result in small eigenvalues of A°“* and thus prevent
convergence of the CPL/Z-CPL equations or negatively impact the results, as shown for
the (CH3)3P(CO)40s: - - Cr(CO)5 molecule (reference code KAMDOR)®’" in ref. 192. To
systematically treat this problem here we take the same approach as for the DLPNO-
MP2 gradient, namely, to modify the Lagrangian so as to obtain a nonsingular problem
with the nullspace projected out. Note that the matrix A%~ which occurs in the Z-
CPL equations (3.61) and in the CPL (3.88) and perturbed Z-CPL (3.113) equations for
electric perturbations, is different from the matrix A+, which occurs in the CPL and
perturbed Z-CPL equations for magnetic perturbations. Thus, the two matrices have
different eigenvalues and eigenvectors. In order to ensure both types of equations are
properly treated, it is most convenient to reformulate the localization constraint in the
Lagrangian using separate real and imaginary terms:

valence valence
I 1 * R} *
Craence = 3 (IER[si;] + 15Ssy]) = 3 >R (sy+sy) +183 (s — ;)] (3.118)
1<j 1<j
1 valence
=3 {(ﬁ? +il;) sij + (FR - 1l“) ;;} (3.119)
i<j ~ ng

where the equivalence of the two formulations is demonstrated for the valence orbitals.
The core orbital terms are analogous, so for simplicity we will omit them in this section.
Note that both of the newly introduced Lagrange multiplier matrices 1% and 1% are real
by definition. Using this definition of Cp., eq. 3.94 becomes

S IEAST A A = —Ly (3.120)
k<l k<l
where

ds dsy : ds ds ’
Aloe® — — — 3.121
DA {dUij - (dei> dU;; (dez‘) } ( )

X dSkl dslk * dSlk dSkl *
AloeS — 3.122
ke {dUij i (dei> " dUs; i <dei> } (8122)

The real and imaginary parts of eq. 3.120 can be separated and the latter yields 1° =
0 because L;; is real. Note that as the unperturbed quantities are purely real, Al®%
coincides with A%~ and A"°“Y — with A'°>*. We then define the eigendecompositions of
these matrices as:

Z A}COZCZJ% iR;uH = Uy u//w% (3123)

1<j
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2 : loc\s \y NN &

1<J

where the index u” denotes the eigenvectors of either matrix (determined from context),
v’ denotes those with (near-)zero eigenvalues and u denotes the rest. We change the
Lagrangian constraint to

R

R R S
Cpalence _ Z DR[s] + D 13S[s] + > RV + Y 1S[U

valence valence

=5 Z > [ - (0ij — OF 1) (5104 s7y) + 1035 (B — O3 ) (10— s3y)

1<J k<l

+ Z%Ou w (Ui + Uyy) + il;‘\; :\\;kl (Unt — UZZ)} (3.125)

where 9;; ;1 = 0,105, and the projectors onto the nullspace of ALSR/S are:

R/ R/ R/
Oij,/k:l = uyle kl/u (3.126)

ij,u’

Thus, the Z-CPL equations become:

STRAST 1Y BAD = ~Ly (3.127)
k<l k<l
where
AIOC,?R — (I _ O%) AIOC’§R (I _ O%) + OER (3128)
AleS — (I - O%) Ale® (1 - 0%) + O° (3.129)

Once again, 1° is zero, while the contributions of 1® to egs. 3.71, 3.76, 3.116, and 3.117
must be calculated with the projected matrix:

= Z (Si00 — OF 1) (3.130)
k<l
The electric/magnetic CPL equations become:

locﬂ? ) < oc,
S OHAETY = -y (I —o% >j B (3.131)

k<l k<l

locA _(A) dsii dsji \" o
B’L] _sij _Z[dUlkSlk - (dUlk) Slk :|

k<l
+ > (6pm + Opa —”U"—( ”)U
pzk( ’ 2 AUk . dUp o
L.e., the nullspace must first be projected out of the right-hand side in eq. 3.131, the

equations are solved, and afterwards, the nullspace is also projected out of the solution
before the perturbed orthonormality constraint is used to obtain the upper triangle of the

matrix: i .
0y=> (%',kl - Q/ﬁ) Uj) (3.133)
k<l

(3.132)
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The perturbed Z-CPL equations become:

