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Abstract
The mean sea surface has an important role both in the calculation of the mean dynamic topography
and in the area of sea level change as a reference surface. This paper presents a new approach
to estimate a continuous spatio-temporal mean sea surface from along-track altimetric sea surface
height measurements. A parametric function continuously defined in the spatial as well as temporal
domain is constructed from a C1-smooth finite element space to represent the mean sea surface.
Least-squares observation equations are set up, to estimate the unknown scaling coefficients from
the sea surface height measurements as collected by altimetric exact repeat missions and geodetic
missions. An advantage of the proposed method is that the surface is represented by an analytic
model and the unknown parameters can be physically interpreted. Whereas the static component
of the function represents the mean sea surface, the temporal component is used to absorb the
ocean variability.

Within a proof-of-concept study 10 years of satellite altimetry from CryoSat–2 and Jason 1–3
over the period 2010 to 2019 are used and analyzed in two study regions with different spatial
resolutions. Besides the static mean sea surface, the temporal component which is estimated cov-
ers a linear trend and the annual period. The comparison of the static component to the global
CNES_CLS15 MSS shows a reasonable agreement with a root mean square error below 10 cm
over the entire North Atlantic. But still, systematic differences occur especially in regions with a
high temporal variability. Comparisons of the temporal component with gridded sea level anomaly
products show a good agreement in areas of low ocean variability, but highlights that in regions
of large ocean variability the temporal basis function chosen in this initial study must be further
investigated. In general, it is demonstrated that the proposed approach can be an alternative to
the well established mean sea surface estimation procedures.

Keywords Mean sea surface · Finite elements · Satellite altimetry · Sea level variations · Ocean
variability · C1-smoothness
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Chapter 1

Introduction

The Mean Sea Surface (MSS) as the spatial and temporal average of the actual sea surface is used
as a reference surface in oceanography, but also in geodesy. In this context, it finds applications, for
example, in the computation of bathymetric maps (see e.g. Dixon et al., 1983; Smith and Sandwell,
1994), in the geodetic computation of the mean dynamic ocean topography, which can be used to
detect and analyze global long-term stable ocean currents (e.g. Knudsen et al., 2011; Becker et al.,
2014; Mulet et al., 2021), or in general sea level studies (e.g. Chen et al., 2000; Uebbing et al.,
2019).

A common method of calculating the MSS in geodesy is a grid based spatial and temporal aver-
aging of along-track Sea Surface Height (SSH) observations measured by satellites with altimeters
in a given period. A major challenge in calculating the MSS is the temporal variability of the sea
surface (e.g. Andersen and Knudsen, 2009; Schaeffer et al., 2012; Agha Karimi et al., 2020), which
– due to temporal aliasing – can cause local biases in the MSS models.

At this point, it becomes important to distinguish between the observations of the exact repeat
missions (ERM) and the geodetic missions (or geodetic mission phases, GM). Whereas the ERM
like Topex/Poseidon or the Jason family have a short repeat phase of just 10 days, the GM have
a long repeat, which is typically above one year. Consequently, ERM missions have a poor spatial
coverage, as the track spacing is large. Contrary, GM missions are important for the spatial
coverage, but suffer from a poor temporal resolution (e.g. Andersen et al., 2021).

For the ERM, the elimination of the temporal ocean variability from the SSH observations
for MSS modeling is straightforward. Temporal averaging of complete cycles, linked to a reference
track, directly removes the periodic short term signals and yields the mean profile of the MSS along
the reference track. The spatial processing can be performed in an independent second step, e.g.
the prediction to a smoothed regular spatial grid. Unfortunately, this approach can not be applied
to the GM observations, as the – especially seasonal – variations do not cancel due to the repeat
cycle larger than a year. Consequently, spatial and temporal averaging must be performed either i)
in a joint analysis of ERM and GM data or ii) the temporal characteristics must be determined from
complementary information (e.g. ERM-only or model data) and reduced within a preprocessing
step ahead of the spatial analysis (e.g. Schaeffer et al., 2012; Agha Karimi et al., 2020) from the
SSH measurements observed by the GM.

Several methods have been developed to deal with the temporal variability of SSH, which is
mainly attributed to oceanic variability. In Agha Karimi et al. (2020) a spectral analysis is used
to correct CryoSat–2 altimetric observations to estimate a regional MSS around Australia. The
analysis is applied to the ERM sea level anomalies (SLA - difference between SSH and a model
of the MSS) which is performed independently in manually chosen sub-regions. From these data,
annual and semi-annual amplitudes and phases are estimated, which are spatially interpolated to the
CryoSat–2 tracks. Afterwards the CryoSat–2 SLA are corrected with the annual and semi-annual
signals derived from the ERM. The final MSS is obtained by spatially averaging the corrected SLA
in gridded 0.1°×0.1° cells and restoring the MSS model reduced previously.

Many other approaches use a-priori daily or monthly SLA grids (cf. Traon et al., 1998; Ducet
et al., 2000) as distributed for instance by AVISO to correct the altimetric observations for the
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high frequency variability. Different approaches which use these maps are briefly presented below.
To compute the DNSC08 (Andersen and Knudsen, 2009) 12 years of multi-mission satellite

altimetry observations are used. The method is based on a two-step procedure, the first step is to
estimate a long-wavelength MSS from the temporally averaged mean profiles of the ERM missions.
In order to estimate the short wavelengths of the MSS, mainly the GM observations are used.
The initial long-wavelength MSS serves as a reference model in a remove-compute-restore approach
applied in the second step. For this purpose, every track is adjusted to the long-wavelength MSS
using a crossover analysis for overlapping 4° × 12° boxes. After that, the MSS is interpolated on a
1/60° grid and then assembled to the final MSS. For the computation of the successor MSS (DTU13
and DTU18, cf. Andersen et al., 2015, 2018) a similar method was applied. But, in Andersen et al.
(2018) interpolated daily SLA maps are used to correct the GM observations for inter-annual and
seasonal oceanic variability.

