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Abstract
by Vishnu Balakrishnan

for the degree of

Doctor rerum naturalium

Pulsars are rapidly rotating highly magnetised neutron stars that emit beams of
electromagnetic radiation from their magnetic poles. These compact objects are
unique as they are one of the densest forms of matter known in the Universe.
Discovering more pulsars are crucial as they have a wide range of scientific ap-
plications from studies of strong-field tests of Gravity, neutron star physics, con-
densed matter physics and cosmology being a few examples. While all pulsars
have their own applications, the bulk of this thesis will concentrate on the tech-
niques involved in finding new relativistic binary pulsars particularly the yet to
be detected pulsar black-hole binary which can be used to test General Relativity
and alternate theories of gravity in the quasi-stationary strong-field regime. In
Chapter 1, I lay the foundations of this work by expanding on the basics of pulsar
phenomenology, its formation, the diverse types of pulsars already known and
their properties in the radio regime. In Chapter 2, I describe the various processes
involved in finding a pulsar in a modern pulsar search pipeline. This is followed
by a brief history of all the notable past pulsar surveys which provides context to
the current generation HTRU-South low latitude (lowlat) pulsar survey which
is the primary dataset analysed during this PhD thesis. Past searches for Pulsar
- Stellar Mass Black Hole (PSR-BH) binaries in lowlat assume that the pulsar
has a constant acceleration during the course of an observation. However, this
assumption breaks down when the observation samples a large fraction of the
orbit. This limits the length of search observations for finding compact binaries,
and hence their sensitivity.
In Chapter 3, I expand on my comprehensive search for PSR-BH binaries in
circular orbits in LOWLAT using the template-bank algorithm and use it to
search for recycled and unrecycled PSR-BH binaries in compact orbits. This is
currently the most sensitive search for PSR-BH binaries done in Galactic-plane
observations in the southern hemisphere. I demonstrate the extra sensitivity
factor of 2-2.5 gained from our search compared to previous searches in the same
data for PSR-BH binaries with orbital periods in the 6-12 hours range. I also give
details about a new GPU pipeline that was developed during this PhD which
accelerated our search analysis. Additionally, I give details about our 20 new
pulsar discoveries including a new millisecond pulsar J1743�24 which is a rare
intermediate spin-period pulsar in a 70.7 day orbit around a light companion star.



I also present updated timing solutions of PSR J1753�2819 - a pulsar similar to
PSR J1743�24 but in a much shorter orbit of 9.3 hours and it’s likely that the
formation of both these binary pulsars cannot be explained by standard binary
stellar evolutionary models. I conclude this chapter by using our non-detections
of PSR-BH binaries to place limits on short orbital period PSR-BH binaries near
the Galactic-Plane (|b| < 3.5�). Our results indicate that the existence of nearby
(d  1kpc) PSR-BH binaries with circular orbits and orbital period range of 4-24
hours is highly unlikely. The possibility of PSR-BH binaries having significantly
eccentric orbits or circular orbits shorter than 4 hours cannot currently be ruled
out due to them being outside our search range.
In Chapter 4, I describe a novel Machine-learning (ML) pulsar candidate classifier
using Semi-Supervised Generative Adversarial Networks (SGAN) which achieved
better classification performance than the standard supervised algorithms com-
monly used in literature using majority unlabelled datasets. This is the first
implementation of a Semi-Supervised ML classifier for pulsar candidate classifi-
cation in literature. The SGAN pipeline achieved an accuracy and mean F-Score
of 94.9% trained on only 100 labelled candidates and 5000 unlabelled candidates
compared to our standard supervised baseline which scored at 81.1% and 82.7%
respectively. This pipeline played a pivotal role in reducing the number of pulsar
candidates that needed to be inspected by eye which aided us in finding our
earlier mentioned pulsar discoveries. We also describe in detail why this would
be a promising solution in the early stages of future pulsar surveys when limited
labelled data is available.
In Chapter 5, I push the envelope of sensitivity that can be regained from a
binary search pipeline further by describing the first fully coherent radio pulsar
search pipeline that can search across all Five Keplerian Parameters. I compare
the performance of this pipeline to standard techniques used in literature like
acceleration and jerk searches and describe the feasibility of this approach for
targeted and blind pulsar surveys in the near future. I demonstrate that a five-
parameter search for pulsars with spin-period P spin � 10ms orbiting intermediate
mass black holes (IMBH: M ⇠ 102 - 104M�) in Globular clusters with orbital
periods in the Porb = 5� 10Tobs regime is feasible for observations shorter than
2 hours with an eccentricity limit of 0.1 in the template bank. This is a region
in the binary orbital phase-space that cannot be fully explored by other search
techniques. Finally in Chapter 6, I summarise the relevant findings of this thesis,
and describe some possible future research paths that can be undertaken based
on my results.
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Each piece, or part, of the whole nature is always an approximation to the complete
truth, or the complete truth so far as we know it. In fact, everything we know is only
some kind of approximation, because we know that we do not know all the laws as
yet. Therefore, things must be learned only to be unlearned again or, more likely, to
be corrected. The test of all knowledge is experiment. Experiment is the sole judge of
scientific “truth”.

Richard Feynman
The Feynman Lectures, Introduction
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Chapter 1

An Introduction to Radio Pulsars

With all reserve we advance the view that a super-nova represents the transition of an
ordinary star into a neutron star, consisting mainly of neutrons. Such a star may

possess a very small radius and an extremely high density.
Baade and Zwicky, PNAS May 1, 1934 20 (5) 259-263
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1.1 Historical Context

1.1.1 Neutron Star Hypothesis

The neutron star hypothesis was first put forward by Baade & Zwicky (1934) in order
to explain the tremendous amount of energy required to power a supernova and to si-
multaneously produce energetic cosmic rays. This remained a theoretical prediction for
a long time until 33 years later Jocelyn Bell discovered a repeating radio signal in ob-
servations taken at the Mullard Radio Astronomy Observatory at Cambridge (Hewish
et al., 1968). The radio signal was observed to follow sidereal time1 and repeated every
1.337 seconds. The absence of parallax indicated that the source must lie outside the
solar system and the observed frequency sweep of the signal was used to infer that these
signals originated from local objects at a galactic distance scale. The extremely rapid
spin-period of the radio source along with the instantaneous bandwidth and frequency
sweep of the signal was used to calculate an upper-limit for the physical dimension of
the source - 4800 km (Hewish et al., 1968). Prior to this discovery, Pacini (1967) hy-
pothesised that neutron stars must be formed after the supernovae explosion (at least
in some cases) and further estimated that the electromagnetic radiation emitted by it
should give an outward momentum to accelerate the expansion of supernova remnants
after its initial explosion. There was good reason to believe this as if you take the size
of the Crab Nebula and divide it by its measured expansion rate, this number was an
under-estimation of its total lifetime. Post discovery, Hewish et al. (1968) favoured an
oscillating white dwarf (WD) model whereas Gold (1968) hypothesised that rotating
neutron stars could be the origin of this pulsating source. Around this time, a daily
telegraph reporter Anthony R. Michaelis coined the term ‘pulsar’ (a portmanteau of
‘pulsating star’) to describe this discovery. The rotating neutron star hypothesis further
gained credence with the discovery of pulsars in supernova remnants like Vela (Large
et al., 1968) which had a spin-period of ⇠ 89ms and in particular the Crab Pulsar
(Staelin & Reifenstein, 1968) initially named NP 0527. Lovelace et al. (1968) measured
the spin-period of NP 0532 to be ⇠ 33ms thereby making the oscillating WD model
extremely unlikely as such accurate and rapid spin-periods require a compact object
with extremely high density beyond what is theoretically possible with an oscillating
WD model.

1.2 Formation

The core of a star for most of its lifetime is in a finely tuned ‘hydrostatic equilibrium’.
The outward thermal pressure caused due to the energy generated from nuclear fusion
reactions is balanced by the inward gravitational force due to the mass of the star.
For high-mass progenitor stars (m > 8M�), over time, the star fuses heavier elements
starting from hydrogen and helium until it reaches a core of iron and nickel. The fusion
of iron and nickel is an endothermic reaction, therefore no further reaction takes place

1
This is a timescale system used in astronomy based on Earth rotation rate measured relative to

fixed stars.
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forcing the star to undergo a gravitational collapse. If the mass of the core exceeds the
Chandrasekhar limit of about 1.4M� (Chandrasekhar, 1931) but is below the Tolman-
Oppenheimer-Volkoff (TOV) (Oppenheimer & Volkoff, 1939) which is an upper bound
for the mass of neutron star i.e. gravity is balanced by neutron degeneracy pressure,
then a neutron star is left behind after a core-collapse supernova explosion which blows
away the outer region of the star. The neutron star retains most of the angular mo-
mentum of its progenitor star and due its now reduced radius, the moment of inertia
of the star drops rapidly. Due, to the conservation of angular momentum, this leads
to a increase in the spin-frequency of the pulsar. If the star collapses in a spherically
symmetric way, Woltjer (1964) first suggested that due to conservation of magnetic
flux (B / R

�2
/ ⇢

2
3 ), the initial magnetic field of the progenitor star gets amplified to

values of up to 10
14�16G. Neutron stars are the densest objects known in the universe

with an average mass density h⇢i ⇠ 6.7 ⇥ 10
17
kgm

�3. The behaviour of matter in
these extreme densities is not well known as such environments cannot be replicated in
terrestrial laboratories. Therefore, pulsars offer a unique tool to explore cold nuclear
matter at densities higher than that of the atomic nucleus, a major unsolved problem
in modern physics (Özel & Freire, 2016). The physical properties of a neutron star can
be understood if we know the equation of state i.e the relation between density and
pressure. This could for example help us find the relation between mass and radius
of a neutron star. The maximum mass for a neutron star is of particular interest as
it can place constraints on the equation of state. PSR J0348+0423 with a mass of
2.01±0.04M� (Antoniadis et al., 2013) and PSR J0740+6620 with a mass range at the
68.3% credibility interval of 2.08+0.07

�0.07 M� (Fonseca et al., 2021) display the highest
known neutron star mass measurements till date. Most models predict a maximum
mass of 2M� (Lattimer & Prakash, 2001), which can increase depending on the mag-
netic field (Cardall et al., 2001) and rotating rate. The mass of a neutron star can be
measured accurately through pulsar timing (see section 1.7). A recent review highlight-
ing the range of measured masses of neutron stars can be found in Özel & Freire (2016)
which shows a range between ⇠ 1.1� 2.08M� where we have updated the upper limit
based on the measured mass of PSR J0740+6620. The characteristic mass of a pulsar
which is used often for our calculations in this work is 1.4M�. Measuring the radius of
the neutron star is more difficult. One technique is to measure the radius of the neu-
tron star through spectroscopy by measuring the thermal emission at X-ray frequencies
which is used to measure the apparent angular size of the star. An alternative is to
measure the effect of the neutron-star spacetime on the emission and extract the radius.
Current measurements indicate values around 10-12 km (Lattimer & Prakash, 2001).
Recently, the gravitational wave event of a binary neutron star merger GW170817 was
used to measure the radius of the two neutron stars (Abbot et al., 2018). Addition-
ally, X-ray observations using Neutron Star Interior Composition Explorer (NICER)
were also used to constrain the radius of the pulsar PSR J0030+0451 to 13.02+1.24

�1.06 km

(Miller et al., 2019) and PSR J0740+6620 to 12.39+1.30
�0.98 km (Riley et al., 2021). Radius

measurement of PSR J0740+6620 was obtained based on informative priors from radio
timing by the results of Fonseca et al. (2021). We refer the readers to Özel & Freire
(2016) and references within for an in-depth review of the different techniques currently
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in use to measure the radius of a neutron star.

1.3 The lighthouse model

The canonical model used to explain the pulsar mechanism is the light house model.
An example is shown in figure 1.1. In this model, the neutron star is assumed to rotate
in a purely dipolar magnetic field which is inclined with respect to the rotation axis of
the pulsar with a misalignment angle ↵. This misalignment is what causes the signal to
pulsate as viewed from Earth when it crosses our line of sight similar to a light-house.
This rotating magnetic field B induces an electric field E outside the pulsar surface.
Electrons at the surface of the neutron star gain energy from this external E-field and
they subsequently get converted into plasma. The plasma-filled surrounding dominated
by the B-field is called the magnetosphere of the pulsar. The magnetosphere can be
thought of as an extension of the neutron star as it experiences the same E x B force
and co-rotates with the pulsar. This co-rotation can only be maintained up-to a certain
radius where the velocity of the plasma approaches the speed of light. This is usually
called the radius of the light cylinder2 and is calculated as:

RLC =
c

⌦
=

cP

2⇡
⇠ 4.77⇥ 10

4
km

✓
P

s

◆
, (1.1)

where P is the Spin-Period of the Pulsar. The light cylinder divides the magnetic
field into two regions ‘closed field lines’ (confined within the light cylinder) and ‘open
field lines’ (particles can flow outside the magnetosphere). When charged particles are
accelerated in a magnetic field they move along the magnetic field lines. Therefore, the
open field lines are likely to be related to the beamed coherent broadband radio emission
which we observe. The mechanism underlying the radio emission is not well understood.
We refer the readers to Sturrock (1971); Chen & Ruderman (1993); Graham-Smith
(2003) and references within for a more in-depth review of this topic.

1.4 Spin Evolution

The spin-period of a pulsar increases over time ( Ṗ = dP/dt > 0). This is called spin-
down and it happens as the pulsar loses rotational kinetic energy through a number of
different physical processes. The bulk of the energy is converted into magnetic dipole
radiation and a pulsar wind3. A tiny portion of this energy loss is also responsible for
the radio emission that we typically observe. This energy loss can be calculated (see

2
Defined as a hypothetical region where an object co-rotating with the pulsar is moving at the

speed of light
3
Pulsars as they rotate are believed to power a magnetized particle wind where charged particles

are accelerated to relativistic speeds forming a nebula around the pulsar called pulsar wind nebula.

An example of this is the Crab Nebula which radiates synchrotron emission across the electromagnetic

spectrum.
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Figure 1.1: An illustration of the toy light-house model used to explain a rotating
neutron star and its magnetosphere (not drawn to scale). Figure taken from Lorimer
& Kramer (2012).
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for example Lorimer & Kramer 2012) as:

Ė =
�dErot

dt
=

dI⌦
2
/2

dt
= �I⌦⌦̇ = 4⇡

2
IṖP

�3
, (1.2)

where I is the moment of inertia of the pulsar, which is calculated as:

I = kMpulsarR
2
. (1.3)

The value of k depends on the equation of state. For most practical calculations, the
neutron star is assumed to be a sphere with uniform density which gives k = 0.4,
Mpulsar = 1.4M� and R = 10 km which gives a value for I = 10

45
g cm

2. Substituting
these numbers back into equation 1.2 gives:

Ė ⇠ 3.95⇥ 10
31
ergs

�1

 
Ṗ

10�15

!✓
P

s

◆�3

. (1.4)

From classical electrodynamics (see for example Jackson 1962), we known that a
rotating magnetic dipole with magnetic moment |m| radiates electromagnetic waves at
its rotation frequency. The radiation power loss can be written as

˙Edipole =
2

3c3
|m|

2
⌦
4
sin

2
(↵). (1.5)

If we assume spin-down luminosity is dominated by magnetic dipole radiation loss,
then equation 1.5 can be substituted in equation 1.2 to calculate the spin-down of the
spin period as:

⌦̇ = �

✓
2|m|

2
sin

2
↵

3Ic3

◆
⌦
3
. (1.6)

Equation 1.6 can be written in terms of the rotational frequency of the pulsar
⌫ = 1/P and be expressed as a power law:

⌫̇ = �K⌫
n
, (1.7)

where K is a proportionality constant and n is the braking index. If we differentiate
and re-arrange equation 1.7, the braking index can be calculated as:

n =
⌫⌫̈

⌫̇2
. (1.8)

Therefore calculating the braking index requires measuring second derivative of the
spin-frequency which is only possible for young pulsars that have high spin-down rates.
However, in practice the impact of timing irregularities such as glitches (Hobbs et al.,
2010; Espinoza et al., 2011) can limit the precision of our measurements. For a pure
magnetic dipole radiation, we expect n = 3. However, in practise other mechanisms
like pulsar wind changes the value of n. For a few pulsars, the braking index have



1.5. Propagation Effects 9

been measured to be ranging from n = 1.4 � 2.9 (see for example Kaspi & Helfand
2002). These results show that the assumption of pure dipole radiation is not correct.
However, this is a useful approximation in order to characteristic various properties of
radio pulsars. For example, by integrating equation 1.7 after writing it in terms of spin
period P , and assuming that the spin period of the pulsar at birth is much shorter
than the current value (P0 ⌧ P ), we can compute the characteristic age of the pulsar.
This is given as:

⌧c =
P

2Ṗ
⇠ 15.8Myr

✓
P

s

◆ 
Ṗ

10�15

!�1

. (1.9)

As mentioned earlier, this is only an order of magnitude estimate due to our incorrect
assumption of pure magnetic dipole braking and negligible initial spin-period. This is
particularly applicable for MSPs (see section 1.6.3) which follow a different evolu-
tionary track and is spun-up to short spin-frequencies by recycling which breaks the
assumption of negligible initial spin-period (e.g. Tauris et al. 2012). Another useful
quantity, that can be calculated using the above assumptions is the surface magnetic
field of the neutron star Bsurf . For a canonical neutron star with I = 10

45
g cm

2,
↵ = 90

�, R = 10 km, Lorimer & Kramer (2012) showed that this takes the form:

Bsurf = 3.2⇥ 10
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If we apply equation 1.10, to the general population of normal pulsars (see section
1.6.2), we get values in the range of 1011�13 G. These values agree well with more
reliable measurements of Bsurf by detecting cyclotron radiation in the X-ray spectra of
isolated and binary neutron stars (Bignami et al., 2003; Ebbens, 2020).

1.5 Propagation Effects

The radio emission from pulsars, before arriving at our receivers at the telescope,
passes through the Interstellar Medium (ISM). This creates various propagation effects
that needs to be taken into account during our data analysis. In this section, I will
describe some of the most commonly encountered propagation effects for radio pulsar
observations.

1.5.1 Dispersion

If space was a perfect vacuum then the broadband emission from pulsars would arrive
at Earth simultaneously. However, the intervening ISM consists of cold ionised plasma
which causes a delay in the propagation of light with the delay being a function of the
radio frequency and mass of the charged particle. This causes the lower frequency com-
ponents of the signals to be delayed compared to their higher frequency counterparts.
The delay is inversely proportional to the mass of the particle, therefore most of the
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effects of dispersion is dominated by the presence of electrons. This effect was already
noticed in the first set of pulsar discoveries by Hewish et al. (1968). An example of the
dispersive delay caused in a pulsar observation is shown in figure 1.2. Additionally, the
amount of delay is also proportional to a quantity called the dispersion measure (DM)
which is proportional to the integrated column density of electrons between the pulsar
and the observer. This can be calculated as:

DM =

Z d

0

ne dl cm
�3

pc, (1.11)

where d is the distance to the pulsar, ne is electron number density which for the ISM
is typically around ne ' 0.03cm

�3 (Ables & Manchester, 1976). The delay between
two different frequency components of a signal can be computed as:

�t ' 4.15⇥ 10
6
ms⇥ (f

�2

1
� f

�2

2
)⇥DM (1.12)

We refer the readers to Lorimer & Kramer (2012) for the full derivation of this
expression. From equation 1.12, we see that if we measure the pulse arrival time at
two different frequencies f1 and f2, then we can calculate the DM and substitute it
back into equation 1.11. If we then assume an electron density model to get a value for
ne, then by numerically integrating this expression, we can calculate the distance to
the pulsar. The two most commonly used electron density models in literature today
are the ‘NE2001’ model (Cordes & Lazio, 2002) and the YMW16 model (Yao et al.,
2017). These models were built based on independent measurements of distances via
parallax measurements through pulsar timing and/or interferometer techniques and HI
absorption line measurements combined with a kinematic rotation model of the Galaxy.
Additionally, these models also take into account inhomogeneities of the ISM like the
disk and spiral arms of the Galaxy, supernova remnants where the electron density is
expected to be higher. In section 2.2.2, I will describe a technique called dedispersion
to correct for this effect.

1.5.2 Scattering

A second propagation effect is interstellar scattering. This happens when the initial
spatially coherent pulsar radiation gets scattered into different line of sights because of
the inhomogeneities and turbulence of the ISM. These inhomogeneities can be thought
of as scattering disks of different radii which causes a phase shift in the signal due
to their different refractive indices. When observed from Earth, this effectively delays
parts of the pulse profile of the signal creating the characteristic exponential tailed
pulse profile at low frequencies. An example of this phenomenon is shown in figure
1.3. This can be modelled as a convolution of the true pulse profile with a exponential
function.

I(t) / exp(�t/ts), (1.13)

where ts is the scattering time scale i.e signals emitted at the same time from the pulsar
arrives at the detector over a time ts. The amount of scattering is directly proportional
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Figure 1.2: An example showing the effect of dispersive delay for PSR J1357-62 in
an HTRU-South Low Latitude observation. The bottom plot shows frequency versus
rotational phase of a pulsar signal. We can see in this that signals at the lower end
of the frequency spectrum arrive much later compared to higher frequency signals and
they follow a quadratic relation. On the top, we show the pulse profile which has been
completely smeared out. This hinders detection by reducing the final S/N. In section
2.2.2, I will describe a technique called incoherent dedispersion which is a standard
technique used for accounting for this in a typical pulsar search pipeline.
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to the size of the scattering disk. The most commonly used model to explain this is
the thin screen model (Scheuer, 1968), where we assume that all the inhomogeneities
in the ISM follow a Kolmogorov spectrum with a thin plasma screen of irregularities
situated between the pulsar and the observer. Using this model, ts / f

�4. Therefore,
to minimise the effect of scattering, observing at higher frequencies is more desirable.
Additionally, e.g. Bhat et al. (2004) showed by measuring pulse broadening time scales
for a wide variety of pulsars that pulsars at high DM are more likely to be scattered.

1.5.3 Scintillation

Another propagation effect similar to scattering is interstellar scintillation. Scintilla-
tion is the sudden change in intensity of the pulsar signal caused by the relative motion
of the pulsar, the scattering medium and the observer. The irregularities and tur-
bulence in the scattering medium adds phase modulations to the propagating radio
waves. These intensity changes have been observed at various time scales and band-
widths. They are analogous to the effect of twinkling of stars in the night-sky. This
effect was first observed by Lyne & Rickett (1968). Similar to scattering, scintillation is
typically modelled assuming a thin screen model (Scheuer, 1968) and has a character-
istic frequency dependence known as scintillation bandwidth �f / f

4, where f is the
observing frequency. These sudden changes in intensity known as scintils are known
to be more prominent for nearby pulsars at a low DM Sutton (1971); Backer (1975).

1.6 The Pulsar Family: A tale of diversity

There are currently at least 3176 pulsars known4. Naturally, not all pulsars are the
same. Around 232 pulsars5 are known to be located in Globular Clusters (GCs) and a
total of 31 (8 + 23) of them are known to be located in the Small and Large Magellanic
Cloud (LMC) respectively. Pulsars in GCs tend to have a more complicated evolution-
ary history due to the high probability of exchange interactions. Classifying pulsars
into different categories is a useful tool for building models to explain the different types
of pulsars and their evolutionary history. The two most readily available observables
after discovering a pulsar are its spin-period (P ) and its spin-period derivative (Ṗ ).
Therefore, a useful tool is to plot these pulsars in a P � Ṗ diagram. An example is
shown in figure 1.4. As discussed before in section 1.4, we can use P and Ṗ to get an
approximate value for the characteristic age ⌧c of the pulsar and also calculate an order
of magnitude estimate of the neutron stars surface magnetic field Bsurf . The P � Ṗ

diagram is analogous to the Hertzsprung-Russel diagram which tracks the evolutionary
history of conventional stars by plotting the luminosity or absolute magnitude of stars
as a function of its effective temperature or color. From figure 1.4, it is clear that there
are two islands of pulsar distributions. Pulsars on the right side of the figure are called
normal pulsars or slow pulsars. They tend to have a high value for spin-period between

4https://www.atnf.csiro.au/research/pulsar/psrcat/
5
See http://www.naic.edu/~pfreire/GCpsr.html for an updated list.
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Figure 1.3: An example demonstrating the effects of interstellar scattering on multi-
frequency observations of PSR B1831-03. Solid lines show exponential fits to the pulse
profile. It is clear that the effects of scatter broadening is more prominent at lower
frequencies. Figure taken from Löhmer et al. (2004).
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0.1 and a few seconds, high Ṗ ⇠ 10
�15 and a magnetic field of 1011�13G. Pulsars lo-

cated in the bottom left are called millisecond pulsars (MSPs) as they spin much faster
with spin-period values in the order of milliseconds. They also tend to have a lower
values of Ṗ and inferred magnetic field strengths. In the following sections, we will
briefly describe the different types of pulsars currently known.

1.6.1 Young Pulsars

The evolutionary history of each pulsar is expected to be slightly different. However,
we present a general picture which is consistent with current observations. Pulsars are
expected to be born in the top left side of the diagram with a high birth spin-period of
20 ms, high Ṗ > 10

�15 and strong inferred magnetic fields Bsurf ⇠ 10
12�13

G (see for
e.g. Johnston & Karastergiou 2017). These pulsars tend to have a low characteristic
ages ⌧c in the range of 1 - 100 kyr. An important evidence confirming their young age is
the high number of supernova remnant (SNR) associations in this part of the diagram
(see for e.g. Staelin & Reifenstein 1968; Camilo et al. 2002). Supernova remnants are
only expected to last around 10

4�5 years. An additional benefit of associating a pulsar
with a supernova remanant is it is possible to get multiple independent measures of
age of the pulsar (see for e.g. Xu et al. 2005). A classic example of a pulsar in this
category is the Crab Pulsar (Staelin & Reifenstein, 1968) found in the Crab Nebula, a
supernova remnant from the supernova SN 1054 which is only 967 years old.

1.6.2 Normal Pulsars

As discussed earlier in section 1.4, pulsars tend to spin-down over time as they lose
rotational kinetic energy and move to the bottom right side of the diagram in a timescale
of around 105�6 years. This is where we see the vast majority of the known pulsars
mainly because they spend most of their lifetime in this region. They tend to have
spin-period values ranging from 0.1 s to a few seconds. As expected, they also have a
larger characteristic ages ranging from 300kyr  ⌧c  1Gyr. Their surface magnetic
field gets weaker over time and if no external influences are involved then after about
107 years, the pulsar reaches the so called ‘death line’ where the drop in electrostatic
potential becomes too steep in order to maintain coherent radio emission (Chen &
Ruderman, 1993) and the NS is no longer detectable as a pulsar. The exact location of
the pulsar death line is model dependent and a few pulsars are known to lie beyond the
death line. An example of such a pulsar is PSR J2144-3933 (Young et al., 1999) posing
questions on our model assumptions or the nature of the pulsar emission mechanisms.

1.6.3 Millisecond and Binary Pulsars

In the bottom left hand part of figure 1.4, we see a secondary population of pulsars
which spin with a very short spin-period in the order of milliseconds. As mentioned
earlier, these are called millisecond pulsars or recycled pulsars. These can be differenti-
ated from young pulsars as they have much lower values of Ṗ < 10

�17. In this work, we
adopt the definition of Ng (2014) where an MSP is defined as a pulsar with P < 30ms
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Figure 1.4: A P � Ṗ diagram of the known pulsars listed in the ATNF Pulsar Catalog
(PSRCAT; v1.65; Manchester et al. 2005). We have only included Galactic field radio
pulsars (i.e these pulsars not associated with a Globular cluster) Pulsars are plotted
as black dots. Points with black circle around them display known binary pulsars.
Purple triangles highlight the known magnetars as listed in the McGill Online Magnetar
Catalog (Olausen & Kaspi, 2014). Pulsars with known SNR associations are plotted
as green stars. Lines of constant spin-down luminosity Ė, surface magnetic field Bsurf

and characteristic age ⌧c are shown in dotted purple, dashed dot red and dashed blue
respectively. In the bottom right region of the diagram we show the pulsar ‘death
line’ defined here based on equation 9 of Chen & Ruderman (1993) which marks the
approximate region where pulsars are expected to cease their radio emission.
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and Ṗ < 10
�17. MSPs also tend to have lower values of inferred magnetic field strength

around 108�9 G. Another distinguishing feature is that around 67% of MSPs are found
in binary systems compared to 2% of normal pulsars indicating that the evolution of
binary pulsars and MSPs should be interlinked. There are multiple formation channels
for MSPs. We refer the readers to Alpar et al. (1982); Bhattacharya & van den Heuvel
(1991); Phinney & Kulkarni (1994) for a more in-depth review. We present here a sim-
plified version of the standard recycling model. Our evolutionary scenario begins with
two Main Sequence (MS) stars bound together in a binary orbit. The more massive
star evolves off the MS first and forms a pulsar with the scenario described in section
1.2. If the SN explosion disrupts the binary, then we are left with an isolated young
pulsar and a runaway star. If the SN explosion did not disrupt the binary then we are
left with a young pulsar in an orbit around a MS star. The pulsar then proceeds to
spin-down over time as a normal pulsar over the next 106�7 years. Eventually, the sec-
ondary star reaches the end of its MS life and expands to form a red giant. During the
red giant phase, the star starts filling its Roche-lobe. Any matter that passes beyond
its Roche-lobe gets transferred to the companion via a process known as Roche-lobe
overflow (RLO). This process transfers matter and angular momentum towards the
pulsar thereby increasing its spin-period. This process is also called ‘recycling’. During
the mass transfer, an accretion disk is formed around the pulsar. Frictional heating
from the in-falling matter produces thermal X-ray emission and during this stage the
system can be detected as low, intermediate or high mass X-ray binary depending on
the initial mass of the progenitor star (Tauris & van den Heuvel, 2006). This recycling
process is also believed to be the reason for the reduced magnetic field strengths of
MSPs (Shibazaki et al., 1989) and the high degree of circularisation of the orbit (Phin-
ney & Kulkarni, 1994). If the companion’s mass is sufficiently low then once the outer
layers of the star are shed off in a mass transfer phase that lasts around 108 years,
then we are left with a WD in orbit around a MSP. Low mass companion systems
with mc < 0.5M� typically contain Helium white dwarfs (He-WD). These systems also
tend to be the most circularised with eccentricities ranging between 10

�5
 e  10

�1.
Intermediate mass binary systems tend to have carbon-oxygen (CO) WD or oxygen-
neon-magnesium (ONeMg) WD (e.g. Tauris et al. 2011). Given that, MSPs tend to go
through a long recycling phase these systems tend to be older with characteristic ages
of a few Gyr. These have been independently confirmed using measurements of WD
cooling ages (van Kerkwijk, 1996).

An alternate possibility is if the mass of the companion is high enough to eventually
undergo its own SN explosion and if the binary orbit survives, then this leads to the
formation of a rare Double Neutron Star system (DNS). The second supernova explosion
tends to provide an asymmetric kick which either disrupts the binary or if the binary
survives, it decircularises the orbit. Therefore such systems are typically found with
high eccentricity values (Ihm et al., 2006). So far there are only around 20 known DNS
systems 6. DNS systems have been invaluable for testing gravity in the strong-field
regime. Some famous examples include the discovery of the first DNS PSR B1913+16

6https://www.atnf.csiro.au/research/pulsar/psrcat/
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(Hulse & Taylor, 1975b). The measurement of the orbital period decay of this system
provided the first indirect evidence of gravitational waves and the authors of this work
were awarded the 1993 Nobel Prize in Physics. Another interesting example is the
discovery of PSR J0737-3039A/B, the only known Double Pulsar system (Burgay et al.,
2003; Lyne et al., 2004), which have provided even more stringent tests on General
Relativity (GR) and alternative theories of gravity (Kramer et al., 2006; Breton et al.,
2008). An illustration of these different formation channels is shown in figure 1.5.

1.6.4 Nulling, intermittent and mode changing pulsars

For most pulsars during the time scales of our observations we expect to see a pulse for
every rotation of the star. However, there are number of sub-classes of pulsars where
this is not always the case. Backer (1970b) noticed that the radio emission of some
pulsars tend to abruptly switch between ‘ON’ and ‘OFF’ states. During an ‘OFF’ state,
no emission is detected from the pulsar. This phenomenon is called nulling. The dura-
tion of nulling varies for each pulsar and is usually expressed in the form of a quantity
called nulling fraction i.e the fraction of pulses not seen divided by the total number
of expected pulses. Over the years, several pulsars have been reported to exhibit the
nulling phenomenon (Backer, 1970b; Ritchings, 1976; Biggs, 1992; Manchester et al.,
2001; Wang et al., 2007). Besides the nulling fraction, the duration of the ‘OFF’ state
also varies a great deal. For example, pulsars also show lack of emission on a much
longer timescale from hours to days or even years in some cases and these are called
intermittent pulsars (Kramer et al., 2006; Camilo et al., 2012; Lorimer et al., 2012;
Lyne et al., 2017). This is in contrast to nulling pulsars which tend to switch off for
a few pulse periods or minutes. Intermittency has also been linked to spin-down of a
pulsar. The difference in the spin-down rates between the two states is pulsar depen-
dent. For example, Kramer et al. (2006) reported an increase in the spin-down rate of
PSR B1931+24 by a factor of ⇠ 1.5 when the pulsar is in its ‘ON’ state as compared
to its ‘OFF’ state, whereas Camilo et al. (2012) reported a factor of ⇠ 2.5 increase for
PSR J1841-0500. A closely related phenomenon is called mode changing. This was first
noticed by Backer (1970a) in PSR B1237+25 where the emission process transforms be-
tween two or more discrete states which is seen in the form of changes to the integrated
pulse profile of the pulsar. The emission mechanism usually favors one state typically
called normal state for most of the time and can sporadically change to an abnormal
state at other times from times ranging from minutes to hours. Mode changes have
also been reported to be correlated with changes in spin-down rate of the pulsar (Lyne
et al., 2010). It is important to note that mode changing, nulling and intermittency are
expected to be closely related to the pulsar emission mechanism process which is yet to
be fully understood and is unlikely to just be caused by propagation effects discussed
in section 1.5.
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Figure 1.5: An illustration showing the different formation channels for creating an
MSP. Figure taken from Lorimer (2008).
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1.6.5 Magnetars

Found in the top right side of the P � Ṗ diagram, magnetars are isolated neutron
stars which possess a high magnetic field strength of Bsurf ⇠ 10

14�15G and relatively
long spin-period between 2 and 12 seconds. These systems were initially found in
Gamma-Ray and X-ray searches as Soft Gamma Repeaters (SGRs) and Anomalous X-
ray Pulsars (AXPs) and were later proposed to be related to highly magnetised pulsars
by Duncan & Thompson (1992) when conditions for efficient helical dynamo action are
met during the first few seconds of the formation of the NS. The emission mechanism
of magnetars is believed to be powered by the decay of their ultra-strong magnetic field
(Dall’Osso et al., 2012). There are currently 30 Magnetars known,7 (Olausen & Kaspi,
2014) of which 16 are SGRs and 14 are AXPs. 5 of these magnetars have also been
detected in Radio. (Camilo et al., 2006, 2007; Levin et al., 2010; Eatough et al., 2013;
Karuppusamy et al., 2020). We refer the readers to Kaspi & Beloborodov (2017) for a
detailed review of the present state of magnetar research.

1.7 Pulsar Timing

Most of the scientific applications of pulsars (discussed in section 1.8) are made possible
through a technique called pulsar timing. A fully complete review of this topic is beyond
the scope of the thesis. However, we will briefly discuss the topics which are relevant for
our work. For a more exhaustive review we refer the readers to Chapter 8 of Lorimer
& Kramer 2012. The fundamental input of pulsar timing is the time of arrival (TOA)
of a signal from a radio pulsar. Since pulse profiles have a certain width, a TOA refers
to a fiducial point in the pulse profile. In order to have a stable pulse profile, we
average pulses (tens of thousands in the case of MSPs, and hundred to thousand in
the case of normal pulsars), together to form an integrated pulse profile. Following
this, we create a noise-free analytical template of the pulse-profile which is created
by representing the pulse profile as a sum of multiple Gaussian components (Foster
et al., 1991; Kramer et al., 1994). Following this, we improve the accuracy of our
TOAs by cross-correlating the observed profile with the noise-free template. The goal
of pulsar timing is to account for every rotation of the pulsar between observations.
Therefore, this requires maintaining an accurate timing standard. Typically TOAs
are measured from the local time at the observatory which is maintained by hydrogen
maser clocks. However, due to the rotation of the Earth this frame of reference is non-
inertial. Therefore, the next step is to transform the TOAs from this topocentric frame
to an inertial frame of reference which is typically the Solar System Barycenter (SSB).
We then do a least-squares fit analysis in order to minimise the difference between the
predicted and observed TOAs. This difference is called timing residual. A good fit will
show a Gaussian distribution of timing residuals with mean equals to zero and root
mean square that is comparable to TOA uncertainties. Initially, we only fit for period
and pulse reference phase which are expected to impact TOA precision in the short

7http://www.physics.mcgill.ca/~pulsar/magnetar/main.html
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timescale. However, gradually as the dataset expands, we need to introduce additional
parameters in order to fully model the rotation of pulsars. These can be divided into
three categories namely astrometric parameters like proper motion, position, parallax,
spin parameters like the spin-period and higher order derivatives of spin-frequency (as
discussed earlier in section 1.4) and finally binary parameters if the pulsar is orbiting
a companion star. These different processes introduce systematic signatures in our
post-fit TOA residuals which can then be identified and added into our model. An
example of the post-fit TOA residuals for the pulsar PSR B1133+16 is shown in figure
1.6. Panel (a) shows the residuals for a perfect timing model with residuals clustered
around zero. Panel (b) shows a parabolic increase in the residuals which is caused
by underestimating Ṗ in this case by 4 %. Panel (c) shows the residuals from an
incorrect position of the pulsar in this case the declination of the pulsar is offet by 1
arcminute. This creates a sinusoidal signature with a period of 1 yr. Panel (d) shows
the residuals for a pulsar when pulsar’s proper motion is not accounted in this case
µT = 380mas yr

�1. Typically, a pulsar needs to be observed for at-least one year with
regular monthly cadences in order to get an unambiguous measurement of the position
of the pulsar. This helps in breaking the degeneracy between Ṗ created by an incorrect
position and the intrinsic Ṗ . The 1-yr constraint comes from the orbit of the Earth
around the Sun. Once this is done the pulsar is considered as solved and we have a
phase-connected timing solution. Timing beyond the initial one-year can continue for
special cases for example MSPs are particularly useful for pulsar timing as they tend to
have high rotational stabilities making them useful tools for high precision pulsar timing
for example in Pulsar Timing Arrays (section 1.8.5). Additionally, relativistic binary
pulsars also require long-term timing in order to get higher significance measurements
of Post-Keplerian (PK) Parameters (section 1.8.1).

1.7.1 Solving Binary Pulsars

The steps mentioned above assume that the pulsar is isolated. However, if the pulsar
is in a binary orbit around a companion, then this introduces an additional Römer
delay which needs to be accounted for by introducing additional parameters into our
timing model. We usually start by assuming a Keplerian Model for the binary pulsar
which introduces five orbital parameters namely the orbital period (Pb), projected semi-
major axis (x = ap sin i), epoch of passage of periastron (T0), orbital eccentricity (e)
and longitude of periastron (!). The standard timing model used for implementing
this is the Blandford & Teukolsky (BT, Blandford & Teukolsky, 1976). However, the
BT model has its limitations as for pulsars with low eccentricity values e,!, T0 are
not well defined, therefore typically an alternate parameterisation called the ELL1
model is used (Lange et al., 2001). The standard technique used to find the orbit of
the pulsar is by fitting the orbital parameters of the system to a series of spin-period
measurements closed spaced in time in order to sample the different orbital phases of
the binary. A software implementation of this is the tool FITORBIT8 which was used
to solve the binary pulsars reported in section 3.3.2. Freire et al. (2001) introduced an

8https://github.com/vivekvenkris/fitorbit
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Figure 1.6: Example of Post-Fit TOA residuals for the pulsar PSR B1133+16. See
main text for discussion related to each sub-panel. Image taken from Lorimer & Kramer
(2012).

alternative technique that can be applied for pulsars which have only a sparse number
of detections (for e.g. due to scintillation, see Camilo et al. 2000). This is done by
plotting the acceleration of the pulsar versus the spin-period in a period-acceleration
plane. Pulsars which have a circular orbit form ellipses in this plane and by finding the
best-fit ellipse for our measurements, we can use the centre of the ellipse, the length of
the semi-major and semi-minor axis in order to calculate the orbital parameters of the
binary. For pulsars in relativistic orbits, a Keplerian model is insufficient to describe
the orbit in long-time scales. Therefore, additional parameters called PK parameters
are introduced which take into account GR effects. These have been expanded upon
in section 1.8.1.

1.8 Scientific Application of Pulsars

In this section, I will describe some of the most interesting scientific applications of
pulsars. This list is not intended to be exhaustive but is meant to highlight the diverse
range of scientific output that pulsar discoveries can provide. Many of these applications
are the primary motivation for much of the pulsar search work done during this thesis.

1.8.1 Strong-Field Tests of Gravity

General relativity (GR) first proposed in 1915 (Einstein, 1915a) is our current best de-
scription about the nature of gravity. Over the past century, GR has undergone a wide



22 Chapter 1. An Introduction to Radio Pulsars

range of experimental tests. Some examples include the first three classical tests of GR
proposed by Einstein (Einstein, 1916) which are presented here in the order in which
they were confirmed. The first test to be confirmed was the Perihelion precession of
planetary orbits. Einstein (1915b) showed that GR could account for the perihelion ad-
vance of Mercury’s orbit which could not be explained with Newton’s theory of Gravity.
The second test to be confirmed was gravitational light deflection. Light travelling close
to a massive gravitational source like a star is bent due to the curvature of spacetime
around the star. This was confirmed from data taken during the total solar eclipse
on May 29th 1919 (Dyson et al., 1920). The last classical test to be confirmed was
gravitational redshift. As a consequence of the equivalence principle, light coming out
of a gravity well is expected to be redshifted. This has been experimentally confirmed
in laboratories (Pound & Rebka, 1959) and in astronomical observations by measuring
the redshift in spectral line profiles of Sirius B (Greenstein et al., 1971). Shapiro (1964)
proposed a “fourth” test of GR which is called gravitational time delay or Shapiro de-
lay. This is a phenomenon in which light travelling in a gravitational field is delayed
compared to a signal which passes through no gravitational field. This was confirmed
by Shapiro et al. (1971) by reflecting radar signals from Venus. The idea here was that
when Earth, Venus and the Sun were favorably aligned, there would be a measurable
extra time delay caused due to the gravitational potential of the sun. These values
agreed well with GR upto the 5% limit. Recent measurements of the frequency shift of
radio photons to and from the Cassini spacecraft as they passed near the Sun has led to
a confirmation of GR upto the 10�5 limit (Bertotti et al., 2003). Besides, these four, GR
has passed a number of other experimental tests. We refer the readers to Wex (2014)
and references within for a more detailed review. The solar-system tests mentioned
above tests GR in the quasi-stationary weak-field regime (Wex, 2014) i.e v ⌧ c and
spacetime is close to Minkowski spacetime i.e only very weakly curved. Binary Pulsars
on the other hand help us test GR in the quasi-stationary strong-field regime i.e. in
addition to non-relativistic speeds one or multiple bodies are strongly self-gravitating
which introduces significant spacetime curvature. By using the technique of pulsar tim-
ing (section 1.7), we can measure various PK parameters which are phenomenological
additions to the standard Keplerian parameters and these measurements can be used
to do multiple theory independent tests of gravity. The first successful demonstration
of this application was the discovery of the first binary pulsar PSR B1913+16 (Hulse &
Taylor, 1975b) which is a double neutron star system in an orbital period of 7.75 hours
with an eccentricity of e = 0.62. Within a year, the rate of advance of periastron (PK
Parameter) of this system was measured to be !̇ = 4.22(4)

�
yr

�1 (Taylor et al., 1976)
which is 35,000 times larger than the GR contribution to the precession of Mercury’s
orbit 42.98(4)

00 per century (Will, 2014). Additionally, after a few years Taylor et al.
(1979) measured two more PK parameters the Einstein Delay amplitude �E and the
orbital period decay Ṗb. The measurement of the orbital period decay of this sys-
tem provided the first indirect evidence of gravitational waves as the orbital shrinkage
predicted from GR due to the emission of gravitational waves matched exactly with
observations (Taylor & Weisberg, 1982). An example of this is shown in figure 1.7
using updated timing observations of PSR B1913+16 lasting over 30 years (Weisberg
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& Huang, 2016). In terms of gravitational physics, a more interesting example was
the discovery of PSR J0737-3039A/B, the only known Double Pulsar system (Burgay
et al., 2003; Lyne et al., 2004). As the name suggests, this systems contains two radio
pulsars. Pulsar A is a recycled pulsar with spin-period of 23ms and Pulsar B is an
unrecycled slow pulsar with a spin-period of 2.8s. These two pulsars move around in a
much more compact orbit of 2.45 hrs with a mild eccentricity of e ⇠ 0.08. This system
is much more relativistic than PSR B1913+16 with !̇ of nearly 17�yr�1. The nearly
edge-on inclination of the orbit, has helped in the measurement of three additional PK
parameters, the Shapiro range rs and Shapiro shape, ss and relativistic spin precession
which is measured by using the eclipses of pulsar A at its superior conjunction caused
by the magnetosphere of pulsar B. Additionally by timing pulsars simultaneously, we
can measure the projected semi-major axis (x) of the orbit of both pulsars which gives
the mass ratio R of the system. Therefore, a total of 6 PK parameters were measurable
in the case of the double pulsar. Using two PK parameters, we can uniquely determine
the mass of the pulsar and the companion by assuming a theory of gravity. These
measurements are usually displayed in a so called mass-mass diagram. An example of
such diagram for PSR J0737-3039A/B showing all the PK parameters described above
is in figure 1.8. Since, we are trying to measure two independent quantities, namely
the mass of the pulsar and the companion, N curves in the mass-mass plane, leads to
(N � 2) tests of a theory of gravity. For a viable theory of gravity, all these PK param-
eters should meet at a single point within their uncertainty ranges. The double pulsar
was used to do 4 independent tests of GR which it successfully passed within a 5%
uncertainty range (Kramer et al., 2006). Additionally, Breton et al. (2008) performed
a fifth test of GR by measuring the relativistic spin precession rate of pulsar B which
was found to be consistent with GR at the 13% uncertainty range.

Besides gravity tests using DNS systems, NS-WD systems are useful for testing
the Strong Equivalence Principle (SEP) (Damour & Schaefer, 1991; Stairs et al., 2005;
Archibald et al., 2018; Voisin et al., 2020) which is a prediction of GR but is expected
to be violated in multiple alternative theories of gravity. Additionally such systems
can also be used to put constrains on dipolar gravitational waves which are predicted
by alternate theories of gravity like the scalar-tensor family of gravitational theories
(Damour & Esposito-Farese, 1992; Damour & Nordtvedt, 1993). Dipolar gravitational
waves if they exist will be more noticeable for NS-WD or NS-BH binaries due to the
large difference in their gravitational self energy. Some of the current best constrains of
scalar tensor theories of gravity using pulsars are from observations of PSR J1738+0333
(Freire et al., 2012), PSR J0348+0432 (Antoniadis et al., 2013) and the pulsar triple
system PSR J0337+1715 (Archibald et al., 2018; Voisin et al., 2020).

