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Abstract

In this thesis we study various vertex deletion problems. A vertex deletion problem for
a graph class C can be described as follows. Given a graph G and an integer k, delete
at most k vertices from G such that the resulting graph belongs to the graph class C.

One of the most prominent vertex deletion problems is Directed Feedback Ver-
tex Set. Here the graph class C is the class of directed acyclic graphs. We study several
generalizations of Directed Feedback Vertex Set and for each of them we either
present a fixed-parameter algorithm or a hardness result. A fixed-parameter algorithm
with parameter p is an algorithm whose run-time can be expressed as f(p) · poly(n),
where f(p) is some computable function that only depends on the parameter p and
poly(n) is a polynomial in the length n of the input.

Our first result is a fixed-parameter algorithm for Directed Long Cycle Hitting
Set. This problem is the Cℓ-Vertex Deletion problem where Cℓ is the class of graphs
which do not contain any cycle of length greater than ℓ. We give a fixed-parameter
algorithm for the parameter k + ℓ. To achieve this we present a new generalization of
important separators, as well as a new result on k-representative sets of paths.

Next we consider the problems Bounded Size Strongly Connected Com-
ponent Vertex Deletion and 1-Out-Regular Vertex Deletion. For these
problems, the graph class C is defined by the structure of the strongly connected com-
ponents of the graphs in C. In the first problem, every such component has to consist
of a bounded number of vertices. In the second problem, every component has to
be a simple cycle or a single vertex. We devise fixed-parameter algorithms for both
problems.

Eventually, we consider the Negative Directed Feedback Arc Set problem.
Here we are given a directed graph with integral arc weights. The task is to delete at
most k arcs such that the resulting graph contains no negative cycles. This arc dele-
tion problem generalizes the corresponding vertex deletion problem called Negative
Directed Feedback Vertex Set. Moreover, it is related to the Minimum Fea-
sibility Blocker problem from the area of linear programming. We give hardness
results and fixed-parameter algorithms for various choices of parameters.
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Chapter 1

Introduction

In this thesis we study various vertex deletion problems. Informally, a vertex deletion
problem for a graph class C can be described as follows. Given a graph G and an
integer k, delete at most k vertices from G such that the resulting graph belongs to C.

C-Vertex Deletion

Instance: A graph G and an integer k ∈ Z≥0.

Task: Find a set S ⊆ V (G) of size at most k such that G− S ∈ C
or decide that no such set exists.

One of the most prominent vertex deletion problems is the Feedback Vertex
Set problem, where the graph class C is the class of acyclic graphs. This problem is
one of the 21 NP-hard problems on Karp’s famous list [Kar72]. It has been studied
extensively from the perspective of both exact and approximation algorithms [BBF99,
RSS06, CLL+08, FGPR08, CCL15].

For the deletion size k being constant, C-Vertex Deletion reduces to checking
whether a given graph belongs to the graph class C. To this end we enumerate all of
the polynomially many vertex sets X ⊆ V (G) of size at most k and check for each of
them whether G − X belongs to C. Hence, if we can check membership in C in time
poly(n) for any graph G with n = |V (G)|, then we can solve C-Vertex Deletion in
time nk · poly(n).

For undirected graphs, Robertson and Seymour [RS95, RS04] proved in their graph
minor series that the C membership problem, and hence C-Vertex Deletion, is
solvable in polynomial time for a rich set of graph classes C and constant k. Their result
applies to every graph class C that is closed under taking minors. In fact, Robertson and
Seymour proved a stronger statement. The run-time of their algorithm for C-Vertex
Deletion on minor-closed graph classes takes the form f(C, k) ·poly(n), where f(C, k)
is some computable function depending only on the graph class C and the deletion size
k and poly(n) is a polynomial depending only on n = |V (G)|. An algorithm with such
a run-time is called a fixed-parameter algorithm with parameters C and k.

While the notion of fixed-parameter algorithms was not established by the time
Robertson and Seymour proved their result, the area of fixed-parameter tractability
has now grown into a vibrant field of research featuring a rich set of techniques and
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2 CHAPTER 1. INTRODUCTION

results. The field of parameterized algorithms extends on the field of polynomial-time
algorithms. Whereas the classical notion of a polynomial-time algorithm measures the
run-time only in terms of the input length, in parameterized complexity one additionally
considers certain parameters. Such parameters are numerical values associated with
the instance, e.g., the deletion size k in C-Vertex Deletion. We call an algorithm
a fixed-parameter algorithm if its run-time can be expressed as f(p1, . . . , pt) · poly(n),
where f(p1, . . . , pt) is some computable function that only depends on the parameters
p1, . . . , pt and poly(n) is a polynomial in the length n of the input. If a problem admits
a fixed-parameter algorithm, we call it fixed-parameter tractable. The complexity class
of all fixed-parameter tractable problems is called FPT.

In the example of C-Vertex Deletion the most natural parameter is k, i.e., the
maximum size of a deletion set. Other popular choices for parameters are structural
properties of the graph G like its treewidth, pathwidth or treedepth, or properties of
the graph class C.

Similar to the hardness distinction P vs. NP for polynomial-time algorithms, there
is the hardness distinction FPT vs. W[1] for fixed-parameter algorithms. Indeed, there
is a whole hierarchy W[t], t ∈ Z>0 of complexity classes with W[i] ⊆ W[i + 1] and
FPT ⊆ W[1]. Like P ̸= NP, most researchers expect that FPT ̸= W[1] and thus W[1]-
hard problems are not fixed-parameter tractable. We refer to [DF12, CFK+15] for
a comprehensive introduction on the complexity class FPT, the W[1]-hierarchy, and
hardness reductions for parameterized problems.

Two important results for vertex deletion problems in the area of fixed-parameter
tractability are the existence of fixed-parameter algorithms for Feedback Vertex
Set in undirected and directed graphs. The Feedback Vertex Set problem, is
the C-Vertex Deletion problem, where C is the class of all acyclic graphs. That
is, one is tasked to delete k vertices from an undirected or directed graph such that
no cycles remain in the graph. While the fixed-parameter algorithm for Undirected
Feedback Vertex Set follows from the classical result by Robertson and Seymour on
minor-closed graphs [RS95, RS04], the first fixed-parameter algorithm for Directed
Feedback Vertex Set by Chen, Liu, Lu, O’Sullivan and Razgon [CLL+08] was a
major breakthrough. Many results of this thesis build upon techniques introduced in
this work.

We will study several generalizations of Directed Feedback Vertex Set. All
graph classes we consider will be hereditary, that is, every induced subgraph of a graph
in C also belongs to C. For non-hereditary graph classes, deleting more vertices can be
harmful, i.e., for sets A ⊊ B it can happen that G− A is contained in C but G−B is
not. Our goal is to find fixed-parameter algorithms or hardness results for the vertex
deletion problems we consider.

1.1 Results and Outline of this Thesis

In the following we briefly summarize our main results.

Directed Long Cycle Hitting Set

Our first result is a fixed-parameter algorithm for Directed Long Cycle Hitting
Set. This problem is the Cℓ-Vertex Deletion problem where Cℓ is the class of graphs



1.1. RESULTS AND OUTLINE OF THIS THESIS 3

which do not contain any cycle of length greater than ℓ. We give a fixed-parameter
algorithm for the parameters k and ℓ. Unless P = NP, none of the parameters can be
omitted, because for ℓ = 1, Directed Long Cycle Hitting Set is equivalent to
Directed Feedback Vertex Set, and for k = 0 and ℓ = n − 1, Directed Long
Cycle Hitting Set is equivalent to Hamiltonian Cycle.

To design our algorithm, we generalize the standard tool of important separators.
Important separators were used to tackle many vertex deletion problems, including the
Skew Separator problem, which plays a major role in solving Directed Feedback
Vertex Set. Our generalization allows to apply important separators to a richer set
of C-Vertex Deletion problems.

Another key part of our algorithm is a new result on k-representative sets of
paths. Representative sets play an important role in the design of fixed-parameter
algorithms [Mon85, Mar09, FLS14, FLPS14, SZ16]. We show how to obtain a small
k-representative set of paths for strongly connected graphs in our graph class Cℓ. We
refer to Chapter 3 for more details on these results.

Bounded Size Strongly Connected Component Vertex Deletion

The next vertex deletion problem we study is Bounded Size Strongly Connected
Component Vertex Deletion. Here the graph class Cs consists of all graphs whose
strongly connected components contain at most s vertices. We give a fixed-parameter
algorithm for this problem when parameterized in k and s. The Directed Feedback
Vertex Set problem is the special case where s = 1. See Chapter 4 for details.

1-Out-Regular Vertex Deletion

A graph is r-out-regular if every vertex has exactly r outgoing arcs. In the r-Out-
Regular Vertex Deletion problem our graph class Cr consists of all graphs for
which each strongly connected component C is rC-out-regular for some rC ≤ r. For
r = 0 this is the Directed Feedback Vertex Set problem. For r ≥ 2 the graph
class is not hereditary anymore. In Chapter 5, we prove that 1-out-regular Vertex
Deletion is fixed-parameter tractable when parameterized in k. To obtain this result,
we construct a non-standard torso operation fine-tuned to our problem. Torso opera-
tions have been introduced by Chitnis, Hajiaghayi, and Marx to prove fixed-parameter
tractability of the Directed Subset Feedback Vertex Set problem [CHM13].

Negative Cycle Deletion

Eventually, we consider the Negative Directed Feedback Arc Set problem. Here
we are given a directed graph with integral arc weights. The task is to delete at most k
arcs of this graph such that the resulting graph contains no negative cycles, or to decide
that no such arc set exists. This arc deletion version generalizes the vertex deletion
version called Negative Directed Feedback Vertex Set. Negative Directed
Feedback Vertex Set in turn generalizes the Directed Feedback Vertex Set
problem which is the special case where all arc weights are −1.

Negative Directed Feedback Arc Set is also related to the area of linear
programming. A system of linear inequalities (ai · x ≤ bi)i∈{1,...,m} with ai ∈ Zn,
bi ∈ Z is infeasible if there is no x ∈ Zn that fulfills ai · x ≤ bi for all i ∈ {1, . . . ,m}.
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A natural question to ask is whether we can make the system feasible by removing at
most k inequalities. That is, does there exist an index set I ⊆ {1, . . . ,m} of size at
most k such that (ai · x ≤ bi)i∈{1,...,m}\I is feasible? We call this problem Minimum
Feasibility Blocker. The special case of Minimum Feasibility Blocker where
the linear inequality system only consists of difference constraints, i.e., inequalities of
the form xi − xj ≤ bi,j , is equivalent to Negative Directed Feedback Arc Set.

We study the Negative Directed Feedback Arc Set problem with different
sets of parameters and either prove hardness or fixed-parameter tractability. Negative
Directed Feedback Arc Set parameterized only in k is W[1]-hard as we will show
in Chapter 6. Therefore we also consider the parameters w+ and w− which denote
the number of arcs with positive and negative weight respectively. The case w+ = 0
with parameter k is equivalent to Directed Subset Feedback Vertex Set, which is
known to be fixed-parameter tractable [CHM13]. Moreover, we consider the parameters
treewidth, pathwidth, and treedepth that have recently been studied in the context
of linear programming [FLS+18, EHK+19, CCK+20]. For a detailed overview of our
results on Negative Directed Feedback Arc Set with different sets of parameters,
see Table 6.1 in Section 6.4.

Parts of this thesis are based on joint work with Kristóf Bérczi, Dániel Marx, Lydia
Mirabel Mendoza Cadena, and Matthias Mnich. Moreover, some parts of this thesis
are based on the following publications.

• Alexander Göke, Dániel Marx, and Matthias Mnich. Parameterized algorithms
for generalizations of directed feedback vertex set. In International Conference
on Algorithms and Complexity (CIAC), pages 249–261, 2019.

• Alexander Göke, Dániel Marx, and Matthias Mnich. Hitting long directed cycles
is fixed-parameter tractable. In International Colloquium on Automata, Lan-
guages and Programming (ICALP), 2020.

• Alexander Göke, Dániel Marx, and Matthias Mnich. Hitting long directed cycles
is fixed-parameter tractable. arXiv:2003.05267, 2020.

• Alexander Göke, Dániel Marx, and Matthias Mnich. Parameterized algorithms
for generalizations of directed feedback vertex set. arXiv:2003.02483, 2020.

• Alexander Göke, Lydia Mirabel Mendoza Cadena, and Matthias Mnich. Resolv-
ing infeasibility of linear systems: A parameterized approach. In International
Symposium on Parameterized and Exact Computation (IPEC), 2019.



Chapter 2

General techniques

In this chapter we gather common algorithmic techniques for solving vertex deletion
problems. Often, they allow a reduction from a general vertex deletion problem to a
more restricted variant. These restricted variants have more structure to it and are thus
easier to solve. The techniques presented here are used in many algorithms throughout
this thesis.

2.1 Iterative Compression

Iterative compression is the most fundamental reduction technique for vertex deletion
problems, as many other techniques rely on it. It was introduced by Reed, Smith
and Vetta [RSV04] to solve the Odd Cycle Transversal problem. Since then it
was applied to many vertex deletion problems. The technique allows us to solve a C-
Vertex Deletion problem instance (G,F) by solving at most n = |V (G)| instances
of the so-called compression variant of this problem, as long as C is hereditary.

C-Vertex Deletion Compression

Instance: A graph G, a vertex set T ⊆ V (G) and an integer k ∈ Z≥0 such that
G− T ∈ C.

Task: Find a set S ⊆ V (G) of size at most k such that G− S ∈ C or
decide that no such set exists.

Let us briefly describe how an algorithm the compression variant can be used to
obtain an algorithm for hereditary vertex deletion problems.

Lemma 2.1 (Iterative Compression). Let C be a hereditary and non-empty graph class.
Then an instance (G, k) of C-Vertex Deletion can be solved in time

O(n ·Acompression(n, k + 1, k)),

where Acompression(n, t, k) is the run-time of an algorithm for C-Vertex Deletion
Compression on instances (G′, T ′, k′) with |V (G′)| ≤ n, |T | ≤ t and k′ ≤ k.

5



6 CHAPTER 2. GENERAL TECHNIQUES

Proof. Fix an arbitrary numbering v1, . . . , vn of the vertices in V (G). For i ∈ {0, . . . , n},
we define Gi = G[{v1, . . . , vi}] to be the graph induced by the first i vertices. Assume
that (G = Gn, k) has a solution S. Then S ∩ V (Gi) is a solution to (Gi, k) as

• |S ∩ V (Gi)| ≤ |S| ≤ k, and
• Gi − (S ∩ V (Gi)) ∈ C because Gi − (S ∩ V (Gi)) is a subgraph of G− S ∈ C

and C is hereditary.
That means that if an instance (Gi, k) has no solution, neither has (G, k).

We are now going to iteratively construct solutions to (G0, k), (G1, k), . . . , (Gn, k)
or conclude that no such solutions exist. We start with G0 being the empty graph and
thus G0 ∈ C as C is hereditary and non-empty. Therefore, S0 = ∅ is a solution for the
instance (G0, k).

Now we move on to arbitrary i ∈ {1, . . . , n}. Assume we are given a solution Si−1
to (Gi−1, k). Then we have Gi − (Si−1 ∪ {vi}) = Gi−1 − Si−1 ∈ C. So Ti = Si−1 ∪ {vi}
is a potential solution to (Gi, k) of size |Ti| = |Si−1|+ 1 ≤ k + 1. If |Ti| ≤ k, our set Ti
is already a solution to (Gi, k). Thus, we can set Si = Ti and continue with the next i.
Otherwise (Gi, Ti, k) is an instance of C-Vertex Deletion Compression such that
the solutions are exactly the solutions of (Gi, k). We call an algorithm for C-Vertex
Deletion Compression on (Gi, Ti, k). If it concludes that there is no solution, than
neither has (G, k) and we stop. Otherwise, we get a solution Si and can move to the
next i in our iteration.

In the final iteration we get a solution Sn to (Gn, k) = (G, k) or the information
that no solution exists. Returning this information solves our C-Vertex Deletion
instance.

For the run-time, notice that we do at most n calls to C-Vertex Deletion Com-
pression instances (Gi, Ti, k). Additionally, these instances fulfill |V (Gi)| ≤ n and
|Ti| ≤ k + 1, which proves the claimed run-time.

Iterative compression can be strengthened in two further points, both which we
deal with in a second. First, we can assume that our initial solution T and our sought
after solution S are disjoint. Second, instead of the whole solution S we can search
for a set S of bounded size that intersects our solution in at least one vertex. Both
modifications add to the run-time of the resulting algorithm.

Disjoint C-Vertex Deletion Compression

Instance: A graph G, a vertex set T ⊆ V (G) and an integer k ∈ Z≥0 such that
G− T ∈ C.

Task: Find a set S ⊆ V (G) \ T of size at most k such that G− S ∈ C
or decide that no such set exists.

Lemma 2.2 (Disjoint Compression). An instance (G,T, k) of C-Vertex Deletion
Compression can be solved in time

O(2|T | ·Adisjoint compression(n, |T |, k)),

where Adisjoint compression(n, t, k) is the run-time of an algorithm for Disjoint C-Vertex
Deletion Compression on instances (G′, T ′, k′) with |V (G′)| ≤ n, |T | ≤ t and k′ ≤ k.
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Proof. Denote by 2T the set of all subsets of T including T and the empty set. For
each T ′ ∈ 2T with |T ′| ≤ k our algorithm proceeds as follows. We call the algorithm for
Disjoint C-Vertex Deletion Compression on the instance (G−T ′, T \T ′, k−|T ′|).
If the algorithm returns a solution S′, we report the solution S = S′ ∪ T ′ as solution
to our C-Vertex Deletion Compression (G,T, k). This is indeed a solution, as
|S| ≤ |S′|+ |T ′| ≤ k − |T ′|+ |T ′| = k and G− S = G− (S′ ∪ T ′) = (G− T ′)− S′ ∈ C.

If for every T ′ ∈ 2T with |T ′| ≤ k our algorithm call returns that there is no solution,
we output that there is no solution to (G,T, k). We claim that this is correct since for
any solution S of (G,T, k), the algorithm call for T ′ = T ∩ S should have returned a
solution. Indeed, T ′ = T ∩ S fulfills |T ′| ≤ |T | ≤ k and we did an algorithm call to
the instance (G − (T ∩ S), T \ S, k − |T ∩ S|). Now the set S \ T is a solution to this
instance as G − (T ∩ S) − (S \ T ) = G − S ∈ C, |S \ T | = |S| − |S ∩ T | ≤ k − |T ∩ S|
and (T \ S) ∩ (S \ T ) = ∅. Hence, our algorithm is correct.

For the run-time note that our algorithm does at most 2|T | calls (one for every
element of 2T ) to instances (G′, T ′, k′) with G′ being a subgraph of G, T ′ ⊆ T and
k′ ≤ k and thus the run-time follows.

Corollary 2.3. Let C be a hereditary and non-empty graph class. Then an instance
(G, k) of C-Vertex Deletion can be solved in time

O(2k+1n ·Adisjoint compression(n, k + 1, k)),

where Adisjoint compression(n, t, k) is the run-time of an algorithm for Disjoint C-Vertex
Deletion Compression on instances (G′, T ′, k′) with |V (G′)| ≤ n, |T | ≤ t and k′ ≤ k.

By spending an additional run-time of O(kn · Amembership(n)), we can assume that
for all instances (G,T, k) passed to the Disjoint C-Vertex Deletion Compression,
we have that T is an inclusion-wise minimal set with G− T ∈ C. Here, Amembership(n)
is the run-time needed to check for a graph with n vertices whether it belongs to C.

Proof. First apply Lemma 2.1 to reduce the problem to n instances of C-Vertex
Deletion Compression. For every of these n instances (G′, T ′, k′) we can check in
time (k + 1)Amembership(n), whether G − (T − t) ∈ C for any t ∈ T ′. If it is, we can
directly return T ′ − t as solution. Otherwise we know by C being hereditary that T ′ is
inclusion-wise minimal with G′ − T ′ ∈ C. We then apply Lemma 2.2 to the remaining
instances.

As last refinement of our compression strategy we want to introduce an “imprecise”
version of our algorithm. This algorithm is allowed to compute – instead of a “precise”
solution – a set of bounded size that intersects some solution.

Disjoint C-Vertex Deletion Compression Intersection

Instance: A graph G, a vertex set T ⊆ V (G) and an integer k ∈ Z≥0 such that
G− T ∈ C.

Task: Find a vertex set Sintersect ⊆ V (G) such that
if there is a set S ⊆ V (G) \ T of size at most k such that G− S ∈ C,
then there is such a set S with S ∩ Sintersect ̸= ∅.
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Lemma 2.4 (Disjoint Compression Intersection). An instance (G,T, k) of Disjoint
C-Vertex Deletion Compression can be solved in time

O(k(fintersect(n, |T |, k))k · (Adisjoint compression intersection(n, |T |, k) +Amembership(n))),

where
• Adisjoint compression intersection(n, t, k) is the run-time of an algorithm for Disjoint C-

Vertex Deletion Compression Intersection on instances (G′, T ′, k′) that
fulfill |V (G′)| ≤ n, |T | ≤ t and k′ ≤ k,

• fintersect(n, t, k) is a size bound on the set Sintersect output by the algorithm for Dis-
joint C-Vertex Deletion Compression Intersection on these instances,
and

• Amembership(n) is the run-time needed to test whether G′ ∈ C for |V (G′)| ≤ n.
Proof. We start our algorithm with S = ∅ and do a branching procedure that works as
follows. Given some partial candidate solution S′ ⊆ V (G) \ T , we first check by oracle
call whether G − S′ ∈ C. If it is, we return S = S′ as solution to our instance. If it is
not and |S′| = k, we return that there is no solution S ⊇ S′. In the remaining case, we
have that S′ is not a solution and |S′| < k so there still might be a solution S ⊇ S′. To
check for such a solution, we call our Disjoint C-Vertex Deletion Compression
Intersection algorithm on the instance I⋆ = (G − S′, T, k − |S′|). Note that for
any solution S ⊇ S′ to our original instance, we have that S \ S′ is a solution to I⋆ as
Disjoint C-Vertex Deletion Compression instance by |S\S′| = |S|−|S′| ≤ k−|S′|
and (G − S′) − (S \ S′) = G − S ∈ C. Vice versa, for any solution S⋆ to I⋆ as
Disjoint C-Vertex Deletion Compression instance, we have that S⋆ ∪ S′ is a
solution to our original instance, as |S⋆ ∪ S′| = |S⋆| + |S′| ≤ k − |S′| + |S′| = k and
G − (S⋆ ∪ S′) = (G − S′) − S⋆ ∈ C. So if our original instance has a solution S ⊇ S′

our algorithm call returns a set Sintersect ⊆ V (G) \ S′ that intersects a solution S⋆

to I⋆ as Disjoint C-Vertex Deletion Compression instance. For every vertex
v ∈ Sintersect \T , we then do a recursive call of our procedure with the partial candidate
solution S′ ∪ {v}. For the right choice of v (i.e. v ∈ S⋆) our recursive call will (by
induction) output that there is a solution S to our original instance with S ⊇ S′ ∪{v}.
If there is no solution S ⊇ S′ all our recursive calls will return that there is no solution
S ⊇ S′ ∪ {v} and we return the same to our parent algorithm call or in the case of
S′ = ∅, we return that there is no solution.

We argued for correctness while describing our algorithm. It only remains to prove
the run-time. In every branch of our algorithm we do at most one oracle call to each, the
membership and the Disjoint C-Vertex Deletion Compression Intersection
oracle. So it suffices to bound the number of branches by k(fintersect(n, |T |, k))k. Denote
by B(i) the number of branches where i = |S′|. We start with S′ = ∅ and only add
items to it, so B(0) = 1. For each of the branches with |S′| < k we do branch
in |Sintersect| ≤ fintersect(|G − S′|, |T |, k − |S′|) ≤ fintersect(n, |T |, k) many branches, so
B(i) ≤ fintersect(n, |T |, k) · B(i − 1) for all i ∈ {1, . . . , n}. Thus, the number of overall
branches is

k∑
i=0

B(i) ≤
k∑
i=0

(fintersect(n, |T |, k))iB(0) = k(fintersect(n, |T |, k))k + 1.
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2.2 Important Separators

An important tool for designing fixed-parameter algorithms for vertex deletion problems
are the so-called important separators. These are X → Y -separators that inclusion-
wise maximize the number of reachable vertices from X among all separators of at most
their size. The notion of important separators was introduced by Marx [Mar06] and
has since been applied implicitly or explicitly to many C-Deletion problems.

Definition 2.5. Let G be a graph and let X,Y ⊆ V (G) be two vertex sets. An X → Y -
separator C is said to be dominated by another X → Y -separator C ′ if

RG−C(X) ⊊ RG−C′(X) and |C ′| ≤ |C| for undirected graphs, or
R+
G−C(X) ⊊ R+

G−C′(X) and |C ′| ≤ |C| for directed graphs.

An X → Y -separator is said to be important if there is no X → Y -separator dominating
it.

The main reason these important separators are useful is that their number can be
bounded in terms of their maximum size. This can be done for directed and undirected
graphs, as well as for vertex separators and edge/arc cuts. The earliest proofs of such
statements can be contributed to Marx [Mar06] (undirected vertex version, 4k2 size
bound) and Chen et al. [CLL+08] (undirected vertex version, 4k size bound).

Theorem 2.6 ([CFK+15, Theorem 8.11]). Let G be a graph, let X,Y ⊆ V (G) be two
vertex sets and let k ∈ Z≥0 be an integer. Then there are at most 4k important X → Y -
separators of size at most k. Moreover, the set of all important X → Y -separators of
size at most k can be enumerated in time O(4kk · (n+m)).

We give a short sketch how to prove such a statement here, for details refer to the
textbook by Cygan et al. [CFK+15, Theorem 8.11]. The prove is done by induction on
2k−λG(X,Y ), where λG(X,Y ) is the minimum size of an X → Y -separator in G. The
statement holds for k < λG(X,Y ), as then no (important) X → Y -separator of size
at most k exists. So we focus on the cases where k ≥ λG(X,Y ). Note that there is a
unique important separator Cmin of size λG(X,Y ) (by “uncrossing” on the neighborhood
of the reachable vertices). Consider now an arbitrary vertex v ∈ Cmin. Then we have
for any important X → Y -separator C and that either v ∈ C or v ∈ R+

G−C(X). In the
former case, we can recurse on G− v with k being decreased by one. In the latter case,
including v in X increases the size of a minimum separator Cmin by at least one. Thus,
in both cases we can prove the statement by applying the induction hypothesis.

We will generalize this argument in Section 3.1.4 to separators where we restrict
the set R+

G−C(X) to “yes”-instances of a hereditary C-Vertex Deletion problem.

2.3 Shadow Covering

In this section we take a look at the shadow covering framework for vertex deletion
problems. It was developed by Marx and Razgon [MR14] for the Undirected Mul-
ticut problem and further improved by Chitnis et al. [CCHM15] for the Directed
Subset Feedback Vertex Set problem.
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The technique is aimed at vertex deletion problems in directed graphs exhibiting
a certain connectivity structure. For these problems the technique can be used as
follows: After applying the iterative compression technique and the disjoint compression
technique (see above), we have to solve the disjoint compression variant. That is, we
are already given a solution T ⊆ V (G) and want to find a solution S ⊆ V (G) \ T of
size at most k. The shadow covering technique now allows us to identify a superset of
those vertices of G that can either not reach T in G − S or are not reachable from T
in G − S. Special treatment of these vertices often allows to recover somewhat of the
structure the analogue vertex deletion problem on undirected graphs has.

We will now discuss the result more formally. Most of the notation closely follows
the notation of Chitnis et al. [CCHM15]. The set of vertices we want to identify, i.e.
the vertices that are in some direction separated from T by a solution S are called the
shadow of S with respect to T .
Definition 2.7 (shadows). Let G be a directed graph and let S, T ⊆ V (G) be two vertex
sets. The forward shadow of S with respect to T is the set of vertices v ∈ V (G)\(S∪T )
such that S is a T → {v}-separator. The reverse shadow of S with respect to T is the
set of vertices v ∈ V (G) \ (S ∪ T ) such that S is a {v} → T -separator. The shadow
of S with respect to T is the union of the forward and the reverse shadow of S with
respect to T .

We now go into more detail what connectivity structure our problem must exhibit.
The central concepts for this are T -connectedness and F-transversals.
Definition 2.8 (T -connected and F-transversal). Let G be a directed graph and F a
family of subgraphs of G. For a vertex set T ⊆ V (G) the family F is called T -connected,
if for every subgraph F ∈ F and every v ∈ V (F ) there is a {v} → (T ∩ V (F ))-walk in
F and a (T ∩ V (F )) → {v}-walk in F . A set X ⊆ V (G) is called an F-transversal if
for every F ∈ F we have that X ∩ V (F ) ̸= ∅.

With these definitions in place, we can now state the main theorem of the shadow
covering technique. We restrict ourselves to the deterministic variant. For a randomized
variant, as well as for the proofs, see Chitnis et al. [CCHM15].
Theorem 2.9 (Deterministic Covering of Shadows, [CCHM15, Theorem 3.6]). Let G
be a directed graph and let T ⊆ V (G) be a vertex set. Then we can construct a set
Z = {Z1, Z2, . . . , Zt} with t = 2O(k2) log2 n in time 2O(k2) · poly(n) such that for any
set F of T -connected subgraphs, if there exists an F-transversal of size at most k, then
there is an F-transversal S of size at most k such that for at least one Zi ∈ Z we have

1. S ∩ Zi = ∅, and
2. Zi contains the shadow of S with respect to T .

2.4 Bounding Powers of Logarithms

For our vertex deletion algorithms we aim to have run-times of the form f(k) poly(n).
In practice this is often achieved by finding some set X of bounded size that intersects
some solution of size at most k. This guessing adds a factor of |X|k to the run-time
(see Lemma 2.4). If |X| is bounded by a function of k only, it is clear that |X|k is also
bounded by some g(k). More complicated is the case where |X| ∈ Θ(logn). However,
in this case we can use the following lemma.



2.5. PARAMETERIZED REDUCTIONS 11

Lemma 2.10. For n > 2 and f(k) > 0 we have

(logn)f(k) ≤ (2f(k)2)f(k) + n ∈ 2O(f(k) log f(k)) + n.

Proof. We distinguish two cases, and add the upper bounds for (logn)f(k) from both
cases. Our case distinction depends on the relation of f(k) to logn

log logn . Note that by
n > 2 this fraction is well-defined.

If f(k) ≤ logn
log logn then we have n ≥ 2f(k)(log logn) = (logn)f(k).

Otherwise, we have f(k) > logn
log logn . This implies

f(k)2

logn >
logn

(log logn)2 .

The expression logn
(log logn)2 obtains its global minimum in the domain (2,∞) for n = 2e2

with a value of 0.25e2 ln2(2) > 0.5. Thus f(k)2

logn ≥ 0.5 holds, which is equivalent to
2f(k)2 ≥ logn. This in turn implies (logn)f(k) ≤ (2f(k)2)f(k).

Adding the bounds on (logn)f(k) from both cases we get

(logn)f(k) ≤ (2f(k)2)f(k) + n

which using f(k) = 2log f(k) lies in 2O(f(k) log f(k)) + n.

2.5 Parameterized Reductions

In the field of polynomial-time algorithms, polynomial reductions take a special place.
They allow to solve problems by reducing them to other already solved problems, while
keeping the algorithms running in polynomial time. Conversely, they can also show
NP-hardness for a problem by reducing it to another problem, which is already known
to be NP-hard. It is desirable to have another class of reductions that take this place
for FPT and W[1]-hardness. These are the “parameterized reductions”. See [CFK+15,
Section 13.1] for a thorough introduction.

Definition 2.11 ([CFK+15, Definition 13.1]). Let A,B be two parameterized problems.
A parameterized reduction from A to B is an algorithm that, given an instance (x, k)
of A, outputs an instance (x′, k′) of B such that

1. (x, k) is a “yes”-instance of A if and only if (x′, k′) is a “yes”-instance of B,

2. k′ ≤ g(k) for some computable function g, and

3. the run-time is f(k) · poly(|x|) for some computable function f .

These definitions of reductions are those needed to transfer membership in FPT and
W[1]-hardness between parameterized problems. Sometimes, we want even stronger
reductions than those, in the sense that they should only take polynomial run-time and
that the new parameter is bounded by a polynomial in the old. These are known as
“polynomial parameter transformations”.
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Definition 2.12 ([CFK+15, Definition 15.14]). Let A,B be two parameterized prob-
lems. A polynomial parameter transformation from A to B is an algorithm that, given
an instance (x, k) of A, outputs an instance (x′, k′) of B such that

1. (x, k) is a “yes”-instance of A if and only if (x′, k′) is a “yes”-instance of B,

2. k′ ≤ p(k) for some polynomial p, and

3. the run-time is of the algorithm is poly(|x|).

These are indeed a subset of the parameterized reductions and thus are able to
transfer membership in FPT and W[1]-hardness. However, these are also useful in other
matters of parameterized hardness. See [CFK+15, Section 15.2.2] for more details on
this.



Chapter 3

Directed Long Cycle Hitting Set

In this chapter we discuss the Directed Long Cycle Hitting Set problem. Here
we want to delete at most k vertices from a directed graph such that no directed cycle
exceeds a prescribed length ℓ.

Directed Long Cycle Hitting Set

Instance: A graph G and two integers k, ℓ ∈ Z≥0.

Task: Find a set S ⊆ V (G) of size at most k such that
every directed cycle of G− S has length at most ℓ
or decide that no such set exists.

The length of a longest directed cycle of a graph is also known as its circumference. If
the graph is acyclic the circumference is defined as 0 or∞ depending on the application.
For our context it will be useful to define it as 0.

Definition 3.1. Let G be a directed graph. The circumference cf(G) is defined as the
length of the longest directed cycle in G. If G is acyclic, define cf(G) = 0.

With this we can write the requirement on our set S as cf(G − S) ≤ ℓ. Our main
result will be that Directed Long Cycle Hitting Set is indeed fixed-parameter
tractable in k + ℓ.

Theorem 3.2. There is an algorithm that solves instances (G, k, ℓ) of Directed Long
Cycle Hitting Set in time 2O(ℓ6+k3ℓ+k4 log k) poly(n), where n = |V (G)|.

We get this result by a series of reductions working on evermore sophisticated
problems. By applying the iterative compression technique (see Chapter 2) to our
problem, we are able to work on graphs of bounded circumference most of the time.
Thus, an important section of this chapter is dedicated to structural properties of these
graphs. While many of these are well known results, we add a new tool which we call
k-representative sets of paths.

Definition 3.3. Let G be a directed graph, x, y ∈ V (G) and k ∈ Z≥0. A set P of
x→ y-paths is a k-representative set of x→ y-paths, if for every S ⊆ V (G) of size at
most k holds:

If there is an x→ y-path in G− S, there is an x→ y-path P ∈ P in G− S.

13
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A small k-representative sets of paths allows for an efficient enumeration of struc-
tures that are disjoint from an unknown solution of size k. On the other hand, if a
set S of size k is an x → y-cut, we have that it has to intersect all the paths in a
k-representative set of x → y-paths. This helps to find vertices that lie in S. For
graphs of bounded circumference we are able to obtain such k-representative sets of
paths.

Theorem 3.4. Let G be a strongly connected, directed graph, x, y ∈ V (G) and k ∈ Z≥0.
Then we can find a k-representative set of x→ y-paths having size cf(G)O(k2 log k) · logn
in time cf(G)O(k2 log k) · poly(n).

This result can be of independent interest for other problems on graphs of bounded
circumference. Combined with Theorem 3.2, it may also be possible to apply it to
graphs which are a small vertex deletion set (a so-called circumference modulator)
away from having bounded circumference.

The Directed Long Cycle Hitting Set problem generalizes a series of well-
known vertex deletion problems for different values of ℓ. For ℓ = 0 it corresponds to
Directed Feedback Vertex Set. For ℓ = 2 it generalizes (undirected) Feedback
Vertex Set as well as Feedback Vertex set in Mixed Graphs (graphs with
both directed arcs and undirected edges). As Feedback Vertex Set and Directed
Feedback Vertex Set are both NP-hard as shown by Karp [Kar72], there is no
f(ℓ) poly(n) algorithm for Directed Long Cycle Hitting Set, unless P = NP.

Moreover, the special case of k = 0 and ℓ = n− 1 is equivalent to checking whether
a graph has a Directed Hamiltonian Cycle. As also Directed Hamiltonian
Cycle was shown to be NP-hard by Karp [Kar72], there is no f(k) poly(n) algorithm
for Directed Long Cycle Hitting Set, unless P = NP. Even checking whether
a set S is a solution to Directed Long Cycle Hitting Set is NP-hard by above
argument. In this sense, an f(k, ℓ) poly(n) algorithm is optimal.

For the following special cases of Directed Long Cycle Hitting Set fixed-
parameter algorithms were already known:

• Feedback Vertex Set is fixed-parameter tractable in the solution size by the
graph minor algorithm due to Robertson and Seymour [RS95].

• Directed Feedback Vertex Set can be solved in time 4kk! poly(n) due to
Chen et al. [CLL+08].

• Feedback Vertex Set in Mixed Graphs can be solved in time 2O(k)k! poly(n)
due to Bonsma and Lokshtanov [BL11].

• ℓ-long Cycle Detection, the task of finding a cycle of length at least ℓ, was
shown to be solvable in time 2O(ℓ) poly(n) by Zehavi [Zeh16].

Our algorithm for Directed Long Cycle Hitting Set generalizes all of these
algorithms. A reduction of the above mentioned problems to Directed Long Cycle
Hitting Set can be found in the last section of this chapter. There we will also show
that the arc and vertex deletion variant of Directed Long Cycle Hitting Set
can be reduced to each other in a parameter preserving way. Thus, our algorithm also
solves the arc deletion variant of Directed Long Cycle Hitting Set.
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The results of this chapter are joint work with Dániel Marx and Matthias Mnich.
An extended abstract of this work has previously appeared at ICALP 2020 [GMM20a].
A preliminary version of the full results has been published on arXiv [GMM20b].

3.1 Technical Tools

In this section we gather structural observations that are used in our main result but
are independent of it. This includes size bounds on sets defining a separator, prop-
erties of graphs with bounded circumference and, most interestingly, our result about
k-representative sets of paths. Moreover, we generalize the concept of important sep-
arators by restricting them to separators that also allow for a C-Deletion problem
to be solved on one side of the separator. We derive similar bounds on the number of
these in comparison to the original important separators.

3.1.1 Size Bounds on Sets Defining a Separator

A well known result about directed separators is that there are at most 4k many im-
portant X → Y -separators of size at most k (cf. Theorem 2.6). Here we are interested
in bounds on X and Y instead, i.e. are there X ′ ⊆ X and Y ′ ⊆ Y of bounded size such
that any X ′ → Y ′-separator of size at most k is also an X → Y -separator. We will
derive such bounds in the following. A key ingredient to this is the following lemma.

Lemma 3.5. Let G be a directed graph and let x, y1, . . . , yr be vertices of G. Let
S1, . . . , Sr be sets of vertices of size at most k each, such that the following holds for
each i = 1, . . . , r:

• yi is reachable from x in G− Si, but
• for each j ∈ {1, . . . , r} \ {i}, there is no x→ yj-path in G− Si.

Then r ≤ (k + 1)4k+1.

Proof. Create a graph G′ from G by adding a new vertex y⋆ together with the arcs
(yi, y⋆) for each i = 1, . . . , r. Observe that each vertex yi is part of an x→ y⋆-separator
S′i = Si ∪ {yi} of size k + 1 and moreover R+

G′\S′
i
(x) contains some vertex vi such

that (vi, yi) is an arc of G. Therefore, there exists an important x → y⋆-separator S′′i
such that R+

G′\S′
i
(x) ⊆ R+

G′\S′′
i
(x), which implies that vi ∈ R+

G′\S′′
i
(s) and yi ∈ S′′i .