Schaeffer et al. (2012) and Pujol et al. (2018) apply a slightly different approach to reduce the
oceanic variability for determination of CNES_CLS11 and CNES_CLS15 MSS models. Schaeffer
et al. (2012) uses a collocation technique, the so called Optimal Analysis (OA), which allows
correcting a given SSH for ocean variability derived from other ERM altimeters that are used as
reference. For this, mean profiles are computed for each reference mission, which are merged after
that. In the next step, SLA are computed and predicted to a regular gird using covariance functions
for the sea surface and the measurement errors (Le Traon and Dibarboure, 2004). Furthermore,
OA is used to assign an arbitrary reference epoch to the model. The OA is applied to all SSH of all
missions used, even for the ERM before the calculation of the mean profiles. Afterwards, the MSS
is computed on a regular grid using a least-squares collocation approach. The determination of
CNES_CLS15 MSS follows a similar approach. Instead of OA, ocean variability is reduced by the
delayed-time DUACS Level 4 gridded SLA DT2010 maps (Traon et al., 1998; Ducet et al., 2000).
For the final model determination, again a least-squares collocation approach is applied and yields
the CNES_CLS15 MSS based on 20-years of satellite altimetry.

Besides daily gridded SLA maps there are also monthly averaged gridded sea level variation time
series (Traon et al., 1998; Ducet et al., 2000) provided by AVISO. The global MSS model WHU2013
(Jin et al., 2016) uses two different approaches to correct the ocean variability of the non-ERM
observations. The first method is based on the monthly gridded SLA time series between 1993 and
2012. Thus, they are used to fit a bias, linear trend, seasonal and annual signals for every point of
the grid. Spatial interpolation of the fitted parameters to the location of the non-ERM observations
yields a correction model for the observed SSH. For the second approach, mean along-track ERM
SSH by a collinear method are used to compute along-track sea surface variation time series. Thus,
this time series can be used to correct the sea surface observations of the GM. For this method
the location and observation time of available ERM data must be close to that of the non-ERM
observations. This method is applied inside ±66° region, where the ERM observations are available.
Outside this region the first approach is used. For ERM observations, full-year observations are
selected to eliminate the seasonal and annual sea level variations in a collinear adjustment. After
a crossover adjustment, a least-squares collocation is used to compute the gridded MSS model.

The goal of this manuscript is to present a proof-of-concept study to estimate a continuous
spatio-temporal model of the mean sea surface from altimetric SSH observations using time-variable
C1-smooth finite elements as basis functions. Instead of eliminating the temporal variability in
a preprocessing step, the temporal signal is parameterized and co-estimated, jointly analyzing
the ERM and GM SSH observations within a single adjustment. Whereas the static parameters
describe the MSS at a specific reference epoch, the time-dependent parameters model the temporal
variability by a predefined set of temporal basis functions. A positive side effect of the chosen
parametric representation is that the estimated parameters are physically interpretable. As the
analysis can be represented in a one-step least squares estimation, a stochastic model of the SSH
measurements can be rigorously propagated to the MSS parameters in a straightforward manner.

The manuscript is organized as follows, in Sect. 2, the theoretical background to construct the
C1-smooth finite element space is provided. Based on the finite element space, the least squares
observation equations of a static approximation procedure are constructed. These are extended by
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a deterministic model which captures the temporal variations and introduces the new parameters of
the spatio-temporal model. Section 3 introduces the two study regions and the data sets analyzed in
a proof-of-concept scenario. MSS estimates are derived and discussed for both study areas. Selected
analyses are presented to highlight the chances and limits of the proposed procedure and the setup
chosen in this initial study. This paper ends with a summary and provides some conclusions in
Sect. 4. Additionally, some aspects for future studies are presented.
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Chapter 2

Theoretical Background

As discussed in Section 1, the goal in this study is to represent the mean sea surface as a continuous
mathematical function. There is no accessible closed expression that is directly derived from phys-
ical laws. Instead some function space defined over the domain of interest must be constructed,
from which a concrete function can then be estimated in a least-squares adjustment.

To include temporal variability of the sea surface in the model, two independent function spaces,
one defined over the spatial domain and the other over the time domain, are combined via the tensor
product of their respective bases.

2.1 Finite Element Spaces for Spatial Approximation Tasks
In consideration of the requirements that come with the ocean surface estimation, namely coastal
boundaries and relatively high spatial variability, a sensible choice are finite elements on a trian-
gulation in R2. For constructing these so called Finite Element Spaces (FES), the entire domain
of interest is partitioned into a finite number of (in this case triangular) sub-regions, each of which
has its own locally defined basis functions and corresponding degrees of freedom (also called pa-
rameters). The very definition of a Finite Element is then the shape, the local degrees of freedom
and the local function space spanned by the basis functions of such a sub-region (following Ciarlet,
1978). By means of an appropriate choice of local basis functions, these are usually taken from
literature, a piece-wise function space with at least C0-continuity is achieved. Higher orders of
continuity are possible and depend on the actually used Finite Element.

Given a FES definition, a function can then simply be written as

g =
∑
i∈I

aibi g : R2 → R (2.1.1)

where i ∈ I describes the indexing of all piece-wise defined global basis functions bi : R2 → R, and
ai ∈ R the corresponding global degrees of freedom/scaling coefficients. The set {bi} of all basis
functions is the basis of the FES.

A relational measure for the spatial resolution within a region of fixed size is the number of
degrees of freedom, equivalent to the dimension, of the Finite Element (Sub-)Space over that region.
Adopting the spatial variability of the expected signal is in general done on a global scale (meaning
over the entire domain) by selection of some specific Finite Element and then refined on a local
scale by adjusting the size of sub-regions.

2.1.1 Select Finite Elements Applied in this Study
In this study we consider two different sets of local basis functions on triangles, or Finite Elements,
both yielding C1-continuous FES. They differ in both their local degrees of freedom and local
function space. The choice of higher continuity comes from the reasonable assumption that the
ocean surface is smooth on the scales observable with satellite techniques, in this study specifically
altimetry.



6 2. Theoretical Background

The Argyris Element (cf. Argyris et al., 1968) spans a local space of polynomials of degree 5
with 21 degrees of freedom – the function value, the two first and the three second derivatives for
each of the three nodes, as well as the three normal derivatives on the centers of the edges. Thus, in
addition to the general C1-continuity, this element guarantees continuity of the second derivatives
in the nodes of the triangulation.

In comparison, the Hsieh-Clough-Tocher (HCT) Element (Clough and Tocher, 1966) provides
the same continuity with only 12 degrees of freedom. It is from the class of Macro-Elements, where
the previously described technique to construct a full FES is similarly applied (one might call it
recursively) to an individual element. Based on a further sub-partitioning of a triangle into three
sub-triangles, each of which is domain to a polynomial of degree 3, a C1-continuous piece-wise local
function space is defined by implicit constraints in the 12 basis functions. These correspond to the
12 degrees of freedom as defined for the whole element, namely the function value and the two first
derivatives in each node, as well as the normal derivative at the center point of each edge.