1.8.2 Probing the Galactic pulsar population

Despite the discovery of over 3100 pulsars (Manchester et al., 2005), plenty of pulsars
still await discovery. Faucher-Giguère & Kaspi (2006) estimated that around 105 active
radio pulsars should be beaming towards Earth. An effective way to sample them
is to do an all-sky pulsar survey. Despite best intentions, all pulsar surveys suffer
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Figure 1.7: The cumulative shift in periastron passage of PSR B1913+16 as a function
of time. The horizontal line represents the line of zero orbital decay assuming Newton’s
theory of Gravity whereas the GR prediction assumes a shrinkage of orbit due to the
emission of quadrupolar Gravitational waves. Data points shown in black match with
error bars too small to be visible match precisely with the prediction from GR. Image
taken from Weisberg & Huang (2016).



1.8. Scientific Application of Pulsars 25

Figure 1.8: Mass-Mass diagram of PSR J0737-3039A/B assuming GR. The shaded
regions are excluded by Keplerian mass functions of the two pulsars as sin i  1. The
inset shows the overlap between different PK parameters which gives a common solution
for the masses of the pulsar and companion. Figure courtesy of Michael Kramer.
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from selection effects. For example, from the modified radiometer equation given in
equation 1.14, we know that the minimum detectable flux density of a pulsar survey is
dependent on the integration time of the observation, gain of the telescope, frequency
bandwidth and the system temperature among others which sets a luminosity and
distance threshold for the detectable pulsar population:

Smin =
(SNRmin)�Tsys

G
p
nptobs�f

r
�

1� �
mJy, (1.14)

where � is the digisation degradation factor, Tsys is the system temperature in Kelvin,
G is the Gain of the telescope in KJy�1, np is the number of summed polarisations,
�f is the frequency bandwidth, tobs is the observing time, � is the duty cycle of the
pulsar. SNRmin is the minimum signal to noise ratio threshold which is given as:

SNRmin =

q
ln[ntrials] �

p
⇡/4

p
1� ⇡/4

, (1.15)

where ntrials is the number of independent trials in the pulsar search pipeline.
Additionally, an improved frequency resolution of the survey can help us correct

for dedispersive effects better which improves our sensitivity to the detectable MSP
population. Long integration time observations while increasing our sensitivity to slow
pulsars tends to adversely effect our ability to detect relativistic binary pulsars in
compact orbits due to the apparent change in the spin-frequency of the pulsar in an
observation caused by Doppler modulation as the pulsar rotates around its orbit. In
chapter 5, we will discuss an algorithm that compensates for this effect at the cost
of higher computation time. Periodicity searches using the Fast Fourier Transform
(FFT) algorithm can hamper our abilities to detect slow-spinning pulsars with a narrow
duty cycle (Lazarus et al., 2015; Morello et al., 2020). Only by trying to account for
these selection effects by building bigger telescopes, investing in better electronics and
improving our search algorithms or by incorporating these selection effects into our
models can we get a better understanding of the population of the Galactic pulsar
population. Much of the work in this thesis involves the reprocessing of observations
from the galactic plane component (HTRU-S Lowlat) of the High-Time Resolution
Universe Pulsar (HTRU) survey (Keith et al., 2010). We discuss the implication of our
results on the detectable fraction of PSR-BH binaries in the Galactic-plane sky region
observed by lowlat in sections 3.3.8 and 3.3.9 respectively.

1.8.3 Probing the large-scale structure of our Galaxy and ISM

As described earlier in section 1.5, pulsar signals suffer from various propagation effects
like dispersion, scattering and scintillation as it travels through the ISM. Dispersion
and scattering directly sample the line-of sight electron distribution. Therefore pulsars
with independent distance measurements from parallax, or hydrogen absorption mea-
surements, or from an association with an SNR can be used to calibrate an electron
density model like the one discussed in section 1.5.1. Pulsar signals are also highly
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polarised. The magnetic field of the galaxy acts as a Faraday screen which rotates the
position angle of the linear polarisation by an amount proportional to the the electron
content times the line of sight component of the Galactic field. By measuring the Ro-
tation measure (RM) of a wide range of pulsars, we can use it to probe the large-scale
magnetic structure of the galaxy (e.g. Han 2013).

1.8.4 Matter at ultra-high densities

Pulsars can be used to probe the behaviour of matter at ultra-high densities by mea-
suring it’s equation of state. A number of equation of state models have been proposed
(see Lattimer 2012 for a review). These models give direct observational predictions of
the masses and radius of neutron stars which can then be tested by measuring the mass
and radius of the pulsar through the techniques described earlier in section 1.2. An
example of such a system is PSR J0348+0423 with a measured mass of 2.01±0.04M�
(Antoniadis et al., 2013) which has already ruled out several equation of state models.
Another phenomena of pulsar emission called glitches can also be leveraged to probe
matter at these densities. Glitches are observed rotational instabilities in the pulsar
signal and is likely to be related to the superfluid nature of the liquid neutron star inte-
rior. These are usually observed in young pulsars where we see a small sudden increase
in the rotation rate followed by an exponential decay back to its pre-glitch rotation
rate. This relaxation rate can be thought of as a study of ‘neutron-star seismology’.
We refer the readers to Baym et al. (1969); Anderson & Itoh (1975); Ruderman (1976);
Lyne (1992) for a more in-depth review of the different proposed models for glitches
and their implications for the interior of a Neutron star.

1.8.5 Direct Detection of nanohertz Gravitational Waves

Measuring the orbital period decay of a relativistic binary pulsar gives us an indirect
method to infer the presence of gravitational waves. However, pulsars can also be used
to directly detect gravitational waves. This can done by using pulsar-timing arrays
(PTAs). MSPs are known to be extremely stable rotators. Therefore, by observing a
bunch of MSPs with extremely high timing precision accuracy of about 100 ns and by
looking for correlated quadrupole noise signatures in the arrival times of MSPs spaced
far apart can help us get a direct detection of Gravitational waves in the nano-Hertz
regime (e.g. Jenet et al. 2005). These gravitational waves are believed to be emitted by
the merger of super-massive black holes during early galaxy formation (Foster & Backer,
1990; Jaffe & Backer, 2003; Sesana, 2013). PTAs are complementary to ground-based
gravitational wave detectors which are sensitive to higher frequency gravitational waves
emitted by the merger of stellar-mass black holes (Abbot et al., 2016) and NS-NS merg-
ers (Abbot et al., 2017). Observing a large sample of MSPs requires the coordination
of multiple radio telescopes around the world. Three Different PTA projects are cur-
rently ongoing. These are the Parkes Pulsar Timing Array (PPTA, Manchester et al.
2013), the European Pulsar Timing Array (EPTA, Kramer & Champion 2013) and
the the North American Nanohertz Observatory for Gravitational Waves (NANOGrav,
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McLaughlin 2013). These projects combined together form the International Pulsar
Timing Array (IPTA, Manchester & IPTA 2013). While no detection of gravitational
waves have been made yet, the current most stringent limits for nHz gravitational wave
amplitudes have been set by Shannon et al. 2015. The ongoing monitoring of PTA pul-
sars over the next decade especially by new telescopes like MeerKAT9 and the SKA10

will be crucial for detecting gravitational waves.

1.9 Thesis Outline

This thesis describes current ongoing efforts to find relativistic binary pulsars in Parkes
Observations of the Galactic-Plane Component of the HTRU Pulsar Survey. This
includes the development of novel pulsar search algorithms which has increased the
sensitivity to compact binaries in long observations. The primary motivation for this
was to discover exotic binary pulsars which can help us test GR and alternate theories
of gravity in the quasi-stationary strong-field regime. The purpose of the introduction
was to set up the context for the primary motivation for this work and to highlight the
diverse range of science that new pulsar discoveries can provide. The rest of the thesis
is structured as follows.

In Chapter 2, we describe the basics of acquiring pulsar data from a single-dish
radio telescope and the standard techniques applied in a typical Pulsar-Search Pipeline.
We conclude this chapter with an overview of several past and current galactic-plane
pulsar surveys.

In Chapter 3, we describe a GPU-Based Pipeline of the template-bank algorithm
pipeline developed as a part of this PhD which has been built to search coherently
for circular orbits in the HTRU-S Lowlat pulsar survey. We applied this algorithm
to search for PSR- Stellar Mass BH binaries within our galaxy and to the best of
our knowledge this is the most sensitive and widest search for PSR-BH binaries ever
conducted in the southern sky. We also present our results which includes the discovery
of 20 new pulsars in the re-processing of this survey including a new MSP J1743-24. We
additionally also place flux density and detectable fraction limits for orbital parameters
of PSR+BH binaries in the galactic plane visible to lowlat.

In Chapter 4, we describe a novel Semi-Supervised Generative Adversarial Net-
work (SGAN) which is a machine learning algorithm that has been used to classify
pulsar candidates. This is the first attempt in literature for applying a Semi-Supervised
approach and we believe algorithms like these will be crucial for solving the pulsar can-
didate classification problem for large datasets produced from telescopes like MeerKAT
and eventually SKA.

In Chapter 5, we push the abilities of binary search algorithms further by develop-
ing the first fully coherent Five-Dimensional Pulsar Search Pipeline which can search
coherently for binary pulsars in elliptical orbits. We describe this new approach and
compare them to standard acceleration, jerk search and circular binary search pipelines

9https://www.sarao.ac.za/gallery/meerkat/
10https://www.skatelescope.org/
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typically used in literature. Our results show that Elliptical searches for pulsars or-
biting Intermediate Mass BH is computationally feasible for observations shorter than
2-hrs in Globular Cluster Observations with an eccentricity limit of e  0.1.

Finally, in Chapter 6, we conclude our work and detail possible future research
paths that can be undertaken from the results of this thesis.
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2.1 Data acquisition

Pulsars can be detected at radio frequencies with observed flux density at 1.4 GHz
ranging from µJy to a few Jy (Manchester et al., 2005). Therefore, in order to detect a
vast majority of the pulsars within a reasonable time frame requires a telescope with a
large collecting area. There are several radio telescopes currently been used for pulsar
searching including the 64-m Parkes Radio Telescope (Australia), the 100-m Effelsberg
Radio Telescope (Germany), the 76-m Lovell Telescope at the Jodrell Bank Observatory
(JBO; UK), the Giant Metrewave Radio Telescope (GMRT; India), the 100-m Green
Bank Telescope (GBT; USA), the 500-m Five-hundred-meter Aperture Spherical radio
telescope (FAST; China) and the MeerKAT Telescope (South Africa) among others.
Radio telescopes come in a wide range of shapes (parabolic, spherical, cylindrical) and
can be used as a stand alone instrument or as a part of an interferometer. All the
data analysed as a part of this thesis were recorded at the Parkes radio telescope which
has a paraboloid reflector. Therefore, we will briefly discuss the workings of a typical
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parabolic reflector radio telescope. Radio telescopes do not have an equal sensitivity
in all directions. The optics of a parabolic antennae can be thought of as a circular
aperture diffraction grating that creates a characteristic beam shape or antenna power
pattern consisting of a number of lobes. The main lobe has the overall maximum
sensitivity which peaks at the centre (aligned with the telescope boresight, optical axis
of the telescope) and decreases as we move away from the centre. An example of a
typical antennae power pattern is shown in figure 2.1. An important quantity which
is quoted often in this work is the full width at half maximum (FWHM), also called
half power beam width (HPBW) of a telescope beam which is defined as the angular
diameter of the region where the response of the beam falls to half its central peak
value (-3 dB). The power pattern as described e.g. Rohlfs & Wilson (2000) can be
modelled as a Bessel function with FWHM,

FWHM = 1.02
�

⌘D
rad, (2.1)

where � is the wavelength of the radio signal, ⌘ is the efficiency of the telescope and
D is the diameter of the telescope. Another important quantity is the raw antennae
sensitivity also known as gain G can be calculated as:

G =
A

2kB
=
⌘⇡D

2

8kB
, (2.2)

where A is the area of the telescope and kB is the Boltzmann constant. G / D
2.

Therefore, large telescopes are highly desirable for pulsar observations. An important
difference is that unlike radio imaging, for pulsar observations we prefer to have large
telescope beam areas in order to survey the sky quickly. Figure 2.2 shows a schematic
of the different stages of signal propagation through a radio telescope before the data
is digitised and stored for scientific analysis. We will briefly describe each of this in the
next section.

2.1.1 Frontend

The term frontend usually refers to the initial part of the system that collects the
incoming RF signal, amplifies it and later down converts it into a lower frequency. It
typically consists of a feed horn, a low noise amplifier, a bandpass filter and a mixer
(e.g. Léna et al. 2012). The RF signal collected by the dish and focused on the
receiver is collected by a feed horn which is placed at the focal plane of the telescope
where standing waves at certain RF are allowed to form. The electric fields created
by the standing waves are then sampled by a probe into two orthogonal polarisations
(see Burke & Graham-Smith 2009 for a more in depth review) usually dual linear
or dual circular. The signal path from each of the polarisation channels is similar,
therefore, in the illustration given in figure 2.2, we show the signal path from only one
of them. Since the radio signal is weak, the next step is to amplify the signal using
a Low Noise Amplifier (LNA) that has a specific frequency response centered at the
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�HPBW = �
D

Main lobeSide lobe

Angular Offset

Power in dB HPBW/FWHM

Figure 2.1: Left panel shows the antennae power pattern in polar coordinates plotted
in linear scale and the plot on the right side shows the power pattern in cartesian
coordinates. The diameter of the main lobe is usuallly referred to as Full width at half
Maximum (FWHM). This is the angular resolution of the telescope. Figure adapted
from Kraus (1966)

Figure 2.2: Schematic of signal propagation through a radio telescope. Figure taken
from (Cameron, 2018)
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middle of the observing band. These LNAs are cryogenically cooled to temperatures
in the order of few tens of Kelvin to minimise thermal noise. The amplified signal is
then passed onto a bandpass filter which samples a specific frequency band and can
include additional filters to suppresses any known persistent radio frequency inteference
signals before being passed onto an additional RF amplifier. The next step is to down-
convert the frequency of the signal using a mixer that combines incoming RF signal
fRF with a monochromatic signal from a local oscillator fLO through a process known
as heterodyning. This is primarily done for two reasons as low frequency signals have
lower attenuation losses while transmitting through cables and components operating
at low-frequencies are more readily available. The resulting signal at intermediate
frequencies (IF) = fIF = fRF - fLO is then further isolated by a bandpass filter before
amplified by a chain of amplifiers which is necessary to maintain a stable amplification.
The signal is then transmitted by cables to where the backend is housed.

2.1.2 Backend

The backend is responsible for digitising, processing and storing thee signal for further
analysis. Here, we will describe a specific backend that is commonly used in modern
pulsar observations - the polyphase filterbank. The incoming IF signal is sampled at
the Nyquist frequency so as to preserve information, and digitised using an Analogue
to Digital Converter (ADC). Each digital sample is timestamped using a local high-
precision hydrogen maser clock. The ADC converts the signal into a series of n-bit
numbers with nanosecond sampling which is then passed onto a Field Programmable
Gate Array (FPGA). The FPGA processes discrete blocks of data by calculating a FFT
to produce a fourier spectrum every few microseconds. Due to the finite resolution of
the FFT, this can cause an input signal at a specific frequency to spread its power over
adjacent frequency bins in the power spectrum. This phenomenon is called spectral
leakage. To minimise this effect, modern-day backends use polyphase filtering tech-
niques (Lyons, 2011) which filters the signal response by weighting overlapping bins
with a sinc function pre-FFT. The combination of polyphase filter and FPGA is re-
ferred to as polyphase filterbank. The process also involves channelising the data into
narrow frequency channels in order to minimise the effect of intra-channel dispersive
smearing (section 1.5.1). The resulting fourier spectra can be handled in multiple ways
depending on the scientific application of the data. If the goal is to search for new pul-
sars, then the data is converted to ‘search-mode’ where the spectra is integrated to give
sampling rates of tens of microseconds with the two orthogonal polarisations summed
in quadrature as polarisation information is not required for search-mode observations.
If the spin-period and the dispersion measure of the pulsar is already known, then the
signal can be folded (section 2.2.5) to form a timing archive. This is called recording
in ‘pulsar-timing’ mode. Finally, the data is converted to a common data format and
written to disk. The two most common data formats used for pulsar searching is fil-
terbank1 and PSRFITS (Hotan et al., 2004). The difference between the two formats

1
Refer to section 3 of http://sigproc.sourceforge.net/sigproc.pdf for a detailed description

of this format
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is based on the way the metadata is stored in the header of the file. PSRFITS is
based on Flexible Image Transport System (FITS) (Pence et al., 2010). Most of the
data processed during this PhD uses the filterbank format. In brief, a filterbank file
contains a two dimensional array of frequency channels vs time. The header file can
be thought of as a dictionary which contains metadata like sampling time, frequency
bandwidth among others as key value pairs. These files can be processed with a wide
variety of Pulsar software suits including Sigproc2, Sigpyproc3 and PRESTO4.

2.2 Standard Pulsar Search Pipeline

In this section, we briefly describe the different stages of a typical pulsar search pipeline.
An overview is shown in figure 2.3. We additionally give details for specific techniques
that were used for the results of this thesis.

RFI Mitigation Dedispersion
Time-Domain 
Resampling FFT Harmonic 

Summing

Peak Detection

Save 
Candidates

Folding SiftingPulsar Candidate 
Inspection 

Digitised Data from 
Backend

New DM 
Trial?

Machine Learning 
Pipeline

New 
Binary Search 

Trial?
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No

No

Figure 2.3: Block Diagram showing the different stages of time-domain FFT-Based
Pulsar Search Pipeline. See text for more details.

2https://github.com/SixByNine/sigproc
3https://github.com/ewanbarr/sigpyproc
4https://github.com/scottransom/presto
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2.2.1 Radio Frequency Interference Mitigation

Before we search the data for astrophysical signals, it is important to clean the data.
Observations in radio frequencies are adversely affected by various sources like radars,
television, AC frequency of voltage mains, mobile networks, satellites, Wi-Fi among
others. These are collectively called Radio Frequency Interference (RFI) as they hinder
the detection of pulsar signals. Therefore, RFI mitigation is an integral first part of any
modern pulsar search pipeline. Various techniques have been described in literature
in order to minimise the affects of RFI. We will briefly summarise the most relevant
methods which were used in this thesis.

2.2.1.1 Time-Domain

RFI signals are created by terrestrial sources. Therefore, an effective method of remov-
ing them is to create a time-series at zero dispersion measure (DM; section 2.2.2) i.e sum
all the different frequency channels without applying any delays to form a timeseries.
Bursty signals appearing in this time-series are almost certainly caused by signals orig-
inating from Earth. These signals can be removed by either clipping the data above a
certain threshold or these contaminated signals can be replaced with Gaussian random
noise samples. This is an effective method against short-term impulse RFI.

2.2.1.2 Frequency-Domain

Another option for RFI mitigation is to integrate the observation across time to form
a bandpass (Power vs Observing Frequency). Similarly, to the time-domain method,
data from channels badly affected by RFI can be replaced either with zeros or Gaussian
noise samples from the surrounding uncontaminated data. This technique is effective
against persistent narrowband RFI.

2.2.1.3 Fourier-Domain

Yet another possibility is to identify RFI signals in the fourier domain. This is done
by calculating a FFT of a zero DM timeseries and inspecting the fourier spectrum.
Periodic signals that were too weak to be masked by the time-domain and frequency-
domain method can now be readily identified and zapped. This is a useful tool to
remove higher harmonics of periodic RFI. Genuine pulsar signals are also expected to be
periodic in nature, therefore removing periodic RFI at this stage will help in minimising
the number of false-positive pulsar candidates (section 2.2.5) at a later stage. These
bad frequencies are usually termed as birdies in literature and are generally replaced
by zeros or white noise in the power spectrum.

2.2.1.4 Multi-beam techniques

If observations are recorded with multi-beam receivers5, then additional specialised RFI
mitigation techniques can be applied which can remove RFI signals down to a lower

5
each receiver points at a separate point in the sky and observations are recorded simultaneously
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threshold. The assumption here is that RFI signals caused by terrestrial sources are
likely to be visible in most if not all beams of an observation, in contrast pulsar signals
are most likely to be seen in a single beam.6. An example of a time-domain multi-beam
technique which was used during the data processing of this thesis is the ‘eigen-vector
decomposition’ method. Details about this can be found in Kocz et al. (2012). For
completeness, we briefly describe the algorithm here. The data from all the beams
of the multi-beam receiver are dedispersed (section 1.5.1) at DM= 0 pc cm

�3. This
is followed by calculating the cross-correlation matrix between the different timeseries
and calculating its corresponding eigenvalues. By thresholding on the smallest eigen
values, we mask signals present in all beams. We applied appropriate thresholds based
on how many beams that the signal was detected.7 This time-domain mask is applied
to all beams of an observation where we replace the bad samples with random white
noise. We also employed a fourier-domain multi-beam RFI mitigation technique for our
data analysis. This involved calculating a FFT on the zero DM timeseries of all beams,
and identifying frequencies which are detected in multiple beams. We set appropriate
thresholds based on the number of beams that the signal was detected in.

2.2.2 Dedispersion

After RFI mitigation, the next step is to dedisperse the data. As the radio emission from
the pulsar passes through the interstellar medium (ISM) before arriving at our telescope
receiver, the signal is “dispersed" by the free electron content in the ISM. The amount
of dispersion is proportional to the dispersion measure (DM) which is proportional to
the integrated column density of free electrons between the pulsar and the observer.
This creates a frequency-dependant delay such that lower frequency signals arrive later
compared to higher frequency signals. This dispersive delay is calculated from the top
of a frequency band to the centre of each frequency channel, and is given as

�DM,delayi =
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where �DM,delayi is the calculated delay in seconds for the frequency channel fi with
respect to the top of the frequency band ftop at a particular DM and for a sampling time
tsamp for the observation. We then calculate the nearest integer of this value and slide
each channel by the dispersive delay required. After, this we sum across the frequency
channels to form a dedispersed timeseries. Mathematically, this can be written as:

Tj =

nchansX

i=1

Sj+�DM,delayi
,i (2.4)

6
There are notable exceptions, for example a bright pulsar like PSR J0835-4510 can be detected in

multiple neighbouring beams due to the enhanced sensitivity provided by the beam’s sidelobes.
7
Higher the number of beams in which the signal is seen, lower is our corresponding sigma threshold

to mask them.
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where Tj is the jth sample of the dedispersed timeseries. This is called incoherent
dedispersion as there is still dispersive delay that is unaccounted for within a frequency
channel. An example of the dispersive smearing effect is shown in figure 2.4. In
the case where the DM of a pulsar is known beforehand, dispersion effects can be
completely removed by using a technique called coherent dedispersion. We refer the
readers to Chapter 5.3 of Lorimer & Kramer (2012) for more details on this technique.
Rearranging equation 2.3, we can calculate the dispersive delay within a frequency
channel of width �f assuming �f ⌧ f where f is the central observing frequency as:

�chan,delay = 8.3⇥ 10
3
s⇥DM⇥�f ⇥ f

�3
, (2.5)

In a blind pulsar survey, the true DM of a pulsar is a priori unknown, we typically
de-disperse the data into multiple trial values. The range of the DM values depend on
the part of the sky we are observing with the range provided by an electron density
model such as YMW16 (Yao et al., 2017) and the step size is decided based on our
acceptable loss of signal to noise ratio (SNR) tolerance level. If the step sizes are too
close, computation time is wasted on redundant trials, whereas if the trials are spaced
too far apart, then we could miss new pulsar discoveries as the signal would be smeared
out. In practise, we use a DM tolerance parameter DMtol that limits the maximum dm
smearing time which can be calculated as:

DMtol = (1 + ") �
Wtot

We↵

, (2.6)

where Wtot is the total observed pulse width and We↵ is the effective pulse width of
pulsar. Values can range from 1.01 (no losses) to 1.35 depending on the use case. We
typically use a DM tolerance of 1.11 for most of our analysis in this thesis.

2.2.3 Periodicity Searches

Once, the observation has been cleaned and dedispersed for a given trial DM, the next
step is search for periodicities in our data for a possible pulsar signal. There are two
standard approaches in the literature to solve this problem. First is by calculating a
Fast Fourier Transform (FFT) (Cooley & Tukey, 1965) and running a peak detection
algorithm to find the spin-period of the pulsar. The second approach is entirely done
in the time-domain and is called Fast-Folding Algorithm (FFA) (Staelin, 1969). The
latter is more suited to find slow spinning pulsars with narrow duty cycles. We refer
the readers to Morello et al. (2020) for a more in depth review of the FFA algorithm.
Here, we will briefly discuss here the workings of a typical FFT pulsar search pipeline
which is relevant for the results of this thesis.

2.2.3.1 Discrete Fourier Transform (DFT)

Calculating fourier transforms is one of the most efficient ways to find periodic signals in
a dataset. Since a dedispersed timeseries is a collection of non-continuous, independent
set of samples we use the discrete fourier transform. For a uniformly spaced timeseries
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Figure 2.4: An example showing the effect of dispersive smearing on PSR J1357-62. On
the top, we show freq-phase and pulse profile plots when no DM corrections have been
applied. We can see that signals at the lower end of the frequency spectrum arrive much
later compared to higher frequency signals and they follow a quadratic relation. The
bottom plot shows the frequency-phase and pulse-profile after we apply corrections
for DM (in this case DM = 420.8 pc cm

�3). This is done by applying appropriate
time delays proportional to the DM value to each frequency channel which leads to an
improved detection. This process is known as dedispersion.
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Tj , the kth component of a DFT (see for e.g. Bracewell 2000) can be calculated as:

Fk =

N�1X

j=0

Tje
�2⇡ijk

N , (2.7)

where N is the total number of samples in the timeseries and i =
p
�1, k is usually

called the Fourier frequency or wave number. Calculating a DFT for large N is com-
putationally expensive. The above equation is basically a dot product and scales as
O(N

2). A faster approach is to calculate an FFT (Cooley & Tukey, 1965) which scales
as O(NlogN). A further speed up can be achieved by taking advantage of the fact
that the data points in observations are real-valued. Therefore, the fourier transforms
are symmetric about the Nyquist frequency ⌫nyquist such that FN�k = F

⇤
k where the

latter is the complex conjugate of the former. Therefore, we only need to calculate the
amplitudes of half of the fourier frequencies which gains us an additional factor of 2.
(Press et al., 1992). The highest frequency that can be detected with an FFT is given
by the Nyquist Shannon sampling theorem which is:

⌫nyquist =
1

2tsamp
, (2.8)

We then calculate the fourier power spectrum by summing the real and imaginary parts
as:

Pk = Re(F
2

k ) + Im(F
2

k ), (2.9)

A limitation of the DFT/FFT algorithm is that due to the finite resolution of the
data, the natural frequency of the pulsar need not always lie on the centre of the
frequency bin. The response of the FFT in frequency is not uniform. Its maximum for
signals falling in the centre of the fourier bin and loses sensitivity as you go towards
the edge of a bin. This is called scalloping (see for e.g. Middleditch et al. 1993).
Ransom et al. (2002) showed that the worst case loss of fourier power could be as high
as 41% with an average loss of 23% (van der Klis, 1988). There are multiple options
to minimise this. One of the simplest options which we use later in our analysis is to
pad the data with the mean of the signal. This is called mean padding. Padding adds
no power to the data but increases the spectral resolution which reduces the effects of
scalloping. This however, does come at the cost of computing a larger FFT. We refer
the readers to Ransom et al. (2002) and references within for a more in depth review
of this topic and details on other techniques.

All the techniques discussed so far are ideally suited for finding sinusoidal signals
in Gaussian white noise. However, pulsars typically have a duty cycle � (� = W/Pspin)
of a few percent, where W is the width of the pulse. Therefore, the power in the
fourier spectrum is distributed between the fundamental frequency and a number of
harmonics. To recover the power from these harmonics, a technique called incoherent
harmonic summing is implemented (Taylor & Huguenin, 1969). It is called incoherent
as there is no phase information of the signal. It basically involves stretching the fourier
spectrum in powers of two and adding it to the original unstretched spectrum, the idea
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here is that if the powers in the harmonics are roughly equal then they increase by
a factor of 2 whereas the noise in the folded spectrum will only increase by

p
2. We

also repeat this procedure to gain power from odd number of harmonics. Since a
priori in a search, we do not know the duty cycle of a pulsar, we typically do up-to 16
harmonics sums which is sufficient for pulsars with duty cycles � > 0.02 (Ransom et al.,
2002). For wider profile pulsars typically MSPs, adding higher harmonics could reduce
sensitivity as it just involves adding noise. Therefore, all the standard pulsar search
softwares typically investigate each harmonic fold separately for statistically significant
detections before adding them.

2.2.4 Binary Pulsar Search Techniques

Fourier based analysis discussed in the previous sections assume that the spin-period
of the pulsar does not change during an observation. Therefore, these are effective for
detecting isolated pulsars. However, if the pulsar is in a short period binary orbit,
the observed apparent frequency of the pulsar changes due to Doppler modulation.
If this effect is unaccounted for, then the signal is smeared onto neighbouring fourier
bins which hinders detection. One possibility to correct for this is the time-domain
resampling technique. The main idea is to add or subtract appropriate delays to the
each sample of the timeseries in order to shift the reference frame from the observer
to an inertial frame of reference (for e.g. binary system’s barycenter). After this, we
implement our standard fourier techniques to find the pulsar. Mathematically, this can
be written as

⌧(t) = ⌧0

✓
1 +

V1(t)

c

◆
, (2.10)

where ⌧(t) here represents the time in the barycenter frame, ⌧0 is a constant used for
normalisation and V1(t) is the radial velocity of the pulsar and c is the speed of light in
vacuum. We have neglected terms in v

c higher than first order. When we are searching
for new binary pulsars V1(t) is a a priori unknown, therefore, we need to do a grid
search over values of V1(t) in order to be sensitive to a wide range of binary pulsar
orbits. With no prior information, a fully coherent search will require searching over
Five Keplerian parameters in addition to searching over period and DM. This is com-
putationally expensive and has never been attempted before. We will expand more on
the feasibility of this search technique in chapter 5 of this thesis. A simplified approach
to this problem is to first order assume that the line of sight acceleration of the pulsar
is a constant during the course of an observation i.e V1(t) = a1t. This is called an
“acceleration-search” and is the most widely used technique in the literature. For every
DM trial, we search over range of acceleration values depending on the orbital param-
eters of the binary pulsar we want to be sensitive towards. This is usually the most
computational demanding part of a modern pulsar search pipeline. Some examples of
doing acceleration search using time-domain resampling include analysis of 47 Tucanae
Globular Cluster observations (Camilo et al., 2000), the Parkes multibeam pulsar sur-
vey (PMPS) (Manchester et al., 2001), re-analysis by Eatough et al. (2013), analysis of
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the High-Time Resolution Universe (HTRU) survey (Ng et al., 2015; Cameron et al.,
2020) among others. An alternative approach is to correct for the binary motion en-
tirely in the fourier domain. This is the so called “correlation-technique” (Ransom, 2001;
Ransom et al., 2002) where after calculating a FFT, we use matched filtering in the
fourier domain to “sweep up” signal spread over a number of frequency bins into a single
bin. An implementation of this technique can be found in the code ACCELSEARCH
which is a part of the PRESTO8 software package. This technique has also widely
been used in literature. Some notable examples include its first application which led
to the discovery of PSR J1807-2459A, a binary pulsar with an orbital period Porb=1.7
hrs in the Globular Cluster NGC 6544 (Ransom, 2001), eccentric, binary millisecond
pulsar PSR J1946+3417 (Barr et al., 2013) and a number of discoveries in the Arecibo
Pulsar-ALFA (PALFA) survey (Lazarus et al., 2015). Despite the success of accelera-
tion searches so far, it has its drawbacks. The assumption of constant acceleration is
valid only if the observation samples a small fraction of the orbit typically for long or-
bital period binaries P orb � 10 T obs (Ransom et al., 2003; Ng et al., 2015). Therefore,
shorter observations are more preferable for finding relativistic binary pulsars. How-
ever, the sensitivity of a pulsar scales as Tobs

1/2, therefore with an acceleration search
we have a trade-off between sensitivity and the ability to detect relativistic binary pul-
sars. Recently, Andersen & Ransom (2018) implemented Fourier domain jerk searches
which has increased sensitivity to orbits in the P orb � 5-15 T obs regime. Allen et al.
(2013); Knispel et al. (2013) implemented full orbital searches assuming a circular orbit
to search for binary pulsars in PALFA and PMPS survey respectively. In chapters 3
and 5, we will compare the sensitivity and use-cases of the search techniques discussed
above to the new techniques developed during the analysis done for this thesis. Other
less commonly used techniques include “stack/slide” technique (Faulkner et al., 2004)
and a phase modulation search (Ransom et al., 2003).

2.2.5 Candidate Sifting and Folding

After searching through the data using the techniques listed above, we are left with
a list containing the FFT spin-period, SNR along with the corresponding DM and
acceleration value it was detected at. A real pulsar signal can be detected with varying
SNR across multiple period, DM and acceleration values. Therefore, it is important in
order to save compute time to group together duplicate detections, retaining only the
candidate with the highest SNR. This process is known as sifting. After sifting, we then
fold the observations in phase using the detected parameters to form a folded archive.
This is typically called a pulsar candidate. Pulsar candidates are four-dimensional data-
cubes consisting of time, frequency, rotational phase and power of a signal. We then
produce various one-Dimensional and two-Dimensional projections of this datacube in
order to visually diagnose if the signal is from a pulsar or not. An example of such a
diagnostic plot showing a real pulsar signal discovered from the analysis of this thesis
is shown in figure 2.5. The top left hand side of the plot marked as ‘1’ is the pulse
profile of the signal. We create this by integrating over both time and frequency axes

8https://github.com/scottransom/presto
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while preserving phase. Pulsar signals can have one or multiple peaks with a narrow or
broad duty cycle ranges whereas RFI signals tend to be sinusoidal. The plot marked
as ‘2’ is the Phase-Time plot and the plot marked as ‘3’ is the Phase-Frequency plot.
Real pulsar signals tend to be persistent (vertical line) across both frequency and time.
The plot marked as ‘4’ is the DM curve plot. This is created by dedispersing the data
around a few trial DM values from the original DM used to fold the candidate, it then
calculates a �2 of the dedispersed pulse profile against a horizontal line fit. A large �2

indicates a strong deviation. We expect pulsar signals to peak at a non-zero DM value.
The plots marked as ‘5’ show �

2 vs Period and P-dot. This can be thought of as a fit
for P and P-dot and we expect real signals to peak at a particular value of P and P-dot.
The plot marked as ‘6’ shows the signal in P-Pdot plane. Traditionally, plots like these
were visually analysed in order to classify between Pulsar and RFI signals. However,
modern pulsar surveys like HTRU-S Lowlat produce tens of millions of candidates in
one processing run making it practically infeasible to inspect all of them. Chapter 4
of this PhD thesis presents a novel Semi-Supervised Machine learning algorithm that
automates this process.

2.2.6 An overview of Galactic-Plane Surveys

We conclude this chapter with a brief overview of the pulsar surveys conducted so far
with more emphasis on Galactic-Plane surveys. A full review covering all the pulsar
surveys and the lessons learnt are beyond the scope of the thesis, however we give a
brief summary in order to give context to the bulk of the scientific results of this thesis.

2.2.7 Previous Generation Surveys

The discovery of the first pulsar by Hewish et al. (1968) inspired the creation of multiple
first-generation pulsar surveys by different radio telescopes around the world to discover
as many similar exotic objects as possible. Some examples include the first Molonglo
transit survey with the Molonglo Cross Telescope (MOL1; Large et al. 1968; Turtle
& Vaughan 1968; Vaughan & Large 1970, 1972) which used a pen-chart recorder to
store the signal of the receiver, the first Jodrell Bank survey (JB1) using the 76-m
Lovell Telescope (Davies et al., 1970; Davies & Large, 1970; Davies et al., 1973) pushed
this further by using a computer to automatically detect bright single-pulses. These
surveys were typically conducted at a central frequency of 408MHz with a bandwidth
of 4MHz using only two frequency channels. Despite, the relative success of these
surveys, they were severely limited by today’s standards and were only able to detect
the brightest of pulsars. The clustering of pulsars close to the Galactic plane were
remarkably already noticed in Large et al. (1968); Wielebinski et al. (1969). Both
these studies reported an anomalous distribution with more pulsars south of the galactic
plane and a zone of avoidance was proposed to explain the absence of pulsar within
the plane itself. Today, we can explain these non-detections mostly due to the low
sensitivity and coarse frequency resolution of the survey which hindered removing the
effect of dispersion that is more pronounced close to the plane. In order to find weaker
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Figure 2.5: Discovery plot of PSR J1722-3809 which was found in the re-analysis of
HTRU-S Lowlat Survey. We have marked the different sub-components of the plot that
is typically used to identify if a signal is from a genuine pulsar. Plot marked as ‘1’ is
the pulse profile of the signal, ‘2’ and ‘3’ are the Phase-Time and Phase Frequency plot
respectively. Plot ‘4’ is the DM curve, Plot ‘5’ shows �2 vs P and Pdot which can be
thought of as a fit for the best period and period derivative. Plot ‘6’ shows the signal
in P-Pdot plane. More details about each of these plots can be found in section 4.2.6.
This figure was created using the PRESTO software package.
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pulsars, the first Arecibo survey (AR1; Hulse & Taylor 1974; Hulse 1975; Hulse &
Taylor 1975a) was carried out using the 305-m Arecibo telescope at a central frequency
of 430MHz but with 32 channels across an 8MHz bandwidth. They used Fourier
techniques like the FFT and time-domain techniques like the FFA (Burns & Clark,
1969; Taylor & Huguenin, 1969) which are still in use today and found 40 new pulsars
including the first binary pulsar ever to be found-PSR B1913+16 (Hulse & Taylor,
1975b). Arguably, the most successful pulsar survey of this era was the second Molonglo
survey (MOL2; Manchester et al. 1978). MOL2 reported the discovery of 155 new
pulsars single-handedly doubling the number of known pulsars at the time. Following
MOL2, several significant milestones were reached including the discovery of the first
MSP PSR B1937+21 (Backer et al., 1982) spinning at a rate of 1.56ms. This was
likely missed by earlier surveys due to their coarse time sampling rate which was in
the order of few tens of milliseconds. This discovery inspired the second and third
Arecibo surveys (AR2, Segelstein 1986) and (AR3, Nice et al. 1995), the Green-Bank
short period survey using the 92-m telescope at Green Bank, (GB3, Stokes et al. 1985),
the Parkes Southern survey (PKS70; Manchester et al. 1996; Lyne et al. 1998) which
searched for MSPs with a much faster sampling rate and increased channelisation of
the frequency bandwidth. All the surveys mentioned so far were conducted at low radio
frequencies of 400-430 MHz. Surveys conducted at these frequencies are severely limited
by selection effects like interstellar scattering (⌫�4), dispersion pulse broadening (⌫�3)
and the high galactic background temperature close to the Galactic-Plane. Therefore,
around this time, a number of attempts were made to do Galactic-plane surveys at
higher frequencies. Some examples include the second Jodrell Bank Survey (JB2)
(Clifton & Lyne, 1986), the Parkes 20-cm survey (Johnston et al., 1992) which had
a sampling rate of 0.3ms and a central frequency of 1434MHz with a bandwidth of
80MHz. The trade-off of observing at higher frequency is the decreased brightness of
the pulsar signal and smaller telescope beam size (Area / ⌫

�2), therefore requiring
more observations to cover the same part of the sky.

2.2.8 The Parkes Multibeam Pulsar Survey

The Parkes Multibeam Pulsar Survey (PMPS, Manchester et al. 2001) is arguably the
most successful pulsar survey ever to be conducted and is an important milestone in
the history of pulsar astronomy. PMPS has so far found greater than 1000 pulsars
with new pulsars still being discovered using new search techniques. Observations for
this survey began in 1997, covering a galactic longitude 260� < l < 50� and galactic
latitude |b| < 5� with an integration time of 35 min and a sampling rate of 250 µs.
The success of this survey can be largely attributed to the then newly installed 20cm
13-beam Multi-Beam Receiver (MB-20, Staveley-Smith et al. 1996) at the focus-cabin
of the Parkes Radio telescope. We refer the readers to Lyne (2008) for an interest-
ing narration of the history and context surrounding the building of this receiver. It
was originally intended for extragalatic H1 surveys like the HI Parkes All-Sky Survey
(HIPASS) and Zone of Avoidance (ZOA), however due to the large number of beams
and wide frequency bandwidth of 288MHz, it was later extensively used for pulsar
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observations. Some notable achievements using PMPS data include the discovery of
the relativistic binary PSR J1141-6545 (Kaspi et al., 2000) which has recently been
used to infer Lense-Thirring precession (Venkatraman Krishnan et al., 2020) discovery
of the first Rotating Radio Transients (RRATS, McLaughlin et al. 2006; Keane et al.
2010), three double neutron star (DNS) systems, PSR J1811-1736 (Lyne et al., 2000),
PSR J1756-2251 (Faulkner et al., 2005) and PSRs J1753-2240 (Keith et al., 2009), and
hundreds of young pulsars (Manchester et al., 2001; Morris et al., 2002; Kramer et al.,
2003; Hobbs et al., 2004; Lorimer et al., 2006) which shed more light into the Galactic
population of pulsars (Lorimer et al., 2006). Additionally, new pulsars were found a
decade later in the reprocessing of PMPS. Some examples include 16 new pulsars found
using a coherent acceleration search technique (Eatough et al., 2013), 24 pulsars with
the Einstein@Home volunteer distributed computed project using the template-bank
algorithm (Knispel et al., 2013). The first application of neural networks to classify
pulsar candidates were also applied to the data from the PMPS survey (Eatough et al.,
2010a).

2.3 The HTRU-S LowLat pulsar survey

HTRU-S Lowlat forms the bulk of the data that was analysed during this thesis. There-
fore, we will expand more about this pulsar survey in the subsequent section.

2.3.1 Introduction and Survey goals

HTRU-S Lowlat is one part of the High Time Resolution Universe9 (HTRU) which is an
all sky, high time and frequency resolution blind survey aiming to find new pulsars and
radio transient objects. HTRU-South (HTRU-S) covers the southern part of the sky
and the observations were taken using the 64-m Parkes Radio Telescope in Australia at
L-band (Keith et al., 2010). A corresponding survey that covers the northern part of the
sky is currently ongoing with observations taken at the 100-m Effelsberg telescope in
Germany (Barr et al., 2013). The HTRU survey consists of three parts covering different
galactic latitude regions called High Latitude (HiLat), Med Latitude (MedLat) and Low
Latitude (Lowlat). Broadly speaking, the aim of the high-latitude survey was to cover
large parts of the sky at 64 µs time resolution to discover transient events. The Midlat
survey was aimed at discovering bright isolated millisecond pulsars (MSPs) which would
be useful for pulsar timing array projects. The aim of Lowlat is two-fold. First is to
discover low luminosity pulsars deep in the Galactic plane and the second is to find
relativistic binary pulsars which are expected to be found close to the galactic plane. A
detailed list of the observational parameters of each component of the survey is given in
table 2.1 and a visual representation of the sky coverage and overlap region can be found
in figure 2.6. Other than the sky coverage and integration time, all other observational
parameters and specifications of the survey are identical. For completeness, I describe
the observational set-up here briefly. HTRU-South uses the same 13-beam Parkes 21-

9https://sites.google.com/site/htrusouthdeep/home
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cm multibeam receiver (MB20) as used in previous Parkes surveys like the PMPS.
The main technological improvement of HTRU over PMPS is the higher frequency and
time resolution offered by the Berkeley Parkes Swinburne Recorder (BPSR) backend
system (Keith et al., 2010). This increases the sensitivity of of HTRU towards MSPs
as it increased the frequency resolution by a factor of 8 compared to the PMPS which
minimises the effects of dispersive smearing. Additionally, the time resolution of 64 µs is
a factor of four greater than the sampling time of 250 µs of the PMPS which mitigates
the effects of aliasing for the higher harmonics of MSPs. Additionally, Lowlat also
doubled the integration time with Tobs = 1.2h which makes it one of the most sensitive
and deepest Galactic-Plane survey conducted till date. The sensitivity of the Lowlat
survey to MSPs and Normal Pulsars is given in table 2.2. The observations were
recorded as a polyphase filterbank in search-mode using dual-polarisation across 1024
channels at a channel bandwidth 391 kHz with a total usable bandwidth of 400 MHz.
However, in practice due to RFI from the Tharuya 3 satellite, the usable bandwidth
was reduced to 340 MHz, with 870 channels remaining. We refer the readers to (Keith
et al., 2010) for a more detailed description of the observation set-up of the HTRU-
South survey. The HTRU survey project is part of an international collaboration, with
the primary responsibility of data-processing and follow-up shared between the Max-
Planck-Institute für Radioastronomie (MPIfR) in Germany, the Swinburne University
of Technology and the Australia Telescope National Facility (ATNF) in Australia, the
Istituto Nazionale di Astrofisica (INAF) in Italy and the University of Manchester in
the UK.
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Table 2.1: Survey specifications for HTRU North and South Pulsar surveys. Table adapted from (Ng, 2014; Cameron, 2018)

HTRU-North HTRU-South
Telescope Effelsberg 100-m Parkes-64m
Receiver 7-Beam MB20
Backend PFFTS BPSR
Peak gain, G (KJy�1) 1.5 0.735
Receiver temperature, Trec (K) 21 23
Digitisation bit-rate, nbits 8 2
Number of polarisation summed, np 2 2
Central frequency, fc (MHz) 1360 1352
Bandwidth, B (MHz) 240 340
Number of channels, nchan 512 870a

Channel bandwidth, �fchan (kHz) 468.75 390.625
Sampling time, tsamp (µs) 54.6 64
Region of declination, �(�) � > -20 � < +10
Survey region HiLat MedLat Lowlat HiLat MedLat Lowlat
Sky region in Galactic longitude, l(�) - - - - -120 < l < 30 -80 < l < 30
Sky region in Galactic latitude, b(�) |b| > 15 |b| < 15 |b| < 3.5 - |b| < 15 |b| < 3.5
Integration time, tobs 90 180 1500 270 540 4300
Characteristic minimum sensitivityb, Smin (mJy) 0.61 0.34 0.13 0.4 0.3 0.13
Mean sky temperature, Tsky

c(K) 5 8 11 1.0 2.5 7.6
Number of beams, Nbeams 1066135 375067 87395 443287 95056 15990
Number of samples per beam, nsamp 1.6 ⇥ 106 3.3 ⇥ 106 27.4 ⇥ 106 ⇠ 222 ⇠ 223 ⇠ 226

Data size per beam (GB) 0.8 1.6 13.4 1.0 2.0 16.6
Total data size (TB) 818 576 1118 435 190 263

a Originally contains 1024 channels but due to RFI filters only 870 channels are usable.
b Calculated for a pulsar with spin period of a few ms and a duty cycle of 30 per cent.
c Values of Tsky extrapolated from the 408-MHz sky-map presented in Haslam et al. (1981).
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Figure 2.6: Sky coverage of HTRU pulsar survey. Red regions marked with ‘\’ shows
the part of the sky covered by the southern survey whereas blue regions marked with ‘/’
indicate the region covered by the northern survey. A full list of the survey specifications
can be found in table 2.1. Figure taken from Ng (2014)

Table 2.2: Characteristic minimum detectable flux density S1400,min also known as
sensitivity of the HTRU-S Lowlat pulsar survey. The minimum, mean and maximum
values of sensitivity are reported for populations of MSPs (P < 30 ms) and Normal
pulsars with different pulsar duty cycles. Table adapted from (Ng, 2014)

MSPs Normal Pulsars
�(%) S1400,min(mJy) �(%) S1400,min(mJy)

min 0.28 0.013 0.014 0.0030
mean 11.54 0.092 4.21 0.053
max 65.31 0.35 57.29 0.29

2.3.2 Discovery Highlights

The HTRU-S as a whole has already discovered at least 230 new pulsars (Keith et al.,
2010; Bailes et al., 2011; Bates et al., 2011; Keith et al., 2012; Burgay et al., 2013;
Ng et al., 2014; Bates et al., 2015). Of this, the first pass processing of the Lowlat
portion of the survey contributed 100 new discoveries. A full list of these pulsars and
initial timing solutions can be found in Ng et al. (2015); Cameron et al. (2020). The
former study also includes a detailed description of the observing and search strategy.
The flagship discovery of Lowlat so far has been the detection of one of the most rel-
ativistic binary pulsars PSR J1757-1854, a DNS in a highly eccentric (e⇠0.6) 4.4-hour
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orbit (Cameron et al., 2018), which was used to perform three independent tests of
GR, and future timing observations are expected to measure Lense-Thirring preces-
sion. Some additional highlights include PSR J1653-4518, a 1.5-year eclipsing binary,
PSR J1812-15, a 1-s pulsar in a 20.3-hr circular orbit around a light companion which
also exhibits variable emission switching between on and off states (Cameron et al.,
2020), PSR J1755-2550, a young pulsar with a massive, compact companion (Ng et al.,
2018), PSR J1759-24, an eclipsing binary system with a long orbital period (Ng et al.,
2015). Some other notable achievements of the general HTRU survey include the dis-
covery of a radio loud magnetar, PSR J1622-4950 (Levin et al., 2010), PSR J1719-1438,
a ‘Pulsar-Planet’ binary (Bailes et al., 2011). Many of these pulsars are still being fol-
lowed up by various telescopes around the world and are expected to produce more
exciting scientific results in the future. Despite the successes of HTRU so far, as shown
from the example of PMPS many pulsars can still be discovered by employing novel
search algorithms. The first pass processing of Lowlat used a segmented-acceleration
search pipeline (Ng et al., 2015) which is sensitive to pulsars with a constant accel-
eration during an observation. Therefore, relativistic binary pulsars with a changing
acceleration (also called jerk) could have been missed in past analysis. In the next
chapter we will report results from the re-processing of Lowlat with novel algorithms
like the template-bank algorithm which searches directly over Keplerian Parameters.
This improves our sensitivity towards relativistic binary pulsars at a higher computa-
tional cost. We describe the algorithm, the CPU and GPU pipeline developed as a part
of this thesis and the new discovery of 20 new pulsars including a MSP which has been
confirmed to be in a binary orbit. We also additional discuss a novel semi-supervised
machine learning solution which has been incorporated to the Lowlat pipeline to reduce
the number of pulsar candidates that need to be inspected by eye.
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3.1 Motivation: Why search for PSR-BH Binaries?