Consequently, each vertex yi belongs to some important x → y⋆-separator of size at
most k + 1. By Theorem 2.6 there are at most 4k+1 important separators of size at
most k + 1 and thus at most (k + 1)4k+1 such vertices, i.e. r ≤ (k + 1)4k+1.

In other words: at most (k + 1)4k+1 terminals define the structure of a separator
of size at most k. We will now show how to construct for Y a small “witness” set Y ′
of size at most (k + 1)4k+1 such that all x → Y ′-separators of size at most k are also
x→ Y -separators.

Lemma 3.6. Let G be a directed graph, x ∈ V (G), Y ⊆ V (G), and k ∈ Z≥0. Then in
time 2O(k) · poly(n) we can identify a set Y ′ ⊆ Y of size at most (k+ 1)4k+1 such that:

if for S ⊆ V (G) with |S| ≤ k there is an x→ Y -path in G− S,
then there is also an x→ Y ′-path in G− S. (†)
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Proof. Initially, we start with Y ′ = Y , which certainly satisfies property (†). For every
v ∈ Y ′ we check whether Y ′ \ {v} also satisfies property (†). For this purpose, we need
to check whether there is a set S of at most k vertices such that some vertex of Y
is reachable from x in G − S, but no vertex of Y ′ \ {v} is reachable. As Y ′ satisfies
the assumptions of the lemma, if Y is reachable, then some vertex of Y ′ is reachable.
Therefore, what we need is a set S such that v is reachable from x in G − S, but no
vertex of Y ′ \ {v} is reachable.

Let us introduce a new vertex y⋆ into G and add an arc from every vertex of Y ′\{v}
to y⋆. Observe that S is an x→ y⋆-separator (clearly, we have x /∈ S). We claim that
if there is an x → y⋆-separator S of size at most k such that v is reachable from x in
G−S, there is such an important separator S′. Indeed, if S′ is an important separator
with |S′| ≤ |S| and R+

G−S(x) ⊆ R+
G−S′(x), then v is reachable from x also in G − S′.

Therefore, we can test existence of the required separator S by testing every important
s→ y⋆-separator of size at most k. If none of them satisfies the requirements, then we
can conclude that Y ′ \ {v} also satisfies property (†) and we can continue the process
with the smaller set Y ′ \ {v}.

Suppose now that for every v ∈ Y ′, we have found a set Sv of at most k vertices
such that v is reachable from x in G−Sv, but Y ′−{v} is not. Then Lemma 3.5 implies
that |Y ′| ≤ (k + 1)4k+1.

Next, we prove a “set extension” of the previous lemma, in which the vertex x is
enlarged to a set X. Then we apply the result to multiple sets Xi.

Lemma 3.7. Let G be a directed graph, let X,Y ⊆ V (G) be sets of vertices, and let
k ∈ Z≥0. Then we can identify sets X ′ ⊆ X,Y ′ ⊆ Y each of size at most (k + 1)4k+1

such that: If for S ⊆ V (G) with |S| ≤ k there is an X → Y -path in G− S, then there
is also an X ′ → Y ′-path in G− S.

These sets can be computed in time 2O(k) · poly(n).

Proof. Let us introduce a new vertex x into G and add an arc from x to every vertex
of X. Let us use the algorithm of Lemma 3.6 to find a set Y ′ ⊆ Y of size at most
(k+ 1)4k+1. Let←−G be the directed graph obtained from G by reversing the orientation
of all arcs. Add a vertex←−x to←−G and add an arc (←−x , v) for every vertex v ∈ Y ′. Apply
the algorithm of Lemma 3.6 on ←−G with ←−x playing the role of x and X playing the role
of Y ; let X ′ be the set returned by the algorithm.

We claim that X ′ and Y ′ satisfy the requirements of the lemma. Suppose that there
is an X → Y -path P in G − S. By the way we obtained Y ′, we may assume that P
ends in Y ′. Then the reverse of P is a Y ′ → X-path in ←−G − S. Therefore, by the way
we obtained X ′ there is a path Q in ←−G − S from Y ′ to X ′. Now the reverse of Q is an
X ′ → Y ′-path in G− S, as required.

Lemma 3.8. Let G be a directed graph, let X1, . . . , Xt ⊆ V (G) be sets of vertices, and
k ∈ Z≥0. Then we can identify sets X ′i ⊆ Xi of size at most 2(t − 1)(k + 1)4k+1 for
every i ∈ {1, . . . , t}, such that: If for S ⊆ V (G) with |S| ≤ k there is an Xi → Xj-path
in G− S for some i ̸= j, then there is also an X ′i → X ′j-path in G− S.

These sets can be computed in time t22O(k) · poly(n).
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Proof. For every ordered pair (i, j) apply Lemma 3.7 to Xi and Xj to obtain sets X(i,j)
i

and X
(i,j)
j . Let

X ′i =
t⋃

j=1
j ̸=i

(
X

(i,j)
i ∪X(j,i)

i

)
.

These have the desired properties, as for a Xi → Xj-path in G − S for i ̸= j there is
by construction a X(i,j)

i → X
(i,j)
j -path in G− S. The size bound follows directly.

3.1.2 Properties of Directed Graphs with Bounded Circumference

Here we gather results about directed graphs with bounded circumference. Many of
them are well known and show that distances in those graphs cannot be two asymmetric.

Lemma 3.9. Let G be a directed graph and let x, y ∈ V (G).
If P1 is an x → y-path and P2 is a y → x-path, then |P1| ≤ (cf(G) − 1)|P2|.

Consequently, we have distG(x, y) ≤ (cf(G)− 1) distG(y, x)).

Proof. Note that the statement trivially holds if x = y: then every simple path between
the two vertices has length 0. Let x′, y′ be any two distinct vertices of P1 such that
no internal vertex P [x′, y′] is on P2 (see Fig. 3.1). Going from y to x on P2, let x′′ be
the first vertex of P2 that is in P1[x, x′] (possibly x′′ is equal to x or x′) and let y′′ be
the last vertex of P2 before x′′ that is on P1. Note that y′′ has to be between y′ and
y (possibly y′′ is y′ or y). As no internal vertex of P2[y′′, x′′] is on P1, concatenating
P2[y′′, x′′] and P1[x′′, y′′] gives a simple cycle; note that P1[x′′, x′] and P ′1[y′, y′′] may
contain vertices of P2 outside P2[y′′, x′′]. The length of this cycle is at most cf(G),
hence |P1[x′, y′]| ≤ |P1[x′′, y′′]| ≤ cf(G)−1. It follows that for any cf(G)−1 consecutive
vertices of P1, at least one of these vertices is used by P2. As the first and last vertices
of P1 (that is, x and y) are in P2, it is easy to see that if ni denotes the number of
vertices of Pi, then n1 ≤ (n2−1)(cf(G)−1)+ 1. In other words, |P1| ≤ |P2|(cf(G)−1),
what we had to show.

P1

P2

x yx′′ x′ y′ y′′

Figure 3.1: Proof of Lemma 3.9.

Note that the ratio cf(G)− 1 in Lemma 3.9 is tight; see the solid blue and dashed
green paths in Fig. 3.2 for an example with cf(G) = 4. Examples for arbitrary cf(G) = ℓ
can be constructed similarly.
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By using that there is always a backward path in strongly connected, directed
graphs, applying above result twice yields:

Lemma 3.10. Let G be a strongly connected, directed graph and x, y ∈ V (G).
Then |P1| ≤ (cf(G)− 1)2 distG(x, y) for every x→ y-path P1.

Proof. If x = y, then every simple x → y-path has length 0, and the statement holds
trivially. Otherwise, let P ⋆ be a shortest x→ y-path. As G is strongly connected, every
arc of P ⋆ is in a cycle of length at most cf(G). Thus, for every arc (u, v) of P ⋆, there is a
v → u-path of length at most cf(G)−1. Concatenating these paths for every arc of P ⋆,
we obtain a y → x walk of length at most (cf(G) − 1)|P ⋆| = (cf(G) − 1) distG(x, y),
and hence there is a y → x-path P2 of at most this length. By Lemma 3.9, we have
|P1| ≤ (cf(G)− 1)|P2| ≤ (cf(G)− 1)2|P ⋆| = (cf(G)− 1)2 distG(x, y).

Again, the ratio (cf(G)− 1)2 in Lemma 3.10 is tight, see the dotted red and dashed
green paths in Fig. 3.2.

1 2 . . . n

x y

Figure 3.2: A strongly connected, directed graph G with circumference cf(G) = 4.
There is an x→ y-path of length n (dashed green), an x→ y-path of length (cf(G)−
1)2n = 9n (dotted red), and a y → x-path of length (cf(G)− 1)n = 3n (solid blue).

If considering the structure of those forward and backwards paths more carefully,
one gets that single vertices on paths may not lie to far away from paths running in
parallel.

Lemma 3.11. Let G be a strongly connected, directed graph, x, y ∈ V (G) two vertices,
and P1, P2 be two x → y-paths. For every vertex v of P1, we have distG(P2, v) ≤
2(cf(G)− 2) and distG(v, P2) ≤ 2(cf(G)− 2).

Proof. The claim is true if x = y, as then both P1 and P2 have length 0, and the
statement holds trivially. Otherwise, as G is strongly connected, every arc of P2 is in
a cycle of length at most cf(G). Thus, for every arc (u, v) of P , there is a v → u-path
of length at most cf(G)− 1. Concatenating these paths for every arc of P2, we obtain
a walk from y to x where every vertex is at distance at most cf(G)− 2 from P2. This
implies that there is a y → x-path P3 where every vertex is at distance at most cf(G)−2
from P2.

Observe that if (u, v) is an arc of P1, then distG(P2, v) ≤ distG(P2, u)+1. Therefore,
if P1 has a vertex v with distG(P2, v) > 2(cf(G)− 2), then there is a subpath P1[v′, v′′]
with distG(P2, v

′) = cf(G) − 2, distG(P2, v
′′) = 2 cf(G) − 3, and every internal vertex

of P1[v′, v′′] is at distance more than cf(G)− 2 from P2. This means that P3 does not
contain any internal vertex of P1[v′, v′′], since every vertex of P3 is at distance at most
cf(G)− 2 from P2. Now P1[v′′, y] ◦P3 ◦P1[x, v′] is a v′′ → v′ walk that does not contain
any internal vertex of P1[v′, v′′] and hence there is a simple cycle containing P [v′, v′′].
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Note that the length of any v′′ → v-path is at least 2: P1 has no arc (v′′, v′) and such
an arc cannot appear in P3 either, as distG(P2, v) > cf(G)− 2. Therefore, the length of
this cycle is at least |P [v′, v′′]|+ 2(cf(G)− 1) + 2 > cf(G), a contradiction. This proves
distG(P2, v) ≤ 2(cf(G)− 2).

To prove the second bound distG(v, P2) ≤ 2(cf(G) − 2), let us reverse the arcs of
the graph and apply the first bound on the two y → x-paths corresponding to P1
and P2.

The bound 2(cf(G)− 2) in Lemma 3.11 is tight: in Fig. 3.2, the dotted red x→ y-
path has vertices at distance exactly 2(cf(G)− 2) = 4 from the dashed green path (the
example can be generalized to larger cf(G)).

3.1.3 k-Representative Sets of Paths

Let us briefly recall the definition of k-representative sets of paths.

Definition 3.3. Let G be a directed graph, x, y ∈ V (G) and k ∈ Z≥0. A set P of
x→ y-paths is a k-representative set of x→ y-paths, if for every S ⊆ V (G) of size at
most k holds:

If there is an x→ y-path in G− S, there is an x→ y-path P ∈ P in G− S.

Representative sets of paths (and also of other objects) are important tools in the
design of parameterized algorithms [Mon85, FLS14, FLPS14, SZ16, Mar09].

The algorithm of Bonsma and Lokshtanov [BL11] for the case cf(G) ≤ 2 uses the
following observation in an essential way. Let G be a strongly connected, directed graph
and let ⟨G⟩ denote the underlying undirected graph of G. If cf(G) ≤ 2 then ⟨G⟩ is a
tree (with bidirected arcs in G), and hence there is a unique x→ y-path P for any pair
x, y of distinct vertices in G. This means that for any set S ⊆ V (G), either P is an
x→ y-path in G−S or there is no x→ y-path in G−S at all. In other words, the set
{P} is a k-representative family for every k.

x y

v0
1

v1
1

v0
2

v1
2

v0
3

v1
3

v0
n

v1
n

. . .

. . .

Figure 3.3: A directed graph G with cf(G) = 3 where every k-representative set of
x→ y-paths has size 2Ω(k) logn.

The situation is significantly different even for cf(G) = 3. Consider the strongly
connected, directed graph in Fig. 3.3. There are exactly 2n different x → y-paths
in G; each such path corresponds to a 0-1 vector of length n by going through v0

i or v1
i

depending on whether the vector has a 0 or 1 at the i-th coordinate. Thus, if we remove
vertex v0

i (v1
i ), then only those paths survive that have 1 (0) at the i-th coordinate.

Therefore, a collection of paths in this graph is k-representative only if no matter how
we fix the values of k arbitrary coordinates, there is a vector in the collection satisfying
these constraints. Kleitman and Spencer [KS73] proved that every collection of vectors
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of length n satisfying this property has size 2Ω(k)·logn (more precisely, they gave a lower
bound on the dual question of k-independent families, but it can be easily rephrased
into this lower bound). The main result of this subsection is that in a directed graph of
bounded circumference, we can construct a k-representative family of paths whose size
is somewhat worse than this lower bound: assuming that the circumference is bounded
by a constant, there is such a family of size 2O(k2 log k) · logn (Theorem 3.4).

If the paths we are considering have bounded length, then the following result of
Monien [Mon85] gives a representative set of bounded size:

Theorem 3.12 ([Mon85]). Let G be a directed graph, let x, y ∈ V (G) and let k ∈ Z≥0.
If every x→ y-path in G has length at most ℓ, then a k-representative set of x→ y-paths
containing at most ℓk elements can be found in time ℓO(k) · poly(n).

Recently, Fomin et al. [FLS14] improved the computation of representative sets of
paths, both in terms of the size of the set and the run-time, but Theorem 3.12 will be
sufficient for our purposes.

We will show that in strongly connected, directed graphs of bounded circumference,
a k-representative set of bounded size can be found even if there is no bound on the
length of the x→ y-paths. The proof uses so called k-perfect families of hash functions.

Definition 3.13. Let U be a finite set and k ∈ Z>0. We say that a family F of functions
f : U → {1, . . . , k} is a k-perfect family of hash functions if for every X ⊆ U , there is
an f ∈ F such that f |X is injective, i.e. f(x) ̸= f(x′) for all distinct x, x′ ∈ X.

We use the following construction of Alon et al. [AYZ95] that gives us a k-perfect
family of hash functions of bounded size.

Theorem 3.14 ([AYZ95]). Let U be a finite set and k ∈ Z>0. Then there is a k-perfect
family of hash functions F with |F| ∈ 2O(k) log |U |. Moreover, F can be constructed in
time 2O(k) poly(|U |).

Before presenting the construction of representative sets for strongly connected,
directed graphs of bounded circumference, let us explain how k-perfect families of hash
functions can be used for the construction in the case of the graph of Fig. 3.3. Let F
be a k-perfect family of hash functions over the universe U = {1, . . . , n}. For every
f ∈ F and every function h : {1, . . . , k} → {0, 1}, we add to the set P the path P that
uses vertex v

h(f(i))
i for every i ∈ {1, . . . , n}. Now we can write any set S ⊆ V (G) of

size k as {vg(i)
i | i ∈ X} for some X ⊆ U of size k and function g : X → {0, 1}. As F

is a k-perfect family, there is an f ∈ F that is injective on X. For every i ∈ X, let us
define h(f(i)) = 1−g(i); as f is injective on X, this is well-defined and gives a function
h : {1, . . . , k} → {0, 1}. We claim that the path P introduced into P for this choice of
f and h is disjoint from S. For i /∈ X, it does not matter if P uses v0

i or v1
i . For i ∈ X,

set S contains vf(i)
i . By our definition of h, we have h(f(i)) = 1 − g(i), hence P uses

v
1−g(i)
i , avoiding S. Thus, P is indeed disjoint from S.

The following proof generalizes this construction to arbitrary strongly connected,
directed graphs of bounded circumference: we construct the path by concatenating a
series of fairly independent “short jumps.” The short jumps are taken from a represen-
tative set of short paths constructed by Theorem 3.12. The choice of which short path
to select is determined by a k-perfect family of hash function, similarly to the argument
in the previous paragraph.



3.1. TECHNICAL TOOLS 21

Theorem 3.4. Let G be a strongly connected, directed graph, x, y ∈ V (G) and k ∈ Z≥0.
Then we can find a k-representative set of x→ y-paths having size cf(G)O(k2 log k) · logn
in time cf(G)O(k2 log k) · poly(n).

Proof. Let us fix an arbitrary x→ y-path R (which exists as G is strongly connected) to
guide our construction. Denote by r the length of R and by v0 = x, v1, . . . , vr−1, vr = y
its vertices. We only consider a subset of vertices zi at distance d = 2 cf(G)4 from each
other or more formally zi = vi·d. These zi will be the anchor vertices for our short
jumps. We divide the zi further into k + 1 subsets Zo by taking every (k + 1)st vertex
starting at offset o. Formally we define zoi = zi(k+1)+o and Zo = {zoi }. These subsets
have the advantage that one of these is far away from a deletion set S of size at most k.
For this we fix a set S of size at most k such that an x→ y-path in G− S exists.

Claim 1. There is some oS ∈ {0, . . . , k} such that
• distG(ZoS , S) > 2(cf(G)− 2) and
• distG(S,ZoS ) > 2(cf(G)− 2).

Proof of Claim 1. We claim that for every s ∈ S there is at most one o ∈ {0, . . . , k}
such that distG(Zo, s) ≤ 2 cf(G)2. Suppose that distG(w1, s),distG(w2, s) ≤ 2 cf(G)2

for some w1 ∈ Zo1 and w2 ∈ Zo2 with o1 ̸= o2. Assume, without loss of generality, that
w1 appears before w2 on R; then R[w1, w2] has length at least d (as different zi have
distance at least d). By Lemma 3.9, we have

distG(s, w1) ≤ (cf(G)− 1) distG(w1, s) ≤ (cf(G)− 1) · 2 cf(G)2,

and thus distG(w2, w1) ≤ distG(w2, s) + distG(s, w1) ≤ 2 cf(G)3. Again by Lemma 3.9,
we have d ≤ |R[w1, w2]| ≤ (cf(G)−1) distG(w2, w1) < 2 cf(G)4, a contradiction. Hence,
for each of the k vertices s ∈ S there is at most one value o ∈ {0, . . . , k} such that s
is at distance at most 2 cf(G)2 from Zo. Therefore, by the pigeon-hole principle there
is an oS ∈ {0, . . . , k} such that distG(ZoS , S) > 2 cf(G)2. By Lemma 3.9 this also
implies distG(S,ZoS ) > 2 cf(G)2/(cf(G)− 1) > 2(cf(G)− 2). This completes the proof
of Claim 1. ■

Thus, we know that a small surrounding of one of the Zo’s will be disjoint from S.
Furthermore, Lemma 3.10 gives a bound on the length of a path P between two consec-
utive vertices zoi and zoi+1 of Zo, by |P | ≤ (cf(G)− 1)2|R[zoi , zoi+1]| = O(cf(G)6k). This
allows us to introduce sets Poi of k-representative zoi → zoi+1-paths using the algorithm of
Theorem 3.12 and have their size bounded by some B = O(cf(G)6k)k = cf(G)O(k log k)

(using k = 2log k and cf(G) ≥ 2). By duplicating paths as necessary we can assume
that every P oi has size exactly B.

To make sure that our path collections with offset are connected to x and y we
construct additional sets Pox and Poy as follows: Let zox be the first vertex in Zo after x
and zoy the last vertex before y. Then compute, using the algorithm of Theorem 3.12,
Pox as a k-representative set of x→ zox-paths and Poy as a k-representative set of zoy → y-
paths. As the distances between these pairs of vertices are bounded by the distance of
neighboring vertices in Zo we can analogously get a size bound of B for Pox and Poy .
Note that for some offsets o either Pox or Poy may align with some Poi ; then we leave
out this Poi as we do not need it anymore. We define the set of these relevant sets as
Po := {Pox, Poy} ∪ {Poi }i for each o.
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Claim 2. Every PoS
T ∈ PoS contains a path disjoint from S.

Proof of Claim 2. Consider a set PoS
T with T ∈ {x, y, i} such that the paths in PoS

T are
xT → yT -paths. As above sets are k-representative sets of paths, we must only show
that there is any xT → yT -path in G− S.

By assumption there is an x → y path Q in G − S. By Lemma 3.11 we can
find a qx ∈ V (Q) such that distG(xT , qx) ≤ 2(cf(G) − 2) and a xT → qx-path Qx
in G achieving this distance. By Claim 1 we know that Qx is disjoint from S and
therefore, Qx ◦Q[qx, y] is an xT → y walk disjoint from S. Let Q̂x be an xT → y-path
contained in this walk. Another application of Lemma 3.11 yields a vertex qy ∈ V (Q̂)
with distG(qy, yT ) ≤ 2(cf(G)− 2) and a qy → yT -path Qy in G achieving this distance.
Again, by Claim 1, Qy is disjoint from S. Then Q̂x[xT , qy]◦Qy contains a xT → yT -path
as proposed. This completes the proof of Claim 2. ■

Of course, enumerating all possible tuples of paths would construct too many candi-
dates, as the size of PoS can be Ω(m). Therefore, we want to use a f(k)-perfect family
of hash functions. This is possible if we can bound the number of intersections of S
with different sets in PoS by some function f(k).

Claim 3. The set S intersects at most 2k sets of PoS .

Proof of Claim 3. We show that a single s ∈ S can intersect at most two sets of PoS

and those have to share an endpoint, thus achieving the claimed size bound. Suppose,
for sake of contradiction, that s intersects two paths Q1 and Q2 out of sets in PoS that
do not share an endpoint. Let each Qi be an xi → yi-path. Assume, without loss of
generality, that the order in which the endpoints appear on R is x1, y1, x2, y2, and that
|R[y1, x2]| ≥ 2 cf(G)5 (by the distance of the zi). At the same time, R[xi, yi] and Qi
connect the same endpoints, hence Lemma 3.11 implies that there is a t1 ∈ V (R[x1, y1])
with distG(t1, s) ≤ 2(cf(G)−2) and a t2 ∈ V (R[x2, y2]) with distG(s, t2) ≤ 2(cf(G)−2)
as s ∈ Q1∩Q2. This implies that distG(t1, t2) ≤ distG(t1, s)+distG(s, t2) ≤ 4(cf(G)−2).
If we now consider R[t1, t2], we get

|R[t1, t2]| ≥ |R[y1, x2]| ≥ 2 cf(G)4 > (cf(G)− 1)2 · distG(t1, t2),

in contradiction to Lemma 3.10. This completes the proof of Claim 3. ■

We can now construct a 2k-perfect family Ψo of hash functions over the universe Po
for each o. For oS this family contains an element ψ which assigns all sets of PoS that
are intersected by S a different number in {1, . . . , 2k} (by Claim 3). Further, there is a
map πfree that maps the numbers of {1, . . . , 2k} to a number of {1, . . . , B}, such that for
every P ∈ PoS which has a path intersected by S, we have that the ψ ◦ πfree(P)th path
of P is not intersected by S. There is such a path by Claim 2. Denote by Qψ,πfree(P)
this path. As we cannot know πfree in advance we create a set Π of all possible functions
from {1, . . . , 2k} to {1, . . . , B}.

We know that for the specific choices of oS , ψ and πfree we get a that the union of
paths in {Qψ,πfree(P)|P ∈ PoS} forms an x → y walk W in G − S. Every x → y-path
within W is also disjoint from S. Therefore, the set Px,y,k created as follows contains
a path disjoint from S: For every o ∈ {1, . . . , k + 1}, every ψ ∈ Ψ and every π ∈ Π
consider the x → y-walk ⋃P∈Po Qψ,π(P) and introduce an arbitrary x → y-path in it
into Px,y,k.
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The size bound on Px,y,k is proven by multiplying the possibilities for each choice:

(k + 1)︸ ︷︷ ︸
choice of o

· 2O(k) logm︸ ︷︷ ︸
|Ψ|

·B2k︸︷︷︸
|Π|

= cf(G)O(k2 log k) logn.

The run-time follows similarly.

The previous lemma is very useful if we have a strongly connected, directed graph of
bounded circumference. However, if we have a graph G and a subset of vertices T such
that cf(G−T ) ≤ ℓ it is not clear how to get a k-representative set of paths. Instead, we
give a weaker result which suffices for our algorithm. We restrict our deletion sets from
arbitrary sets S of size at most k to sets which additionally fulfill cf(G−S) ≤ ℓ. Addi-
tionally, instead of paths we consider closed walks connecting at least two vertices of T
after the deletion of S. The following lemma helps us to structure the surroundings of T .

Lemma 3.15. Let G be a directed graph, let s, t ∈ V (G), and let k, d ∈ Z≥0. In time
2O(kd) poly(n) we can construct collections R≤2d and R>2d, each of size 2O(kd), with

• R≤2d contains only paths of length at most 2d,
• R>2d contains pairs (Ps, Pt), where each Ps is a path of length d starting at s,

and each Pt is a path of length d ending at t.
Then, for every set S of size at most k, if there is an s → t-path P disjoint from S
then there is an s→ t-path P ′ disjoint from S with

• P ′ ∈ R≤2d if |P ′| ≤ 2d or
• (P ′s, P ′t) ∈ R>2d, where P ′s and P ′t are the disjoint subpaths of P ′ containing the

first and the last d arcs of P ′ respectively, if |P ′| > 2d.

Proof. The proof is by induction on d. For d = 0, the construction is easy: If s = t
introduce the zero length path {s} into R≤2d. Otherwise set R≤2d = ∅. In any case
let R>2d contain a single pair (Ps, Pt) with Ps and Pt being zero length paths containing
only vertices s and t respectively. This construction is correct since every s → t-path
starts in s and ends in t and a zero length path does only exist (and is unique) if s = t.

Suppose that d > 0, and that the statement of the lemma holds for d − 1. We
start with R≤2d = R>2d = ∅. If s = t or s and t are adjacent, then we introduce to
R≤2d the path of length 0 or 1, respectively. Afterwards, let us invoke the algorithm
of Lemma 3.6 on X = N+(s) and Y = N−(t). For every pair (s′, t′) with s′ ∈ X ′

and t′ ∈ Y ′, let us use the induction hypothesis and invoke our algorithm on the
directed graph G − {s, t}, vertices s′, t′, and integers k and d − 1 to enumerate the
collections R′≤2(d−1) and R′>2(d−1). We add to R≤2d all paths obtained by extending a
path P ∈ R′≤2(d−1) into sP t. Moreover, we add to R>2d all pairs obtained by extending
a pair (P ′s, P ′t) ∈ R′>2(d−1) to (sP ′s, P ′t t).

To prove that the resulting collections R≤2d and R>2d satisfy the requirements,
consider a path P disjoint from an arbitrary set S ⊆ V (G) of size at most k. If P has
length 0 or 1, we introduced this path into R≤2d and are done. Otherwise, let s′ and t′
be the neighbors of s and t on P , respectively. As |P | ≥ 2, P [s′, t′] is a subpath of P
and therefore disjoint from S. Moreover, it is disjoint from s and t by definition. By
choice of X ′ and Y ′ (see Lemma 3.6), there is an x → y-path Q in G − (S ∪ {s, t})
with x ∈ X ′ and y ∈ Y ′. Therefore, by the induction hypothesis, there is a path Q′

in G − (S ∪ {s, t}) such that either Q′ ∈ R′≤2(d−1) or (Q′s, Q′t) ∈ R′>2(d−1), where Q′s
and Q′t contain the first and last d− 1 arcs of Q′, respectively.
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In the first case, sQ′t is an s → t-path in G − S which we introduced to R≤2d. In
the second case, (sQ′s, Q′tt) will appear in R>2d and satisfy the requirements.

It can be proven inductively that R1 and R2 have size 2O(kd). The overall run-time
for their construction is 2O(kd) poly(n).

Lemma 3.16. Let G be a directed graph with two vertices s, t and let k, ℓ be integers
such that cf(G − {s, t}) ≤ ℓ. Then in time 2O(kℓ+k2 log k) · poly(n), we can compute
a collection Q of 2O(kℓ+k2 log k) log2 n closed walks in G, each containing both s and t,
such that the following holds:
if S ⊆ V (G) is a set of at most k vertices in G such that cf(G− S) ≤ ℓ and G− S has
a closed walk containing both s and t, then there is a closed walk in Q disjoint from S.

Proof. We first compute a collection Ps,t of s → t-paths. Let us use the algorithm of
Lemma 3.15 with directed graph G and d = ℓ to compute the collection R≤2ℓ and R>2ℓ.
Let us introduce every path in R≤2ℓ into Ps,t. We will introduce further paths into
Ps,t based on R>2ℓ the following way. For every (Ps, Pt) ∈ R>2ℓ with x ∈ V (Ps) and
y ∈ V (Pt), if x and y are in the same strongly connected component C of G − {s, t},
invoke the algorithm of Theorem 3.4 to obtain a collection Px,y,k. For each Z ∈ Px,y,k,
we have that Ps[s, x] ◦ Z ◦ Pt[y, t] forms an s → t-walk Z∗. Thus, we can for every
Z ∈ Px,y,k introduce an s → t-path using only the vertex set of Z∗ into Ps,t. Observe
that the size of Ps,t obtained this way can be bounded by 2O(kℓ+k2 log k) logn.

We repeat a similar construction step with the roles of s and t reversed, to obtain
a collection Pt,s of t→ s-paths. Then for every choice of Ps,t ∈ Ps,t and Pt,s ∈ Pt,s, we
introduce the concatenation of Ps,t and Pt,s into Q. Clearly, every member of Q is a
closed walk containing both s and t, and the size of Q is 2O(kℓ+k2 log k) log2 n.

To prove the correctness of the construction, suppose that S is a set of at most k
vertices such that cf(G− S) ≤ ℓ and G− S has a closed walk containing both s and t.
This means that there is an s→ t-path Ps,t and a t→ s-path Pt,s, both disjoint from S.
We claim that both Ps,t and Pt,s contain paths disjoint from S. If this is true, then it
follows by construction that Q contains a closed walk disjoint from S.

Let us prove that Ps,t contains a path disjoint from S (the statement for Pt,s follows
symmetrically). As there is an s→ t-path Ps,t disjoint form S by Lemma 3.15, there is
an s→ t-path Q such that either Q in R≤2ℓ ⊆ Ps,t or (Qs, Qt) ∈ R>2ℓ with Qs and Qt
being the subpaths of its first and last ℓ arcs respectively. In the first case, we have that
Q ∈ Ps,t and are done. Otherwise, consider the last vertex x of Qs and the first vertex
y of Qt. Then Q[x, y] is a certificate that there is an x→ y-path in (G− {s, t})− S.

We want to argue that x and y are in the same strongly connected component of
G−{s, t}. Consider the path Pt,s. As both Q and Pt,s exist in G−S the closed walk W
they form must contain no cycle of length greater than ℓ. Therefore, the path Qs must
be intersected by Pt,s outside of s, as otherwise the cycle in W containing the segment
Qs has length greater than ℓ. Let x′ be the last vertex of Pt,s−s that intersects Qs. By
the same argument, Qt must be intersected by Pt,s− t. Let y′ the first vertex of Pt,s− t
that intersects Qt. Then Q[x′, y′] ◦Pt,s[y′, x′] is a closed walk in G−{s, t} containing x
and y. Therefore, x and y are in the same strongly connected component of G−{s, t}.

Then, by choice of Px,y,k, there is a path Z ∈ Px,y,k that is disjoint from S, and
we have extended Z to Z∗ by adding Ps and Pt to it and then introduced it into Ps,t.
As Z, Ps, and Pt are all disjoint from S, it follows that Ps,t contains a path disjoint
from S.
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Lemma 3.17. Let G be a strongly connected, directed graph, T ⊆ V (G) and k, ℓ ∈
Z≥0 with cf(G − T ) ≤ ℓ. Then in time 2O(kℓ+k2 log k) poly(n), we can find a set Q of
|T |22O(kℓ+k2 log k) log2 n closed walks with the following property:

If there is a set S ⊆ V (G) of size at most k with cf(G − S) ≤ ℓ and there are two
vertices of T in the same strongly connected component of G− S then there is a closed
walk in Q ∈ Q containing two vertices of T that is disjoint from S.

Proof. We construct Q the following way. For every pair s, t ∈ T , we invoke the
algorithm on Lemma 3.16 in G− (T \{s, t}) and vertices s, t to obtain a collection Qs,t.
Moreover, we invoke for every ordered pair s, t ∈ T Theorem 3.12 to obtain a k-
representative set of s → t-paths R≤ℓs,t of length at most ℓ. For this it is enough to
invoke Theorem 3.12 on the subgraph where every vertex is at distance at most ℓ
from s. The collection Q will be the union of the

(|T |
2
)

collections Qs,t and all |T |2ℓ2k
closed walks of the form Rs,t ◦Rt,s with Rp,q ∈ R≤ℓp,q.

To prove the correctness, suppose that G−S has a strongly connected component C
containing at least two vertices of T . This means that there is a closed walkR containing
at least two vertices of T ; let us choose R such that |T ∩ V (R)| is at least two, and
subject to that, R is of minimum length. If R contains exactly two vertices s, t of T ,
then Lemma 3.16 guarantees that a member of Q is disjoint from S. Suppose that
R contains a set T0 of at least three vertices of T . If R is a simple cycle, then it
has length at most ℓ as cf(G − S) ≤ ℓ. This means that there is an s → t-path Ps,t
and a t → s-path Pt,s of length at most ℓ in G − S. By choice of the R≤ℓp,q, we
have we introduced a closed walk Rs,t ◦ Rt,s containing s and t into Q that is disjoint
from S.

Now assume that R is not a simple cycle. Then, there is a vertex x ∈ V (R) that
is visited at least twice during the walk, meaning that the walk can be split into two
closed walks R1 and R2, meeting at x (this is true even if R visits x more than twice).
As |T ∩V (R)| ≥ 3, we can assume without loss of generality that R1 visits at least two
vertices of T . This means that R1 visits at least two vertices of T , but is a strict subset
of R, contradicting the minimal choice of R.

3.1.4 Important Ranged C-Deletion Separator

In this section we consider the W -Ranged C-Deletion Separator problem. Similar
to to the C-Deletion problem, we assume a fixed graph class C that is given, but not
part of the input to our problem. The input to our problem then consists of a directed
graph G, three vertex sets W,X, Y ⊆ V (G) with W ⊆ X, and an integer k ∈ Z≥0.
Our goal is to compute a pair of vertex sets (D,S) such that S is an inclusion-wise
minimal X → Y -separator and the graph G[R+

G−(D∪S)(W )] lies in C. Meanwhile k is
a size bound on the total size of the two sets. We call such pairs W -ranged C-deletion
X → Y -separators or short ranged deletion separators.

Definition 3.18. Let G be a directed graph, let W,X, Y ⊆ V (G) be three vertex sets
with W ⊆ X and let C be a graph class. A W -ranged C-deletion X → Y -separator is a
pair (D,S) with D,S ⊆ V (G) \ (W ∪X ∪ Y ) such that S is an inclusion-wise minimal
X → Y -separator and G[R+

G−(D∪S)(W )] ∈ C. The size of (D,S), denoted by |(D,S)|,
is defined as |D|+ |S|.
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Note that C-deletion problems can be turned into W -Ranged C-Deletion Sepa-
rator problems by adding a new vertex w with forward arcs to all original vertices and
apply the same modification to every graph in C. Choosing W = X = {w} and Y = ∅
then yields an equivalent instance. As we do not know how to solve C-Deletion in
general, we assume we are given an oracle for W -Ranged C-Deletion, i.e. for an in-
stance (G, k,W ) finding a set D ⊆ V (G)\W with |D| ≤ k such that G[R+

G−D(W )] ∈ C.
This is exactly the remaining problem after the set S has been fixed. Unfortunately,
for general graph classes C, it is not clear how the choice of S interacts with D. We
therefore restrict ourselves to hereditary graph classes C, i.e. classes for which if G ∈ C
any subgraph of G also lies in C. For these graph classes finding some W -ranged C-
deletion X → Y -separator is relatively straight forward (given the above mentioned
oracle). The main observation is the following.
Lemma 3.19. Let G be a directed graph, let W,X, Y ⊆ V (G) be three vertex sets
with W ⊆ X and let C be a hereditary graph class. Then for any W -ranged C-deletion
X → Y -separator (D,S) and any inclusion-wise minimal X → Y -separator S′ with
R+
G−S′(X) ⊆ R+

G−S(X), we have that for D′ = D ∩ R+
G−S′(W ) the set (D′, S′) is also

an W -ranged C-deletion X → Y -separator.

Proof. We know that S′ is an inclusion-wise minimal X → Y -separator. Thus, for
(D′, S′) to be a W -ranged C-deletion X → Y -separator, we only have to check that
G[R+

G−(D′∪S′)(W )] ∈ C. For this note that by definition of D′ we have

G[R+
G−(D′∪S′)(W )] = G[R+

G−(D∪S′)(W )].

Moreover, by definition of R+
G−S′(W ) we have for every v ∈ R+

G−S′(W ) that there is an
W → v-path in R+

G−S′(W ) ⊆ R+
G−S′(X) ⊆ R+

G−S(X).
This implies R+

G−S′(W ) ⊆ R+
G−S(W ). Thus, we have

G[R+
G−(D′∪S′)(W )] = G[R+

G−(D∪S′)(W )] = G[R+
G−D(W ) ∩R+

G−S′(W )]

which is a subgraph of G[R+
G−D(W ) ∩ R+

G−S(W )] = G[R+
G−(D∪S)(r)] ∈ C. As C is

hereditary, this implies G[R+
G−(D′∪S′)(W )] ∈ C.

Lemma 3.19 leads to the following approach for solving W -Ranged C-Deletion
Separator: enumerate all X → Y -separators S of size at most k, which inclusion-
wise minimize R+

G−S(X) among all X → Y -separators of smaller or equal size. I.e.
enumerate all X → Y -separators S of size at most k for which there is no X → Y -
separators S′ with R+

G−S′(X) ⊊ R+
G−S(X) and |S′| ≤ |S|, and there is no subset of

S that is an X → Y -separator. Note that these are exactly the important Y → X-
separators in the graph ←−G , where every arc is reversed. Then call an oracle for W -
Ranged C-Deletion on (G[R+

G−S(W )], k−|S|, r). If it returns a set D, we know that
(D,S) is a ranged deletion separator as

G[R+
G−(D∪S)(W )] = (G[R+

G−S(W )])[R+
G[R+

G−S(W )]−D(X)].

On the other hand, if there is a solution we have that by Lemma 3.19 there is also a
solution whose separator inclusion-wise minimizes R+

G−S(X). Thus if none of the calls
returns a set D, we return truthfully that the instance has no solution.
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We now want to tackle the opposite problem. Namely, inclusion-wise maximiz-
ing R+

G−S(X) among all ranged deletion separators (D,S). This leads to a definition
similar to important separators.

Definition 3.20. Let G be a directed graph, let W,X, Y ⊆ V (G) be three vertex sets
with W ⊆ X and let C be a graph class. An W -ranged C-deletion X → Y -separator
(D,S) is said to dominate another W -ranged C-deletion X → Y -separator (D′, S′)
if R+

G−S(X) ⊆ R+
G−S′(X), |(D,S)| ≤ |(D′, S′)| and the inclusion or inequality is strict.