KA Floc,R . SN Jloc,S R gloc,RA A
Zlkzl Ak +1Zlkzl A = _ZlklAingl — L (3.134)
k<l k<l k<l
with
loc,RA *
qu,ij = [(rij + rij) (OpjTaj + OqiTip — OpiTqi — OgiTjp)

A (3.135)

+ (ri — 755) (OgjTip + OqiTjp — OpiTqj — OpiTqi)]

eq. 3.134 is separated into real and imaginary parts, of which only the former/latter
yields a nonzero solution for electric/magnetic perturbations, respectively. Note that for
magnetic perturbations (r; — rjj)A =0 and (Tij + 'r;‘j)}\ = 0. The contributions of 1%/
to eqs. 3.116 and 3.117 must be calculated with the projected matrices:

B0 = 3 (g OL) 1 150

v
k<l

Table 3.3: (Maximum) absolute errors vs RI-MP2 in the isotropic polarizability («) and
F shielding (oF) for the systems SFg and SeFg from frozen-core (FC) and all-electron
(AE) NormalPNO calculations with and without projection of the localization response
nullspace.

System SF¢ SeFg

FC AE FC AE
A% nullspace 6 9 16 22
A°%S pullspace 0 0 10 10

Errors without projection:
|Aa|/A3 8 x 107 —a 17 —a
max(|Acr|)/ppm 0.26 0.28 2.1 29
Errors with projection:

|Aa|/A3 <0.001 <0.001 <0.001 <0.001
max(|Acr|)/ppm 0.26 0.28 0.47 0.55

®The calculation did not converge.

Finally, we demonstrate the numerical instabilities which can occur if the localization
response matrix, A% or A% ig singular, as well as the effectiveness of the procedure
to remove the near-zero eigenvalues. We chose the octahedral molecules SFg and SeFg
with bond lengths 1.560 and 1.688 A, respectively. SFg has 6 eigenvalues of A" smaller
than 10~* due to a continuous degeneracy in the FB LMOs among the 18 fluorine sp?-
hybridized orbitals (3 on each F atom) directed away from the S atom. A further 3 singular
eigenvalues are associated with the sulfur 2sp shell, which is treated as core orbitals. In
addition to these, SeFg has a further 10 singular eigenvalues in the valence and 3 in the
core region, associated with the 3d and 3sp shells, respectively. The magnetic response
matrix A°¢S only has 10 singular eigenvalues for SeFg, due to the 3d orbitals, and none
for SFg. Table 3.3 shows that if no measures are taken to remove the singularities, the
iterative solution of the perturbed CPL, Z-CPL, or PNO amplitude equations may not
converge, or large errors may occur in the calculated properties, which is arguably worse.
However, if the singular eigenvectors are projected out, the iterative solutions are stable
and the results are in line with the expected accuracy for DLPNO-MP2.
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3.2.2 PAO domain redundancy

While testing our initial implementation, we discovered large errors due to numerical
instabilities related to the domain truncation. After thorough investigation, we found
that the source was the appearance of near-linear dependencies in the “non-redundant”
PAO domains. Recall that the full PAO space is linearly dependent because it is of
the same size as the full AO basis, Nao, but it only represents the N,;¢ virtual orbitals.
Therefore there are exactly Ny redundant PAOs. However, any subset (domain) of PAOs
is not exactly linearly dependent, which becomes obvious when inspecting the eigenvalue
spectrum of the overlap matrix of a domain of PAOs - see Figure 3.1. While the spectrum

100 -
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10—9 -

10—12 -

PAO overlap eigenvalues

10—15 -

T T T
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Eigenvalue index
Figure 3.1: Eigenvalues of the PAO domain overlap matrix, for different domains in a
pentane molecule with the def2-TZVP basis set. The atoms included in each domain are
depicted graphically with matching colors.

of the full overlap matrix clearly reveals the N,. redundant eigenvectors, all smaller
domains have virtually continuous eigenvalue spectra, i.e. the matrix is ill-conditioned.
By default, eigenvectors with eigenvalues greater than Ty = 10~° form the NPAO domain.
It is apparent that the lowest remaining eigenvalue s, will be very Cl?se to the threshold,
and thus the normalization coefficient of that eigenvector will be s, 2 ~ 10%. This is not
cause for concern, and indeed the energy and gradient calculations do not suffer. It is,
however, a problem for second derivatives due to the perturbed PNO/CPNO c