To test gravity in extreme conditions requires either a high gravitational potential or
for the compact objects involved to have relativistic velocities. Pulsars can be thought
of as high precision clocks attached to point masses, therefore the discovery and sub-
sequent timing of a pulsar orbiting a black hole will provide a unique opportunity for
testing GR and alternate theories of gravity in the strong-field limit near the vicinity
of a black-hole. The discovery of such systems opens up a parameter space that cannot
be explored by Solar System tests, Double-Neutron Star Binaries or PSR-WD binaries.
This is shown in the left hand side of figure 3.1 where we show the Gravitational self-
energy " expressed in terms of its rest mass energy as " ⇠ �GM/Rc

2, where G is the
Gravitational constant, M is the mass of the compact object, R is its radius and c is
the speed of light in vacuum is plotted against its orbital size. The lower right half of
this diagram is excluded as it implies a compact object with orbit smaller than its size.
We see that " ⇠ �10

�10 for Earth, " ⇠ �10
�6 for the Sun, " ⇠ �0.2, 0.5 for a NS and

BH respectively. Alternative theories of gravity like scalar-tensor theories (Damour
& Esposito-Farese, 1993; Damour & Esposito-Farèse, 1996) predict the properties of
gravity to be dependent on the Gravitational self-energy ". Therefore, by timing ob-
jects having different gravitational self-energies in an orbit with a common external
gravitational potential can help us test the Strong Equivalence Principle (SEP) which
is a prediction of GR but is expected to be violated in alternate theories of gravity
(Deruelle, 2011). The most stringent limits for violation of SEP are currently provided
by timing a PSR-WD system (Archibald et al., 2018; Voisin et al., 2020). However, as
shown in the right hand side of figure 3.1 where Schwarzschild radius of the compact
object is plotted against its gravitational mass, PSR-BH binaries are expected to have
larger strong-field effects and therefore by testing SEP in these regimes could either lead
to a violation of GR or put even more stringent limits on alternate theories of gravity.
Additionally, such discoveries will almost certainly improve our understanding of stellar
evolution of massive progenitor stars. PSR-BH binaries are also expected to improve
our understanding of BH-Physics (Paczynski & Trimble, 1979). As discussed earlier
in section 1.8, by continuously monitoring the radio pulsar in timing mode we can
measure the orbit’s Post-Keplerian Parameters. Measurement of two Post-Keplerian
Parameters would give us as a unique measurement for the mass of the pulsar and the
BH assuming GR. The spin and quadrupole moment of the BH can also be determined
through pulsar timing by measuring the effects of relativistic spin-orbit coupling and
classical spin-orbit coupling respectively. These measurements could be used to directly
test the “No-hair" theorem and the Cosmic-Censorship Conjecture. (Wex & Kopeikin,
1999; Kramer et al., 2004).
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Figure 3.1: Gravitational Regime probed by PSR-BH Binaries. Figure from Kramer
et al. (2004). See main text for discussion.

3.1.1 Formation

There are two main formation channels hypothesised to create a PSR-BH binary. One
is from the evolution of massive binary stars in the Galactic field analogous to the
formation of DNS systems discussed earlier in section 1.6.3. The alternative is the
dynamical formation scenario. This occurs in areas of high stellar density like Globular
Clusters (GCs) or the Galactic Centre which increases the probability of three-body
interactions. These interactions can cause a NS to gain a companion by exchanging
with a primordial binary and subsequently be spun up to become an MSP (Hills, 1976;
Sigurdsson & Phinney, 1995; Ivanova et al., 2008; Clausen et al., 2014). In this section,
we will limit our discussion to the former scenario which is relevant for the processing
of Galactic-Plane observations undertaken during this thesis. In the standard binary
stellar evolution model (Yungelson & Portegies Zwart, 1998; Voss & Tauris, 2003),
the more massive primary star will evolve first forming a black hole followed by the
secondary star which forms a radio pulsar at a later epoch. Since the PSR is formed
second, no spin-up is possible hence we expect to find a slow spinning normal pulsar
orbiting a black hole in a wide eccentric orbit in this formation channel. Alternatively,
a BH+MSP binary can be formed by the so-called reversal mechanism where under
certain conditions the pulsar is formed first and is later spun-up by accretion during
the red giant phase of the secondary star (Sipior et al., 2004; Pfahl et al., 2005). Some
examples of binary pulsars which had a similar evolutionary history are PSR B2303+46
and PSR J1141-6545, both of which are pulsar-white dwarf binaries in which the neu-
tron star was born after the white dwarf (Tauris & Sennels, 2000; Davies et al., 2002).
Discovering BH+MSP binary systems are more desirable as MSPs tend to be more
precise timers than normal pulsars (e.g. Verbiest et al. 2009). Population synthesis
work by Chattopadhyay et al. (2021) has shown that binaries where the NS is formed
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first are 3-4 orders of magnitude rarer compared to the scenario in which the BH is
formed first. A caveat to add here is that all these predictions depend on the forma-
tion rate of PSR-BH binaries in the Galaxy which is not well understood. Narayan
et al. (1991) estimated that the number and formation rate of BH-NS binaries in the
Galaxy are comparable to the corresponding estimates of DNS systems. However, Pfahl
et al. (2005) estimated that fewer than 10 of PSR-BH binaries currently reside in the
Galactic disk less than 0.1%-1% of the number of DNS systems. Kruckow et al. (2018)
using their population synthesis simulations estimated that mixed systems like NS-BH
binaries are the most commonly formed double compact objects. Therefore, this re-
mains an open question and will likely only get resolved by more sensitive observations
and/or detections of such systems. However, despite several observational efforts span-
ning across decades covering a wide range of frequencies, none have been found so far.
Using the prior information available from previous searches and based on the results
of population synthesis studies mentioned above, we decided to undertake two separate
search strategies. One targeting MSP+BH binaries and another targeting BH+normal
PSR binaries in more compact orbits. We will expand more on this in section 3.2.4.

3.1.2 Limitations of current search strategies

Finding new binary pulsars in compact orbits is challenging because the apparent period
of the pulsar changes during the course of observation due to Doppler modulation as
the pulsar moves around its orbit. If this is unaccounted for, then the signal will get
smeared out in the FFT. If we know the exact line of sight radial velocity of the pulsar,
then we can add or subtract appropriate delays in our timeseries in order to recover
the signal from the observations. However, since before discovering a pulsar we do
not know the velocity, we need to search through a range of possible values. With no
prior information, this would lead to a five parameter search for each of the Keplerian
Parameters in addition to the usual DM trials and period trials in the FFT for a
standard pipeline. This has historically been computationally unfeasible. The most
commonly used technique is to first order assume that the line of sight acceleration is
constant during the course of an observation i.e V = a ⇥ t, which adds just one extra
parameter a that needs to be searched. Correcting for acceleration can be done both in
the time-domain (Johnston & Kulkarni, 1991) and frequency domain (Ransom et al.,
2002). While this technique has been used successfully to discover several binary pulsars
the assumption of constant acceleration breaks down when we sample a large fraction
of the orbit in an observation i.e P orb  10 T obs

1 (Ransom et al., 2003; Ng et al., 2015).
Therefore, shorter observations are more desirable for finding binary pulsars. However,
the sensitivity of a pulsar signal scales as Tobs

1/2, therefore pipelines built on the
acceleration-search algorithm are limited to finding binaries in long orbits. In practise
a mixed strategy is usually adopted with mild acceleration trials done on the full-length
observation and higher acceleration trials done on “segments" of the data. This was
also the processing strategy used in the first-pass processing pipeline of HTRU-S Lowlat
called a partially coherent segmented-acceleration search pipeline (Ng et al., 2015). In

1
This will often be referred to in this thesis as the 10% rule.
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order to address these drawbacks a new GPU pipeline was built as a part of this PhD
thesis built on previous works done by Knispel (2011); Knispel et al. (2013); Allen
et al. (2013) and the gravitational-wave search community. This approach uses the
template-bank algorithm to build orbital templates for potential binary pulsar signals
by directly searching over Keplerian Parameters assuming a circular orbit. Over the
next few sections, we will describe this technique and demonstrate the extra sensitivity
gained by our pipeline by comparing it to standard pulsar search techniques used in
literature for simulated PSR-BH observations. We will also describe our results of
applying this technique on data from HTRU-S Lowlat which is the most sensitive
Galactic-Plane survey at L-Band for PSR-BH systems in the southern hemisphere.

3.2 Methods: Coherent Search over Keplerian Parameters
for Circular Orbits using the template bank algorithm

The template bank construction method described here is similar to the technique
described in Chapter 5 which is applicable for the general case of elliptical orbits. Here,
we expand on the special case of circular orbits, and its application on observations of
HTRU-S Lowlat data.

3.2.1 Signal Model for Circular Orbits

We first start by defining the rotational phase of a binary pulsar which acts as our
signal model. We make the following assumptions in our signal model. The orbit of
the pulsar is Keplerian.2 We know the exact location of the source on the sky, therefore
Doppler phase drifts caused due to the detector motion can be removed and the signal
is monochromatic at the spin-frequency of the pulsar f0 i.e we ignore spin-down effects
of the pulsar. Therefore, the rotational phase � for the fundamental mode of the signal
emitted by a uniformly rotating pulsar in a circular orbit observed from solar-system
barycenter is

�(t) = 2⇡f0t+ �D(t), (3.1)

where t is the barycentric time, f0 is the spin-frequency of the pulsar and �D(t) is
the Doppler phase correction factor due to the pulsar being in a circular orbit, given by
(see section 2B of Dhurandhar & Vecchio 2001 for the full derivation of this expression
and section 5.2.1 for the general case of elliptical orbits.),

�D(t;⇤) =
2⇡f0a sin "

c
sin(⌦t+ ↵). (3.2)

where, " is the inclination angle of the pulsar orbit, ⌦ is the angular velocity of the
pulsar which is related to its orbital period as ⌦ =

2⇡
Porb

, ↵ is the initial orbital phase

2
This assumption is based on the typical timescales of search-mode observation of radio pulsars

which is in the order of few hours. For long observations lasting months or years, additional parameters

including Post-Keplerian and spin-down parameters need to be added to the phase model.



56
Chapter 3. Keplerian-Parameter Searches for PSR-BH Binaries in

Circular Orbits in the HTRU-South Lowlat Survey

and c is the speed of light in vacuum. Combining equations 3.1 and 3.2, we get

�(t;⇤) = 2⇡f0

⇥
t+ ⌧ sin(⌦t+ ↵)

⇤
. (3.3)

where ⌧ =
a sin(")

c is the projected semi major axis in light seconds, ⇤ = {f0,⌦, ⌧,↵} is a
tuple of the Keplerian orbital parameters and spin frequency of the pulsar signal. Since,
a priori these values are unknown, we need to search through a wide range of trials,
each trial can be thought of as a “template” of the signal that is under consideration.
Therefore, in order to do a blind coherent search for circular orbits we need to search
through a four dimensional parameter space of f0,⌦, ⌧,↵. We then do a matched
filtering process by convolving the detector output with various templates of the pulsar
signal. This is a widely used technique in Gravitational-wave data analysis (for e.g.
Owen & Sathyaprakash 1999; Abbot et al. 2007, 2009). In order to sample efficiently in
this four-dimensional grid, we need a measure of distance in the parameter space. The
distance can be approximately calculated by computing the parameter space metric
(Owen, 1996) which will be defined in the next section. We will then discuss some of
the limitations of this metric approximation and describe a technique that overcomes
this.

3.2.2 Definition of Parameter Space Metric and Mismatch

Before we define the metric we first start by defining a coherent detection statistic. We
know that the total time-domain radio intensity is a sum of instrumental, environmental
noise N(t) and harmonic sums of a pulsar signal. This can be written as:

s(t;⇤) ⌘ N(t) +

1X

n=1

sn(t;⇤), (3.4)

where the intensity of each harmonic is given by

sn(t;⇤1) ⌘ <
⇥
Anexp[in�(t;⇤]

⇤
, (3.5)

where An are the complex amplitudes of the harmonics of the signal. We then define
a coherent detection statistic Pn(⇤,⇤

0
) for the nth harmonic computed using the radio

intensity correlated with the nth normalised signal template currently being searched
exp[�in�(t;⇤)]. This is the detection statistic recovered from a pulsar signal with true
parameters at ⇤ with a template at ⇤

0.

Pn(⇤,⇤
0
) =

����
1

T

Z T

0

dt s(t;⇤) exp
⇥
�in�(t;⇤

0
)
⇤����

2

. (3.6)

Thresholding the detection statistic helps us minimize the false-alarm probability at
a fixed rate of false-alarm probability Allen et al. (2002). In the absence of a pulsar
signal, the N(t) term dominates and the detection statistic term is proportional to the
instrumental noise whereas in the presence of a strong signal the N(t) term can be



3.2. Methods: Coherent Search over Keplerian Parameters for Circular
Orbits using the template bank algorithm 57

neglected and the expectation value of the detection statistic then becomes,

hPn(⇤,⇤
0
)i ⇡

����
An

2

����
2
����
1

T

Z T

0

dt exp[in(�(t;⇤)� �(t;⇤
0
))]

����
2

. (3.7)

A priori we do not know the pulse-profile of the signal, therefore we construct
detection statistics for up-to 32(25) harmonic sums i.e P0, P1...P5 and we equally weight
them assuming a Dirac-delta pulse profile. This can be written as:

SL =

2
LX

n=1

Pn. (3.8)

where 2L is the number of harmonic sums performed.
Using equation 3.7, we can define the mismatch (fractional loss of detection statistic

in our case signal to noise ratio) between two points as

m(⇤,⇤
0
) = 1�

Pn(⇤,⇤
0
)

Pn(⇤,⇤)
⇡ g↵� �⇤

↵
�⇤

�
+O(�⇤

3
), (3.9)

where a mismatch of one implies complete loss of signal and a mismatch of zero implies
a perfect recovery of the signal, g↵� is the metric tensor, ↵ and � correspond to points
in the four-parameter space described earlier and we adopt the Einstein summation
convention where repeated indices are summed over. For small deviations of the pa-
rameter space coordinates, g↵� can be calculated by Taylor expansion as (section 8.5
of Knispel (2011) for the full derivation)

g↵� = h@↵�@��iT � h@↵�iT h@��iT , (3.10)

where the angle brackets represent time average of a function G(t)

hG(t)iT ⌘
1

T

Z T

0

dtG(t). (3.11)

3.2.3 Frequency-Projected Metric

In principle, we can construct a template-bank for the four dimensional parameter
space of ⇤ = {f0,⌦, ⌧,↵}, however since we have an efficient algorithm (FFT; Cooley
& Tukey 1965) to search in f0, in practise for computational reasons, we calculate a
frequency projected metric tensor which is defined for the maximum spin-frequency of
the of the harmonic of the signal fmax that our search is sensitive towards. This can
be thought of as a slice across our parameter space for a given value of f0. Our search
analysis then becomes a Cartesian product of a three-dimensional orbital template-
bank ⇤orb = {⌦, ⌧,↵} along with a uniformly spaced grid in the frequency axis. This
can be calculated as:

�↵� = g↵� �
gf↵gf�

gff
, (3.12)



58
Chapter 3. Keplerian-Parameter Searches for PSR-BH Binaries in

Circular Orbits in the HTRU-South Lowlat Survey

where the repeated indices are summed over. Therefore, for each orbital template,
we resample our timeseries to the binary system’s barycenter by applying a time-
domain resampling algorithm (described in section 5.5.1) and then calculate an FFT.
For circular orbit searches, the number of orbital templates scales to the third power
of the spin-frequency

�
Ntemplates / f

3
0

�
. For pulsars with spin-frequency f0 > fmax, we

have a lower sensitivity i.e higher average mismatch and conversely for spin frequency
f0 < fmax, we have increased sensitivity i.e on average a lower mismatch value.

3.2.4 Constraining the Parameter Space for PSR-BH Binary
Searches

Before, we construct a template-bank, we need to decide the range of the parameter
space (⇤ = {f0,⌦, ⌧,↵}) for our search analysis. Our goal while designing the search
range, was to explore an astrophysically interesting parameter space that is yet to be
investigated. One of the primary goals of the HTRU-S Lowlat survey was to discover
new relativistic binary pulsars. The anticipated discovery of the first pulsar-black hole
binary is considered a holy grail in astrophysics. Such systems are expected to contain
an unrecycled pulsar because the black hole forms first, and are expected to have
highly eccentric orbits. A full five keperlian parameter search for PSR-BH binaries
in eccentric orbits for a survey like lowlat is still not computationally feasible. We
discuss this in more detail later in section 5.2.1. Since a pulsar in a highly eccentric
orbit spends most of its time away from periastron, a circular orbit search can still be
sensitive to parts of its orbital phase and put limits for the existence of such systems.
Therefore we constrain our search-range using our astrophysical prior information for
likely orbital and spin-frequency parameters of PSR-stellar Mass BHs and the available
computational resources that can be used for our analysis. We exclude parameter space
regions that have already been investigated by previous search analysis. The first-pass
processing of HTRU-S Lowlat used a segmented-acceleration search pipeline (Ng et al.,
2015; Cameron et al., 2020) with the maximum line of sight acceleration for each
segment chosen in order to be sensitive towards a PSR-BH system with a minimum
orbital period Porb = 10Tobs, BH mass of 10 M� in a circular orbit (e = 0) with an
edge-on inclination (" = 90

�). The acceleration ranges used for each segment of HTRU-
S Lowlat can be found in table 3.1. The minimum orbital period threshold comes from
the previously defined 10 % rule due to the assumption of constant “acceleration”. The
advantage of using the template-bank algorithm is that we do not have this lower orbital
period constrain. In principle, it can be used to search for circular orbits of arbitrary
orbital periods assuming computational feasibility. Given these prior searches, we place
an upper limit on the orbital period in our template with Pb,max = 12h for a 72-minute
observation assuming that binaries with longer orbital periods would have already been
discovered by the acceleration-search pipeline. We focused our reprocessing efforts on
the 72-minute full-length observations given the extra computational trials required
to probe our four dimensional parameter space of ⇤ = {f0,⌦, ⌧,↵} and we leave the
processing of segmented observations using the template-bank algorithm for future
reprocessing efforts. Our lower limit for orbital period was decided solely based on the
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Table 3.1: A summary of the acceleration search ranges probed by the first-pass pro-
cessing pipeline of HTRU-S Lowlat using the Segmented Acceleration-Search Pipeline.
It includes the minimum orbital period of a binary pulsar the search is sensitive towards
and the total number of segments (s) in each group. Table adapted from Cameron et al.
(2020)

Segment s Tobs Pb,min |amin| |amax|

(s) (h) (ms
�2) (ms

�2)

Full-length 1 4320 12 0 1
Half-length 2 2160 6 0 200
Quarter-length 4 1080 3 200a 500
Eighth-length 8 540 1.5 0 1200

a A minority of the HTRU pointings were processed with
|amin|  200ms

�2 in the s=4 segment.

amount of computation resources available.

In section 3.1.1, we discussed that assuming the standard binary stellar evolu-
tion model, Normal Pulsar+BH binaries are 3-4 orders of magnitude more likely than
MSP+BH binaries (Chattopadhyay et al., 2021). Additionally, the number of required
orbital templates scales as

�
Ntemplates / f

3
0

�
. Therefore, we designed two separate

searches in order to maximise our chances for detecting these separate populations
of PSR-BH binaries. We call this a “Recycled PSR-BH Binary Search” (RPB)
and a “Non-Recycled PSR-BH” Binary Search (NRPB). For our RPB search,
we chose an fmax = 77Hz i.e Pspin,min ⇠ 13.0ms and for the NRPB search, we chose
an fmax = 10Hz i.e Pspin,min = 100.0ms. Given the lower computational load for our
NRPB search, due to the low value of fmax, we designed our template-bank to cover
the orbital period range between Porb = 3�12h whereas for the RPB searches we cover
Porb = 6 � 12h. The computational time for an FFT scales as O(n log n), where n is
the number of samples in the timeseries. Each lowlat observation spans 72-minutes
and have a native time resolution of 64 µs. Therefore, once we dedisperse the data,
this creates a timeseries of 226 samples. Calculating an FFT of 226 samples for each
orbital template and DM trial for every observation in lowlat is computationally
very expensive. Additionally, any detections in the FFT would also have to be folded
on observations at the native time resolution which adds up to the total processing
time of the survey. Therefore, for purely practical reasons for the RPB search, we
downsampled the data by a factor of 4 to 256 µs which gives us a Nyquist frequency of
1.95 kHz and access to up-to 16 harmonics of a hypothetical 77Hz signal, and for the
NRP search we downsampled the data by a factor of 16 to 1024 µs, Nyquist frequency
= 488.28Hz. This gives us access to up-to 32 harmonics of a hypothetical 10Hz signal
below the Nyquist limit. The orbital and spin-parameters covered for each search is
given in table 3.2 and the DM range and frequency range probed by our pipeline can
be found in table 3.3.
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Table 3.2: A summary of the orbital and spin period range used to create our template
bank. We placed no constrains on the initial orbital phase and our maximum projected
semi-major values were chosen based on kepler’s laws for an orbit with inclination angle
of 90 degrees and masses of pulsar and companion given below.

Search Type tint Min. Pb Max. Pb Masspulsar Masscompanion Pspin,min

(h) (h) (h) (M�) (M�) (ms)
Recycled

PSR-BH Binary
Search (RPB)

1.2 6.0 12.0 1.4 8.0 13.0

Non-Recycled
PSR-BH Binary
Search (NRPB)

1.2 3.0 12.0 1.4 15.0 100.0

Table 3.3: Search Configuration for both our Lowlat searches displaying the Maximum
DM searched, the frequency range probed in our FFT, and the total beams processed.
DM tolerance DMtol and DM pulse width Wint control the spacing of the DM trials.

Search Parameter Lowlat
DMmax (pc cm�3) 3000

NDMtrials 1876 (RPB), 1126 (NRPB)
DMtol 1.11

Wint(µs) 64
Nharmonics 16
fmin (Hz) 0.1
fmax (Hz) 1100.0
Nbeams 14,488

Fraction processed 87.1 %
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3.2.4.1 Constraint on projected semi-major axis

Our upper limit on the projected semi-major axis depends on the orbital period, pulsar
and companion masses we want our search to be sensitive towards. Using Kepler’s 3rd
law, we know that

a
3
⌦
2

orb =
Gm

3
comp

(mpulsar +mcomp)
2
, (3.13)

where a is the orbital radius, G is the gravitational constant, c is the speed of light
in vacuum, mpulsar and mcomp is the mass of the pulsar and companion respectively.
Rearranging equation 3.13 and writing in terms of projected semi-major axis in light-
seconds ⌧ =

a sin "
c , we get

⌧ = sin "⇥ F (mcomp,mpulsar)⇥ ⌦
� 2

3
orb

. (3.14)

where F (mcomp,mpulsar) is a mass-dependent scaling factor given as:

F (mcomp,mpulsar) =
G

1
3mcomp

c (mpulsar +mcomp)
2
3

(3.15)

For a given orbital period and inclination angle, the projected radius ⌧ is maximum
when the pulsar mass mpulsar is minimal and the companion mass mcomp is maximal.
⌧ is also directly proportional to the sine of the inclination angle (✓ = sin ") with the
maximal value obtained for the edge-on case i.e " = 90

�. When " = 0
� i.e the orbit

is face-on with respect to the observer, ⌧ = 0 and no Doppler Modulation is observed.
Using these properties, we calculate the constraint on ⌧ as:

0  ⌧  ✓ ⇥ F (mcomp,max,mpulsar,min)⇥ ⌦
� 2

3
orb

, (3.16)

where mcomp,max is the maximum companion mass, mpulsar,min is the minimum
pulsar mass. For both our searches we set the minimum pulsar mass = 1.4M�. The ✓
parameter can be used to constrain the maximum inclination angle we want our search
to be sensitive to, however we chose ✓ = 1, so that we are fully sensitive even in the
worst-case edge-on scenario with maximal Doppler modulation. For our RPB search
we set the maximum companion mass mcomp,max = 8M� and for our NRPB search
we set mcomp,max = 15M�. For the initial orbital phase ↵ we placed no constraint
↵ = [0, 2⇡) radians.

Orbital inclinations are expected to be distributed randomly in nature. Thus the
orbital inclination unit vectors can be thought of as distributed randomly on the surface
of a unit sphere, thus making it uniform in cos ". We can calculate the fraction p of
binary systems with inclination angle between 0 and "max as:

p =

Z "max

0

d" sin " = 1� cos "max = 1�

p
1� sin

2
"max = 1�

p
1� ✓2 (3.17)
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As shown in equation 3.14, the projected semi-major axis ⌧ depends on the mass
ratio and the inclination angle for a given orbital period. Therefore, since we selected
✓ = 1, if the mass of the companion mcomp  mcomp,max and the mass of the pulsar
mpulsar � mpulsar,min, then we can detect the system for any orbital phase and incli-
nation angles assuming the flux density of the binary system is within our sensitivity
limits. Additionally, we also retain a non-zero sensitivity for higher companion masses
and lower pulsar masses. For any arbitrary pulsar and companion mass, using equation
3.13, the orbital radius a = F (mcomp,mpulsar)⌦

�2/3
orb

. Substituting this expression to
the left hand side of equation 3.16, we get :

✓(mpulsar,mcomp) = ✓0
F (mcomp,max,mpulsar,min)

F (mcomp,mpulsar)
, (3.18)

where ✓0 = 1 is our chosen bound on the sine of the inclination angle for our search.
Therefore, using equation 3.17, we can calculate the fraction p as a function of pulsar
and companion mass which is detectable due to favorable orbital inclination as:

p(mpulsar,mcomp) = 1�

q
1� ✓2(mpulsar,mcomp). (3.19)

For RPB search p(mpulsar,mcomp) is shown in figure 3.2. Region marked in “white”
is detectable for any inclination angle and orbital phase whereas for the rest of the
diagram we retain only partial detectability depending on the orbital inclination angle.
For the NRPB search, p(mpulsar,mcomp) is shown in figure 3.3. Due to the higher
companion mass limit of this search, we can detect a wider range in this plane for any
inclination angles and orbital phases. However, the caveat is that this is true only for
unrecycled pulsars with spin-period Pspin � 100ms and for binaries in circular orbits.

3.2.5 Orbital Template Bank Construction

In this section we describe our technique for constructing an orbital template bank
which was used for the reprocessing of HTRU-S Lowlat observations. As mentioned
earlier, we construct orbital templates for the binary parameter space ⇤orb = {⌦, ⌧,↵}

along with a uniform grid in the spin frequency axis f . Since a priori, we do not
know the orbital and spin parameters of the pulsar, we search through various tem-
plates of a hypothetical pulsar signal. A combination of many such templates form a
template-bank. Our template-bank construction method is similar to previous works
by Knispel (2011); Allen et al. (2013) and Knispel et al. (2013). These works were in
turn based on the extensive research done by the gravitational wave search community.
(for e.g. Owen 1996; Owen & Sathyaprakash 1999; Abbot et al. 2007, 2009; Messenger
et al. 2009; Harry et al. 2009). Prix (2007) showed that generating a template bank
is an instance of the sphere covering problem and techniques from this field can be
used to construct optimal template banks. There are two characteristic quantities for
a template-bank-coverage ⌘ and mismatch m. The classical approach of creating a
lattice-based template-bank has been to cover every point in the parameter space with
a template i.e ⌘ = 1. However, this quickly becomes inefficient in higher dimensions and



3.2. Methods: Coherent Search over Keplerian Parameters for Circular
Orbits using the template bank algorithm 63

Figure 3.2: Fraction p of the total solid angle covered for our Recycled PSR-BH search.
Region marked as ‘white’ is detectable for all inclination angles and orbital phases.
For the rest of the diagram we retain only fractional sensitivity p where the orbital
inclination angle is favorable.
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Figure 3.3: Fraction p of the total solid angle covered for our Unrecycled PSR-BH
search. Region marked as ‘white’ is detectable for all inclination angles and orbital
phases. Here we have a wider region where we are fully sensitive compared to our RPB
search. However, the caveat is that this is true only for unrecycled pulsars with spin-
period Pspin � 100ms and for binaries in circular orbits. For the rest of the diagram
we retain only fractional sensitivity p where the orbital inclination angle is favorable.
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for curved parameter spaces due to the difficulty in performing coordinate transforma-
tions to avoid non-constant metric components. Mismatch m as defined in equation 3.9
quantifies the fractional loss in detection statistic due to separation between the true
location of the signal and the template compared to the ideal case when the template
is exactly at the signal location. In practise, we defined a nominal mismatch value
threshold i.e the worst-case tolerable detection statistic loss. In our searches, we fix
this value to m = 0.2.

3.2.6 Random Template Banks

The main idea behind building random template banks is to give up the requirement
of complete coverage of the parameter space (⌘ = 1). Instead, we aim for a user-
defined probabilistic coverage of the parameter space (⌘ <1). We then distribute the
random templates based on the chosen nominal value. For our searches, we chose
⌘ = 0.9,m = 0.2 similar to previous searches by Knispel (2011); Knispel et al. (2013);
Allen et al. (2013). This implies that we cover 90 % of the parameter space with a
nominal mismatch of 0.2. These values were chosen based on practical considerations
depending on the total amount of required orbital templates for this configuration
and the amount of computation resources available. The total required templates are
distributed randomly with uniform probability based on values of the volume element
which is the square root of the determinant of the parameter space metric p

g (see
equation 3.10). The required number of templates can be calculated by computing the
volume integral of this parameter space. Then we substitute values of the required
coverage and mismatch in the template bank. We refer the reader to Messenger et al.
(2009) for an in-depth review of this algorithm and section 5.2.3 of this thesis where we
give the expressions required to calculate the number of orbital templates in a random
template-bank for a given coverage and mismatch. For our RPB search, based on the
orbital period, projected semi-major axis and initial orbital phase constraints given in
section 3.2.4 and table 3.2, we need 16,157 orbital templates whereas for our NRPB
search, we need 8389 orbital templates in our random template bank.

3.2.7 Distributing orbital templates in the parameter space using
MCMC sampling

Once, we calculate the number of required orbital templates, we then need to distribute
these templates optimally in the parameter space. Our goal here is to generate the tem-
plate bank i.e sample from a probability distribution P (⌦, ⌧,↵) which is proportional
to the square root of the determinant of the metric tensor

��pg
�� which is our probabil-

ity density function Q. Markov Chain Monte Carlo (MCMC) methods are well suited
for such problems. Here, we specifically use the Metropolis-Hastings (MH) algorithm
(Metropolis et al., 1953; Hastings, 1970). MH is useful to sample from a probability dis-
tribution P (⌦, ⌧,↵) when direct sampling is cumbersome due to the difficulty involved
in calculating the normalization factor. Here, we know that P (⌦, ⌧,↵) = k

p
g(⌦, ⌧,↵)

with k being the normalization factor. Briefly, MH works as follows- We start from a
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random point in the parameter xn and then propose a new state xprop and calculate
the posterior distribution function (PDF) P(xprop) at this new point. We always accept
the step the PDF value increases and sometimes accept the step when the PDF value
decreases. Here we implement a special case of MH called the Independence Chain
Metropolis Hastings algorithm because our proposal density function Q does not de-
pend on xn i.e Q(xprop|xn) = Q(xprop). Therefore, our acceptance criteria becomes

xn+1 =

(
xprop, if U(0, 1) < P(xprop)

P(xn)

xn, otherwise

where U(0,1) is a uniform probability distribution between 0 and 1. We accept orbital
templates using the above criteria until our required total templates are met. The
scaling of orbital templates in the parameter space is non-uniform. Generally, more
orbital templates are required for short orbital periods and a combinations of short
orbital periods and high a sin " values. We discuss extensively the details of this scaling
relation and show a corner plot demonstrating the required sampling density across each
Keplerian Parameter for PSR-BH binaries in circular and elliptical orbits in figures 5.1
and 5.2 respectively.

3.2.8 Stochastic Template Banks

As described earlier in equation 3.9, we use the parameter space metric in order to
quantify the mismatch obtained if a binary pulsar signal is recovered at a different
point (given by our orbital template) compared to its true location in the parameter
space. However, the metric approximation is only valid up-to second order deviation
of the coordinates. When higher-order terms of the metrics contribute, we typically
overestimate the mismatch value i.e the metric returns a higher mismatch value than the
true mismatch between the signal and the template. This leads to an overestimation of
the required templates that can be pruned to save computation time without impacting
the nominal mismatch in the template bank. This can be achieved using the stochastic
template-bank algorithm (Harry et al., 2009). Here, we first start with a Random
template-bank3 and then we compute the mismatch between two templates at a time
using the full integral (equation 3.7). If the two templates overlap each other by more
than 1 � m, then one of these templates is removed. We repeat this procedure for
every pair until no new points are available. The drawback of this algorithm is that it
is computationally expensive as for N templates in a template-bank can require up-to
N(N�1)

2
evaluations of the integral in equation 3.7. This is an upper-limit as some

templates maybe rejected quite early during pruning. In order for this approach to
be practically useful, we need to parallelise the generation of this stochastic template-
bank. This is done by dividing the template-bank into various subgroups and pruning
overlapping templates within each subgroup in parallel. This is illustrated in figure

3
Starting with a Random template bank is not a pre-requisite, however this leads to a faster

convergence to create a stochastic template bank as the templates are already distributed based on

the pseudo density function of the metric.
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Figure 3.4: An illustration describing the pruning process in order to construct a
stochastic template bank. We divide the random template-bank into various sub-
divisions (we show two subgroups here for simplicity) called coarse random template-
banks. Templates that overlap by more than 1 - m, are pruned to form finer stochastic
template banks. Two sub-groups can then be combined by one-by-one merging increas-
ing our coverage and decreasing our nominal mismatch.

3.4. The main advantage here is we can start merging these subgroups in subsequent
steps by comparing the mismatch between templates in one subgroup with another.
Each template need not be checked against all the template of its own subgroup as
this was already done in the previous step. The total number of iterations is still
comparable to the serial case, however, since these are distributed across multiple
CPU cores, large savings in wall-clock time is possible. For our RPB search, we had
16,157 orbital templates in our template-bank and after pruning we were left with
10,524 templates in the stochastic template-bank. This entire stochastic template bank
generation process costed six days of computation time using 2000 CPU cores of the
Hercules Computing Cluster located in Garching. The total time taken for processing
Lowlat was expected to be about 18 months, therefore the up-front cost of investing
a week worth of computation time in order to reduce the number of trials by 35 % was
worth it in this case. For the NRPB search, we used a random template-bank for our
pipeline as the total processing time savings wasn’t significant.
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3.2.9 Verification of Template Bank

Once we generate a random/stochastic template-bank it is important to verify that
it satisfies the nominal coverage and mismatch values for signals located within its
parameter space region. For brevity, we only show here the verification procedure used
for our template-bank in the RPB search. A similar verification was also done for
the template-bank created for the NRPB search. We do this by testing our template
bank on simulated observations of PSR-BH binaries in circular orbits with a uniform
distribution in orbital periods covering the 5-10 Tobs regime. We used a modified version
of the code FAKE from Sigproc4 for these analysis. We simulated 10,000 observations
with an integration time of 72-minutes with the same frequency bandwidth and number
of channels compared to Lowlat. The pulsar had a spin-period of 13 ms with a duty
cycle of 20 %. We used a sampling time of 256 µs with 4-bits data rate since our main
processing was done in this configuration. All our input parameters can be found in
table 3.4. The maximum projected radius ⌧max used depends on the orbital period,
once these values were obtained we distributed these values with uniform probability
between 0 and ⌧max. Therefore, we sample all inclination angles between 0 and 90
degrees. Additionally, we did not place any constraints on the initial orbital phase
↵, they were allowed to vary uniformly between 0 and 2⇡ radians. Our pulsar and
companion masses were fixed for all observations at 1.4M� and 8.0M� respectively.
In order to calculate mismatch (equation 3.9), we need to know the signal to noise
ratio (S/N) for the “ideal” case assuming no losses from Doppler modulation. For this,
we calculated the S/N recovered for an isolated pulsar with the same observational
parameters given in table 3.4. Our results displaying the mismatch distribution is
shown in figure 3.5. The median value of mismatch m0.5 of our template-bank is 0.19
i.e on average we lose 19% of S/N for binaries within the parameter space defined in
table 3.4. The 90th percentile of the mismatch distribution m0.9 is 0.31. This value is
higher than our chosen nominal match value of 0.2 because of the extra mismatch that
arises from searching in spin-frequency. Due, to the finite width of the FFT, signals
can sometimes be located away from the centre of the fourier frequency bin, and in
the worst case scenario between two bins which reduces our detection sensitivity. This
effect is called scalloping. (See section 3.8.4 of Knispel 2011 or Ransom et al. 2002 for
a detailed discussion on this). One technique to mitigate this to pad with data with
zeros or mean value of the timeseries. We avoid this in our analysis due to our long
integration time of 72-minutes in order to minimise computational time. An average
extra 11 % loss due to a mismatch in frequency was acceptable for our searches. Based
on these results, we concluded that the requirements of the template-bank have been
fulfilled for our chosen search set-up.

4https://github.com/SixByNine/sigproc
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Figure 3.5: Histogram showing the mismatch distribution from the template-bank
pipeline for simulated PSR-BH binaries in circular orbits. Vertical lines display the
median and the 90th percentile of our mismatch distribution and the orange curve
shows the cumulative distributive function.
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Table 3.4: Input Parameters used for our Simulated Pulsar-Black hole binaries in cir-
cular orbits. We simulated 10,000 PSR-BH binaries with a Dispersion Measure DM =
0. Here, ‘U’ denotes a uniform distribution.

Parameter Value/Range Unit
tobs 4320 s

mpulsar,min 1.4 M�
mcompanion,max 8.0 M�
Spin-Period 13.0 ms
Duty Cycle 20.0 %

Dispersion Measure 0.0 pc cm
�3

Frequency Channels 1024
Bandwidth 400 MHz

Frequency of Channel1 1181.804688 MHz
Channel bandwidth 0.390625 MHz

Signal-to-noise ratio of single pulse 0.02
Data Bit-Rate 4

Number of samples 224 samples
Sampling time 256e-06 s

Orbital Period (Porb) U(6, 12) h
Eccentricity (e) 0.0

Initial Orbital Phase (↵) U(0, 2 ⇡) rad
Longtitude of Periastron ( ) 0.0 rad

Projected Radius (⌧)
U

0

@0,
G

1
3⌦

� 2
3

orb
mcomp,max

c (mpulsar,min +mcomp,max)
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3.2.10 GPU Software

Using the template-bank algorithm can open up parameter space regions that are in-
accessible using an acceleration or jerk search. See section 5.3.1 for a detailed compar-
ison of acceleration search, jerk search and the template-bank pipeline for simulated
PSR+BH binary observations and observations of the double pulsar PSR J0737-3039A.
However, this comes at the cost of a much higher computation time. We require an order
of magnitude more computational trials compared to the first-pass segmented acceler-
ation search pipeline (Ng et al. 2015; Cameron et al. 2020) used on HTRU-S Lowlat.
Using the same computing resources of previous searches i.e the Hercules15 cluster
operated by the Max Planck Computing and Data Facility (MPCDF) in Garching, Ger-
many, the search component of the template-bank reprocessing pipeline for the entire
Lowlat survey would have taken ⇠ 8.7 years6 and an additional ⇠ 0.6 year (7 months)
for folding, taking the total to ⇠ 9.3 years. These numbers are conservative since they
assume that the entire computation resource is dedicated solely to this project which
isn’t the case for a shared computing cluster. These timescales are unfeasible for the
typical timescales of a PhD project and therefore, required the development of a faster
approach. Graphical processing units (GPUs) are highly effective in speeding up the
typical time-consuming parts of a pulsar-search pipeline including dedispersion, FFT
and time-domain resampling. Therefore, this gave us a strong motivation to build a
template-bank pipeline that can be run on GPUs. Peasoup7 is a GPU-Based Pulsar
Search Pipeline built by Dr. Ewan Barr that implements a time-domain acceleration
search (Johnston & Kulkarni, 1991). The main pipeline also implements dedispersion
through the DEDISP library (Barsdell et al., 2012), Fourier de-reddenning, FFT, in-
coherent harmonic summing and a peak detection algorithm for candidate selection.
Building on this work, I made a new version of this software called 3D-Peasoup8

that changed the time-domain resampling and candidate reduction algorithm of the
pipeline. The orbital templates for a particular search are computed offline using CPU
scripts and is passed on-to this software as an input file. We go into more details about
the time-domain resampling algorithm for the general case of elliptical orbits in section
5.5.1. Bright pulsars, can be detected with multiple orbital templates with varying
S/N or candidate significance. Therefore, we need to group these ‘similar’ candidates
together, keeping only the candidate with the highest S/N in order to save computation
time during folding. We used the standard top-down consolidation algorithm (Knispel,
2011), to reduce the number of duplicate detections. Variants of this algorithm with
the formula adapted for polynomial searches have also been previously implemented

5
This cluster was recently upgraded in March 2021 and is now called Hercules2 with more GPUs

installed which substantially saves computation time for pulsar searches. However, since we commenced

our searches in 2019, we assume numbers from Hercules1.
6
This number is calculated assuming a DM smearing tolerance of 10 % which gives 1876 DM

trials between 0 and 3000 pc cm�3
. Lowlat survey consists of 1230 pointings, each consisting of 13

beams, and the average bench-marked computation time for each trial is 4.38 seconds for a 72-minute

observation with a sampling time of 256 micro second. Therefore, total processing time = DM trials ⇥
total orbital templates ⇥ Average Time for 1 trial ⇥ pointings ⇥ beams/(Total CPU Cores = 5000.)

7https://github.com/ewanbarr/peasoup
8https://github.com/vishnubk/3D_peasoup
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in time-domain search softwares like SIGPROC9 and PEASOUP. Lowlat was re-
processed on the upgraded OzSTAR10 High Performance Cluster (HPC) located in
Swinburne University of Technology, Australia. OzSTAR has a 5 PB Lustre-zfs filesys-
tem with 4140 SkyLake CPU cores clocking at 2.3GHz across 107 standard compute
and eight data crunching nodes along with 230 NVIDIA Tesla P100 12 GB GPUs (2
per node). We refer the readers to the online documentation which gives the full list of
the cluster specifications. We performed detailed bench-marks on this computing clus-
ter comparing the CPU and GPU pipeline in order to quantify our speed-up factor.11

The CPU based pipeline performed dedispersion using the dedisperse_all routine
in Sigproc12 followed by a Python-based implementation of the nearest neighbour
time-domain resampler (section 5.5.1) that was accelerated using Numba13 which is
a just-in-time (JIT) compiler that translates python code into machine-code. Fold-
ing for both pipelines is done a CPU using the prepfold program from Presto14.
We parallelized the single core programs like our resampler and prepfold by using
the multi-processing library in python. Our benchmarks comparing both these
pipelines can be found in table 3.5. We compare the single-core performance between a
CPU and a GPU as well as the total folding time which is the same for both pipelines.
Overall, we achieve a speed-up factor of 400 for the search component15 compared to
the CPU pipeline benchmarked on OzSTAR and a factor of ⇠ 700 compared to CPUs
in Hercules1. The interesting aspect to note here is that we are currently limited by
folding time whereas traditionally pulsar searches were limited by the time required to
FFT different timeseries from each binary search trial. The overall net improvement
factor taking into account folding time is 16.5 which is still significant! Therefore, the
development and subsequent application of the GPU pipeline were crucial in enabling
us to reprocess Lowlat within a feasible amount of time. Finally, reprocessing Lowlat
typically produce tens of millions of pulsar candidates, therefore manual inspection of
these candidate to distinguish between a pulsar and radio frequency inteference/noise
is not feasible. We will expand on a novel semi-supervised machine learning pipeline
developed during this PhD in chapter 4. This pipeline also played a crucial role in
helping us find new pulsars within Lowlat.