2.1.2 Triangulation

The second major defining factor of a FES is the partitioning of the domain of interest into a mesh,
in this study specifically by means of triangulation. It has an immediate effect on the achieved
spatial filtering via the size of individual triangles. The coarser the mesh in a particular region the
more the signal is filtered and vice versa.

A sophisticated method to generate meshes is developed and implemented in the software
library jigsaw (Engwirda, 2014, 2017, 2019) and can for example be used through its bindings to
scripting languages (matlab/octave/python). It is developed by the Massachusetts Institute
of Technology and the NASA to generate very high-quality staggered Voronoi–Delaunay meshes
appropriate for various applications in the field of simulations and modeling. The software uses a
Frontal-Delaunay refinement technique which allows for the generation of high-quality unstructured
spheroidal Delaunay triangulations and uses a hill-climbing-type optimization technique for further
grid quality improvement.

It brings the desirable properties of being automatic in its generation of meshes (given some
configuration input) and enabling easy local adjustments of triangle density/size as well as geometric
constraints.

The important features used for this study are the bounding of the domain of interest with
polygons (inner and outer), as well as the so called (discrete) mesh-spacing function. This user-
defined function specifies at discrete points (internally completed by interpolation) a target edge
length for the triangles which jigsaw tries to realize by iterative refinement.

In this proof-of-concept study, planar meshes in plate carrée projection with constant mesh-
spacing for the whole domain are used. The study regions are restricted by polygons derived from
coastline data and straight boundaries over the ocean.

Due to working in the plate carrée projection, triangles are distorted towards the poles and not
strictly of equal size with respect to area on the sphere. This can be corrected by employing the
ability of jigsaw to work on a triaxial ellipsoid. Furthermore, regional refinement based on prior
information is straightforward, giving possibility to adapt the mesh and consequently the spatial
resolution of the FES to regionally varying signal and observation density. These two features are
subject to future studies.

2.2 A One-Dimensional Model for the Time Domain

For modeling the temporal behavior of the sea surface, we make the assumption that changes in
time are continuous and separable from spatial variability. The latter meaning that at any fixed
point in space, the temporal sea surface height change – the SLA – can be represented by a function
with the only variable being time (similar to Jin et al., 2016; Agha Karimi et al., 2020). As such
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we consider a separate function over time domain

h =
∑
j∈J

cjdj h : R → R (2.2.1)

where dj : R → R are the basis functions and cj ∈ R once again the corresponding degrees of
freedom/coefficients. We consequently say that {dj} is the set of all temporal basis functions.

It is then necessary to identify basis functions that can model the dominant expected and
resolvable temporal variations. Thus our approach in this study is based on a model that is
composed of a constant term, a linear term and harmonic terms for the annual signal (again similar
to Jin et al., 2016; Agha Karimi et al., 2020). Furthermore, as the assumption of a strictly linear
trend is only sensible for sufficiently short periods of time, a simple transformation is introduced
that maps a point in time t w.r.t. some reference epoch t0, i.e. ∆t = t− t0. This is analogous to a
linearization at t0. The set of temporal basis functions is finally

{dj} := {1,∆t, cos(ω∆t), sin(ω∆t)} (2.2.2)

where ω = 2π
T is the angular frequency of period T = 365.25 d.

This can easily be extended by additional harmonics to account for other frequencies, e.g. the
semi-annual signal, but was omitted for this initial study due to computational constraints. Other
feasible choices for the strictly temporal model as discussed in this section include e.g. FES over
R (i.e. usually piece-wise polynomials) or spline function spaces over R.

2.3 A Separately Continuous Spatio-Temporal Model
The final model space is then composed by the tensor product of the spatial with the temporal
model space. Given the two sets of basis functions {bi} and {dj}, with the tensor product for
real-valued functions defined as

(g ⊗ h)(x, y) = g(x)h(y) x ∈ Rn, y ∈ Rm, (2.3.1)

the combined set of basis functions is

{bi ⊗ dj} = {bidj} , (2.3.2)

or given in terms of the concrete basis functions {dj}

{bi, bi∆t, bi cos(ω∆t), bi sin(ω∆t) | i ∈ I} . (2.3.3)

Writing a function f in this new basis gives

f =
∑
i∈I

∑
j∈J

eijbidj f : R3 → R; (x, y, t) 7→ f(x, y, t) (2.3.4)

with the degrees of freedom/coefficients eij . In a more explicit form with function arguments and
using (2.3.3) this becomes

f(x, y, t) =
∑
i∈I

ei0bi(x, y)

+
∑
i∈I

ei1∆tbi(x, y)

+
∑
i∈I

ei2 cos(ω∆t)bi(x, y)

+
∑
i∈I

ei3 sin(ω∆t)bi(x, y).

(2.3.5)
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Looking at f with fixed arguments, either for time

ft : (x, y) 7→ f(x, y, t) (2.3.6)

or similarly for space

fx,y : t 7→ f(x, y, t), (2.3.7)

it is easy to reason that f is separately continuous, i.e. continuous in time for every point in space
and vice versa.

We define
fmss :=

∑
i∈I

ei0bi =

∫ ∞

−∞
f(x, y, t) dt, (2.3.8)

describing the static part of the sea surface w.r.t. reference epoch t0. The equality is straightforward
to show. Furthermore we define the time-variable anomalies w.r.t. the static part

fsla := f − fmss, (2.3.9)

containing both the linear trend as well as the annual signal, which represents the temporal model
component.

A particular observation in (2.3.4) is the possibility to formulate either time-varying coefficients
for {bi} or spatially varying coefficients for {dj}, i.e.

f =
∑
i∈I

ei(t)bi ei(t) :=
∑
j∈J

eijdj(t) (2.3.10)

or
f =

∑
j∈J

ej(x, y)dj ej(x, y) :=
∑
i∈I

eijbi(x, y). (2.3.11)

In this way we can especially depict the spatial variations of the linear trend as well as both
amplitude and phase of the (annual) harmonics (cf. Section 3.3.1).

2.4 Estimation Approach
To estimate a concrete model from stochastic observations L of the sea surface height, here in
terms of instantaneous satellite-based altimetry, the standard least-squares adjustment method is
applied.