We call an W -ranged C-deletion X → Y -separator important if it is not dominated
by any other W -ranged C-deletion X → Y -separator.

We call two W -ranged C-deletion X → Y -separators (D,S) and (D′, S′) range
equivalent if R+

G−S(X) = R+
G−S′(X). Let DS be some subset of the ranged C-deletion

X → Y -separators of G. The range equivalence classes of DS are the equivalence
classes of DS formed by the “range equivalence” equivalence relation.

Note that for W being the empty set and C including the empty graph, this no-
tion generalizes important X → Y -separators. Also note that there may exist range
equivalent important ranged deletion separators if there are several solutions to the
W -Ranged C-Deletion problem in G[R+

G−S(r)] of the same (minimum) size. We
now want to find at least one important ranged deletion separators out of every range
equivalent class. In this case we cannot simply push S towards Y (making it an im-
portant X → Y -separator) as this may turn the W -Ranged C-Deletion problem
on G[R+

G−S(W )] unsolvable (and thus there is no ranged deletion separator contain-
ing this important separator). Our approach is to focus our attention on minimum
X → Y -separators Smin and depending on whether there is a ranged deletion separator
(D,Smin) refine how potential important deletion separators could look like. The key
tool to refine our search is the following lemma.

Lemma 3.21. Let G be a directed graph, let W,X, Y ⊆ V (G) be three vertex sets with
W ⊆ X and let C be an hereditary graph class. Let (D⋆, S⋆) be an important W -ranged
C-deletion X → Y -separator. If S⋆ is an X ∪ {x} → Y ∪ {y}-separator for some
x ∈ R+

G−S⋆(X) and y ∈ V (G), then (D⋆, S⋆) is also an important W -ranged C-deletion
X ∪ {x} → Y ∪ {y}-separator.

Proof. First note that we still have W ⊆ X ∪ {x}. Suppose that the statement does
not hold. Then either

• S⋆ is not an inclusion-wise minimal X ∪ {x} → Y ∪ {y}-separator,

• G[R+
G−(D⋆∪S⋆)(W )] /∈ C, or

• (D⋆, S⋆) is dominated by a W -ranged C-deletion X ∪ {x} → Y ∪ {y}-separator.

We can rule out G[R+
G−(D⋆∪S⋆)(W )] /∈ C as (D⋆, S⋆) is an important W -ranged C-

deletion X → Y -separator. Moreover, any X ∪{x} → Y ∪{y}-separator is an X → Y -
separator. By inclusion-wise minimality of S⋆ as X → Y -separator, this implies that it
is inclusion-wise minimal as X∪{x} → Y ∪{y}-separator. Thus, (D⋆, S⋆) is dominated
by another W -ranged C-deletion X ∪ {x} → Y ∪ {y}-separator (D′, S′).

As S′ is an inclusion-wise minimal X ∪ {x} → Y ∪ {y}-separator, it includes an
inclusion-wise minimal X → Y -separator S′′ ⊆ S′. Then for D′′ = D′ ∪ (S′ \ S′′), we
have that D′ ∪ S′ = D′′ ∪ S′′, implying G[R+

G−(D′′∪S′′)(W )] = G[R+
G−(D′∪S′)(W )] ∈ C.
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Thus, (D′′, S′′) is a W -ranged C-deletion X → Y -separator. By choice of D′′ we have
that |(D′′, S′′)| = |(D′, S′)| ≤ |(D⋆, S⋆)|. Suppose for a moment that R+

G−S′(X∪{x}) =
R+
G−S′(X) holds. Then, we have by x ∈ R+

G−S⋆(X) that

R+
G−S⋆(X) = R+

G−S⋆(X ∪ {x}) ⊆ R+
G−S′(X ∪ {x}) = R+

G−S′(X) ⊆ R+
G−S′′(X).

Moreover, either this range inclusion or the size inequality is strict by (D′, S′) dominat-
ing (D⋆, S⋆) as W -ranged C-deletion X ∪ {x} → Y ∪ {y}-separator. This then implies
that (D′′, S′′) dominates (D⋆, S⋆) as W -ranged C-deletion X → Y -separator. This
would give us a contradiction to the importance of (D⋆, S⋆) as W -ranged C-deletion
X → Y -separator.

So it remains to show R+
G−S′(X ∪ {x}) = R+

G−S′(X). As x ∈ R+
G−S⋆(X) we have

that there is an X → x-path in G − S⋆ completely contained in R+
G−S⋆(X). By

R+
G−S⋆(X) = R+

G−S⋆(X ∪ {x}) ⊆ R+
G−S′(X ∪ {x}), this path also exists in G − S′

and thus x ∈ R+
G−S′(X). This then shows R+

G−S′(X ∪ {x}) = R+
G−S′(X).

We first analyze the case where there is a ranged deletion separator (D,Smin).

Lemma 3.22. Let G be a directed graph, let W,X, Y ⊆ V (G) be three vertex sets
with W ⊆ X, let C be an hereditary graph class and let k ∈ Z≥0 be a non-negative
integer. Let Smin be a minimum X → Y -separator for which an W -ranged C-deletion
X → Y -separator (D,Smin) of size at most k exists. Then for any important W -
ranged C-deletion X → Y -separator (D⋆, S⋆) of size k, we have that either S⋆ = Smin
or (D⋆, S⋆) is an important W -ranged C-deletion X ∪ {v} → Y -separator for some
v ∈ Smin ∩R+

G−S⋆(X).

Proof. Suppose for sake of contradiction that the statement does not hold. First note
that R+

G−S⋆(X) cannot be a strict subset of R+
G−Smin

(X) as otherwise (D,Smin) would
dominate (D⋆, S⋆) (note that |(D,Smin)| ≤ k = |(D⋆, S⋆)| ), a contradiction to the
importance of the latter. By inclusion-wise minimality of the X → Y -separator
in a W -ranged C-deletion X → Y -separator, we have that S⋆ = N+(R+

G−S⋆(X))
and Smin = N+(R+

G−Smin
(X)). Thus, the ranges cannot be equal, as then Smin =

N+(R+
G−Smin

(X)) = N+(R+
G−S⋆(X)) = S⋆, in contradiction to our assumption. This

implies that we have some vertex z ∈ R+
G−S⋆(X) \ R+

G−Smin
(X). For this vertex

there is an x → z-path P in G − S⋆ for some x ∈ X. Let v be the first vertex in
R+
G−S⋆(X) \ R+

G−Smin
(X) of P , which exists as z is such a vertex. Then P [x, v] shows

that v ∈ N+(R+
G−Smin

(X)) = Smin.
If Y = ∅, we have that all minimum X ′ → Y -separators are empty. Then all

W -ranged C-deletion X ′ → Y -separator have the form (D, ∅), implying Smin = S⋆.
Otherwise, apply Lemma 3.21 to x = v and an arbitrary y ∈ Y . As S⋆ is an X ∪{v} →
Y -separator by v ∈ R+

G−S⋆(X), we get that (D⋆, S⋆) is an important W -ranged C-
deletion X ∪ {v} → Y -separator.

Lemma 3.23. Let G be a directed graph, let W,X, Y ⊆ V (G) be three vertex sets with
W ⊆ X, let C be an hereditary graph class and let k ∈ Z≥0 be a non-negative integer.
Let Smin a minimum X → Y -separator for which there is no W -ranged C-deletion
X → Y -separator (D,Smin) of size at most k. Then for any important W -ranged C-
deletion X → Y -separator (D⋆, S⋆) of size k, we have that (D⋆, S⋆) is an important
W -ranged C-deletion X → Y ∪ {y}-separator for some y ∈ Smin.
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Proof. For the statement to hold, we have to show that S⋆ is an inclusion-wise minimal
X → Y ∪ {y}-separator and that no W -ranged C-deletion X → Y ∪ {y}-separator
dominates (D⋆, S⋆). We start by showing, that S⋆ is indeed an X → Y ∪{y}-separator
for some y ∈ Smin. If there is a y ∈ Smin \ (S⋆∪R+

G−S⋆(X)), we are done. Otherwise, we
have that Smin ⊆ S⋆ ∪R+

G−S⋆(X), which implies Smin ∪R+
G−Smin

(X) ⊆ S⋆ ∪R+
G−S⋆(X).

Note that by inclusion-wise minimality of S⋆ and Smin as X → Y -separators, we have
S⋆ = N+(R+

G−S⋆(X)) and Smin = N+(R+
G−Smin

(X)). So we can subtract the out-
neighborhood on both sides of the inclusion and get R+

G−Smin
(X) ⊆ R+

G−S⋆(X). In this
case Lemma 3.19 certifies us that there is a W -ranged C-deletion X → Y -separator
(D,Smin) of size ≤ k, a contradiction. So we have that S⋆ is indeed an X → Y ∪ {y}-
separator for some y ∈ Smin.

If X = ∅, we have that all minimum X → Y ∪ {y}-separators are empty. Then all
W -ranged C-deletion X → Y ∪{y}-separator have the form (D, ∅), implying Smin = S⋆.
But then there is W -ranged C-deletion X → Y -separator (D⋆, Smin) of size |D⋆| ≤ k,
a contradiction. Otherwise, apply Lemma 3.21 to y and an arbitrary x ∈ X. As S⋆
is an X → Y ∪ {y}-separator, and by x ∈ X ⊆ R+

G−S⋆(X), we get that (D⋆, S⋆) is an
important W -ranged C-deletion X → Y ∪ {y}-separator.

With these lemmas in place we can formulate our main result.

Theorem 3.24. Let G be a directed graph, let W,X, Y ⊆ V (G) be three vertex sets
with W ⊆ X, let C be an hereditary graph class and let k ∈ Z≥0 be a non-negative
integer. Then there are at most 4k log k range equivalence classes among the important
W -ranged C-deletion X → Y -separators of size exactly k.

Moreover, for an instance (G,W,X, Y, k) we can find a representative of every range
equivalence class of important W -ranged C-deletion X → Y -separators of size exactly
k in time

4k log k poly(n) + 4k log kn ·AC-Deletion,

where AC-Deletion is the maximum run-time of an oracle for W -ranged C-Deletion
over all subgraphs G[R+

G−S(W )] of G, where S is some X → Y -separator.

Note that the maximum pf the oracle run-times is well defined as we are maximising
over a finite number of choices for S. The idea for the proof is to take an inclusion-wise
maximum chain of minimum X → Y -separators and use the position where ranged
separators stop existing to refine the search by adding vertices to X and Y by the help
of Lemma 3.21.

Proof of Theorem 3.24. We are going to prove the following stronger statement instead.
The number of range equivalence classes of the important W -ranged C-deletion X → Y -
separators of size exactly k in a graph G where the minimum X → Y -cut has size
λG(X,Y ) is at most{

0 if k < λG(X,Y ),(
(λG(X,Y ))2 + 1

)k−λG(X,Y ) otherwise.

This implies the original statement as for k < λG(X,Y ), we have that 0 ≤ 4k log k,
for k = λG(X,Y ), we have

(
(λG(X,Y ))2 + 1

)k−λG(X,Y ) = 1 ≤ 4k log k and for k >

λG(X,Y ), we have
(
(λG(X,Y ))2 + 1

)k−λG(X,Y ) ≤ (k2)k = 4k log k.
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We are going to prove the statement by induction over k − λG(X,Y ). However,
before we begin the induction we take care of the case λG(X,Y ) = 0. As for any
W -ranged C-deletion X → Y -separator (D,S) we must choose S as inclusion-wise
minimal X → Y -separator and the empty set is an X → Y -separator, we have that all
ranged deletion separators have the form (D, ∅). Thus, for any possible range deletion
separator we have that the range with respect to S is R+

G−∅(X) and thus they are all
range equivalent. We can check whether such a deletion separator exists by calling
AC-Deletion on (G[R+

G(W )], k,W ) to find a solution (and on (G[R+
G(W )], k − 1,W ) to

rule out smaller solutions).
We now move on to the induction over k−λG(X,Y ). If k−λG(X,Y ) < 0, we have

that k < λG(X,Y ) and thus there are no W -ranged C-deletion X → Y -separators of
size at most k. This shows the base case.

Now assume that the statement holds for all (X ′, Y ′, k′) with k′ − λG(X ′, Y ′) <
k−λG(X,Y ). As we already covered the case λG(X,Y ) = 0, we can assume λG(X,Y ) >
0. Now take an inclusion-wise maximal chain of minimum X → Y -separators, i.e.
inclusion-wise maximal family of vertex sets X ⊆ U1 ⊆ . . . ⊆ Up ⊆ V (G) \Y , such that
Si = N+(Ui) is an X → Y -separator of size |Si| = λG(X,Y ).

We now call for each Si our algorithm AC-Deletion on (G[R+
G−Si

(W )], k − |Si|,W ).
If it finds a solution Di for some Si, we know that (Di, Si) is a W -ranged C-deletion
X → Y -separator. There is either a solution (Dp, Sp), no solution of the form (D1, S1),
or an index 1 ≤ i < p such that there is a solution (Di, Si), but no solution for i+ 1.

Case 1: There is a solution (Dp, Sp).
Consider the minimum X → Y -separator Sp. By Lemma 3.22 we have that for

any important W -ranged C-deletion X → Y -separator (D⋆, S⋆) of size k either S⋆ = Sp
holds or (D⋆, S⋆) is an important W -ranged C-deletion X∪{x} → Y -separator for some
x ∈ Sp. If S⋆ = Sp we have that (Dp, Sp) is a range equivalent solution and we recover
it. Otherwise, we branch on the vertices x ∈ Sp. Note that for every x ∈ Sp, we have
that a minimum X∪{x} → Y -separator Smin = N+(Umin) is also an X → Y -separator.
By uncrossing we get that

|Smin|+ |Sp| ≥ |N+(Umin ∪ Up)|+ |N+(Umin ∩ Up)|.

As N+(Umin ∩Up) is an X → Y -separator and Sp is a minimum X → Y -separator,
we can subtract them from their sides and get

|Smin| ≥ |N+(Umin ∪ Up)|.

Now N+(Umin ∪ Up) is an X → Y -separator with Umin ∪ Up ⊇ Up ∪ {x} ⊋ Up.
By inclusion-wise maximality of our minimum X → Y -separator chain, we have that

N+(Umin ∪ Up) is not a minimum separator and thus has size at least λG(X,Y ) + 1.
This implies λG(X ∪{x}, Y ) = |Smin| ≥ λG(X,Y ) + 1. Thus, we can find an important
W -ranged C-deletion X → Y -separator range equivalent to (D⋆, S⋆) by finding one of
every range equivalent class of important W -ranged C-deletion X∪{x} → Y -separators.
For these we have k − λG(X ∪ {x}, Y ) < k − λG(X,Y ) and we can apply induction.

Case 2: There is no solution of the form (D1, S1).
Consider the minimum X → Y -separator S1. By Lemma 3.23 for any important

W -ranged C-deletion X → Y -separator (D⋆, S⋆) we have that (D⋆, S⋆) is an important
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W -ranged C-deletion X → Y ∪{y}-separator for some y ∈ S1. We branch on the vertices
y ∈ S1. Note that for every y ∈ S1, we have that a minimum X → Y ∪ {y}-separator
Smin = δ(Umin) is also an X → Y -separator. By uncrossing we get that

|Smin|+ |S1| ≥ |N+(Umin ∪ U1)|+ |N+(Umin ∩ U1)|.

As N+(Umin ∪U1) is an X → Y -separator and S1 is a minimum X → Y -separator,
we can subtract them from their sides and get

|Smin| ≥ |N+(Umin ∩ U1)|.

Now N+(Umin ∩ U1) is an X → Y -separator with Umin ∩ U1 ⊆ U1 \ {y} ⊊ U1.
By inclusion-wise maximality of our minimum X → Y -separator chain, we have that
N+(Umin ∩ U1) is not a minimum separator and thus has size at least λG(X,Y ) + 1.
This implies λG(X,Y ∪ {y}) = |Smin| ≥ λG(X,Y ) + 1. Thus, we can find an important
W -ranged C-deletion X → Y -separator range equivalent to (D⋆, S⋆) by finding one of
every range equivalent class of important W -ranged C-deletion X → Y ∪{y}-separators.
For these we have k − λG(X,Y ∪ {y}) < k − λG(X,Y ) and we can apply induction.

Case 3: For some i ∈ {1, . . . , p − 1} there is a solution (Di, Si) but no solution of
the form (Di+1, Si+1).

We want to recover a fixed important W -ranged C-deletion X → Y -separator
(D⋆, S⋆) or an important W -ranged C-deletion X → Y -separator range equivalent to
it.

Consider the minimumX → Y -separator Si. By Lemma 3.22 we either have S⋆ = Si
or (D⋆, S⋆) is an important W -ranged C-deletion X ∪ {x} → Y -separator for some
x ∈ Si ∩R+

G−S⋆(X). If S⋆ = Si we have that (Di, Si) is a range equivalent solution and
we recover it. Otherwise, we branch on the vertices x ∈ Si. For the right choice of x
we have x ∈ Si ∩R+

G−S⋆(X) implying R+
G−S⋆(X ∪ {x}) = R+

G−S⋆(X).
Consider the minimum X → Y -separator Si+1. By Lemma 3.23 we have that

(D⋆, S⋆) is an importantW -ranged C-deletionX → Y ∪{y}-separator for some y ∈ Si+1.
We branch on the vertices y ∈ Si+1, for |Si| · |Si+1| = (λG(X,Y ))2 branches total.

Now S⋆ is an X∪{x} → Y ∪{y}-separator. Then Lemma 3.21 implies that (D⋆, S⋆)
is an important W -ranged C-deletion X ∪ {x} → Y ∪ {y}-separator.

Consider a minimum X ∪ {x} → Y ∪ {y}-separator Smin = δ(Umin). Note that any
X ∪{x} → Y ∪{y}-separator is an X → Y -separator. By uncrossing twice we get that

|Smin|+ |Si|+ |Si+1|

≥ |N+(Umin ∪ Ui)|+ |N+(Umin ∩ Ui)|+ |Si+1|

≥ |N+((Umin ∪ Ui) ∩ Ui+1)|+ |N+(Umin ∪ Ui ∪ Ui+1)|+ |N+(Umin ∩ Ui)|.

As N+(Umin∩Ui) and N+(Umin∪Ui∪Ui+1) are X → Y -separators and Si and Si+1
are minimum X → Y -separators, we can subtract them from their sides and get

|Smin| ≥ |N+((Umin ∪ Ui) ∩ Ui+1)|.

Now N+((Umin ∪ Ui) ∩ Ui+1) is an X → Y -separator with

Ui ⊊ Ui ∪ {x} ⊆ (Umin ∪ Ui) ∩ Ui+1) ⊆ Ui+1 \ {y} ⊊ Ui+1.
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By inclusion-wise maximality of our minimum X → Y -separator chain, we have
that N+((Umin ∪ Ui) ∩ Ui+1) is not a minimum X → Y -separator and thus has size
at least λG(X,Y ) + 1. This implies λG(X ∪ {x}, Y ∪ {y}) = |Smin| ≥ λG(X,Y ) + 1.
Therefore, we can find an important W -ranged C-deletion X → Y -separator which is
range equivalent to (D⋆, S⋆) by finding one of every range equivalent class of important
W -ranged C-deletion X ∪ {x} → Y ∪ {y}-separators. Here we can apply induction by

k − λG(X ∪ {x}, Y ∪ {y}) < k − λG(X,Y ).

Note that in every of these cases we recovered at most one ranged deletion separator
and created at most (λG(X,Y ))2 branches with decreased k − λG(X ′, Y ′). By above
argument we have recovered an important W -ranged C-deletion X → Y -separator out
of every range equivalence class. So it remains to bound number of recovered ranged
deletion separators and number of oracle calls. Note that the number of oracle calls is
bounded by the number of recovered ranged deletion separators times n. Thus, we try
to bound the number of recovered ranged deletion separators.

If k = λG(X,Y ) each of the branches had k− λG(X ′, Y ′) < 0 and thus returned no
ranged deletion separator. In this case our upper bound on recovered range deletion
separators is 1 =

(
(λG(X,Y ))2 + 1

)0 =
(
(λG(X,Y ))2 + 1

)k−λG(X,Y ), so our induction
hypothesis holds. Otherwise, by induction, the number recovered range deletion sepa-
rators is at most

1 + (λG(X,Y ))2 ·
(
(λG(X,Y )− 1)2 + 1

)k−λG(X,Y )−1
.

By (λG(X,Y )− 1)2 + 1 ≥ 1 and k − λG(X,Y )− 1 ≥ 0, we have that(
(λG(X,Y )− 1)2 + 1

)k−λG(X,Y )−1
≥ 1.

This implies

1 + (λG(X,Y ))2 ·
(
(λG(X,Y )− 1)2 + 1

)k−λG(X,Y )−1

≤
(
(λG(X,Y ))2 + 1

)
·
(
(λG(X,Y )− 1)2 + 1

)k−λG(X,Y )−1

≤
(
(λG(X,Y ))2 + 1

)k−λG(X,Y )
.

Finally, note that we are only passing subgraphs G[R+
G−S(W )] of G to our oracle,

where S is some X → Y -separator.
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3.2 The Algorithm

In this section we will present our fixed-parameter algorithm for hitting all long cycles
of the input directed graph. Recall the formal problem definition:

Directed Long Cycle Hitting Set

Instance: A graph G and two integers k, ℓ ∈ Z≥0.

Task: Find a set S ⊆ V (G) of size at most k such that
every directed cycle of G− S has length at most ℓ
or decide that no such set exists.

3.2.1 Outline of the Algorithm

Our algorithm performs a sequence of reductions to special cases of the original Di-
rected Long Cycle Hitting Set problems. Each reduction is presented in its own
section. All these sections are modular and just need the problem formulation at the
end of the previous section to understand. Furthermore, every section ends with a
theorem summarizing the findings of the section.

The overall algorithm can be described as follows: The first section starts with
the standard arguments of disjoint compression. This allows us to solve the easier
problem where we are already given a solution T and search for a smaller solution S.
Moreover, we discuss how to verify solution such that it suffices to find a bounded
size set intersecting some solution. In the second section, Section 3.2.3, we then lay
the crucial foundation of our algorithm. By applying a graph structural contraction
argument we reduce to instances where our given solution T has at most one vertex in
every strongly connected component of G− S.

The resulting problem bears similarities to the Skew Separator problem which
appears naturally in the DFVS algorithm by Chen et al. [CLL+08]. There it was solved
by a pushing argument involving important separators. For us important separators will
not do the trick, leading to the definition of hitting separators. We use the technique of
W -ranged C-deletion separators to reduce to the special case of the Directed Long
Cycle Hitting Set compression variant, where T has size exactly one.

Afterwards, in Section 3.2.5, we use this together with the shadow covering tech-
nique to reduce to strongly connected, directed graphs where every arc lies on a short
cycle (and still |T | = 1). Eventually, in Section 3.2.6, we consider the structure of
strongly connected components of G− T to reduce to the Directed Multiway Cut
which is known to be solvable in 2O(k2) poly(n).

3.2.2 Compression Intersection

In this subsection we apply the general techniques of disjoint compression and compres-
sion intersection. This way we get instances where we are given an existing solution T
for which we have to find a disjoint solution S. Moreover, we only have to find some
set of bounded size, which intersects such solutions.

In order to apply disjoint compression we have to check whether Directed Long
Cycle Hitting Set is a C-Vertex Deletion problem (see Chapter 1 for the def-
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inition) with a non-empty and hereditary graph class C. The obvious graph class Cℓ
for Directed Long Cycle Hitting Set is the class of all graphs G with cf(G) ≤ ℓ.
The empty graph has no cycles and thus by definition circumference 0. That means
Cℓ contains the empty graph for all ℓ ∈ Z≥0 and thus is non-empty. To see that Cℓ is
hereditary, note that for every subgraph H of a graph G ∈ Cℓ, we have that all cycles
of H exist in G and thus cf(H) ≤ cf(G) ≤ ℓ. By Cℓ being non-empty and hereditary,
we can apply Corollary 2.3 (see Chapter 2) to reduce to the following problem.

Disjoint Directed Long Cycle Hitting Set Compression

Instance: A graph G, a vertex set T ⊆ V (G) and two integers k, ℓ ∈ Z≥0 s.t.
cf(G− T ) ≤ ℓ.

Task: Find a set S ⊆ V (G) \ T with |S| ≤ k and cf(G− S) ≤ ℓ
or decide that no such set exists.

The reduction procedure is summarized in the following lemma.

Lemma 3.25. An instance (G, k, ℓ) of Directed Long Cycle Hitting Set can be
solved in time O(n ·2k+1 ·Adisjoint compression(n, k+1, k)), where Adisjoint compression(n, t, k)
is the run-time of an algorithm for Disjoint Directed Long Cycle Hitting Set
Compression on instances (G′, T ′, k′) with |V (G′)| ≤ n, |T | ≤ t and k′ ≤ k.

Proof. Apply Corollary 2.3 to Cℓ which is hereditary and non-empty.

In the next step we want to apply the compression intersection technique (cf. Chap-
ter 2, Lemma 2.4), where we do not need to find a solution but only need to find a
bounded size set which intersects some solution (given there exists a solution). This
allows us to use statements of the type “either S intersects X or our instance has
property Y ” in the following way. If we can solve the intersection variant on instances
with property Y by returning some set Sintersect, we can solve our original problem by
returning Sintersect ∪X. Let us formulate the intersection variant.

Disjoint Long Cycle Hitting Set Compression Intersection

Instance: A graph G, a vertex set T ⊆ V (G) and two integer k, ℓ ∈ Z≥0 s.t.
cf(G− T ) ≤ ℓ.

Task: Find a vertex set Sintersect ⊆ V (G) such that
if there is a set S ⊆ V (G) \ T with |S| ≤ k and cf(G− S) ≤ ℓ,
then there is such a set S with S ∩ Sintersect ̸= ∅.

In order to apply Lemma 2.4, we need an algorithm to check whether a graph G
fulfills cf(G) ≤ ℓ. For this we use a fixed-parameter algorithm by Zehavi [Zeh16].

Theorem 3.26 ([Zeh16]). There is an algorithm that decides in time 2O(ℓ) · poly(n)
whether an n-vertex directed graph G contains a cycle of length more than ℓ.

Now the disjoint compression intersection technique results in the following lemma.
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Lemma 3.27. Directed Long Cycle Hitting Set can be solved in time

O(2O(ℓ) poly(n)+n·k2k+1(fintersect(n, |T |, k, ℓ))k·Adisjoint compression intersection(n, |T |, k, ℓ)),

where Adisjoint compression intersection(n, t, k, ℓ) is the run-time of an algorithm for Disjoint
Directed Long Cycle Hitting Set Compression Intersection on instances
(G′, T ′, k′) with |V (G′)| ≤ n, |T | ≤ t and k′ ≤ k and fintersect(n, t, k, ℓ) is a size bound
on the set Sintersect output by the algorithm on these instances.

Proof. Apply Lemma 2.4 with the membership oracle of Theorem 3.26 to Lemma 3.25.

3.2.3 Isolation by Contraction

Except for the intersection step, the reductions of the last section have been used by
Chen et al. [CLL+08] in their algorithm for Directed Feedback Vertex Set. The
next key observation in their algorithm for DFVS is that every vertex of T must lie
in their own strongly connected component of G − S. The reason is that for every
directed feedback vertex set S of G, each strongly connected component of G− S is a
single vertex. For Directed Long Cycle Hitting Set, the situation is way more
complicated, as strongly connected components of G − S contain cycles of length up
to ℓ. Moreover, those cycles can concatenate to arbitrarily large strongly connected
components. So it is possible that G−S contains strongly connected components with
more than one vertex of T .

We want to restrict our solution space to solutions S such that every strongly
connected component of G−S contains at most one vertex of T . We call such solutions
isolating long cycle hitting sets.

Definition 3.28. Let G be a directed graph, ℓ ∈ Z≥0 and T ⊆ V (G) be some subset
of vertices. A vertex set U ⊆ V (G) \ T is called isolating long cycle hitting set (with
respect to T ) if cf(G−U) ≤ ℓ and every strongly connected component contains at most
one vertex of T .

To reduce to this solution space, we want to contract (parts of) strongly connected
components with more than one vertex of T to a single vertex. Eventually, after several
contractions, every strongly connected component of G−S contains at most one vertex
of T . A structural result allowing for such contractions is the following lemma:

Lemma 3.29. Let G be a directed graph and let X ⊆ V (G) be such that G[X] is
strongly connected and cf(G[X]) ≤ ℓ. Suppose that the following two properties hold:

1. Every cycle of G has length at most ℓ or length at least ℓ2.

2. For any a, b ∈ X there cannot be both

(a) an a→ b-path Pab of length at least ℓ in G[X]
(b) a b→ a-path Pba of length at most ℓ in G− (X \ {a, b})

Let G/X be the directed graph obtained by contracting X to a single vertex x.

• If cf(G− S) ≤ ℓ for some S ⊆ V (G) \X, then cf(G/X − S) ≤ ℓ.

• If cf(G/X − S′) ≤ ℓ for some S′ ⊆ V (G/X) \ {x}, then cf(G− S′) ≤ ℓ.
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Proof. For Statement 1, suppose that G/X − S has a cycle C of length more than ℓ.
If C does not go through x, then C is a cycle of G disjoint from S. Otherwise, if C
goes through x, then the arcs of C correspond to a walk of G going from some vertex
x1 ∈ X to a vertex x2 ∈ X and having length more than ℓ. If x1 = x2 then this walk is
a cycle of length more than ℓ in G−S, a contradiction. Suppose therefore that x1 ̸= x2,
in which case this walk is a simple path P . As G[X] is strongly connected, there is an
x2 → x1-path Q in G[X]. The paths P and Q create a cycle in G that is disjoint from
S and has length more than ℓ, a contradiction.

For Statement 2, suppose that G−S′ has a cycle C of length greater than ℓ. Let us
choose C such that it has the minimum number of vertices outside X. By assumption,
cycle C cannot be fully contained in X. If C is disjoint from X, then C is a cycle of
G/X disjoint from S′, a contradiction. If C contains exactly one vertex of X, then
there is a corresponding cycle C ′ in the contracted directed graph with the same length
and disjoint from S′, a contradiction. Assume therefore that C contains more than one
vertex of X; let P be an x1 → x2-subpath of C with both endpoints in X and no internal
vertex in X. If P has length more than ℓ, then there is a corresponding cycle C ′ in the
contracted directed graph with the same length and disjoint from S′, a contradiction.
Let v be an arbitrary internal vertex of P and let G⋆ = G[X ∪ V (C) \ {v})]. By the
minimality of the choice of C, we have cf(G⋆) ≤ ℓ. As G⋆[X] = G[X] is strongly
connected, it contains an x2 → x1-path P1. Also, the subpath P2 of C from x1 to x2 is
in G⋆. By property (P1), the length of C is at least ℓ2, hence |P2| = |C| − |P | ≥ ℓ2− ℓ.
Thus, Lemma 3.9 implies that |P1| ≥ |P2|/(ℓ − 1) ≥ ℓ. But then P and P1 contradict
property (2).

To algorithmically use this result we have to make sure its requirements are fulfilled.
This is easy if G has a cycle C with ℓ < |C| < ℓ2. We can detect these cycles in time
2O(ℓ2) · poly(n) by using color coding (see Alon et al. [AYZ95]).

Theorem 3.30 ([AYZ95]). A simple directed cycle of length p in a directed graph G
can be found in time 2O(p)O(nm).

Note that it is crucial for the reported cycles to have length bounded in ℓ. This is
the reason we cannot make use of the algorithm by Zehavi (Theorem 3.26) as the cycle
reported there may have length Ω(n). If there exists a cycle of length > ℓ, any long
cycle hitting set has to intersect it. Also, its length is bounded, so we can return it as
set Sintersect. We need an even larger gap between short and long cycles later on. We
call the cycles we want to delete now “medium-length cycles”.

Definition 3.31. For an integer ℓ ∈ Z≥0 and a directed graph G, a cycle C in G is
called medium-length cycle if the length of C fulfills ℓ < |ℓ(C)| < 2ℓ6.

The other requirement to use Lemma 3.29 is to find a set X with the remaining
properties. To find a suitable set X we build on a tool called “k-representative set of
paths” which has already been introduced in the technical tools section. We will use
the following variant specialized to our needs, which was already proven in the technical
tools section.

Lemma 3.17. Let G be a strongly connected, directed graph, T ⊆ V (G) and k, ℓ ∈
Z≥0 with cf(G − T ) ≤ ℓ. Then in time 2O(kℓ+k2 log k) poly(n), we can find a set Q of
|T |22O(kℓ+k2 log k) log2 n closed walks with the following property:



3.2. THE ALGORITHM 37

If there is a set S ⊆ V (G) of size at most k with cf(G − S) ≤ ℓ and there are two
vertices of T in the same strongly connected component of G− S then there is a closed
walk in Q ∈ Q containing two vertices of T that is disjoint from S.

We now use Lemma 3.17 to find sets suitable for Lemma 3.29. Ideally, we would
like to compute Q as in Lemma 3.17 for our directed graph G and vertex set T and use
the walks inside Q. Alas, we cannot use Lemma 3.29 directly, as the second condition
may not be fulfilled. We handle this issue via the following lemma:

Lemma 3.32. Let I = (G, k, ℓ, T ) be an instance of Disjoint Directed Long Cycle
Hitting Set Compression Intersection. There are two set Sintersect and X with
the following properties. If I has a solution then either

• I contains an isolating long cycle hitting set, or
• a solution of I intersects Sintersect, or
• there is an X ∈ X such that

– G[X] is strongly connected, cf(G[X]) ≤ ℓ, and |X ∩ T | ≥ 2.
– For any a, b ∈ X there cannot be both

1. an a→ b-path Pab of length at least ℓ in G[X],
2. a b→ a-path Pba of length at most ℓ in G− (X \ {a, b})

Moreover, we have |Sintersect|, |X | ≤ |T |22O(kℓ+k2 log k) log2 n and the sets can be com-
puted in 2O(kℓ+k2 log k) · poly(n) time.

Proof. To prove correctness of the algorithm we are about to construct, assume that
the instance (G, k, ℓ, T ) has a solution but does not have an isolating long cycle hitting
set, i.e. for every solution S one of the components of G−S contains two vertices of T .
Otherwise the algorithm may return any sets |Sintersect|, |X | that fulfill the size bounds.

Our algorithm works in two steps. First we create our set X that consists of closed
walks by taking the set Q produced by Lemma 3.17. In a second step we make sure
that the walks in X fulfill the properties we need them to have, by adding vertices to
Sintersect if this is not the case.

Since we assume that G − S contains a strongly connected component with two
vertices of T , we know that there is a closed walk X ∈ X that contains at least two
vertices of T and is disjoint from S. By definition, this walk lies inside one strongly
connected component of G− S and thus has to fulfill cf(G[X]) ≤ ℓ.

Assume in the following we have picked the right walk X. Our algorithm cannot
distinguish this walk and thus applies the procedure to every X ∈ X .

First we remove a walk X if cf(G[X]) > ℓ. It remains to ensure that no paths
Pab and Pba like in the theorem statement exist. Our algorithm then checks for every
a, b ∈ X whether an a → b-path Pab in G[X] of length at least ℓ exists and whether a
b→ a-path Pba in G− (X \ {a, b}) of length at most ℓ exists. This again can be done
by standard color-coding techniques (see Alon et al. [AYZ95]).

If for some a, b ∈ X both paths exists, the closed walk W = Pab ◦ Pba is in fact a
cycle, as the paths only intersect in a and b. As Pab has length at least ℓ, the cycle W
has to be intersected by our solution S. Moreover, V (Pab) ⊆ X ⊆ V (G) \ S, thus we
know that S has to intersect V (Pba), which has size at most ℓ. Thus, we can add V (Pba)
to Sintersect and continue with the next set X ∈ X . This completes the description and
correctness of the algorithm.
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The size bounds can be seen as follows. A bound of |T |22O(kℓ+k2 log k) log2 n on |X |
follows directly from Lemma 3.17. The only things we added to Sintersect were vertex
sets of size ≤ ℓ. This we did once in the first step and once for every element of X .
Thus, the same size bound applies, as the factor of ℓ can be incorporated into the
exponent.

The run-time can be divided in those of the color coding techniques (which take
2O(ℓ) poly(n) time) applied to every X ∈ Q and the run-time of Lemma 3.17. This
gives a combined run-time of 2O(kℓ+k2 log k) · poly(n).

We may use the previous lemma to find sets suitable for contraction by Lemma 3.29.
Note that these contractions reduce the size of T without affecting the size of S. There-
fore, it might occur that T is smaller than the sought after S. But as we search for a
disjoint solution we may not return T as solution.

Now we combine Lemma 3.32, Lemma 3.29, and the elimination of medium-length
cycles into a single algorithm. Afterwards we will be left with the following problem:

Isolating Long Cycle Hitting Set Intersection

Instance: A graph G, a vertex set T ⊆ V (G) and two integer k, ℓ ∈ Z≥0 s.t.
• G has no medium-length cycles,
• cf(G− T ) ≤ ℓ.

Task: Find a vertex set Sintersect ⊆ V (G) such that
if there is an isolating long cycle hitting set S ⊆ V (G) \ T ,
then there is such a set S with S ∩ Sintersect ̸= ∅.

The resulting algorithm using oracle calls to an algorithm for Isolating Long
Cycle Hitting Set Intersection is summarized in the following lemma. Note that
the size bound on the set returned by the oracle does only contribute to the size of the
new solution and not to the run-time of the algorithm.

Lemma 3.33. An instance (G,T, k, ℓ) of Disjoint Directed Long Cycle Hitting
Set Compression Intersection can be solved in time(

|T |2|T |2O(ℓ6+|T |kℓ+|T |k2 log k) log2|T | n
)

(Aisolating(n, |T |, k, ℓ) + poly(n)) ,

where Aisolating(n, t, k, ℓ) denotes the run-time of an algorithm for Isolating Long
Cycle Hitting Set Intersection that is called on instances (G′, T ′, k′, ℓ) with
|V (G′)| ≤ n, |T | ≤ t and k′ ≤ k.

If fisolating(n, t, k, ℓ) is a size bound on the set Sisolating output by the Isolating
Long Cycle Hitting Set Intersection algorithm on these instances, then the set
Sintersect returned has size at most(

|T |2|T |2O(|T |kℓ+|T |k2 log k) log2|T | n
) (

2ℓ6 + fisolating(n, |T |, k, ℓ)
)
.

Proof. If (G,T, k, ℓ) has no long cycle hitting set, we may return any set that fulfills
the size bounds. So assume while arguing for correctness that (G,T, k, ℓ) has a long
cycle hitting set.
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Starting with Sintersect = ∅, we call the following recursive procedure on (G,T, k, ℓ).
Let I ′ = (G′, T ′, k, ℓ) the instance in one of the recursive calls. To argue correctness,
we want that if I ′ has a long cycle hitting set that the final set Sintersect intersects it.
As we do the initial call with (G,T, k, ℓ), this shows correctness.

We start by checking our instance for medium-length cycles via Theorem 3.30. For
every ℓ < p ≤ 2ℓ6, we call the algorithm of Theorem 3.30. If it finds a cycle C, we add
V (C) \ T ′ to Sintersect and return early. This is correct, as any long cycle hitting set of
I ′ needs to contain a vertex of V (C) \ T ′.

Otherwise, G′ has no medium-length cycles. We call Aisolating on (G′, T ′, k, ℓ) and
add the result to Sintersect. So if the instance I ′ has an isolating long cycle hitting set,
Sintersect intersects it. Note, that if |T ′| ≤ 1, any long cycle hitting set is an isolating
long cycle hitting set and will intersect Sintersect. Again, we can return early in this case.