9
The program best in sigproc applies the candidate reduction algorithm.

10https://supercomputing.swin.edu.au/ozstar/
11

The astute reader would have noticed that the CPU benchmarks given for Hercules1 and the

CPU-benchmark values in table 3.5 are different. This is because, values given in table 3.5 are bench-

marked on Ozstar which has more modern CPUs and the single-core performance is approximately

a factor of 2 better than a CPU core in Hercules1.
12http://sigproc.sourceforge.net/
13https://github.com/numba/numba
14https://github.com/scottransom/presto
15

includes dedispersion, Fourier de-reddenning, FFT, incoherent harmonic summing and a peak

detection algorithm for candidate selection
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Table 3.5: Computational time comparison between the CPU and GPU based Pipeline
processsing a single 72-minute Lowlat observation. These benchmarks have been run
on 10 % of our typical search range and total candidates folded i.e 189 DM trials, 1000
template-bank trials per DM and folding 200 candidates per beam.

Operation CPU Based Pipeline Template-Bank Peasoup Speed up Factor
Single-Core time (mins) 1-GPU (mins)

Periodicity Search Dedispersion 56.4 0.37 (⇡ 22.1s) 152.4
Search 8332.4 (⇡ 138.9 hrs) 20.7 402.5

Search Time Subtotal 8388.9 21.0 ⇠ 400

Candidate Production Folding Time Subtotal 520.1 520.1 1
Total Time: Single Core 8909 541.1 16.5

3.3 Results

3.3.1 New Pulsar Discoveries

A total of 20 new pulsars have been discovered and confirmed in the reprocessing of
Lowlat using the template-bank pipeline including a new millisecond pulsar which has
been confirmed to be in a binary orbit. A further three ClassA candidates (defined as
highly likely to be real) await confirmation. Additionally, we re-detected 50 new pul-
sars that were missed by the first-pass processing of Lowlat (Ng et al., 2015; Cameron
et al., 2020). Out of these, 47 pulsars were discovered in the reprocessing of 72-minute
observations of Lowlat using Peasoup with a combination of higher acceleration range
|amax| = 100m s

�2 on the decimated Lowlat data - tsamp = 256 µs and a mild acceler-
ation search i.e |amax| = 2ms

�2 on the full time resolution of the data - tsamp = 64 µs
(Sengar et al., prep). An additional 3 pulsars were discovered by applying a Fast-
Folding Algorithm pipeline (Wongphechauxsorn et al., prep). Given the large number
of re-processing discoveries from Lowlat in a short period of time due to searches been
done on GPUs, compared to our first pass search which found 100 new pulsars over
the time span of 6 years, a full 1-year timing followup on all pulsars have not yet
been possible. Traditionally, once pulsars have been identified in surveys like HTRU
and PMPS, we typically need to do gridding observations around the position of the
discovery beam. One such strategy is by placing the beam in the ‘N-E-S-W’ direction
along with an observation in the discovery beam in order to get a better position of
the pulsar (Morris et al., 2002). For pulsars in lowlat, this would require a total of 1.2
hrs ⇥ 5 = 6 hours per pulsar. Applying the ‘Ring-of-3’ grid described in Ng (2014)
would also require 3.6 hours per pulsar which is not feasible given the large number of
discoveries that needed to be monitored and the extremely competitive Galactic centre
time at Parkes. Therefore, follow-up observations beyond confirmation have currently
been restricted mostly to millisecond and binary pulsars. Few pulsars have extremely
well known positions with a position uncertainty of ⇠ 30

00 due to these pulsars being
redetected in the ongoing L-Band MPIfR Galactic Plane survey (MGPS-L, Padmanabh
et al. prep) survey using the Meerkat Radio telescope. Once promising candidates
were identified, we performed search-mode follow-up observations using the ultra-wide-
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bandwidth, low-frequency receiver (UWL, Hobbs et al. 2020) installed at the Parkes
radio telescope to confirm these pulsars. A full list of the new pulsars described here
along with their position, spin period, DM, and DM dependent distance based on the
‘NE2001’ model (Cordes & Lazio, 2002) and the YMW16 model (Yao et al., 2017) can
be found in table 3.6. The integrated pulse profiles from the discovery observations of
these new pulsars can be found in figure 3.6.
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Table 3.6: Discovery parameters of the 20 newly-discovered pulsars for which full timing solutions are not yet available. Most of these pulsars have been assigned
a temporary name with only two digits of declination since our position uncertainty is at least 140 - the FWHM of the Parkes beam . Few pulsars have extremely
good position measurements (uncertainty: ⇠ 30

00) due to them being redetected in the ongoing MGPS-L survey using Meerkat. The reported barycentric spin
period P, dispersion measure DM and barycentric period epoch PEPOCH values have been taken from the confirmation observation, and values in parenthesis
represent our uncertainty in the final digit. We also report DM-dependent distances based on ‘NE2001’ model (Cordes & Lazio, 2002) and the YMW16 model
(Yao et al., 2017)

PSRJ pointing/beam RA (J2000) Dec (J2000) gl gb P DM PEPOCH S/N DYMW16 DNE2001

(hms) (dms) (�) (�) (ms) (pc cm�3) MJD (kpc) (kpc)

J1142�62 2011-05-19-08:08:26/01 11:42:39.24 -62:21:52.2 295.050 -0.550 1573.49(1) 267(33) 59015.204613 16.42 2.49 5.21
J1251�59 2011-04-20-15:54:35/09 12:51:13.0 -59:57:36.4 302.904 2.912 1066.630(6) 207(7) 58995.340754 12.84 5.25 4.37
J1359�59 2011-12-21-16:53:53/08 13:59:12.12 -59:17:09.03 311.499 2.454 374.1318(4) 323(4) 59099.151304 13.18 6.63 6.50
J1538�57 2010-12-11-23:55:11/05 15:38:01.32 -57:16:33.2 323.992 -1.380 205.61668(8) 543(2) 59171.893788 15.23 8.31 8.55
J1539�59 2012-08-05-12:04:48/10 15:39:00.72 -59:57:27.16 322.503 -3.615 189.0307(2) 209(4) 59171.955067 12.17 5.44 4.18
J1558�5403a 2012-08-05-03:42:42/10 15:58:30.93 -54:03:08.6 328.302 -0.724 583.705(2) 783(18) 59048.325298 19.14 7.66 10.21
J1609�5225a 2012-08-02-09:33:26/09 16:09:02.41 -52:25:18.8 330.516 -0.468 231.8080(7) 993(10) 58936.863771 16.54 7.20 14.32
J1620�47 2011-12-22-00:16:31/06 16:20:14.28 -47:44:29.5 335.045 1.681 386.8123(4) 396(4) 59206.817811 13.06 6.49 6.17
J1629�44 2011-07-04-08:36:43/04 16:29:02.80 -44:08:17.1 338.693 3.110 365.0362(3) 310(3) 59212.949630 12.39 11.68 5.64
J1637�44 2011-07-03-10:59:47/02 16:37:27.84 -44:17:18.30 339.608 1.901 274.1809(2) 271(3) 59205.876584 11.96 5.31 4.20
J1657�46 2012-11-25-23:53:23/13 16:57:49.66 -46:24:39.4 340.300 -2.200 892.383(4) 652(6) 59370.741151 10.53 23.74 13.16
J1718�37 2011-05-17-14:17:08/10 17:18:24.48 -37:27:18.0 349.762 0.096 591.629(1) 693(7) 59113.227057 9.90 4.74 7.64
J1722�38 2011-06-27-14:48:40/04 17:22:28.20 -38:09:57.6 349.637 -0.969 523.782(2) 679(15) 58995.500900 14.39 3.40 3.29
J1723�37 2011-05-19-15:32:31/04 17:23:12.48 -37:57:23.9 349.891 -0.970 150.92019(7) 266(2) 59206.190774 11.49 3.74 3.82
J1737�33 2010-12-12-03:46:51/05 17:37:40.80 -33:05:20.69 355.575 -0.750 634.00(1) 497(59) 59048.428250 14.38 4.51 5.80
J1743�24 2012-11-28-05:31:51/11 17:43:43.50 -24:27:25.90 3.600 2.700 11.757463(2) 196.8(6) 59370.647086 14.04 4.44 3.60
J1754�25 2012-07-26-12:48:29/01 17:54:38.45 -25:52:48.9 3.650 -0.150 256.8954(1) 814(3) 59206.969001 10.65 4.98 10.93
J1806�17 2011-07-05-13:09:31/07 18:06:31.68 -17:21:46.25 12.415 1.680 280.7599(4) 539(5) 59077.385176 13.35 18.99 8.73
J1806�19b 2012-12-11-02:16:06/05 18:06:49.44 -19:26:25.8 9.700 0.300 1101.568(7) 558(14) 50682.454323 10.50 4.51 6.77
J1807�23 2012-08-05-14:33:10/13 18:07:15.6 -23:13:18.9 7.381 -1.324 890.195(2) 295(3) 59187.126936 17.31 4.30 4.84

a Positions reported for these pulsars were obtained from the ongoing MGPS-L survey (Padmanabh et al., prep) but the Period, DM, PEPOCH and S/N reported
in these rows are from a follow-up Parkes Observation.
b This pulsar was confirmed in an ongoing reprocessing of PMPS observations (Sengar et al., prep).
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3.3.2 PSR J1753�2819 - A rare intermediate spin-period pulsar in
orbit around a light companion

PSR J1753�2819 is a millisecond pulsar with a spin-period of 18.62ms that was de-
tected during the re-processing of Lowlat. PSR J1753�2819 was initially announced in
Mickaliger (2013) and later expanded on in Perera et al. (2019). However, this pulsar
was not included in the pulsar catalog psrcat16 or the Galactic MSP catalog17 around
the time we initially found this pulsar. Therefore, this pulsar was presumed to be
a Lowlat discovery until recently. We first present an independently derived orbital
solution of PSR J1753�2819 from observations taken at the Parkes Radio telescope be-
tween December 2020 and July 2021. We then present a combined and updated timing
solution including archival and recently obtained TOAs from Jodrell Bank Observatory
(JBO) along with the TOAs collected from Parkes. TOAs from JBO were provided to
us by B.Stappers (2021, priv. comm.). PSR J1753�2819 has the eleventh highest dis-
persion measure of 298.4 pc/cm3 out of 403 currently known Galactic field MSPs18 not
associated with a Globular Cluster. Our initial redetection plot from lowlat is shown
in figure 3.7. The barycentric spin-period of this pulsar in the lowlat observation was
Pspin = 18.623 025(3)ms with the number in the parenthesis describing our uncertainty
in the last decimal digit. We independently confirmed this pulsar with a search-mode
observation taken at the Parkes Radio telescope where we detected a barycentric spin-
period of Pspin = 18.622 979(2)ms. The apparent spin-up of this pulsar hinted that the
pulsar could be in a binary orbit. Following this, we regularly monitored this pulsar be-
tween December 2020 and July 2021 with at least a monthly cadence with the Parkes
radio telescope. We used the UWL receiver in conjunction with the medusa backend
in search-mode in order to constrain the orbit of the pulsar and collect more TOAs.
Our observations were recorded covering the full spectral range offered by UWL be-
tween 704MHz and 4032MHz. For our analysis, we restrict ourselves to a narrow band
between 1100 - 1800MHz which has approximately twice the bandwidth of the original
lowlat observation taken with the MB20 receiver. The influence of RFI in the lower
frequency sub-band hindered our ability to detect this pulsar and extract TOAs. We
did not detect any pulsations from this pulsar in the higher frequency sub-bands as well
and we leave detailed investigations of the properties of this pulsar in high-frequency
observations for future studies. Follow-up observations undertaken as part of the on-
going L-Band MPIfR Galactic Plane survey (MGPS-L, Padmanabh et al. prep) using
the Meerkat telescope on 16th June 2021 (MJD: 59381) gave us a improved sky po-
sition of the pulsar RA (J2000) = 17h53m55.39s, Dec(J2000)= �28

�19m42.9s with our
position uncertainty in the order of 3000. This greatly enhanced our detection sensitiv-
ity and future follow-up time required at Parkes along with getting a phase-connected
timing solution.

16
This has since been fixed in version 1.65 of the catalog released on 29/07/2021.

17http://astro.phys.wvu.edu/GalacticMSPs/GalacticMSPs.txt
18

See footnote 19
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Figure 3.6: Integrated Pulse profile of the 20 new discoveries, PSR J1753�2819 and 3
ClassA candidates found in the reprocessing of Lowlat. Each pulse profile consists
of 64 phase bins. We show here normalised flux density and the pulse profile has been
rotated, to peak at 0.5 rotational phase. At the top, we indicate the current pulsar
name, spin-period in seconds and DM in pc cm

�3.
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Figure 3.7: Initial Pulsar Detection plot of PSR J1753�2819 found in the lowlat beam 2012-12-29-04:38:59/11. The orbital template that was
used to detect the pulsar can be found in the top right under ‘Binary Parameters’.



3.3. Results 79

3.3.2.1 Preliminary estimates of orbital parameters

As the pulsar moves around its orbit, the observed apparent barycentric spin-period of
the pulsar changes due to Doppler modulation. Therefore, it is important to determine
the Keplerian orbital parameters of the system in order to get a coherent timing solution
and for further astrophysical analysis. In this section, we describe the techniques used
to arrive at the orbital parameters of the pulsar PSR J1753�2819. Two readily available
measurements from a search-mode pulsar observation is the spin-period P and the spin-
period derivative Ṗ . We closely follow the technique described in Freire et al. (2001)
where we plot the apparent spin-period and line of sight acceleration measurements
of the pulsar from each observation. The advantage of this technique is that in the
period-acceleration plane, we get a parametric curve that does not depend on time and
hence does not require solving Kepler’s equation. Acceleration can be calculated from
P and Ṗ using the relation

a =
cṖ

P
. (3.20)

For circular orbits, the apparent spin-period of the pulsar from Roy (1988); Freire
et al. (2001) can be written as:

P (✓) = P0

✓
1 + x

2⇡

PB
cos ✓

◆
= P0 + P1 cos ✓, (3.21)

and
A(✓) =

�4⇡
2

P
2

B

x sin ✓ = �A1 sin ✓, (3.22)

where P1 = P0x
2⇡
PB

and A1 =
4⇡2

P 2
B

, x is the projected semi major axis in light seconds,
PB is the orbital period of the pulsar, P0 is the intrinsic barycentric rotational period
of the pulsar and ✓ is the orbital phase.

It is clear from the right hand side of equations 3.21 and 3.22 that these are para-
metric equations of an ellipse centered at (P0, 0) with the length of the horizontal and
vertical semi-axes being P1 and A1 respectively. Finding the best fit ellipse can be quit
difficult from a computational point of view. Following the recommendation given in
Appendix A of Freire et al. (2001), squaring each of the equations 3.21, 3.22 and mul-
tiplying one of the squares with a constant and summing them, we get the parametric
equation of a parabola:

A
2
= a2P

2
+ a1P + a0. (3.23)

We apply a linear least square fit in the (A2
, P ) plane to determine the coefficients

a0, a1 and a2 respectively. Following this the orbital parameters can be calculated as:

P0 =
�a1

2a2
, (3.24)

PB =
2⇡c

P0

p
�a2

, (3.25)
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x =
PB

2⇡P0

r
P

2
0
�

a0

a2
. (3.26)

For each observation, we take the spin-period and spin-period derivative values
including their uncertainties returned from the ‘.bestprof’ files in Presto. These
measurements along with our best-fit model can be found in figure 3.8. Using this we
get P0 = 0.0186236(3) s, PB = 0.3899(6) days and x = 0.2090(3) lt-s.

3.3.2.2 Refining Orbital Period Measurement using Lomb-Scargle Peri-
odogram

Lomb-Scargle Periodogram (Lomb, 1976; Scargle, 1982) is a commonly used algorithm
to find periodicity of signals in unevenly sampled data. This is applicable for our case
since our follow-up observations depends on the allocation of telescope time, weather
conditions and appropriate sidereal time, therefore we unevenly sample the orbit. We
apply this algorithm on data with multiple period measurements in the form of a
timeseries. We then extract the period that corresponds to the maximum value in
the Fourier power spectrum to detect the orbital period of the binary pulsar. The
drawback of this algorithm is that it typically requires many observations in order to
get a reliable measurement of the orbital period. Therefore, we applied this technique
as a second step after collecting measurements from several follow-up observations at
Parkes. Using this technique as shown in Figure 3.9, we were able to get a better
measurement of the orbital period of the pulsar PB = 0.3876(7)days.

3.3.2.3 Conventional Period Analysis using Fitorbit

We can further refine our estimates for all Keplerian parameters by conventional period
analysis. The two techniques described above give us only an approximate measurement
of the orbital period, and projected semi major axis of the orbit. This can be confirmed
by plotting the difference between the observed period and the period obtained from
our binary model predictions. We can use these differences to refine our estimates
for each of our Keplerian orbital parameters using the software Fitorbit19 originally
written by A. Brinklow and A. Lyne. The software tries to minimise the sum of the
squares differences of the intrinsic orbital period and the orbital period measurements
predicted by the pulsar ephemeris for the same epoch at the barycenter by varying other
ephermeris parameters chosen by the user. This is implemented using the Levenberg-
Marquardt Method (LMM; Press et al. 1992). We refer the interested readers to section
4.4 and appendix A.3 of Freire (2000) which goes into more technical details on how
each of the orbital parameters is fine tuned in Fitorbit.

3.3.2.4 Timing Solution of PSR J1753�2819 using TEMPO/TEMPO2

Following this, we determined a phase-connected timing solution for PSR J1753�2819
using the procedure described earlier in section 1.7. We used dspsr20 (van Straten

19https://github.com/vivekvenkris/fitorbit
20http://dspsr.sourceforge.net/
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Figure 3.8: Observed barycentric acceleration and spin-period plotted in a period-
acceleration plane (top) and period-acceleration square plane (bottom). The error bars
indicate 1-sigma errors in period and acceleration. Black dashed line indicate the best-
fit model which was used to calculate the Keplerian orbital parameters of this pulsar.
A caveat to be added here is that the period and acceleration uncertainties displayed in
these figures are based on the values returned by prepfold which is a folding routine
part of the presto software package. These uncertainties are almost certainly an
underestimate of the true uncertainty and as such any orbital fit values derived from
these plots are only an approximate solution of the orbit of the pulsar.
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& Bailes, 2011) to dedisperse and fold our data with the best period and acceleration
value detected in the FFT. We then obtained TOAs by cross-correlated the resulting
pulse profile with a noise-free template derived from the best detection of this pulsar
using routines in psrchive21 (van Straten et al., 2012). We used the timing software
tempo22 to obtain our solution following closely the phase jump technique described
in Freire & Ridolfi (2018). Following this, we combined our data with updated TOAs
from JBO and we present here an updated timing solution of PSR J1753�2819. The
most commonly used binary model in pulsar timing is the Blandford & Teukolsky
(BT,Blandford & Teukolsky 1976). However, using the BT model for pulsar orbits
with low values of eccentricity as is the case for PSR J1753�2819, produces highly
covariant values between the epoch and longitude of periastron. To avoid this, Lange
et al. (2001) introduced a binary timing model called ELL1 where Epoch of periastron
(T0) and eccentricity e is replaced by the epoch of Epoch of ascending node (TASC)
and two Laplace-Lagrange parameters (⌘ and ). Using our best fit parameters of
TASC, ⌘ and , we can infer the T0 and orbital eccentricity of the pulsar orbit. We use
this ELL1 model to derive our timing solution and our best-fit timing parameters for
PSR J1753�2819 can be found in table 3.7. We report here an updated measurement
of the period derivative of this pulsar Ṗ = �4.967(7)⇥10

�20
ss

�1 consistent with the
values reported earlier in Perera et al. (2019). This negative value of Ṗ is unusual
as explained earlier in section 1.4 pulsars are expected to have an intrinsic positive
period derivative due to loss of rotational kinetic energy. Perera et al. (2019) reported
that this negative observed Ṗ is not intrinsic and likely caused by the acceleration of
this pulsar along its lines of sight due to the Galactic gravitational field. Using the
Galactic model presented in Sofue (2013), they reported a model-dependent intrinsic
Ṗint < 2.08⇥ 10

�19
ss

�1. We refer the interested reader to their paper which goes into
more details about how this value was calculated.

In the next section, I will first describe one of our new binary pulsar discoveries
PSR J1743�24 which is another unusual intermediate spin-period pulsar similar to
PSR J1753�2819 but in a much longer orbit. I will then present a combined discussion
on both these pulsars by focusing on its unusual combination of spin period and com-
panion mass properties by putting it into context of other known binary pulsars and
its likely that the formation of both these pulsars is inconsistent with standard binary
stellar evolution models.

21http://psrchive.sourceforge.net/
22http://tempo.sourceforge.net/
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Figure 3.9: A Lomb-Scargle Periodogram constructed from our measurements of spin-
period at different observing epochs. The detected periodicity (orbital period) is given
by the peak value of the Lomb-Scargle Power.
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Table 3.7: Best fitting timing parameters of PSR J1753�2819 obtained from fitting
updated TOAs from JBO and Parkes with tempo2. Values in parenthesis repre-
sent 1 � uncertainties on the final digit. The time units are Barycentric Coordinate
Time (TCB) and the Solar system ephemeris used is JPL DE436.

Pulsar J1753�2819
Right Ascension, ↵ (J2000) . . . . . . . . . . . 17:53:56.184(5)
Declination, � (J2000) . . . . . . . . . . . . . �28:19:29.96(6)
Spin Frequency, ⌫ (s�1) . . . . . . . . . . . . 53.695219546226(10)
1st Spin Frequency derivative, ⌫̇ (Hz s�2) . . . . 1.432(2)⇥10

�16

Reference Epoch (MJD) . . . . . . . . . . . . 57299
Start of Timing Data (MJD) . . . . . . . . . . 56173.742803402153832
End of Timing Data (MJD) . . . . . . . . . . 59434.894515986230434
Dispersion Measure, DM (pc cm�3) . . . . . . 298
Solar System Ephemeris . . . . . . . . . . . . DE436
Terrestrial Time Standard . . . . . . . . . . . TT(BIPM2015)
Time Units . . . . . . . . . . . . . . . . . . . TCB
Number of TOAs . . . . . . . . . . . . . . . . 207
Residuals RMS (µs) . . . . . . . . . . . . . . 129.639

Binary Parameters
Binary Model . . . . . . . . . . . . . . . . . ELL1
Projected Semi-major Axis, xp (lt-s) . . . . . . 0.20967(1)
First Laplace-Lagrange parameter, ⌘ . . . . . . �1(1)⇥10

�4

First Laplace-Lagrange parameter,  . . . . . . 1(1)⇥10
�4

Epoch of passage at Ascending Node, Tasc (MJD) 59206.093761(6)
Orbital Period, Pb (days) . . . . . . . . . . . . 0.387677374(1)
Inferred Orbital eccentricity, ea . . . . . . . . . 0.0002(1)

Derived Parameters
Spin Period, P (s) . . . . . . . . . . . . . . . 1.8623631832609(3)⇥10

�2

1st Spin Period derivative, Ṗ (s s�1) . . . . . . �4.967(7)⇥10
�20

Mass Function, f(Mp) (M�) . . . . . . . . . . 6.585(8)⇥10
�5

Minimum companion mass, Mc,min
b(M�) . . . . 5.17⇥10

�2

Median companion mass, Mc,med
c(M�) . . . . . 6.00⇥10

�2

a Derived from ELL1 binary model.
b
Mc,min is calculated assuming the orbital inclination angle i = 90 and pulsar mass

Mp is 1.4 M�.
c
Mc,med is calculated assuming the orbital inclination angle i = 60 and pulsar

mass Mp is 1.4 M�.
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3.3.3 PSR J1743�24, another rare intermediate spin-period binary
pulsar in a 70.7 day orbit

PSR J1743�24 is a millisecond pulsar discovered during our reprocessing with a
barycentric spin period of 11.757 463(2)ms and a detected DM of 196.7 pc cm�3. Our
discovery plot can be found in figure 3.10. This pulsar has since been confirmed with
follow-up observations taken at the Parkes Radio telescope using the same configuration
as described in section 3.3.2. PSR J1753�24 has a relatively wide pulse profile with a
duty cycle of 29.7%. The shape of the integrated pulse profile is quite complex with a
double-peaked component followed by weaker third and fourth component. The latter
peaks could be interpreted as interpulses23, however, these peaks are not separated by
180� in phase, therefore making any interpretation difficult at this stage. MSPs un-
like normal pulsars tend to have more complicated pulse profiles on average displaying
more pulse components (see for e.g. Yan et al. 2011). Some examples of MSPs in this
category include 47TucQ (Camilo et al., 2000) and PSR J1536�4948 (Bhattacharyya
et al., 2021). A normal pulsar which also shows quite a complicated pulse profile is
PSR B1237+25 (see e.g. Srostlik & Rankin 2005). Multiple theoretical models have
been proposed in order to explain complex pulse profiles (for e.g. Rankin 1983; Lyne &
Manchester 1988; Kramer et al. 1994; Gupta & Gangadhara 2003). However, no single
model can yet explain all the observed diverse range of pulse profiles. Studies of the
integrated pulse-profile are useful because the size and shape of the pulse components
highlight the geometry of emission regions in the pulsar magnetosphere. However, in
order to investigate these properties further for PSR J1753�24 we need polarimetric
data. This has not been performed yet and is expected to be done in the future once we
have sufficient TOAs for a phase-connected timing solution. Additionally, this pulsar
has also been recently confirmed to be in a binary orbit. Using detections from fol-
lowup search-mode observations from Parkes, we used the program fitorbit to solve
the orbit of this pulsar to an orbital period of 70.7 days with a projected semi-major
axis value of 5.6(1) lt-s. This gives us the minimum companion mass of this pulsar
which comes out to ⇠ 0.043M�. Our current best ephemeris of this pulsar can be
found in table 3.8. This ephemeris was derived from a total of 9 detections spanning
across two months. The orbit of this pulsar appears to be nearly circular. Currently,
we do not have enough detections to place limits on its orbital eccentricity and given
our large position uncertainty of the order 140, we have currently set the spin-frequency
derivative ⌫̇ in our ephemeris to be equal to zero. A full phase-connected timing so-
lution of this pulsar along with calibrated flux density measurements and polarisation
observation results will be the subject of a future publication.

23
Interpulses are secondary pulses apart from the main pulse usually separated by 180

�
in phase.
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Figure 3.10: Discovery plot of PSR J1743�24 found in the lowlat beam 2012-11-28-05:31:51/11. The orbital template that was used to detect the
pulsar can be found in the top right under ‘Binary Parameters’.
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Table 3.8: Best fitting orbital parameters of PSR J1743�24.

Pulsar J1743�24
Right Ascension, ↵ (J2000) . . . . . . . . . . . 17:43:43.50
Declination, � (J2000) . . . . . . . . . . . . . �24:27:25.90
Spin Frequency, ⌫ (s�1) . . . . . . . . . . . . 85.05187(2)
1st Spin Frequency derivative, ⌫̇ (Hz s�2) . . . . 0(0)
Reference Epoch (MJD) . . . . . . . . . . . . 56062(5)
Dispersion Measure, DM (pc cm�3) . . . . . . 197.359

Binary Parameters
Binary Model . . . . . . . . . . . . . . . . . BT
Projected Semi-major Axis, xp (lt-s) . . . . . . 5.6(1)
Longitude of Periastron, ! (deg) . . . . . . . . 248.929(5)
Epoch of passage at Periastron, T0 (MJD) . . . 56062.043(7)
Epoch of passage at Ascending Node, Tasc (MJD) 56083.860(5)
Orbital Period, Pb (days) . . . . . . . . . . . . 70.7(1)
Eccentricity, e . . . . . . . . . . . . . . . . . 4.7(1)⇥10

�7

Derived Parameters
Spin Period, P (s) . . . . . . . . . . . . . . . 1.1757531(2)⇥10

�2

1st Spin Period derivative, Ṗ (s s�1) . . . . . . �0(0)
Mass Function, f(Mp) (M�) . . . . . . . . . . 3.87(1)⇥10

�5

Minimum companion mass, Mc,min
a(M�) . . . . 4.32(1)⇥10

�2

Median companion mass, Mc,med
b(M�) . . . . . 5.00(4)⇥10

�2

a
Mc,min is calculated assuming the orbital inclination angle i = 90 and pul-

sar mass Mp is 1.4 M�.
b
Mc,med is calculated assuming the orbital inclination angle i = 60 and pul-

sar mass Mp is 1.4 M�.

3.3.3.1 Discussion of PSR J1753�2819 and PSR J1743�24

Before, we discuss the properties of PSR J1753�2819 and PSR J1743�24, we start
with the standard spin, orbital and mass distribution of binary MSPs which is
useful in order to understand the uniqueness of both these pulsars. MSPs in binary
orbits are known to have a wide range of companion stars. Vast majority of these
binary pulsars have extremely circular orbits with a white-dwarf (WD) or low-mass
companion (mc  0.06M�) and they typically tend to be highly recycled (P  10ms).
Depending on the mass of the companion, these binaries can be categories into two
different populations. One is the so called very low-mass binary pulsars (VLMBPs;
Freire et al. 2003) which have spin-periods in the order of ⇠ 4ms, companion masses
mc  0.03M�, orbital period Porb  10hrs. Another category is the so called
low-mass binary pulsars (LMBPs; Phinney & Kulkarni 1994; Edwards & Bailes
2001). They typically tend to have companion masses in the range of 0.1 � 0.5M�,
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orbital period of few days and rapid spin-periods in the order of few milliseconds.
There are some notable exceptions with longer spin-periods like PSR J1822-0848
(Lorimer et al., 2006), PSR J1932+1500 (Lyne et al., 2017) among others. Most
MSPs in a binary orbit tend to fall under the LMBPs category and they typically
have He-WD companions. However MS stars and CO WD stars are also possible.
Intermediate-spin period pulsars (10ms  P  20 ms) tend to have heavier CO
WD companions and pulsars with spin period greater than 20ms could have either a
neutron-star (NS) or a WD or a main-sequence star (MS; Johnston et al. 1992; Stairs
et al. 2001) companion. These are typically called Intermediate-mass binary pulsars
(IMBPs). We would like to stress here that this is a highly simplified view with several
overlapping exceptions and the boundaries between these three categories are not fixed.

Our timing solution confirms that PSR J1753�2819 is a binary pulsar with an
orbital period of ⇠ 9.3 hrs. We obtained a projected semi-major axis of 0.20954(5)
lt-s. The mass function of the pulsar f = 6.585 ⇥ 10

�5
M�. Using this, and assuming

a pulsar mass of 1.4M�, an inclination angle i = 90
�, we can calculate the minimum

companion mass of this pulsar which comes out to be ⇠ 0.052M�. Assuming orbital
inclinations are randomly distributed in nature, by setting inclination angle i = 60

�,
we can get a median companion mass limit which comes out to be ⇠ 0.06M�. These
values indicate that its likely that the pulsar is in orbit around a low-mass companion
star. Similar arguments can also be made for PSR J1743�24 which has a similar
minimum and median companion mass of ⇠ 0.043M� and ⇠ 0.05M� respectively but
is part of a much longer orbit of 70.7 days. Though unlikely, it is also possible that the
companion of both PSR J1753�2819 and PSR J1743�24 could be a low-mass Helium
White-Dwarf (He-WD) star. In order to obtain a WD mass of at least 0.154M�

24,
assuming the same pulsar mass as above, this would require an inclination angle lesser
than ⇠ 20.5

� for PSR J1753�2819 and ⇠ 17.0
� for PSR J1743�24 in order to obtain

our projected semi-major axis measurements. These have the probability of ⇠ 0.063

and ⇠ 0.043 respectively when drawn from a uniform distribution of inclination angles.
Assuming that the companion is indeed the more likely low-mass companion star, one
of the interesting aspects of PSR J1753�2819 and PSR J1743�24 is its intermediate
spin-period value of 18.62 ms and 11.76 ms respectively. Using, the standard picture
of MSP binary distribution described above, we would expect both these pulsars to
be much more recycled. The rarity of such pulsars can be demonstrated in two steps.
First, we plot the orbital period versus the minimum companion mass of known MSP
binaries25 along with both these pulsars, this is shown in the top part of figure 3.11.
We can clearly see at least three distinct populations. Colors and markers in this
diagram indicate the nature of the companion star. In the left side of the diagram

24
This is the lowest WD mass we obtained in the sample provided by the Extremely Low-Mass

White Dwarf Survey (ELM, Brown et al. 2020)-a systematic spectroscopic survey of nearby ( 2 kpc)

low-mass He-White Dwarfs
25

We have only included Galactic field MSP binaries for our discussion, i.e these pulsars are not

associated with a Globular Cluster. Pulsars in GCs tend to have a more complicated evolutionary

history due to exchange interactions.
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(mc,min  0.03M�), we have the VLMBPS, which are highly recycled pulsars with
orbits lesser than a day and they have ultra-light companion stars. This is followed by
LMBPS which composes mostly of He-WD companions. There is a weak trend between
orbital period and minimum companion mass for PSR-He-WD binaries. Finally, on the
right hand side, we have the IMBPS which have a combination of CO WD companions,
DNS and MS companions. Both these pulsars occupy the region between VLMBPS
and LMBPs which gives us important clues regarding the true boundaries between the
two classes. A final classification of these pulsars into one of these categories can only
be done once we identify the nature of the companion star or calculate the mass of the
companion which would require the measurement of two Post-Keplerian parameters. In
the bottom part of figure 3.11, we plot the minimum companion mass versus the spin-
period of the pulsar where the uniqueness of both these pulsars becomes more evident.
We can see the PSR J1753�2819 and PSR J1743�24 occupy the bottom right region
of the diagram where only four other binaries are known. Some comparable examples
include PSR J1502�6752 (Keith et al., 2012) which has a spin-period of 26.7 ms and
a minimum companion mass of 0.02M�. PSR J1727�2951 (Cameron et al., 2020) is
a candidate black-widow binary system which unlike a typical black-widow pulsar is
only partially recycled and shows no evidence of eclipses. PSR J1744�3922 is a 172-ms
pulsar which is in a 4.6 hour orbit and a companion mass of 0.08M� and is known to
exhibit highly variable pulsed radio emission (Breton et al., 2007). An extreme example
is B1831�00 which is a pulsar with a spin-period of 520.95-ms in a 1.8 day orbit with a
minimum companion mass of 0.063M� (Hobbs et al., 2004). The spin, orbital periods
and companion mass ranges of these six pulsars are likely inconsistent with the standard
evolutionary models and could likely be part of a separate population of pulsars with
intermediate companion masses and crucially, slower (and in some cases much slower)
spin periods.

3.3.4 Other noteworthy discoveries

PSR J1609�5225 is a normal pulsar rotating once every 231.8080(7)ms and has the
highest detected DM in our discovery sample of 993(10) pc cm�3. Timing observations
of this pulsar have currently gained priority due to the redetection of this pulsar in
the ongoing MGPS-L survey using Meerkat which gave us an improved position
measurement of RA(J2000): 16:09:02.41, DEC(J2000): -52:25:18.6, Galactic longitude
Gl = 330.516� and Galactic latitude Gb = -0.468�. Based on the NE2001 and YMW16
electron density models, this pulsar is located at a distance of 14.32 kpc and 7.20
kpc respectively. Since we do not yet have independent distance measurements, we
cannot yet confirm which of these distance estimates are more reliable. If the NE2001
DM distance does prove to be more reliable, then it places this pulsar at a distance
greater than our distance towards the Galactic centre. The integrated pulse profile
of this pulsar shows a strong scattering tail. As discussed earlier in section 1.5.2, if
the pulsar signals pass through dense regions of plasma (for e.g. HII regions) on their
way to our receivers, then these density fluctuations act as a scattering screen and
scatter the profile due to multipath propagation of light which causes the signals to
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Figure 3.11: Top- Orbital Period versus minimum companion mass for all known
Galactic-field MSP binaries along with PSR J1753�2819 and PSR J1743�24. The
markers and colors highlight the nature of the companion star. We have also divided
the diagram into regions occupied by VLMBPS, LMBPS and IMBPS respectively. Bot-
tom - Spin Period versus minimum companion mass for all known Galactic-field MSP
binaries along with PSR J1753�2819 and PSR J1743�24. Points labelled by the pulsar
name in the bottom right side are the exceptions to the standard distribution of MSP
binaries. See text for further discussion.
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arrive at different times at our receivers. This broadens the pulse shape creating a
long tailed exponentially decaying trailing edge component of the pulse profile. We
modelled for this by fitting an exponential function to the trailing edge of the pulse
profile and our best model gives us a scattering timescale ⌧ = 77 ± 25ms. These
results are shown in figure 3.12. Our model estimates were made on a search-mode
observation of PSR J1609�5225. Therefore, the uncertainty in our scattering model is
relatively high. This can be resolved once we phase-connect this pulsar and stack pulse
profiles from different observations together in order to get a high S/N pulse profile
template. This is expected to be done in the near future once we commence the timing
campaign of this pulsar. Our results are below the predictions for scattering timescale
for these coordinates and DM derived from both the NE2001 and YMW16 electron
density models ⌧sc,NE2001 = 149.7 ± 3.2ms and ⌧sc,YMW16 = 307.6 ± 13.2ms. These
model predictions are only expected to be rough estimates as these values depend a lot
on the light of sight and should mostly be used as upper limits. Future observations
of this pulsar will be aided by observing with a wide frequency bandwidth using the
parkes UWL receiver which will help to calculate the scattering spectral index ↵.
Pulsars like PSR J1609�5225 are useful to improve our understanding of the Galactic
electron density distribution and would be a useful addition to the sample of pulsars
that are more relevant for ISM related studies.

PSR J1142-62 is a normal pulsar with a detected barycentric spin period in the
discovery observation of P = 1573.494(14)ms. This pulsar is located at Galactic
longitude Gl = 295.05� and Galactic latitude Gb = -0.55�. The distance to this pulsar
based on the NE2001 and YMW16 electron density models are 5.21 kpc and 2.49 kpc
respectively. During our follow-up confirmation observation, we detected an apparent
spin-up in the barycentric spin-period P = 1573.490(14)ms indicating that this could
be yet another binary candidate. At the current stage, due to the uncertainties in our
spin-period measurements, we cannot yet disentangle if PSR J1142-62 is an isolated
pulsar or a pulsar in a binary orbit. If this pulsar does happen to be in a binary,
then it will be part of a minority population as only 2 % of normal pulsars reported in
psrcat26 are known to be in a binary orbit. We plan to regularly monitor this pulsar
using Parkes in the near-future. Further follow-up observations will be crucial in order
to reveal the true nature of this pulsar.

3.3.5 ClassA Candidates

Besides the confirmed pulsars mentioned above, three class A candidates (J1546�54,
J1630�44 and J1723�38) await further confirmation. Our candidate detection plots are
shown in figures 3.13, 3.14 and 3.15 respectively. A list of the barycentric spin period,
dispersion measure, sky coordinates, the HTRU pointing, beam parameters and DM
dependent distance estimates can be found in table 3.9. J1546�54 is a 1466.829(6) ms
candidate, detected with a DM = 307(14) pc cm

�3. This candidate was detected at zero
acceleration and is likely an isolated pulsar. Our current position measurements based
on the location of the lowlat beam places it at Galactic longitude Gl = 326.6� and

26https://www.atnf.csiro.au/research/pulsar/psrcat/
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Figure 3.12: Integrated pulse profile of PSR J1609�5225 at a central frequency of
1.352 GHz plotted in light grey. Red curve shows the best fit scattering model. Dark
gray intervals around the red curve display the uncertainty in our best-fit parameters.
We report here the scattering time scale ⌧ which was calculated from a lowlat search-
mode observation with an effective bandwidth of 340 MHz.
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Galactic latitude Gb = 0.1�. The remaining two candidates (J1630�44 and J1723�38)
were detected with a non-zero acceleration and are likely candidates in a binary orbit.
Using the orbital parameters of our template that made the detection, we get a max-
imum line-of sight acceleration value of 140.2m s

�2 and 37.1m s
�2 respectively. Our

current position measurement for the candidate J1630�44 is Gl = 338.7�, Gb = 2.7�

and for J1723-38 is Gl = 349.1�, Gb = -1.6�. Both these are normal pulsar candidates
with a spin-period of 373.315(2) ms and 237.205(1) ms respectively. J1630�44 and
J1723�38 were exclusively found in the template-bank pipeline and we are fairly cer-
tain that they are real due to their measured detection significance being above 9 sigma
or S/N > 10. Additionally, the DM dependent distance to these candidates based on
the YMW16 and NE2001 electron density models are below the maximum predicted
distance assuming that these sources are within our Galaxy, therefore increasing our
confidence in these candidates. However, follow-up observations of all these candidates
have so far yielded no detections. This is most likely caused due to the effect of RFI
in broadband observations of the UWL with the medusa backend. Several of our con-
firmed pulsars for e.g. PSR J1142�62, PSR J1737�33 among others were missed in
the FFT in followup observations with the UWL. We were able to confirm them by
directly folding the pulsar with the known spin-period, manually cleaning the folded
archive and doing a small period offset search using pdmp. While this is an effective
technique, it works only for isolated pulsars. Confirming slow pulsars in a binary orbit
with UWL remains a challenge, and will likely need new techniques to mitigate the
effect of RFI in search-mode observations. The alternative less likely scenario is that
J1630�44 and J1723�38 are false-alarm candidates caused due to noise lining up by
chance. However, given the high detection significance of these candidates27 we think
this scenario is unlikely. Yet another possibility for our lack of detections could be
emission instability if these candidates turn out to be intermittent pulsars (discussed
earlier in section 1.6.4). These questions can only be answered with more follow-up
observations which is one of the immediate near-term goals of this project.

27
See the third line in the top right of the detection plots for the probability that these could be noise

assuming a single trial search. Probability of noise P(Noise) < 2e-20 even in the most conservative

scenario.
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Figure 3.13: Detection plot of one of our Class A pulsar candidate J1546�54 found in the lowlat beam 2011-06-27-12:21:33/13. This signal was
detected with zero acceleration and its likely that J1546�54 is an isolated pulsar. This candidate has been followed up six times using Parkes
between MJD 59212 and 59399 with no detections.
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Figure 3.14: Detection plot of the pulsar candidate J1630�44 found in the lowlat beam 2011-06-29-13:52:38/01. The orbital template that was
used to detect the pulsar can be found in the top right under ‘Binary Parameters’. Based on these orbital values, we calculate the maximum line
of sight acceleration of this signal to be 140.2(2) ms�2. This candidate has been followed up 9 times at Parkes between MJD 59063 and 59399 with
no detections yet.
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Figure 3.15: Detection plot of the pulsar candidate J1723�38 found in the lowlat beam 2012-11-25-01:22:55/12. Based on the orbital template
that made the detection we calculate the maximum line of sight acceleration of this signal to be 37.1(5) ms�2.
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Table 3.9: A list of Period, Dispersion measure and sky coordinates of our Class-A candidates defined as candidates that are highly likely to be real due
to the high S/N of our detection. Despite multiple followup observations, none of these have been confirmed yet. We also report the DM dependent
distance estimate of these pulsar candidates based on the NE2001 and YMW16 electron density models. See main text for further discussion.