In this initial study, the SSH observations are assumed to be i.i.d. with a variance of σ2
0, i.e the

covariance matrix is
Σ {L} = σ2

0I. (2.4.1)
The realized measurements li are further assumed to be point-wise at location (xi, yi, ti) :=

(λi, φi, ti) with longitude λi, geodetic latitude φi and time ti, for all i ∈ {1 . . . N} with N the
number of observations.

As will be further discussed in the following section, data from multiple different satellite mis-
sions is used to estimate the models. To account for intermission biases, the observation equations
include additional constant bias parameters oj for the different missions, where one mission is taken
as reference with a fixed bias of 0 m.

Thus the observation equations derive with equation (2.3.4) as

li + vi = f(λi, φi, ti) + oj . (2.4.2)

For comparison reasons we also estimate strictly spatial models in the form of (2.1.1), yielding
the observation equations

li + vi = g(λi, φi) + oj . (2.4.3)
The vector of unknowns x is then composed of the coefficients {eij , oj} or {ai, oj}, respectively

for the spatio-temporal or spatial models.
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Chapter 3

Application to Real Data

3.1 Data and Study Area
To obtain a well suited model of the MSS it is important to have data with both a high temporal as
well as a high spatial resolution. Whereas the high temporal resolution is required to eliminate the
ocean variability by temporal averaging, high spatial resolution is required to model the fine scale
MSS signals. To derive a homogeneous model, a comparable spatial distribution over the entire
study area is required to make all parameters (cf. Eq. (2.3.5)) estimable.

The time period considered in this study begins in the year 2010 and stops end of 2019. In this
period observations of several altimeter missions are available. To obtain the high temporal and
spatial resolution, but to keep the number of observations manageable, altimetric SSH measure-
ments from four different satellite missions in the period are selected. The high temporal resolution
(from ERM data) is realized using the measurements of the regular mission phases of Jason–2 and
Jason–3, as well as the Jason–1 and Jason–2 interleaved mission data (see e.g. ESA, 2020b,c,d).
Besides the Jason–1 and Jason–2 GM phases which fall into the period of interest, Low Resolu-
tion Mode CryoSat–2 observations are used for their high spatial resolution (see e.g. ESA, 2020a;
Andersen et al., 2021). Due to CryoSat–2 having full temporal coverage of the studied time span
and its high spatial resolution, it is used as the reference mission for bias estimation. Observations
from the L2P data product as processed on behalf of CNES (Centre National d’Etudes Spatiales)
SALP project and distributed by AVISO+1 were used. The applied instrumental and geophysical
corrections such as for orbit or tidal errors can be found in the AVISO L2P SLA product handbook
(see AVISO, 2017).

Some of the mission characteristics are shown in Table 3.1 (cf. Andersen et al., 2021; ESA,
2020b,c,d,a). Whereas all missions have similar along-track resolution of about 7 km as 1 Hz SSH
data are used, the ground track spacing significantly differs. The selected GM have an approximate
ground track spacing of 8 km, whereas the ERM’s is nearly 315 km at the equator. Because of the
low ground track spacing, the GM repeat cycle is relatively large with more than one year. So the
ocean variability can not be eliminated by averaging these tracks. For high temporal resolution the
ERM and interleaved missions with a repeat cycle of 10 days are needed. These observations allow
to eliminate the ocean variability by averaging (e.g. Dibarboure et al., 2012; Becker et al., 2012;
Pujol et al., 2018).

Because of the huge amount of along-track observations in the selected time period, two study
areas are selected to test and study the performance of the proposed method. Both areas (see Figure
3.1), the North Atlantic up to 80°N (region A) and the Atlantic Ocean and Indian Ocean south of
Africa with the Agulhas Current (region B), are selected because of their individual characteristics.

The North Atlantic is characterized by the Gulf Stream (large variability), its island groups
(data gaps) and the Arctic region with temporary ice coverage (irregular coverage). But there are
also areas dominated by topographic structures with high spatial frequencies. Furthermore, above

1For a detailed product description and the procedure to access the data see https://www.aviso.altimetry.fr/
en/data/products/sea-surface-height-products/global/along-track-sea-level-anomalies-l2p.html (last
accessed 01/07/2021).

https://www.aviso.altimetry.fr/en/data/products/sea-surface-height-products/global/along-track-sea-level-anomalies-l2p.html
https://www.aviso.altimetry.fr/en/data/products/sea-surface-height-products/global/along-track-sea-level-anomalies-l2p.html
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Figure 3.1: The two main study areas North Atlantic (red, region A) and Agulhas Current south
of Africa (blue, region B)

66°N only CryoSat–2 observations with poor temporal resolution are available, consequently low
quality estimates of the MSS is expected in this area.

Region B with the Agulhas Current is selected because of its high temporal variability and
the smaller extent which allows to test the estimation of models on finer meshes limiting usage
of computing time resources. The number of used observations inside the two study areas per
mission is shown in the two last columns of Table 3.1. In total there are more than 58 × 106

observations inside region A and almost 5.5 × 106 inside region B. These observations are almost
equally distributed over the time period and within the months of a year. Thus, it can be avoided
that a year or a month is overrepresented in the data.

The two regions are shown in Figure 3.1. These boundaries are used to compute the triangula-
tions (see Section 2.1.2). Figure 3.2 shows the meshes generated for each of the two study areas.
Both meshes are computed with jigsaw-geo with a constant target edge length of 100 km at the
equator, which corresponds to a edge length of about 1°.

3.2 Results

With the proposed approach presented above, it becomes possible to estimate either a static
MSS model (cf. Eq. (2.1.1)) or a MSS model which co-estimates the temporal model component
(cf. Eq. (2.3.4)). This study puts the focus on the time variable computation, with special focus
on the specific model cf. Eq. (2.3.5). The reference epoch t0 is chosen as January 1st, 2010. The
numerical results obtained in this study are compared to the static CNES_CLS15 MSS (Pujol
et al., 2018) product (cf. Eq. (2.3.8)) and the temporal model component (cf. Eq. (2.3.9)) to the
delayed-time DUACS Level 4 gridded SLA DT2010 maps (cf. Dibarboure et al., 2012).

start end ground track
spacing

repeat
cycle

#obs
region A

#obs
region B

CryoSat–2 01/2011 12/2019 ~8 km 369 days 20.46 M 1.87 M
Jason–1 01/2010 03/2012 315 km 10 days 5.54 M 0.52 M
Jason–1 GM 05/2012 06/2013 7.5 km 406 days 2.78 M 0.27 M
Jason–2 01/2010 05/2017 315 km 10 days 18.95 M 1.79 M
Jason–2 GM 07/2017 09/2017 8.5 km 371 days 0.48 M 0.04 M
Jason–3 02/2016 12/2019 315 km 10 days 10.09 M 0.95 M

Table 3.1: Overview of some characteristics of the selected missions.
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(a) (b)

Figure 3.2: Two meshes with a target edge length of 100 km at the equator inside the study area
North Atlantic and inside the Atlantic Ocean and Indian Ocean south of Africa, generated with
jigsaw-geo.