Otherwise, we have |T | ≥ 1. Then we call Lemma 3.32 on this instance. This
yields us a set S ′intersect which might intersect a solution and a set X as candidates
for a possible contraction. We add S ′intersect to Sintersect. So if (G′, T ′, k, ℓ) has a
long cycle hitting set that is not already covered by our set Sintersect, we have that
there is an X ∈ X , which fulfills the requirements of Lemma 3.29. This tells us that
IX = (G′/X, (T ′ \X)∪{x}, k, ℓ) is a valid instance of Disjoint Directed Long Cy-
cle Hitting Set Compression Intersection and moreover that I ′ and IX share
the same long cycle hitting sets that are disjoint of T ∪X and (T ′ \X)∪{x respectively.
It is therefore sufficient to call our recursive procedure on all instances IX with X ∈ X .

It remains to show run-time and size bounds. For this we need to bound the number
of instances on which our recursive procedure is called. Note that in each recursive call
we have that |(T ′ \X) ∪ {x}| = |T ′| − |T ′ ∩X| + 1 ≤ |T ′| − 1 as |T ′ ∩X| ≥ 2. Thus,
our recursive calls nest at most |T | levels deep. Using the conservative size bound

|X | ≤ |T |22O(kℓ+k2 log k) log2 n

for all depths, we get that there are at most

(|T |22O(|T |kℓ+|T |k2 log k) log2 n)|T |

calls to our subroutine. Each subroutine calls Aisolating, Theorem 3.30 and Lemma 3.32
exactly once. This means the overall run-time is(

|T |22O(kℓ+k2 log k) log2 n
)|T | (

2O(ℓ6+kℓ+k2 log k) · poly(n) +Aisolating(n, |T |, k, ℓ)
)

=
(
|T |2|T |2O(ℓ6+|T |kℓ+|T |k2 log k) log2|T | n

)
(Aisolating(n, |T |, k, ℓ) + poly(n)) .

For the size bound note that in each subroutine call if we return early we add at
most max{2ℓ6, fisolating(n, |T |, k, ℓ)} vertices to Sintersect. Otherwise, we add an amount
bounded in the number of new subroutine calls. This gives us a size bound of(

|T |2|T |2O(|T |kℓ+|T |k2 log k) log2|T | n
) (

2ℓ6 + fisolating(n, |T |, k, ℓ)
)
.
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3.2.4 Pushing by Important Hitting Separators

In the previous sections we reduced the Directed Long Cycle Hitting Set problem
to the Isolating Long Cycle Hitting Set Intersection problem, a variant where
we are already given a solution T of size at most k + 1 and search for a solution S
disjoint from T of size at most k. Additionally, we know that T has at most one vertex
in each strongly connected component of G − S. The situation is now similar, but
not identical, to the situation in the DFVS algorithm by Chen et al. [CLL+08]. They
guess a topological ordering on the vertices of T in G − S and observe that there is
no path from a vertex in T to earlier vertices in the topological ordering or to itself.
Then they solve it by the Skew Separator problem, which is essentially guessing an
important t→ T -separator (for t ∈ T being the last vertex of the topological ordering)
that dominates the range of some solution .

In our case we need to drop the constraint that a vertex of T may not have a path
to itself, as there may exist short cycles containing a vertex of T . We want to apply
essentially the same argument, i.e. pushing by an important separator. However, our
solution additionally hits long cycle that go through t only. Therefore, we consider
hitting separators, t → (T \ {t})-separators that also intersect those cycles. We show
that is a special case of the W -Ranged C-Deletion X → Y -Separator problem we
introduced in the technical tools section.

Definition 3.34. Let (G, k, ℓ, T ) be an instance of Isolating Long Cycle Hitting
Set Intersection and let S be an isolating long cycle hitting set in it. A vertex t ∈ T
is called last vertex of T (with respect to S) if there is a topological ordering of strongly
connected components of G−S such that t appears in the last component that contains
some vertex of T .

Note that a last vertex of some solution S may not be unique (as there exist different
topological orderings). Yet, no last vertex of a solution may reach another vertex of T
in G− S.

Lemma 3.35. Let (G, k, ℓ, T ) be an instance of Isolating Long Cycle Hitting
Set Intersection and let S be an isolating long cycle hitting set in it. Let t ∈ T be
a last vertex of T with respect to S. Then S is a t→ T \ {t}-separator.

Proof. Suppose, for sake of contradiction, that there exists a t → T \ {t}-path P in
G − S and it ends in some t′. Then P is a certificate that t′ must be in no earlier
strongly connected component than t in every topological ordering of strongly con-
nected components of G− S. As t was in the last component containing a vertex t in
such an ordering, they have to be in the same component. This is a contradiction to
S being an isolating long cycle hitting set.

Definition 3.36. Let (G, k, ℓ, T ) be an instance of Isolating Long Cycle Hitting
Set Intersection and t ∈ T . A hitting t → T \ {t}-separator is a pair (Dhit, Ssep)
such that

• Ssep is an inclusion-wise minimal t→ T \ {t}-separator, and

• G[R+
G−(Dhit∪Ssep)(t)] contains no cycle of length greater ℓ.

The size of (Dhit, Ssep), denoted by |(Dhit, Ssep)|, is defined as |Dhit|+ |Ssep|.
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Lemma 3.37. Let (G, k, ℓ, T ) be an instance of Isolating Long Cycle Hitting
Set Intersection and let S be an isolating long cycle hitting set in it. Let t ∈ T be
a last vertex of T with respect to S. Then S contains a hitting t → T \ {t}-separator
(Dhit, Ssep) with Dhit ⊆ R+

G−Ssep
(t).

Proof. By Lemma 3.35 we know that S is a t→ T \ {t}-separator. Let Ssep ⊆ S be an
inclusion-wise minimal t→ T \ {t}-separator. Define Dhit to be the set S ∩R+

G−Ssep
(t).

Then (Dhit, Ssep) is contained in S with Dhit ⊆ R+
G−Ssep

(t). It remains to show that
it is a hitting t → T \ {t}-separator by verifying that there are no long cycles in
G′ = G[R+

G−(Dhit∪Ssep)(t)]. Assume for contradiction that there is a cycle O in G′ of
length greater ℓ. We know that O also exists in G and thus V (O)∩T ̸= ∅. As Ssep is a
t → T \ {t}-separator, we have V (G′) ∩ T = {t} and thus t ∈ V (O). Now, S is a long
cycle hitting set and thus S∩V (O) ̸= ∅. Let s ∈ S∩V (O) be the first vertex of S that O
visits after t. Then O[t, s] is a witness that either s ∈ Ssep or s ∈ S ∩R+

G−Ssep
(t) = Dhit.

This is a contradiction to O being a cycle in G′ which is a subgraph of G− (Dhit∪Ssep)
(and thus V (O) ∩ (Dhit ∪ Ssep) = ∅).

We now lay the foundation for our pushing argument. That is we show how to
replace a hitting t → T \ {t}-separator (Dhit, Ssep) by another hitting t → T \ {t}-
separator (D′hit, S

′
sep) with |(D′hit, S

′
sep)| ≤ |(Dhit, Ssep)| and R+

G−Ssep
(t) ⊆ R+

G−S′
sep

(t).

Lemma 3.38. Let (G, k, ℓ, T ) be an Isolating Long Cycle Hitting Set Inter-
section instance and let S be an isolating long cycle hitting set of size at most k
in it. Let t ∈ T be a last vertex of T with respect to S and (Dhit, Ssep) a hitting
t → T \ {t}-separator in S with Dhit ⊆ R+

G−Ssep
(t). For any hitting t → T \ {t}-

separator (D′hit, S
′
sep) with |(D′hit, S

′
sep)| ≤ |(Dhit, Ssep)| and R+

G−Ssep
(t) ⊆ R+

G−S′
sep

(t), we
have that S′ = (S \ (Dhit ∪ Ssep)) ∪ (D′hit ∪ S′sep) is also an isolating long cycle hitting
set of size at most k.

Proof. First we check the size bound. We have that

|S′| ≤ |S| − |Dhit ∪ Ssep|+ |D′hit ∪ S′sep| = |S|+ |(D′hit, S
′
sep)| − |(Dhit, Ssep)| ≤ |S| ≤ k.

Now assume for contradiction that S′ is not an isolating long cycle hitting set. Then
there is either a cycle O in G−S′ with |O| ≥ ℓ or a closed walk W in G−S′ connecting
two vertices of T . In any case O and W did not exist in G−S thus there is a vertex s ∈
S \S′ ⊆ (Dhit ∪Ssep) contained in them. Now Ssep and S′sep are inclusion-wise minimal
t → T \ {t}-separators and thus Ssep = N+(R+

G−Ssep
(t)) and S′sep = N+(R+

G−S′
sep

(t)).
This implies Ssep ∪R+

G−Ssep
(t) ⊆ S′sep ∪R+

G−S′
sep

(t).
By Dhit ⊆ R+

G−S′
sep

(t), we have that s ∈ Ssep∪R+
G−Ssep

(t) ⊆ S′sep∪R+
G−S′

sep
(t). S′sep is

a t → (T \ {t})-separator, so no vertex of T \ {t} is reachable from s. By s ∈ O and
s ∈ W this shows V (O) ∩ T ⊆ {t} and V (W ) ∩ T ⊆ {t}, respectively. This already
rules out the case that there is a closed walk W in G − S′ connecting two vertices of
T . Now consider the long cycle O, which has to contain a vertex of T . From above
argument this must be t and thus V (O) ⊆ R+

G−S′(t) ⊆ R+
G−(D′

hit∪S′
sep)(t). This is a

contradiction to G[R+
G−(D′

hit∪S′
sep)(t)] containing no long cycles by definition of hitting

t→ T \ {t}-separators.
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We now recall the definition of W -ranged C-deletion X → Y -separators from the
technical tools section.

Definition 3.18. Let G be a directed graph, let W,X, Y ⊆ V (G) be three vertex sets
with W ⊆ X and let C be a graph class. A W -ranged C-deletion X → Y -separator is a
pair (D,S) with D,S ⊆ V (G) \ (W ∪X ∪ Y ) such that S is an inclusion-wise minimal
X → Y -separator and G[R+

G−(D∪S)(W )] ∈ C. The size of (D,S), denoted by |(D,S)|,
is defined as |D|+ |S|.

Note that for W = {t}, C being the set of graphs with circumference at most ℓ,
X = {t} and Y = T \ {t} the W -ranged C-deletion X → Y -separators are exactly our
hitting t → T \ {t}-separators. To apply the pushing argument we make use of the
range equivalence classes of important W -ranged C-deletion X → Y -separators.

Definition 3.20. Let G be a directed graph, let W,X, Y ⊆ V (G) be three vertex sets
with W ⊆ X and let C be a graph class. An W -ranged C-deletion X → Y -separator
(D,S) is said to dominate another W -ranged C-deletion X → Y -separator (D′, S′)
if R+

G−S(X) ⊆ R+
G−S′(X), |(D,S)| ≤ |(D′, S′)| and the inclusion or inequality is strict.

We call an W -ranged C-deletion X → Y -separator important if it is not dominated
by any other W -ranged C-deletion X → Y -separator.

We call two W -ranged C-deletion X → Y -separators (D,S) and (D′, S′) range
equivalent if R+

G−S(X) = R+
G−S′(X). Let DS be some subset of the ranged C-deletion

X → Y -separators of G. The range equivalence classes of DS are the equivalence
classes of DS formed by the “range equivalence” equivalence relation.

Our main result for important W -ranged C-deletion X → Y -separators was that
a representative of every range equivalent class can be computed efficiently if we are
given an oracle for the W -Ranged C-deletion problem.

Theorem 3.24. Let G be a directed graph, let W,X, Y ⊆ V (G) be three vertex sets
with W ⊆ X, let C be an hereditary graph class and let k ∈ Z≥0 be a non-negative
integer. Then there are at most 4k log k range equivalence classes among the important
W -ranged C-deletion X → Y -separators of size exactly k.

Moreover, for an instance (G,W,X, Y, k) we can find a representative of every range
equivalence class of important W -ranged C-deletion X → Y -separators of size exactly
k in time

4k log k poly(n) + 4k log kn ·AC-Deletion,

where AC-Deletion is the maximum run-time of an oracle for W -ranged C-Deletion
over all subgraphs G[R+

G−S(W )] of G, where S is some X → Y -separator.

We want to use this theorem to find range-maximal hitting t→ T \ {t}-separators.
Our oracle then needs to solve the following problem.

Directed Long Cycle Hitting Set from Singular Solution

Instance: A graph G, a vertex t ∈ V (G) and two integer k, ℓ ∈ Z≥0 s.t.
• G has no medium-length cycles,
• cf(G− t) ≤ ℓ.

Task: Find a set S ⊆ V (G) \ {t} with |S| ≤ k and cf(G− S) ≤ ℓ
or decide that no such set exists.
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Lemma 3.39. An instance (G,T, k, ℓ) of Isolating Long Cycle Hitting Set In-
tersection can be solved in time

|T |k4k log kAsingular(n, k, ℓ) poly(n),

where Asingular(n, k, ℓ) is the run-time of an algorithm for Directed Long Cycle
Hitting Set from Singular Solution on instances (G′, t, k′, ℓ) with |V (G′)| ≤ n
and k′ ≤ k. The set Sintersect returned has size at most |T |k24k log k.

Proof. If (G,T, k, ℓ) does not have a solution we are allowed to return any set, as long
as we obey run-time and size bounds. So assume for now that (G,T, k, ℓ) has a isolating
long cycle hitting set S of size at most k. We guess a vertex t ∈ T as last vertex of T
with respect to S. From Lemma 3.37 we know that S contains a hitting t → T \ {t}-
separator (Dhit, Ssep) with Dhit ⊆ R+

G−Ssep
(t). By definition the t → T \ {t}-separators

are exactly the W -ranged C-deletion X → Y -separators for W = {t}, C being the
set of graphs with circumference at most ℓ, X = {t} and Y = T \ {t}. Lemma 3.38
tells us that for every hitting t → T \ {t}-separator with |(D′hit, S

′
sep)| ≤ |(Dhit, Ssep)|

and R+
G−Ssep

(t) ⊆ R+
G−S′

sep
(t), there is an isolating long cycle hitting set S′ of size at

most k containing it. Now either (Dhit, Ssep) is important as W -ranged C-deletion
X → Y -separator or there is an important W -ranged C-deletion X → Y -separator
(D′hit, S

′
sep) that fulfills Lemma 3.38. Moreover, we can take any important W -ranged

C-deletion X → Y -separator (D′hit, S
′
sep) of the same range equivalence class and still

fulfill Lemma 3.38. Thus, it is enough to report a vertex set Sintersect containing one
important W -ranged C-deletion X → Y -separator of every range equivalent class.

We guess the size k⋆ ≤ k of such an important W -ranged C-deletion X → Y -
separator. By Theorem 3.24, we get an algorithm finding one ranged deletion separator
out of every range equivalent class if we can solve the W -Ranged C-deletion problem
on subgraphs G[R+

G−Ssep
(W )] of G, where Ssep is some X → Y -separator. In our case

this is finding a set S ⊆ V (G) \ T such that G[R+
G−Ssep

(W )] − S contains no long
cycles where Ssep is some t→ (T \ {t})-separator. We now make sure that (G′, t, k′, ℓ)
with G′ = G[R+

G−Ssep
(W )] and some k′ ≤ k⋆ ≤ k is indeed a Directed Long Cycle

Hitting Set from Singular Solution instance. First, as G′ is a subgraph of G it
contains no medium-length cycles. Moreover, as Ssep is some t → (T \ {t})-separator,
we know that G′ is a subgraph of G− (T \ {t}) and thus cf(G′ − t) ≤ cf(G− T ) ≤ ℓ.

We have |T |k choices for t ∈ T and k⋆ ≤ k. For every choice we call Theorem 3.24,
which takes 4k⋆ log k⋆

Asingular poly(n) time and returns 4k⋆ log k⋆ sets of size k⋆ ≤ k. Thus,
we get a run-time bound of |T |k4k log kAsingular poly(n) and size bound of |T |k24k log k.

3.2.5 Reduction to Strongly Connected Graphs with Many Short Cy-
cles

In the last section we managed to shrink our given solution to a single vertex t. The
advantage of this is twofold. First, we can get rid of all parts of the graph that are not
in the same strongly connected component as t, as they will never lie on a short cycle.
Second, the shadow covering technique becomes more powerful as any vertex outside
of shadow and solution must be connected to t. However, before we start, we apply the
compression intersection technique again.
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Corollary 3.40. An instance (G, t, k, ℓ) of Directed Long Cycle Hitting Set
from Singular Solution can be solved in time

O(k(fintersect(n, k, ℓ))k ·Asingular intersection(n, k, ℓ)) + 2O(ℓ) poly(n),

where Asingular intersection(n, k, ℓ) is the run-time of an algorithm for the intersection vari-
ant of Directed Long Cycle Hitting Set from Singular Solution on instances
(G′, t, k′, ℓ) with |V (G′)| ≤ n and k′ ≤ k, and fintersect(n, k, ℓ) is a size bound on the set
Sintersect output by the algorithm on these instances.

Proof. Apply Lemma 2.4 with the membership oracle from Theorem 3.26.

Lemma 3.41. Let I = (G, t, k, ℓ) be an instance of Directed Long Cycle Hitting
Set from Singular Solution. Let C⋆ be the strongly connected component of G
containing t. Define a new instance I⋆ = (G⋆, t, k, ℓ) with G⋆ = G[C⋆]. Then any
solution S⋆ to I⋆ is a solution to I. Moreover, for any solution S to I, S ∩ C⋆ is a
solution to I⋆.

Proof. In both cases we have that the size of the claimed solution does not increase. It
is therefore enough to check that no long cycles are introduced.

Consider any solution S⋆ to I⋆. Assume for contradiction that G − S⋆ contains
a long cycle O. As t ∈ V (O) this cycle lies entirely in C⋆ and thus in G⋆ − S⋆, a
contradiction to S⋆ being a solution to I⋆.

Now consider a solution S to I. Assume for contradiction that there is a long
cycle O in G − (S ∩ C⋆). As O does not exist in G − S, we have that there is an
s ∈ V (O)∩ (S \C⋆). We know that t ∈ V (O) and thus s ∈ V (O) ⊆ C⋆, a contradiction
to s /∈ C⋆. Hence, we know that G− (S ∩ C⋆) contains no long cycle and thus neither
does its subgraph G⋆ − (S ∩ C⋆), which shows the claim.

As a next step, we want to apply the “Shadow Covering” technique as described
in Chapter 2. This helps us to get rid of arcs that lie only on long cycles. The main
observation about the usefulness of sets covering the shadow is summarized by the
following lemma.

Lemma 3.42. Let G be a strongly connected, directed graph, ℓ ∈ Z≥0 and t ∈ V (G)
with cf(G − t) ≤ ℓ. Let S ⊆ V (G) \ {t} be a vertex set with cf(G − S) ≤ ℓ and let
(v, w) ∈ A(G) be an arc with distG(w, v) ≥ ℓ. For any Z ⊆ V (G)\{t} we can identify in
time O(n+m) a vertex set Sintersect with |Sintersect| ≤ 2, such that if Z ⊆ V (G)\(S∪{t})
is a set covering the shadow of S with respect to t, then S ∩ Sintersect ̸= ∅.

Proof. Find a w → t-path P and a t → v-path Q in G. Let x be the last vertex of Q
not in Z and y be the first vertex of P not in Z. We claim that Sintersect = {x, y} fulfills
the statement. The run-time and size bounds are clear.

Assume that S ∩ Sintersect = ∅. Then x and y do not lie in the shadow of S with
respect to t and not in S itself. By definition of shadow there is an y → t-path P ′ and
an t→ x-path Q′ in G− S. By choice of x and y we have that Q[x, v] and P [w, y] are
contained in Z ∪ Sintersect ⊆ V (G) \ S. Thus, the closed walk (v, w) ◦ P [w, y] ◦ P ′ ◦Q′ ◦
Q[x, v] exists in G−S. Now every walk on a closed walk lies also on a cycle completely
contained in that closed walk. Hence, (v, w) lies on a cycle O in G−S. However, since
distG(w, v) ≥ ℓ this cycle has length at least ℓ+1, a contradiction to cf(G−S) ≤ ℓ.
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Applying the deterministic covering of shadows we get the following result.

Lemma 3.43. Let I = (G, t, k, ℓ) be an instance of Directed Long Cycle Hitting
Set from Singular Solution such that G is strongly connected and there is an arc
(v, w) ∈ A(G) with distG(w, v) ≥ ℓ. Then we can find in time 2O(k2) · poly(n) a set
Sintersect with |Sintersect| ≤ 2O(k2) log2 n such that any long cycle hitting set of size at
most k intersects Sintersect.

Proof. Let F be the set of all cycles in G of length more than ℓ. Then the graphs of
F are t-connected and the long cycle hitting sets of I are exactly the F-transversals.
Fix an arbitrary long cycle hitting set S of size at most k. By Theorem 2.9 we can
compute a set Z = {Z1, Z2, . . . , Zp} with p = 2O(k2) log2 n in time 2O(k2) · poly(n) such
that for some i ∈ {1, . . . , p} we have that S ∩ Zi = ∅ and Zi contains the shadow of S
with respect to t. Now apply Lemma 3.42 to every of the sets Zi and let Sintersect be
the union of the returned sets. For the right choice of i, we have that the returned set
and thus Sintersect intersects S. The run-time and size bounds follow directly.

Applying the above lemmas we can simplify our problem to the following.

Directed Long Cycle Hitting Set with many Short Cycles

Instance: A strongly connected, directed graph G, a vertex t ∈ V (G)
and two integer k, ℓ ∈ Z≥0 such that

• G has no medium-length cycles,
• cf(G− t) ≤ ℓ,
• every arc of G lies on a cycle of length at most ℓ.

Task: Find a vertex set Sintersect ⊆ V (G) such that
if there is a long cycle hitting set S ⊆ V (G) \ {t} of size at most k,
then there is such a set S with S ∩ Sintersect ̸= ∅.

Lemma 3.44. An instance (G, t, k, ℓ) of Directed Long Cycle Hitting Set from
Singular Solution can be solved in time

O(k(max{fintersect(n, k, ℓ), 2O(k2) log2 n})k ·Ashort cycles(n, k, ℓ)) + 2O(ℓ) poly(n),

where Ashort cycles(n, k, ℓ) is the run-time of an algorithm for Directed Long Cycle
Hitting Set with many Short Cycles on instances (G′, t, k′, ℓ) with |V (G′)| ≤ n
and k′ ≤ k, and fintersect(n, k, ℓ) is a size bound on the set Sintersect output by the
algorithm on these instances.

Proof. Apply Corollary 3.40 to reduce to the intersection variant of Directed Long
Cycle Hitting Set from Singular Solution. If the resulting instance is not
strongly connected, we apply Lemma 3.41 to shrink the instance to a strongly con-
nected subgraph. Then for every (v, w) ∈ A(G), we compute distG(w, v). If it is
at least ℓ for some arc, we apply Lemma 3.43 and return the resulting set of size
2O(k2) log2 n. Otherwise, we have that all arcs lie on a cycle of length at most ℓ. Thus,
the remaining instance is a Directed Long Cycle Hitting Set with many Short
Cycles instance and we apply Ashort cycles.



46 CHAPTER 3. DIRECTED LONG CYCLE HITTING SET

3.2.6 Portals and Clusters

Right now we reduced the problem to strongly connected, directed graphs where we are
given a single vertex t intersecting all long cycles and we are searching for a solution
disjoint from it. The next step simplify this problem further by consideration of the
strongly connected components of G − t. The deletion of t reduces the long cycles in
G to paths. We observe that every long path must be traversing a long distance in
some strongly connected component of G− t. These long distances allow us to identify
clusters of vertices that need to be separated from each other. In the end this problem
becomes a Directed Multiway Cut problem.

Let us start with the structure of G after the deletion of t. Let C be the set of
strongly connected components of G− t. For each C ∈ C, we identify certain “portal”
vertices that can be used to enter/leave the component.

Definition 3.45. Let G be a graph and let C ⊆ V (G). A vertex v ∈ C is a portal
vertex of C, if ∆G(v) > ∆G[C](v), where ∆H(v) is the number of incident arcs (both
in-coming and out-going) of v in a graph H. We denote by XC the set of all portal
vertices of C.

Lemma 3.46. Let (G, t, k, ℓ) be a Directed Long Cycle Hitting Set with many
Short Cycles instance and C the strongly connected components of G− t. Then for
any C ∈ C and any v ∈ XC there is a cycle of length at most ℓ in G going through v
and t.

Proof. As ∆G(v) > ∆G[C](v) there is an arc a ∈ A(G) incident to v with its other
endpoint w not contained in C. We know that a lies on a cycle of length at most ℓ in
G. As a ̸∈ G[C] this cycle exists in G but not in G−t; thus, the cycle goes through t.

For every C ∈ C and v ∈ XC , fix an arbitrary cycle as in Lemma 3.46, and let Ov
be the vertex set of that cycle.

Lemma 3.47. Let (G, t, k, ℓ) be a Directed Long Cycle Hitting Set with many
Short Cycles instance and C the strongly connected components of G− t. Then for
any C ∈ C and any v1, v2 ∈ XC , either distG[C](v1, v2) ≤ 2ℓ2 or distG[C](v1, v2) ≥
2ℓ6 − 2ℓ.

Proof. Suppose, for sake of contradiction, that P1 is a v1 → v2-path of G[C] with
2ℓ2 + 1 ≤ |P1| ≤ 2ℓ6− 2ℓ− 1. There is a v2 → v1-path P2 using only the vertices of Ov2

and Ov1 and hence has length at most 2ℓ.
Consider the directed graph G′ induced by the vertices of the v1 → v2-path P1 and

the v2 → v1-path P2. This graph has at most |P1| + |P2| ≤ |P1| + 2ℓ < 2ℓ6 vertices.
As G contains no medium-length cycles (i.e. no cycles with length in (ℓ, 2ℓ6] ), we get
cf(G′) ≤ ℓ. Applying Lemma 3.9 on P1 and P2 in G′, we get |P1| ≤ (cf(G′)− 1)|P2| ≤
(ℓ− 1) · 2ℓ < 2ℓ2 + 1, a contradiction.

For any C ∈ C, we partition XC into clusters the following way. Let ℓmax := 2ℓ2.
For every v ∈ XC , denote by Xv the subset of XC that is at distance at most ℓmax from
v in G[C]. By definition, we have that v ∈ Xv.

Lemma 3.48. Let (G, t, k, ℓ) be a Directed Long Cycle Hitting Set with many
Short Cycles instance and C the strongly connected components of G− t. For every
C ∈ C and v1, v2 ∈ XC , the sets Xv1 and Xv2 are either disjoint or equal.
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Proof. Suppose that x ∈ Xv1 ∩Xv2 and, without loss of generality, y ∈ Xv1 \Xv2 . Now

distG[C](v2, y) ≤ distG[C](v2, x) + distG[C](x, v1) + distG[C](v1, y)
≤ ℓmax + (ℓ− 1) distG[C](v1, x) + ℓmax (Lemma 3.9)
≤ ℓmax + (ℓ− 1) · ℓmax + ℓmax

= (ℓ+ 1)ℓmax

≤ 2ℓ6 − 2ℓ− 1,

and hence, by Lemma 3.47, we have distG[C](v2, y) ≤ 2ℓ2 = ℓmax, implying y ∈ Xv2 .

Therefore, the sets Xv for v ∈ XC define a partition of XC . We call the classes of
this partition the clusters of XC .

An example for portals and clusters can be found in Fig. 3.4.

t

Figure 3.4: An example for the structure of G− t. The large circles form the strongly
connected components C ∈ C. The colored dots represent the portals with their color
corresponding to their cluster.

The huge distance between the clusters and the absence of medium-length cycles
allows for the following structural insight:

Lemma 3.49. Let (G, t, k, ℓ) be a Directed Long Cycle Hitting Set with many
Short Cycles instance and C the strongly connected components of G− t. Let R be a
cycle of length more than ℓ in G. Then R contains a path between two different clusters
of some C ∈ C.

Proof. As cf(G − t) ≤ ℓ we have that t ∈ R. Starting from t, let x0, . . . , xp be the
vertices of R that are in ⋃C∈C XC . By definition, the vertex after t is in XC for some
C ∈ C and the vertex before t is in XC′ for some C ′ ∈ C. Thus, R[x0, xp] contains every
vertex of R except t, yielding |R[x0, xp]| = |R| − 2. If an arc (u, v) of R[x0, xp] has u
and v in different strongly connected components C1 ∈ C and C2 ∈ C respectively, then
u ∈ XC1 and v ∈ XC2 , hence both appear in the sequence x0, . . . , xp. Therefore, for
i = 0, . . . , p− 1 the subpath R[xi, xi+1] is either fully contained in a single component
C ∈ C or consists of only one arc.
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If xi and xi+1 are in the same strongly connected component C ∈ C, and they
are in two different clusters of C, then we are done. Otherwise, if xi and xi+1 are
in the same cluster, then distG[C](xi, xi+1) ≤ ℓmax by the definition of the clusters.
Thus, Lemma 3.10 implies |R[xi, xi+1]| ≤ (cf(G[C]) − 1)2 · ℓmax < (ℓ − 1)2 · ℓmax.
Therefore, if p < ℓ2, we have |R| = |R[x0, xp]| + 2 ≤ p · (ℓ − 1)2 · ℓmax + 2 < 2ℓ6,
contradicting that G has no medium-length cycles. Otherwise, consider the vertex xℓ2 ;
we have ℓ2 ≤ |R[x0, xℓ2 ]| ≤ ℓ2(ℓ − 1)2ℓmax. By Lemma 3.46, there is an xℓ2 → t-path
of length at most ℓ − 1. As x0 is an out-neighbor of t, this means that there is an
xℓ2 → x0-path Q of length at most ℓ in G. Let G′ be the directed graph induced
by R[x0, xℓ2 ] and Q. As G′ has at most |R[x0, xℓ2 ]| + |Q| ≤ ℓ2(ℓ − 1)2ℓmax + ℓ < 2ℓ6
vertices and G contains no medium-length cycles (i.e., no cycles with length in (ℓ, 2ℓ6]),
we have that cf(G′) ≤ ℓ. Applying Lemma 3.9 on R[x0, xℓ2 ] and Q in G′ we get
|R[x0, xℓ2 ]| ≤ (ℓ− 1)|Q| < ℓ2 ≤ |R[x0, xℓ2 ]|—a contradiction.

We now focus again on finding the long cycle hitting sets in G.

Lemma 3.50. Let (G, t, k, ℓ) be a Directed Long Cycle Hitting Set with many
Short Cycles instance and C the strongly connected components of G − t. Let x1 ∈
L1, x2 ∈ L2 for distinct clusters L1, L2 of some strongly connected component C ∈ C.
For each S ⊆ V (G) with cf(G−S) ≤ ℓ and S∩(Ox1∪Ox2) = ∅, there is no x1 → x2-path
in G− S.

Proof. Let S be disjoint from Ox1 ∪ Ox2 and suppose, for sake of contradiction, that
there is an x1 → x2-path P1 in G[C]−S. As x1 and x2 are in distinct clusters, we have
|P1| > ℓmax. There is a t→ x1-path of G using only the vertices of Ov1 and hence has
length at most ℓ. Similarly, there is an x2 → t-path in G using only vertices of Ov2 and
having length at most ℓ. The concatenation of these two paths gives an x2 → x1-walk
using only the vertices Ov1 ∪Ov2 and having length at most 2ℓ. This walk contains an
x2 → x1-path P2 of length at most 2ℓ.

By the assumptions of the lemma, P1 and P2 are disjoint from S. Applying
Lemma 3.9 on the x1 → x2-path P1 and the x2 → x1-path P2 in G − S, we get
|P1| ≤ (cf(G− S)− 1)|P2| ≤ (ℓ− 1) · 2ℓ < ℓmax—a contradiction.

Our next goal is to use Lemma 3.50 to argue that there cannot be too many clusters
in a component C ∈ C. This may in general not be the case, but if there are many
clusters we can identify vertices lying in all long cycle hitting sets. For this we again
apply the shadow covering technique (see Chapter 2).

Lemma 3.51. Let (G, t, k, ℓ) be a Directed Long Cycle Hitting Set with many
Short Cycles instance, Z ⊆ V (G) and C ∈ C be a component with distinct clusters
L1, L2. Let x1 ∈ L1, x2 ∈ L2 and x3 ∈ C \Z. Then any S ⊆ V (G) with cf(G−S) ≤ ℓ,
S ∩ (Ox1 ∪ Ox2) = ∅ and that is shadowless with respect to Z cannot have both an
x1 → x3-path P1 and an x2 → x3-path P2 in G[C]− S.

Proof. Let S be as in the statement and suppose, for sake of contradiction, that both
P1 and P2 exist. Let Ri be a t→ xi-path in Oxi for i = 1, 2. The concatenation of R1
and P1 shows that there is a t → x3-path in G − S. By x3 ∈ V (G) \ Z and S being
shadowless with respect to Z, there is an x3 → t-path Q disjoint from S in G − S.
Let (a, b) be the last arc of Q that is not entirely in C (as t /∈ C, there is such an
arc). As Q[x3, a] is a path disjoint from t which starts and ends in C, the path Q is
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entirely contained in the strongly connected component C of G− t. Thus, a is in XC ,
and hence in some cluster L. Now for i = 1, 2 we have that Pi ◦ Q[x3, a] is a walk
from Li to L, fully contained in G[C] − S. However, L is different from at least one
of L1 and L2. Without loss of generality, let L ̸= L1. Then P1 ◦ Q[x3, a] contains an
x1 → a-path of length at least ℓmax by definition of clusters. Likewise, P1 ◦ Q[x3, t]
contains an x1 → t-path R⋆ of length at least ℓmax (as Q[a, t] is outside of C). Consider
again the t→ x1-path R1 inside Ox1 . As it lies inside Ox1 , it is disjoint from S and has
length at most ℓ. If we now compare the length of R⋆ and R1 with help of Lemma 3.9,
we get |R⋆| ≤ (cf(G− S)− 1)|R1| ≤ ℓ2 < ℓmax ≤ |R⋆|—a contradiction.

The following lemma gives us an intersecting set when a vertex is reachable from
many clusters on (mostly) disjoint paths.

Lemma 3.52. Let (G, t, k, ℓ) be a Directed Long Cycle Hitting Set with many
Short Cycles instance, Z ⊆ V (G) and C the strongly connected components of G− t.
Let x1, . . . , xk+2 be vertices in distinct clusters of a component C ∈ C and v ∈ C \Z be
a vertex. Furthermore, let P1, . . . , Pk+2 be paths in G[C] such that Pi is an xi → v-path
and these paths share vertices only in Z ∪{v}. Then any S ⊆ V (G) with cf(G−S) ≤ ℓ
and |S| ≤ k that is shadowless with respect to Z intersects v ∪

⋃k+2
i=1 Oxi.

Proof. As |S| ≤ k and S is disjoint from Z, at least two of the Pi’s have their internal
vertices disjoint from S. Assume, without loss of generality, that S contains no internal
vertex of P1 and P2. If S is disjoint from Ox1 ∪ Ox2 ∪ {v}, then Lemma 3.51 gives a
contradiction.

To check whether Lemma 3.52 is applicable, we reduce to a maximum flow problem.

Lemma 3.53. It can be tested in polynomial time whether Lemma 3.52 is applicable.

Proof. For every C ∈ C and v ∈ C \ Z, we solve the following maximum flow problem
with vertex capacities: introduce a new source adjacent to each cluster of C, set v to
be the only sink, vertices in Z ∪{v} have infinite capacity, and every other vertex of C
has unit capacity. An integral flow of value at least k + 2 corresponds directly to the
vertices in the Lemma 3.52. As a maximum integral flow can be found in polynomial
time and we have at most |V (G)| choices for v and C (choosing v fixes C) we can check
for this in polynomial time.

If Lemma 3.52 is not applicable and a strongly connected component C ∈ C with
many clusters exists, we can find a simple set intersecting every S ⊆ V (G) with cf(G−
S) ≤ ℓ and |S| ≤ k.

Lemma 3.54. Let (G, t, k, ℓ) be a Directed Long Cycle Hitting Set with many
Short Cycles instance, Z ⊆ V (G) and C the strongly connected components of G− t.
Let x0, . . . , xk(k+1)+1 be vertices from different clusters of some C ∈ C. If Lemma 3.52
is not applicable then every S ⊆ V (G) with cf(G−S) ≤ ℓ and |S| ≤ k that is shadowless
with respect to Z intersects

⋃k(k+1)+1
i=1 Oxi.

Proof. Suppose that S is disjoint from every Oxi . For every i = 1, . . . , k(k + 1) + 1 let
us fix an xi → x0-path Pi in C. By Lemma 3.50, S intersects the path Pi for every
i = 1, . . . , k(k + 1) + 1. Denote by yi be the first vertex of S on Pi.
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By pigeonhole principle, there has to be a vertex of S that appears as yi for at
least k + 2 values of i. Assume without loss of generality, that y1 = . . . = yk+2 =:
y. If for some 1 ≤ j1 < j2 ≤ k + 2, paths Pj1 [xj1 , y] and Pj2 [xj2 , y] share a vertex
different from y, then by Lemma 3.51 this vertex has to be in Z. Therefore, the paths
P1[x1, y], . . . , Pk+2[xk+2,y] share vertices only in Z ∪{y}, and hence Lemma 3.52 would
be applicable, a contradiction.

Next, we find an intersection set if many components have more than two clusters.

Lemma 3.55. Let (G, t, k, ℓ) be a Directed Long Cycle Hitting Set with many
Short Cycles instance and C the strongly connected components of G − t. If there
exist strongly connected components C1, . . . , Ck+1 ∈ C, each containing at least two
clusters, then for arbitrary vertices xi, yi of different clusters of Ci, every S ⊆ V (G)
with cf(G− S) ≤ ℓ and |S| ≤ k intersects

⋃k+1
i=1 (Oxi ∪Oyi).

Proof. Suppose that S is disjoint from ⋃k+1
i=1 (Oxi∪Oyi). Then some Ci is disjoint from S,

implying that there is an xi → yi-path in G[Ci]− S, contradicting Lemma 3.50.

Corollary 3.56. Let (G, t, k, ℓ) be a Directed Long Cycle Hitting Set with
many Short Cycles instance, Z ⊆ V (G) and C the strongly connected components
of G− t. If

• either there is a C ∈ C with more than k(k + 1) + 1 clusters,
• or there are more than k components in C with at least two clusters,

then there is a set Smany clusters ⊆ V (G) of size at most (k2 +k+1)(ℓ−1) that intersects
every S ⊆ V (G) with cf(G−S) ≤ ℓ and |S| ≤ k which is shadowless with respect to Z.
Moreover, the set Smany clusters can be found in polynomial time.

Proof. If there is a C ∈ C with more than k(k + 1) + 1 clusters either Lemma 3.52 or
Lemma 3.54 is applicable. If there are more than k components in C with at least two
clusters Lemma 3.55 is applicable. We can check whether these conditions are accurate
(by possibly using Lemma 3.53) in polynomial time. We can also compute the sets S
they produce in polynomial time and use one of them as set Smany clusters. By taking
the maximum over their size bounds and using that |Ox − t| ≤ (ℓ − 1), we obtain the
promised size bound.

Now we need to handle the remaining case. Namely, that there are only k compo-
nents in C with more than two clusters and these have at most k(k + 1) + 1 clusters.

Lemma 3.57. Let (G, t, k, ℓ) be a Directed Long Cycle Hitting Set with many
Short Cycles instance and let C be the set of strongly connected components in G− t.
If Corollary 3.56 is not applicable, then there is a set Sfew clusters ⊆ V (G) of size at most
2O(k+log ℓ) such that for every S ⊆ V (G) with cf(G− S) ≤ ℓ and |S| ≤ k,

• either S intersects Sfew clusters, or
• for every C ∈ C the set S intersects all paths between different clusters of C in
G[C].