PSRJ pointing/beam RA (J2000) Dec (J2000) gl gb P DM S/N PEPOCH DYMW16 DNE2001

(hms) (dms) (�) (�) (ms) (pc cm�3) MJD (kpc) (kpc)

J1546�54 2011-06-27-12:21:33/13 15:46:48.00 -54:31:00.2 326.6 0.1 1466.829(6) 307(14) 11.16 55739.545224 4.44 4.73
J1630�44 2011-06-29-13:52:38/01 16:30:42.12 -44:26:09.75 338.7 2.7 373.315(2) 421(21) 13.20 55741.604721 18.65 7.58
J1723�38 2012-11-25-01:22:55/12 17:23:34.90 -38:57:54.81 349.1 -1.6 237.205(1) 585(15) 12.43 56256.078213 4.05 3.66
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3.3.6 Redetection of an additional 50 new pulsars and comparison to
the original discovery population of lowlat

A total of 70 new confirmed pulsars have been found so far using the template-bank
pipeline. In section 3.3.1 we reported the discovery parameters of 20 pulsars. In this
section we report the remaining 50 pulsars which were independently detected by our
pipeline but were initially found by other ongoing reprocessing searches in lowlat.
All these 70 pulsars were missed by the first-pass search pipeline (Ng et al., 2015;
Cameron et al., 2020). 47 of these pulsars were initially found by a GPU-Accelerated
Acceleration-Search pipeline (Sengar et al., prep). These searches are currently been
carried out on the full-length 72 minute observation of lowlat at the native time
resolution (tsamp = 64 µs) as well as observations decimated by a factor of 4 (tsamp =

256 µs). A further 3 pulsars were found by an ongoing reprocessing using a modified
version of FFA Pipeline riptide28 (Morello et al., 2020; Wongphechauxsorn et al.,
prep). We give a list of the barycentric spin period, dispersion measure, sky coordinates
and the corresponding HTRU pointing and beam where the pulsar was found using
our pipeline in table 3.10. We also present the DM dependent distance based on the
‘NE2001’ model (Cordes & Lazio, 2002) and the YMW16 model (Yao et al., 2017).
Further analysis of these pulsars including timing solutions will be the subject of a
future publication (Sengar et al., prep; Wongphechauxsorn et al., prep). In order
to identify why such a large number of pulsars were discovered in the reprocessing
which will aid future search strategies for lowlat and other pulsar surveys, we present
here a comparison of the S/N, DM and Galactic longitude distribution of the 70 new
pulsars presented in this work (hereafter referred to as ‘Current Discoveries’) to the
100 previously discovered pulsars (hereafter referred to as ‘Previous Discoveries’) in
lowlat reported in Ng et al. (2015); Cameron et al. (2020). The first-pass pipeline
was used to do an acceleration search using a segmented search approach (search range
given earlier in table 3.1), in order to be sensitive to relativistic binary pulsars. It
had 15 independent search components, candidates from which were grouped together,
and ranked by FFT spectral S/N with a cutoff at S/N equals 8.0. Approximately
the first 1000 ranked candidates per beam were then folded and inspected by eye.
While, this search was overall successful given that it found one of the most relativistic
binary pulsars known till date - PSR J1757�1854 (Cameron et al., 2018), this approach
has its drawbacks in terms of missing several low spectral S/N pulsars. Since all the
reprocessing searches, were entirely focused on the full-length 72-minute observation,
and with gains in computational power, we were able to have a lower spectral S/N
threshold of 7 and fold a factor of 2-3 more candidates per beam which enabled us to
find pulsars which were ranked well below the cut-off threshold of the initial first-pass
pipeline. This increase in number of pulsar discoveries at low S/N is demonstrated in
figure 3.16 where we show a histogram and cumulative distribution function (CDF) of
the spectral and folded S/N of the current pulsar discoveries to the ones previously
reported in Ng et al. (2015); Cameron et al. (2020). 48 out of the 70 new pulsars had a
spectral S/N greater than or equal to 8 and in principle should have been detected by

28https://github.com/v-morello/riptide
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past searches. The remaining 22 pulsars were below the FFT S/N threshold of 8.0 and
its unlikely that these candidates survived the FFT thresholding stage of the previous
pipeline. There are primarily four reasons to explain why the first 48 pulsars were
missed. The first-pass sigproc-based pipeline before commencing its search decimated
the observations by a factor of 4 (tsamp = 256 µs) for purely computational reasons
using the software sigpyproc29. However, during this process the data were incorrect
re-scaled back to 2-bits which effectively reduced the bit-depth of the data and thereby
reducing the sensitivity of our observations. This has since been fixed in software
for the current reprocessing by outputting a 4-bit observation after downsampling.
The second reason was the DM tolerance used by the sigproc dedispersing program
dedisperse_all has a default DM tolerance of 1.25 compared to 1.11 in Peasoup.
This effectively leads to more DM trials between two values for the reprocessing searches
and thereby reducing the S/N lost due to sampling at an incorrect DM. The third reason
was the limited amount of candidates that could be folded due to computation and the
implementation of the segmentation search pipeline which had 15 independent search
components (Ng et al., 2015). We were able to find these new pulsars due to the increase
in computational power available now, the development of new GPU-based pipelines
and fixing the downsampling software bug in sigpyproc. Finally, the fourth reason is
human error. During the processing of a large scale pulsar survey like lowlat, it is
expected that a few pulsars will be missed due to human error during inspection. This
is likely to have been the case with the PSR J1814�18 which had a spectral and folded
S/N greater than 30. This may have also played a role in some of other pulsar discoveries
reported here. Similar to spectral S/N, we see a trend of increased discovery at lower
folded S/N as well with the median folded S/N of the current discovery population
at 11.5 compared to a median S/N of 14.1 for the previously discovered population
in lowlat. Using a two-sample Kolmogorov–Smirnov (KS) test, we get p-values of
5 ⇥ 10�8 and 9 ⇥ 10�8 for the spectral and folded S/N distributions respectively and
therefore, the null hypothesis (i.e the distribution of S/N from the current and previous
discoveries are identical) can be ruled out. Given the same survey parameters, and
assuming that the period and pulse width distribution of both population of pulsars
is similar, a lower S/N could either mean that we are finding low luminosity pulsars
closer to us or comparable luminosity pulsars located further away from us. For this
comparison, ideally we would like to have independent distance measurements to each
pulsar, and calibrated flux density measurements. However, in the absence of these two
measurements, we can use the detected DM of each pulsar as a proxy for distance and
compare the distributions for both populations. This is shown in figure 3.17. We see a
clear statistically significant trend in the discovery of more pulsars at higher DM. The
median detected DM of the previously discovered population of pulsars is 326 compared
to 470 in the current discovery population. Using a KS test, we get a p-value of 0.0016,
and therefore the null hypothesis that the DM distributions of both populations are
identical can be safely ruled out. Based on these results, it is likely that we are probing a
phase-space of pulsars located further away from us. Additionally, in order to compare

29
https://github.com/ewanbarr/sigpyproc
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the spatial distribution of both populations of pulsar discoveries, in figure 3.18 we show
a histogram of their Galactic longitude (gl) distribution. The scatter plot overplotted
on the histogram shows the detected DM of each pulsar. The distributions are broadly
consistent with each other. There is a larger than average number of new discoveries
between galactic longitude 8 and 13 degrees, however this trend is not statistically
significant. It is likely that this region by coincidence happened to have more low S/N
pulsars that were undetected by past searches. Using the KS test, we get a p value
of 0.49 and therefore the null hypothesis that the gl distributions of both populations
are identical cannot be ruled out. Besides, the 70 pulsars given here, an additional 22
pulsars is expected to be announced in Sengar et al. (prep) in the near future. These
were not detected using our pipeline. There are primarily two reasons for this. First, is
that all the remaining undetected pulsars were discovered by a mild acceleration search
on the native time resolution of lowlat (tsamp = 64 µs) whereas our search was done
on decimated data at 256 µs due to the larger number of binary trails in our search.
These pulsars were missed due to the FFT detection significance at 256 µs being below
our cutoff limit of 7.0. A second reason is our high threshold of Pspin = 13ms in
the template-bank pipeline. Therefore, we are only partially sensitive towards isolated
pulsars or binaries below this limit. Besides, the new discoveries presented so far, we
also report an additional 60 unique known pulsars that were missed by the first pass
pipeline in table A.1. This list was compiled based on the redetection list provided by
Ng et al. (2015); Cameron et al. (2020). We think these pulsars were likely missed due
to the reasons mentioned above and human error while inspecting pulsar candidates.
Our results show that for future pulsar surveys using the SKA, it will be crucial to
fold a larger number of pulsar candidates per beam in order to maximise the number
of discoveries from a survey. However, this comes at the cost of higher computation.
Alternatively, more work needs to go into better RFI-mitigation algorithms or clever
heuristics which can reject likely false-positive candidates from the FFT. A second
takeaway from these results is that a higher time resolution is crucial to find low S/N
pulsars. The fact that a total of 22 pulsars can be exclusively found in the native
time resolution of tsamp = 64 µs is quite significant, therefore any future pulsar search
strategies that rely a lot on downsampling the data by a large factor should carefully
balance the risk of losing several low S/N pulsars against gains in sensitivity for other
types of populations of pulsars (for e.g. relativistic binary pulsars).
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Figure 3.16: Histogram and Cumulative distribution function of S/N measurements of
current discoveries compared to previous discoveries from lowlat. In the top, we show
the distribution of the FFT spectral S/N and in the bottom we show the distribution
of folded S/N. A large number of the new discoveries were made possible due to the
lower FFT spectral S/N threshold which was feasible due to gains in computational
power that enabled us to fold more pulsar candidates and find many relatively low S/N
pulsars. find See main text for further discussion.
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Figure 3.17: Detected DM Distribution of the pulsar discoveries presented in this work
(‘Current’ Discoveries) to pulsar discoveries reported in past search efforts in lowlat
(Ng et al., 2015; Cameron et al., 2020). In the top we show a histogram and in the
bottom we show a CDF of the DM distribution for both populations. On average,
pulsars found in the reprocessing are probing pulsars at a higher DM and therefore are
likely located further away from us.
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Figure 3.18: Histogram of Galactic longitude distribution of the current and previous
discoveries in lowlat. The scatter plot markers show the detected DM of each pulsar.
The Gl distribution of both populations are broadly consistent with each other. See
main text for discussion.
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Table 3.10: Redetection of 50 new pulsars found in the reprocessing of Lowlat using the template-bank pipeline. Out of this, 47
pulsars were discovered by ongoing reprocessing efforts using an acceleration search pipeline- peasoup (Sengar et al., prep). Three
pulsars (marked in the footnotes) were discovered by the FFA pipeline (Wongphechauxsorn et al., prep). Similar to table 3.6, we
give pulsars a temporary name with two digits of declination unless the pulsar has been redetected in the ongoing MGPS-L survey
using Meerkat. We report here the barycentric spin period P, dispersion measure DM and barycentric period epoch PEPOCH.
These values have been taken from the discovery observation from lowlat, and values in parenthesis represent our uncertainty in
the final digit. We also report DM-dependent distances based on ‘NE2001’ model (Cordes & Lazio, 2002) and the YMW16 model
(Yao et al., 2017)

PSRJ pointing/beam gl gb P DM S/N PEPOCH DYMW16 DNE2001

(�) (�) (ms) (pc cm�3) MJD (kpc) (kpc)

J1136�64 2012-07-23-00:10:48/10 295.016 -2.967 1023.619(3) 309(9) 14.28 56131.033387 7.07 3.17
J1325�6256b 2011-12-10-16:54:46/10 306.798 -0.326 28.970674(2) 303.6(2) 14.2 55905.726955 6.39 5.38
J1333�61 2011-09-18-22:03:34/07 307.882 0.650 1532.134(6) 546(14) 16.79 55822.942569 8.97 12.02
J1348�62 2011-10-10-21:55:27/06 309.415 -0.350 616.2599(9) 685(7) 13.58 59179.818916 10.72 12.21
J1406�59 2011-04-19-15:27:52/07 312.415 2.081 1248.312(4) 286(12) 12.94 55670.673697 5.39 5.65
J1437�62 2011-12-05-20:04:47/06 314.772 -2.390 777.993(1) 323(7) 13.41 55900.858247 6.89 6.51
J1518�60 2012-07-31-12:35:11/03 320.068 -2.595 510.6555(7) 420(5) 14.91 56139.552401 8.71 15.15
J1521�57 2013-02-02-16:02:33/12 321.912 -0.574 173.68169(9) 270(2) 10.08 56325.692563 4.26 4.49
J1548�55 2011-12-29-17:55:52/06 325.972 -1.170 541.382(1) 446(11) 8.91 55924.768219 6.43 6.54
J1555�53 2011-05-17-11:18:22/03 328.529 -0.481 1170.895(9) 785(25) 11.86 55698.501771 9.90 6.42
J1600�49 2012-01-04-18:26:39/04 331.344 2.499 287.5260(4) 328(5) 10.60 55930.790073 9.38 6.90
J1603�54 2011-12-07-21:23:21/04 328.773 -1.150 960.792(3) 472(9) 12.76 55902.912297 7.26 6.35
J1632�49 2011-12-13-04:39:04/12 335.499 -0.735 416.836(2) 814(13) 11.93 55908.214809 9.10 7.07
J1634�49 2011-04-23-20:03:59/02 335.085 -1.571 356.7153(4) 465(3) 14.51 55674.865709 6.52 7.01
J1635�46 2011-06-26-16:09:12/11 337.596 0.449 1488.902(7) 549(14) 14.89 55738.704021 6.14 4.97
J1638�47 2012-04-14-13:41:06/02 337.035 -0.549 426.668(2) 1374(19) 12.35 56031.599597 17.36 10.09
J1639�46 2012-04-12-12:47:43/13 338.208 0.224 519.136(1) 917(7) 8.78 56029.561993 9.18 5.80
J1641�49 2011-10-13-06:08:35/09 336.154 -2.158 795.189(2) 578(9) 9.86 55847.279164 10.17 18.44
J1647�49 2011-10-10-05:13:04/06 337.037 -2.589 247.5278(2) 515(2) 11.73 55844.240911 9.77 18.90
J1651�42 2012-12-30-02:45:46/07 342.653 1.080 496.547(2) 943(14) 12.81 56291.135731 13.30 25.00
J1651�46 2011-12-07-22:36:35/04 339.273 -1.551 569.351(2) 487(11) 13.08 55902.962574 6.64 11.47
J1655�40 2011-04-20-20:48:56/03 344.871 2.069 276.6890(5) 439(6) 11.78 55671.896549 6.75 18.20
J1700�39 2011-12-10-04:41:41/01 345.910 1.480 3746.46(4) 509(36) 15.08 55905.215785 6.84 15.49
J1710�39 2011-12-29-20:22:33/01 346.980 0.060 977.337(8) 1198(29) 12.12 55924.869521 12.57 7.45
J1717�41 2011-10-13-07:22:02/04 346.487 -1.989 546.2329(8) 356(5) 16.45 55847.330481 5.53 11.82

continued in next page
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PSRJ pointing/beam gl gb P DM S/N PEPOCH DYMW16 DNE2001

(�) (�) (ms) (pc cm�3) MJD (kpc) (kpc)

J1719�36 2012-08-03-08:18:01/09 350.548 0.274 757.151(2) 624(7) 12.82 56142.375630 6.61 4.65
J1720�37a 2011-07-06-09:13:30/13 350.229 0.024 934.085(4) 388(13) 12.33 55748.415402 4.61 4.92
J1723�40 2012-11-25-01:22:55/13 348.360 -1.160 1982.26(1) 347(19) 8.42 56256.077862 4.59 4.44
J1735�28 2011-06-27-16:02:05/12 359.067 2.103 428.5601(7) 279(5) 9.97 55739.699884 4.44 8.03
J1738�33 2012-10-04-10:29:13/09 355.042 -1.385 357.7344(4) 257(3) 10.04 56204.461351 3.90 3.97
J1739�26 2011-06-30-16:47:36/07 1.441 2.503 490.1418(8) 354(5) 10.56 55742.729027 6.05 16.12
J1742�34a 2011-05-08-14:10:36/08 354.516 -2.591 1116.396(9) 157(21) 10.3 55689.621159 3.07 2.81
J1746�2829a 2011-05-17-15:33:25/02 0.451 0.113 1888.96(1) 1318(21) 10.74 55698.678994 15.80 8.23
J1757�26 2011-10-06-07:02:33/12 3.060 -1.124 354.458(3) 502(24) 11.77 55840.317833 7.02 9.44
J1758�24 2011-04-24-21:02:42/03 5.292 -0.160 633.105(2) 652(9) 12.86 55675.905772 10.41 4.55
J1758�25 2013-04-04-17:59:06/13 4.491 -0.774 605.501(1) 415(6) 9.45 56386.776920 5.48 4.23
J1806�21 2013-01-07-04:18:23/08 8.690 -0.328 328.558(1) 989(14) 12.25 56299.199796 12.22 6.25
J1808�14 2013-04-06-16:18:54/03 14.715 2.491 836.422(2) 307(8) 11.47 56388.706730 5.42 9.78
J1808�19 2011-07-02-12:25:09/03 10.625 0.261 101.6661(1) 969(3) 16.44 55744.549250 11.71 6.47
J1809�20 2013-04-02-16:32:16/06 9.952 -0.570 57.25620(2) 528(1) 11.44 56384.716057 6.65 4.50
J1813�14 2013-04-02-21:22:53/04 15.525 1.480 1035.407(3) 427(10) 13.91 56384.917350 6.11 11.87
J1814�1845b 2013-04-08-18:54:20/05 12.139 -0.709 1089.989(4) 534(10) 33.6 56390.815126 4.89 7.07
J1814�18 2013-04-08-18:54:20/05 12.157 -0.740 684.209(3) 824(16) 10.62 56390.815133 13.42 11.90
J1817�19 2013-04-08-18:54:20/10 11.660 -1.583 1229.084(4) 191(12) 12.11 56390.815078 3.69 3.60
J1823�11 2011-12-31-00:27:33/06 19.295 0.659 286.184(1) 725(15) 10.39 55926.039287 8.34 6.99
J1830�09 2011-07-05-14:23:13/09 22.430 0.424 695.490(1) 309(7) 15.26 55747.631059 4.62 4.09
J1835�09 2013-04-01-18:01:40/11 22.780 -0.510 750.461(5) 555(22) 12.54 56294.039346 6.66 4.94
J1844�09 2013-04-01-20:26:44/01 23.950 -2.580 634.445(1) 415(6) 11.86 56383.877573 8.10 18.09
J1846�05 2012-04-13-20:25:11/06 27.453 -1.350 1444.984(6) 474(14) 14.89 56030.877942 7.75 9.07
J1854�05 2011-12-13-06:05:17/01 28.610 -2.980 1279.944(5) 275(12) 12.60 55908.274585 5.94 8.24

a These pulsars were initially discovered by the ongoing reprocessing of lowlat using an FFA pipeline (Wongphechauxsorn et al.,
prep).
b Positions reported for these pulsars were obtained from the ongoing MGPS-L survey (Padmanabh et al., prep) but the Period,
DM and S/N reported in these rows are from discovery Parkes Observation.
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3.3.7 Status of Survey Processing and Evaluation of survey yield

We have completed searching 14,488 beams in Lowlat out of a total of 16,637 which
comprises of 87.1% of the total survey. In figure 3.19, we show the spatial configuration
of HTRU pointings processed during this thesis. Green circles indicate beams processed
and red circles indicate pointings that are still to be processed. Given the extensive
number of new pulsars that have been presented in this thesis along with a list of the
previously missed known pulsars shown in table A.1, it is now possible to make a revised
evaluation of the survey yield. Keith et al. (2010) estimated that lowlat would find
‘957’ normal pulsars (defined as P > 30ms ) using simulations from the psrpop30

software package. Ng et al. (2015) later revised this estimate to 1020 normal pulsars
based on updated simulations using the software psrpoppy31 (Bates et al., 2014). Both
these results are statistically consistent, and we will use the latter to stay consistent
with past discussions of survey yield presented in Ng et al. (2015); Cameron et al.
(2020). The first-pass pipeline was used to process 94.1% of the survey. Remaining
portions of the survey were left our due to difficulty in accessing archival storage tapes.
Therefore, re-scaling the total predictions to the part of the data that was processed
should yield 960 normal pulsars. Cameron et al. (2020) reported a total of 723 normal
pulsar detections combining new pulsars presented in that work with known pulsar
redetections and discoveries presented in Ng et al. (2015), and reported falling short
of predictions from simulations by ⇠ 25%. As mentioned before in section 3.3.6, we
know that this reduced discovery rate was caused due to incorrect bit rescaling while
downsampling, high DM tolerance for dedispersion steps, high FFT S/N and candidate
rank threshold used before folding as well as human error. In this work, we presented
20 new pulsars, redetection of PSR J1753�2819 along with a redetection of 50 new
pulsars and an additional 60 known pulsars which were missed in the original pipeline.
Some of our known pulsar redetections include the newly discovered 2.772 ms MSP
J1431-6331 from ASKAP (Kaplan et al., 2019), a 1.492 ms MSP J1804�2858 recently
found in the reprocessing of Med-lat (Morello et al., 2019), PSR J1809�2036 which was
detected initially in the High-Lat pulsar survey (Lina Levin, 2019, HitRun mailing list
comm) and confirmed in lowlat. A further 22 pulsars are expected to be announced
in Sengar et al. (prep). Combining all these, along with the initial list provided by
Cameron et al. (2020) takes the total to 872 unique normal pulsar detections which is
9% short of predictions from psrpoppy. An additional 7 % of the data still remains
to be processed in order to be consistent with the amount of data that was processed
by the first-pass pipeline. Therefore, extrapolating our numbers to this leads to 884
total pulsar detections. The simulations done using psrpoppy assumed a detection
S/N of 9.0, whereas we inspected candidates below this limit which was made possible
due to our machine learning search pipeline (Balakrishnan et al., 2021). Out of our
total pulsar detections, at-least 10 pulsars have a S/N below 9, therefore subtracting
this from our total detections in order to stay consistent with the simulation threshold,
we get 874 normal pulsar detections which falls short by ⇠ 9%. This can be partially

30http://psrpop.sourceforge.net
31https://github.com/samb8s/PsrPopPy
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explained by the fact that searches on the full native time resolution of lowlat is still
ongoing, and the extra known pulsars reported here were done based on searches on
decimated data. Additionally, propagation effects due to scintillation, and scattering
could also play a major role in reducing the number of our total detections. Also,
psrpoppy assumes sensitivity of a pulsar survey based on the radiometer equation,
however Lazarus et al. (2015) reported that the true sensitivity of a pulsar survey is
a function of period, DM, duty cycle of the pulsar, the RFI environment and slow
pulsars are adversely affected due to the influence of red noise. The true sensitivity
of lowlat could be evaluated by injecting signals into the data using the technique
described in Lazarus et al. (2015) and revising the expected discoveries based on that.
Additionally, both Keith et al. (2010) and Ng et al. (2015) do not report a standard
deviation in the expected number of pulsar discoveries. These predictions were based on
the ‘snapshot’ method (Bates et al., 2014) where we populate the Galaxy with pulsars
with a certain luminosity, spin-period and spatial distribution till a given standard
pulsar survey (in this case PMPS) detects the total number of pulsars (1038) it actually
found. Once this is done based on telescope, receiver parameters and sky coverage of
future pulsar surveys, it makes a prediction on how many new pulsars will be found
in that survey. However, we know that the total number of PMPS discoveries gets
updated over time with additional reprocessing with more sophisticated algorithms.
An additional 20 new pulsar discoveries (besides the original 1038 pulsar detections)
from the latest leg of PMPS reprocessing are expected to be announced soon (R.Sengar,
2021, priv. comm.). Also, psrpoppy assume a log-normal luminosity distribution for
normal pulsars from Lorimer et al. (2006) which is not well constrained at the lower
luminosity end. Therefore, any predictions from psrpoppy should be evaluated with
caution. The ongoing processing of lowlat using the FFA pipeline could also lead to
the discovery of several new normal pulsars as FFA is a more optimal approach to find
normal pulsars with narrow duty cycle. Separate predictions were made about the total
amount of MSP discoveries in lowlat. This is because MSPs tend to have different
selection effects in a pulsar survey compared to normal pulsars and additionally the
number of known Galactic MSPs is much lesser than the number of known normal
pulsars, therefore, making future discovery predictions more challenging. Keith et al.
(2010) estimated that lowlat would find 51 MSPs which was revised to 43 by Ng
et al. (2015). Levin et al. (2013) predicted an increased yield of 68 MSPs. Using these
predictions as lower and upper limits, and rescaling it to 94.1% of the survey which
was processed by the first-pass pipeline Cameron et al. (2020) reported that we should
expect to find 40-64 MSP detections whereas only 18 MSPs were found with the first-
pass pipeline. The total number of MSP detections so far from the reprocessing pipeline
for 87.1 % of the survey is 34, almost double the number initially reported. A large part
of these new discoveries were made possible due to FFT searches on the full native time
resolution observations of lowlat (Sengar et al., prep). Extrapolating these numbers
to 94.1% should lead to 38 MSP detections. None of our confirmed MSP detections
have a folded S/N below 9, therefore these numbers are consistent with the detection
threshold used in psrpoppy. As mentioned earlier, it is likely that our pipeline would
have missed multiple isolated MSPs rotating faster than spin-period of 13 ms due to
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us targeting PSR-BH binaries which requires investing more compute time for orbital
searches. We expect more known MSPs to be detect by a pure FFT based search on
the full-length observations at 64 µs sampling. Overall, once all pipelines have finished
processing we expect the actual number of MSPs found in lowlat should match the
lower limit of predictions made from simulations.

3.3.8 Flux-Density Limits on Short Orbital Period PSR-BH Binaries

Using the template-bank algorithm, we have conducted the most sensitive search for
PSR-BH binary systems in the Southern Galactic-Plane at L-band. In the follow-
ing sections, we will quantify this extra sensitivity from our pipeline and use the null
results from our searches to place limits on the detectable Population of PSR-BH bi-
naries in the Galaxy. The HTRU South Lowlat survey as a whole has now been
searched by at least three independent pipelines. First was a Sigproc-based Pipeline
implementing a segmented search (here after called segmented accel-search) described
in Ng et al. (2015). Second is a GPU-based acceleration search pipeline (here after
called GPU accel-search) that expanded the maximum acceleration value in the full
length 72-minute observation of lowlat and the discoveries from this is expected to
be announced in the near future (Sengar et al., prep). Finally, we have the template-
bank pipeline which is the subject of this chapter that focused on the phase-space of
PSR+Stellar Mass Black holes where 10-40% orbit is visible in the full length observa-
tion. The maximum acceleration value chosen for the accel.search and template-bank
pipeline where based on the values expected for PSR-BH binaries in circular orbits.
Given the null results for all three, we can now use the known sensitivity of each pipeline
to place a flux density limit on PSR-BH binaries for various orbital parameters. Ng
et al. (2015) reported that the minimum flux density (also known as sensitivity) for the
HTRU-S Lowlat survey is 0.1 mJy. The true sensitivity of a survey is not a fixed value
but is a function of spin-period of the pulsar, duty cycle, DM, and the RFI environ-
ment (see Lazarus et al. 2015 for a more detailed discussion on this). In this section for
simplicity, we assume a fixed value as our best-case minimum detectable flux density
which is generally valid for isolated pulsars. While searching for binary pulsars, if the
orbit of the pulsar is not known our sensitivity decreases due to the apparent change
in the observed period of the pulsar due to Doppler modulation. Johnston & Kulkarni
(1991); Bagchi et al. (2013) described an analytical formulation for quantifying the S/N
regained by applying a binary search pipeline called efficiency factors assuming stan-
dard FFT search, an acceleration search and a jerk search. We expand on this work by
first simulating observations of a PSR-BH binary in circular orbits with observational
parameters resembling a typical full-length Lowlat observation (see table 3.4). We
then run all three pipelines i.e the segmented accel-search, the GPU accel. search and
the template-bank pipeline. For the segmented accel-search pipeline, we divide the ob-
servation into halves, quarters and eighths and search with the same acceleration range
reported in Ng et al. (2015). We then take the best case S/N and use that for our
minimum detectable flux density estimate. For the GPU accel. search pipeline, we use
a maximum acceleration value of 100m s

�2 on the full-length. For the template-bank
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Figure 3.19: Spatial distribution of HTRU pointings on the sky. Green circles indicate
pointings processed during our reprocessing. Red circles indicate pointings that are
still to be processed.
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pipeline, we run both our searches, and report here the best case minimum detectable
flux density estimate. We start by fixing the spin-period of the pulsar Pspin = 10ms,
duty cycle = 20 % and varying the orbital period of the binary from 4 hours to 24
hours and the mass of the black hole from 5 M� to 15 M�. We use an inclination
of 60� for our simulations, pulsar mass of 1.4 M� and we let the initial orbital phase
vary randomly between 0 and 2 ⇡ radians. We then calculate the minimum detectable
flux density Smin for each pipeline with our theoretical minimum detectable flux den-
sity being 0.1 mJy (Ng et al., 2015). Our results are shown in figures 3.20 and 3.21.
As expected, the GPU accel. search pipeline (bottom of figure 3.20) is sensitive to
long orbital period binaries above 18 hours with the minimum flux density estimate
ranging between 0.1 to 0.2 mJy. A minimum flux density estimate of 0.2 mJy is a
50 % degradation from the theoretical maximum sensitivity of an isolated pulsar. As
the orbit gets more compact (Porb = 8-18 hrs), our sensitivity range drops to between
0.2-0.43 mJy which in the worst case is a 76.7% loss in sensitivity. For orbits with
shorter orbital periods (Porb = 4-8 hrs), our sensitivity range is between 0.4-1.4 mJy
which in the worst case is a 92.8 % loss in sensitivity. The general trend is that as the
orbit gets more compact and the mass of the black hole increases, our search sensitivity
drops. The slight non-uniformity in sensitivity in adjacent cells for orbits with similar
orbital period and companion mass is due to the fact that we have let the orbital phase
of the binary vary between 0 and 2 ⇡ radians32. Cells at the same grid location for
each pipeline however are directly comparable. In the top part of figure 3.20, we show
the results from the segmented accel-search pipeline (Ng et al., 2015). In section 3.3.6,
we discussed some of the drawbacks of the segmented search pipeline which limited
the maximum acceleration range in the full 72-minute observation to amax =

��1m s
�2
��,

here, we see some of its advantages. The segmented-search offers increased sensitivity
throughout the binary phase space of PSR-BH binaries with minimum detectable flux
density ranging between 0.14-0.37 mJy which in the worst case is 73 % loss. In the top
part of figure 3.21, we show the results from our template-bank pipeline. For orbits
longer than Porb > 20 hrs, the performance is comparable with the segmented accel-
eration search pipeline and for some cases it performs worse because those orbits are
outside our search range. However, as the orbit gets more compact, this is when higher
order searches like the template-bank pipeline truly shine. We obtained an increased
sensitivity towards orbits in the Porb = 6-12 hrs regime which was the range chosen in
our template-bank. Our sensitivity here ranges between 0.1-0.2 with a median sensitiv-
ity of 0.114 mJy which is an average loss of 12.2% and in the worst case a loss of 50 %.
This can be better visualised in the bottom part of figure 3.21 where we show the sensi-
tivity improvement factor from the template-bank pipeline compared to the segmented
accel-search pipeline. A factor above unity is an improvement for the template-bank
pipeline and conversely below unity indicates better performance from the segmented
accel. search pipeline. We have at least doubled the sensitivity or in other words halved
the minimum detectable flux density for PSR-BH binaries for orbits in the 6-12 hour

32
A favorable orbital phase can make an otherwise difficult to detect relativistic binary pulsar more

easily detectable.
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range compared to past searches in lowlat. A factor of 2 improvement purely from a
change in search algorithm is quite significant as from the radiometer equation we know
that to produce a similar sensitivity gain for isolated pulsars would require four times
the original observation length. We would like to emphasize that such an improvement
from acceleration-search cannot be obtained irrespective of the maximum acceleration
value used in the search due to the previously defined 10% rule. It is clear from fig-
ure 3.21 that we have now probed this compact orbit phase-space with a much more
stringent flux density limit that was previously not possible. Naturally, our minimum
detectable flux density limit increases for orbits shorter than 6 hours due to these ranges
being outside our template-bank and is much worse than the segmented acceleration
search pipeline. We leave these parameter spaces to be explored by future reprocessing
efforts including the possibility of an application of a segmented template-bank search
pipeline which can provide more stringent limits that the ones currently available in
this orbital period regime. We also repeated these simulations for a pulsar with a spin-
period 100 ms and 1000 ms. These results are shown in Appendix B. It is in general
easier to find normal pulsars orbiting black holes compared to MSPs. Therefore, in
order to see similar gains in sensitivity its important to ensure that the template-bank
is designed for progressively shorter orbits or more massive black holes as was the case
for our Non-Recycled Pulsar-BH binary search described in section 3.2.4.

3.3.9 Limits on the Detectable Fraction of PSR-BH Binaries with
short orbits

In this section, we do a similar sensitivity comparison of each pipeline by computing
the minimum detectable flux density as done in the previous section but in the orbital-
period and pulsar spin-period plane keeping the mass of the black hole fixed at 8M�.
We restrict our discussion to binaries with an orbital period range of Porb = 4� 24hrs

and a pulsar spin-period between 5 to 100ms. As is the case in the previous section,
we use an inclination of 60� for our simulations, pulsar mass of 1.4 M� and we let
the initial orbital phase vary randomly between 0 and 2 ⇡ radians. Here, for brevity
we only show the results from the template-bank pipeline in figure 3.22. Similar plots
assuming a segmented acceleration search pipeline and the GPU accel-search pipeline
including the gain factor defined in the previous section can be found in Appendix C.1
and C.2 respectively. As is the case for our black hole mass vs orbital period plot, we
have a uniform sensitivity towards PSR-BH binaries for parameter regions covered by
our template-bank. The slight non-uniformity in sensitivity (for e.g at Porb = 13.63,
14.98 and spin-period=5.85, 6.85 respectively) are due to probabilistic holes in our
template-bank. We have assumed a coverage of ⌘ = 0.9 and a mismatch m = 0.2,
therefore, statistically we are likely to have small regions of reduced sensitivity. Once,
we calculate sensitivity we then assign a luminosity to each pulsar in this plane by
sampling from a log-normal luminosity distribution33 (Faucher-Giguère & Kaspi, 2006)

33
We have ignored geometric effects here like beaming fraction. Therefore such luminosity distribu-

tion is referred to in literature as “pseudo-luminosity” distribution (Arzoumanian et al., 2002; Lorimer,

2008).
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Figure 3.20: Minimum detectable flux density limit for a 10 ms pulsar orbiting a black
hole of varying mass as a function of the orbital period of the binary. In the top we
show the results from a segmented acceleration search pipeline (Ng et al., 2015) and
in the bottom we show the results from the ongoing reprocessing of lowlat using a
GPU acceleration search (Sengar et al., prep). See text for full discussion.
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Figure 3.21: Minimum detectable flux density limit for a 10 ms pulsar orbiting a black
hole of varying mass as a function of the orbital period of the binary. In the top we
show the results from the template-bank pipeline which is presented in this work and in
the bottom we show the sensitivity gain factor compared to the best-case acceleration-
search pipeline i.e the segmented acceleration search pipeline (Ng et al., 2015). A factor
above 1 indicates improvement from the template-bank pipeline and conversely below
1 indicates better performance from the acceleration-search pipeline. See text for full
discussion.
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with mean µlog10L = �1.1 and standard deviation �log10L = 0.9. In order to quantify a
detectability fraction towards PSR-BH binaries in this plane, we also need to assume
a certain distance between us and the binary pulsar. Depending on the part of the
sky survey surveyed, and the detected DM of the binary, the distance to the PSR-BH
can vary between a wide range of values. For simplicity, we first assume an isotropic
distribution of PSR-BH binaries at a fixed distance of 6 kpc which is the median DM
distance assuming the NE2001 electron density model of all the new pulsar discoveries
found in lowlat as reported in Ng et al. (2015); Cameron et al. (2020) and this
work. Using the luminosity and distance, we can compute the apparent flux density
for each pulsar in this distribution and determine what fraction of sources lies above
our 1.4 GHz minimum detectable flux density limit for each orbital and spin-period.
These values are shown in figure 3.23. Our detectability fraction ranges between 2.6
to 3.6 % for binary orbits covered within our template-bank (i.e Pspin � 13ms and
Porb = 6 � 12hrs). 3.6 % is our best-case detectable fraction assuming an isolated
pulsar and the theoretical sensitivity of lowlat. Our detectability range drops further
between 1.3 % and 2.7 % for binaries with orbital period Porb  5.31hrs due to losses
from Doppler modulation as these orbits are not covered in our template-bank. These
can in principle be improved by future reprocessing efforts. A large fraction of the
binary pulsars assuming the luminosity distribution of Faucher-Giguère & Kaspi (2006)
at this distance are simply too faint to be detected in lowlat. These numbers are
a conservative upper-limit as we have assumed no beaming-fraction34 losses in our
analysis. Therefore, at this distance, we are largely sensitivity limited and future
pulsar surveys using MeerKAT and the SKA35 (Kramer, 2004) will be crucial to probe
PSR-BH binaries in this regime. In figure 3.24, we marginalise over orbital period and
spin-period and show a cumulative distribution function of the detectable fraction of
PSR-BH binaries for three characteristic distances from earth namely 1 kpc, 5 kpc and
10 kpc in the top, middle and bottom respectively. Here, we see that a distance of
1 kpc, a large fraction of pulsars are detectable using higher-order searches like the
template-bank pipeline. The median detectable fraction from the GPU accel.search
pipeline is 30.2 %, the segmented accel. search pipeline is 44.7 % which increases to
72.5% using the template-bank pipeline. Large improvements in detectable fraction
can be made here by improving the binary search algorithm. We call this regime
algorithm-limited as compared to sensitivity limited for the 6 kpc case. In the case of
5 kpc, as shown in figure 3.24, the median detectable fraction is 2.5 %, 3.2% and 4.1%
respectively whereas in the 10 kpc case it is 1.2, 1.4 and 1.8 % respectively. Based on
our null detections, and our sensitivity limit tests, we think it is highly unlikely that
a PSR-BH binary exists near the Galactic-plane at distances d  1kpc. While our
analysis, were restricted to orbital periods in the 4-24 hrs regime, orbits longer than
a day should in principle be easier to detect due to their low line of sight acceleration
value. A high eccentricity of such orbits could make them more difficult to detect
close to periastron, however Bagchi et al. (2013) did report that on average highly

34
Defined as the fraction of the sky covered by the pulsar radiation beam

35https://www.skatelescope.org/
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Figure 3.22: Minimum Detectable Flux density towards PSR-BH binaries in the Porb-
Pspin plane assuming a fixed black mass of 8 M�. These limits were obtained from
searches done using the template-bank pipeline.

eccentric orbits e ⇠ 0.8 are more easier to detect than mildly eccentric orbits e ⇠ 0.1

as the pulsar spends most of its time away from periastron. Due to the assumption of
circular orbits in our searches, we cannot yet rule out the possibility of mildly eccentric
orbits with a PSR orbiting a black hole with orbital periods Porb > 4hrs or circular
orbits with Porb < 4hrs at nearby distances d  1kpc. However, since this regime is
mostly limited by the search-algorithm used, future reprocessing efforts can certainly
shed more light into the existence of nearby PSR-BH binaries and answer this question
more definitively. For binaries located further away from us at distances at 5 and 10 kpc,
our results show that algorithms can provide a marginal improvement in sensitivity,
however a more significant gain can only be made by building more sensitive telescopes
and improved electronics.

3.4 Concluding Remarks

Using the template-bank algorithm, we have conducted the most sensitive search for
PSR-BH binaries in the southern hemisphere at L-Band using observations of the in-
ner Galactic plane (|b| < 3.5) component of the HTRU-South survey. Our searches
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Figure 3.23: Detectable Fraction of PSR-BH binaries assuming a pseudo luminosity
distribution (Faucher-Giguère & Kaspi, 2006). Here we assumed that these pulsars are
located at a distance of 6 kpc from us which is the median NE2001 DM distance of all
the new pulsar discoveries of lowlat.
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Figure 3.24: Cumulative Distribution Function (CDF) of detectable fraction of PSR-
BH binaries located at different characteristic distances from earth. We show three
cases here in the top, middle and bottom that correspond to 1 kpc, 5kpc and 10 kpc
respectively. Additionally, we also show the detectability fraction from past-searches
(blue and orange curve) in lowlat and compare them to searches done as a part of
this thesis (green curve). See main text for discussion.
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focused on the phase-space where 10-40% of the orbit is visible. Due to the increased
amount of computational trials that was required to perform this search, a new GPU
pipeline was developed as a part of this work, which was used to discover 70 new
pulsars, 20 of which were initially found by our pipeline and the remaining were ini-
tially detected in other ongoing reprocessing efforts. Some of the discovery highlights
include PSR J1743�24 which is a rare intermediate spin-period pulsar in a 70.7 day
orbit around a light mass companion star. The formation history of this pulsar is likely
inconsistent with standard evolutionary models and could be part of a separate popu-
lation of pulsars with light companion masses and crucially exhibiting an intermediate
spin-period. This pulsar also has a complicated pulse-profile and will require further
polarisation-based investigation studies in order to better understand its emission ge-
ometry. PSR J1609�5225 has the highest detected DM in our discovery sample of
993(10) pc cm

�3. The integrated pulse profile of this pulsar shows a strong scattering
tail and by modelling the trailing edge component of the pulse profile we measure a
scattering timescale ⌧ = 77 ± 25ms which is consistent with the predictions based on
the NE2001 and YMW16 electron density models. We expect this pulsar to be a useful
addition to the population of pulsars that are typically used for ISM related studies.
PSR J1142�62 is a normal pulsar suspected to be in a binary orbit and if confirmed
would be part of a minority population (⇠ 2%) of normal pulsars which have a binary
companion. Additionally, we also presented an updated timing solution combining data
from JBO and Parkes of PSR J1753�2819 which is a pulsar similar to PSR J1743�24
in its unusual intermediate spin-period but is in a much shorter orbit of ⇠ 9.3 h. In
light of the high number of discoveries from the reprocessing, we also presented an
updated survey yield analysis of the lowlat survey and compared properties of the
new discovery population in the survey to the ones previously discovered. We find that
on average we detected pulsars at a statistically significant lower spectral and folded
S/N. This was possible due to careful analysis of the data preprocessing scripts like the
downsampling routine and the dedispersion step size as well as gains in computational
power. We find that the new discovery population in lowat presented in this thesis
is on average at a higher DM than the ones previously reported in Ng et al. (2015);
Cameron et al. (2020) and therefore its likely that we have probed a phase-space of pul-
sars located further away from us. Finally, we quantified the sensitivity of all the binary
pulsar search pipelines used so far in lowlat towards PSR-BH binaries. We find that
on average, our searches have atleast doubled our sensitivity towards PSR-BH binaries
in the 6-12 hour orbital period range that was only possible due to improvements in
the search algorithm presented here. Despite this, so far we report no detections for a
PSR-BH binary or any new relativistic binary pulsar. We have used our non-detections
to place constrains on the detectable fraction of PSR-BH binaries at 1, 5, 6 and 10 kpc
respectively. Our results show that its highly unlikely that a PSR-BH binary exists
near the Galactic-plane at distances d  1kpc. in the 4�24 h orbital period range with
a circular orbit. We cannot yet rule out the possibility of nearby PSR-BH binaries
with mildly eccentric orbits or circular orbits shorter than 4 hours. Since, these regions
are mostly limited by the algorithm and not sensitivity, future reprocessing efforts can
shed more light into this. At distances further away from us d � 5kpc, we are largely
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sensitivity limited. While we can in principle double our detectability fractions towards
PSR-BH binaries compared to acceleration searches, in terms of absolute numbers we
are probing a relatively minor fraction of the total population. These regimes can only
be fully probed by future pulsar surveys using more sensitive telescopes like meerkat
and ska. Some takeaways from our analysis for future processing strategies are to care-
fully check data preprocessing scripts, not ignore pulsar candidates at low FFT S/N
and to increase the number of candidates that should be folded from any given beam.
The computational feasibility of this strategy will largely depend on the search-setup
as folding time will likely be the major bottleneck for future pulsar surveys. Alter-
natively, more work needs to be done to develop better RFI mitigation algorithms to
reject spurious candidates. In terms of binary pulsar searches, a rich array of pulsar
searches can still be done thanks to the development of our GPU pipeline which can be
used for processing data from any radio pulsar survey. Some examples besides the one
presented here include searches focused on finding PSR-WD binaries or DNS systems
which will enable us to reduce our spin-period limit in the template-bank and help us
to find more compact orbit binaries that are not detectable using an acceleration or
jerk search.
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Pulsar Candidate Identification
Using Semi-Supervised Generative

Adversarial Networks.
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Abstract

Machine learning methods are increasingly helping astronomers identify new radio pul-
sars. However, they require a large amount of labelled data, which is time consuming
to produce and biased. Here we describe a Semi-Supervised Generative Adversarial
Network (SGAN) which achieves better classification performance than the standard
supervised algorithms using majority unlabelled datasets. We achieved an accuracy
and mean F-Score of 94.9% trained on only 100 labelled candidates and 5000 unla-
belled candidates compared to our standard supervised baseline which scored at 81.1%
and 82.7% respectively. Our final model trained on a much larger labelled dataset
achieved an accuracy and mean F-score value of 99.2% and a recall rate of 99.7 %.
This technique allows for high quality classification during the early stages of pulsar
surveys on new instruments when limited labelled data is available. We open-source
our work along with a new pulsar-candidate dataset produced from the High Time Res-
olution Universe - South Low Latitude Survey. This dataset has the largest number
of pulsar detections of any public dataset and we hope it will be a valuable tool for
benchmarking future machine learning models.



122 Chapter 4. Pulsar Candidate Classification using SGAN

4.1 Introduction

Discovering a new pulsar can often lead to new and exciting science. Some examples
include the discovery of PSR B1257+12 (Wolszczan & Frail, 1992), which led to the
discovery of the first set of extrasolar planets. The first binary pulsar PSR B1913+16
(Hulse & Taylor, 1975b) and the subsequent measurement of its orbital period decay
provided the first indirect evidence of gravitational waves. The discovery of the first
pulsar triple system (a pulsar orbiting two white-dwarfs) led to one of the most strin-
gent test of the Strong Equivalence Principle (SEP), a prediction of general relativity
(Voisin et al., 2020). More recently, PSR J1141-6545 was used to infer Lense-Thirring
precession (relativistic frame-dragging), a prediction of General Relativity (Venkatra-
man Krishnan et al., 2020). These examples are only some of the highlights that
display the value of pulsar discoveries. Therefore, in order to keep pushing the bound-
aries of fundamental physics, it is important that we continue the investigation of new
techniques in order to enhance the discovery process.

Identifying radio pulsars involves finding usually broadband periodic signals in
noise-dominated data. As pulsar signals pass through the interstellar medium (ISM)
before arriving at radio telescopes, their radio emission is “dispersed” by the free elec-
tron content in the ISM. The amount of dispersion is proportional to the dispersion
measure (DM) which is proportional to the integrated column density of free electrons
between the pulsar and the observer. This creates a frequency-dependant delay such
that lower frequency signals arrive later compared to higher frequency signals. Since
the true DM of a pulsar is a priori unknown, we typically de-disperse the data into
multiple trial values. Once the data is dedispersed, periodic signals are identified in
the timeseries by calculating a Fast Fourier Transform (FFT) (Cooley & Tukey, 1965)
or by using the Fast Folding Algorithm (FFA) (Staelin, 1969). Once the top candi-
dates have been identified, these signals are folded at their respective spin-period and
dispersion measure to form a pulsar candidate. Pulsar candidates are four-dimensional
data-cubes consisting of time, frequency, rotational phase and power of a signal. These
are the end products that are produced by most FFT based pulsar-search pipelines1.
The final step is usually performed manually. Pulsar candidates are visualized as se-
ries of diagnostic plots (see Section 4.2.6 for more details) which are used by pulsar
astronomers to identify if a signal is from a genuine pulsar or not.

Modern pulsar surveys, like the High Time Resolution Universe Low Latitude sur-
vey (HTRU-S Lowlat) Keith et al. (2010) typically produce around 40 million pul-
sar candidates in one processing run. The increasing number of pulsar candidates
can be attributed to multiple factors. Modern surveys tend to have higher time
and frequency resolution. In addition, HTRU-S Lowlat also has a relatively long 72-
minute integration time, which leads to larger FFTs and the requirement of additional
acceleration/template-bank trails in order to be sensitive to binary pulsars. We refer
the readers to Lyon et al. (2016) for a more in-depth review on this topic. Out of
these 40 million candidates, only a few hundred thousand of them are expected to be

1
Presto: https://github.com/scottransom/presto

Sigproc: http://sigproc.sourceforge.net/
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real pulsar detections (multiple detections of known pulsars + new discoveries). This
is because even after refining candidate lists to eliminate multiple occurrences of the
same pulsar across many DM and acceleration/template bank trials and harmonics,
many bright pulsars can appear in the sidelobes of many pointings and in a survey
like HTRU-S Lowlat this results in a few hundred thousand detections of the known
pulsars in the survey. Assuming an extremely optimistic average inspection time of
one second per candidate, working 12 hours a day, it would take a human 2.5 years
to go through the entire dataset. Future pulsar surveys using the Square Kilometre
Array (SKA) telescope2, are expected to increase this number further. Therefore, au-
tomated selection techniques that are optimised based on both speed and accuracy are
of high importance for current and future pulsar surveys. Several papers have been
written to address this topic. Eatough et al. (2010b) used twelve hand-crafted numeri-
cal features/scores to describe each pulsar candidate. These twelve features were then
attached to a multi-layer perceptron to identify pulsars in the Parkes multi-beam pul-
sar survey (PMPS, Manchester et al. 2001). Lee et al. (2013) introduced a candidate
ranking scheme based on six quality factors that were selected based on domain knowl-
edge. Zhu et al. (2014) developed a Pulsar Image Classification System (PICS) which is
an ensemble machine learning model based on Convolutional Neural Networks (CNN),
Support Vector Machines (SVM) and Artificial Neural Network (ANN). This technique
was trained on candidates from the Pulsar Arecibo L-band Feed Array (PALFA) survey
(Cordes et al., 2006), and were successfully applied for identifying pulsars in the Green
Bank North Celestial Cap (GBNCC) survey (Stovall et al., 2014). More recently, Guo
et al. (2019), used a combination of deep convolution generative adversarial network
and support vector machines (DCGAN + L2SVM) to achieve excellent results for can-
didates in the HTRU Medlat and PMPS survey. However, all these techniques require
a large number of labelled pulsar candidates in order to perform well. In practice,
since the number of pulsar detections is only a small fraction of the total candidates,
(< 1 per cent), previous works either under-sample the number of non-pulsars in their
training data or over-sample the pulsar detections. In this paper, we present results
from training a machine learning algorithm to address the practical scenario where we
typically have a small amount of labelled data along with a large amount of unlabelled
data. This is called Semi-Supervised learning. Past applications using a similar ap-
proach in astronomy include applying Semi-Supervised learning on data from the Very
Long Baseline Array (VLBA) Fast Radio Transients Experiment (V-FASTR) for radio
pulsar candidate classification (Jones et al., 2012; Bue et al., 2014), applying a Semi-
Supervised distributed algorithm called Co-Training, Distributed, Random Incremental
Forest (CoDRIFt)3 for single pulse pulsar candidate classification (Devine, 2020) and
another study which uses a Semi-Supervised Deep Convolutional Neural network to
classify radio galaxy images (Ma et al., 2019). We also compare our results to the
purely supervised approach as done by previous works.