Scenario Area Finite Element Mesh Time Variability

BArg
30 South Africa Argyris 30 km T = 365.25 d

BArg
40 South Africa Argyris 40 km T = 365.25 d

BArg
50 South Africa Argyris 50 km T = 365.25 d

BArg
100 South Africa Argyris 100 km T = 365.25 d

BHCT
30 South Africa HCT 30 km T = 365.25 d

BHCT
100 South Africa HCT 100 km T = 365.25 d

AArg,static
100 North Atlantic Argyris 100 km static

AArg
100 North Atlantic Argyris 100 km T = 365.25 d

Table 3.2: Description of the eight analyzed estimation scenarios.

To demonstrate the flexibility of the proposed approach, eight different estimations scenarios
with different spatial and temporal characteristics are studied (cf. Table 3.2). Whereas the first
six scenarios are applied to the smaller study region B with different spatial resolutions (30 km to
100 km meshes) and the HCT as well as the Argyris element, scenarios 7 and 8 cover the entire
North Atlantic ocean with a quite coarse spatial resolution using a 100 km mesh (AArg,static

100 and
AArg

100 ).
To evaluate the usability and to demonstrate the advantages of the proposed method, the

estimates for the scenarios, cf. Tab. 3.2, comparisons of the estimates to the global CNES_CLS15
MSS model and comparison of the time-variable component to gridded SLA products will be
presented.

3.2.1 Validity Check of the Static Model Component

To study the results and the influences of the different scenario configurations, differences of the
static i.e. mean part (cf. Eq. (2.3.8)) with respect to a global long-term MSS model are analyzed.
To remove the major signal and to emphasize the details, the estimated models are evaluated on
the grid provided with the CNES_CLS15 MSS model and the difference to CNES_CLS15 model
is computed without accounting for the different reference epochs. Thus, in regions of large ocean
variability and sea level change, larger differences are expected.

Figure 3.3 shows the estimated C1-smooth MSS and the difference of the static part to CNES_CLS15
MSS of the scenario AArg

100 . At first glance, the static part of the time variable model AArg
100 visually
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(a) (b)

Figure 3.3: Static part of the time variable estimation scenario AArg
100 (a) and difference of this

scenario to the reference model CNES_CLS15 MSS (b).

Scenario Median RMS RMS R1 RMS R2 RMS R3 RMS R4 parameter

BArg
30 −1.9 cm 12.9 cm 3.8 cm 10.1 cm 16.0 cm 15.4 cm 68 996

BArg
40 −1.9 cm 11.3 cm 3.2 cm 8.4 cm 13.4 cm 14.1 cm 38 831

BArg
50 −1.8 cm 10.2 cm 2.9 cm 7.6 cm 11.7 cm 12.9 cm 25 138

BArg
100 −1.8 cm 8.9 cm 2.5 cm 7.0 cm 10.5 cm 11.3 cm 6575

BHCT
30 −1.9 cm 11.2 cm 3.2 cm 8.5 cm 13.4 cm 13.8 cm 45 821

BHCT
100 −1.7 cm 10.9 cm 3.8 cm 8.6 cm 14.4 cm 12.0 cm 4328

Table 3.3: Display of median and RMS of the differences to CNES_CLS15 MSS for different models
and regions R1 to R4 and their number of parameter.

follows the marine geoid (cf. Fig. 3.3(a)). But, to emphasize small variations and inconsistencies
the difference to the CNES_CLS15 MSS is shown in Fig. 3.3(b). Two different types of differences
can be observed: i) differences due to the incomplete temporal modeling and the different reference
epoch and b) differences due to an insufficient spatial resolution. The lack of temporal modeling is
mainly visible in the Gulf Stream area where the differences are up to a few decimeters. A harmonic
analysis of the daily SLA maps (see also Sect. 3.2.2) has shown that in the areas of high temporal
variability, the modeled annual period is not necessarily the most dominant. In contrast to that
in the regions of the Mid-Atlantic Ridge differences can be seen where the spatial resolution of the
spatial finite element space is insufficient. This leads to a spatial smoothing effect, which results
in high-frequency oscillations in the differences. Another effect can be seen above 66°N latitude,
where no ERM data entered the estimation. Static and temporal model components cannot be
separated in the estimation, which yields high uncertainties and unstable estimates, which show
up as large differences. The RMS of the differences is 11.4 cm over the entire area, which shows a
reasonable agreement in the context of a proof of concept of the presented method2. To demon-
strate the flexibility of the proposed approach, a more detailed analysis of specific characteristics
is shown for study region B.

Figure 3.4 focuses on study area B and the comparison of different spatial resolutions, which are
realized by either choosing different meshes or different finite element basis functions. The displayed
differences correspond to the finest meshes from scenarios BArg

30 (Fig. 3.4(a)) and BHCT
30 (Fig. 3.4(c))

and the coarsest meshes from scenarios BArg
100 and BHCT

100 (Fig. 3.4(b) and Fig. 3.4(d)). Thus, both
upper models are estimated with Argyris elements and the lower using the HCT elements.

It is visible that all estimates follow the CNES_CLS15 MSS in a range of ±50 cm but most

2Note again that the reference epochs differ, it is approximately the end 2003, begin 2004 for CNES_CLS15 MSS.
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(a) (b)

(c) (d)

Figure 3.4: Differences between CNES_CLS15 MSS and the static part of four time variable models.
The models correspond to the estimation scenarios BArg

30 and BHCT
30 ((a) 30 km Argyris mesh and

(c) HCT mesh) and BArg
100 and BHCT

100 ((b) 100 km Argyris mesh and (d) HCT mesh). In addition,
four further sub-regions R1 to R4 (orange) and four individual points (red stars) are shown.
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parts outside the Agulhas current are in the range of just a few centimeters. The statistics from
Tab. 3.3 confirm this with a root mean square error (after the reduction of the median which is
about −1.9 cm) of 8.9 cm to 12.9 cm depending on the spatial resolution. A conspicuity between the
differences is that the models on the coarser mesh are smoother than the models on the finer mesh.
This is due to the different number of parameters of these models, especially for the temporal model
component. The Argyris model on the coarse mesh with 6575 parameters uses less than a tenth
parameters compared to the Argyris model on the finer mesh with 68 997. Although the static
model requires the high spatial resolution to model the high-frequency – mainly geoid – signal,
the spatial resolution seems too high for a stable estimation of the temporal component, which is
limited by spatial sampling of the ERM. This leads to a more difficult separation of the temporal
and spatial signal. As a result, the RMS is lowest for the 100 km meshes (8.9 cm and 10.9 cm) for
Argyris and HCT, compared to the 30 km meshes (12.9 cm and 11.2 cm), see Tab. 3.3.