Furthermore, the set Sfew clusters can be found in time 2O(k) · poly(n).
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Proof. Construct Sfew clusters as follows:
Input : directed graph G, integers k, ℓ and a vertex t ∈ V (G)
Output: A vertex set Sfew clusters ⊆ V (G)

1 Let Sfew clusters = ∅.
2 foreach C ∈ C with at least two clusters do
3 Let L1, . . . , Lr the clusters of C.
4 Apply Lemma 3.8 to L1, . . . , Lr to obtain L′1, . . . , L

′
r.

5 foreach x ∈ L′1 ∪ . . . ∪ L′r do
6 Add Ox to Sfew clusters.

Note that as Corollary 3.56 is not applicable, we have that there are at most k
components that have at least two clusters and all of them have r ≤ k2 +k+1 clusters.
Together with |Ox| ≤ ℓ, the bound of |Sfew clusters| ≤ ℓ · 2(r− 1)(k+ 1)4k+1 = 2O(k+log ℓ)

follows.
For correctness, let S ⊆ V (G) with cf(G − S) ≤ ℓ and |S| ≤ k such that S is

disjoint from Sfew clusters. Suppose, for sake of contradiction, that there is a path P in
G[C] − S between different clusters of C for some C ∈ C. Without loss of generality,
let P be a L1 → L2-path. By Lemma 3.8 there is also an x → y-path Q in G[C] − S
with x ∈ L′1, y ∈ L′2. But S is disjoint from Ox ∪ Oy ⊆ Sfew clusters in contradiction to
Lemma 3.50.

A vertex set hitting all Xi → Xj-paths between different vertex sets X1, . . . , Xr is
known as multiway cut.

Definition 3.58. Let G be a directed graph and let X1, . . . , Xr ⊆ V (G).
A set S ⊂ V (G)\(X1∪ . . .∪Xr) is called X1, . . . , Xr-multiway cut if G−S contains

no Xi → Xj-path for any i ̸= j.

Directed Multiway Cut

Instance: A graph G, vertex sets X1, . . . , Xr ⊆ V (G) and an integer p ∈ Z≥0.

Task: Find a X1, . . . , Xr-multiway cut of size at most p
or decide that none exits.

The Directed Multiway Cut was first shown to be fixed-parameter tractable
by Chitnis, Hajiaghayi, and Marx [CHM13], who later, together with Cygan, improved
significantly on the run-time of their main routine [CCHM15].

Theorem 3.59 ([CHM13][CCHM15]). Let G be a directed graph, let X1, . . . , Xr ⊆
V (G), and let p ∈ Z≥0. The Directed Multiway Cut problem for (G,X1, . . . , Xr, p)
can be solved in 2O(p2) · poly(n) time. Further, an X1, . . . , Xr-multiway cut of size at
most p can be found in the same time, if it exists.

Lemma 3.60. There is an algorithm that solves instances (G, t, k, ℓ) of Directed
Long Cycle Hitting Set with many Short Cycles in time 2O(k2) · poly(n) by a
set of size 2O(k2+log ℓ) log2 n.
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Proof. Let C be the strongly connected components of G− t. If either there is a C ∈ C
with more than k(k + 1) + 1 clusters, or there are more than k components in C with
at least two clusters, we apply shadow covering combined with Corollary 3.56.

Let F be the set of all cycles in G of length more than ℓ. Then the graphs of F are t-
connected and the long cycle hitting sets of our instance are exactly the F-transversals.
Fix an arbitrary long cycle hitting set S of size at most k. By Theorem 2.9 we can
compute a set Z = {Z1, Z2, . . . , Zp} with p = 2O(k2) log2 n in time 2O(k2) · poly(n) such
that for some i ∈ {1, . . . , p} we have that S ∩ Zi = ∅ and Zi contains the shadow of S
with respect to t. Start with Sintersect = ∅. For every set Zi we apply Corollary 3.56
and add the resulting set Smany clusters ⊆ V (G) of size at most (k2 + k + 1)(ℓ − 1) to
Sintersect. Afterwards we return the set Sintersect.

Otherwise, there are at most k components in C with at least two clusters and each
of these has at most k(k+1)+1 clusters. Moreover, we can apply Lemma 3.57 to get a
set Sfew clusters of size at most 2O(k+log ℓ) that either intersects all long cycle hitting sets
of size ≤ k or for every C ∈ C the set S intersects all paths between different clusters
of C in G[C]. Add this set Sfew clusters to Sintersect.

In a last step we compute a minimum size LC1 , . . . LCr -multiway cut MC for every
component C ∈ C that has clusters LC1 , . . . LCr with r > 1. This we can do by n calls
to Theorem 3.59. If the union ⋃C∈CMC has size at most k, we add it to Sintersect.

The run-time and size bound follow directly from the involved lemmas. It remains
to argue for correctness. If we could apply Corollary 3.56 we returned a correct solution
as some Zi did cover the shadow of S. Otherwise, either a long cycle hitting set of size
at most k intersects Sfew clusters or for every C ∈ C the long cycle hitting set intersects
all paths between different clusters of C in G[C]. In other words, in the latter case it is
a LC1 , . . . LCr -multiway cut for every component C ∈ C that has clusters LC1 , . . . LCr with
r > 1. Thus, the union of our minimum size multiway cuts has size at most k. Consider
now any such union M = ⋃

C∈CMC . We claim that M is a long cycle hitting set.
Take any cycle R of length more than ℓ in G. By Lemma 3.49, our cycle R contains

a path between two different clusters of some C ∈ C. As MC is an LC1 , . . . LCr -multiway
cut, our cycle R is intersected by M . Thus, M is a long cycle hitting set of size at
most k. In particular, there is a long cycle hitting set of size at most k intersecting
Sintersect ⊇M .

3.2.7 Putting Everything Together
This section combines the previous sections to an overall algorithm solving Directed
Long Cycle Hitting Set. We do this in two steps. First we combine Lemma 3.27,
Lemma 3.33, and Lemma 3.39 to reduce Directed Long Cycle Hitting Set to
Directed Long Cycle Hitting Set from Singular Solution. Then in a second
step we solve Directed Long Cycle Hitting Set from Singular Solution by
combining Lemma 3.44 and Lemma 3.60.
Corollary 3.61. An instance (G, k, ℓ) of Directed Long Cycle Hitting Set can
be solved in time

2O(ℓ6+k3ℓ+k4 log k) logO(k2) n
(
n2Asingular(n, k, ℓ) + poly(n)

)
,

where Asingular(n, k, ℓ) is the run-time of an algorithm for Directed Long Cycle
Hitting Set from Singular Solution on instances (G′, t, k′, ℓ) with |V (G′)| ≤ n
and k′ ≤ k.
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Proof. Note that throughout the algorithm, we always have |T | ≤ k + 1. Thus, we
can simplify Lemma 3.39 to the statement that Isolating Long Cycle Hitting
Set Intersection can be solved in time 2O(k log k)n · Asingular(n, k, ℓ) by a set of size
2O(k log k). Plugging this into Lemma 3.33 gives us an algorithm for Disjoint Directed
Long Cycle Hitting Set Compression Intersection with run-time

2O(ℓ6+k2ℓ+k3 log k) logO(k) n (nAsingular(n, k, ℓ) + poly(n))

that returns a set of size
2O(k2ℓ+k3 log k) logO(k) n.

Finally, using this algorithm in Lemma 3.27 gives the claimed run-time.

Corollary 3.62. There is an algorithm that solves instances (G, t, k, ℓ) of Directed
Long Cycle Hitting Set from Singular Solution in time(

2O(k3+log ℓ) log2k n+ 2O(ℓ)
)

poly(n).

Proof. Use Lemma 3.60 in Lemma 3.44.

Finally, we can combine above statements to get our main result.

Theorem 3.63. There is an algorithm solving Directed Long Cycle Hitting Set
with run-time 2O(ℓ6+k3ℓ+k4 log k) poly(n).

Proof. By combining Corollary 3.61 and Corollary 3.62, we get that Directed Long
Cycle Hitting Set can be solved in time

2O(ℓ6+k3ℓ+k4 log k) logO(k2) n
(
n2
(
2O(k3+log ℓ) log2k n+ 2O(ℓ)

)
poly(n) + poly(n)

)
= 2O(ℓ6+k3ℓ+k4 log k) logO(k2) n poly(n).

Using Lemma 2.10 we get logO(k2) n = 2O(k2 log k) poly(n) and the theorem follows.

3.3 Reductions for Directed Long Cycle Vertex Deletion

In this section we deal with reductions arising in the context of Directed Long
Cycle Hitting Set. First, we will show that the arc deletion version can be reduced
to an instance of the vertex deletion version of the same size. This is simply done by
taking the directed line graph.

Theorem 3.64. There exists a polynomial parameter transformation from instances
(G, k, ℓ) of the arc-deletion variant of Directed Long Cycle Hitting Set to an
instance (G′, k, ℓ) of the vertex-deletion variant of Directed Long Cycle Hitting
Set.

Proof. Given an instance (G, k, ℓ) of the arc-deletion variant of Directed Long Cy-
cle Hitting Set, create a directed graph G′ from G by letting G′ be the directed line
graph of G. I.e. we set V (G′) = A(G) and

A(G) = {((v1, v2), (v3, v4)) | (v1, v2), (v3, v4) ∈ A(G) with v2 = v3}.
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We further set k′ = k and ℓ′ = ℓ; then (G′, k′, ℓ′) is an instance of the vertex-deletion
variant of Directed Long Cycle Hitting Set.

In the forward direction, let S be a set of at most k arcs of G such that in G − S
every simple cycle has length at most ℓ. Then, since every cycle of G is mapped to
a cycle of G′ with the same length, the set S′ of vertices to which the arcs in S get
mapped to in G′ is such that G′ − S′ does not have any simple cycles of length strictly
more than ℓ.

In the backward direction, let S′ be a set of at most k vertices of G′ such that every
simple cycle of G′ − S′ has length at most ℓ. Then, since every cycle of G′ is mapped
to a cycle of G with the same length, the set S of arcs to which the vertices in S′ get
mapped to in G is such that G − S does not have any simple cycles of length strictly
more than ℓ.

There is also a reduction in the other direction by splitting each vertex v into v−
and v+ and adding an arc from v− to v+. Arcs (u, v) are replaced by (u+, v−) and are
made undeletable by taking enough copies.

Theorem 3.65. There exists a polynomial parameter transformation from instances
(G, k, ℓ) of the vertex-deletion variant of Directed Long Cycle Hitting Set to
an instance (G′, k, 2ℓ) of the arc-deletion variant of Directed Long Cycle Hitting
Set.

Proof. Given an instance (G, k, ℓ) of the vertex-deletion variant of Directed Long
Cycle Hitting Set, create a directed graph G′ from G by splitting each vertex
v ∈ V (G) into two vertices v+, v−, adding an arc from v− to v+, and connecting all in-
neighbors u of v inG by k+1 parallel arcs from u+ to v− inG′, and all out-neighbors u of
v in G by an arc from v+ to u− in G′. In other words, V (G′) = {v+, v− | v ∈ V (G)} and
A(G′) = {(v−, v+) | v ∈ V (G)}∪ {(u+, v−)k | u ∈ N−G (v), v ∈ V (G)}∪ {(v+, u−)k | u ∈
N+
G (v), v ∈ V (G)}. We further set k′ = k and ℓ′ = 2ℓ; then (G′, k′, ℓ′) is an instance of

the arc-deletion variant of Directed Long Cycle Hitting Set.
In the forward direction, let S be a set of at most k vertices such that any simple

cycle of G−S has length at most ℓ. We let S′ = {(v−, v+) | v ∈ S}, it follows that S is
a set of at most k arcs such that any simple cycle of G′−S′ has length at most ℓ′ = 2ℓ.

In the backward direction, let S′ be a set of at most k′ arcs such that G′ − S′ does
not have any simple cycles of length strictly more than ℓ′ = 2ℓ. We may assume that
S′ only contains arcs of the form (v−, v+) for some vertex v ∈ V (G), as S′ contains
at most k arcs and there are k + 1 parallel arcs between any two vertices of G′ that
correspond to distinct vertices of G. Therefore, the set S = {v | (v−, v+) ∈ S′} is a set
of at most k vertices in G such that G − S does not have any simple cycles of length
more than ℓ.

It is clear that the Directed Long Cycle Hitting Set problem generalizes
the Directed Feedback Vertex Set problem for parameter ℓ = 0. We now show
that this problem also generalizes the Feedback Vertex Set in Mixed Graphs
problem, but this time for the parameter ℓ = 2. A mixed graph G = (V,A,E) is a
graph on a vertex set V that has a set of directed arcs A, as well as a set of undirected
edges E. In the Feedback Vertex Set in Mixed Graphs problem, we are given
as input a mixed graph G = (V,A,E), where each arc in A can be traversed only along
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its direction and each edge in E can be traversed in both directions, together with an
integer k, and we are seeking a set S of at most k vertices such that G − S does not
contain any cycles.

Theorem 3.66. There is a polynomial parameter transformation from instances (G =
(V,A,E), k) of Feedback Vertex Set in Mixed Graphs to an instance (G′, k, 2)
of Directed Long Cycle Hitting Set.

Proof. Let (G = (V,A,E), k) be an instance of the Feedback Vertex Set in Mixed
Graphs problem. We can assume that G is loop-free, as vertices with loops need to be
removed in any solution. Now, we will create a directed graph G′ such that (G′, k, 2)
as instance of Directed Long Cycle Hitting Set has a solution if and only if
(G, k) has one. For this we replace every arc a ∈ A by a path Pa of length two in the
same direction. Afterwards we replace all edges depending on the existence of other
arcs/edges between its endpoints: If for an edge e = {v, w} ∈ E the only arc/edge
between v and w in G is e (i.e. G[{v, w}] contains a cycle) we replace e by arcs
−→e = (v, w) and ←−e = (w, v) in both directions. Otherwise, we replace e = {v, w} ∈ E
by two paths −→Pe and ←−Pe of length two in both directions. The resulting graph is G′.

Let now S be a solution to (G, k). Then the only cycles in G′ − S must be those
formed by replacing an edge with forward and backward paths/arcs. Only the edges
replaced by paths can form cycles of length longer than two. But those edges had
another arc/edge between their endpoints, thus forming a cycle in G. As S intersects
this cycle, only cycles of length two survive in G′ − S.

For the opposite direction, let S′ be a solution to (G′, k, 2). We can assume that
S′ ⊆ V (G) as all other vertices lie in the middle of paths (i.e. have degree two) and we
could include an endpoint of the path instead. As cycles in G get replaced by longer
cycles in G′, G − S′ contains only cycles of length two which don’t get longer when
transforming to G′. These cycles can only contain two edges between the same vertices
(as arcs get longer). But these get replaced by paths so the cycles would have length
at least four in G′ and would be deleted by S′. Thus, G− S′ contains no cycles.

As the (undirected) Feedback Vertex Set problem is a special case of Feedback
Vertex Set in Mixed Graphs, we have that Directed Long Cycle Hitting Set
also generalizes Feedback Vertex Set for ℓ ≥ 2.
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Chapter 4

Bounded Size Strongly
Connected Component Vertex
Deletion

In this chapter we want to consider the Bounded Size Strongly Connected Com-
ponent Vertex Deletion problem. Given a directed graph G and two integers
k, ℓ ∈ Z≥0 it asks whether there is a set S of at most k vertices such that every strongly
connected component of G− S has at most s vertices.

Bounded Size Strongly Connected Component Vertex Deletion

Instance: A graph G and two integers k, s ∈ Z≥0.

Task: Find a set S ⊆ V (G) of size at most k such that
for every strongly connected component C of G− S holds |V (C)| ≤ s
or decide that no such set exists.

The main result of this chapter is that Bounded Size Strongly Connected
Component Vertex Deletion is fixed-parameter tractable in the deletion size k
and the target component size s.
Theorem 4.1. Let G be a directed graph with n vertices and k, s ∈ Z≥0. There is
an algorithm that solves the Bounded Size Strongly Connected Component
Vertex Deletion instance (G, k, s) in time 22k+1(ks+ k + s)! · O(n4).

In particular, the run-time has the same asymptotic dependence on k as does the al-
gorithm by Chen et al. [CLL+08] for the Directed Feedback Vertex Set problem,
which corresponds to the special case s = 1.

Since its first publication this algorithm has been improved by the work of Neogi,
Ramanujan, Saurabh and Sharma [NRSS20] who gave an 2O(k(log k+log s)) poly(n) algo-
rithm instead of the above 2O((k+s)(log k+log s)) poly(n) algorithm.

Moreover, we will show that for the vertex deletion variant and the arc deletion vari-
ant (both with parameters k and s), there are polynomial parameter transformations in
both directions. Therefore also Bounded Size Strongly Connected Component
Arc Deletion is fixed-parameter tractable when parameterized in k and s.

This result is joint work with Dániel Marx and Matthias Mnich [GMM20c]. An
extended abstract of this work has previously appeared at CIAC 2019 [GMM19].
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4.1 The Fixed-Parameter Algorithm

4.1.1 Applying Disjoint Compression

Our algorithm first makes use of the techniques “Iterative Compression” and “Disjoint
Compression” from Chapter 2. For this let for a fix s ∈ Z≥0 the graph family Cs be
the family of all directed graphs, whose strongly connected components have at most
s vertices. Note that this graph family is non-empty as it always contains the empty
graph and hereditary as for any graph G ∈ Cs and any subgraph G′ of G, the strongly
connected components of G′ are subgraphs of the strongly connected components of G.
Thus, any strongly connected component of G′ has at most s vertices and G′ ∈ Cs.

For this choice of Cs, our Bounded Size Strongly Connected Component
Vertex Deletion problem is exactly the Cs-Vertex Deletion problem. By Cs
being non-empty and hereditary, we can apply Corollary 2.3 to reduce to the following
problem.

Disjoint Bounded Size Strongly Connected Component
Deletion Compression

Instance: A graph G, a vertex set T ⊆ V (G) and two integer k, s ∈ Z≥0 s.t.
for every strongly connected component C of G− T holds |V (C)| ≤ s.

Task: Find a set S ⊆ V (G) \ T of size at most k such that
for every strongly connected component C of G− S holds |V (C)| ≤ s
or decide that no such set exists.

The reduction procedure is summarized in the following lemma.

Lemma 4.2. An instance (G, k, s) of Bounded Size Strongly Connected Com-
ponent Vertex Deletion can be solved in time

O(n · 2k+1 ·Adisjoint compression(n, k + 1, k)),

where Adisjoint compression(n, t, k) is the run-time of an algorithm for Disjoint Bounded
Size Strongly Connected Component Deletion Compression on instances
(G′, T ′, k′, s) with |V (G′)| ≤ n, |T | ≤ t and k′ ≤ k.

Proof. Apply Corollary 2.3 to Cs which is hereditary and non-empty.

4.1.2 Reduction to Skew Separator Problem

In this section, we solve the Disjoint Bounded Size Strongly Connected Com-
ponent Deletion Compression problem by reducing it to the problem of finding a
small “skew separator” in one of a bounded number of reduced instances. Let us briefly
introduce the Skew Separator problem.

Definition 4.3. Let G be a directed graph, and let X = (X1, . . . , Xt),Y = (Y1, . . . , Yt)
be two ordered collections of t ≥ 1 subsets of V (G). A skew separator S for (G,X ,Y)
is a vertex subset of V (G) \ ⋃ti=1(Xi ∪ Yi) such that for any index pair (i, j) with
1 ≤ j ≤ i ≤ t, there is no path from Xi to Yj in the graph G− S.
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Skew Separator

Instance: A graph G, two ordered collections X ,Y of subsets of V (G),
and an integer k ∈ Z≥0.

Task: Find a skew separator S ⊆ V (G) \⋃i(Xi ∪ Yi) of size at most k
or decide that no such separator exists.

The Skew Separator problem was introduced by Chen et al. [CLL+08] and they
showed that it is fixed-parameter tractable when parameterized in k.
Theorem 4.4 ([CLL+08, Thm. 3.5]). There is an algorithm solving Skew Separator
in time 4kk · O(n3) for n-vertex directed graphs G.

Now we want to reduce from Disjoint Bounded Size Strongly Connected
Component Deletion Compression to Skew Separator. Note that, by defini-
tion, we have that every strongly connected component of G − T has size at most s.
Moreover, we can assume that every strongly connected component of G[T ] has size
at most s, as otherwise there is no solution S of (G, k, s) that is disjoint from T . Let
{t1, . . . , tk+1} be an arbitrary labeling of the vertices in T .
Lemma 4.5. Let (G,T, k, s) be an instance of Disjoint Bounded Size Strongly
Connected Component Deletion Compression. Then there is an algorithm that
in time (ks+ s−1)! ·O(n) computes a collection C of at most (ks+ s−1)! vectors such
that:

• every vector C = (C1, . . . , Ck+1) has length k + 1, and
• for every h = 1, . . . , k + 1, we have th ∈ Ch ⊆ V (G), and
• if there is a solution S to (G,T, k, s), then there is a vector C ∈ C such that

the strongly connected component of G − S containing th is exactly G[Ch] for
h = 1, . . . , k + 1.

Proof. Fix a hypothetical solution S of (G,T, k, s) that is disjoint from T . The algo-
rithm computes, for each vertex th ∈ T , a set Ch ∋ th of at most s vertices such that Ch
induces a strongly connected component of G − S. These sets Ch must exist as S is
required to be disjoint from T .

Notice that the algorithmic computation of Ch must only depend on th but not
on S. Vertices in Ch (other than th) may or may not belong to T and in particular it
can be that th′ ∈ Ch for some h′ ∈ {1, . . . , k + 1} \ {h}. Thus, for distinct th, th′ ∈ T ,
sets Ch and Ch′ possibly overlap.

The algorithm constructs the sets Ch iteratively by a simple branching algorithm
along the following lines. It starts with an initial set C0

h = {th} and a guessed set S = ∅.
For i ≥ 0, suppose that it has already constructed a set Cih that must be a subset of
Ch, and we want to either extend Cih to a proper superset Ci+1

h or decide that Ch = Cih.
If there is a path P in G− S of length at least two and length at most s− |Cih| whose
end vertices are in Cih and whose internal vertices are all outside Cih, then it branches
into two cases:

• either some internal vertex u of P belongs to the deletion set S (add u to S), or
• the entire path P belongs to the candidate set Ci+1

h (add V (P ) to Cih).
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Thus, in each branching step, either the size of S strictly increases, or the size of Cih
strictly increases. Note that the size of S is bounded by k, and the size of Cih ⊆ Ch is
bounded by s. Hence, in the first branch, adding u to S implies that the budget k−|S|
strictly decreases to k − |S ∪ {u}|, whereas in the second branch, adding V (P ) to Cih
strictly decreases the budget s − |Cih| to s − |Cih ∪ V (P )|. The latter is a decrease by
at least one since P contains an internal vertex not in Cih. We repeat this branching
until the size of S reaches the limit of k or the size of Cih reaches the limit of s, or if
there are no paths left of length at most s− |Cih| with both end vertices inside Cih and
all internal vertices outside Cih. At this point, the set Cih will not be further extended,
and Ch := Cih is a candidate set for th. We then continue with th+1 and Ch+1. This
completes the algorithm description.

Next, we analyze the run-time of the algorithm. The run-time mainly depends on
the number of branches. For a single branch node, the number of branches originating
from this node can be bounded by a function f(k′, q) for the remaining value k′ of k at
this node and q = ∑k+1

h=1(s − |Cih|) is the sum of the remaining capacities of the Ch’s.
By the above branching algorithm, this function satisfies the recursion

f(k, q) ≤ (s− |Cih|)f(k − 1, q) + f(k, q − 1),

as in the first branch there are at most s − |Cih| choices for vertex u each of which
reduces the budget of k − |S| by 1, and one branch which reduces the budget of q by
the number of internal vertices of P which is at least 1.

To obtain an upper bound on the growth of f , we first notice that f(0, q) = 1 for
all q ∈ Z≥0 and f(k, 0) = 1 for all k ∈ Z≥0. We then claim that f(k, q) ≤ (q+k)!, since
by induction for k, q ∈ Z≥0 it holds

f(k, q) ≤ (s− |Chi |)f(k − 1, q) + f(k, q − 1)
≤ (s− |Chi |)(q + k − 1)! + (q − 1 + k)!
= (s− |Chi |+ 1)(q + k − 1)!

=
(
s− |Cih|+ 1

q + k

)
(q + k)!

≤ (q + k)!,

where in the last inequality we used that q ≥ s−|Chi | and k ≥ 1. Hence, the search tree
has at most (q+k)! leaves and each leaf corresponding to some vector C ∈ C. The initial
capacity q satisfies q = (k+1)(s−1), and thus |C| ≤ (ks+s−1)!. In each branching step
we need to find a edge-wise shortest Cih → Cih-path which is not a single edge, which
can be achieved by a modified breath-first search in linear time. Also all set operations
in a branching step can be done in linear time. Thus, since each branching step can
be executed in linear time, the search tree (and hence the set C) can be constructed in
time (q+ k)! · O(n). Thus, the overall run-time is (q+ k)! · O(n) = (ks+ s− 1)! · O(n).

As the number of branches also bounds the number of produced vectors, we have
|C| ≤ (ks+ s− 1)!.

Armed with Lemma 4.5, we can restrict our search for a solution S of (G,T, k, s)
to those that additionally are “compatible” with a vector C in C. Formally, we call a
solution S of (G,T, k, s) compatible with a vector C = (C1, . . . , Ck+1) ∈ C if the strongly
connected component of G− S containing th is exactly Ch for h = 1, . . . , k + 1.
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To determine whether for a given vector C = (C1, . . . , Ck+1) ∈ C some solution S
of (G,T, k, s) that is compatible with C exists, we create several instances of the Skew
Separator problem. To this end, note that if two sets Ch, Ch′ for distinct th, t′h ∈ T
overlap, then we must actually have Ch = Ch′ (and th, t

′
h ∈ Ch) or no solution S

can be compatible with them. So for each set Ch we choose exactly one (arbitrary)
representative T -vertex among all vertices of T in Ch with consistent choice among
overlapping (and thus equal) Ch’s. Let T ′ ⊆ T be the set of these representative
vertices. Now we generate precisely one instance (G′,Xσ′ ,Yσ′ , k) of Skew Separator
for each permutation σ′ of T ′. The graph G′ is the same in all these instances, and is
obtained from G by replacing each unique set Ch by two vertices t+h , t

−
h (where th is

the representative of Ch), and connecting all in-neighbors of Ch in G by an in-arc to t+h
and all out-neighbors of Ch in G by an arc outgoing from t−h . This way also arcs of
the type (t−j , t+h ) are added but none of type (t−j , t−h ), (t+j , t−h ) or (t+j , t+h ). Notice that
this operation is well-defined and yields a simple directed graph G′, even if th′ ∈ Ch for
some distinct h, h′.

Next we iterate over all possible permutation σ′ of {1, . . . , |T ′|}. For every such
permutation σ′ we define the ordered collections Xσ′ and Yσ′ of “sources” and “sinks”.
For this let Xσ′ = (t−σ′(1), . . . , t

−
σ′(|T ′|)) and let Yσ′ = (t+σ′(1), . . . , t

+
σ′(|T ′|)).

This way we generate for every C ∈ C at most |T ′|! ≤ |T |! = (k + 1)! instances
(G′,Xσ′ ,Yσ′ , k) of the Skew Separator problem. We now prove that at least one of
the created instances is equivalent to our original instance (G,T, k, s) when restricted
to C-compatible solutions.

Lemma 4.6. If an instance (G,T, k, s) admits a solution S compatible with C for which
(Cσ′(1), . . . , Cσ′(|T ′|)) can be extended to a topological order of the strongly connected
components of G′−S, then S forms a skew separator of size at most k for (G,Xσ′ ,Yσ′).

Proof. Suppose, for the sake of contradiction, that the claim is false. Then one of the
two following cases must hold:

1. For two vertices th, th′ ∈ T ′ with σ′(h) < σ′(h′), there would be a path P1 from t−h′

to t+h in G′ − S. This corresponds to a Ch′ → Ch path in G− S. Either there is
also a Ch → Ch′ path in G meaning that Ch = Ch′ in contradiction to our choice
of T ′ or the topological order σ′ of strongly connected components was incorrect
(as Ch′ must be before Ch).

2. The in-vertex t−h of the strongly connected component containing vh would be
reachable by a path P2 from the out-vertex t+h of this strongly connected compo-
nent in the graph G′ − S. Then the strongly connected component of th would
contain the internal vertices of P2, contradicting that the strongly connected com-
ponent of G′−S containing th is exactly Ch (by definition of S being compatible
with C.

Lemma 4.7. Conversely, if S is a skew separator of (G′,Xσ′ ,Yσ′) with size at most k,
then S is a solution of (G,T, k, s).

Proof. By choice of C,X and Y, we have that S ⊆ V (G) \ ⋃t′i=1(Xi ∪ Yi) ⊆ V (G) \ T .
That means that S is disjoint of T . Now suppose, for the sake of contradiction, that S
is not a solution for (G,T, k, s). Then there is some strongly connected component Q
in G− S of size more than s. By abuse of notation let C = ⋃k+1

h=1Ch.
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Since neither G[C] (by choice of C) nor V (G) − C (as subgraph of G[V (G) \ T ])
contain strongly connected components of size greater than s, this component Q must
contain vertices from both C and V (G)\C. Let K be a closed walk of Q that intersects
both G[C] and G[V (G) \ C]. Such a closed walk K must exist by Q being strongly
connected.

We consider two cases:

1. The closed walk K intersects a single unique component Ch. Then all other
vertices of K are in V (G) \ Ch. Let th be the representative of Ch. As K
intersects G[V (G) \ C], K leaves and enters Ch at least once. This means that
there is a walk P1 in G′ − S that starts with the vertex t−h and ends with the
vertex t+h , and all internal vertices of P1 (of which there is at least one) are
outside T ′. But this contradicts the assumption that S is a skew separator for
the tuple (G′, (t−σ′(1), . . . , t

−
σ′(|T ′|)), (t

+
σ′(1), . . . , t

+
σ′(|T ′|))) that should cut all walks

from t−h to t+h .

2. The closed walk K intersects several different components Ch. In this case, de-
note by (Ch1 , . . . , Chd

, Ch1) the components in the order we encounter them when
traversing along the walk K for some d > 1. Let (th1 , . . . , thd

, th1) be the cor-
responding representative vertices. Then there must be an index j such that hj
occurs after hj+1 (mod d+1) in (σ′(1), σ′(2), . . . σ′(|T ′|). Consider the subpath P2
of K that starts from Chj

, ends in Chj+1 and has its interior disjoint from both.
Since all internal vertices on P2 (by definition of P2) are not in any Ch, all such
internal vertices of P2 must be from G − S − ∪|T

′|
i=1(Xi ∪ Yi), and the path P2

corresponds to a path P ′2 in the graph G′−S that starts from vertex t−hj
and ends

at vertex t+hj+1
. Again, this contradicts the assumption that S is a skew separator

for the tuple (G′,Xσ′ ,Yσ′).

This proves that the skew separator S must be a solution for (G,T, k, s).

In summary, we have reduced a single instance (G,T, k, s) of Disjoint Bounded
Size Strongly Connected Component Deletion Compression to at most |C| ·
|T ′|! many instances (G′,Xσ′ ,Yσ′ , k) of the Skew Separator problem, where each
such instance corresponds to a permutation σ′ of T ′. The reduction just described
implies that:

Lemma 4.8. An input (G, k, s, T ) to the Disjoint Bounded Size Strongly Con-
nected Component Deletion problem is a “yes”-instance if and only if at least one
of the instances (G′,Xσ′ ,Yσ′ , k) is a “yes”-instance for the Skew Separator problem.

So we invoke the algorithm of Theorem 4.4 for each of the instances (G′,Xσ′ ,Yσ′ , k).
If at least one of them is a “yes”-instance then (G,T, k, s) is a “yes”-instance, other-
wise (G,T, k, s) is a “no”-instance. Hence, we conclude that Disjoint Bounded Size
Strongly Connected Component Deletion Compression is fixed-parameter
tractable with respect to the joint parameter k + s, and so is Size Strongly Con-
nected Component Vertex Deletion by Lemma 4.2.

For the overall run-time, note that Lemma 4.2 provides a factor of 2k+1O(n) to the
run-time. The generation of C takes time (ks+s−1)! ·O(n) and produces a set C of size
(ks+ s− 1)! by Lemma 4.5. The iteration over permutations of |T ′| provides another
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factor of |T ′|! to the run-time. Finally, the algorithm for solving Skew Separator
runs in time 4kkO(n3) by Theorem 4.4. The overall run-time of the algorithm is thus
bounded by

2k+1O(n) · |C| · |T ′|! · 4kkO(n3) = (ks+ s− 1)! · (k + 1)! · 22k+1 · O(n4)
= 22k+1(ks+ k + s)! · O(n4).

This completes the proof of Theorem 4.1.

4.2 Reductions between Vertex and Arc Version

In this section we prove the existence of polynomial parameter transformations between
Bounded Size Strongly Connected Component Arc Deletion and Bounded
Size Strongly Connected Component Vertex Deletion in both directions.
This implies that they are parameter equivalent and thus Bounded Size Strongly
Connected Component Arc Deletion is also fixed-parameter tractable in k + s.

Polynomial Parameter Transformation from Arc to Vertex Version

Our first transformation reduces an instance of Bounded Size Strongly Con-
nected Component Arc Deletion to an instance of Bounded Size Strongly
Connected Component Vertex Deletion. While our transformation keeps the
parameter k constant, the parameter s increases to (k+ 1)s3. This is due to a replace-
ment of all vertices by complete graphs of size roughly ks2, therefore increasing the size
of eligible components.

Lemma 4.9. Given an instance (G, k, s) of Bounded Size Strongly Connected
Component Arc Deletion we can compute in polynomial time an equivalent in-
stance (G′, k′, s′) of Bounded Size Strongly Connected Component Vertex
Deletion with k′ = k and s′ = (k + 1)s3.

Proof. We first bound the number of parallel arcs in G. Note that if there are more
than k+1 arcs between a pair of vertices running in the same direction, we can remove
additional arcs as at least one of these arcs remains after the removal of k arcs. Thus
we can restrict ourselves to instances with at most k + 1 parallel arcs per ordered
vertex pair. In such directed graphs any subgraph with at most s vertices has at most
sa := (k + 1)s(s − 1) arcs. The idea is now to subdivide the arcs by a vertex and
replace the original vertices by complete directed graphs of size sa + k + 1. Then the
inclusion of an original vertex into a strongly connected component has more impact
than any of the artificial vertices needed to subdivide the arcs. Formally, we define our
new directed graph G′ as follows:

V (G′) = {vi | v ∈ V (G), 1 ≤ i ≤ sa + k + 1} ∪ {ua | a ∈ A(G)},
A(G′) = {(vi, vj) | v ∈ V (G), 1 ≤ i, j ≤ sa + k + 1, i ̸= j}

∪ {(vi, ua) | a = (v, w) ∈ A(G), 1 ≤ i ≤ sa + k + 1}
∪ {(ua, wi) | a = (v, w) ∈ A(G), 1 ≤ i ≤ sa + k + 1}.
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Finally, we set s′ = s(sa+k+1)+sa = (k+1)s3 and get the resulting instance (G′, k, s′)
of Bounded Size Strongly Connected Component Vertex Deletion. It re-
mains to show that the two instances are indeed equivalent.

For the forward direction, let S be a set of at most k arcs such that every strongly
connected component of G − S has at most s vertices. Let S′ = {ua | a ∈ S}. By
construction, we have that G′ − S′ is equivalent to applying above transformation to
the graph G− S. As our transformation preserves connectedness we have a one to one
correspondence between strongly connected components of G′ − S′ and G− S. Let X ′
be a strongly connected component of G′ − S′ and X it’s corresponding set in G− S.
We know that A(G[X]) has size at most (k+1)|X|(|X|−1) ≤ sa. Thus, X ′ contains at
most sa vertices of type ua. Furthermore, there are at most |X|(sa+k+1) ≤ s(sa+k+1)
vertices of type vi. Hence, we have |X ′| ≤ sa + s(sa + k+ 1) = s′, and by |S′| = |S| ≤ k
we know that S′ is a valid solution to (G′, k, s′).

For the reverse direction, let S′ be a set of at most k vertices such that every
strongly connected component of G′ − S′ has at most s′ vertices. Then, we claim that
the set S = {a ∈ A(G) | ua ∈ S′} is a solution to (G, k, s). Obviously, |S| ≤ |S′| ≤ k.
We now want to show that the strongly connected components in G− S do contain at
most s vertices. As sa + k + 1 > k we know that for every v ∈ V (G) at least one vi
remains in G′ − S′. Because all vi have the same neighbors, removing the vertices of
type vi from S′ does not change connectivity of G−S′. Now again there is a one-to-one
correspondence between the strongly connected components of G−S and G′−S′. The
strongly connected components of G′ − S′ are missing at most k vertices of type vi
which are in S′. Let X be a strongly connected component in G′ − S′. Let W ⊂ V (G)
be the set of all vertices w ∈ V (G) in G such that X contains a vertex wi. If |W | > s
then X contains at least (sa + k + 1)|W | − k ≥ (sa + k + 1)s+ sa + k + 1− k = s′ + 1
vertices, a contradiction to the fact that S′ was solution for (G′, k, s′). Thus, |W | ≤ s
and by the one to one correspondence of strongly connected components, we know that
W is indeed a strongly connected component of G−S. As X was chosen arbitrary and
all strongly connected components of G−S have counterpart in G′−S′, this completes
the proof.

Polynomial Parameter Transformation from Vertex to Arc Version

Here we state a polynomial parameter transformation from Bounded Size Strongly
Connected Component Vertex Deletion to Bounded Size Strongly Con-
nected Component Arc Deletion. Note that, unlike the reduction in backwards
direction, the parameter increase of s is only linear and does not depend on k.

Lemma 4.10. Given an instance (G, k, s) of Bounded Size Strongly Connected
Component Vertex Deletion we can compute in polynomial time an equivalent in-
stance (G′, k′, s′) of Bounded Size Strongly Connected Component Arc Dele-
tion with k′ = k and s′ = 2s.

Proof. Given an instance (G, k, s) of Bounded Size Strongly Connected Compo-
nent Vertex Deletion, create a directed graph G′ from G by splitting each vertex
v ∈ V (G) into two vertices v+, v−, adding the arc from v− to v+, and connecting all
in-neighbors u of v in G by k+1 parallel arcs from u+ to v− in G′, and all out-neighbors
u of v in G by k + 1 parallel arcs from v+ to u− in G′.
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In other words, we set

V (G′) = {v+, v− | v ∈ V (G)},
A(G′) = {(v−, v+) | v ∈ V (G)}

∪ {(u+, v−)k+1 | u ∈ N−G (v), v ∈ V (G)}
∪ {(v+, u−)k+1 | u ∈ N+

G (v), v ∈ V (G)} .

We further set k′ = k and s′ = 2s. Then (G′, k′, s′) is an instance of Bounded Size
Strongly Connected Component Arc Deletion. It remains to check equivalence
of the instances.

In the forward direction, let S be a set of at most k vertices such that in G−S every
strongly connected component has at most s vertices. Let S′ = {(v−, v+) | v ∈ S} be
the corresponding set of k arcs in G′. The number of vertices in each strongly connected
component of G′ − S′ is now exactly twice the number of vertices in its corresponding
component in G−S. Therefore, every strongly connected component of G′−S′ consists
of at most s′ = 2s vertices.