2https://www.skatelescope.org/
3https://github.com/tdevine1/cluster/tree/master/code/CoDRIFt
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4.2 Methods

4.2.1 Machine Learning

Machine learning is a branch of computer science that deals with solving problems
by learning through experience. In the classical setup, a human defines all the steps
necessary for a computer to solve the problem. However, for complex tasks when it
is not trivial to come up with a model to map the input data to our desired output,
it is often desirable to learn from the data itself. This process of learning through
experience is usually called “training” an algorithm.

There are broadly three classes of machine learning that are relevant for the work
in this paper.

1. Supervised Learning: In supervised learning, we have data and its corresponding
label, which in our case is a binary label between pulsar and non-pulsar signals. To
the best of our knowledge, all the currently published papers in pulsar candidate
classification fall under this category.

2. Semi-Supervised Learning: Semi-supervised learning is a branch of machine learn-
ing that combines a small amount of labelled data along with a large number of
unlabelled data in order to obtain better learning performance. This is the prob-
lem we are trying to tackle in this paper.

3. Unsupervised Learning: In unsupervised learning, no labels are provided during
training. It is up to the algorithm to find useful structure in the input data.

4.2.2 Artificial Neural Network (ANN)

ANNs are a class of supervised machine-learning algorithms that are commonly used for
classification tasks. Variants of this network have been used previously in solving the
pulsar candidate classification problem in Eatough et al. (2010b); Bates et al. (2012);
Zhu et al. (2014); Bethapudi & Desai (2018). This algorithm has also been used in this
paper for comparing our proposed architecture to the standard supervised learning
case. We briefly summarise the different components of an ANN and its operation. For
a more thorough explanation, refer to chapter five of Bishop (2006).

The simplest unit of an ANN is a neuron. These neurons are loosely inspired by
biological neurons in the sense that there are input(s) to the neuron, an activation
function and an output. Neurons are usually grouped together in layers. The first
layer (often called the input layer) of the ANN is usually attached to the image or
data we are interested to predict on and the last layer (often called output layer) is
usually attached to the label we want to predict. Figure 4.1 is an example of single
layer neural network, where there is one input layer, hidden layer and output layer
respectively. Each neuron of a layer is connected to all the neurons of the next layer.
A neural network with several hidden layers is usually referred to as a deep neural
network or multi-layer perceptron (MLP). Assume we have an input vector ~X of 8
elements {X1, X2, ...X8} which is passed onto a neuron in the next layer. This neuron
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then calculates a weighted sum of all the values of ~X and applies a non-linear activation
function on it. Mathematically, this output ŷ can be written as:

ŷ = g(w0 + ⌃
m
i=1Xiwi),where, (4.1)

wi is the weight of the ith neuron which decides the relative importance of a neuron, w0

is the bias term which is a trainable constant value for each layer, g is the activation
function used. The purpose of an activation function is to decide if the neuron should
be activated or not. This function helps in normalising the weighted sum values and
additionally they introduce non-linearities to the network. Some of the activation
functions used in this paper include the sigmoid function

⇣
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, tanh
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⌘
and Rectified Linear Unit ’ReLU’ (f(x) = max(0, x)).

The process by which a neural network “learns” is by minimising a loss func-
tion. Loss functions are defined as the difference between the predicted output of
a neural network to the ground truth labels. Since, we are dealing with a binary
classification problem, the output of our neural network is a probability value between
0 and 1 for a candidate to be a pulsar. A value closer to either extremum indicates
high confidence in our prediction. Our goal is to minimise the cross-entropy loss
between our predicted labels and true labels. We use the standard softmax function✓
�(~z)i =

eziPK
j=1 e

zj

◆
for converting values into probabilities. Here, ~z is the input vector

passed on-to the softmax function and K is the number of classes in the classifer. In
practice, these loss functions are minimised in an iterative fashion by calculating their
negative gradients and propagating it backwards to the network using a process called
back-propagation (Rumelhart et al., 1986).

4.2.3 Convolutional Neural Network (CNN)

CNNs are a class of machine learning algorithms that are commonly applied in the
field of image classification. One of the earliest applications of CNNs was the LeNet-5
network, which was successfully used to recognise hand-written digits (LeCun et al.,
1998). CNNs have also been successfully applied to the pulsar candidate classification
problem previously in Zhu et al. (2014); Guo et al. (2019). An example of a CNN
is given in Figure 4.2. The major difference here is that the fully connected layers
have been replaced with convolutional layers. These convolutional filters act as feature
extractors to identify important parts of the input image. The convolutional layer
is typically followed by a max-pooling operation, where we find the maximum value
of preceding neuron cluster and store them to a single neuron in the current layer.
For example, if we have a 48x48x1 tensor, after a 2D max pooling operation of 2x2,
the tensor’s size changes to 24x24x1. This is done to constrain the dimensionality of
the network while propagating only important information to the next layer. This is
usually followed by a activation function, typically ReLU. Many such convolution, max-

4https://alexlenail.me/NN-SVG/index.html
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Figure 4.1: Multi-layer Artificial Neural Network with 8 input units, 6 hidden units
and 2 output units. In shorthand, they are usually written as a 8:6:2 network. This
diagram was created using an open source tool called NN-SVG4(LeNail, 2019).
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Figure 4.2: Schematic diagram of a typical CNN. Here the input image is a grey scale
image of size 48x48 and the output contains two nodes for the binary class labels. 8
and 16 filters of size 4x4 were used for the convolutional layers. These act as feature
extractors that identify import patterns in the input image. This diagram was created
using an open source tool called NN-SVG 5(LeNail, 2019).

pooling and activation function layers can be concatenated together to a form a deep
CNN. This is usually followed by a fully connected layer also known as a dense layer
which is then finally connected to the output layer. The output layer for a classification
problem is the amount of class labels we have in our data. Additionally for deep CNNs,
a dropout layer is typically added after the max-pooling operation, which randomly
drops off a certain percentage of the preceding nodes. This is done so that the neural
network learns to better generalize its performance across the entire data. This is used
as a regularization technique to avoid overfitting. CNNs are also trained using back-
propagation. However, in practice since it is computationally difficult to calculate the
gradient of the loss function for all images in the training data, we typically divide the
data into mini-batches and use the stochastic gradient descent algorithm.

4.2.4 Generative adversarial network (GAN)

GANs are a class of machine learning algorithms (Goodfellow et al., 2014) in which
two neural networks are trained simultaneously with opposing goals. They act against
each other as adversaries in a minmax two-player game. A generative model G is
tasked with generating new data that captures the distribution of the input data. A
discriminator model D is tasked with classifying samples as either REAL (that belong to
the original data distribution) or FAKE (samples generated by G). Assuming V (D,G)

is the value/loss function we are interested in then the first term in Equation 4.2, is
the expectation of the logarithm of D ’s predictions when an input is from the real data
sample. D ’s goal is to maximise this term. The second term represents one minus the
expectation of the logarithm of D ’s predictions when data generated by G is passed
onto to D. The goal of D is to maximise the second term but the goal of G is to

5
See footnote 4.
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minimise this term. This sets up the adversarial framework. In the ideal case, the
generator perfectly samples the distribution of the input data distribution, and the
discriminator output equals to 1/2.

min
G

max
D

V (D,G) = Ex⇠pdata(x) [logD (x)]

+Ez⇠pz(z)[log(1�D(G(z)))]

(4.2)

Algorithm 1: Minibatch stochastic gradient descent algorithm used for train-
ing a GAN.

for N training epochs do
for k batches do

Fix the weights of G and update D
Sample a mini-batch of m noise samples
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distribution pz(z)
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end

end

In practice however, we use a minibatch stochastic gradient descent method and
train the generator and the discriminator alternatively. The algorithm and the proof
for the convergence of the algorithm can be found in Goodfellow et al. (2014), however
for the benefit of the reader we briefly summarise the training of this network in
algorithm 1.

GANs have been used successfully in a wide range of tasks ranging from computer
vision, where they have been used for generating photo-realistic images (Karras et al.,
2018), converting text to images (Reed et al., 2016), used as feature extractors for un-
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Figure 4.3: Schematic of the SGAN Architecture used in this paper. The generator is
initialised with a noise (a.k.a latent vector) variable, which it then transforms to a fake
generated image. The discriminator is fed images from three sources i) Labelled Pulsar
candidates, ii) Unlabelled pulsar candidates provided with a positive label and iii) Fake
generated images from the generator provided with a negative label. The discriminator
is tasked with minimising both the supervised and unsupervised loss function.
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supervised learning (Radford et al., 2015). In astronomy, GANs have been successfully
demonstrated to recover features from astrophysical galaxy images beyond the decon-
volution limit (Schawinski et al., 2017), create high-fidelity weak lensing convergence
maps (Mustafa et al., 2019), modeling exoplanet atmospheres (Zingales & Waldmann,
2018) and more recently also in pulsar candidate identification (Guo et al., 2019). The
standard framework of GAN described here usually comes under the category of unsu-
pervised learning as no class labels are provided while training the network.

4.2.5 Semi-Supervised Generative Adversarial Network (SGAN)

SGANs are a variant of GAN where we can leverage both the ability of the generator to
create realistic samples and the readily available unlabelled pulsar candidates to solve
the semi-supervised classification problem. In the standard GAN problem, the output
of D is a probability for the input image belonging to the training set. We modify this
standard architecture slightly by adding the samples from G into our training set. We
label them as a new generated class say K+1 where K is the total number of classes in
our original classification problem. We then change the dimension of D ’s output from a
binary classification output to a multi-class classification output {Pulsar, Non-Pulsar,
Fake Data}. The main advantage of this technique is that we can now learn from our
pulsar survey’s unlabelled data.

There are three major components of this network, a supervised discriminator, an
unsupervised discriminator and an unsupervised generator. The setup for the unsu-
pervised discriminator and generator are similar to the standard GAN architecture
discussed in Section 4.2.4. The supervised discriminator is provided with class la-
bels (Pulsar or Non-Pulsar) that are available from our training set. The remaining
unlabelled pulsar candidates were provided to the unsupervised discriminator with a
positive label (‘1’) and generated fake candidates from G were provided with a nega-
tive label (‘0’). For every training epoch, 50 per cent of the samples were taken from
the generator and 50 per cent of the samples were taken from a combination of both
labelled and unlabelled candidates. A schematic of this architecture can be found in
Figure 4.3.

Mathematically, the loss function for SGANs can be written as

L = �Ex,y⇠pdata(x,y) [log pmodel(y|x)]

� Ex⇠G[log pmodel(y = K + 1|x)]

= Lsupervised + Lunsupervised,where

Lsupervised = �Ex,y⇠pdata(x,y)log pmodel(y|x, y < K + 1)

Lunsupervised = �Ex⇠pdata(x)log [1� pmodel(y = K + 1|x)]

+ Ex⇠Glog [pmodel(y = K + 1|x)].

(4.3)

The first term in the loss function is the so called supervised loss, Lsupervised. This
is similar to the standard loss function of any supervised classification model (pmodel)
where x is the data and y is it’s corresponding label. The unsupervised loss term
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(Lunsupervised) consists of two parts, the first part corresponds to one minus the expec-
tation that the model will output the new ‘FAKE’ class (K+1) given that the data is
real and the second term is the expectation that the model will correctly identify the
newly generated ‘FAKE’ class given that that the data comes from the generator. If
we substitute, D(x) = 1 � pmodel(y = K + 1|x) into the unsupervised loss term, we
notice that this is equivalent to the regular GAN’s loss function described in Equa-
tion 4.2. The goal of SGANs is to minimise these two loss functions jointly. The
key to the unsupervised term being useful is that the generator needs to be trained
to approximate the input data distribution which in turn minimises the first term of
the unsupervised loss function. The formalism for SGANs described here and several
practical implementation tricks we used, were largely inspired by the work of Salimans
et al. (2016).

4.2.6 Data Preprocessing and Features Used

A pulsar candidate is a four dimensional data cube of frequency channels, time, power
and rotational phase of the signal. Since it is inconvenient to visualize four dimensional
data, the convention is to plot various two-dimensional and one-dimensional projections
of this data-cube to decide if a signal is really from a pulsar or not. The four feature
plots pulsar astronomers most often use are:

1. Pulse Profile: This one dimensional intensity curve is created by integration over
both time and frequency axes while preserving phase. Most real pulsars tend to
have a one or multiple narrow peaks. However, there are some known exceptions.
Some known pulsars, especially millisecond pulsars (MSPs) tend to have broader
or close to sinusoidal profiles.

2. Frequency-phase Plot: This two dimensional plot is created by integrating over
the time axis only. Real pulsars tend to be broadband, therefore, we expect
a persistent bright signal (vertical line) across all sub-bands. However, pulsar
scintillation caused by the interstellar medium can sometimes increase or decrease
the signal in some frequency channels (e.g. PSR B0355+54 Xu et al. (2018)).

3. Time-Phase Plot: This two dimensional plot is created by integrating across
the frequency axis only. We expect most pulsars to be persistent across observ-
ing time. There are some notable exceptions, for example a nulling pulsar like
PSR J1727-2739 (Wen et al., 2016), relativistic binary pulsars which can have
quadratic or cubic residuals in the time-phase plot or mildly accelerated pulsars
where the acceleration falls between trial values.

4. DM-Curve: This is a one dimensional plot to find the best-fit dispersion measure
value. In order to produce this, the candidate data is dedispersed around a
few trial DM values from the DM used to fold the candidate. For each trial, it
calculates the chi-squared of the dedispersed pulse profile against a horizontal line
fit. A large chi-squared value is an indication that the signal deviates from white
noise. Since pulsars are non-terrestrial signals, we expect the signal to peak at a
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Table 4.1: Confusion Matrix for the Pulsar Candidate Classification problem.

Predicted Label
Pulsar Non-Pulsar

Tr
ue

La
be

l Pulsar True Positive (TP) False Positive (FP)

Non-Pulsar False Negative (FN) True Negative (TN)

non-zero DM value. The sharpness of the DM curve depends on the duty cycle
of the pulsar.

We used the four features mentioned above to train the semi-supervised network.
Before the data is passed onto the network, it is important to standardise the data,
so that the algorithm is agnostic to spin-period, dispersion measure, observing fre-
quency and integration time of an observation. We use the publicly available data
pre-processing code made available by Zhu et al. (2014) for our work.6 An example
of the four features and the different types of signal in the training set is shown in
figure 4.4. In order, to have the same number of bins for all candidates, the code down-
samples and interpolates the data using linear interpolation for the 1-D plots and spline
interpolation for the 2-D plots. The data is also normalized to have zero median and
unit variance. We use 60 bins for the DM-curve and 64 bins for the pulse-profile. The
time-phase and frequency-phase plots were resampled to a size of 48x48 bins. The bin
sizes for the different features were chosen to maintain consistency with (Zhu et al.,
2014) for our eventual comparisons.

4.2.7 Metrics Used

We use a combination of seven metrics to evaluate our different machine learning mod-
els. Since we have reformulated our network to a binary classification problem, there
are four possible scenarios when we compare the predicted labels to the true labels. An
example of this is shown in table 4.1. This is usually referred to as confusion matrix in
the literature. Based on this we calculate the following metrics:

1. The simplest metric to calculate is accuracy. While this can be a useful metric
to evaluate our model, care must be taken to ensure that our training data is
balanced. In unbalanced training datasets, a high accuracy score alone is not an
indication of a useful machine learning model.

Accuracy = Number of Correct Predictions

Total Predictions
= TP+TN

TP+TN+FP+FN

2. Precision is defined as the fraction of true positives among all the positive label
outputs of the model. This is a useful metric if our goal is to minimise the
number of false positive (RFI + white noise) candidates which often translates

6https://github.com/zhuww/ubc_AI
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Figure 4.4: Sample data of the different types of signal in our training data: (a) Signal
from a known pulsar, (b) Signal from a broadband RFI signal and (c) White Noise
signal. Under each class label, we see a plot from the four features that was used to
train all the machine learning algorithms used in this paper.
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to less human hours spent in candidate inspection.

Precision = TP

TP+FP

3. Recall or Sensitivity is the ratio of true positives to the total sum of true positives
and false negatives. A high recall rate indicates that our model was successful in
extracting most of the pulsar signals from our data.

Recall = TP

TP+FN

4. F-score or F1 score is defined as the harmonic mean of precision and recall.

F-score = 2
Precision ·Recall

Precision+Recall

5. False positive rate (FPR) is analogous to precision. It is defined as the
ratio of false positives to the total sum of false positives and true negatives.
Unlike the other metrics used in this paper, a lower score of FPR is more desirable.

FPR = FP

FP+TN

6. Specificity is defined as the ratio of true negatives to the total sum of true
negatives and false positives. This is analogous to the recall rate we defined
earlier. A high specificity rate indicates that our model was successful in
extracting most of the non-pulsar signals from our data.

Specificity = TN

TN+FP

7. G-Mean is defined as the geometric mean of recall and specificity.

G-Mean =
p
2 · Recall · Specificity

4.3 Data Used in this study

We used observations from the High Time Resolution Universe South Low-Latitude
Survey (HTRU-S Lowlat) to generate pulsar candidates. HTRU-S Lowlat is one part
of the entire HTRU Survey that focuses on the inner galactic plane covering galactic
longitude �80° < l < 30° and galactic latitude |b| < 3.5°. The observations were
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Figure 4.5: Mean F-score values of our supervised baseline model for varying number
of labelled candidates. We find that “DM-Curve” is the best performing feature for
labelled candidates below 500 and “Freq-Phase” as the best performing feature for
larger number of labelled candidates. The combined model is a logistic regression
model fit on the training data. Each model was averaged across five different batches
of labelled data. The vertical bar displays the 95% confidence interval of our results.
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Table 4.2: Total Number of pulsar and non-pulsar candidates in our labelled dataset.
Candidates marked as ‘Pulsar’ also include harmonics and multiple detections of the
same pulsar.

Pulsar Non-Pulsar Total
Training Set 25,888 24,926 50,814
Validation Set 6,497 6,207 12,704
Testing Set 10,676 10,497 21,173

recorded for an integration time of 72 minutes with a frequency bandwidth of 400 MHz
using the 64-m Parkes Radio Telescope. We refer the reader to Keith et al. (2010)
for a full list of the observational setup and system configuration. To date, HTRU-S
Lowlat has discovered >100 new pulsars. A full list of the initial discoveries and timing
solution for these pulsars can be found in (Ng et al., 2015; Cameron et al., 2020).
The pulsar candidates used for training all our models were generated from the re-
processing of the HTRU-S Lowlat survey using the stochastic template-bank algorithm
Harry et al. (2009), and folded using the PRESTO software suite Ransom (2011). The
aim of the re-processing pipeline is to find compact relativistic binary pulsars that may
have been missed by the first pass time-domain segmented acceleration search pipeline
Ng et al. (2015). The total number of pulsar candidates produced by the re-processing
pipeline for the entire survey is around 40 million. We selected 84,691 candidates that
were labelled by eye to have approximately similar number of pulsar and non-pulsar
candidates. We carefully chose pulsar candidates of different significance levels in order
to create a diverse labelled candidate dataset. Our lowest detection significance of a
true pulsar candidate is 4.3 sigma. The breakdown of candidates have been shown in
Table 4.2. To the best of our knowledge, this labelled dataset has the largest number of
pulsar detections out of all the publicly available pulsar candidate datasets. Labelled
Pulsar candidates are critical for training machine learning algorithms as they are scarce
(< 1 per cent) compared to the total candidates produced in a pulsar survey.

4.4 Results

We start by splitting our entire labelled dataset into a train, validation and test dataset
(60% train, 15% validation and 25% test, see table 4.2). The test dataset was never
seen by the network while training. This dataset is only used in the end as a benchmark
to evaluate all the different experimental setups described below. See figure 4.6, for the
detection significance levels of pulsars in our test set. The validation dataset was used to
tune hyperparameters of the different architectures and to select the best model during
training. We train all the models separately on each of the four features described in
section 4.2.6. Our software was built using Keras7 (Chollet et al., 2015), a high-level
open-source neural network library with Tensorflow 2.0 backend 8 (Abadi et al., 2015).

7https://keras.io/
8https://www.tensorflow.org/
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Figure 4.6: Histogram of the detection significance levels in sigma (i.e equivalent gaus-
sian significance) of pulsars in our test dataset. The orange line shows the cumulative
distribution function of the candidate significance levels. Vertical dashed lines indicate
the median and 90th percentile values of the pulsar detection significance. For plotting
purposes, we deliberately clipped out outlier candidates with a sigma greater than 200.
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4.4.1 Supervised Learning Baseline

Our first goal was to build a model based on supervised learning that would act as
our comparative baseline. For this, we trained a convolutional neural network (CNN)
on the “Time-Phase” and “Freq-Phase” features and a multi-layer perceptron (MLP)
for the “DM-Curve” and “Pulse Profile” features. Each network was trained for a
total of 1000 epochs for different amounts of labelled data, saving only the model that
produced the highest accuracy on our validation dataset. For each batch of labelled
candidates, we split the training data to have an equal number of pulsar and non-pulsar
signals. For example, 100 labelled candidates implies that the training data had 50
pulsar and 50 non-pulsar candidates. Since, the results are dependent on the subset of
training samples used while training, we randomly selected five different combinations
of labelled candidates and report the average values. The mean F-score performance
of each of the four features is shown in Figure 4.5. We observe that in the regime
of extremely limited labelled data (labelled candidates <= 500), “DM Curve” acts as
the best discriminator between pulsar and non-pulsar signals. However, as the number
of labelled data increases, information about the persistence of the signal in “Freq-
Phase” and “Time-Phase” regime become equally important. The individual score from
each feature were combined using a Logistic regression model with “L2” regularization.
This is marked as the combined model. Ideally, the combined model should be the
best performing model. This holds true for our experiments with labelled candidates
greater than five hundred. However, our combined model performs worse in the low
labelled data regime (labelled candidates = 100) because the models trained on “Pulse-
Profile”, “Time-Phase” and “Freq-Phase” brings down the net average performance of
the network.

4.4.2 Semi-supervised GAN

4.4.2.1 Model Architecture and Implementation Details

There are three major components to an SGAN Network. A supervised discriminator,
an unsupervised discriminator and an unsupervised generator. The simplest implemen-
tation is to have a single discriminator with multiple output layers. The first output
layer solves the unsupervised task and outputs if the data is REAL/FAKE and the
second layer solves the supervised task and outputs if the signal is from a pulsar or
not. The drawback of this approach is that when we pass unlabelled candidates from
the generator, there is no supervised label associated with them. Hence, this creates
the need for an extra ‘FAKE’ class label for the supervised classifier. In this paper,
we follow the technique described in Salimans et al. (2016) which removes the need for
an extra class label. In this case, we built two separate models for the supervised and
unsupervised task. Both models share the same feature extraction layers. However, the
supervised model is attached to a softmax activation function whereas the unsupervised
model takes the output from the supervised model prior to the activation function and
calculates a normalized sum of exponential outputs. This custom activation function
for the unsupervised discriminator D(x) forces the model to give a strong prediction
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for real samples and lower values for the generated fake samples

D(x) =
Z(x)

Z(x) + 1
,whereZ(x) = ⌃

K
k=1exp[lk(x)]. (4.4)

Our work is built on top of an open-source implementation of SGAN networks for
MNIST digits9. We extensively modified the discriminator and generator architecture
in order to get better results for our data. The discriminator architecture is similar
to the CNN model used for the supervised baseline model. We obtained better results
with larger convolutional kernels of size 7x7 compared to the 3x3 kernels that worked
well for the supervised baseline models. The discriminator trained on the “DM Curve”
and “Pulse-Profile” was a 1-D convolutional neural network with a convolutional kernel
size of 7. Additionally, we used max-pooling to down-sample our images instead of
stride convolutions. For the generator, we perform the transpose of convolutions in
order to create images that are fed into the discriminator. Additionally, we also do
batch normalization in order to speed up the training of the generator. The generator
for the 1-D data was a multi-layer fully connected dense neural network. We use the
tanh function as the activation function for the output layer of the generator. GANs
can easily suffer from overconfidence. Therefore, as a regularization technique, we used
soft and noisy labels while training. This means that if a candidate is real, instead of
giving the label a value equals 1, we give a value in a range between 0.7-1.2 for the
2-D features and a value between 0.9-1 for the 1-D features. Around 5 per cent of the
time, we intentionally flip the labels, we found that this helps to improve the overall
performance. Our best performing model uses the Adam Optimizer (Kingma & Ba,
2014) with a learning rate of ⌘ = 0.0002 and �1 = 0.5.

4.4.2.2 Effect of unlabelled data

In order to test if the SGAN network can learn from unlabelled data, we split the train-
ing data-set into smaller groups ranging from 100, to 30,000 candidates similar to our
supervised learning baseline model experiments. Similarly, the number of unlabelled
candidates used while training was also varied from 0 to 20,000. We trained the SGAN
network for 400 epochs in each configuration, saving only the model that produced the
best results on the validation dataset. Since, the results are dependent on the subset of
training samples used while training, we randomly selected five different combinations
of labelled and unlabelled datasets and report the average values. The mean F-score
values of SGAN trained on the all four features is shown in Figure 4.7. We observe that
increasing the number of labelled candidates in the training set drastically improves
the final performance of the network. In addition, we clearly see that unlabelled can-
didates also improve the overall performance of the network. This effect is particularly
significant in the low labelled data regime. For example with 100 labelled candidates
in the training set, the unlabelled data improved the F-score of the network by at least
6 % for all features including an improvement of 12 % on the network trained on the

9https://machinelearningmastery.com/semi-supervised-generative-adversarial-network/
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Figure 4.7: Mean F-score performance of each of the four features trained for 400 epochs
with varying amounts of labelled and unlabelled samples. The interval around each
line indicates the 95 % confidence interval associated to each value. This figure demon-
strates that unlabelled candidates can be leveraged to improve the overall performance
of a machine learning algorithm. This effect is particularly dominant with labelled
candidates  1000. The boost in performance of the “Pulse-Profile” and “DM-Curve”
feature for labelled candidates � 10000, was critical to improve the overall performance
of the combined model. Similar improvements were also seen for all metrics defined in
section 4.2.7. These results can be found in table D.1.
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Figure 4.8: Mean F-score performance (left) and False-Positive Rate (right) of the
Combined Semi-Supervised GAN (SGAN), our Supervised Baseline Model and the re-
trained version of Pulsar Image Classification System (PICS). The black vertical line
indicates the 95% confidence interval of our values. These results indicate that the
SGAN architecture provides better classification results compared to both the super-
vised machine learning algorithms for all combinations of labelled data. For labelled
candidates below 1000, the re-trained version of PICS has a lower false-positive rate
compared to SGAN, however this comes at the cost of a significantly lower F-Score,
thus making it a less desirable model. The difference in performance between the su-
pervised baseline model and the retrained version of PICS can be partially attributed
to the fact that PICS was not re-trained on thee same validation dataset. For labelled
candidates below 1000, each of the supervised model ended up optimising for different
metrics. Our supervised model resulted in a better recall rate and F-score at the cost
of a worse false-positive rate and specificity score. We refer the readers to the appendix
D.1 for the scores across all metrics. The SGAN model provides the overall maximum
gain when there are fewer labelled candidates (< 1000) available.
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“Freq-Phase” feature. As the number of labelled candidates increase, we see that the
semi-supervised classifier still provides better results. However, the performance boost
provided by unlabelled candidates is significantly lower. We believe the reason for this
is two-fold. With larger amount of labelled data, there is little room for improvement
as the network has already learnt a good solution to solve the pulsar candidate identi-
fication problem. The second reason is that in order to fully utilise the strengths of the
semi-supervised algorithm, we need to use a significantly large fraction of unlabelled
candidates compared to the labelled candidates. Our final model which was trained on
a much larger unlabelled candidate database has been described in Section 4.4.4.

4.4.3 Comparing SGAN with supervised models

In this section, we compare the performance of our two-layer ensemble SGAN network
to the ensemble standard supervised baseline algorithm described earlier as well as a
re-trained version of the Pulsar Image Classification system (PICS) (Zhu et al., 2014).
In all cases, the individual scores from each of the four features were combined using
a Logistic regression model with L2 regularization. We trained all three networks with
the same labelled candidates for each experiment. In addition, unlabelled candidates
were also used to trained the SGAN model. The same validation dataset was used
to tune hyperparameters for the supervised model and the SGAN model. We didn’t
use a validation set for re-training PICS. This was because there wasn’t a provision to
provide a validation dataset in the re-training script provided by (Zhu et al., 2014).
We presume that PICS trained on minimising the overall training loss. We find that
the ensemble SGAN outperforms the standard supervised baseline algorithm as well as
re-trained version of PICS for all combinations of labelled datasets and based on all
the metrics discussed in Section 4.2.7 including higher accuracy, precision, recall rates
and a lower false positive rate. For reasons of brevity we only show the mean F-score
and False-Positive Rate (FPR) values in Figure 4.8. The full table comparing results
of all the metrics can be found in Table D.1 in the appendix.

4.4.4 Best Performing Model

In this section, we describe our best performing model that was trained using the entire
training set plus 265,172 unlabelled candidates. Results from five different training
runs from the best performing semi-supervised and supervised models are summarised
in Table 4.3. The confusion matrix of the predictions of this model on the test set is
shown in Table 4.4. Our best model achieved an overall F-score of 99.2 %, recall rate of
99.7% and a false positive rate of 1.63%. Our best performing model has been merged
into the HTRU-S Lowlat survey post-processing pipeline, and has already discovered
eighteen new pulsars. These new pulsars had a detection significance ranging from 5.8
- 19 sigma. The SGAN network played a crucial role in discovering the lower detection
significance pulsars as they are usually buried inside several non-pulsar candidates. A
full list of these pulsars with their respective Spin-Period, DM and timing solutions
will be the subject of a future publication.
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Figure 4.9: Recall rate (left) and False-Positive rate (FPR) (right) from the best-
performing models of the three networks across different candidate detection signifi-
cance levels (SNR). For the x-axis, we divided the candidates in our test dataset into
ten quantile regions based on their detection significance level with a similar number
of candidates across each bin. As expected, all three models perform better when the
significance level of the candidate is higher. The re-trained version of PICS suffers
from a large performance loss (recall: 0.45) at lower candidate significance levels (0-7.4
sigma). The SGAN network also suffers a small performance loss, however it still does
better compared to the other models. The FPR for all three networks are much more
interesting. As expected, we see a large FPR when the detection significance is lower,
followed by a lower FPR rate. However, we again see an increase in the FPR rate at
high significance levels. This is mostly caused by bright broadband RFI signals which
look like pulsars and are detected with very high significance levels. The FPR rate is
highest for significance levels between 7.4-12.1 sigma. These are mostly weak pulsar-
like signals that are caused white-noise lining up to look like pulsars. See table D.2 for
the performance of the network across other metrics.

Figure 4.10: Recall rate of all three networks across different pulsar duty cycle ranges
(left) and Spin-Period (right). The x-axis of these plots were made by dividing the
duty cycle and spin-period of all pulsars in our test dataset across ten quantile regions
such that they have a similar number of pulsars in each bin. It is easier to spot narrow
duty cycle pulsars by eye, we see a similar effect with our trained neural networks. The
magnitude of difference however varies across each model and is significantly lower for
the SGAN model. Our models also tend to do slightly better for slow pulsars. However,
both these effects could be correlated as pulsars with a slower-spin period also tend to
have a narrow duty cycle.
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Table 4.3: Results comparing the best performing combined supervised model trained
on the entire training set against the best performing combined SGAN model trained
on the entire training set plus 265,172 unlabelled candidates. Values reported in this
table are the mean and standard deviation after repeating the training run five times.

PICS Retrained Supervised Baseline SGAN
Accuracy 0.973± 0.001 0.984± 0.001 0.989± 0.004

Precision 0.977± 0.002 0.977± 0.002 0.984± 0.004

Recall 0.970± 0.001 0.991± 0.001 0.994± 0.004

F-score 0.973± 0.001 0.984± 0.001 0.989± 0.004

Specificity 0.976± 0.002 0.976± 0.002 0.983± 0.004

G-Mean 0.973± 0.001 0.983± 0.001 0.989± 0.004

FPR 0.023± 0.002 0.023± 0.002 0.016± 0.004

Table 4.4: Normalised confusion matrix of the predictions of the best ensemble SGAN
model on the test set.

Predicted
Pulsar Non-Pulsar

Tr
ue Pulsar 0.997 0.003

Non-Pulsar 0.014 0.986

4.4.5 Performance across Detection Significance, Duty cycle and Spin
Period

In this section, we briefly analyse the performance of the best model from all three
networks with various pulsar parameters like detection significance, duty cycle and
spin-period. We start by splitting all the candidates in our test dataset based on their
detection significance into ten quantile regions such that each bin has a similar number
of candidates. We then calculate the performance of the best performing model from
each of the three networks described earlier in this bin range. This is shown in Figure
4.9. As expected, we see an improvement in the recall rate of the network for higher
detection significance. The performance drop for the re-trained version of PICS is
drastic as it drops to a recall rate of 0.45 for pulsars with sigma values between 0 and
7.4. Both the supervised model and SGAN model do significantly better here scoring
at 90.5 % and 95.0% respectively. The False Positive rate (FPR) is more interesting.
As expected, we see a higher FPR at lower significance levels and visc versa. However,
we see an increase in FPR rate for very high candidate significance levels (95.9 - 925.2
sigma). This was caused by bright broadband RFI signals that look very similar to
pulsar signals. The FPR rate is highest for candidates with significance levels between
7.4 and 12.1 sigma. These are mostly caused by weak pulsar-like signals formed when
white-noise lines up by chance. See table D.2 for the performance of the network across
additional metrics.
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We also explored the performance of the neural network across the duty cycle of
the pulsars in our test dataset. Similar to the previous experiment, we divide the
candidates in the test set based on their duty cycle into ten quantile regions such that
there are similar number of candidates in each bin. For a human, it is easier to spot
pulsars with a narrow duty cycle. We see a similar trend in the performance of the
neural networks as well. However, the performance drop is not as drastic as compared
to the detection significance level. We also repeated this experiment across different
spin-period ranges. Both of these are shown in Figure 4.10. We see that pulsars with a
slower spin-period appear to be slightly easier for the neural network to find. However,
these two effects are highly correlated as slow spin-period pulsars also tend to have
narrow duty cycle ranges.

4.5 Discussion

4.5.1 Inference Speed

Since our software has been built using Keras and Tensorflow, the final trained models
can be used to evaluate pulsar candidates both on a CPU or on any Nvidia GPU.
The inference rate of our model, benchmarked on a single Nvidia Tesla P100 GPU, is
5.22±0.01 ms using a batch size of 20,000. This makes our model particularly suitable
for implementing in a blind survey like the HTRU-S Lowlat as the entire batch of
40 million candidates can be scored in ⇡ 58 hours on a single GPU. Additionally,
our architecture can be easily retrained and redeployed as more labelled data become
available. Our software can be found on GitHub10. We also provide a Dockerfile which
can be used to create a Docker image in order to ensure easy reproducibility of our
results.

4.5.2 Training Time and suitability for future pulsar surveys

The training time for SGAN is considerably longer compared to training a standard
supervised deep learning architecture like a CNN or an ANN. For example, our super-
vised baseline pipeline on average took less than an hour to finish training for 1000
epochs on a Nvidia Tesla P100 GPU whereas our final model from the SGAN architec-
ture took about four hours to train for 400 epochs. The main reason for this is because
we are now training two neural networks alternatively and using a considerably larger
sample of data (unlabelled candidates) while training. Keras and Tensorflow currently
support training on multiple GPUs which can help reduce the net training time. While
the training time is still acceptable for our needs, this architecture may not be the best
approach for online data processing where the model needs to be re-trained in quasi real
time. We refer the readers to the work of Lyon et al. (2016) that focuses more on speed
rather than final classifier performance. The advantage of using our proposed architec-
ture is higher performance because we can learn from unlabelled candidates. This is

10https://github.com/vishnubk/sgan
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especially useful for RFI-rejection as such signals can have different signatures depend-
ing on the source (aircraft navigation, mobile phone, WiFi, satellites). Additionally,
the RFI environment near a telescope is expected to change with the advancement of
fifth generation wireless technology and therefore the ability to have a system that can
adapt on relatively short timescales with high performance has huge value. Addition-
ally, this technique also helps minimise the number of labelled candidates which saves
human hours required to achieve satisfactory performance. The amount of unlabelled
candidates that needs to be used while training depends on the number of labelled can-
didates available and is usually a trade-off between performance and training time. In
our experiments, we achieved improved performance by having at least 5000 unlabelled
candidates when the number of labelled candidates were below 1000. We observe that
with 50,814 labels, we needed more than 200,000 unlabelled candidates to notice an
improvement. It is also important to experiment with different amounts of unlabelled
data as sometimes having more can make the model perform worse. We believe that
using a static trained supervised model for classifying candidates from future pulsar
surveys may not be the most optimal approach. Since labelling millions of candidates is
not a scalable solution, we hope more attention goes into solving the pulsar candidate
classification problem using a combination of labelled and unlabelled candidates.

4.5.3 Future Work

In this section, we briefly discuss some techniques that can be used to improve on our
current models.

4.5.3.1 Improving the Supervised Baseline Model

The performance of our supervised baseline model in the regime of high labelled can-
didates can be improved using a much deeper convolutional neural network. Large
Networks pretrained on ImageNet like VGG16 (Simonyan & Zisserman (2014)), Incep-
tionV3 (Szegedy et al. (2015)) and ResNet50 (He et al. (2015)) among others can be
used and their final few layers can be re-trained on a pulsar candidate dataset. This
technique is called transfer learning and it has been successfully employed in various
computer vision tasks including classifying Fast Radio Bursts (FRB) and RFI (Agarwal
et al., 2019). In order to have a fair comparison between such networks and SGAN, we
propose using a similar deep architecture for the discriminator of SGAN and comparing
their performance.

4.5.3.2 Improving the SGAN Model

We believe that the performance of our SGAN model can be improved further by using a
technique called feature matching. For this, we change the loss function of the generator
such that its goal changes from beating the discriminator to minimizing the statistical
difference between real and generated images. We refer the readers to Salimans et al.
(2016) for a more detailed explanation of this technique. Another technique to improve
the final semi-supervised classification accuracy is to use a Bad GAN. Instead of training
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towards a perfect generator, which produces images indistinguishable from real images,
our goal in this architecture is to generate data that complements data produced from
the discriminator. The drawback of this approach is that the quality of the generated
images in general would be worse but this architecture has been shown to provide better
classification results on the MNIST, SVHN and CIFAR-10 datasets (Dai et al., 2017).

4.6 Conclusion

In this paper we use an ensemble Semi-Supervised Generative Adversarial (SGAN)
framework to classify pulsar candidates in the HTRU-S Lowlat Survey. We demon-
strate that this algorithm achieves an overall F-score of 99.2% on our dataset and
outperforms the standard supervised baseline algorithm and the re-trained version of
PICS. The performance difference between both the techniques is significant in the low
labelled-candidate regime. SGAN achieved a recall rate of 96.0% with 100 labelled-
candidates compared to 85.6% from our supervised baseline model and 60.3 % from
the retrained version of PICS. The main advantage of our proposed network is the abil-
ity to leverage readily available unlabelled candidates for achieving better results. We
believe this technique will be even more useful for future pulsar surveys as the number
of pulsar candidates scale up and maintaining a large labelled dataset becomes increas-
ingly challenging. Our architectures are frequency and telescope agnostic, therefore
they can be in principle applied to other ongoing pulsar surveys. We additionally share
our code, and a dockerfile to enable reproduciblity of our work.
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Abstract

Relativistic binary pulsars orbiting white-dwarfs and neutron stars have already pro-
vided excellent tests of gravity. However, despite observational efforts, a pulsar orbiting
a black hole has remained elusive. One possible explanation is the extreme Doppler
smearing caused by the pulsar’s orbital motion which changes its apparent spin fre-
quency during an observation. The classical solution to this problem has been to
assume a constant acceleration or jerk for the entire observation. However, this as-
sumption breaks down when the observation samples a large fraction of the orbit. This
limits the length of search observations, and hence their sensitivity. This provides a
strong motivation to develop techniques that can find more compact binaries in longer
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observations. Building on work done by the gravitational wave search community, we
present a GPU-based radio pulsar search pipeline that can perform a coherent search for
binary pulsars by directly searching over three or five Keplerian parameters using the
template-bank algorithm. We compare the sensitivity obtained from our pipeline with
standard acceleration and jerk search pipelines for simulated pulsar-stellar-mass black
hole binaries and observations of the double pulsar J0737-3039A. We also comment
on the computational feasibility of our pipeline for blind pulsar surveys and targeted
searches. Our benchmarks indicate that circular orbit searches for P-BH binaries with
spin-period P spin � 13ms covering the 3-10 Tobs regime are feasible for the High Time
Resolution Universe South Lowlat latitude survey. Additionally, an elliptical orbit
search for P spin � 10ms pulsars orbiting intermediate mass black holes in Globular
clusters in the 5-10 Tobs regime is feasible for observations shorter than 2 hours with
an eccentricity limit of 0.1.

5.1 Introduction

The discovery of the first binary pulsar PSR B1913+16 and the subsequent measure-
ment of its orbital period decay provided a new and exciting tool for testing theories
of gravity in the strong field limit (Hulse & Taylor, 1975b; Taylor & Weisberg, 1982;
Weisberg & Taylor, 1984; Weisberg & Huang, 2016). Another major milestone was
the discovery of the first, and to date only, known double pulsar system PSR J0737-
3039A/B (Burgay et al., 2003; Lyne et al., 2004). Subsequent timing observations
of this pulsar enabled measurement of seven Post-Keplerian parameters which pro-
vided multiple stringent tests of Einstein’s theory of General Relativity (GR) (Kramer
et al., 2006, 2021). Additionally, timing observations of the first pulsar triple system
PSR J0337+1715 (Archibald et al., 2018; Voisin et al., 2020) set a new lower limit for
the parameter � describing a possible violation of the Strong Equivalence Principle
(SEP), consistent with GR and tightly constraining multiple scalar-tensor theories of
gravity. These examples are only some of the highlights that demonstrate the value
of discovering new relativistic binary pulsars. The anticipated discovery of a pulsar
orbiting a black hole will provide a unique tool for probing strong-field gravity and
black hole physics. Wex & Kopeikin (1999); Liu et al. (2014) gave a detailed account
of how the properties of the black hole that can be studied by timing a pulsar orbiting
the black hole. For example, the mass of a black hole can be uniquely determined
by measuring two Post-Kepelerian parameters. Additionally, the spin of a black hole
can be measured by studying the precession of the pulsar orbit with time caused by
relativistic spin-orbit coupling. Similarly, the quadrupole moment of the black hole’s
external gravitational field can be detected with upcoming facilities like the Square
Kilometre Array (SKA) (Kramer, 2004). Liu et al. (2014) demonstrated that by tim-
ing a pulsar orbiting a stellar-mass black hole (SBH) for few years would allow precise
measurements of the black hole mass and spin. Such a discovery would help us test the
Cosmic Censorship Conjecture and the “No-hair" theorem. Despite several observa-
tional efforts to detect such systems, none have been found so far. One explanation for
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this maybe the extreme Doppler smearing caused as the pulsar moves around its orbit
during the observation time. The classical approach to account for this is do an acceler-
ation search (Johnston & Kulkarni, 1991) i.e to first order assume that the acceleration
of the binary pulsar is constant during the observation. This assumption holds weight
only if the observation samples a small fraction of the orbit typically P orb  10 T obs

(Ransom et al., 2003; Ng et al., 2015). Therefore, in order to be sensitive to highly
relativistic systems we would require very short observations. This however increases
the minimum flux density of the pulsar that we can detect as sensitivity grows with
T obs

1/2. Therefore, by using an acceleration search we have a trade-off between sensi-
tivity and the ability to detect short-orbital period binaries. Another option is to do
a higher-order polynomial search, for example a jerk search which assumes a constant
jerk during the observation. Andersen & Ransom (2018) showed that using this tech-
nique leads to an increased sensitivity to short orbital period binaries P orb ⇡ 5-15 T obs.
Eatough et al. (2013) also demonstrated the improvements of jerk searches compared to
acceleration searches for observations of PSR J0737-3039A. Smith (2016) proposed four
new algorithms for radio pulsar searches including a semicoherent search which divides
the data into small chunks and combines information from coherent subsearches while
preserving as much phase information as possible. Yet another approach is do a fully
coherent search on the full length observation by searching directly over the Keplerian
parameters. Assuming a circular orbit binary, this would lead to a three-parameter
search over orbital period, projected semi-major axis and initial orbital phase. Knis-
pel (2011); Allen et al. (2013) and Knispel et al. (2013) did exactly this by using a
matched filtering process, convolving the data with circular orbit templates in order
to find pulsars in Pulsar Arecibo L-band Feed Array (PALFA; Cordes et al. 2006)
and Parkes Multi-Beam Pulsar Survey (PMPS; Manchester et al. 2001) survey using
the volunteer-distributed Einstein@Home project. Assuming standard binary stellar
evolution model (Yungelson & Portegies Zwart, 1998; Voss & Tauris, 2003), PSR-BH
binaries are expected to be in highly eccentric orbits (Shao & Li, 2018). While, we are
already computationally limited with the acceleration and jerk search techniques, a yet
unexplored question is how feasible would a fully coherent elliptical orbit search (five-
parameter search) be and if there are any advantages in terms of sensitivity towards
unexplored parameter spaces that a Keplerian search would provide. Recent advances
in GPU technologies have considerably sped up the typically computationally expensive
parts of pulsar search pipelines like dedisperison, time/frequency domain resampling,
calculating a Fast-Fourier transform (FFT) and harmonic summing. Here, we present
a GPU implementation of a five-parameter search pipeline using the template-bank al-
gorithm that is more sensitive than acceleration and jerk search pipelines to PSR-SBH
binaries in eccentric orbits. We do a detailed comparison of the detectability of mildly
eccentric PSR-SBH binaries using our pipeline and compare to all of the currently used
standard binary pulsar pipelines including those mentioned above. Finally, we quantify
the computational feasibility of using this method for targeted and wide-area galactic
plane observations in the near future.
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5.2 Template-Bank Search

5.2.1 Signal Model and Detection Statistic

To discover new pulsars buried in our observations, we need to first define a signal
model. We make the following assumptions in our signal model. The orbit of the
pulsar is Keplerian.1 We know the exact location of the source on the sky, therefore
Doppler phase drifts caused due to the detector motion can be removed and the signal
is monochromatic at the spin-frequency of the pulsar f0 i.e we ignore spin-down effects
of the pulsar. Therefore, the rotational phase � for the fundamental mode of the signal
emitted by a uniformly rotating pulsar in an eccentric orbit observed from solar-system
barycenter is

�(t;⇤) = 2⇡f0t+ �D(t), (5.1)

where t is the barycentric time, f0 is the spin-frequency of the pulsar, ⇤ is a tuple of
the unknown binary parameters of the pulsar signal and �D(t) is the Doppler phase
correction factor due to the pulsar being in an eccentric orbit, given by (see section 2B
of Dhurandhar & Vecchio (2001) for the full derivation),

�D(t;⇤) =
2⇡f0a sin "

c

⇥
sin cosE(t) + cos 

p
1� e2 sinE(t)

⇤
. (5.2)

Here, E(t) is the eccentric anomaly which is a function of time, a is the semi-major
axis of the orbit, " is the inclination angle and asin"

c is the projected semi-major axis
of the orbit in light-seconds.  is the longitude of periastron and e is the eccentricity
of the orbit. The eccentric anomaly E(t) is related to the mean angular velocity ⌦ and
the mean anomaly M(t) by the Kepler equation,

E(t)� e sinE(t) = ⌦t+ ↵ ⇡ M(t), (5.3)

where ↵ is the initial orbital phase of the pulsar orbit. We have seven unknown pa-
rameters ⇤ = {f0, a, ",⌦,↵, , e} in equation 5.1. The semi-major axis of the pulsar
cannot be directly observed. Since we search over different waveforms in our signal
model, what matters for our search is the combination of parameters that affect the
rotational phase, in this case the projected semi-major axis ⌧ =

a sin "
c . Therefore, in

practice a blind coherent search for binary pulsars in a Keplerian orbit needs to search
over the six-dimensional parameter space of ⇤ = {f0, ⌧,⌦,↵, , e}. It is unlikely that
without any prior information, we would exactly sample the true parameters of the
undiscovered pulsar, therefore we use a matched filtering process of convolving the
data with multiple waveforms. Each sample trial consists of different six-tuple param-
eter combinations and is called a template of the signal. A combination of many such
templates form a template bank. The density of templates in the template-bank can be
characterised by its mismatch value (defined in equation 5.12) i.e the worst-case detec-

1
This assumption is based on the typical timescales of search-mode observation of radio pulsars

which is in the order of few hours. For long observations lasting months or years, additional parameters

including Post-Keplerian and spin-down parameters need to be added to the phase model.
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tion statistic loss. Our general goal is to cover large parts of the parameter space with
the minimum number of templates possible in order to minimise computational costs.
This is a widely used technique especially in gravitational-wave analysis, see Owen &
Sathyaprakash (1999); Abbot et al. (2007, 2009). In order to sample in this parameter
space efficiently, we need to define distances between two points. This is given by the
parameter space metric (Owen, 1996) defined in the next section. For completeness we
also describe the signal phase assuming a circular orbit. In this case eccentricity is zero
and the longitude of periastron and the eccentric anomaly are undefined, therefore the
phase model becomes

�(t;⇤) = 2⇡f0

⇥
t+ ⌧ sin(⌦t+ ↵)

⇤
. (5.4)

In this case we search over the four-dimensional parameter space of ⇤ = {f0, ⌧,⌦,↵}.