The same general features are visible in all four difference plots: a larger consistency in the
northern area where less ocean variability is expected, and larger differences in the southern area
within the Agulhas current where large ocean variability is expected. Consequently, the detailed
differences are discussed separately for four different rectangular sub-regions R1 to R4, cf. Fig. 3.4.
Tab. 3.3 lists the RMS values for the different regions as well.

For all models, largest consistency to the CNES_CLS15 MSS is visible in region R1. The lowest
RMS of 2.5 cm is as for the entire region B observed for the BArg

100 model, which seems a reasonable
quality measure for the approach presented here. As for the global view, the RMS slightly increases
for the higher resolution scenarios which use the Argyris elements. In contrast to that, Fig. 3.4(d)
shows the differences with respect to the BHCT

100 model, where additional differences – especially in
the eastern part of R1 – show up. Compared to the Argyris based models and the BHCT

30 scenario,
an increase of the RMS is visible. From this, it can be concluded that the spatial resolution is
insufficient to model the static signal. The degrees of freedom and the resulting flexibility of the
Argyris element seem better suited to model the static MSS signal.

Within region R2, more ocean variability is expected (e.g. cf. Fig. 3.8). Consequently, the
consistency decreases, but still BArg

100 shows the best agreement with an RMS of 7.0 cm. But, as
for scenario BHCT

100 in region R1, systematic differences start to show up in the north-eastern part.
This serves as an indicator, that for the static part, the spatial resolution of the 100 km mesh is
insufficient, as these differences vanish in the BArg

30 scenario. But, as the model is in general less
smooth, the overall RMS of BArg

30 is higher (10.1 cm in R2).
In region R3, in addition to again higher ocean variability, higher resolution geoid signal is

expected. As for R2, although systematic differences now in the south-western part show up for
BArg

100 which are gone in BArg
30 , the RMS of scenario BArg

100 is still lowest. This differences are again
attributed to static high-resolution (geoid) signal, which can not be captured with the Argyris
element on the coarse mesh. When changing to the finer mesh – as in the BArg

30 scenario – larger
scale differences show up. These are attributed to a spatial over-parameterization of the time-
variable model component, which is modeled with the same higher spatial resolution (30 km mesh).

Within region R4, largest ocean variability is expected. Whereas all conclusions from R1, R2

and R3 remain valid, the differences of all scenarios are dominated by a large scale large positive
difference (yellow blob in Fig. 3.4) which dominates the RMS, such that it is the highest of all four
sub-regions (11.3 cm for BArg

100 ). Within the large difference blob, the tracks of the ERM become
clearly visible in form of a reduced difference along the ground track. Thus, consistency along the
ERM repeat tracks is much higher. From this, it can be concluded, that the large difference is
caused by high-frequency temporal variability in the GM data, which leaks into the static part as
it is not fully captured by the trend and seasonal model applied in the scenarios.

With the proposed approach, reasonable estimates for the static component can be derived,
although it is challenging to obtain the optimal spatial resolution, especially for the temporal model
component, because of the insufficient temporal observation distribution outside of the ERM tracks.
It is shown, that the temporal model (trend and seasonal component) is – at least in some sub-
regions – insufficient to completely remove the ocean variability from the SSH observation of the
non ERM. A striking advantage of this new method is the possibility to describe the continuous
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(a) (b)

(c) (d)

Figure 3.5: SLA time series (red) for four different locations with estimated time series at the same
locations of the scenarios BArg

30 (blue) and BArg
100 (green).

surface (plus selected temporal characteristics) with just 4000 to 70 000 parameters. In contrast to
this, the CNES_CLS15 MSS model is represented by about 1.7 × 106 grid points in the same area
and 18.8 × 106 grid points in area A to describe the surface on an oversampled discrete grid.

3.2.2 Validity Check of the Temporal Model Component

The previous section has shown, that still some non-modeled temporal signals seem to enter the
static part of the estimated models. This can especially be seen in areas with a high temporal
variability such as in the area of the Agulhas current (cf. Fig. 3.8, R3 and R4). To visualize the
estimated temporal signal Eq. (2.3.9) can be used to evaluate the model for a single location as
a time series. This time series represents SLA, which can be compared to time series extracted
from the mean reduced DUACS SLA maps. The product provides expected ocean variability with
a high temporal resolution of 1 d. For this purpose, the temporal component of estimation scenario
BArg

30 and BArg
100 is evaluated at different grid points (cf. Fig. 3.4) and compared to the time series

in the same location as extracted from the DUACS SLA maps in Fig. 3.5.
The SLA (red) and estimated time series of the scenarios BArg

30 (blue) and BArg
100 (green) are

shown for four different locations with different properties (cf. Fig. 3.4). The locations shown in
Figures 3.5(a) and 3.5(b) are both located in the smooth region R1 of lower temporal variability.
It is visible that the time series is dominated by the annual period, which is represented by the
estimated models very well. Whereas the amplitudes are generally smaller for the coarser BArg

100

model. It seems that the amplitude is biased towards some strong high-frequency signals. The
time series shown in 3.5(c) and 3.5(d) are located in regions R4 and between regions R3 and R4

(cf. Fig. 3.8). It can be seen – and supported by a spectral analysis of the SLA – that the annual
period is not necessarily the dominating one. Consequently, the trend and seasonal model applied
does not fit the SLA time-series very well and only a minor part of the variations are captured.
High-frequency variations leak into the static model (see again R3 and R4 in Fig. 3.4(a) and 3.4(b))
and the linear trend.