In the backward direction, let S′ be a set of at most k arcs such that in G′−S′ every
strongly connected component has at most s′ = 2s vertices. We first argue that we can
change S′ in such a way that it will only consist of arcs of the form (v−, v+) for some
vertex v ∈ V (G). As for all other arcs we inserted k+ 1 parallel arcs, any deletion of k
arcs, does not change the connectivity of the parallel arcs. Thus, we can remove those
arcs from S′. This justifies the assumption that S′ = {(v−, v+) | v ∈ V (G)}.) Now let
S = {v ∈ V (G) | (v−, v+) ∈ S′} be the set of at most k vertices in G corresponding to
the arcs in S′. The number of vertices in each strongly connected component of G− S
is now exactly half the number of vertices in its corresponding component in G′ − S′.
Therefore, every strongly connected component of G − S consists of at most s = s′/2
vertices.
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Chapter 5

1-Out-Regular Vertex Deletion

In this chapter we study the 1-Out-Regular Vertex Deletion problem. Here, for
a given directed graph G and an integer k, we are to find a set S ⊆ V (G) of size at
most k such that every strongly connected component of G − S is either a directed
cycle or a single vertex. That is for every strongly connected component C, all vertices
have the same out-degree in G[C] and this out-degree is at most 1, hence the name.

Definition 5.1. Let G be a directed graph and let r ∈ Z≥0 be an integer. A subgraph H
of G is called r-out-regular, if for every v ∈ V (H) we have |δ+

H(v)| = r.

1-Out-Regular Vertex Deletion

Instance: A graph G and an integer k ∈ Z≥0.

Task: Find a set S ⊆ V (G) of size at most k such that
every strongly connected component C of G− S
is rC-out-regular with rC ≤ 1
or decide that no such set exists.

Our main result is that 1-Out-Regular Vertex Deletion is fixed-parameter
tractable when parameterized in k.

Theorem 5.2. Let G be an n-vertex directed graph G and k ∈ Z≥0. There is an
algorithm solving the 1 -Out-Regular Vertex Deletion instance (G, k) in time
2O(k3) poly(n).

By giving a polynomial parameter transformation from 1-Out-Regular Arc
Deletion to 1-Out-Regular Vertex Deletion, we extend this result to the arc
deletion variant.

Since its first publication above algorithm has been improved by the work of Neogi,
Ramanujan, Saurabh and Sharma [NRSS20] who gave a 2O(k log k) poly(n) algorithm.

The motivation for studying 1-Out-Regular Vertex Deletion comes from the
Eulerian Strongly Connected Component Vertex Deletion problem. Here
one wishes to delete k vertices from a directed graph G such that every strongly con-
nected component of the remaining graph is Eulerian. As we will see, this problem is
W [1]-hard when parameterized by k.

67
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Theorem 5.3. Eulerian Strongly Connected Component Vertex Deletion
is NP-hard and W[1]-hard parameterized by solution size k, even for (k + 1)-strongly
connected, directed graphs.

The main difficulty seems to lie in the fact that the family of graphs with Eulerian
strongly connected components is not hereditary. Even for 2-out-regular graphs, the
deletion of a vertex may lead to a graph that is not 2-out-regular anymore.

An example for this is the graph on five vertices v0, . . . , v4 with the arcs (vi, vi+1)
and (vi, vi+2) for all i ∈ {0, . . . , 4}, where indices are taken modulo 5. Here the deletion
of a single vertex vi leaves the graph strongly connected (because of the arc (vi−1, vi+1)),
but the out-degree of vi−2 and vi−1 decreased by one, whereas the out-degree of vi+1
and vi+2 did not change.

However, the graph class of all graphs where every strongly connected component
C is rC-out-regular for some rC ≤ 1, is hereditary. Any deletion of vertices can
only break the 1-out-regular strongly connected components, which are directed cy-
cles, into strongly connected components that consist of isolated vertices, which are
0-out-regular. So 1-Out-Regular Vertex Deletion is the natural restriction of
Eulerian Strongly Connected Component Vertex Deletion to hereditary
graph classes.

This result is joint work with Dániel Marx and Matthias Mnich [GMM20c]. An
extended abstract of this work has previously appeared at CIAC 2019 [GMM19].

5.1 The Fixed-Parameter Algorithm

5.1.1 Applying Disjoint Compression

As discussed in the introduction to this chapter, the graph class C1-out-regular, of graphs
whose strongly connected components C are rC-out-regular with rC ≤ 1, is hereditary.
Moreover, it is non-empty, as it contains the empty graph.

For this choice of C1-out-regular, our 1-Out-Regular Vertex Deletion problem is
exactly the C1-out-regular-Vertex Deletion problem. By C1-out-regular being non-empty
and hereditary, we can apply Corollary 2.3 to reduce to the following problem.

Disjoint 1-Out-Regular Vertex Deletion Compression

Instance: A graph G, a vertex set T ⊆ V (G) and an integer k ∈ Z≥0 such that
T is an inclusion-wise minimal set with the property that
every strongly connected component C of G− T
is rC-out-regular for some rC ≤ 1.

Task: Find a set S ⊆ V (G) \ T of size at most k such that
every strongly connected component C of G− S
is rC-out-regular with rC ≤ 1
or decide that no such set exists.

The reduction procedure is summarized in the following lemma.
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Lemma 5.4. An instance (G, k) of 1 -Out-Regular Vertex Deletion can be solved
in time O(n · 2k+1 ·Adisjoint compression(n, k+ 1, k)), where Adisjoint compression(n, t, k) is the
run-time of an algorithm for Disjoint 1 -Out-Regular Vertex Deletion Com-
pression on instances (G′, T ′, k′) with |V (G′)| ≤ n, |T | ≤ t and k′ ≤ k.
Proof. Apply Corollary 2.3 to C1-out-regular which is hereditary and non-empty.

5.1.2 Covering of Shadows

As a next step, we want to apply the “Shadow Covering” technique as described in
Chapter 2. Given an instance (G,T, k) of Disjoint 1-Out-Regular Vertex Dele-
tion Compression, we let Fnot {0, 1}-out-regular be the family of strongly connected
subgraphs C of G that are not rC-out-regular for some rC ≤ 1. This means that every
graph of Fnot {0, 1}-out-regular contains at least one vertex with out-degree greater one.
Moreover, every graph of Fnot {0, 1}-out-regular is strongly connected. Thus, for any graph
H ∈ Fnot {0, 1}-out-regular and any v ∈ V (H) we have that there is a v → T -path and a
T → v-path inH, i.e. all graph of Fnot {0, 1}-out-regular are T -connected. Additionally, any
solution S of (G,T, k) must intersect every graph in Fnot {0, 1}-out-regular as otherwise the
graph G−S contains a strongly connected component of Fnot {0, 1}-out-regular, which is not
rC-out-regular for some rC ≤ 1. Thus, any solution S must be an Fnot {0, 1}-out-regular-
transversal. Also, any Fnot {0, 1}-out-regular-transversal S of size at most k must be
a solution, as any remaining strongly connected component of G − S cannot be in
Fnot {0, 1}-out-regular. Thus, we can apply Theorem 2.9 to obtain the following result.
Lemma 5.5. Let (G,T, k) be an instance of 1 -Out-Regular Vertex Deletion.
Then we can construct in time 2O(k2) poly(n) a set Z = {Z1, Z2, . . . , Zt} with t =
2O(k2) log2 n such that if (G,T, k) has a solution, there is a solution S and a Zi ∈ Z with

1. S ∩ Zi = ∅, and
2. Zi contains the shadow of S with respect to T .

Proof. Apply Theorem 2.9 to Fnot {0, 1}-out-regular, which is T connected. Moreover, the
Fnot {0, 1}-out-regular-transversals are exactly our solutions.

This allows us to solve the following easier problem instead:

Shadow-Covered 1-Out-Regular Vertex Deletion

Instance: A graph G, vertex sets T,Z ⊆ V (G) and an integer k ∈ Z≥0 such that
• T is an inclusion-wise minimal set with the property that

every strongly connected component C of G− T
is rC-out-regular for some rC ≤ 1,

• T ∩ Z = ∅,
• G[Z ∪ T ] contains no subgraph in Fnot {0, 1}-out-regular.

Task: Find a set S ⊆ V (G) \ T of size at most k such that
• every strongly connected component C of G− S

is rC-out-regular with rC ≤ 1,
• S ∩ Z = ∅, and
• Z contains the shadow of S with respect to T

or decide that no such set exists.
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Note that our problem contains the two additional properties that T ∩ Z = ∅ and
G[Z ∪T ] contains no subgraph in Fnot {0, 1}-out-regular. The first property we can assume
as T is never in the shadow of some S ⊆ V (G) \ T . The second property follows from
the fact that Z ∪ T is disjoint form our sought-after solution. The following lemma
summarizes those findings.

Lemma 5.6. Given an instance (G,T, k) of Disjoint 1 -Out-Regular Vertex
Deletion Compression, then we can compute in time 2O(k2) poly(n) a collection
Z1, Z2, . . . , Zt of t = 2O(k2) log2 n vertex sets Zi ⊆ V (G), such that for the Ij =
(G,T, Zj , k) the following holds:

• the Ij are Shadow-Covered 1 -Out-Regular Vertex Deletion instances,
• any solution to one of the Ij instances is a solution to (G,T, k), and
• if (G,T, k) admits a solution then one of the Ij has a solution.

Proof. By Lemma 5.5, we can compute in 2O(k2) poly(n) time at most 2O(k2) log2 nmany
sets Zi such that if (G,T, k) has a solution, it has a solution S that is disjoint of Zi and
Zi covers the shadow of S with respect to T for some i. We can assume that these Zi
are disjoint of T , as a vertex of T is never in any shadow with respect to T . That is we
take Zi \T , if they are not. Moreover, for any such Zi, we have that G[Zi∪T ] contains
no subgraph of Fnot {0, 1}-out-regular, as S is disjoint of Zi ∪ T and thus G − S would
contain a strongly connected component that is in Fnot {0, 1}-out-regular, a contradiction
to S being a solution. We can check for this in linear time for every Zi and remove
these sets. Thus, we can restrict us to Zi where (G,T, Zi, k) is a Shadow-Covered
1-Out-Regular Vertex Deletion instance. On the other hand, any solution to
a Shadow-Covered 1-Out-Regular Vertex Deletion instance (G,T, Z, k) with
arbitrary Z is also a solution to the Disjoint 1-Out-Regular Vertex Deletion
Compression instance (G,T, k). The run-time follows from the run-time and size
bounds of Lemma 5.5.

5.1.3 Reduction by Torso Operation

Normally after using the “shadow covering” technique, one uses the set Z to create
a new instance of the same problem that has a shadowless solution (if there is any).
In contrast to this we reduce slightly different problem here that retains a bit more
information by marking arcs as good or bad.

Definition 5.7. Let (G,T, Z, k) be an Shadow-Covered 1 -Out-Regular Vertex
Deletion instance. Then torso(G,Z) defines the directed graph with vertex set V (G)\
Z and a labeling of the arcs as good and bad. An arc (u, v) for u, v ̸∈ Z is introduced
whenever there is an u → v-path P in G (of length at least 1) whose internal vertices
are all in Z. We mark (u, v) as good arc if P is unique and there is no cycle O in
G[Z] with O ∩ P ̸= ∅. Otherwise, we mark it as bad arc.

Note that every arc (x, y) for x, y ∈ V (G)\Z also forms a path as above. Therefore,
G[V (G) \ Z] is a subgraph of torso(G,Z). Also, torso(G,Z) may contain self loops at
vertices v from cycles with only the vertex v outside of Z. In torso(G,Z), we call a
cycle good if it consists of only good arcs. A non-good cycle in torso(G,Z) can contain
both good arcs and bad arcs.

We call the resulting new problem Good 1-Out-Regular Vertex Deletion.
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Good 1-Out-Regular Vertex Deletion

Instance: A graph G with arcs labeled good and bad,
a vertex set T ⊆ V (G) and an integer k ∈ Z≥0 such that
T is an inclusion-wise minimal set with the property that
every strongly connected component C of G− T

• is rC-out-regular for some rC ≤ 1,
• containing only good arcs.

Task: Find a set S ⊆ V (G) \ T of size at most k such that
every strongly connected component C of G− S

• is rC-out-regular with rC ≤ 1,
• contains only good arcs, and
• is shadowless with respect to T

or decide that no such set exists.

We will now show solution equivalence for the two problems in the following lemmas.

Lemma 5.8. Let (G,T, Z, k) be an instance of Shadow-Covered 1 -Out-Regular
Vertex Deletion and let (G′, T, k) be the corresponding Good 1 -Out-Regular
Vertex Deletion instance with G′ = torso(G,Z).

Then any solution S ⊆ V (G) \ (Z ∪ T ) to (G,T, Z, k) is a solution to (G′, T, k).

Proof. First note, that S ⊆ V (G′)\T . Assume for contradiction that G′−S contains a
strongly connected component C ′ that is either not rC′-out-regular for some rC′ ≤ 1 or
contains a bad arc. Transform C ′ back to a subgraph of G as follows. All good arcs are
replaced by their unique path as defined in the torso operation. For a bad arc (x, y) we
insert all x→ y-paths whose internal vertices completely belong to Z. If there is only
a single such path P then by definition there is a cycle O in G[Z] that intersects P .
We also insert all cycles O of this type. Call the resulting graph C.

This directed graph C is a subgraph of G−S as (V (C ′)∪Z)∩S = ∅. Moreover, C
is strongly connected as C ′ was strongly connected and all added vertices have a path
from and to V (C ′). Now, either C ′ was not a cycle, then C is also not a cycle or it
contained a bad arc, and we have inserted at least two parallel paths or a cycle. In any
case, we have that C is not rC-out-regular for an rC ≤ 1.

Lemma 5.9. Let (G,T, Z, k) be an instance of Shadow-Covered 1 -Out-Regular
Vertex Deletion and let (G′, T, k) be the corresponding Good 1 -Out-Regular
Vertex Deletion instance with G′ = torso(G,Z).

Then any solution S′ ⊆ V (G′) \ T to (G′, T, k) is a solution to (G,T, Z, k).

Proof. First note that S′ ⊆ V (G) \ (Z ∪ T ). Assume for contradiction that G− S′ has
a strongly connected component C that is not rC-out-regular for some rC ≤ 1. We
will show that C ′ = torso(C,Z) is a strongly connected subgraph of G′ − S that is not
rC′-out-regular for some rC′ ≤ 1 or contains a bad arc. Note that the torso operation
preserves subgraph relations and connection. So C ′ exists in G′ − S and is strongly
connected.
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By the input property of Shadow-Covered 1-Out-Regular Vertex Dele-
tion, that G[Z ∪ T ] contains only {0, 1}-out-regular subgraphs, we know hat there is
a v ∈ V (C) \ (Z ∪ T ). Furthermore, we know that there is also a t ∈ V (C) ∩ T as T
is a solution to G. From Z ∩ T = ∅ by definition we know that v, t ̸∈ Z and hence in
V (C ′). As C is strongly connected, there is a closed walk O through v and t in C.

Claim 1. O is a cycle.

Proof of Claim 1. Suppose, for sake of contradiction, that O is not a cycle. Let w be
a vertex that is visited at least twice when traversing O. Let x1, w, y1 be the first
traversal and x2, w, y2 be the second one. Without loss of generality, we can assume
that x1, x2, y1, y2 ̸∈ Z by replacing them by the next vertex on O outside Z.

If w ∈ Z then the arcs (x1, y1), (x1, y2), (x2, y1), (x2, y2) all exist in the strongly
connected subgraph torso(O,Z). Thus, torso(O,Z) is not rO-out-regular for rO ≤ 1, in
contradiction to the fact that torso(O,Z) is a subgraph of G′ − S′ and S′ a solution
to I ′.

Otherwise, w /∈ Z and thus, the arcs (x1, w), (x2, w), (w, y1), (w, y2) would exist in
torso(O,Z), giving the same contradiction. This completes the proof of the claim. ■

Now C is strongly connected and not a cycle, and therefore has to contain a (possibly
closed) x→ y path R with the following properties:

• x, y ∈ V (O),

• R contains no arc from O,

• all internal vertices of R are disjoint of V (O).

As O contains at least two vertices v, t that are not in Z, there is an x1 → x2-path Ox
and a y1 → y2-path Oy in O such that

• the endpoints of Ox and Oy are not in Z but all their interior vertices, and

• x ∈ V (Ox), y ∈ V (Oy).

For example, if x ̸∈ Z, set x1 = x2 = x. Otherwise, take the subpath of O that
starts in the first vertex not in Z before x and ends in the first vertex not in Z after x.

Now, if R contains some interior vertex u ̸∈ Z, the path Ox[x1, x] ◦ R[x, u] is in C
and shrinks to a x1 → u-path in C ′. As u /∈ V (O), we get that x1 has at least two
out-arcs (x1, x2), (x1, u) in C ′ and therefore C ′ = torso(C,Z) is not rC′-out-regular for
some rC′ ≤ 1, a contradiction. Thus, the interior of R lies in Z.

Next, if (x1, x2) ̸= (y1, y2) then Ox[x1, x]◦R◦Oy[y, y2], is a x1 → y2 path in C. Note
that x2 ̸= y2 as O is a cycle, (x1, x2) ̸= (y1, y2) and all interior vertices of Ox and Oy are
in Z. Therefore the path is shrunk by the torso operation to the arc (x1, y2). But then
x1 has two outgoing arcs in C ′ and as C ′ is still strongly connected, C ′ = torso(C,Z)
is not rC′-out-regular for some rC′ ≤ 1, a contradiction.

Finally, we have (x1, x2) = (y1, y2) and also Ox = Oy as otherwise the arc would be
bad (because there are two different x1 → x2-paths). If x lies before y on Ox the path
P = Ox[x1, x] ◦R ◦Ox[y, x2] is a x1 → x2-path in C. As the interior of Ox and R is in
Z, this would give a second x1 → x2-path, making (x1, x2) bad. This is a contradiction
to C ′ being a strongly connected subgraph of G′ − S′ and S′ being a solution.
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The last case is if y lies before x on Ox. Then R ◦ Ox[y, x] forms a cycle in Z
which intersects Ox at least in the vertex x, again showing that (x1, x2) is bad, a
contradiction.

The above lemmas show that S is a solution of a Shadow-Covered 1-Out-
Regular Vertex Deletion instance (G,T, Z, k) if and only if it is a solution of
the Good 1-Out-Regular Vertex Deletion instance (torso(G,Z), T, k). As the
torso graph contains no vertices in Z, we can reduce our search for (torso(G,Z), T, k)
to shadowless solutions.

5.1.4 Finding a Shadowless Solution

Consider an instance (G,T, k) of Good 1-Out-Regular Vertex Deletion. Nor-
mally, after the torso operation a pushing argument is applied. We deviate from this
by constructing an algorithm that recovers the last strongly connected component of
G − S (given that a solution S exists). A crucial observation for this is that the last
strongly connected component of G− S has to contain a vertex of T .

Lemma 5.10. Let I = (G,T, k) be an instance of Good 1 -Out-Regular Vertex
Deletion. If I has a solution S, then for any topological ordering C1, . . . , Cℓ of the
strongly connected components of G− S, we have V (Cℓ) ∩ T ̸= ∅.

Proof. Note that every vertex of G−S is in some strongly connected component (maybe
containing only one vertex). Thus, for every v ∈ V (Cℓ), the only reachable vertices
from v lie in Cℓ by definition of a topological ordering. Now, for S to be a solution, it
must fulfill that the shadow of S with respect to T is empty. This implies that every
v ∈ V (Cℓ) has to reach some t ∈ T . By above argument we have that t ∈ V (Cℓ)∩T .

Lemma 5.11. Let I = (G,T, k) be an instance of Good 1 -Out-Regular Vertex
Deletion. If I has a solution S, then for any topological ordering C1, . . . , Cℓ of the
strongly connected components of G− S, we have N+(V (Cℓ)) ̸= ∅.

Proof. Assume for sake of contradiction that N+(V (Cℓ)) = ∅. Now, we consider the
graph G− (T \ V (Cℓ)). Lemma 5.10 shows that T \ V (Cℓ) ⊊ T . Thus, by inclusion-
wise minimality of T , we know that G − (T \ V (Cℓ)) contains a strongly connected
component C that is not rC-out-regular for some rC ≤ 1. As C does not exist in G−T ,
we have that there is a t ∈ V (C)∩ (V (Cℓ)∩T ). Moreover, C is not a subgraph of Cℓ as
Cℓ is rCℓ

-out-regular for some rCℓ
≤ 1 and this property is hereditary. Thus, there is

also a v ∈ V (C)\V (Cℓ). By C being strongly connected, there is a t→ v-path in G. As
t ∈ V (Cℓ) and v /∈ V (Cℓ), this path has to leave V (Cℓ) at least once and the first vertex
outside V (Cℓ) is thus an element of N+(V (Cℓ)). This shows N+(V (Cℓ)) ̸= ∅.

By the previous lemmas we have that in order to identify at least one vertex of
some solution S, it suffices to recover the last strongly connected component of G− S.
We will later reapply the procedure up to k times to identify all vertices.

Lemma 5.12. There is an algorithm that given an instance I = (G,T, k) of Good
1 -Out-Regular Vertex Deletion, computes in time 2O(k log k) poly(n) a collection
of subgraphs C1, . . . , Cr with r ≤ (k+1)k+1 such that if I has a solution S, then there is
a topological ordering of strongly connected components of G−S where some Ci appears
last.
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Proof. For every t ∈ T apply the following procedure. We assume that t appears
in the last strongly connected component C of some topological ordering of strongly
connected components of G − S. First we add one Ci with Ci = {t}. If this was
not the right choice, we know that the connected component C must be 1-out-regular
and contain only good arcs. We try to recover it by a branching procedure resulting
in additional Ci’s. During this branching procedure we also keep track of vertices we
guess to be in S.

We start by setting v0 = t. Notice that exactly one out-neighbor v1 of v0 belongs
to C. Set i = 0 and notice that every out-neighbor of vi other than vi+1 must be
removed from the graph G as C is the last component in the topological ordering of
G−S, there is no later component where those out-neighbors could go. This observation
gives rise to a natural branching procedure: we guess the out-neighbor vi+1 of vi that
belongs to C and remove all other out-neighbors of vi from the graph. We then repeat
this branching step with i 7→ i + 1 until we get back to the vertex t we started with.
When we reach t, we add the currently recovered component as a new set Ci. This
branching results in at least one deletion as long as vi has out-degree at least two. If
the out-degree of vi is exactly one, then we simply proceed by setting vi := vi+1 (and
increment i). In any case we stop early if (vi, vi+1) is a bad arc, as this arc may not be
contained in a strongly connected component.

Recall that the vertices t = v0, v1, . . . must not belong to S, whereas the deleted out-
neighbors of vi must belong to S. From another perspective, the deleted out-neighbors
of vi must not belong to T . So once we reached back at the vertex vj = t for some
j ≥ 1, we have indeed found the component C that we were looking for.

Let us shortly analyze the run-time of the branching step. As for each vertex vi,
we have to remove all its out-neighbors from G except one and include them into the
hypothetical solution S of size at most k, we immediately know that the degree of vi in
G can be at most k + 1. Otherwise, we have to include vi into S. Therefore, there are
at most k + 1 branches to consider in order to identify the unique out-neighbor vi+1
of vi in Cℓ. So for each vertex vi with out-degree at least two we branch into at most
k + 1 ways, and do so for at most k vertices, yielding at most (k + 1)k branches for
every t ∈ T . As |T | ≤ k + 1, we produce at most (k + 1)k+1 sets. Each of the steps
(merging steps where we do not delete anything) takes polynomial time. So the overall
run-time is (k + 1)k+1 poly(n) = 2O(k log k) poly(n).

Among the subgraphs we branch which of these is a strongly connected component
C appearing last in a topological ordering of strongly connected components of G− S.
We proceed by deleting C’s out-neighbors as they must belong to S. By starting again
from the “shadow covering” we obtain more vertices of S until a complete solution is
recovered or none is found as the instance has none. This procedure is described in the
next section.

5.1.5 Disjoint 1-Out-Regular Vertex Deletion Compression Algorithm

We now give an algorithm for Disjoint 1-Out-Regular Vertex Deletion Com-
pression hinted at in the last section.

Lemma 5.13. There is an algorithm solving an instance (G,T, k) of Disjoint 1 -Out-
Regular Vertex Deletion Compression in time 2O(k3) poly(n).
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Proof. Given an instance we start with Spartial = ∅ and apply a branching algorithm as
follows. If Spartial is a solution, i.e. |Spartial| ≤ k and every connected component C of
G−Spartial is rC-out-regular for some rC ≤ 1, we return Spartial. If instead |Spartial| > k,
we give up on this branch. So assume that none of the cases occurred. Then we try
to complete Spartial to a solution S. Applying Lemma 5.6 to G − Spartial we create
2O(k2) log2 n instances of the form Ij = (G− Spartial, T, Zj , k − |Spartial|), such that:

• the Ij are Shadow-Covered 1-Out-Regular Vertex Deletion instances,

• any solution to one of the Ij instances is a solution to (G,T, k), and

• if (G,T, k) admits a solution then one of the Ij has a solution.

We create a branch for every Ij . If (G,T, k) has a solution S ⊇ Spartial, than at least
one of the branches has a solution. Conversely, any solution S′ of some Ij completes
Spartial to a solution S = Spartial ∪ S′ of (G,T, k).

For each branch we continue by creating the Good 1-Out-Regular Vertex
Deletion instance (torso(G − Spartial, Zj), T, k − |Spartial|). By combining Lemma 5.8
and Lemma 5.9 we have that the solutions to these instances stay the same. Using
Lemma 5.12 we create sets C1, . . . , Cr with r ≤ (k + 1)k+1 such that if (torso(G −
Spartial, Zj), T, k − |Spartial|) has a solution S′, then there is a topological ordering of
strongly connected components of torso(G − Spartial, Zj) − S′ where one of the Cj ’s
appears last. We branch again, creating a branch for every choice of Cj .

For each of these branches we have by Lemma 5.11, that Cj has at least one out-
neighbor in torso(G−Spartial, Zj). If we made the right choice, these out-neighbors Sout
must belong to a solution S of (torso(G − Spartial, Zi), T, k − |Spartial|). By Lemma 5.9
Sout must then also belong to a solution of Ij , which in turn belongs to a solution of
(G,T, k) if we made the right choice of Ij . Thus, we have that Spartial∪Sout is contained
in a solution of (G,T, k) for the right branch, if (G,T, k) has a solution at all. So we
add Sout to Spartial in each of the branches and continue our branching algorithm from
the beginning with an Spartial of increased size.

Note that this procedure stops as we either find a solution and stop early or after
every branching step involving Zi and Cj our set Spartial increases by at least one
element, and we stop once it contains more than k elements. Each branching step
involving Ij and Cj creates at most 2O(k2) log2 n · O(k · (k+ 1)k) new branches. Hence,
the total number of nodes in the branching tree is(

2O(k2) log2 n
)k
· O

(
k · (k + 1)k

)
=
(
2O(k2)

)k (
log2 n

)k
· O

(
(k + 1)k+1

)
= 2O(k3) · n,

where we used that log2k n ∈ 2O(k log k) +n by Lemma 2.10. For the run-time note that
the creation of the Ij takes time 2O(k2) poly(n) for 2Ω(k2) log2 n candidate sets and the
creation of of the Cj takes time 2O(k log k) poly(n) for (k + 1)k+1 ∈ 2Ω(k log k)) candidate
sets. As all other operation on a branch node can be done in time poly(n), this means
that the run-time is at most poly(n) times the number of branches in the worst case.
So our run-time is bound by 2O(k3) poly(n).

Combining Lemma 5.13 and Lemma 5.4 proves our main result, Theorem 5.2.
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5.2 Polynomial Parameter Transformation
from Arc to Vertex Version

In this section we prove the existence of a polynomial parameter transformation from
1-Out-Regular Arc Deletion to 1-Out-Regular Vertex Deletion. Note that
this reduction is parameter preserving.
Lemma 5.14. Given an instance (G, k) of 1 -Out-Regular Arc Deletion we can
compute in polynomial time an equivalent instance (G′, k′) of 1 -Out-Regular Ver-
tex Deletion with k′ = k.
Proof. Let G′ be the directed line graph of G, that is G′ has an vertex va for every
arc a ∈ A(G) and the arc (va, vb) exists in G′ if and only if a = (u, v) ∈ A(G) and
b = (v, w) ∈ A(G) for some u, v, w ∈ V (G).

Obviously, there is a one-to-one correspondence between arcs in G and vertices
in G′. This also holds if there is a set S of arcs in G and S′ its corresponding set of
vertices in G′ for the directed graphs G−S and G′−S′. The correspondence also holds
for non-trivial strongly connected components as a closed walk on vertices v1, . . . , vt
and arcs a1, . . . , at corresponds to a closed walk on the vertices va1 , . . . , vat in G′. It
remains to show the equivalence of the instances.

For the forward direction, let S be a solution to (G, k). Let S′ = {va | a ∈ S}.
As |S′| = |S| ≤ k, our candidate fulfills the size bound. Let now X ′ be a strongly
connected component of G′ − S′. Assume for contradiction that X ′ is neither trivial
nor 1-out-regular. By above correspondence there is a non-trivial strongly connected
component X in G − S that has the arcs which X ′ possesses as vertices. As S is a
solution to (G, k), X is 1-out-regular (as it is not trivial). Therefore, G[X] forms a
cycle O. This cycle has a corresponding cycle O′ in G′[X ′]. Since O visits all arcs of
G[X], O′ is a Hamiltonian cycle for G′[X ′]. As G′[X ′] is not 1-out-regular, there must
be an arc (va, vb) ∈ E(G′[X ′]) which is not part of O′. This arc means that the arcs a
and b share a vertex v in G[X] albeit being not adjacent in O. Thus, v has out-degree
at least two in G[X], a contradiction. Therefore, S′ is a solution to (G′, k).

For the reverse direction, let S′ be a solution to (G′, k). We consider as solution
candidate for (G, k) the set S = {a ∈ A(G) | va ∈ S′}. Again we have |S| = |S′| ≤
k and thus the size bound fulfilled. Let X be a strongly connected component in
G − S. Assume, for sake of contradiction, that X is neither trivial nor 1-out-regular.
This means that G[X] contains a cycle OX and a (possibly closed) walk P with both
endpoints on OX and its interior disjoint of it. Let x be the start vertex of P and a
the first arc of P . Furthermore, let b = (v, x) and c = (x,w) be the arcs adjacent to
x on O. Then G′ − S′ contains the vertices va, vb, vc, and by preservation of strongly
connected connectivity they are in the same connected component of G′ − S′. But by
choice of a, b, c the arcs (vb, va) and (vb, vc) exist in G′ − S′. This means that vb has
out-degree at least two in its strongly connected component in G′−S′, a contradiction.
In conclusion, S must be a solution for (G, k).

5.3 Hardness of Eulerian Strongly Connected Component
Vertex Deletion

In this section we prove Theorem 5.3, by showing NP-hardness and W[1]-hardness of
the Eulerian Strongly Connected Component Vertex Deletion problem.
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Before the hardness proof we recall an equivalent characterization of Eulerian di-
rected graphs that uses the concept of balance. A directed graph G is balanced if and
only if we have for every node that in-degree equals out-degree, i.e., |δ+(v)| = |δ−(v)|
for every v ∈ V (G).

Lemma 5.15 (folklore). Let G be a weakly connected directed graph. Then

G is Eulerian ⇔ G is balanced.

This shows that Eulerian Strongly Connected Component Vertex Dele-
tion can be reformulated to the requirement that every strongly connected component
of G−S needs to be balanced. The vertex deletion problem where we require the whole
graph to be balanced instead has already been considered by Cygan et al. [CMP+14].
Note that in this case also arcs between different strongly connected components are
counted.

Directed Balanced Vertex Deletion

Instance: A directed graph G and an integer k ∈ Z≥0.

Task: Find a set S ⊆ V (G) of size at most k such that
G− S is balanced or decide that no such set exists.

Cygan et al. prove this problem to be NP-hard and W[1]-hard for parameter k.

Theorem 5.16 ([CMP+14, Theorem 7]). Directed Balanced Vertex Deletion
is NP-hard and W[1]-hard with parameter k.

We will prove the hardness of Eulerian Strongly Connected Component
Vertex Deletion for (k + 1)-strongly connected, directed graphs by adding vertices
ensuring this connectivity.

Theorem 5.3. Eulerian Strongly Connected Component Vertex Deletion
is NP-hard and W[1]-hard parameterized by solution size k, even for (k + 1)-strongly
connected, directed graphs.

Proof. We give a polynomial reduction from Directed Balanced Vertex Dele-
tion. Let (G, k) an instance of Directed Balanced Vertex Deletion. Let G′
arise from G by adding vertices z1, . . . , zk+1 and arcs (zi, v), (v, zi) for all v ∈ V (G) and
all i ∈ {1, . . . , k + 1}. This construction obviously can be made to run in polynomial
time. Moreover, G′ is (k + 1)-strongly connected as one needs to delete at least all zi
to disconnect two vertices.

All we have to show is that (G, k) has a solution as instance of Directed Bal-
anced Vertex Deletion if and only if (G′, k) has a solution as instance of Eulerian
Strongly Connected Component Vertex Deletion.

Let S′ be a solution to (G′, k) as instance of Eulerian Strongly Connected
Components Vertex Deletion. As G′ is (k + 1)-strongly connected, G′ − S′ is
strongly connected. Moreover, S′ is a solution, so G′−S′ is Eulerian (because it is the
only strongly connected component). Therefore, by Lemma 5.15 every vertex of G′−S′
is balanced.
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Deleting the remaining vertices of {z1, . . . , zk+1} does not harm the balance of the
remaining vertices, as for each v ∈ V (G) and zi we delete one outgoing and one incoming
arc of v. Thus G′− (S′∪{z1, . . . , zk+1}) = G− (S′ \{z1, . . . , zk+1}) is balanced. Hence,
S′ \{z1, . . . , zk+1} is a solution to (G, k) as instance of Directed Balanced Vertex
Deletion.

Let S be a solution to (G, k) as instance of Directed Balanced Vertex Dele-
tion. Then G−S is balanced and by construction G′−S as well. Furthermore, G′−S
is strongly connected and thus by Lemma 5.15 also Eulerian. Hence, the only strongly
connected component of G′ − S is Eulerian and therefore S is a solution to (G′, k) as
instance of Eulerian Strongly Connected Component Vertex Deletion.



Chapter 6

Negative Cycle Deletion

In this chapter we analyze the Negative Cycle Deletion problem. In contrast to
other problems studied in this thesis, this problem is defined on weighted graphs, i.e.
graphs G in combination with a weight functions w : A(G) → Z on the arcs. The
problem is to remove all cycles of negative total weight from the graph by deleting at
most k vertices (vertex deletion version) or arcs (arc deletion version).

Negative Cycle Deletion

Instance: A graph G, a weight function w : A(G)→ Z and an integer k ∈ Z≥0.

Task: Find a set S ⊆ V (G) (vertex deletion version)
or a set S ⊆ A(G) (arc deletion version) such that

• the set S has size at most k and
• every directed cycle of G− S has non-negative total weight

or decide that no such set exists.

The codomain Z of the weight function here is arbitrary. As we will see later, there
is always an integer weight function that leads to the same structural instance and has
its absolute values bounded in some function of |A(G)|. Alas, this bound is in general
not polynomial. However, the encoding length of this weight function is bounded by
poly(|G|), thus leading to an instance of essentially the same encoding length. See
Section 6.3 for details.

The main motivation for studying this problem comes from the area of linear pro-
gramming. One of the main tasks in linear programming is to decide whether a system
of linear inequalities (ai · x ≤ bi)i∈{1,...,m} has a feasible solution x = x⋆, where the ai
and x⋆ are n-dimensional vectors and the bi are some scalars. However, such inequality
systems may not always have feasible solution. In practice measurement or modeling
errors are a common problem rendering inequality systems infeasible. An algorithmical
approach to deal with these infeasible systems would be to find a set S ⊆ {1, . . . ,m}
of minimum size such that (ai · x ≤ bi)i∈{1,...,m}\S has a feasible solution. In the case
where all inequalities have the form xi − xj ≤ bi,j , this directly corresponds to the arc
deletion version of Negative Cycle Deletion (see Section 6.2).

Thus, we study Negative Cycle Deletion in contrast to the previous chapters
mainly in terms of the arc deletion version. We will however see that for many of

79
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our considered parameters there is a polynomial parameter transformation between
the arc and vertex deletion version (see Section 6.7). In particular, the arc deletion
version is algorithmically at least as hard as the vertex deletion version for all parameter
combinations.

The general Negative Cycle Deletion problem is NP-hard as setting w ≡ −1
is exactly the Directed Feedback Vertex Set or Directed Feedback Arc Set
problem. We study a variety of parameters to solve the problem even for these NP-
hard cases. A natural choice here is the parameter k (the size of the deletion set) as
Directed Feedback Vertex Set is known to be fixed-parameter tractable for this
parameter [CLL+08]. However, Negative Cycle Deletion is more general than
this, and we can show W[1]-hardness when parameterized in k only. Thus, we add the
parameter w+, the number of arcs with positive weight, which for Directed Feed-
back Vertex Set is 0. For symmetry reasons, we also consider the parameter w−, the
number of arcs with negative weight. Lastly, we see whether the structure of the graph
can help us to solve this problem. For this we study the treewidth tw(G), pathwidth
pw(G) and treedepth td(G) of our graph, all defined by the underlying undirected
graph (see Section 6.1). Recently, these parameters were also used to solve (integer)
linear programming formulations [FLS+18, EHK+19, CCK+20]. These parameters in
context of linear programming match our graph problem parameters when considering
the special case where all inequalities have the form xi − xj ≤ bi,j .

A long term open question for linear programming is the existence of strongly
polynomial algorithms solving arbitrary linear inequality systems, i.e. algorithms that
only take polynomial time in the encoding of the input and not the actual numbers.
That led us to consider also arc weights of the form w : A(G) → {−1, 0, 1}. This
corresponds to encoding the arc weights w : A(G)→ Z in unary encoding, as replacing
an arc of weight ±w encoded in unary by a path of length w where all arcs have weight
±1 yields an equivalent instance of the same encoding length.

For some of these choices we have a natural dominance. If we can solve instances
with w : A(G) → Z, we can solve those with w : A(G) → {−1, 0, 1}. Also tw(G) ≤
pw(G) ≤ td(G) holds. Last but not least, if w− ≤ k holds, we can remove all of the w−-
many negative arcs by removing at most w− vertices/arcs from G resulting in a graph
that contains no negative cycles. Thus, for all non-trivial cases we have k ≤ w−. Taking
this dominance into consideration we don’t have to consider parameter combinations,
that dominate each other. For example the case of parameter tw(G)+pw(G) is already
covered by the pw(G) case for hardness results or the tw(G) case for algorithmic results.
This way we are left with 48 cases, of which we determine 46 to be FPT or W[1]-hard
(or even NP-hard for constant parameters). The remaining two cases both have weight
functions of the form w : A(G) → {−1, 0, 1}. We show both of them to be fixed-
parameter tractable if there are no zero weight arcs present. See Table 6.1 in Section 6.4
for an overview of the results.

The results of this chapter are joint work with Kristóf Bérczi, Lydia Mirabel Men-
doza Cadena and Matthias Mnich. An extended abstract of this work has previously
appeared at IPEC 2019 [GMCM19].
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6.1 Definitions

To better distinguish between the vertex and arc deletion version of Negative Cycle
Deletion, we introduce the new names Negative Directed Feedback Vertex
Set and Negative Directed Feedback Arc Set for them. This is based on the
naming convention for Feedback Vertex Set and Feedback Arc Set. Formally
they are defined as follows.

Negative Directed Feedback Vertex Set

Instance: A graph G, a weight function w : A(G)→ Z and an integer k ∈ Z≥0.

Task: Find a set S ⊆ V (G) of size at most k such that
every directed cycle of G− S has non-negative total weight
or decide that no such set exists.

Negative Directed Feedback Arc Set

Instance: A graph G, a weight function w : A(G)→ Z and an integer k ∈ Z≥0.

Task: Find a set S ⊆ A(G) of size at most k such that
every directed cycle of G− S has non-negative total weight
or decide that no such set exists.