The total time-domain radio intensity signal is a sum of instrumental and environ-
mental noise N(t) and harmonic sums of a pulsar signal.

s(t;⇤) ⌘ N(t) +

1X

n=1

sn(t;⇤), (5.5)

where the intensity of each harmonic is given by

sn(t;⇤) ⌘ <
⇥
Anexp[�in�(t;⇤)]

⇤
, (5.6)

where An are the complex amplitudes of the harmonics of the signal. We then define
a coherent detection statistic Pn(⇤,⇤

0
) for the nth harmonic computed using the radio

intensity correlated with the nth normalised signal template currently being searched
exp[�in�(t;⇤)]. This is the detection statistic recovered from a pulsar signal with true
parameters at ⇤ with a template at ⇤

0.

Pn(⇤,⇤
0
) =

����
1

T

Z T

0

dt s(t;⇤) exp
⇥
�in�(t;⇤

0
)
⇤����

2

. (5.7)

Thresholding the detection statistic helps us minimize the false-alarm probability at
a fixed rate of false-alarm probability (Allen et al., 2002). In the absence of a pulsar
signal, the N(t) term dominates and the detection statistic term is proportional to the
instrumental noise whereas in the presence of a strong signal the N(t) term can be
neglected and the expectation value of the detection statistic then becomes,

hPn(⇤,⇤
0
)i ⇡

����
An

2

����
2
����
1

T

Z T

0

dt exp[in(�(t;⇤)� �(t;⇤
0
))]

����
2

. (5.8)

While searching for new pulsars, since we do not known a priori the pulse-profile,
we assume the Fourier transform of the pulse profile resembles a Dirac delta function
truncated to a finite number of harmonics. Therefore, we equally weight Pn for different
harmonics (P0,..P4) and sum them together to form our combined detection statistic.
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SL =

2
LX

n=1

Pn. (5.9)

where 2L is the number of harmonic sums performed. In the noise-only case, assuming
Gaussian statistics, the probability distribution function (PDF) of SL is a �

2 distri-
bution with 2N = 2L+1 degrees of freedom. Integrating this PDF shows that the
probability for the power in any spectral bin to exceed a threshold Pmin is proportional
to exp(-Pmin). This is called the false-alarm probability i.e the chance that a candidate
arises from random noise fluctuations rather than a true pulsar signal. Pmin can be
estimated by setting the number of false postive to one.

Pmin = � ln (1/(2nsamp)) , (5.10)

where nsamp is the number of samples in the timeseries. Lorimer & Kramer (2012)
showed that we can convert the power threshold Pmin into a Signal to Noise ratio
threshold S/Nmin given by

S/N
min

=

p
ln [ntrials]�

p
⇡/4p

1� ⇡/4
, (5.11)

where ntrials = nsamp ⇥ nDMtrials ⇥ nharmonic sums ⇥ norbital trials. In practise, due to the
presence of Radio frequency interference (RFI) a higher threshold maybe required. We
consider all candidates with Signal to Noise ratio greater than S/Nmin to be statistically
significant and visually inspect them.

5.2.2 Definition of Metric and Mismatch

Using equation 5.8, we can define the mismatch (fractional loss of detection statistic,
in our case signal to noise ratio) between two points as

m(⇤,⇤
0
) = 1�

Pn(⇤,⇤
0
)

Pn(⇤,⇤)
⇡ g↵� �⇤

↵
�⇤

�
+O(�⇤

3
), (5.12)

where a mismatch of one implies complete loss of signal and a mismatch of zero implies
a perfect recovery of the signal, g↵� is the metric tensor, ↵ and � correspond to points
in the six-parameter space described earlier and we adopt the Einstein summation con-
vention where repeated indices are summed over. For small deviations of the parameter
space coordinates, g↵� can be calculated by Taylor expansion as (section 8.5 of Knispel
(2011) for the full derivation)

g↵� = h@↵�@��iT � h@↵�iT h@��iT , (5.13)
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where the angle brackets represent time average of a function G(t)

hG(t)iT ⌘
1

T

Z T

0

dtG(t). (5.14)

For computing the time-averages of the derivatives of the phase with respect to the
search parameters, it is convenient to express cosE and sinE as a power series in the
eccentricity parameter e with harmonics in the mean anomaly M

cosE =

1X

k=0

Ck(e) cos(kM), (5.15)

p
1� e2 sinE =

1X

k=1

Sk(e) sin(kM), (5.16)

where Ck and Sk are power series in e. The order to which one should consider expand-
ing the power series depends on the spin-frequency and eccentricity we are interested
in searching for. See Appendix C of Nieder et al. (2020) for a derivation of this power
series. In this work we consider up-to the 7th power in e, and these values can be found
in Appendix E.

5.2.3 Random Template Banks

The central idea behind this algorithm is to give up the requirement of complete cov-
erage of the parameter space (⌘ = 1). Instead, we aim for a user-defined probabilistic
coverage of the parameter space (⌘ < 1). The templates are distributed randomly with
uniform probability based on values of the square root of the determinant of the pa-
rameter space metric. We refer the reader to Messenger et al. (2009) for an in-depth
review of this algorithm including derivations for the expressions mentioned here. Here
we summarise the relevant details that are applicable to our work. Using the definition
of mismatch (described in equation 5.12), we can define a metric for our parameter
space g↵� for different signal parameter values (�1,�2, ...,�n) and calculate the proper
volume VSn of our parameter space Sn by:

VSn =

Z

Sn

dV =

Z

Sn

d
n
�
p
g, (5.17)

where g = det(g↵�) is the determinant of the parameter space metric. We then define
the volume of an n-dimensional ball with unit radius as:

Cn =
⇡

n
2

�
�
n
2
+ 1

� , (5.18)

This is the n-dimensional volume enclosed by a (n-1) dimensional sphere. The volume
covered by a single template with mismatch m⇤ is:

VT = Cnm
n
2⇤ . (5.19)
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The total number of random templates required to achieve a coverage ⌘ with nominal
mismatch m⇤ of a parameter space Sn is thus:

NR(⌘,m⇤, Sn) =
ln(1� ⌘)

ln

⇣
1�m

n
2⇤

Cn
VSn

⌘ . (5.20)

In most cases, we are interested in large parameter spaces where the volume of the
parameter space VSn is much greater than the volume of a single template VT , therefore,
m

n
2⇤

Cn
VSn

⌧ 1, and we can Taylor-expand equation 5.20 to write,

NR(⌘,m⇤, Sn) ⇡
m

�n
2⇤ VSn

Cn
ln

✓
1

1� ⌘

◆
. (5.21)

5.2.4 Frequency-Projected Metric

Our template bank construction method is similar to previous works by Knispel (2011);
Allen et al. (2013) and Knispel et al. (2013). We do this by computing a Cartesian
product of a five-dimensional orbital template bank ⇤orb = {⌧,⌦,↵, , e} along with a
uniformly spaced grid in the spin-frequency axis. This is mainly done for computational
reasons as the latter can be efficiently calculated using the FFT algorithm (Cooley &
Tukey, 1965). Therefore, we take the metric tensor (defined in equation 5.13) and
project it to a subspace of constant spin frequency f0. This can be thought of as a
slice across the parameter-space for a given f0. This is usually chosen to be the highest
spin-frequency of the harmonic of the signal we would like to detect in our search
fmax. This number should be chosen carefully as the number of templates for an five-
dimensional coherent elliptical orbit search grows to the fifth power of spin frequency�
Ntemplates / f

5
0

�
. Choosing a particular fmax does not automatically imply that we

cannot detect signals with f0 > fmax. This usually means that our mismatch values
would be higher for higher spin frequencies and conversely our mismatch values will
be lower for lower spin frequencies. In other words, this means that we over-sample
our parameter space for lower spin frequency values, under-sample for higher spin-
frequency values and we are optimally sampled for the fmax we choose to create our
template-bank. We calculate the frequency projected metric as

�↵� = g↵� �
gf↵gf�

gff
, (5.22)

where we the repeated indices are summed over. Therefore, for each orbital template,
we apply a time-domain resampling algorithm (described in Section 5.5) and then
calculate an FFT.

5.2.5 Signal Phase and Dimensionless Parameters

Following the formalism described in Dhurandhar & Vecchio (2001), we re-write our
signal phase in dimensionless parameters in order to simplify the calculation for the
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Table 5.1: Prior ranges used for generating our orbital template bank. U here refers to
a uniform probability distribution.

Parameter Value/Range Unit
tobs 1.2 h

mpulsar,min 1.4 M�
mcompanion,max 8.0 M�
Coverage (⌘) 0.9
Mismatch (m) 0.2

Max.Spin Frequency (fmax) 66.67 Hz
Orbital Period (Porb) U(6, 12) h

Projected Radius (⌧) U

0

@0,
G

1
3⌦

� 2
3

orb
mcomp,max

c (mpulsar,min +mcomp,max)
2
3

1

A lt-s

Initial Orbital Phase (↵) U(0, 2 ⇡) rad
Longtitude of Periastron ( ) U(0, 2 ⇡) rad

Eccentricity (e) U(0, 0.1)

determinant of the parameter space metric. If we multiply our signal phase model �
by a constant factor �, such that

� = ��̃, (5.23)

then each component of the metric g↵� and the frequency-projected metric �↵� become

g↵� = �
2
g̃↵� , �↵� = �

2
�̃↵� , (5.24)

and the determinants are scaled by

det(g↵�) = �
2N+2

det(g̃↵�), det(�↵�) = �
2N

det(�̃↵�) (5.25)

As shown in equation 5.17 and 5.21, the proper volume and the total number of tem-
plates is proportional to the square root of the determinant of the metric tensor, which
in these coordinates becomes,

VSn = �
N
ṼSn , NR = �

N
ÑR. (5.26)

where the ‘N’ in the exponent refers to the number of free parameters in our signal
model. In the circular case N=3 and in the elliptical case N=5. Using these properties,
we re-write our signal phase model as

� = (2⇡f0T )�̃, (5.27)

where
�̃ = u+X cosE + Y

p
1� e2 sinE. (5.28)
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The dimensionless parameters are defined as,

u =
t

T
,

 =
f � f0

f0
,

X =
⌧ sin 

T
,

Y =
⌧ cos 

T
,

⌦
0
= ⌦T.

(5.29)

Here u is dimensionless time, satisfying 0  u  1,  is dimensionless frequency
satisfying �1    0. ⌦

0 is the number of orbits in radians and ⌦
0

2⇡ is the number of
orbits covered by the binary during the observation time T. From equation 5.26 and
5.27, it is clear that

� = 2⇡fmaxT, (5.30)

where we substitute f0 = fmax which is the maximum spin-frequency of the pulsar we
want our search to be sensitive to with the chosen mismatch. Using the dimensionless
rotational phase (defined in equation 5.28) we then proceed to calculate the metric
tensor g↵� (using equation 5.13) with parameters ⇤ = {, X, Y, e,⌦,↵} and frequency-
projected metric �↵� with parameters ⇤ = {X,Y, e,⌦,↵}. We then calculate the square
root of the determinant of this frequency projected metric tensor. Finally, we multiply
this value by our scaling factor (2⇡fmaxT )

5.

5.2.6 Chosen Parameter-Space

Before we start constructing a template bank to search for binary pulsars, we first need
to decide what region of the parameter space will we focus our search on. The two main
factors that are important for this are our astrophysical motivation and computational
feasibility. The former is based on our prior information about binary stellar evolution
and past searches on our data which can help us exclude regions that are unlikely to
yield promising results or already been investigated. The most important criteria is
how much computational resource is available and how much time can be invested in
doing our search analysis. With unlimited computing power we could explore all regions
of our parameter space, however in practice we try to balance both these factors by
maximising our chances of detecting an exciting binary pulsar at a fixed computational
cost.

The most commonly used search techniques to find binary pulsars in radio obser-
vations are acceleration searches which can done in both the time domain (Johnston
& Kulkarni, 1991) and frequency domain (Ransom et al., 2002). Recently, PRESTO2

has added support for frequency-domain jerk searches (Andersen & Ransom, 2018).
Allen et al. (2013); Knispel et al. (2013) did a coherent search using the template-bank

2https://github.com/scottransom/presto
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Figure 5.1: Corner plot showing the distribution of the value of
p
|�↵� | assuming a

circular orbit which is a measure of our template pseudo-density for different orbital
parameter combinations. Black points show the relative sampling density in the tem-
plate bank. Histograms in the main diagonal show the one-dimensional marginalized
distribution of the template density across each of our orbital parameters. We see
that there is exponential growth of orbital templates for short orbital periods and high
a sin " values. Contours in the 2-D plots highlight values lying with 0.5, 1, 1.5 and
2 sigma respectively. a sin " = 0 is the special case of face-on orbit when there is no
Doppler modulation of the signal. In the orbital phase versus orbital period plot, we
see two streaks of low values of

p
|�↵� |. This corresponds to

⇣
1�

T obs
P orb

⌘
⇥ 180 and

⇣
2�

T obs
P orb

⌘
⇥ 180 degrees. At these orbital phases, the pulsar is either approaching

towards or receding from the observer essentially along the line of sight, and the de-
terminant tends to zero. This makes the signal appear Doppler shifted by a constant,
depending on the velocity of the source that does not need to be corrected for.
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Figure 5.2: Corner plot showing the distribution of the value of
p
|�↵� | which is a

measure of our template pseudo-density assuming an elliptical orbit for different or-
bital parameter combinations. Black points show the relative sampling density in the
template bank. As in the circular case, there is exponential increase in the amount of
required orbital templates for a combination of short orbital periods and high a sin "

values. Additionally, we notice a quadratic dependence of templates across the eccen-
tricity parameter and a cosine dependence across the longitude of periastron parameter.
Contours in the 2-D plots highlight values lying with 0.5, 1, 1.5 and 2 sigma respectively.
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Table 5.2: Input, Spin and Orbital Parameters for the Simulated Pulsar-Black hole
binaries used in our analysis. We simulated all our orbits with a Dispersion Measure
DM = 0. Here, ‘U’ denotes a uniform distribution.

Parameter Value/Range Unit
tobs 1.2 h

mpulsar,min 1.4 M�
mcompanion,max 8.0 M�
Spin-Period 15.0 ms
Duty Cycle 10.0 %

Dispersion Measure 0.0 pc cm
�3

Frequency Channels 1024
Bandwidth 400 MHz

Frequency of Channel1 1181.804688 MHz
Channel bandwidth 0.390625 MHz

Signal-to-noise ratio of single pulse 0.02
Data Bit-Rate 4

Number of samples 224 samples
Sampling time 256e-06 s

Orbital Period (Porb) U(6, 12) h
Eccentricity (e) 0.1

Initial Orbital Phase (↵) U(0, 2 ⇡) rad
Longtitude of Periastron ( ) U(0, 2 ⇡) rad

Projected Radius (⌧) U

0

@0,
G

1
3⌦

� 2
3

orb
mcomp,max
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algorithm described earlier (assuming circular orbits - three orbital search parameters)
to search for compact binaries within PALFA (Cordes et al., 2006) and PMPS (Manch-
ester et al., 2001) observations respectively. Given the extensive amount of work that
have already been done building and testing these software suites and their remarkable
success in finding several relativistic binaries like PSR J0737-3039A (Burgay et al.,
2003) which was discovered in a FFT search, PSR J1757-1854 (Cameron et al., 2018)
which was discovered in a segmented acceleration search among others, our goal here
is to complement their work by focusing our search on regions of parameter space that
were not searchable by these algorithms. In Section 5.3.1 we do a detailed simula-
tion comparing these search algorithms. We fix our upper limit for orbital period as
Porb = 10T . This is because the assumption of “constant” acceleration works well for
long orbital period binaries i.e when Porb > 10T . The lower limit of the orbital period
searched is determined solely by the amount of computational power available. The
constraint on projected semi-major axis, a sin ", is calculated based on the orbital pe-
riod, masses of the pulsar and companion, and the different inclination angles we want
to be sensitive to. Using Kepler’s third law, we define

0  a sin "  ✓
G

1
3⌦

� 2
3

orb
mcomp,max

c (mpulsar,min +mcomp,max)
2
3

(5.31)

where mcomp,max is the maximum companion mass, mpulsar,min is the minimum
pulsar mass, G is the gravitational constant, c is the speed of light in vacuum, the
parameter ✓ (0  ✓  1) constrains the inclination angle that we want to be sensitive
towards for a given binary system. In our template bank, we selected the following
binary parameter ranges: mpulsar,min = 1.4M�,mcomp,max = 8.0M�, ✓ = 1, Porb = 6-
12 hrs. We had no constrains on the initial orbital phase ↵ ( 0  ↵  2⇡) and longitude
of periastron  (0    2⇡). The upper-limit on the eccentricity range is also decided
by computational factors. We limit our searches to a range between 0  e  0.1. The
prior ranges used in our tests are summarised in table 5.1.

5.2.7 Distributing templates in the parameter space

Once we have calculated the number of required orbital templates using equation 5.21,
the next step is to generate the template-bank, i.e. distribute the orbital templates
in the parameter space. Our goal is to sample from a probability density function
that is proportional to the square root of the determinant of the metric tensor

p
|�↵� |

multiplied by the prior probabilities in our orbital parameter range. Markov Chain
Monte Carlo (MCMC) methods are well suited for such problems. We use the Python
package emcee (Foreman-Mackey et al., 2013) which is an implementation of the affine-
invariant MCMC ensemble sampler proposed by (Goodman & Weare, 2010). Briefly,
this method works as follows. We explore the parameter space through a set of “walkers”
which run in parallel. Each walker represents a point in the parameter space. After each
iteration, a walker selects another walker and takes a step along the line in parameter
space connecting between them. These step sizes are chosen stochastically. At this new
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step, we then calculate our posterior distribution function (PDF). We always accept
steps where the PDF value increases and sometimes accept steps if the PDF value
decreases. These walkers can be thought of as separate Metropolis-Hastings chains
running in parallel with the caveat that the steps taken by one walker are dependent on
the position of the other walkers. Based on the recommendation in Goodman & Weare
(2010), we use the integrated autocorrleation time to quantify the effects of sampling
error in our chain. We assume our chains have converged when the length of the chain
is a hundred times our integrated autocorrleation time averaged across all dimensions.
We chose 800 walkers for our chain, and once the chains have sufficiently converged,
we discard the burn-in samples and randomly select the number of required templates
from our chain. Using this method, we generated two orbital template banks, one
assuming a circular orbit and another assuming an elliptical orbit. Figure 5.1 shows a
corner plot (Foreman-Mackey, 2016) for the circular orbit case. Plots along the longest
diagonal show the one dimensional marginalized distribution of the template pseudo
density for each of the orbital parameters. The off-diagonal plots show the marginalized
two dimensional distributions for different combinations of the orbital parameters. We
see that the number of templates grow exponentially for shorter orbital periods and
a combination of short orbital periods and high-asin " values. We see a dip in the
template density for high values of asin " because longer orbital period binaries tend
to higher asin " value ranges due to kepler’s third law. In the orbital phase versus
orbital period plot, we see two streaks of very low values of

p
|�↵� |. This corresponds

to
⇣
1�

T obs
P orb

⌘
⇥ 180 and

⇣
2�

T obs
P orb

⌘
⇥ 180 degrees. At these orbital phases, the pulsar

is either approaching or receding from the observer essentially along the line of sight,
and the determinant tends to zero. This makes the signal appear Doppler shifted by a
constant, depending on the velocity of the source that does not need to be corrected
for.

Figure 5.2 shows the corner plot for the elliptical orbit case. As in the circular
case, the plots along the diagonal show the one-dimensional marginalized distribution
of

p
|�↵� | for each of the five orbital parameters. We see that the overall value ofp

|�↵� | has increased by three orders of magnitude. We see a similar increase in the
number of trials for short orbital periods and a combination of short orbital periods and
high asin " values. There is a quadratic dependence of the template density across the
eccentricity parameter. The sinusoidal dependence of the density of templates across
orbital phase in the circular orbit case has been washed away in this plot, due to the
different eccentricity values in our simulations. Additionally, we also notice a near
cosine dependence of template density across the longitude of periastron parameter.

Using the metric approximation defined in section 5.2.2 leads to an over-estimation
of the required orbital templates in the template bank. One method to reduce the
total number of orbital templates is to apply the Stochastic template bank algorithm
(Harry et al., 2009). Stochastic template banks are formed in a similar manner with an
additional second step that prunes orbital templates that are closer than the nominal
mismatch value. We provide an implementation of this algorithm in our software
suite. Creating a stochastic template bank is computationally expensive. Therefore,
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the trade-off between calculating a stochastic template bank and time-saved from search
analysis should be evaluated. For all our tests in the subsequent sections we use a
random template bank to save compute time.

5.2.8 Template Bank Verification

After constructing the template bank, the next step is to verify that the template bank
satisfies the chosen coverage and mismatch criteria. We did this by simulating PSR-
SBH binaries in a 72-minute observation with the pulsar rotating at the maximum
spin-period chosen for our template bank Pspin = 15 ms. We simulated 10,000 binaries
with a uniform distribution of orbital period between 6-12 hours, a fixed eccentricity
of 0.1 and inclination angle varying from 0 to 90 degrees. We let the orbital phase and
longitude of periastron vary between a value from 0 to 2⇡ radians. All the parameters
used in the simulation can be found in table 5.2. We also simulated an isolated pulsar
in order to calculate our best case signal to noise ratio. The mismatch distribution
from running our elliptical binary search pipeline is shown in figure 5.3. We created
the template bank to have a coverage of ⌘ = 90% and a mismatch of 0.2. Since we also
search over frequency using an FFT, we need to account for the additional mismatch
from this parameter. The response of the FFT in frequency is not uniform. It’s
maximum for signals falling in the centre of the fourier bin and loses sensitivity as you
go towards the edge of a bin. This is called scalloping (see for e.g. Middleditch et al.
(1993)). One option to mitigate this is by padding the timeseries with its mean value
to minimise the effect of FFT scalloping (See section 3.8.4 of Knispel (2011) or Ransom
et al. (2002) for a detailed discussion on this). We avoid this in our analysis in order
to minimise computational time. The 90th percentile of our mismatch distribution is
0.33, i.e. we cover 90% of our parameter space with a mismatch value m0.9  0.33.
Therefore, the requirements of the template-bank have been fulfilled for our chosen
search set-up.

5.3 Comparing to other pulsar-search pipelines

5.3.1 Tests on Simulated Observations of Mildly Eccentric P-SBH
Binaries

In this section, we compare the performance of a PRESTO -based pipeline doing an
acceleration and jerk search to a template-bank search over three Keplerian parameters
assuming a circular orbit and over five Keplerian parameters assuming an elliptical or-
bit. We restrict our analysis to binaries in the 5-10 Tobs regime. We start by simulating
10,000 PSR-SBH Binaries with an eccentricity of 0.1, companion mass of 8 M�, pulsar
mass of 1.4 M� and a spin-period of 15 ms. These values are kept fixed. We simulate
orbits with a uniform distribution of orbital period between 6 and 12 hours along with
a uniform distribution of inclination angles, orbital phase and longtitude of periastron
values. We used a modified version of the code FAKE from Sigproc3 for our work. A

3https://github.com/SixByNine/sigproc
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Figure 5.3: Mismatch distribution of our template-bank for simulated pulsar-black hole
binaries. The dotted line indicates the median and 90th percentile mismatch values.

full list of our input spin and orbital parameters for the simulation can be found in table
5.2. Additionally, we simulated an isolated pulsar with identical input parameters in
order to calculate the best-case detection significance that can be recovered. For each
simulated binary pulsar, we run each of our pipelines and calculate the mismatch value
using the following expression.

m = 1�
(SNR)Recovered,SearchPipeline

(SNR)Isolated
. (5.32)

PRESTO implements a frequency-domain acceleration/jerk search (FDAS/FDJS).
FDAS assumes that the pulsar’s acceleration A is constant throughout the observa-
tion. Under this assumption, each harmonic of the pulsar signal will experience an
acceleration A given as:

A =
ḟ c

hf
=

zc

hftobs
2
, (5.33)

where z is the Fourier frequency bin number, h is the harmonic number of the signal, f
is the spin-frequency and ḟ is the spin-frequency derivative. Similarly, FDJS assumes a
constant jerk, J , throughout the observation and the previous equation can be expanded
to

Ȧ = J =
f̈ c

hf
=

wc

hftobs
3
, (5.34)
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where w corresponds to the number of Fourier frequency derivative bins that the signal
is smeared onto during the course of an observation. The user can input the maxi-
mum number of Fourier frequency bins (zmax) and/or the maximum number of Fourier
frequency derivative bins (wmax) to search over in an observation.

For FDAS, we used the maximum value allowed by the software zmax = 1200 which
for a 15-ms pulsar in a 72-minute observation corresponds to an acceleration of 289.35
ms�2 for the fundamental (h = 1). For FDJS, we used a zmax = 600 and a wmax

= 1800 which corresponds to an acceleration of 144.68 ms�2 and a jerk of 0.1 ms�3.
The maximum values used for acceleration and jerk in our simulations were limited by
software and available RAM. In principle, these simulations could be repeated with a
broader range of acceleration and jerk, however we do not expect a significant improve-
ment in performance as the assumption of constant acceleration or jerk throughout the
observation breaks down for extreme values.

For the template-bank search, we implemented two different searches. One assumes
a circular orbit binary and searches over the three Keplerian parameters (P orb, ⌧ , ↵)
and our second search expands the parameter space to include eccentricity e and lon-
gitude of periastron ( ). For the circular search, we generate 10,128 orbital templates
using the random template-bank algorithm with the same binary parameter range as
our simulations but with e = 0. For the elliptical search, we generated 2,04,7716 or-
bital templates. Our results are shown in figure 5.4. These plots were made on a
100⇥ 100 grid. At each point, we simulated a binary pulsar and report the recovered
mismatch value from each pipeline. The plots shows the mismatch value averaged
across initial orbital phase and longitude of periastron. We notice a general trend of
loss of signal-to-noise ratio (high mismatch values) using polynomial based searches
for binaries with short orbital periods. Additionally, a high a sin " value resulting from
a steeper inclination angle also makes them harder to detect. For the special case of
a sin " = 0 (face-on) orbit, the Doppler modulation is negligible, hence we notice a low
mismatch value from all pipelines. Jerk search provides a significant improvement over
acceleration search. However, this approach also loses sensitivity for binary pulsars
with short orbital period binaries and high a sin " values. The coherent search over
three Keplerian parameters provides a uniform sensitivity throughout our parameter
space with an average mismatch value of 0.35. Depending on the flux density of the
pulsar, this value may or may not be acceptable. As expected, we notice the most
improvement by searching over all five Keplerian parameters. We notice an average
mismatch value of 0.19 for pulsars in our parameter space. The 1-D histogram for the
mismatch values for all the pipelines can be seen in figure 5.5. Additionally, we also
report the median and 90th percentile of our mismatch distribution in table 5.3.

5.3.2 Tests on the Double PSR J0737-3039

In this section, we do a similar comparison of the performance of different pulsar search
pipelines on an archival Parkes observation of the double pulsar PSR J0737-3039 that
covers one full orbit of the system. The original observation had an integration time
of 2.6 hours with a time sampling interval of 80 µs. The data was dedispersed at
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(a) Acceleration Search over f and a (zmax =
1200)

(b) Jerk Search over f, a and j (zmax = 600,
wmax = 1800)

(c) Template-Bank Search over f and Three
Circular Orbit Keplerian Parameters.

(d) Template-Bank Search over f and Five El-
liptical Orbit Keplerian Parameters.

Figure 5.4: Recovered signal-to-noise ratio expressed in terms of mismatch using dif-
ferent pulsar-search pipelines for simulated PSR-SBH binaries with eccentricity 0.1.
Mismatch values shown here are averaged across different values of initial orbital phase
and longitude of periastron. These plots contain a grid with 10,000 points. In each
point, we simulate a binary, and report the recovered mismatch. As expected, we
notice a high loss in signal to noise ratio for short orbital periods for an acceleration
search. We notice a significant improvement with a jerk search, however it still fails to
recover signals for short orbits and high asin " values. We notice a further improvement
by searching over three Keplerian parameters with an average mismatch value of 0.35
throughout the entire parameter space. The average mismatch value by searching over
all five Keplerian parameters is 0.18. The cloudy structure in the template-bank search
plots come from the fact that we have a probabilistic coverage of the parameter space
⌘ = 0.9, therefore for some regions we have a higher mismatch than the nominal value.



168 Chapter 5. Coherent Search across all Keplerian parameters

Table 5.3: Median and 90th percentile of mismatch values from our simulations for
different pulsar search pipelines

Pipeline m50 m90

Acceleration Search (zmax = 1200) 0.66 0.86
Jerk Search (zmax = 600, wmax = 1800) 0.35 0.73

Circular Orbit Search (m = 0.2) 0.35 0.49
Elliptical Orbit Search (m = 0.2) 0.19 0.33

Figure 5.5: 1-D histogram of fractional signal to noise recovered in terms of mismatch
values from a polynomial based acceleration and jerk search compared to Keplerian
searches assuming a circular orbit binary and an elliptical orbit binary. These simula-
tions were carried out on 72-minute observations of mildly recycled (15 ms) PSR-SBH
binaries (mcompanion = 8 M�) with an orbital period range of 6-12 hours in eccentric
orbits (e=0.1).
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DM = 48.92 pc cm
�3 to form a timeseries. We then downsampled the data by a factor

of 16 to 1280 µs. We compared all the pipelines on two different integration lengths
of 90-minute and 45-minute duration. Additionally, we also searched the data by
shifting the starting point of the observation in steps of 100s. This effectively helped
us sample different orbital phases of PSR J0737-3039 and test its detectability using
different pipelines. For our searches using the PRESTO pipeline we used zmax =

1200 for acceleration search which using equation 5.33 corresponds to a maximum
acceleration value of 1120.95m s

�2 for the fundamental in the 45-minute observation
and 280.24m s

�2 in the 90-minute observation. Similarly, for jerk search we used a
zmax = 600 and wmax = 1800 which using equation 5.34 corresponds to maximum
acceleration of 560.47m s

�2 and jerk 0.62m s
�3 in the 45-minute observation. For

the 90-minute observation, this corresponds to a maximum acceleration of 140.2m s
�2

and a maximum jerk of 0.078m s
�3. As mentioned in the previous section our jerk

search range was limited by the amount of available RAM in the system. For the
elliptical search template-bank, we set the maximum eccentricity to be equal to 0.08
and longitude of periastron was set to vary from 0-2⇡. For all the template-banks, the
minimum pulsar mass and maximum companion mass was kept fixed at 1.4M� and
1.6 M� respectively. We also searched over all possible values of initial orbital phase
and inclination angles. We tweaked the coverage, mismatch, spin-period and orbital
period values for different template banks in order to do a feasible search. These values
are shown in table 5.4. Our results are shown in figure 5.6. In the top panel we
present the FFT detection significance in the y-axis which is the sigma value reported
from the ‘ACCEL’ files in PRESTO. The sigma reported is the probability that a
given signal might be due to noise, but expressed in terms of equivalent Gaussian
sigma. For the detections from the template-bank pipeline, we applied a time-domain
resampling scheme (explained in section 5.5.1) on the dedispersed timeseries using the
orbital template that gave us highest significance detection in the FFT. We then ran
the code accelsearch from PRESTO with a zmax = 2 and compared the sigma
value reported to those obtained from the standard acceleration and jerk search. The
x-axis shows the starting point of our observation. Our results show that for 45-minute
observations, acceleration search can partially recover the signal for some orbital phases
but the detection is relatively weak for most of the orbital phase. As expected, jerk
search improves the detection significance substantially. However, its sensitivity is still
worse compared to full orbital searches. We don’t notice a significant difference between
the detection significance from elliptical and circular orbit searches. This is likely due
to the fact that for detecting Double-Neutron Star systems for short observations in
the Tobs/Porb = 30% range, a five-parameter search is not needed. For the 90-minute
observation, we notice a significant difference in the performance of each pipeline. We
notice the limitation posed by the assumption of constant acceleration and/or jerk in
a long observation which hinders detection. Here, we also see the improved sensitivity
provided by the elliptical search pipeline compared to a circular search. We would like to
stress here some of the limitations of this comparison. The FFT candidate significance
reported from the ‘ACCEL’ files includes a correction for the number of independent
frequencies/fdots searched whereas the significance from the template-bank pipeline
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Table 5.4: Orbital Parameters used to generate the template bank for tests on the
observation of PSR J0737-3039A.

Input Parameter Tobs = 45min Tobs = 90min
Circular Search Elliptical Search Circular Search Elliptical Search

Coverage (⌘) 0.9 0.9 0.9 0.5
Mismatch (m) 0.05 0.05 0.2 0.6
Max.Spin Period (Pspin,ms) 20 22 22 22.5
Orbital Period range (Porb, hrs) (2, 7.5) (2.45-2.457) (2.33-15) (2.4-2.46)
No. of trials 65,489 52,981 615,800 3,00,000

was computed from a very small z search in the fourier domain after correcting for the
orbit, therefore it does not include a correction for the number of trials. This would
likely lead to an overestimation of the performance improvement provided by the full
orbital searches. Another limitation is the range of acceleration and jerk search values
used in the 90-minute observation. We expect an improvement in performance with a
wider Acceleration and Jerk search range, however we still expect it to perform much
worse than full orbital searches due to the varying jerk during an observation. In the
bottom panel of figure 5.6, we report the folded significance calculated from the code
PREPFOLD from PRESTO as a function of the starting point of the observation.
For comparison, we also plot the significance estimated from folding the ephemeris of
the pulsar. The significance reported here for all search pipelines assumes a single-
trial search. As expected, the profiles of the folded significance is similar to the FFT
significance values. The main advantage of the Keplerian search pipeline is that we need
not rely on favorable orbital phases for detection. The slight non-uniform sensitivity
of the template-bank for different orbital phases is due to our probabilistic coverage of
the parameter space.

5.4 Suitability for targeted and blind observations

In this section, we estimate the feasibility of applying a coherent search for circular and
elliptical orbit binaries in blind pulsar surveys like the High Time Resolution Universe
(HTRU; Keith et al. 2010) as well as a targeted Globular Cluster (GC) observation of
Terzan5.

5.4.1 HTRU-South Low Latitude Survey

High Time Resolution Universe South Low-Latitude Survey (HTRU-S Lowlat) is one
part of the HTRU Survey that focuses on the inner Galactic plane covering Galactic
longitude �80° < l < 30° and Galactic latitude |b| < 3.5°. The observations were
recorded with an integration time of 72 minutes with a bandwidth of 400 MHz split into
1024 channels. The data was recorded using the 21-cm multi-beam receiver along with
the Berkeley–Parkes–Swinburne Recorder (BPSR) backend at the 64-m Parkes Radio
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Figure 5.6: Results from running an acceleration, jerk, template bank circular and ellip-
tical binary search pipeline on different integration lengths across a 2.6 hour Parkes ob-
servation of PSR J0737-3039A. Left panel shows results from searching over 45-minute
observations and right panel shows results from searching over 90-minute observations.
The top row shows the FFT detection significance calculated from ACCELSEARCH
as a function of starting point of the observation incremented by 100 seconds. The
bottom row shows folded detection significance of the pulsar calculated from PREP-
FOLD. For comparison, in the bottom panel we also show the detection significance
obtained from folding the ephemeris of the pulsar in purple.
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Telescope. We refer the reader to Keith et al. (2010) for a full list of the observational
setup and system configuration. The main aim of this survey was to find low-luminosity
pulsars and new relativistic binary pulsars that are expected to be found close to the
Galactic disk. HTRU-S Lowlat has 1230 pointings, with each pointing consisting of 13
beams. More than 100 new pulsars have already been discovered in HTRU-S Lowlat
using a segmented acceleration search pipeline. We refer the readers to Ng et al. (2015)
and Cameron et al. (2020) for the initial list of discoveries and timing solutions. Given
that we have already completed a first pass acceleration search over the entire dataset,
this gives us a strong motivation to explore new techniques that can open up previously
unexplored parameter spaces. We first start by estimating the computing time that
would be required to search for non-recycled PSR-SBH binaries in HTRU.

5.4.2 Searching for Non-Recycled PSR-SBH Binaries in HTRU

In the standard binary stellar evolution model (Yungelson & Portegies Zwart, 1998;
Voss & Tauris, 2003), we expect the black hole to form first, followed by the pulsar at
a later epoch. Therefore, in this formation channel we expect to find a slow spinning
non-recycled pulsar orbiting a black hole in a wide eccentric orbit. Recent population
synthesis work by (Chattopadhyay et al., 2021) has shown that MeerKAT is expected
to find 0-30 PSR-BH systems and SKA is expected to observe 1–60 PSR+BHs in the
Galactic field with most of them expected to contained unrecycled normal pulsars. A
similar earlier study from Shao & Li (2018) has also estimated that there might be
⇠3-80 PSR-BH binaries in the Galactic disk with about 10 % that could be detected
by Five-hundred-meter Aperture Spherical radio Telescope (FAST). The number of or-
bital templates is highly sensitive to the chosen spin frequency of the template bank.
In the circular case, templates scale as f

3 and in the elliptical case, templates scale as
f
5. Therefore, a natural place to apply the template-bank algorithm is for the search of

normal unrecycled pulsars in compact binary systems. For all our calculations in this
section, we fix the spin period in our template bank at P spin = 100 ms. HTRU obser-
vations are natively sampled at 64 µs, however given that we are targeting non-recycled
pulsars with a spin-period greater than or equal to 100ms, it is safe to downsample the
data by a factor of 16 to 1024 µs. This gives us access to up-to 32 harmonics of the pul-
sar signal below the Nyquist limit. Each observation is then dedispersed to dispersion
measures of 0 to 3000 pc cm

�3 typically consisting of 1126 DM trials assuming a DM
smearing tolerance of 10%. Using this and assuming we would fold at least 1000 candi-
dates per beam, we estimate the total time it would take for our analysis in table 5.5.
We calculate the cumulative time it would take to search using the random template-
bank algorithm and folding on the full length HTRU observation as well as segmented
searches on halves and quarter length observations. The total ‘Search’ time includes
applying a channel mask, Fourier birdie zapping, dedispersion, Fourier de-reddening,
FFT, harmonic summing up-to 16 harmonics and a peak detection algorithm. Total
time in shorter observations includes searching over all the relevant segments (e.g. 2
and 4 segments for 36 and 18 minute observations respectively). Our search perfor-
mance was benchmarked on an Nvidia P100 GPU. The next step is called folding,



5.4. Suitability for targeted and blind observations 173

where once the data is dedispersed, we sum the data at a particular spin-period which
is calculated based on the FFT period, orbital parameters and observation duration
to form a pulsar candidate. We used the code prepfold from PRESTO which also
includes an optimization algorithm to find the best period and dispersion measure and
is designed to be executed on a CPU. The folding performance was benchmarked on
an Intel Xeon Gold 6140 processor. The total computation time reported in the table
assumes the availability of 100 GPUs and 500 CPU cores. We added an overhead of
40% for the total folding time to account for data transfer times, I/O, and non-linear
scaling during parallel execution of folding. We fix the upper limit for the orbital period
in our calculations to be P orb = 10T obs since an acceleration search would have already
found binaries with orbital periods larger than this value. From these results, it is clear
that for the vast majority of the parameter space, an elliptical orbit binary search for
non-recycled pulsars is not feasible for a blind pulsar survey like HTRU. However, we
notice that the regime between 2.5-10 T obs could be feasible to search with a maximum
eccentricity of 0.1. For example, an elliptical search for binaries between 1.5 to 6 hour
orbital periods can be done in 145 days for the entire HTRU-S Lowlat survey searching
across both half-length (36 minutes) observations. Any higher order eccentricity search
is impractical with current and near-future computational resources. On a more opti-
mistic note, Bagchi et al. (2013) showed that highly eccentric binaries (e > 0.5) are on
average more favorable for detection compared to mildly eccentric systems (e = 0.1)
as the pulsar spends most of its time away from periastron and has a low line-of-sight
acceleration for most of its orbit. Therefore, from both a physical and computational
point of view, it is more favorable to stick to maximum eccentricity of 0.1. Additionally,
from table 5.5 we notice that a circular binary search is computationally feasible and
can open up interesting parameter spaces that are yet to be investigated. We notice
that the searches between 1.7-10 T obs can be analysed with current resources and even
non-detections can be used to calculate limits on the existence of relativistic binary
systems within our Galaxy. For searches longer than 50 days, it may be desirable to
reduce the total number of orbital templates (usually by a factor of 2) by applying the
stochastic template-bank algorithm. This requires the investment of a few days to 10
days worth of prior computing time using multiple cores on a HPC cluster in order to
prune overlapping orbital templates. An implementation of this algorithm can also be
found in our software repository.

5.4.3 Searching for Millisecond PSR-SBH Binaries in HTRU

The formation of a millisecond pulsar (MSP) orbiting a black hole is expected to be
rare. One possible scenario is the so-called reversal mechanism where under certain
conditions the pulsar is formed first and is later spun-up by accretion during the red
giant phase of the secondary star (Sipior et al., 2004; Pfahl et al., 2005). Discovering
such systems more desirable as MSPs tend to be more precise timers than slow ‘normal’
pulsars (Verbiest et al., 2009). Another possibility is the dynamical formation scenario
due to exchange interactions. This is more likely in regions of high stellar density like
the Galactic centre. While interstellar scattering is expected to hamper detections of



174 Chapter 5. Coherent Search across all Keplerian parameters

Table 5.5: Total Computing time required to search for non-recycled PSR-SBH binaries
(P spin,min = 100 ms.) using a coherent circular binary and elliptical binary search in the
entire HTRU-S Lowlat Survey. Total ’Search’ time includes applying a channel mask,
Fourier birdie zapping, dedispersion, Fourier de-reddening, FFT, harmonic summing
up-to 16 harmonics and a peak detection algorithm. Our searches were benchmarked
on a Nvidia P100 GPU and the folding was benchmarked on an Intel Xeon Gold 6140
processor using prepfold from PRESTO .

tobs Min. Pb Max. Pb Masscompanion Max. Eccentricitya Circular Binary Search Elliptical Binary Search

(mins) (h) (h) (M�) Search(d) Folding(d) Total (days) Search(d) Folding(d) Total (years)

72 3 12 8 0.1 16.2 35.4 51.6 1613.6 35.4 4.5
72 2 12 8 0.1 229.6 35.4 265 660,079.5 35.4 1808
36 1.5 6 8 0.1 5 19 24 145 19 0.45
36 1.0 6 8 0.1 68.7 19 87.7 59,717.8 19 163.7
18 0.42 3 8 0.1 70.8 10 80.8 108,780.9 10 298

a Applicable only for Elliptical Orbit Searches.

PSR-BH binaries near Sgr A* at L-band in HTRU-S Lowlat, it is still important to
search for such systems due to their potential scientific impact. Given that elliptical
binary searches were already unfeasible for searching for unrecycled PSR-SBH binaries,
the situation is expected to be worse for recycled PSR-SBH binaries. However, circular
binary searches are still feasible and we provide a few examples of search-setups in ta-
ble 5.6. We focus mainly on the spin-period regime between 13-20 ms. MSPs rotating
faster than this are still computationally unfeasible to search for PSR-SBH binaries. An
alternate possibility is to reduce the companion mass limit and focus searches for double
neutron-star and pulsar-white dwarf binaries. This would help in reducing the spin-
period limit and search for more recycled pulsars. Knispel (2011); Allen et al. (2013)
and Knispel et al. (2013) used this set-up to search for pulsars in PALFA (Cordes et al.,
2006) and PMPS (Manchester et al., 2001)) respectively using the volunteer distributed
computing resources available from the Einstein@Home project. Our calculations in-
dicate that the regime between 5-10 T obs is feasible to search for MSP-SBH binaries in
HTRU with spin-periods greater than 13 ms using a circular binary search. The entire
analysis would take anywhere between 6-18 months depending on the chosen search
setup. Additionally, having a higher spin-period threshold at 20 ms could help us in-
vestigate binaries with orbital period in the 3-10 T obs regime. Our benchmarks were
done assuming the same computational resources as in the previous section. In this
case, we downsampled the data to 256 µs which gives us access to at least 16 harmonics
of a hypothetical 13 ms pulsar signal. The total search time includes 1876 dedispersion
trials assuming a DM smearing tolerance of 10% from 0 to 3000 pc cm

�3.