To obtain better results, future modelings require an extended model of the temporal variability.
Increased temporal flexibility – more than the trend and the annual period – is required, which can
be easily realized from a theoretical point of view by extending the set of temporal basis functions
cf. (2.2.2). This entails an increased size of the parameter space, which can pose a computational
problem.
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(a) Residuals of the static model (b) Residuals of the time-variable model

Figure 3.6: Temporal representation of the least-squares residuals (blue) of scenarios AArg,static
100 and

AArg
100 with a 30 d moving average (red) and 1σ error bars derived from the standard deviation of

each 30 d interval .

3.2.3 Validation on the Level of Least Squares Residuals
An additional measure of the model quality independent of a-priori models and other prior infor-
mation are the least-squares residuals. They show how well the observations are described by the
model. Figure 3.6 shows the least-squares residuals for the two scenarios computed for the North
Atlantic, i.e. AArg,static

100 which just estimates the static MSS without the temporal model component
and AArg

100 , which co-estimates the linear trend and a seasonal component on the same 100 km mesh.
The first model (AArg,static

100 ) simply ignores the temporal variability and estimates the MSS in
the North Atlantic with Argyris elements on a coarse 100 km mesh. The residuals are shown as
a time series in Figure 3.6(a). An annual period in the observations (blue) and in the low-pass
filtered mean (red) with an amplitude of approximately 5 cm is clearly visible and dominates the
time-series. The second model (AArg

100 ) is estimated with the same mesh and same finite elements
but models the trend and annual time variable parameters, cf. Eq. (2.3.5). Fig. 3.6(b) shows,
pronounced by the low-pass filtered mean time series, that these additional parameters successfully
modeled the annual signal and thus reduce the empirically estimated standard deviation. Although
the additional parameters reduce the standard deviation only by 1 cm, i.e. from 11.5 cm to 10.5 cm,
the residuals are less systematic.

To get an impression of the spatial characteristics of the least squares residuals, Fig. 3.7 shows
the RMS of the residuals computed for 0.1°×0.1° grid cells for both models as a measure of vari-
ability. At first glance, the plots for both models look very similar, i.e. the dominating features
are visible in Figures 3.7(a) and 3.7(b). Four different aspects can be observed in the plots, which
are generally valid for both models:

1. In most areas, the empirically estimated standard deviation of the residuals is in the order of
10 cm, which is a reasonable estimate for the standard deviation of a single SSH observation.

2. In the region north of 66° where only Cryosat-2 SSH observations are used, systematically
larger standard deviations are visible. As a consequence of missing ERM data, the estimated
model is of poor quality in those regions which results in large residuals.

3. There are regions of larger standard deviation which obviously correlate to high-resolution
geoid signal, e.g. in the mid-Atlantic Ridge. This shows, that for some areas, the spatial
resolution achieved with the Argyris elements on the 100 km mesh is insufficient to model all
signal which is captured by the observations. At least locally, a higher spatial resolution is
required.

4. Finally, there are regions with are affected by larger ocean variability (e.g. in the Gulf Stream
along the U.S. East Coast or near the equator). Larger RMS are observed, as non-modeled
temporal signal is absorbed the least-squares residuals.
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(a) RMS of the static model residuals per 0.1◦ grid cell. (b) RMS of the time-variable model residuals per 0.1◦

grid cell.

(c) Difference between the RMS of the static model residuals and the
RMS of the time-variable model residuals per 0.1◦ grid cell.

Figure 3.7: Spatial representation of the RMS per 0.1◦ grid cell for a static and time-variable model.
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To compare both models, Fig. 3.7(c) shows the difference of the gridded RMS values. A positive
difference means that the spread of the residuals from the AArg,static

100 is larger compared to those
of scenario AArg

100 . As more than 85 % of the grid cells show a positive value, it can be concluded
that the temporal model AArg

100 successfully models temporal signal3. The reduction of the RMS
is not uniquely distributed over the entire area, it is clearly concentrated in the regions with high
temporal variability, e.g. the Gulf Stream, where the RMS is reduced by up to 10 cm and clearly
shows the positive effect of co-estimating the temporal components in the model.

3.3 Additional Advantages of the Proposed Approach
3.3.1 Analysis of the Parameters
A special characteristic of the presented method is that due to the chosen parameterization of the
finite elements, the parameters are interpretable. As the parameters in the static case correspond
to function values, first derivatives etc. in the vertices of the mesh, this holds true for the temporal
parameters as well.

Use of Equation (2.3.11) enables the display of the spatially varying parameters of the temporal
basis functions (i.e. trend, amplitude and phase) as shown in Figure 3.8. For both the scenarios
BArg

30 and BArg
100 , each of the aforementioned parameters was evaluated on a regular grid. Especially

the parameters of the fine model (left column of Fig. 3.8) show a high spatial noise which is an
additional indication of a spatial over-parameterization of the temporal signal, consequently data
inconsistencies and noise are absorbed by the temporal component of the model. The parameters
shown in the plots of the second column of 3.8 are smoother and show smooth spatial structures.
One possibility to evaluate these results is to estimate trend, amplitude and phase of an annual
period from the DUACS Level 4 gridded SLA DT2010 maps per grid cell. Plots of these are shown
as reference in the right column of Fig. 3.8.

A visual comparison shows a correlation of the parameters – especially for the coarse model – to
the reference plots, as similar structures are visible, especially for the seasonal signal. Whereas the
trend estimates show similar spatial features, they are larger by an order of magnitude compared
to the trends derived from the daily SLA product. Consequently, the trend parameters seem to
significantly absorb higher frequency signal (see e.g. Fig. 3.5(c) where the trend seems to be affected
by larger high-frequency amplitudes within the second half of the time series). In contrast to that,
the magnitudes of the amplitudes are comparable and show a very similar spatial pattern. The
phase displacement of both models show the same structures as that derived from the SLA grid.

A closer look to Fig. 3.8 shows additional problems along the coast and the artificial border
of the region of interest (boundary of the mesh). This is on the one hand related to the lower
quality of the SSH data close to the coast, but to a greater extent due to boundary effects, as the
parameters along the border of the mesh are unconstrained. Consequently, observation sampling
in the outer triangles of the mesh is poor and stable estimation of the parameters of the boundary
nodes is not possible. This conclusion is supported by variance propagation (cf. Fig. 3.9), where
the values along the boundary of the mesh show the highest formal standard deviations.

3.3.2 Description of the Model Uncertainty by Variance Propagation
Another advantage of the presented method – as it is a rigorous one-step least-squares procedure –
is that it is straightforward to include a stochastic model of the SSH observations. With a realistic
stochastic model, an accuracy estimate of the estimated MSS model in terms of a covariance
matrix of the estimated parameters is possible. Applying variance propagation, this can be easily
propagated to for instance the static MSS (cf. Eq. (2.3.8)).