For an instance (G,w, k) of Negative Directed Feedback Vertex Set or
Negative Directed Feedback Arc Set we denote by A−, A0 and A+ the sets
w−1(Z<0), w−1(0) and w−1(Z>0), respectively. Moreover, we use the abbreviation A ̸=0
for A− ∪A+. With this notation we can introduce the first set of parameters. Namely,
we denote by w− = |A−| the number of negative arcs and by w+ = |A+| the number
of positive arcs.

The remaining parameters treewidth, pathwidth and treedepth measure the struc-
ture of the graph. Treewidth and pathwidth measure how tree-like or path-like a graph
is. Treedepth however measures how many recursive vertex deletions on connected
components are necessary to delete the whole graph (see Theorem 6.2).

Definition 6.1. Let G be an undirected graph. A tree decomposition of G is a tuple
(T,B) consisting of a tree T and a collection of vertex sets B = (Bx)x∈V (T ), one Bx ⊆
V (G) for every x ∈ V (T ), that fulfills the following properties:

1. V (G) = ⋃
x∈V (T )Bx, and

2. for all v ∈ V (G) the graph T [{x | v ∈ Bx}] is connected, and

3. for every e ∈ E[G], there is a x ∈ V (T ) with e ⊆ Bx.

The sets Bx are called bags of the tree decomposition. The width of a tree decom-
position is the maximum size of its bags minus one, i.e. |(T,B)| = maxx∈V (T ) |Bx| − 1.
The treewidth tw(G) of G is the minimum width over all tree decompositions for G.
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A path decomposition of G is a tree decomposition, where T is a path. Instead of
specifying T , one can also enumerate the bags along the path, i.e. B1, . . . , Bt. The
pathwidth pw(G) of G is the minimum size over all path decompositions for G.

Let F be a rooted arborescence. The height of the arborescence is the length of a
longest path in F originating at the root. The closure clos(F ) of F is the graph on the
vertices V (F ) that contains an edge {v, w} if v is an ancestor of w in F . The treedepth
td(G) of G is the minimum height of an arborescence F such that G is a subgraph of
clos(F ).

For a directed graph G the treewidth/pathwidth/treedepth of G is defined as the
treewidth/pathwidth/treedepth of the underlying undirected graph of G.

A more useful definition to compute the treedepth is the following recursive one. For
a proof of the equivalence and a further introduction of treewidth/pathwidth/treedepth
we refer the reader to the textbook by Nešetřil and de Mendez [NDM06].

Theorem 6.2. Let G be an undirected graph. Then

td(G) =


1 , if |G| = 1
1 + minv∈V (G) td(G− v) , if G is connected and |G| > 1
maxconnected component C td(G[C]) , otherwise.

Maybe the most prominent property of bounded-treedepth graphs is that their paths
have bounded length. Naturally, this property also extends to cycles. We refer to the
textbook by Nešetřil and de Mendez [NDM06] for similar stronger results implying
these.

Lemma 6.3. Let G be a graph, let P a path in G and let C be a cycle of G. Then
|P | ≤ 2td(G) − 1 and |C| ≤ 2td(G)−1 holds.

Finally, we introduce the concept of nice tree decompositions which are very useful
for dynamic programs in graphs of bounded treewidth.

Definition 6.4. Let G be an undirected graph. A tree decomposition (T,B) is called
nice if T is a rooted tree with root r, Br = ∅ and every x ∈ V (T ) has one of the
following four types:

Leaf node: x is a leaf of T and Bx = ∅.

Introduce node: x has exactly one child y in T and Bx = By⊎{v} for some v ∈ V (T ).

Forget node: x has exactly one child y in T and Bx ⊎ {v} = By for some v ∈ V (T ).

Join node: x has exactly two children y1 and y2 and Bx = By1 = By2.

For x ∈ V (G), we denote by Tx the subtree of T rooted at x. Moreover, we define Gx
to be the graph G[⋃y∈Tx

By].

To make use of this concept, we need an algorithm to find such a nice tree decom-
position. To compute a nice tree decomposition of minimum width, one can use the
following result by Bodlaender.
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Theorem 6.5 ([Bod96]). Given a graph G with n vertices, there is an algorithm that
constructs a nice tree decomposition of size tw(G) with O(n) nodes in run-time

2O(tw(G)3 log tw(G))n.

For our usage, it is enough to have a nice tree decomposition that is within a
constant factor of minimum width. This allows us to use the following faster algorithm
by Bodlander et al.

Theorem 6.6 ([BDD+16]). Given a graph G with n vertices, there is an algorithm that
constructs a nice tree decomposition of size 5 tw(G) + 4 with O(n) nodes in 2O(tw(G))n.

The last notion we need is that of feasible potentials.

Definition 6.7. Let (G,w) a weighted graph. A vertex function π : V (G)→ R is called
feasible potential if for all arcs a = (u, v) ∈ A(G) we have π(u)− π(v) + w(a) ≥ 0.

The following folklore result describes the connection between feasible potentials
and solutions of Negative Directed Feedback Arc Set.

Theorem 6.8. A weighted graph (G,w) contains no cycle of negative total weight if
and only if it has a feasible potential.

By this theorem for every solution S of a Negative Directed Feedback Arc
Set instance (G,w, k) there is a feasible potential πS for G − S. We often call any
feasible potential of G − S, a feasible potential of S. Such a feasible potential also
certifies that S is indeed a solution.

6.2 Relation to Linear Programming

In this section we describe the connection of Negative Directed Feedback Arc
Set to linear programming. For this consider the following problem naturally arising
in the area of linear programming.

Minimum Feasibility Blocker

Instance: A system of linear inequalities (ai · x ≤ bi)i∈{1,...,m}
and an integer k ∈ Z≥0.

Task: Find a set S ⊆ {1, . . . ,m} of size at most k such that
(ai · x ≤ bi)i∈{1,...,m}\S has a feasible solution
or decide that no such set exists.

We consider the special case of this problem, where all inequalities have the form
xi − xj ≤ bi,j . This type of inequalities is called difference constraints.

Theorem 6.9. The Negative Directed Feedback Arc Set problem and the Min-
imum Feasibility Blocker problem for difference constraints are equivalent with the
equivalence computable in polynomial time. Additionally, there is a one-to-one corre-
spondence between constraints and arc weights with ba = w(a).
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Proof. Let (G,w, k) be a Negative Directed Feedback Arc Set instance, and let
n = |V (G)| and m = |A(G)|. Fix an arbitrary order v1, . . . , vn of the vertices of G and
α1, . . . , αm of the arcs of G. Define the inequality system by setting for every αi ∈ A(G)
the entry ai,j = +1 for αi ∈ δ−(vj), ai,j = −1 for αi ∈ δ+(vj), and ai,j = 0 otherwise.
Furthermore, let bi = w(αi). The resulting inequality system ((ai · x ≤ bi)i∈{1,...,m}, k)
is an instance of the Minimum Feasibility Blocker problem all inequalities being
difference constraints.

The construction is bijective by the following reverse construction: Define a directed
graph on n vertices v1, . . . , vn, then for every constraint ai,• · x ≤ bi add an arc as
follows: Let j− be the unique index with ai,j− = −1, and let j+ be the unique index
with ai,j+ = +1. Add an arc α = (vj+ , vj−) with weight w(α) = bi to the current
directed graph. Let G be the resulting directed graph after all arcs are added. Then
(G,w, k) is the constructed Negative Directed Feedback Arc Set instance. It is
easy to verify that this indeed reverses the first construction.

Now we want to compare solutions of both problems. Intuitively, deleted constraints
and arcs have an one to one correspondence, but we will formally prove the equivalence
here.

In the following, for each X ⊆ A(G) denote by XI the corresponding indices of the
constraints and vice-versa. Then the following equivalences hold:

(G−X,w) contains no negative cycles with respect to w.

⇔ (G−X,w) has a feasible potential π : V (G)→ R.

⇔ There is a π : V (G)→ R such that π(u) ≤ π(v) +w(α), ∀α = (u, v) ∈ A(G) \X.

⇔ There is an x ∈ RV (G) such that xu − xv ≤ w(α) for all α = (u, v) ∈ A(G) \X.

⇔ There is an x ∈ Rn such that ai,• · x ≤ bi for all i ∈ {1, . . . ,m} \XI .

Furthermore, as X and XI have the same cardinality, the last statement is equivalent
to “X is a solution to (G,w, k) if and only if XI is a solution to (A, b, k)”.

6.3 Integral Weights

Here we discuss whether the constraint of having integral weights has an effect on the
problem. The main result of this section is that for general weights there is always
an equivalent instance with integer weights of essentially the same encoding length.
However, it is not clear how to find such an equivalent instance in polynomial time.
For parameters w+ and w− however, there is a fixed-parameter algorithm computing
such an equivalent instance.

We assume that the weights are given via some oracle that can compute whether
w(A′) is negative (< 0), zero (0) or positive (> 0). In particular, this allows us to
identify the set of zero weight arcs A0 and non-zero arcs A ̸=0. Fix now a weighted
graph (G,w). The results of this section are based on the following linear inequality
system that has a variable xa for every a ∈ A ̸=0.
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∑
a∈A′

xa ≤ −1 ∀A′ ⊆ A ̸=0 with w(A′) < 0

∑
a∈A′

xa = 0 ∀A′ ⊆ A ̸=0 with w(A′) = 0

∑
a∈A′

xa ≥ 1 ∀A′ ⊆ A ̸=0 with w(A′) > 0

Denote by P(G,w) the polyhedron defined by this inequality system. The first obser-
vation is that every x⋆ ∈ P(G,w) defines an equivalent weight function for G by setting
w⋆(a) = x⋆a. The equivalence follows from the fact that for every arc set A′ (and thus
the arc set of every cycle) the total weight w⋆(A′) has the same sign as total weight
of the original weight w(A′) by the corresponding inequality. We now want to show
that P(G,w) always contains an integer point whose size is bounded in |A ̸=0|. A natural
candidate for this is an extreme point/vertex of P(G,w).

Lemma 6.10. For every weighted graph (G,w) the polyhedron P(G,w) has a vertex.

Proof. Recall that an n-dimensional polyhedron P has no vertex if and only if there is
no v ∈ P and d ∈ Rn \{0} such that v+λd ∈ P for all λ ∈ R. Assume for contradiction
that there exists such v ∈ P(G,w) and d ∈ R|A ̸=0| \ {0} for P(G,w). As d ̸= 0, there is an
a ∈ A ̸=0 such that da ̸= 0. Now choose λ = − va

da
. Then we have that v + λd ∈ P(G,w)

and (v + λd)a = va − va
da
da = 0. But as a ∈ A ̸=0, we have that for P(G,w) either the

inequality xa ≤ −1 or xa ≥ 1 holds. Thus, v + λd /∈ P(G,w), a contradiction.

We now want to argue about the encoding length of such a vertex. For this we want
to define a binary encoding of our numbers and a function size(.) denoting the length of
such an encoding. In the case of an integer n ∈ Z we use size(n) := 1+⌈log(|n|+1)⌉ bits
to encode the sign and absolute value of this number. For rational numbers r := p

q ∈ Q
we have size(r) = size(p) + size(q). Finally, for vectors x ∈ Qn and matrices A ∈ Qn×m

we have size(x) := n+∑n
i=1 size(xi) and size(A) := nm+∑

i,j size(ai,j).
Recall that any vertex of an n-dimensional polyhedron {x | Ax ≤ b} can be written

as unique solution to A′x = b′, where A′x ≤ b′ is a subsystem of Ax ≤ b with n
inequalities. Using Cramer’s rule this implies that any vertex v can be represented
using size(v) ∈ O(size(A) + size(b)) bits. Moreover, for rational A and b, any solution
obtained this way is rational. As our polyhedron P(G,w) is defined by A and b having
only {−1, 0, 1} entries, we get the following result.

Corollary 6.11. For every weighted graph (G,w) there is a rational x⋆ ∈ P(G,w) with
size(x⋆) ∈ O(|A ̸=0|2) and all denominators of the x⋆i being equal.

We now use this rational solution to construct an integer solution of bounded size.

Lemma 6.12. For every weighted graph (G,w) there is an integral xI ∈ P(G,w) with
size(x⋆) ∈ O(|A ̸=0|2).
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Proof. Let x⋆ ∈ P(G,w) be a rational vector with size(x⋆) ∈ O(|A ̸=0|2) as in Corol-
lary 6.11. We multiply each entry of x⋆ by the common denominator d⋆ to obtain
our vector xI = d⋆x⋆. We have size(xI) ≤ size(x⋆) as this multiplication can be re-
flected in the encoding by removing the denominator. It now remains to prove that
xI ∈ P(G,w). For this note that d⋆ ≥ 1. Now, for any d ≥ 1 and every A′ ⊆ A ̸=0 we
have that ∑a∈A′ dxa fulfills the inequality ≤ −1/= 0/≥ 1 if this was already the case
for ∑a∈A′ xa. Therefore, from x⋆ ∈ P(G,w) it follows that xI ∈ P(G,w), concluding the
proof.

Using these results, we get that there is always an equivalent instance with integral
weights (and the same graph). Note that for parameters w+ and w−, the size of our
inequality system is bounded in |A ̸=0| = w+ +w−. Thus, for these parameters, we can
enumerate all potential solutions of the given size and test in fixed-parameter time,
whether they form a feasible solution.

Theorem 6.13. Let (G,w, k) be a Negative Directed Feedback Arc Set in-
stance with general weights w. Then there are integral weights wI with size(wI) ∈
poly(|G|) such that (G,wI , k) is an equivalent instance.

Moreover, such an instance can be found in time 2O((w++w−) log(w++w−)) poly(n).

6.4 Overview of the Results

To obtain algorithmic or hardness results for all possible parameter combinations, we
do not have to consider each case separately. As mentioned before, there is a natural
dominance between parameters. The advantages are twofold. First, we do not need
to consider cases with parameters that dominate each other. Second, we do not have
to show results for all of the 48 remaining cases, as some results imply others by this
dominance. The dominances are as follows. Obviously, the cost functions of the form
w : A(G) → Z generalize those of the form w : A(G) → {−1, 0, 1}. Bodlaender et al.
have shown relations between treewidth, pathwidth and treedepth.

Theorem 6.14 ([BGHK95]). Let G be a graph. Then it holds that

tw(G) ≤ pw(G) ≤ td(G)− 1.

Thus, the graph class of graph with bounded treewidth is more general than those
with bounded pathwidth which in turn is more general than the class of bounded
treedepth graphs. The last dominance is more specialized to the Negative Directed
Feedback Arc Set problem. Namely, all instances of Negative Directed Feed-
back Arc Set with w− ≤ k are solvable in polynomial time.

Theorem 6.15. Let (G,w, k) a Negative Directed Feedback Arc Set instance
with w− ≤ k. Then (G,w, k) has a solution. Moreover, we can check for this condition
and compute a solution in linear time.

Proof. Iterate over A(G) and collect the set A− of all arcs with negative weight. Then
G−A− contains no negative cycles as it contains no arcs of negative weight. Moreover,
we can check whether |A−| = w− ≤ k and possibly return A− as solution.
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w : A(G)→ Z

- tw(G) or pw(G) td(G)
- w+ - w+ - w+

- NP-hard NP-hard NP-hard NP-hard
Thm. 6.42 W[1]-hard W[1]-hard

Thm. 6.43

k W[1]-hard W[1]-hard W[1]-hard W[1]-hard
Thm. 6.44

FPT
Thm. 6.18 FPT

w− W[1]-hard FPT
Thm. 6.23

W[1]-hard
Thm. 6.47 FPT FPT FPT

(a) Algorithmic and Hardness Results for w : A(G)→ Z

w : A(G)→ {−1, 0, 1}

- tw(G) or pw(G) td(G)
- w+ - w+ - w+

- NP-hard NP-hard
Thm. 6.40 W[1]-hard FPT

Thm. 6.31
FPT

Thm. 6.32 FPT

k W[1]-hard open W[1]-hard
Thm. 6.45 FPT FPT FPT

w− open FPT FPT
Thm. 6.30 FPT FPT FPT

(b) Algorithmic and Hardness Results for w : A(G)→ {−1, 0, 1}

Table 6.1: Result overview for Negative Directed Feedback Arc Set.
Results are split by type of weight function (w : A(G)→ Z vs. w : A(G)→ {−1, 0, 1}).
The rows are indexed by parameters {-, k, w−}, where k denotes the size of the dele-
tion set and w− the number of arcs with negative weight. - means that no other
parameter of this set is taken. Note that for non-trivial cases k < w− holds, as we
can otherwise delete all negative arcs. The columns are double indexed by param-
eters in {-, tw(G),pw(G), td(G)} and {-, w+}. Here tw(G)/pw(G)/td(G) denote the
treewidth/pathwidth/treedepth of the graph, respectively. The parameter w+ denotes
the number of arcs with strictly positive weight. Again, - means that no other pa-
rameter of this set is taken. It is well-known, that tw(G) ≤ pw(G) ≤ td(G) holds.
The columns of tw(G) and pw(G) are merged as they share the same algorithmic and
hardness results. That is, algorithmic results hold also if only the parameter tw(G)
is used and hardness results hold if only the parameter pw(G) is used. Cells with a
light shade are implied by the cells with a darker shade. For the latter, we also list the
theorem showing this result.
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Using the above results, we can split our parameters into three groups. For each
group we select at most one parameter, combine all of them and investigate the re-
sulting parameter combination for its parameterized complexity. The three groups are
{-, k, w−}, {-, tw(G), pw(G), td(G)} and {-, w+}, where - stands for the choice of no
parameter. Moreover, we have a choice between the two types of weight functions
w : A(G)→ Z and w : A(G)→ {−1, 0, 1}. For each of the resulting 48 cases we aim to
show one of the following results:

• A fixed-parameter algorithm (i.e. membership in FPT), or

• a W[1]-hardness result (no fixed-parameter algorithm unless FPT = W[1]), or

• an NP-hardness result for constant parameters (no fixed-parameter algorithm
unless P = NP).

We are able to resolve all but two of the cases this way (see Table 6.1). For the
two remaining cases the weight function has the form w : A(G)→ {−1, 0, 1}. In these
cases we are able to obtain a fixed-parameter algorithm for the even more restrictive
weight function type w : A(G)→ {−1, 1}. However, this is makes for a good indicator
as all of the remaining results for w : A(G) → {−1, 0, 1} weight functions also hold if
restricted to w : A(G)→ {−1, 1}.

As we have argued before, it is not necessary to show a result as above for ev-
ery parameter combination, as dominance between parameters implies several results.
Overall, we obtain seven unique hardness results and five algorithms (seven if we ac-
count for the w : A(G) → {−1, 1} cases). These results are marked in a darker shade
in Table 6.1.

6.5 Algorithmic Results

6.5.1 Verifying a Solution

We shortly recall how we can verify that a graph G−S has indeed no negative cycle. For
this we use the Moore-Bellman-Ford algorithm for shortest paths. Originally, it only
finds all shortest s→ v-paths from a single vertex s in a graph G, given that G contains
no negative cycle (reachable from s). However, it can additionally detect whether there
is such a negative cycle. In particular, it detects a cycle that minimizes the vertex
distance to the start vertex s. By running the Moore-Bellman-Ford algorithm once
from every vertex we get the following result.

Theorem 6.16. For a weighted graph (G,w) we can detect in time O(n2m) whether G
contains a negative cycle. Moreover, we can recover in the same time a length-minimal
negative cycle if it exists.

Running this algorithm on (G − S,w|V (G)\S) and additionally checking whether
|S| ≤ k, allows us to verify a solution to some Negative Directed Feedback Arc
Set instance (G,w, k).
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6.5.2 Algorithm for Bounded Treedepth and Solution Size

The main observation to solve Negative Directed Feedback Arc Set on graphs
of bounded treedepth is that on these graphs all cycles have bounded length (see
Lemma 6.3).

Thus, if we have as additional parameter the size of our solution, we can iteratively
detect negative cycles in our graph and branch on which arc of the cycle is contained
in some solution (if there is any).

We will now proof our main algorithm of this section. Its run-time depends on the
maximum length of a negative cycle in the given graph. We will revisit it later on,
when we derive other bounds on the length of negative cycles in G depending on the
parameter choices.

Lemma 6.17. There is an algorithm solving a Negative Directed Feedback Arc
Set instance (G,w, k) in time O(Lkn2m), where L is an upper bound on the length of
any negative cycle in G.

Proof. We recursively call the following procedure with some potential partial solution
S ⊆ V (G) with |S| ≤ k. The initial call is done with S = ∅. First we check in time
O(n2m) whether there is a negative cycle C in G−S and recover it via Theorem 6.16.
If there is no negative cycle and |S| ≤ k, we return S′ as solution. If there is a negative
cycle C and |S| = k, we give up on this branch. Otherwise, there is a negative cycle C
and |S| < k. Then for every v ∈ V (C) we make a subroutine call with Sv = S ∪ {v}.
If our initial call with S = ∅ did not return a solution for any branch, we report that
the instance has no solution. This finishes the description of our algorithm.

As we only make subroutine calls in the case of |S| < k, we add only one vertex
to S, and we start with |∅| = 0 ≤ k, one can show by induction that all our calls indeed
fulfill |S| ≤ k. Now we argue for the correctness. For this we have to show that if
there is a solution, we do indeed return a solution. As we only return sets S such that
|S| ≤ k and G− S has no negative cycles, we just have to make sure that we return a
set. We consider the variant of our algorithm, where we do not return a solution early,
but rather save it and return it at the end of the algorithm. Let S⋆ be an inclusion-wise
minimal solution to (G,w, k). We are going to reconstruct a possible subroutine call
sequence ∅ = S0 ⊊ S1 ⊊ . . . ⊊ S|S⋆| = S⋆ that is called by our algorithm. As at least
in this branch our algorithm considers a solution, it will return a solution.

We will do an induction over i and show that Si appears in one branch of our
algorithm. We start with S0 = ∅ which is our initial subroutine call. As long as
i < |S⋆| we have that Si ⊊ S⋆ and thus, by inclusion-wise minimality of S⋆, G − Si
contains at least one negative cycle Ci. Now S⋆ is a solution, so we know that there
is a vi ∈ S⋆ ∩ V (Ci). By Ci being disjoint of Si, we have that Si+1 = Si ∪ {vi} is a
strict superset of Si. Thus we make a subroutine call with this Si+1. This shows by
induction that our modified algorithm considers the set S⋆ and our original algorithm
returns a solution.

For the run-time note, that at each sub-routine call we branch into |C| ≤ L many
branches. We start with |S| = 0 and in each recursive subroutine call |S| increases by
one. As we stop once |S| = k, this means our recursion nests at most k levels deep. This
results in Lk subroutine calls. In each call we need O(nm) time to check for negative
cycles and O(n) to iterate over the vertex set.
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We will now use that the cycle length is bounded in the treedepth of a graph.

Theorem 6.18. There is an algorithm solving Negative Directed Feedback Arc
Set in time O(2k td(G)n2m).

Proof. Use Lemma 6.17 with Lemma 6.3 as upper bound on the length of negative
cycles.

6.5.3 Algorithm for Bounded Number of Non-Zero Arcs

In this section we are going to derive an algorithm for Negative Directed Feedback
Arc Set parameterized in w+ and w−. As w− is an upper bound on k for all non-
trivial cases (Theorem 6.15), we may also use the parameter k. The high-level idea is
as follows. In a first step we guess the intersection between a solution and the set of
non-zero arcs. Afterwards we focus on the graph induced by the zero-weight arcs only.
By using that after the deletion of a solution our graph has a feasible potential, we
get that the endpoints of the non-zero arcs are ordered by this potential. We use this
observation to show that solutions can be obtained by solving a Skew Cut problem in
the zero-arc graph. As we do not know the feasible potential or the exact Skew Cut
instance, our algorithm guesses among all potential orderings of the endpoints of the
non-zero arcs.

The main graph we work with is constructed from G by removing the arcs of A ̸=0
and splitting their endpoints.

Definition 6.19. Let (G,w) be an integer-weighted directed graph and denote by Z
the set of vertices z ∈ V (G) with (δ+(z) ∪ δ−(z)) ∩ A ̸=0(G) ̸= ∅. The zero-weight
propagation graph of G is the graph −→G0 obtained from G by deleting A ̸=0 and splitting
every z ∈ Z into two vertices z+ and z−, where z+ inherits the outgoing arcs and z−

inherits the incoming arcs of z. In this context we denote for every subset Y ⊆ Z by
Y + and Y − the set of all z+’s and z−’s with z ∈ Y , respectively.

As memory aid think that Z+ contains the vertices with δ+(z) ̸= ∅ and Z− those
with δ−(z) ̸= ∅ in −→G0. To understand the structure of our solutions, we rely on the
Skew Cut problem, which we will define in the following.

Definition 6.20. Let G be a directed graph, let p ∈ Z≥0 be a non-negative inte-
ger, and let X1, . . . , Xp, Y1, . . . Yp ⊆ V (G) be pairwise disjoint vertex sets of G. An
(X1, . . . , Xp) → (Y1, . . . , Yp)-skew cut is an arc set S ⊆ A(G) such that there is no
Xi → Yj-path in G− S for any 1 ≤ j < i ≤ p.

Skew Cut

Instance: A graph G, vertex sets X1, . . . , Xp, Y1, . . . Yp ⊆ V (G)
and an integer k ∈ Z≥0.

Task: Find an (X1, . . . , Xp)→ (Y1, . . . , Yp)-skew cut of size at most k
or decide that no such skew cut exists.
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The Skew Cut problem has already been solved by Chen et al. as subroutine for
their Directed Feedback Vertex Set algorithm. In fact, they solve the vertex
deletion variant (called Skew Separator), but their algorithm can be applied to the
arc deletion variant by subdividing arcs with vertex and introducing k+ 1 copies of all
original vertices.

Theorem 6.21 ([CLL+08]). An instance (G, (X1, . . . , Xp), (Y1, . . . , Yp), k) of Skew
Cut can be solved in time O(4kkn3).

We are now able to state our main observation of this chapter.

Lemma 6.22. Let (G,w, k) be a Negative Directed Feedback Arc Set instance
and let S ⊆ A0(G) be a negative directed feedback arc set for (G,w). Let Z be the
endpoints of arcs in A ̸=0(G) and let −→G0 be the zero-weight propagation graph of G.
Then there is an ordered partition (Z1, . . . , Zp) of Z such that

1. S is a (Z+
1 , . . . , Z

+
p , ∅)→ (∅, Z−1 , . . . , Z−p )-skew cut in −→G0, and

2. any (Z+
1 , . . . , Z

+
p , ∅)→ (∅, Z−1 , . . . , Z−p )-skew cut in −→G0 is a solution for (G,w, k).

Proof. As S is a negative directed feedback arc set for (G,w), the graph G′ = G − S
has a feasible potential π with respect to w|A(G′). We define an ordered partition
(Z1, . . . , Zp) of Z by using the potential π. Two vertices z and z′ belong to the same
Zi if and only if π(z) = π(z′). This assigns every Zi a unique potential π(Zi) = π(z)
with z ∈ Zi. The Zi are then ordered by decreasing π(Zi).

We now have to verify the two theorem statements. First we check, whether S is a
(Z+

1 , . . . , Z
+
p , ∅)→ (∅, Z−1 , . . . , Z−p )-skew cut in −→G0. Assume for contradiction that it is

not. Then there is an x+ → y−-path in −→G0 with x+ ∈ Z+
i and y− ∈ Z−j such that Z−j

is at an earlier or the same position in (∅, Z−1 , . . . , Z−p ) as Z+
i is in (Z+

1 , . . . , Z
+
p , ∅). By

the index shift caused by the addition of the two ∅, we know that j < i. This implies
π(y) > π(x), by choice of the Zi.

Consider now the P as x → y-path P in G − S, where x and y are the original
vertices of x+ and y− before they got split. Note that by construction of −→G0 our path
P contains only arcs of weight zero. As π is a feasible potential, we have that for all
arcs a = (u, v) ∈ A(P ), we have π(u)− π(v) = π(u)− π(v) + w(a) ≥ 0. Summing this
up over all arcs in P , we get π(x) − π(y) = ∑

a=(u,v)∈A(P ) π(u) − π(v) ≥ 0. In other
words π(y) ≤ π(x), in contradiction to the inequality π(y) > π(x) we derived earlier.

Now it remains to check that any (Z+
1 , . . . , Z

+
p , ∅)→ (∅, Z−1 , . . . , Z−p )-skew cut in −→G0

is a negative directed feedback arc set for (G,w). Let S⋆ be such a skew cut. We try
to prove that S⋆ is a negative directed feedback arc set for (G,w) by constructing a
feasible potential π⋆ of G⋆ = G − S⋆ with respect to w|A(G⋆). In the following we
assume that maxv∈V (G) π(v) ≤ 0, by possibly shifting all vertex potentials by the same
value. We define π⋆ as

π⋆(v) =
{
π(v) , if v ∈ Z
min{π(z) | there is a z+ → v-path in −→G0 − S⋆} , otherwise

where we define the minimum to be 0 if there is no z+ → v-path in −→G0 − S⋆ for any
z+ ∈ Z+.
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We now check for all arcs in G⋆ that π⋆ is a feasible potential. For arcs a =
(u, v) ∈ A ̸=0(G⋆) we have that A ̸=0(G⋆) = A̸=0(G) and therefore u, v ∈ Z. This implies
π⋆(u) − π⋆(v) + w(a) = π(u) − π(v) + w(a) ≥ 0. Hence, it remains to check the arcs
a = (u, v) ∈ A0(G⋆) = A0(G) \ S⋆.

If u ∈ Z, then the arc (u+, v−) or (u+, v) exists in −→G0 − S⋆. In the former case we
again have u, v ∈ Z and the potential is feasible for this arc. Otherwise, we have that
there is an u+ → v-path in −→G0−S⋆ and thus π⋆(v) ≤ π(u) = π⋆(u). As w(a) = 0, this
implies π⋆(u)− π⋆(v) + w(a) ≥ 0.

So we can assume that u /∈ Z. If additionally u does not have a z+ → u-path in−→
G0 − S⋆, then π⋆(u) = 0 and by maxv∈V (G) π(v) ≤ 0, we have that π⋆(v) ≤ 0 = π⋆(u).
Thus, also in this case, we have π⋆(u)− π⋆(v) + w(a) ≥ 0.

Now we know, that u /∈ Z and there is a z+ → u-path in −→G0 − S⋆ for some z ∈ Z.
We distinguish between the two cases v /∈ Z and v ∈ Z. If v /∈ Z, then the arc (u, v)
exists in −→G0 − S⋆. Hence, any z+ → u-path can be prolonged to a z+ → v-path by
adding (u, v) at the end. Thus, π⋆(v) ≤ π⋆(u), and again π⋆(u)− π⋆(v) + w(a) ≥ 0.

In the remaining case v ∈ Z, we have that the arcs (u, v−) exists in −→G0−S⋆. Again
any z+ → u-path can be prolonged to a z+ → v−-path. By definition of our Skew
Cut instance, we have that for all such paths in −→G0 − S⋆, we have π(z) ≥ π(v). This
implies π⋆(v) ≤ π⋆(u), and thus for the last type of arcs π⋆(u) − π⋆(v) + w(a) ≥ 0.
Hence, π⋆ is a feasible potential for G−S⋆ and thus S⋆ is a negative directed feedback
arc set for G.

We are now going to use this result to give an algorithm solving the Negative
Directed Feedback Arc Set problem parameterized by w+ and w−.

Theorem 6.23. There is an algorithm that solves a Negative Directed Feedback
Arc Set instance (G,w, k) in time 2O((w++w−) log(w++w−)) poly(n).

Proof. If w− ≤ k, return the set A−(G) of negative arcs. Otherwise, for every subset
A′ ⊆ A ̸=0(G) of size at most k do the following. For the graph G′ = G − A′ with Z ′

being endpoints of non-zero arcs A ̸=0(G′) and every ordered partition (Z1, . . . , Zp) of
Z ′, we call the algorithm for Skew Cut (see Theorem 6.21) on

(
−→
G′0, (Z+

1 , . . . , Z
+
p , ∅), (∅, Z−1 , . . . , Z−p ), k − |A′|).

If it returns a set S′, we check whether A′∪S′ is a negative directed feedback arc set for
G and if it is, we return it. If the algorithm does not find a negative directed feedback
arc set for any A′ and ordered partition (Z1, . . . , Zp) of Z ′ this way, we return that it
has no negative directed feedback arc set.

As we check any solution we return for correctness, we just have to verify that we
always return a negative directed feedback arc set, if there is any. Let S be a negative
directed feedback arc set for (G,w). For A′ = S ∩ A̸=0(G) we know that S′ = S \A′ is
a negative directed feedback arc set for G′ = G− A′, as (G− A′)− S′ = G− S which
contains no negative cycles. Now S′∩A ̸=0(G′) = ∅, and thus by Lemma 6.22 there is an
ordered partition (Z1, . . . , Zp) of Z ′ such that S′ is a (Z+

1 , . . . , Z
+
p , ∅)→ (∅, Z−1 , . . . , Z−p )-

skew cut in
−→
G′0. Thus, we know that (

−→
G′0, (Z+

1 , . . . , Z
+
p , ∅), (∅, Z−1 , . . . , Z−p ), k − |A′|)

is a “yes”-instance. Moreover, Lemma 6.22 tells us that any solution S⋆ to this Skew
Cut instance our algorithm call finds, is a negative directed feedback arc set for G′.
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Thus, A′ ∪ S⋆ is a negative directed feedback arc set of G, as G− (A′ ∪ S⋆) = G′ − S⋆.
Also, A′∪S⋆ has size at most k. Hence, our algorithm finds a negative directed feedback
arc set of the given size if it exists.

For the run-time note that by returning the trivial solution A− if w− ≤ k, we have
either a linear run-time for constructing A− or k < w−. Now we have at most 2w++w−

possible subsets A′ of A ̸=0. The set Z ′ contains at most 2w+ + 2w− vertices and its
ordered partitions can thus be bounded by (2w+ + 2w−)! · 4w++w− (orders of Z ′ times
the choice for every element whether to start a new subset there). Thus, the overall
run-time is

O(2w++w− · (2w+ + 2w−)! · 4w++w− · (4kkn3 + poly(n))),

which using k < w− we can rewrite as 2O((w++w−) log(w++w−)) poly(n).

6.5.4 Normalized Arc Weights and Feasible Potentials

This section is dedicated to Negative Directed Feedback Arc Set with arc
weights in {−1, 0, 1} and how the number of positive or negative arcs influences the
feasible potential of the solution. The findings are that for both parameters w− and w+,
the solution must have an integral feasible potential in [0, w−] and [0, w+], respectively.
Unfortunately, the latter only holds for graphs that are strongly connected after remov-
ing the solution. Moreover, we get that for the parameter treedepth td(G) the solution
has a feasible potential in [0, 2td(G)]

We first state a folklore technique for constructing a feasible potential of a graph.

Lemma 6.24. Let (G,w) a weighted directed graph that contains no negative cycles.
Let G⋆ be the graph G where we introduced a new vertex s⋆ that is connected to every
original vertex v ∈ V (G) by an arc (s⋆, v) of weight 0. For every v ∈ V (G⋆) let π⋆(v) the
weight of a minimum weight s⋆ → v-path Pv. Then π = π⋆|V (G) is a feasible potential
for G.

Proof. We claim that π⋆ is a feasible potential for G⋆. Assume that it is not, then there
is an arc a = (u, v) for which π⋆(u)− π⋆(v) + w(a) < 0. In other words, we have that
w(Pu ◦a) < w(Pv). As Pv is a minimum weight s⋆ → v-path, we have that Pu ◦a is only
an s⋆ → v-walk. Moreover, Pu ◦a has to contain a negative closed walk, as otherwise it
would contain a s⋆ → v-path of weight less than Pv. As Pu is a path, this closed walk
is indeed a cycle O containing the arc a. Now s⋆ has only outgoing arcs, thus the cycle
lies in G⋆ − s⋆ = G, a contradiction to G having no negative cycles. So π⋆ is a feasible
potential for G⋆. By G = G⋆ − s⋆ being a subgraph of G⋆, we get that the function
π = π⋆|V (G) is a feasible potential for G.

With this construction in place, we can make our observations about integral feasible
potentials with few distinct values.

Lemma 6.25. Let G be a directed graph, and w : A(G)→ {−1, 0, 1} arc weights for it.
If G contains no negative cycles, then there is a feasible potential π : V (G) → [0, w−],
where w− = |w−1(−1)|.
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Proof. First we use Lemma 6.24 to construct the auxiliary graph G⋆ with its func-
tion π⋆. Now note that any s⋆ → v-path can contain at most w−-many negative arcs
and each of those has weight −1. Thus, we have that π⋆(v) = w(Pv) ≥ −w− for all
v ∈ V (G⋆). Moreover, the arc (s⋆, v) always forms an s⋆ → v-path of weight 0. By
all arcs weights being integral, we have that π⋆ is an integer function with values in
[−w−, 0]. Now, by Lemma 6.24, π = π⋆|V (G) is a feasible potential for G, which has
only integer values in [−w−, 0]. Shifting all values by w− shows the theorem.

Lemma 6.26. Let G be a strongly connected, directed graph, and w : A(G)→ {−1, 0, 1}
arc weights for it. If G contains no negative cycles, then there is a feasible potential
π : V (G)→ [0, w+], where w+ = |w−1(1)|.

Proof. First we use Lemma 6.24 to construct the auxiliary graph G⋆ with its function
π⋆. Assume now for contradiction, that any s⋆ → v-path Pv has weight less than −w+.
Let P be the u→ v-subpath of Pv that contains everything but the first arc a = (s⋆, u)
of Pv. As w(a) = 0 we know that w(P ) < −w+ and moreover P exists in G. Now, G
is strongly connected, and therefore there is a v → u-path Q in G. G contains only
w+-many positive arcs and all of them have weight 1, implying w(Q) ≤ w+. Hence,
P ◦ Q is a closed walk of weight w(P ) + w(Q) < w+ − w+ = 0. This negative closed
walk contains a negative cycle, in contradiction to G having none of those. Thus, we
have that π⋆(v) = w(Pv) ≥ −w+ for all v ∈ V (G⋆). Moreover, the arc (s⋆, v) always
forms an s⋆ → v-path of weight 0. By all arcs weights being integral, we have that π⋆
is an integer function with values in [−w+, 0]. Now, by Lemma 6.24, π = π⋆|V (G) is a
feasible potential for G, which has only integer values in [−w+, 0]. Shifting all values
by w+ shows the theorem.

Lemma 6.27. Let G be a directed graph, and w : A(G)→ {−1, 0, 1} arc weights for it.
If G contains no negative cycles, then there is a feasible potential π : V (G)→ [0, 2td(G)].

Proof. First we use Lemma 6.24 to construct the auxiliary graph G⋆ with its func-
tion π⋆. By Lemma 6.3 we have that any path in G contains at most 2td(G) many
arcs. Moreover, any s⋆ → v-path consists of an arc (s⋆, u) of weight 0, followed by an
u → v-path in G. Thus, any s⋆ → v-path can contain at most 2td(G) many negative
arcs and each of those has weight −1. Thus, we have that π⋆(v) = w(Pv) ≥ −2td(G)

for all v ∈ V (G⋆). Moreover, the arc (s⋆, v) always forms an s⋆ → v-path of weight 0.
By all arcs weights being integral, we have that π⋆ is an integer function with values in
[−2td(G), 0]. Now, by Lemma 6.24, π = π⋆|V (G) is a feasible potential for G, which has
only integer values in [−2td(G), 0]. Shifting all values by 2td(G) shows the theorem.