5.4.4 Searching for MSP-SBH binaries in Globular Clusters

Globular Clusters (GCs) are one of the ideal locations to apply the template-bank al-
gorithm. GCs produce orders of magnitude more MSPs than the Galactic disk and
since most MSPs are expected to be binaries, we expect to find several compact bi-
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Table 5.6: Total Computing time required to search for MSP PSR-SBH binaries using
a coherent circular binary search in the entire HTRU-S Lowlat Survey. For searches
longer than 50 days, we recommend applying the stochastic template-bank algorithm
and pruning overlapping templates. This usually reduces the number of templates by
a factor of 2 at the cost of an extra week of up-front computing time.

tobs Min. Pb Max. Pb Masscompanion Pspin Circular Binary Search

(mins) (h) (h) (M�) (ms) Search(d) Folding(d) Total (days)

72 6 12 8 13 355.6 214.0 569.6
72 6 12 8 20 99.0 214.0 313.0
36 3 6 8 20 99.0 86.5 185.5
36 2 6 8 20 400.3 86.5 486.8
18 1 3 8 20 120.0 67.3 187.3
9 0.42 1.5 8 20 99.3 58.0 157.3

nary pulsars in GCs. There are currently 223 known pulsars in 36 globular clusters4

Additionally, the advantage of processing GCs is that the DM of the cluster maybe
well known which means most of the compute power can be invested in exploring the
binary parameter phase space. Any new candidate can also be confirmed potentially
using archival observations of these clusters. Therefore, we could have a timing solu-
tion that spans across several years within a short period of time after detection, thus
enabling us to get scientific results quicker. In the context of PSR-SBH binaries, anal-
ogous to the Galactic centre, the high stellar density in GCs opens up the possibility
of three-body interactions where a neutron star can gain a companion by exchanging
with a primordial binary and subsequently be spun up to become an MSP (Hills, 1976;
Sigurdsson & Phinney, 1995; Ivanova et al., 2008; Clausen et al., 2014). Another pos-
sibility is the formation a MSP in orbit with an intermediate-mass black hole (IMBH:
M ⇠ 10

2 - 104M�). The encounters between MSPs and IMBHs could result in the MSP
being significantly displaced from the core (Colpi et al., 2003) to form a MSP-IMBH
binary (Devecchi et al., 2007). We investigate the compute time required to search for
such binaries using both a circular and elliptical orbit search in table 5.7. We used
a 7.2 hour archival observation of Terzan5 taken at the 100-m Robert C. Byrd Green
Bank Telescope (GBT) for our benchmarks (Prager et al., 2017). The observation was
recorded at a central frequency of 2000 MHz (S-band) using a bandwidth of 800 MHz
split into 128 channels. The data recorded by the Green Bank Ultimate Pulsar Pro-
cessing Instrument (GUPPI) were full-Stokes with a sampling time of 10.24 µs and 512
channels, each coherently dedispersed to a DM of 238 pc cm�3. For our benchmarks,
we downsampled the data to 81.9 µs and assumed 50 dedispersion trials and the same
computational resources as the previous section. For the elliptical searches, we re-
strict the maximum eccentricity to 0.1. Any higher order eccentricity search is still not

4
Refer to http://www.naic.edu/~pfreire/GCpsr.html for an updated list of the catalog.
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Table 5.7: Total Computing time required to search for PSR-SBH binaries using a
coherent circular binary and elliptical binary search in a GBT observation of Terzan5.
Duration includes time taken for searching and folding. These numbers assume 100
Nvidia P100 GPUs and 500 CPU cores. The total time taken for observation shorter
than 7.2 hours includes time taken to cover all search segments.

tobs Min. Pb Max. Pb Circular Binary Search Elliptical Binary Search

(hrs) (h) (h) Pspin (ms) Masscompanion (M�) Duration (days)a Pspin (ms) Masscompanion (M�) Max. Eccentricitya Duration (days)a

7.2 36 72 10 10 1.3 40 10 0.1 27.1
3.6 18 36 10 10 0.24 40 10 0.1 0.95
1.8 9 18 10 10 0.06 40 100 0.1 2.2
1.0 5 10 10 1000 2.0 20 10 0.1 0.2
0.5 2.5 5 1 1000 0.14 15 10 0.1 0.09
0.5 1.5 5 10 100 1.69 20 10 0.1 2.56
0.5 1.0 5 5 1.6 0.9 40 1.6 0.1 0.9

a Includes time taken for search and folding.

computationally feasible. As expected processing longer integration times are compu-
tationally more challenging. Based, on our benchmarks a circular-orbit search between
5-10 T obs, i.e. 36-72 hour orbital period binaries for a 7.2-hour observation up to a
companion mass of 10 M�, would take about 1.3 days assuming 100 GPUs for search-
ing and 500 CPU cores for folding. We also provide rough estimates for segmented
searches. The total processing time for observations shorter than 7.2 hours includes
searching all search segments (for e.g. 2 segments for a 3.6-hour observation). Elliptical
binary searches are not feasible for very long integration times. In order to make the
elliptical binary search feasible, we need to either search on shorter length observations
or have a higher threshold for the spin-period in our template-bank. We have given
a few examples of possible parameter-space combinations that can be explored with
current computational resources. This is given in the right hand side of table 5.7. Some
examples readers might find interesting include an elliptical binary search on a 1.8 hour
observation with a spin-period threshold of 40 ms and a maximum companion mass of
100 M�. Another example would be a circular binary search between orbital period
of 5-10 hours with a maximum companion mass of 1000 M�. Yet another possibility
to reduce computation time is to focus on double neutron star searches. This would
help to investigate faster spinning pulsars in more compact orbits. For example, using
a circular binary search for a 30 minute observation, we could search all 14 segments
(total length = 7.0 hrs), with an orbital period range of 1-5 hours (2-10 T obs) with a
maximum companion mass of 1.6 M� in a day.

5.5 Software and Implementation Details

Our search code has been designed to run on Nvidia-GPUs. It is built on top of
the GPU-accelerated PEASOUP5 pipeline that does an acceleration search (John-
ston & Kulkarni, 1991). The main pipeline also implements dedispersion through the

5https://github.com/ewanbarr/peasoup/
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DEDISP library (Barsdell et al., 2012), Fourier de-reddenning, FFT, incoherent har-
monic summing and a peak detection algorithm for candidate selection. Our version
of the software called 5D-Peasoup6 replaces the acceleration search with a coherent
search across all Keplerian parameters and additionally runs a candidate reduction
algorithm by grouping together multiple detections of the same candidate.

5.5.1 Time-Domain Resampling Algorithm

We apply the nearest-neighbour resampling algorithm which is the standard resampling
technique applied in most time-domain pulsar search pipelines including SIGPROC,
PEASOUP and the Einsten@Home Radio Pulsar-Search pipeline (Knispel, 2011; Allen
et al., 2013) . The difference here is that our Roemer delay equation contains all five
Keplerian parameters. Our goal is to transform our reference frame from the observed
timeseries at the telescope to the binary system’s barycenter. After correcting for the
dispersion delay caused by free electrons in the Inter-Stellar Medium (ISM) using the
software DEDISP, we additionally need to account for the Roemer delay caused due
to the motion of the pulsar around its companion (Blandford & Teukolsky, 1976). For
a Keplerian orbit with non-zero eccentricity, this can be written as:

�R = ⌧ [(cosE � e) sin +

p
1� e2 sinE cos ]. (5.35)

As mentioned earlier calculating the sine and cosine of eccentric anomaly involves
solving Kepler’s equation iteratively. The alternative is to expand cosE and sinE

as a power series shown in equation 5.15, 5.16. The order to which the power series
should be expanded depends on the eccentricity range and the companion mass we
want to be sensitive to. These models are referred to as ELL1 (Wex 1998, unpublished
contribution to TEMPO, see also Lange et al. 2001), ELL2 and so on based on the
number of retained terms in the power series. For the calculation of the template-
bank, we used the ELL7 model which covers up to e ⇡ 0.8. However, in our resampling
algorithm we implemented the BT model. Therefore, the time t

0 at the barycenter can
be calculated by solving

t
0
= t� ⌧ [(cosE � e) sin +

p
1� e2 sinEcos ], (5.36)

where we have ignored constant phase shifts caused by initial signal phase and the
constant classical light travel time between the pulsar and the barycenter. The signal
S is recorded at the telescope in discrete time steps S = i ⇥ tsamp where i is the bin
number and tsamp is the sampling time and our goal is to calculate S

0
= j⇥ tsamp which

is the signal at the barycenter. We first start by calculating a zero offset (t = 0) for
each orbital template, in order to shift the scale of the observed timeseries to match
with the barycentered timeseries. This number is then subtracted from the Roemer
delay, which is usually a rational number and then we calculate the nearest integer
to this number and map the value in that bin to our resampled timeseries. A brief
description of this can be found in algorithm 1.

6https://github.com/vishnubk/5D_Peasoup
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Algorithm 1: Nearest-Neighbour Demodulation Algorithm
for K orbital templates in template bank do

Calculate Mean Anomaly M at time t = 0

M = ↵

Solve for Eccentric Anomaly E iteratively

E � e sinE = M,

Compute Zero-Offset t0

t0 =
⌧ [(cosE � e) sin +

p
1� e2 sinE cos ]

tsamp

for ith bin in observed timeseries do
M = ⌦((i⇥ tsamp) + ↵)

Solve for E iteratively
E � e sinE = M,

S
0
j = S

"
j �

⌧ [(cosE � e) sin +
p
1� e2 sinE cos ]

tsamp

� t0

#

int

end
return S

0 to calculate FFT
end
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5.6 Discussions and Conclusions

A question not addressed in our work is the special case of targeted searches i.e. when
one or multiple Keplerian parameters are known accurately enough that a search across
that dimension is not needed. We refer the readers to section 3-B of (Dhurandhar
& Vecchio, 2001) for a more detailed formalism of creating a template-bank in this
scenario. This can significantly reduce the number of orbital templates required for
searching. We expect this to be incorporated in a future version of the software. An-
other promising approach that requires further investigation in the context of radio
pulsar searching is hierarchical searches. Nieder et al. (2020) described a multi-stage
search where in the first stage the parameter space is investigated at a lower sensitiv-
ity (high mismatch), followed by searching in smaller regions of the parameter space
around promising candidates with higher sensitivity. This technique was successfully
used to discover a binary Gamma-Ray Pulsar in Fermi Large Area Telescope (LAT)
data (Nieder et al., 2020). In this paper, we described the implementation for cre-
ating a template-bank to do a fully coherent search across three and five Keplerian
parameters assuming circular and elliptical orbits, respectively. We demonstrated the
extra sensitivity gained by applying template-bank pipeline compared to acceleration
and jerk searches from PRESTO for simulated Pulsar stellar-mass Black hole bina-
ries and the double pulsar PSR J0737-3039A. Trade-offs of this algorithm include a
significantly longer computation time and reduced sensitivity to longer orbital period
binaries due to the increased number of trials and isolated fast-spinning pulsars due
to our high spin-period threshold. We also benchmarked the amount of time it would
take to search for non-recycled PSR-SBH binaries in HTRU. We note that the regime
between 2.5-10 T obs should be feasible to search in 36-minute half length observations
of HTRU-S Lowlat with a maximum eccentricity of 0.1 and a spin-period threshold of
100 ms. Searching across all five Keplerian parameters for millisecond PSR-SBH bi-
naries on a survey like HTRU-S Lowlat is still not computationally feasible. However,
circular binary searches could open up interesting parameter spaces here that are yet to
be explored by acceleration and jerk searches. For example, assuming a maximum com-
panion mass of 8 M�, the regime between 5-10 T obs should be feasible to search in full
length HTRU-S Lowlat observations with a spin-period greater than or equal to 13 ms.
By reducing the spin-period threshold to 20 ms, we could explore binaries with orbital
period in the 3-10 T obs regime. We expect the most applicability of the template-bank
pipeline on targeted observations like globular clusters. Here, our benchmarks indicate
that searching for mildly recycled pulsars orbiting an intermediate mass black hole is
feasible for observations shorter than 2 hours with a maximum eccentricity of 0.1 in
the template-bank. Additionally, we also open-source our circular and elliptical binary
search GPU pipelines.
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Chapter 6

Conclusion and future work

6.1 Summaries and Conclusion

6.1.1 HTRU-S Lowlat Survey

The primary aim of this PhD thesis was to reprocess and analyse observations of HTRU-
S LowLat survey using new binary pulsar search techniques in order to maximise our
chances for a PSR-BH binary detection. The main goals of this survey was to discover
low-luminosity pulsars which was made possible due to the high time and frequency
resolution of the survey and its long integration length of 72-minutes. An important
secondary goal of the survey was to find short relativistic orbit pulsars close to the
Galactic plane. Given that when this PhD started, a first-pass segmented acceleration
search (Ng et al., 2015; Cameron et al., 2020) was already used to reprocess 94.1%
of the survey, a considerable amount of this thesis is devoted to the development of
new binary pulsar search techniques that can probe binary phase-spaces in lowlat
observations which are inaccessible for a traditional acceleration search. With this
goal in mind, we developed a new CPU and GPU-based pipeline called 3D-Peasoup1

which uses the template-bank algorithm to search coherently for circular orbit binaries.
This work was built on previous works in gravitational-wave searches and radio pulsar
searches in the Einstein@Home project (Knispel, 2011; Allen et al., 2013; Knispel et al.,
2013). Using this new tool, we performed two pulsar searches on the full-length 72
minute observations of lowlat. One of these were aimed at finding Recycled PSR-BH
binaries with orbital periods between 6-12 hours and the second search was aimed at
finding Non-Recycled PSR-BH binaries with orbital periods between 3-12 hours. We
have used this to reprocess 87.1% of the lowlat survey, discovering 20 new pulsars
including a new MSP J1743�24 which is a rare intermediate spin-period pulsar in
a 70.7 day orbit alongside a low-mass companion star or less likely a He-WD star.
We also presented updated timing solutions for the binary PSR J1753�2819, a pulsar
similar to PSR J1743�24 but in a much shorter orbit of 9.3 hours. We also discussed
the uniqueness of the combination of spin-period and companion mass for both these
pulsars by comparing them to other known binaries. Both these pulsars could likely be
part of a separate population which orbit low-mass companion stars with intermediate
spin periods. In addition, we also presented discovery parameters of 50 new pulsars
which were independently found during our reprocessing that was missed by the first-
pass pipeline (Ng et al., 2015; Cameron et al., 2020). A further 60 known pulsars were
also detected which were previously missed. Based on our new detections, we also

1https://github.com/vishnubk/3D_peasoup
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carried out a renewed evaluation of the survey yield. Our discoveries and redetections
have now bridged the gap between the number of expected discoveries from simulations
and observations. Cameron et al. (2020) reported a deficit of 25% of normal pulsar
detections in lowlat which has now been reduced to a 9 % deficit. The number of MSP
detections in the survey has been approximately doubled and is now consistent with
the lower limit predicted from psrpoppy. We discussed in detail why these predictions
should only be treated as rough estimates due to our lack of constrains in the luminosity
distribution of normal pulsars especially at the lower end where fewer pulsars have been
detected. Predictions for MSP population are similarly biased by the limited sample
of Galactic-field MSPs especially at the time during which these simulations were first
conducted. We believe it is likely that more new discoveries and redetections of known
pulsars can be obtained by taking advantage of the full time resolution of lowlat and
processing at a sampling rate of 64 µs. Based on our discovery and redetection rate, we
expect lowlat to discover an additional 14 pulsars in the remaining part of the survey
which is yet to be reprocessed. However, this number could vary as the part of the
sky surveyed by lowlat has overlaps with the other ongoing Galactic plane-surveys
like MGPS-L pulsar survey using meerkat (Padmanabh et al., prep) and the ongoing
FAST Galactic Plane Pulsar Snapshot survey (GPPS; Han et al. 2021).

Given the extremely high number of discoveries from the reprocessing of the survey
within a short period of time, a timing followup has not been possible yet for most
pulsars except MSPs or confirmed binary pulsars. A dedicated 1-year timing campaign
for these pulsars will be crucial to exploit their full scientific potential and these will
be the immediate short term goals of this project along with the reprocessing of the
remaining portions of the survey. A high priority is currently being placed for obser-
vations of PSR J1743 � 24 which is currently being followed up by both Parkes and
Effelsberg Radio telescopes, and PSR J1142 � 62, with the former confirmed to be a
binary and will now be observed in timing mode and the latter showing indications of
being part of a binary orbit. As explained in section 3.3.6, the population of pulsars
found in the reprocessing of lowlat on average have larger detected DM, therefore
its likely that we are probing pulsars located further away from us. Discoveries from
surveys like lowlat due to its uniform sensitivity and wide coverage are crucial in
order to get an unbiased census of the Galactic-plane pulsar population. This will be
useful in order to plan future pulsar survey strategies with the SKA.

A major achievement of this work is the increased sensitivity we now have for
relativistic Pulsar-BH Binaries. To the best of our knowledge, this is the most compre-
hensive PSR-BH binary search done in a Galactic plane survey. We have managed to
improve our sensitivity towards such systems by a factor of 2-2.5 which was achieved
entirely due to a change in the algorithm. However, despite this, we report no de-
tections from a PSR-BH binary yet and no new relativistic pulsar discoveries. We are
confident that the pipeline performs as expected given our extensive number of tests on
simulated and real observations as well as higher SNR redetections of known relativis-
tic binary pulsars like PSR J1757�1854 (Cameron et al., 2018) and PSR J1756�2251
(Faulkner et al., 2005).

We have used our non-detections to place limits on short orbital period PSR-Stellar
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Mass BH binaries and we also comment on the detectable fraction of PSR-BH binaries
from our searches. Our non-detections indicate that the existence of nearby PSR-
BH binaries (d  1kpc) with circular orbits and orbital period 4-24 hours is highly
unlikely. The possibility of PSR-BH binaries having significantly eccentric orbits or
circular orbits shorter than 4 hours cannot currently be ruled out due to them being
outside our search-range. We leave these parameter spaces to be explored by future
reprocessing efforts.

A major drawback of our search pipeline is the requirement of more computation
trials due to the additional binary search parameters. Since our goal was to be sensitive
towards PSR-BH binaries, due to computational reasons, we were forced to have a very
high threshold for spin-period of 13 ms in our template-bank. This has the unfortunate
drawback of higher mismatch towards isolated and binary MSPs rotating faster than 13
ms. Additionally, our increased binary trials limited us to analyse decimated observa-
tions of lowlat and not to exploit the full sensitivity of the survey. This can partially
be addressed by future efforts which will be aided by advances in computation espe-
cially GPU technologies. Processing pulsar surveys is a computationally demanding
task and given the extensive speed-up that can be achieved by doing searches on GPUs
(see section 3.2.10), we believe that this will likely be the preferred processing option
in future pulsar surveys. Our experience shows that current processing bottlenecks in
our search pipelines is due to the time required for folding pulsar candidates which are
still done on a CPU. Therefore, more work needs to be in done in this field and to
study if folding can be similarly accelerated by running on a GPU.

6.1.2 Pulsar Candidate Identification using SGAN

The output of a pulsar search pipeline is a pulsar candidate-a possible detection of
a new pulsar. Modern pulsar surveys like HTRU-S Lowlat typically produce around
40 million pulsar candidates in one processing run, thereby making manual inspection
infeasible. We have elaborated more on the reasons for this in chapter 4 of this thesis.
ML techniques are a promising solution to this problem. One of the challenges in build-
ing a pulsar ML classifier is the so called class-imbalance problem i.e out of the total
40 million pulsar candidates, less than 1% are expected to be real pulsar detections
(including harmonics and duplicate detections of the same pulsar). Supervised ML
classifiers require that both datasets be similarly balanced. The traditional approach
of solving this problem has been to either under-sample the number of radio intefer-
ence candidates or over-sample the number of pulsar candidates using techniques like
GANs (Guo et al., 2019), or Synthetic Minority Oversampling Technique (SMOTE)
(Bethapudi & Desai, 2018). In chapter 4, we presented a novel semi-supervised ma-
chine learning pipeline called sgan that can learn from both labelled and unlabelled
data. The latter is crucial since this saves a lot of human time required to manually
label pulsar candidates. Our results are a major improvement over current approaches
when few labelled data is available and this is a promising solution for early stages
of future pulsar surveys. Our work is the first implementation of a Semi-Supervised
ML classifier in the literature for pulsar candidate classification. Future pulsar surveys
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using MeerKAT and SKA will likely produce more pulsar candidates, thereby ML clas-
sifiers based on semi-supervised learning will likely gain further precedence with time as
maintaining a well labelled candidate dataset becomes increasingly challenging. Some
of the challenges of semi-supervised learning include the higher training time required
compared to past approaches. Our pipelines focuses more on final performance metrics
rather than speed of classification. An alternative approach that focuses more on the
latter is a Gaussian Hellinger Very Fast Decision Tree (GH-VFDT, Lyon et al. 2016).
We believe that depending on the future needs of pulsar surveys, both these approaches
will likely have its own unique applications.

6.1.3 Coherent Search for Relativistic Binary Pulsars across all five-
Keplerian Parameters- The ultimate brute-force pipeline

In Chapter 5, we pushed the envelope of sensitivity regained from binary pulsar search
pipelines further by presenting a new GPU-based pulsar search pipeline that can search
coherently across all five-Keplerian parameters. This is the first implementation of a
fully coherent search for elliptical orbits in literature. We demonstrated the extra sen-
sitivity regained from this pipeline by comparing it an acceleration, jerk search and the
template-bank pipeline assuming a circular orbit for observations of PSR J0737�3039A
and simulated observations of Pulsar-Stellar Mass Black hole binaries. Approaches like
these are crucial to discover relativistic binary pulsars in long observations where poly-
nomial searches tend to lose sensitivity. The main challenge of this approach will be
its computational feasibility. Our benchmarks indicate that this pipeline will be useful
for targeted binary pulsar searches in Globular Clusters (GC) where the DM of the
cluster is well known or targeted observations of the Galactic centre where we expect
to find a lot of binaries due to the high stellar densities in this environment which aid
exchange interactions. A feasible yet promising application of this pipeline would be
in the search of pulsars orbiting intermediate mass black holes in the 5-10 Tobs regime
in GC data. Another promising future application of this pipeline will be in the search
of pulsar companions around known white-dwarf binaries (for e.g. Athanasiadis et al.
2021) or the follow-up of known eccentric binary pulsars close to periastron where stan-
dard assumption of constant acceleration or jerk breaks down. Given the current and
near future growth of computation, its unlikely that this approach will be feasible for
blind pulsar surveys like lowlat but we believe this pipeline will be a complementary
and unique tool to standard pulsar search pipelines for targeted searches. One of the
additional advantages of using the template-bank pipeline is that it can place limits on
the existence of population of pulsars with certain orbital period, and companion mass
ranges since Keplerian parameters are included in our search range. This information
will likely provide strong observational constrains in the future and will be useful in
order to enhance our understanding of binary stellar evolution.
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6.2 Future Work

In terms of radio pulsar astronomy, we are currently living through an exciting time
period with the advent of new telescope facilities like MeerKAT, FAST and eventually
SKA all of which will undoubtedly increase the number of known pulsars and produce
exciting scientific results. The gain in sensitivity due to bigger telescopes and better
electronics will likely be the determining factor for new discoveries in the near future.
This thesis however takes a different approach and investigates better algorithms and
techniques that can probe the population of pulsars that are otherwise hard to detect.
Such approaches will be crucial in order to minimise our selection effect towards rela-
tivistic binaries and once discoveries from standard approaches have dried up. Below,
we give some details of some of the near-term goals of the projects undertaken during
this PhD and some possible future research paths that can be undertaken based on our
results.

6.2.1 Continued reprocessing of HTRU-S Lowlat

We have currently processed 87.1% of the lowlat survey with the template-bank
pipeline. Our near-term goal would be to complete the processing of this survey which
would then help us to evaluate the total survey yield of lowlat. Based on our non-
detections, we are also currently working on improving our limits for the population of
PSR-BH binaries using results from theoretical modelling of PSR-BH binaries in the
galaxy (Shao & Li, 2018; Chattopadhyay et al., 2021). Results from these along with
any additional discoveries from the remaining portion of the survey will be the subject
of a future publication. Looking ahead, there are still many regions of the binary phase
space that are yet to be probed in lowlat data. Some examples include a segmented
template-bank search using the full time resolution of the data which from our past
experience has yielded a significantly higher number of pulsar detections compared
to searches on decimated data. Another possibility would be a search specifically
designed for finding either DNS systems or PSR-WD binaries which will help us search
for pulsars rotating faster than 13 ms.2 Yet another possibility is to search for ultra
compact binaries with orbits in the range of minutes in segmented observations of
lowlat. These orbits are expected to be highly circular and will be greatly aided by
our circular orbit search pipeline. With our ability to directly search over Keplerian
parameters, and due to that fact these searches can be done on GPUs, a rich and
diverse set of searches can be done in the near future on radio pulsar observations.

6.2.2 Follow-up of discoveries from our work

Yet another near term goal of this project is to complete the 1-year initial timing of
all the pulsars presented in this work. This will be important in order to calculate
physical parameters like spin-down rate which will give us the characteristic age and
magnetic field strength of the pulsar. Regular monitoring of this pulsars will also help

2
This was limit for the fastest spinning pulsar in our searches.
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us detect any possible long-term emission instabilities of these pulsars like nulling, in-
termittentency or mode changing. The integrated pulse profile of PSR J1743�24 is
quite complex with multiple components. Therefore, this warrants a more detailed in-
vestigation using polarisation data which would help us better understand its magnetic
configuration and emission geometry. PSR J1609�5225 has the highest detected DM of
993(10) pc cm

�3 in our discovery sample and its integrated pulse profile shows a strong
scattering tail. We presented results from modelling this and measured a scattering
timescale of ⌧ = 77 ± 25ms. Observations at high frequencies and wider bandwidth
for this pulsar using uwl will be useful in order to minimise the effect of interstellar
scattering and to calculate its scattering spectral index. Besides this, we will also be
regularly monitoring our ClassA candidates described in section 3.3.5, two of which
showed a high degree of acceleration and could therefore be binary pulsars which are
either eclipsing or difficult to detect due to the impact of RFI. Confirmed pulsars north
of -30� once they have been gridded at Parkes will be timed by the combination of
Jodrell Bank, Sardinia and Effelsberg Radio telescopes in the future.

6.2.3 Improvements in Binary Pulsar- Search Algorithms

The binary pulsar search algorithms developed and implemented in this PhD still have
rooms for improvement. A promising approach would be to implement hierarchical
template-bank searches where initially we search for pulsar signals with a high mismatch
and follow-up on promising signals that survive this stage with a template-bank that
has a finer mismatch. An implementation of this approach was recently done by Nieder
et al. (2020) which was used to search for Binary Gamma-Ray Pulsars. Hierarchical
template-bank searches have a lower computational load compared to the fully coherent
brute force search and it can also open up a phase-space that hasn’t yet been explored
in radio data. Another promising approach is the “pruning-method" first proposed by
Zackay (2017). This algorithm processes data in smaller time segments and only retains
candidates that increase in power by

p
2 with each addition of adjacent time segments.

This can in principle help filter out several unwanted noise/interference candidates.
A blind test comparing the pruning method to the template-bank algorithm on real
observations will be of great interest and is a promising future research project.



Appendix A

Redetections of 60 known pulsars
missing in the first pass processing.

Table A.1: Catalog listing 60 unique known pulsars that were missed during the initial processing of Lowlat. We list here the topocentric
spin-period, DM, the orbital template, and the corresponding htru pointing and beam where the detection was made.

psrname pointing/beam period_topo dm_topo sigma porb asini t0

J1020�6026 2012-07-18-04:00:54/03 140.4877 448.06 13.1 25483.374940948 0 56125.916670482977
J1031�6117 2012-07-18-05:13:39/07 306.4130 504.26 11.0 23484.8050807693 0.13974750041962 56125.954865347172
J1052�5954 2011-05-05-05:55:13/10 180.5951 511.79 7.4 23484.8050807693 0.13974750041962 55685.983731087916
J1107�5947 2011-01-10-14:27:09/13 1516.8204 107.29 30.9 33308.7019947862 1.40841090679169 55571.438239627081
J1128�6219 2011-07-29-00:04:30/01 516.3971 694.38 8.9 26300.138216697 3.28635787963867 55770.880104102755
J1216�6223 2011-12-11-16:22:18/06 374.1119 797.52 8.4 33263.0986177139 1.06929671764374 55906.507634006994
J1233�6312 2011-01-03-15:12:08/04 564.7719 389.04 15.0 22749.5515469829 0.27001881599426 55564.485566675598
J1233�6344 2012-04-01-10:19:04/02 756.7896 500.72 10.7 24839.418691522 0.49663379788399 56018.178475103137
J1248�6344 2011-04-25-08:37:51/02 198.3301 435.51 13.0 23484.8050807693 0.13974750041962 55676.096670902727
J1301�6310 2011-12-22-15:34:56/09 663.7576 87.19 13.1 24839.418691522 0.49663379788399 55917.397826954992
J1302�6313 2011-07-29-01:17:55/11 967.7817 532.26 10.6 24839.418691522 0.49663379788399 55770.802676492029
J1309�6526 2012-04-14-10:01:12/03 397.7251 360.68 8.0 27094.3648116048 5.97537183761597 56031.125057299541
J1327�6400 2011-12-07-17:28:25/11 280.7610 662.14 8.5 26336.5920056663 1.14667165279388 55902.588534666080
J1337�6306 2011-12-10-16:54:46/06 208.1117 770.54 5.0 31230.4609661705 3.99312567710876 55905.551022289394
J1429�5935 2012-02-15-22:43:23/12 763.8441 452.51 9.4 23484.8050807693 0.13974750041962 55972.683846828651
J1526�5633 2010-12-09-18:50:31/06 301.8818 328.42 8.9 25483.374940948 0 55539.534459834831
J1552�4937 2012-01-19-17:59:08/05 6.2839 113.85 11.3 25483.374940948 0 55945.498776964458
J1607�5140 2012-04-05-17:14:07/04 342.5404 561.30 6.0 25135.4672099139 2.04758715629578 56022.447319454142
J1610�5303 2012-08-02-09:33:26/03 786.3174 384.39 31.5 23544.2683172247 0.94431865215302 56141.142513330044
J1621�5039 2010-12-29-03:31:28/01 1084.0176 266.54 11.1 25476.8040597409 0.27327674627304 55559.058955496243
J1622�4950 2010-12-29-03:31:28/08 4285.9649 794.20 29.5 29872.686140058 5.93653869628906 55558.802423548157
J1624�4721 2011-05-09-12:46:41/12 448.7061 364.63 12.5 25483.374940948 0 55690.281797797790
J1626�4807 2010-12-31-21:03:27/11 293.8484 795.57 10.3 24606.5371443093 0.92786014080048 55561.604914473661
J1627�4706 2011-12-22-00:16:31/10 140.7716 464.19 8.7 33263.0986177139 1.06929671764374 55916.836951136618
J1632�4621 2011-06-26-07:39:22/09 1709.4977 535.49 12.8 35331.5627787543 1.14482700824738 55738.165229247381
J1633�4805 2011-12-30-19:34:06/13 711.4500 1145.65 10.9 41691.3852481281 5.70246410369873 55925.598278999729
J1635�4513 2012-04-05-18:27:22/09 1596.2830 419.37 25.9 31520.431292396 5.25761795043945 56022.605642167364
J1637�46 2012-04-05-18:27:22/04 493.1222 617.17 8.6 22979.0246812812 0.40881499648094 56022.647129696037
J1643�4522 2012-08-02-10:46:47/08 1348.2043 501.42 9.3 25016.8636087569 0.7531675696373 56141.340329424485
J1644�44 2011-07-03-10:59:47/11 173.9166 530.26 9.1 25483.374940948 0 55745.207561686686
J1644�46 2011-05-17-13:02:58/02 250.8684 404.78 6.0 23544.2683172247 0.94431865215302 55698.288022589302
J1644�4657 2011-05-17-13:02:58/08 125.9918 716.74 7.6 28112.2851796621 1.25053977966309 55698.408426516449
J1653�4854 2012-10-02-03:32:53/02 3059.0070 350.32 14.9 24606.5371443093 0.92786014080048 56201.875354288473
J1654�4245 2012-09-24-05:30:04/01 1101.9559 934.88 7.5 28112.2851796621 1.25053977966309 56194.093912627563
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processing.

psrname pointing/beam period_topo dm_topo sigma porb asini t0

J1709�4342 2011-12-12-05:16:53/02 1733.4461 291.94 13.1 39186.7677999458 8.69191551208496 55906.784259856293
J1737�3320 2013-01-30-18:19:00/11 816.6076 817.20 9.4 28455.8128049551 2.35764789581299 56322.626937362162
J1738�3107 2011-12-22-22:10:51/03 549.2362 747.44 10.1 24390.86317623 1.94023406505585 55917.670483210735
J1738�3316 2010-12-11-03:35:21/04 730.6016 263.73 7.7 23363.2652803823 1.01791310310364 55541.029786962987
J1755�25211 2013-01-22-01:43:12/08 1004.4311 821.92 9.0 23484.8050807693 0.13974750041962 56313.808719513836
J1755�2534 2012-07-26-12:48:29/02 233.5580 590.65 9.0 25483.374940948 0 56134.283047797791
J1801�2115 2012-03-30-22:36:23/01 437.9443 780.18 7.2 29546.1212438044 1.54342865943909 56016.937568404333
J1801�2154 2012-08-05-07:04:25/08 375.4066 392.04 10.0 33263.0986177139 1.06929671764374 56144.120215025512
J1805�2447 2011-05-07-14:31:02/10 661.3271 264.05 32.1 23484.8050807693 0.13974750041962 55688.341937106430
J1806�1618 2012-07-23-10:14:20/01 669.4311 313.64 6.1 30230.0360115379 8.2655611038208 56131.249968836913
J1806�1618 2012-07-23-10:14:20/01 668.3422 283.59 6.0 25483.374940948 0 56131.175999186686
J1808�1517 2013-04-02-18:57:44/10 544.6956 205.67 6.2 31043.8835104638 1.87641561031342 56384.587013440774
J1809�2004 2013-04-02-16:32:16/05 434.9209 922.21 7.3 28112.2851796621 1.25053977966309 56384.553773738669
J1818�1448 2013-04-02-20:10:28/09 281.5893 674.73 6.5 41691.3852481281 5.70246410369873 56384.623533629354
J1819�1131 2012-08-05-08:17:44/02 1387.4830 595.19 8.9 26232.8340110124 2.29141592979431 56144.067179769459
J1819�1717 2012-07-26-14:01:59/03 393.6209 409.68 11.0 33263.0986177139 1.06929671764374 56134.410191877359
J1822�1617 2012-07-25-14:25:48/12 830.2264 614.16 7.9 25901.6059270361 4.70340585708618 56133.325789535767
J1830�1313 2012-02-17-01:36:23/02 747.1243 543.76 7.7 25483.374940948 0 55973.816311686685
J1837�0604 2012-08-05-09:30:53/11 96.3159 455.95 22.7 25483.374940948 0 56144.145825575572
J1837�0822 2013-01-01-02:30:42/11 1097.8933 507.18 13.7 32379.2163759524 5.86167240142822 56292.749294886125
J1839�0321 2011-05-09-16:25:20/07 238.7646 454.27 24.4 25483.374940948 0 55690.433638075570
J1839�0627 2012-08-05-09:30:53/04 485.0384 101.29 8.0 33263.0986177139 1.06929671764374 56144.221927988474
J1839�1238 2011-01-26-00:34:08/04 1911.4144 212.46 11.5 25476.8040597409 0.27327674627304 55586.935807348091
J1840�0559 2012-08-05-09:30:53/05 859.3106 331.78 15.9 24839.418691522 0.49663379788399 56144.145014454989
J1840�0626 2012-08-05-09:30:53/10 1903.0043 690.56 27.6 26830.0569509955 6.73248815536499 56144.111760377891
J1840�0643 2012-08-05-09:30:53/03 35.5799 491.22 17.8 25483.374940948 0 56144.145825575572
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Appendix B. Flux Density Limits for Normal Pulsars in a compact orbit

around a Black Hole.

B.1 Pspin = 100 ms

Figure B.1: Minimum detectable flux density limit for a 100 ms pulsar orbiting a black
hole of varying mass as a function of the orbital period of the binary. In the top we
show the results from a segmented acceleration search pipeline (Ng et al., 2015) and
in the bottom we show the results from the ongoing reprocessing of lowlat using a
GPU acceleration search (Sengar et al., prep). See See section 3.3.8 for full discussion.
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Figure B.2: Minimum detectable flux density limit for a 100 ms pulsar orbiting a black
hole of varying mass as a function of the orbital period of the binary. In the top we
show the results from the template-bank pipeline which is presented in this work and in
the bottom we show the sensitivity gain factor compared to the best-case acceleration-
search pipeline i.e the segmented acceleration search pipeline (Ng et al., 2015). A factor
above 1 indicates improvement from the template-bank pipeline and conversely below
1 indicates better performance from the acceleration-search pipeline. See See section
3.3.8 for full discussion.
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around a Black Hole.

B.2 Pspin = 1000 ms

Figure B.3: Minimum detectable flux density limit for a 1000 ms pulsar orbiting a
black hole of varying mass as a function of the orbital period of the binary. In the top
we show the results from a segmented acceleration search pipeline (Ng et al., 2015) and
in the bottom we show the results from the ongoing reprocessing of lowlat using a
GPU acceleration search (Sengar et al., prep). See section 3.3.8 for full discussion.
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Figure B.4: Minimum detectable flux density limit for a 1000 ms pulsar orbiting a
black hole of varying mass as a function of the orbital period of the binary. In the
top we show the results from the template-bank pipeline which is presented in this
work and in the bottom we show the sensitivity gain factor compared to the best-case
acceleration-search pipeline i.e the segmented acceleration search pipeline (Ng et al.,
2015). A factor above 1 indicates improvement from the template-bank pipeline and
conversely below 1 indicates better performance from the acceleration-search pipeline.
See section 3.3.8 for full discussion.
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Appendix C. Flux Density Limits for PSR-BH binaries from past searches

in lowlat in the Porb-Pspin plane.

C.1 Sensitivity of acceleration-search pipelines.

Figure C.1: Minimum detectable flux density limit for a PSR orbiting a black hole of
mass 8 M� as a function of orbital period and spin-period of the pulsar. In the top we
show the results from the segmented acceleration search pipeline (Ng et al., 2015) and
in the bottom we show the results from the ongoing GPU accel. search reprocessing
of lowlat in the full-length 72-minute observations (Sengar et al., prep). See section
3.3.9 for full discussion.
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C.2 Gain Factor from the template-bank pipeline in the
Porb-Pspin plane.

Figure C.2: Gain Factor from the template-bank pipeline in minimum detectable flux
density towards PSR+BH binaries in the Porb-Pspin plane assuming a fixed black mass
of 8 M�. A factor above 1 indicates improvement from the template-bank pipeline and
conversely below 1 indicates better performance from the acceleration-search pipeline.
See section 3.3.9 for full discussion.
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Detailed Performance Comparison
of SGAN, Re-trained PICS and

Supervised Baseline Model.

Table D.1: Detailed performance comparison of Semi-Supervised GAN and the our
Ensemble Supervised Machine Learning Baseline Model for varying amounts of labelled
data. Each row represents the mean performance of the network after averaging across
five different batches of labelled data.

Accuracy F-Score FPR G-Mean Precision Recall Specificity
median std median std median std median std median std median std median std

Labelled Samples Unlabelled Samples neural_net

100 0 PICS Retrained 0.778114 0.021186 0.732734 0.035151 0.060684 0.014769 0.759390 0.028041 0.905080 0.015769 0.603222 0.050334 0.939316 0.014769
Supervised Baseline 0.811978 0.030802 0.827461 0.027541 0.234638 0.057758 0.807474 0.031681 0.784844 0.043643 0.856594 0.030882 0.765362 0.057758

5000 SGAN 0.947764 0.011199 0.948811 0.011012 0.064780 0.012405 0.947577 0.011209 0.937786 0.011890 0.959910 0.011033 0.935220 0.012405
500 0 PICS Retrained 0.870921 0.026020 0.858840 0.030660 0.035343 0.005588 0.866737 0.027780 0.957283 0.007754 0.783908 0.048144 0.964657 0.005588

Supervised Baseline 0.925943 0.019918 0.927882 0.020159 0.093265 0.014035 0.925586 0.019763 0.911531 0.014496 0.944830 0.027332 0.906735 0.014035
10000 SGAN 0.962169 0.003598 0.962963 0.003699 0.041726 0.006985 0.961964 0.003566 0.959504 0.006289 0.972087 0.009891 0.958274 0.006985

1000 0 PICS Retrained 0.915647 0.005872 0.910673 0.006351 0.027532 0.006123 0.913985 0.005989 0.969684 0.006642 0.859123 0.009233 0.972468 0.006123
Supervised Baseline 0.945686 0.004898 0.947000 0.004645 0.070020 0.009455 0.945394 0.004990 0.932637 0.008242 0.963188 0.005629 0.929980 0.009455

20000 SGAN 0.969537 0.002386 0.970052 0.002626 0.039535 0.007066 0.969419 0.002255 0.961790 0.006225 0.978456 0.011495 0.960465 0.007066
10000 0 PICS Retrained 0.970576 0.001187 0.970700 0.001225 0.025436 0.001286 0.970601 0.001182 0.974780 0.001203 0.966842 0.002887 0.974564 0.001286

Supervised Baseline 0.976527 0.001230 0.976850 0.001208 0.032867 0.002169 0.976462 0.001232 0.968276 0.002017 0.986043 0.002044 0.967133 0.002169
20000 SGAN 0.983989 0.000400 0.984271 0.000387 0.025817 0.001091 0.983861 0.000407 0.975074 0.001011 0.994099 0.000755 0.974183 0.001091

30000 0 PICS Retrained 0.973646 0.000919 0.973827 0.000905 0.025055 0.001558 0.973656 0.000921 0.975291 0.001504 0.971525 0.001054 0.974945 0.001558
Supervised Baseline 0.982430 0.000326 0.982686 0.000305 0.024102 0.001742 0.982354 0.000340 0.976596 0.001623 0.988854 0.001309 0.975898 0.001742

20000 SGAN 0.985973 0.001134 0.986206 0.001106 0.022673 0.001933 0.985863 0.001146 0.978075 0.001838 0.994005 0.000566 0.977327 0.001933
50814 0 PICS Retrained 0.973693 0.000928 0.973829 0.000904 0.023245 0.002171 0.973714 0.000933 0.976996 0.002072 0.970963 0.001352 0.976755 0.002171

Supervised Baseline 0.983847 0.001124 0.984099 0.001093 0.023721 0.002387 0.983755 0.001138 0.977013 0.002252 0.991289 0.001282 0.976279 0.002387
265172 SGAN 0.989468 0.004313 0.989614 0.004251 0.016290 0.004592 0.989403 0.004317 0.984159 0.004456 0.994661 0.004115 0.983710 0.004592
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PICS and Supervised Baseline Model.

Table D.2: Performance comparison of SGAN, retrained version of PICS and our Su-
pervised Baseline Model for different ranges of detection sigma values.

FPR Total Candidates Precision Sigma Avg Sigma Max Sigma Min Recall Specificity
Percentile Model

10 PICS Retrained 0.034501 2114 0.576923 3.700 7.40 0.00 0.447761 0.965499
SGAN 0.021432 2114 0.823276 3.700 7.40 0.00 0.950249 0.978568
Supervised Baseline 0.040774 2114 0.700000 3.700 7.40 0.00 0.905473 0.959226

20 PICS Retrained 0.081731 2107 0.943381 9.750 12.10 7.40 0.888627 0.918269
SGAN 0.052885 2107 0.966206 9.750 12.10 7.40 0.986667 0.947115
Supervised Baseline 0.055288 2107 0.963808 9.750 12.10 7.40 0.960784 0.944712

30 PICS Retrained 0.027174 2107 0.985465 14.550 17.00 12.10 0.989059 0.972826
SGAN 0.014946 2107 0.992035 14.550 17.00 12.10 0.999271 0.985054
Supervised Baseline 0.019022 2107 0.989766 14.550 17.00 12.10 0.987600 0.980978

40 PICS Retrained 0.016985 2117 0.986498 19.450 21.90 17.00 0.994894 0.983015
SGAN 0.004246 2117 0.996596 19.450 21.90 17.00 0.996596 0.995754
Supervised Baseline 0.010616 2117 0.991468 19.450 21.90 17.00 0.988936 0.989384

50 PICS Retrained 0.016765 2110 0.984657 24.500 27.10 21.90 0.995438 0.983235
SGAN 0.007890 2110 0.992754 24.500 27.10 21.90 1.000000 0.992110
Supervised Baseline 0.010848 2110 0.990009 24.500 27.10 21.90 0.994526 0.989152

60 PICS Retrained 0.009314 2116 0.988285 29.800 32.50 27.10 0.992513 0.990686
SGAN 0.004234 2116 0.994681 29.800 32.50 27.10 1.000000 0.995766
Supervised Baseline 0.009314 2116 0.988285 29.800 32.50 27.10 0.992513 0.990686

70 PICS Retrained 0.004095 2149 0.994624 36.185 39.87 32.50 0.996767 0.995905
SGAN 0.001638 2149 0.997849 36.185 39.87 32.50 1.000000 0.998362
Supervised Baseline 0.004914 2149 0.993562 36.185 39.87 32.50 0.997845 0.995086

80 PICS Retrained 0.013174 2111 0.991413 46.785 53.70 39.87 0.995298 0.986826
SGAN 0.005988 2111 0.996097 46.785 53.70 39.87 1.000000 0.994012
Supervised Baseline 0.015569 2111 0.989907 46.785 53.70 39.87 0.999216 0.984431

90 PICS Retrained 0.034483 2123 0.991860 74.795 95.89 53.70 0.993593 0.965517
SGAN 0.029557 2123 0.993060 74.795 95.89 53.70 1.000000 0.970443
Supervised Baseline 0.036946 2123 0.991324 74.795 95.89 53.70 0.998253 0.963054

100 PICS Retrained 0.007057 2118 0.985856 510.545 925.20 95.89 0.994294 0.992943
SGAN 0.007763 2118 0.984551 510.545 925.20 95.89 1.000000 0.992237
Supervised Baseline 0.009880 2118 0.980420 510.545 925.20 95.89 1.000000 0.990120



Appendix E

Coefficients of the taylor expansion
of Eccentric Anomaly

Below, for completeness we mention the coefficients Ck, Sk taken from (Taff, 1985) and
used in equations 5.15 and 5.16. These expressions were also given in Appendix A of
(Dhurandhar & Vecchio, 2001). A derivation for these expressions can also be found in
Appendix C of (Nieder et al., 2020).
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