Although in this proof-of-concept study the simplified assumption of uncorrelated SSH observa-
tions of same accuracy is used as stochastic model, variance propagation is applied as a plausibility

3Most cells, which show a negative value are located in the region above 66°, where the temporal model can not
be stably estimated, as only Cryosat observations are available.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.8: Spatial representation of the physical properties trend, amplitude and phase displace-
ment of the two different models BArg

30 (left column) and BArg
100 (middle column). As comparison,

trend, amplitude and phase maps as derived from the daily DUACS SLA maps are shown in the
right column.
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(a) (b)

Figure 3.9: Standard deviations of fmss (c.f. Eq. (2.3.8)) of scenario BArg
30 (a) and BArg

100 (b) derived
from variance propagation.

check here. The least squares estimate of the variance of unit weight is used to scale the covariance
matrix of the parameters.

The standard deviations of fmss (c.f. Eq. (2.3.8)) of scenarios BArg
30 and BArg

100 with an a
priori accuracy of σ0 = 10 cm for all observations are shown in Figure 3.9. This seems to be a
reasonable guess because of the observation accuracy related to the models presented in section
3.2.3. Both models distinguish by a factor of 10 in their number of parameters to describe the
model (cf. Fig. 3.3). The different number of parameters is visible in the coloration of both figures.
Thus, the standard deviation of BArg

30 (Fig. 3.9(a)) over the entire area is more than 10 times higher
than the standard deviation of BArg

100 (Fig. 3.9(b)) because the same number of observations are
taken to estimate 10 times more parameters. Besides the ground tracks of the Jason missions are
directly noticeable. Because of the short repeat cycle, resulting in higher number of observations
in these areas, the standard deviations are comparatively smaller.
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Chapter 4

Summary, Conclusions and Outlook

In this paper an approach for the estimation of a continuous spatio-temporal model of the mean
sea surface from altimetric sea surface height observations is proposed. The continuous model
is based on C1-continuous finite element basis functions which represent the spatial signal. Finite
elements defined on triangulations are used (Argyris and the HCT element) to assemble a continuous
surface in the study region of interest. Substitution of the (unknown) scaling coefficients by one-
dimensional parametric functions in the time domain constructs the proposed continuous spatio-
temporal model. Within that model, the unknown scaling coefficients result from the Cartesian
product of the temporal and spatial scaling coefficients of the basis functions, which are determined
from the SSH observations within a least-squares parameter estimation process.

To demonstrate applicability and study the performance of the proposed approach, it is used
to estimate a continuous model of the MSS. For this purpose 10 years of satellite altimetry data
from CryoSat–2 (GM only) and Jason 1–3 (mainly ERM) collected in the period 2010 to 2019 is
used. The approach estimates a static – i.e. mean – component as a C1-continuous finite element
model and co-estimates the temporal variability with the a linear trend and an annual signal
with amplitude and phase. The temporal model component is used to absorb long-term temporal
variability, especially from the sea surface height measurements from GM phases, consequently
a reduction in advance is not required. Due to the parametric nature of the model, it can by
synthesized on arbitrary grids and directly comes along with a tailored interpolator (in space and
time). A re-parameterization of the finite elements is on the one hand usable to realize the C1-
smoothness for the composed function, but more important for the application to obtain physically
interpretable parameters, which is the MSS and its derivatives for the static model component, and
sea level trends, amplitudes and phases (and its derivatives) for the temporal model component. As
the entire problem is formulated as a one step least-squares adjustment, stochastic characteristics
of the observations can be easily included and propagated to uncertainties of the estimated model.
However, due to a simplified stochastic model, this is just used as a plausibility check here.

This contribution can be seen as a proof-of-concept study for the application of the proposed
procedure for MSS estimation. It is not (yet) the goal to estimate a best-quality MSS but to
test the general performance and applicability of the approach. For this purpose, different meshes
with different target edge length have been used in two study regions to estimate various MSS
models which realize different spatial resolutions for the static as well as the temporal model
component. The static model components have been compared to the CNES_CLS15 MSS and
show an agreement within an RMS in the order of magnitude of 10 cm. The temporal model
components were compared to gridded SLA products. Different systematic differences are visible,
which are analyzed to identify indications for future model refinements required. It could be
shown, that the seasonal component of the model successfully removes the annual signal from the
observations. But, it has been shown, that the estimated annual period is not sufficient to describe
the temporal variations of the ocean, especially in the areas of high oceanic variability where the
annual period is not necessarily the dominant one, such as the Gulf and Agulhas Stream. The
non-modeled signals, especially of large high-frequency variations leaked into the trend estimates,
such that the trend tends to be over-estimated. But the estimated period was able to reduce the
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overall RMS of the residuals by 1 cm in comparison to a static model which does not co-estimate
temporal variations.

This work demonstrated that the approach is generally suited for MSS determination and iden-
tified the following points, which are necessarily refinements to derive high quality estimates MSS
models which are competitive with models derived with the established state-of-the-art approaches:

• The temporal basis functions used here are very simple (trend and annual signal) and do not
sufficiently remove the variability from the SSH measurements. Adding additional periods
can allow for a better estimation of the temporal variability. But also the usage of a different
temporal basis functions like B-Splines or one dimensional finite elements are worth to study
and will add flexibility to model unexpected events like for instance the El Niño.

• It was shown that high spatial resolution is required to model the fine scale static signal.
Currently, the spatial resolution of static and temporal component is the same. It could
be identified, that a high spatial resolution (which successfully captures the fine-scale static
signal) yields to a over-parameterization of the temporal component and thus to a poor overall
performance. To obtain best possible quality, the approach needs to be refined to individually
optimize the spatial resolution for the static (higher resolution) and the temporal component
(lower resolution). This can be realized either with different meshes or smoothness constraints
for the temporal model.

• Another possible improvement is to use data adaptive meshes especially in the static domain
to reduce the parameter space and the risk of over-fitting. Thus, in regions with a smooth
spatial signal, the mesh can be coarser than in regions with a high spacial variability.

• To obtain meaningful quality estimates of the estimated model, a data-adaptive stochastic
model for the SSH observations is required. The least-squares residuals can be iteratively
analyzed to estimated the stochastic information along the orbits for the individual altime-
try missions and mission phases. This information can subsequently be used to build the
covariance matrices.
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