6.5.5 Dynamic Program for Treewidth and
Bounded Feasible Potentials

We now want to apply our findings on feasible potentials with few different values (see
last chapter) to a dynamic program utilizing the treewidth. The overall approach is
computing a nice treewidth decomposition of our graph (see Definition 6.4 and The-
orem 6.5) and then guessing via a dynamic program the feasible potential of some
solution on each bag of the tree decomposition. The deleted arcs are then exactly those
that violate the guessed potential. However, when we parameterize in the number of
positive arcs, we are only guaranteed a feasible potential with few different values for
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every strongly connected component of G−S. Therefore we also have to guess a topo-
logical order of the strongly connected components of G − S when restricted to the
bags of the tree decomposition. To handle both cases simultaneously, we introduce a
set C which contains ordered partitions of V (G) that represent components for which
the guessed potential could be feasible. For the parameter w− the single partition con-
sisting of all vertices suffices as set C. In the w+ case, C has to contain a topological
order of the strongly connected components of G − S. In this case we choose C as all
ordered partitions of V (G). We generalize the properties we need for C and our feasible
potential to unify both choices.
Definition 6.28. Let G be a directed graph and w : A(G)→ Z a weight function on its
arcs. We call an arc set S ⊆ A(G) ((C1, . . . , Ct), π)-feasible for some ordered partition
(C1, . . . , Ct) of V (G) and some π : V (G)→ Z, if for all arcs a = (p, q) ∈ A(G) \S with
p ∈ Ci and q ∈ Cj we have either i < j or i = j and π(p)− π(q) + w(a) ≥ 0.

For an ordered partition (C1, . . . , Ct) of V (G) and some U ⊆ V (G), we call an
ordered partition (C ′1, . . . , C ′t′) of U the projection of (C1, . . . , Ct) on U , denoted by
(C1, . . . , Ct)|U , if for all u ∈ Ci∩C ′p and v ∈ Cj ∩C ′q we have i < j if and only if p < q.
For a set C of ordered partitions of V (G), we denote by C|U the set {C |U | C ∈ C}.

Similarly, for some U ⊆ V (G) and a pair (C, π) consisting of an ordered partition C
of V (G) and π : V (G)→ Z, we call (C ′, π′) projection of (C, π) on U for C ′ being the
projection of C on U and π′ = π|U .

Let T be a tree decomposition of G, i.e. a tree decomposition of the underlying undi-
rected graph of G. We say that a set C of ordered partitions of V (G) is T -compatible,
if for every C,C ′ ∈ C with C|Bx = C ′|Bx, we have that there is a C⋆ ∈ C, with
C⋆|V (Gx) = C|V (Gx) and C⋆|V (G)\(V (Gx)\Bx) = C ′|V (G)\(V (Gx)\Bx).

We are now able to state our general algorithm.
Lemma 6.29. Let (G,w, k) be a Negative Directed Feedback Arc Set instance
with weights w : A(G) → Z. Given a nice tree decomposition T of G with vertex bags
(Bx)x∈V (T ) of width O(tw(G)) and a set C of ordered partition of V (G) compatible with
T and two integers a ≤ b, there is an algorithm that in time f(C, T )2O(tw(G) log(b−a)) ·
(n + m) computes a minimum size negative directed feedback arc set that is (C, π)-
feasible for some C ∈ C and π : V (G)→ Z ∩ [a, b]. Here f(C, T ) is the maximum time
needed to enumerate C|Bx for any x ∈ V (T ).
Proof. We compute a dynamic programming table D via dynamic program on V (T )
from the leaves upwards. The dynamic program table has an entry D[x, κ] for every
x ∈ V (T ) and κ, where κ consists of an ordered partition C ∈ C|Bx and an integer-
valued function π : Bx → Z∩ [a, b]. The entry D[x, κ] contains an arc set Sx,κ ⊆ A(Gx)
with Gx being the graph induced by the subtree decomposition of T rooted at x. Our
dynamic program is motivated by the following observation:

Claim 1. Let S ⊆ A(Gx) be a minimum size set that is (C, π)-feasible for some
C ∈ C|V (Gx) and π : V (Gx) → Z ∩ [a, b]. Let ((Cx1 , . . . , Cxtx), πx) be the projection
of (C, π) to Bx. Then S contains exactly those arcs a = (p, q) ∈ A(G[Bx]) with p ∈ Cxi
and q ∈ Cxj such that either j < i or i = j and πx(p)− πx(q) + w(a) < 0.

Proof of Claim 1. It has to contain these arcs as otherwise it would not be (C, π)-
feasible. If it contains more than these arcs, removing the rest would not lead to a
violation of the (C, π)-feasibility and obtaining a smaller set S, a contradiction. ■
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Here is how the entries are computed for x ∈ V (T ) depending on its node type:

leaf node As Bx = ∅, the only choice for κ are the empty partition () and π being the
empty function ε and we set D[x, ((), ε)] = ∅.

introduce nodes Let v be the newly introduced vertex to the bag Bx and let y be
the child of x in T . Let κ consist of an ordered partition (C1, . . . Ct) ∈ C|Bx

and an integer-valued function π : Bx → Z ∩ [a, b]. Define Sv to be the arcs
a = (p, q) ∈ δ(v) with p ∈ Ci and q ∈ Cj such that either j < i or i = j and
π(p)− π(q) + w(a) < 0. Then set

D[x, κ] = Sv ∪D[y, κ′],

where κ′ is the projection of κ to By.

forget nodes Let y be the child of x in T . Let κ consist of an ordered partition
C ∈ C|Bx and an integer-valued function π : Bx → Z ∩ [a, b]. Denote by K(y, κ)
the set of all κ⋆ consisting of ordered partitions C⋆ ∈ C|By and π⋆ : By → Z∩[a, b],
whose projection to Bx is κ. Then set

D[x, π] = argmin
S=D[y,κ⋆]
κ⋆∈K(y,κ)

|S|.

merge nodes Let y1 and y2 the two children of x. Then for every possible choice of κ,
we set

D[x, κ] = D[y1, κ] ∪D[y2, κ].

We claim that at the root r of T , the unique entry D[r, ((), ε)], where ε denotes the
empty function, contains a negative directed feedback arc set for G of minimum size.
First note, that this is really the unique entry as Br = ∅.

We are going to prove the following stronger statement: the entry D[x, κ] contains
a minimum-size set S ⊆ A(Gx) that is (C, π)-feasible for some C ∈ C|V (Gx) and π :
V (Gx) → Z ∩ [a, b] with the projection of (C, π) to Bx being κ. That is, we have to
prove, that the D[x, κ]’s indeed contain a set that is (C, π)-feasible as above and that
it has minimum size among those. We first focus on the (C, π)-feasibility, which we
prove by induction from leaf vertices to the root. Let x ∈ V (T ) be a node, such that
the feasibility property holds for all vertices y that are below x in T .

leaf node As Gx is the empty graph, the statement holds trivially.

introduce node For the keys κ, we enumerate all ordered partitions C ∈ C|Bx . Let
C↑ ∈ C be an ordered partition that projects to C in Bx. The set D[y, κ′] we
chose is by induction (C ′|V (Gy), π

′)-feasible on Gy. By T -compatibility of C we
have that there is a C⋆ ∈ C, with C⋆|V (Gy) = C ′|V (Gy) and C⋆|V (G)\(V (Gy)\By) =
C↑|V (G)\(V (Gy)\By). Thus, by construction our set is (C⋆|V (Gx), π

⋆|V (Gx))-feasible,
where π⋆(v) = π(v) and π⋆(u) = π′(u) for all u ∈ V (Gx) \ {v}.

forget node As Gx = Gy the statement holds trivially.
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merge nodes By induction, let D[yi, κ] be (Ci|V (Gyi ), πi)-feasible. By T -compatibility
of C we have that there is a C⋆ ∈ C such that

C⋆|V (Gx) = C1|V (Gx) and C⋆|V (G)\(V (Gx)\Bx) = C2|V (G)\(V (Gx)\Bx).

With π⋆(u) = π1(u) for all u ∈ V (Gy1) and π⋆(u) = π2(u) otherwise, we get that
our chosen set is (C⋆|V (Gx), π

⋆|V (Gx))-feasible.

Now assume for contradiction that our set is not the minimum choice among the
(C, π)-feasible ones. Then there is a node x ∈ V (T ) such that our statement holds for
all nodes y in the subtree of T rooted at x but not x (with possibly x being a leaf and
the set of other nodes being empty). In particular, we made the minimum choice for
all these nodes y and all κ’s. We make a case distinction based on the type of x.

leaf node Gx is empty and thus the empty set is the right choice of D[x, ((), ε)].

introduce node Assume there is a set of smaller size S⋆ that is (C⋆, π⋆)-feasible for
some C⋆ = (C⋆1 , . . . C⋆t ) ∈ C|V (Gx) and π⋆ : V (Gx) → Z ∩ [a, b] with (C⋆, π⋆)’s
projection to Bx being κ. Choose S⋆ smallest possible among all such choices.
By Claim 1, we have that S⋆ ∩A(G[Bx]) contains exactly those arcs a = (p, q) ∈
A(G[Bx]) with p ∈ C⋆i and q ∈ C⋆j such that either j < i or i = j and π⋆(p) −
π⋆(q)+w(a) < 0. In particular, S⋆∩δ(v) andD[x, κ]∩δ(v) are identical by (C⋆, π⋆)
projecting to κ. Thus, S⋆ \δ(v) is (C⋆|V (Gy), π

⋆|V (Gy))-feasible by Gy− (S⋆ \δ(v))
being a subgraph of Gx − S⋆ and projects down to the same κ′ as κ in By. But
S⋆\δ(v) is of size smaller than D[y, κ|By ], a contradiction to D[y, κ|By ] containing
the smallest such arc set.

forget nodes We have that Gx = Gy and thus any candidate for D[x, κ] is also a
candidate for D[y, κ⋆] by extending the κ⋆ in a way that matches the candidate.
By taking the minimum over the possible choices of κ⋆ and the claim holding
for y we get that D[x, π] is indeed such a set of minimum size.

merge nodes Assume there is a set of smaller size S⋆ that is (C⋆, π⋆)-feasible for some
C⋆ = (C⋆1 , . . . C⋆t⋆) ∈ C|V (Gx) and π⋆ : V (Gx)→ Z∩[a, b] with (C⋆, π⋆)’s projection
to Bx being κ. Choose S⋆ smallest possible among all such choices. By Claim 1,
we have that S⋆∩A(G[Bx]) contains exactly those arcs a = (p, q) ∈ A(G[Bx]) with
p ∈ C⋆i and q ∈ C⋆j such that either j < i or i = j and π⋆(p)−π⋆(q)+w(a) < 0. In
particular, we have that S⋆∩A(G[Bx]), D[y1, κ]∩A(G[Bx]) andD[y2, κ]∩A(G[Bx])
are identical (as Bx = By1 = By2). Thus, from |S⋆| < |D[x, κ]|, we have that
|S⋆ ∩ A(Gyi)| < |D[yi, κ]| for some i ∈ {1, 2}. As S⋆ ∩ A(Gyi) is a candidate for
D[yi, κ], this is a contradiction to the minimality of D[yi, κ].

Thus, our algorithm computes a minimum size negative directed feedback arc set
for G. For the run-time note that for every of the O(n) nodes of the tree decomposi-
tion T , we make a number of computations that is bounded by the number of κ’s for
the node itself and its up to two children. Any of those computations is polynomial in
the size of the arc sets of the bag. Now, the number of κ’s is bounded by the number
of possible functions π and the time needed to enumerate C|Bx for any x ∈ V (T ). The
number of functions π is bounded by (b − a + 1)O(tw(G)) = 2O(tw(G) log(b−a)), showing
the overall run-time.
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We can deduce three of our main results from this general algorithm.

Theorem 6.30. Let (G,w, k) be a Negative Directed Feedback Arc Set in-
stance with weights w : A(G)→ {−1, 0, 1}. Then we can find in time 2O(tw(G) logw−)(n+
m) a minimum solution to (G,w, k), where w− = |w−1(−1)|.

Proof. Let C consist of the single partition (V (G)) of V (G). Compute a nice tree
decomposition T of G. Note that C is T -compatible. We know that any (C, π)-feasible
set S for C ∈ C is a negative directed feedback arc set with π being a feasible potential
of G − S. By Lemma 6.25, we know that for any negative directed feedback arc set
S of (G, k), G − S has a feasible potential π : V (G) → Z ∩ [0, w−]. Thus, we call
Lemma 6.29 with T , C, a = 0 and b = w− and get a negative directed feedback
arc set S′ of minimum size. We then check whether |S′| ≤ k or not and return the
corresponding answer.

For the run-time note that by Theorem 6.6 we can compute a nice tree decom-
position of width O(tw(G)) in 2O(tw(G))(n+m) time. Moreover, the sets of the form
C|Bx for any x ∈ V (T ) can be enumerated in constant time as they are exactly the set
(Bx).

Theorem 6.31. Let (G,w, k) be a Negative Directed Feedback Arc Set in-
stance with weights w : A(G)→ {−1, 0, 1}. Then we can find in time

2O(tw(G)(log tw(G)+logw+))(n+m)

a minimum solution to (G,w, k), where w+ = |w−1(1)|.

Proof. Let C consist of all ordered partitions of V (G). Compute a nice tree decomposi-
tion T of G. By properties of tree decompositions we have that for any x ∈ V (T ), the
sets V (Gx) and V (G) \ (V (Gx) \Bx) only intersect in Bx. Thus, C is T -compatible as
we can recombine any two ordered partitions that match on a subset Bx.

We know that any (C, π)-feasible set S for C = (C1, . . . , Ct) ∈ C is a negative
directed feedback arc set with π being a feasible potential for every G[Ci] − S and
(C1, . . . , Ct) is a (super-)partition of the strongly connected components of G− S. By
Lemma 6.26, we know that for any negative directed feedback arc set S of (G, k), the
strongly connected components of G−S have a feasible potential π : V (G)→ Z∩[0, w+].
Thus, we call Lemma 6.29 with T , C, a = 0 and b = w+ and get a negative directed
feedback arc set S′ of minimum size. We then check whether |S′| ≤ k or not and return
the corresponding answer.

For the run-time note that by Theorem 6.6 we can compute a nice tree decomposi-
tion of width O(tw(G)) in 2O(tw(G))(n+m) time. Moreover, the sets of the form C|Bx

for any x ∈ V (T ) can be enumerated in time 2O(tw(G) log tw(G)) by taking every ordered
partition of Bx.

Theorem 6.32. Let (G,w, k) be a Negative Directed Feedback Arc Set in-
stance with weights w : A(G)→ {−1, 0, 1}. Then we can find in time 2O((td(G))2)(n+m)
a minimum solution to (G,w, k).

Proof. Let C consist of the single partition (V (G)) of V (G). Compute a nice tree
decomposition T of G. Note that C is T -compatible. We know that any (C, π)-feasible
set S for C ∈ C is a negative directed feedback arc set with π being a feasible potential
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of G − S. By Lemma 6.27, we know that for any negative directed feedback arc set
S of (G, k), G − S has a feasible potential π : V (G) → Z ∩ [0, 2td(G)]. Thus, we call
Lemma 6.29 with T , C, a = 0 and b = 2td(G) and get a negative directed feedback
arc set S′ of minimum size. We then check whether |S′| ≤ k or not and return the
corresponding answer.

For the run-time note that by Theorem 6.6 we can compute a nice tree decomposi-
tion of width O(tw(G)) in 2O(tw(G))(n+m) time. Moreover, the sets of the form C|Bx

for any x ∈ V (T ) can be enumerated in constant time as they are exactly the set (Bx).
Last but not least, we have tw(G) ≤ td(G) and thus an overall run-time of

2O(td(G) log(2td(G)))(n+m) = 2O((td(G))2)(n+m).

6.5.6 Algorithm for {−1, 1} Weights with Few Negatives

In this section we give an algorithm for Negative Directed Feedback Arc Set
when parameterized by w−. However, this algorithm works only for weights of the form
w : A(G)→ {−1, 1}. As stated in the results overview (Section 6.4), this parameter is
open for weights of the form w : A(G)→ {−1, 0, 1} and W[1]-hard for general integral
weights. In the case of {−1,+1}-weights finding a negative directed feedback arc set
however becomes easy by the following observation.

Lemma 6.33. Let G be a directed graph with arc weights w : A(G) → {−1, 1}. Then
any negative cycle of G has length at most 2w−.

Proof. Any cycle C of length more than 2w− contains at least (w− + 1)-many arcs of
weight +1 and at most −w−-many of weight −1. Thus, it has weight at least +1 and
thus non-negative weight.

Now recall Lemma 6.17.

Lemma 6.17. There is an algorithm solving a Negative Directed Feedback Arc
Set instance (G,w, k) in time O(Lkn2m), where L is an upper bound on the length of
any negative cycle in G.

Combining the two statements above leads to the following theorem.

Theorem 6.34. There is an algorithm solving Negative Directed Feedback Arc
Set with arc weights w : A(G)→ {−1, 1} in time O((2w−)kn2m).

Proof. Use Lemma 6.17 with Lemma 6.33 as upper bound on the length of negative
cycles.

Note that the run-time can be improved to O((k + 1)wk−n2m) by guessing the
number of −1 arcs in our solution first and enumerating all sets of that size. Then
the algorithm of Lemma 6.17 can be modified to only make subroutine calls on arcs of
weight +1, leading to an improved run-time.

Moreover, note that we can assume k ≤ w− by Theorem 6.15, which shows that
Negative Directed Feedback Arc Set with arc weights w : A(G) → {−1, 1} is
fixed-parameter tractable in w−.
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6.5.7 Algorithm for {−1, 1} Weights with Few Positives

We will now study Negative Directed Feedback Arc Set with weight functions
w : A(G)→ {−1,+1} when parameterized by k+w+. As stated in the results overview
Section 6.4 this parameter is open for weights of the form w : A(G) → {−1, 0, 1} and
W[1]-hard for general integral weights.

The main observation for our algorithm is made in the following lemma:

Lemma 6.35. Let G be a directed graph with arc weights w : A(G) → {±1}. Then
either G has a negative cycle of length at most 2(w+)2 + 2w+, or every negative cycle
C has some arc a ∈ A(C) that lies only on negative cycles of G.

Proof. First, if G has no negative cycles then we are done. We are also done if there is
a negative cycle of length at most 2(w+)2 + 2w+. Hence, we can assume that G has a
negative cycle and all negative cycles have length at least 2(w+)2 + 2w+ + 1

Suppose, for sake of contradiction, that each arc a in a negative cycle lies on a
cycle Ca of non-negative weight. Let C be a shortest negative cycle in G. By the
argumentation above, C has length at least 2(w+)2 + 2w+ + 1. In particular, C has
length at least w+(w+ + 1) + 1 and contains at most w+ arcs of weight +1; all other
arcs of C have weight −1. By pigeonhole principle, there must be a segment P of C
consisting of w+ + 1 arcs of weight −1.

By assumption, for every arc a = (v, w) ∈ A(P ) we have a w → v-path Ra of
length at most |Ca| − 1. As w(Ca) ≥ 0 and the Ca’s contain at most w+ arcs of weight
+1 and all other arcs have weight −1 the cycles have length at most 2w+. Thus, the
reverse paths Ra have length |Ra| ≤ |Ca| − 1 ≤ 2w+ − 1. Say P is an s → t-path,
then by concatenating the Ra’s with a ∈ P we get an t → s-walk R′ which contains a
t→ s-path R. The path R contains at most w+ arcs of weight +1 thus w(R) ≤ w+.

Consider the closed walk O = P ◦ R. Then w(O) = w(P ) + w(R) = −(w+ + 1) +
w(R) ≤ −1. Thus, O contains a negative cycle C ′. Eventually,

|ℓ(C ′)| ≤ |O|
= |P |+ |R|
≤ |P |+

∑
e∈E(P )

|Re|

≤ 2w+(w+ + 1)
< 2(w+)2 + 2w+ + 1 ≤ |ℓ(C)|

yields a contradiction to the fact that C was a shortest negative cycle.

This lemma forms the basis of our algorithm, Algorithm 1. First, the algorithm
checks for negative cycles with up to 2(w+)2 + 2w+ arcs. It then guesses the arc
contained in a solution like the algorithm in Lemma 6.17. Afterwards, we are left with
a directed graph without short negative cycles. We now identify the set U of arcs which
are not part of a non-negative cycle. Then, we know that G−S may not contain a cycle
on which an arc of U lies, as this cycle would be negative by definition of U . Likewise,
any negative cycle in G has some arc in U by the previous lemma. For general sets U ,
this is exactly the Directed Subset Feedback Arc Set problem.
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Directed Subset Feedback Arc Set

Instance: A graph G, an arc set U ⊆ A(G) and an integer k ∈ Z≥0.

Task: Find an arc set X ⊆ A(G) of size at most k such that
every cycle of G−X is disjoint of U
or decide that no such set exists.

The Directed Subset Feedback Arc Set problem was shown to be fixed-
parameter tractable for parameter k by Chitnis et al. [CCHM15].

Theorem 6.36 ([CCHM15]). Directed Subset Feedback Arc Set is solvable in
time 2O(k3) poly(n).

Input : A directed graph G with arc weights w : A(G)→ Z and k ∈ Z≥0.
Output: A set S ⊆ A(G) of at most k arcs such that G− S has no negative

cycle, or false if no such set exists.
1 if k < 0 then
2 return false.
3 if there is some negative cycle C of length at most 2(w+)2 + 2w+ in G then
4 Branch on deleting an arc of C and try to solve with k − 1 by recursion.
5 else
6 Identify the set U of all arcs which do not lie on a non-negative cycle.
7 return DirectedSubsetFeedbackArcSet (G,U, k).

Algorithm 1: NegativeCycleDeletion

Before we can prove correctness and run-time we have to show how we can detect
the set U of all arcs which lie only on negative cycles. We first argue that this problem
is NP-hard even for weights w : A(G)→ {−1,+1}. To this end, we provide a reduction
from the Hamiltonian s-t-Path problem, which for a directed graph H and vertices
s, t ∈ V (H) asks for an s → t-path in H visiting each vertex of H exactly once. Its
NP-hardness was shown by Karp [Kar72]. The reduction works as follows: Take the
original directed graph H and two vertices s, t ∈ V (H) which we want to test for the
existence of a Hamiltonian path starting in s and ending in t. Add a path P of length
n− 1 from t to s to the graph. Assign weight +1 to each arc of H, and weight −1 to
each arc of P . Then an arc of P lies on a cycle of non-negative length if and only if
there is a Hamiltonian s→ t-path in H.

However, for this construction of weights w we have w+ ∈ Ω(n). We will now show
that the task is indeed fixed-parameter tractable when parameterized by w+. For that,
the main observation is that every non-negative cycle has length at most 2w+. We now
consider the Weighted ℓ-Path problem: given a directed graph G with arc weights
w : A(G)→ R and numbers W ∈ R, ℓ ∈ Z≥0, the task is to find a path of length exactly
ℓ and weight at least W in G. Zehavi [Zeh15] gave a fast algorithm for Weighted
ℓ-Path, based on color coding-related techniques and representative sets.

Theorem 6.37 ([Zeh15]). Weighted ℓ-Path can be solved in time 2O(ℓ) ·O(m logn).
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So given an arc a = (s, t) one can enumerate all path sizes ℓ from 1 to 2w+− 1 and
ask whether there is a t → s-path of length ℓ of weight at least −w(a). This way one
can detect a non-negative cycle containing a.

Corollary 6.38. Let G be a directed graph, let w : A(G) → {±1} and (s, t) ∈ A(G).
Then one can detect in time 2O(w+) ·m logn if a = (s, t) is part of some non-negative
cycle C.

Finally, we argue the correctness and run-time of Algorithm 1, proving the following:

Theorem 6.39. Algorithm 1 is correct and solves an instance of Negative Directed
Feedback Arc Set with w : A(G)→ {−1, 1} in time 2O(k3+w++k logw+) poly(n).

Proof. Obviously, we return correctly “false” if our set should contain less than zero
items. Otherwise, we detect with help of Lemma 6.16 in time O

(
n2m

)
whether there is

a negative cycle in G, and if the minimum-length negative cycle C has length at most
2(w+)2 + 2(w+).

If such a cycle C exists, we split into |ℓ(C)| instances, one for each a ∈ A(C), calling
our algorithm recursively with parameter k decreased by one on G−a. This is correct,
as one of the arcs of C needs to be deleted, and we just search for every arc if there is
a solution containing this arc.

Otherwise, all negative cycles have length at least 2(w−)2 + 2(w−) + 1, and by
Lemma 6.35 every negative cycle must have an arc not contained in a non-negative
cycle. Choose one arc of each such cycle and gather them in the set U<0. By definition
of the set U , in our algorithm we have U<0 ⊆ U . Subset DFAS for (G,W, k) now asks
for a set S of size at most k such that G− S has no cycle containing an arc of W . As
U<0 ⊆ U , we get that a solution for (G,U, k) is also a solution for (G,U<0, k). We now
want to show that also the reverse direction holds and this solves our original problem.
For this, let S<0 be a solution for (G,U<0, k) and C a cycle in G − S<0. If there is
no such cycle, we are done. Otherwise, we know that C cannot be a cycle of negative
weight as every cycle of negative weight has an arc in U<0. But as w(C) ≥ 0, our
cycle C cannot contain an arc of U as those are not contained in non-negative cycles.
Thus, S<0 is a solution for (G,U, k). Also, all cycles in G− S<0 are non-negative, and
therefore S<0 is also a solution to our Negative DFAS instance (G, k).

This shows the correctness of Algorithm 1. Its run-time can be bounded as follows:
Detecting cycles in line 4 can be done in time O((2(w+)2 + 2w+)nm). The branching
step then creates up to 2(w+)2 +2w+ instances with the parameter k decreased by one.
As there is no other recursive call to this algorithm, we have at most (2(w+)2+2w++1)k
instances for which this algorithm is called. In the end, we call the algorithm from
Lemma 6.38 to compute the set U which takes time 2O(w+) · m2 logn, as it is called
for every arc. By Proposition 6.36, the final call to the Directed Subset Feedback
Arc Set oracle takes time 2O(k3) poly(n).

Thus, we obtain an overall run-time of

(2w2
+ + 2w+ + 1)k ·

[
(w2

+ + 2w+) · O(nm) + 2O(w+) · O(m2 logn) + 2O(k3) poly(n)
]
,

which simplifies to (w+)O(k) · 2O(k3+w+) poly(n) = 2O(k3+w++k logw+) poly(n).
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6.6 Hardness Results

6.6.1 NP-Hardness for Number of Positive Arcs

For completeness of the hardness results, this section contains a short observation about
the equivalence of Directed Feedback Arc Set and Negative Directed Feed-
back Arc Set instances where all arc weights are −1. This implies that Negative
Directed Feedback Arc Set is NP-hard even in the case where all arc weights are
−1. This implies the hardness result for w+ and arc weights w : A(G)→ {−1, 0, 1}.

Theorem 6.40. Negative Directed Feedback Arc Set is NP-hard even if all
arc weights are −1.

Proof. We show the theorem by a reduction from Directed Feedback Arc Set,
which is NP-hard. Let (G, k) be an instance of Directed Feedback Arc Set. We
claim that (G,w, k) with w ≡ −1 is an equivalent instance of Negative Directed
Feedback Arc Set. Indeed, for every S ⊆ A(G) there is a cycle C in G − S if and
only if G− S with weights −1 contains the cycle C of weight −|C| < 0.

6.6.2 NP-Hardness for Constant Pathwidth

In this section we show that Negative Directed Feedback Arc Set is NP-hard
even for graphs of pathwidth 6. We show this hardness by reduction from Partition.

Partition

Instance: A set A = {a1, . . . , an} of positive integers.

Task: Find a subset A′ such that ∑ai∈A′ ai = ∑
ai∈A\A′ ai

or decide that no such subset exists.

Using A = ∑n
i=1 ai, we can reformulate Partition as the problem of finding a

subset A′ such that A′ and A \ A′ each sum up to A
2 (or no such subset exists).

Karp [Kar72] showed that Partition is NP-complete.

Theorem 6.41 (Karp 1972). Partition is NP-complete.

Now we are ready to state our hardness result.

Theorem 6.42. Negative Directed Feedback Arc Set is NP-hard even for
graphs of pathwidth 6 and one arc of positive weight.

Proof. Let A be an instance of Partition and A = ∑
ai∈A ai. For every number

ai ∈ A we construct a gadget Gi as follows (see Fig. 6.1 for an illustration). Let
V (i) = {s(j)

i , t
(j)
i , x

(j)
i , y

(j)
i | j = 1, 2} be the set of vertices in Gi. There are three

different types of arcs. The first arc set Ai1 = {(x(j)
i , y

(j)
i )| j = 1, 2} with arc weight

−ai, contains the arcs we will consider for deletion later. The second arc set Ai2 =
{(y(j)

i , x
(j+1)
i ), (y(j)

i , x
(j−1)
i )| j = 1, 2} with arc weight 0, contains arcs which enforce

the deletion of arcs from the first arc set by inducing negative cycles. The last arc set
Ai3 = {(s(j)

i , t
(j)
i ), (s(j)

i , x
(j)
i ), (y(j)

i , t
(j)
i )| j = 1, 2} with arc weight 0, contains arcs that

connect the vertices s(j)
i and t

(j)
i to the rest of the gadget.
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Figure 6.1: The gadget graph Gi.

The whole gadget Gi is then defined as (V (i), A
(i)
1 ∪ A

(i)
2 ∪ A

(i)
3 ). Out of these

gadgets we construct the graph (G,w) of our Negative Directed Feedback Arc
Set instance by taking the union of all gadgets Gi for 1 ≤ i ≤ n, where we identify
t
(j)
i = s

(j)
i+1 for j = 1, 2 and i ∈ {1, . . . , n − 1}. Additionally, we add two vertices s

and t with the arcs (s, s(j)
1 ) and (t(j)n , t) for j = 1, 2 of weight 0. Finally, we add the arc

(t, s) of weight A
2 . We then choose (G,w, k) with k = n as our Negative Directed

Feedback Arc Set instance.
Next we show that A has a solution if and only if (G,w, n) has one.

Claim 1. If A has a solution A′, then there is a solution S⋆ to (G,w, n).

Proof of Claim 1. For every i ∈ {1, . . . , n}, we define an si ∈ S⋆ by

si =

(x(1)
i , y

(1)
i ) , if ai ∈ A′

(x(2)
i , y

(2)
i ) , if ai /∈ A′.

Assume for contradiction that G − S⋆ contains a negative cycle C. Observe that
for each i ∈ {1, . . . , n} the graph Gi − si contains no negative cycle. Moreover, any
gadget Gi can only be entered through one s(j)

i and left through t
(j)
i = s

(j)
i+1 with the

same j. Thus, C has to start in s, pass through the gadgets Gi in order either on the
j = 1 or the j = 2 side, then go to t and eventually use the backward arc (t, s). As
the backward arc has weight A

2 , C contains an s → t-path P of weight less than A
2 .

Furthermore, P uses either only vertices with index j = 1 or j = 2. The only arcs of
negative weight with index j = 1 in G−S⋆ are those (x(1)

i , y
(1)
i ) with ai /∈ A′. For these

we have ∑ai /∈A′ w((x(1)
i , y

(1)
i )) = ∑

ai /∈A′ −ai = −A
2 , as A′ is a solution to A. Likewise,

the only arcs of negative weight with index j = 2 in G− S⋆ are those (x(2)
i , y

(2)
i ) with

ai ∈ A′. For these we have ∑ai∈A′ w((x(2)
i , y

(2)
i )) = −∑ai∈A′ ai = −A

2 , as A′ is a
solution to A. Thus, in any case, P has weight at least −A

2 , a contradiction. ■

Claim 2. If (G,w, n) has a solution S⋆ then A has a solution A′.

Proof of Claim 2. We choose A′ = {ai | (x(1)
i , y

(1)
i ) ∈ S⋆}. Assume for contradiction

that A′ is not a solution. Then we have that either ∑ai∈A′ ai >
A
2 or ∑ai /∈A′ ai >

A
2 .
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Figure 6.2: Union of three gadgets after the deletion of negative cycles. Deleted arcs
are shown in gray with a backslash. The dashed blue path shows the shortest path
from s

(1)
1 to t(1)

3 , and the dotted green path shows the shortest path from s
(2)
1 to t(2)

3 .

We consider now a minimum weight s(j)
1 → t

(j)
n -path Pj in G − S⋆ for j = 1, 2 as

depicted in Fig. 6.2. Note that for every gadget Gi, our solution S⋆ has to contain one
of the arcs (x(1)

i , y
(1)
i ), (x(2)

i , y
(2)
i ), (y(1)

i , x
(2)
i ) and (y(2)

i , x
(1)
i ). As S⋆ contains only n

elements (one for each gadget), the arcs (s(j)
i , t

(j)
i ) are always available and have weight

0. Moreover, if (x(j)
i , y

(j)
i ) is undeleted, the s(j)

i → t
(j)
i -path (s(j)

i , x
(j)
i ) ◦ (x(j)

i , y
(j)
i ) ◦

(y(j)
i , t

(j)
i ) of weight −ai exists. Thus, a minimum weight s(j)

1 → t
(j)
n -path Pj has weight

at most −∑ai∈Aj
ai where Aj is the set of ai’s for which (x(j)

i , y
(j)
i ) is undeleted. By

choice of A′, we have that A1 = A \ A′ and A2 ⊇ A′. So, if ∑ai∈A′ ai >
A
2 , we

have that w(P2) ≤ −∑ai∈A2 ai ≤ −
∑
ai∈A′ ai < −A

2 . If instead ∑ai /∈A′ ai >
A
2 , we

have that w(P1) ≤ −∑ai∈A1 ai ≤ −
∑
ai /∈A′ ai < −A

2 . Thus, in any case we have an
s

(j)
1 → t

(j)
n -path Pj in G− S⋆ of weight less than −A

2 for some j ∈ {1, 2}.
Again, our solution S⋆ contains exactly one arc of every gadget and thus no arc

incident to s or t. So, we can complete this path Pj to a cycle (s, s(j)
1 )◦Pj ◦(t(j)n , t)◦(t, s)

in G− S⋆ of weight w(Pj) + A
2 < 0, a contradiction to G− S⋆ containing no negative

cycles. ■

This completes the reduction from Partition to Negative DFAS and therefore
shows the NP-hardness of Negative DFAS. It only remains to bound the pathwidth of
the generated instances.

We show that the underlying graph of G has pathwidth at most 6, by providing
a path decomposition (P,B) of G of width 6. Let P be the path on 2n + 1 vertices,
corresponding to bags B1, ..., B2n+1 ∈ B:

• B2i−1 = {s, s(1)
i , s

(2)
i , x

(1)
i , x

(2)
i , y

(1)
i , y

(2)
i } for i = 1, . . . , n

• B2i = {s, s(1)
i , s

(2)
i , y

(1)
i , y

(2)
i , t

(1)
i , t

(2)
i } for i = 1, . . . , n

• B2n+1 = {s, t(1)
n , t

(2)
n , t}

Also, the arc (t, s) is the only arc of positive weight.
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6.6.3 W[1]-hardness for Treedepth and Few Positive Arcs

In this section we prove W[1]-hardness for Negative Directed Feedback Arc Set
when parameterized by treedepth and number of positive arcs.

Theorem 6.43. Negative Directed Feedback Arc Set is W[1]-hard when pa-
rameterized in the treedepth and number of positive arcs.

Proof. We prove the theorem by reduction from Clique. The input of Clique consists
of an undirected graph G and an integer k. The question is, whether there is a vertex
set X ⊆ V (G) of at least k vertices such that G[X] forms a complete graph. Clique
is W [1]-hard parameterized by k.

First we introduce a meta gadget that allows us to model different choices as mini-
mum deletion sets influencing the minimum weight of a path between prescribed pairs
of vertices. See Fig. 6.3 for an illustration.

Let a, b ∈ Z>0 be positive integers. For every r ∈ {1, . . . , b}, let φr : {1, . . . , a} →
Z ∩ [−M,M ] be some function. We define the gadget Ra,b in the following way: Let
A = a+ 4. For every p ∈ {−1, 0, . . . , a+ 1} we have a smaller gadget consisting of the
vertices xpi , y

p
i for i ∈ {1, 2, 3, 4} and ẋpi , ẏ

p
i , ẍ

p
i , ẍ

p
i for i ∈ {2, 3} that are interconnected

by the following arcs:

• the arc (xp1, y
p
1) of weight −(A+ (p+ 2)), and

• the arc (xp2, y
p
2) of weight −(A− p), and

• the arc (xp3, y
p
3) of weight −(A+ (p+ 1)), and

• the arc (xp4, y
p
4) of weight −(A− (p− 1)), and

• the arc (ẋpi , ẏ
p
i ) of weight −1 for i ∈ {2, 3}, and

• the arc (ẍp2, ÿ
p
2) of weight −(A+ p), and

• the arc (ẍp3, ÿ
p
3) of weight −(A− (p+ 1)), and

• the arcs (ypi , x
p
j ) for any distinct i, j ∈ {1, 2, 3, 4} all of weight −1, and

• the arcs (ypi , ẋ
p
i ), (ẏ

p
i , x

p
i ), (ẏ

p
i , ẍ

p
i ), (ÿ

p
i , ẋ

p
i ) for i ∈ {2, 3} all of weight −1.

For p = −1 we duplicate the arc (x−1
1 , y−1

1 ) and for p = a + 1 we duplicate the arc
(xa+1

4 , ya+1
4 ). Moreover, we duplicate the arcs (ẏpi , ẍ

p
i ), (ÿ

p
i , ẋ

p
i ) for i ∈ {2, 3}.

Shared by all these mini gadgets, there are vertices si, ti for i ∈ {1, 2, 3, 4}. These are
connected to the previous vertices by the arcs (si, xpi ) and (ypi , ti) for i ∈ {1, 2, 3, 4}, all of
weight 0. The following arcs run between the shared vertices: (ti, sj) for i, j ∈ {1, 2, 3, 4}
with |i− j| odd, all of weight A. Moreover there are vertices s̈i, ẗi for i ∈ {2, 3}. These
are adjacent to the arcs (s̈i, ẍpi ) and (ÿpi , ẗi) of weight 0 for i ∈ {2, 3}, as well as to the
arcs (ẗ2, s̈3) and (ẗ3, s̈2), both of weight A.

This defines the functional part of the gadget. To extract the information we want,
we add for every r ∈ {1, . . . , b} the vertices grin and grout to gather the information of the
mini gadgets. For every p ∈ {1, . . . , a} these vertices are connected to the mini-gadgets
by an arc (grin, x

p
2) of weight 0 and an arc (yp2 , grout) of weight −(A+ p)−M + φr(p).
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Figure 6.3: Overview of construction of a meta gadget. The dotted red arcs have
weight −1, the dashed blue arcs have weight 0, the solid orange arcs have weight A.
The black arcs model the choice we make for each gadget and the green arcs are used
to extract information from this choice. For both of these arc types the weight is
individual per arc.
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Finally, for every r ∈ {1, . . . , b}, the gadget Ra,b contains the vertices vrin and vrout
that defines the interface to the outside. These are connected to grin and grout by an arc
(vrin, grin) of weight 0 and an arc (grout, v

r
out) of weight 2A+M .

We prove some claims about these meta-gadgets first:

Claim 1. Every solution to Ra,b as Negative Directed Feedback Arc Set in-
stance has size at least 5(a+ 3). Moreover, any solution of size at most 5(a+ 3) deletes

• exactly three of the four arcs (xpi , y
p
i ) with i ∈ {1, 2, 3, 4},

• exactly one of the two arcs (ẋp2, ẏ
p
2) and (ẍp2, ÿ

p
2), and

• exactly one of the two arcs (ẋp3, ẏ
p
3) and (ẍp3, ÿ

p
3).

Proof of Claim 1. We prove that any solution to Ra,b as Negative Directed Feed-
back Arc Set instance has to delete at least five arcs from every mini-gadget. For any
p ∈ {−1, 0, . . . , a + 1} and consider the following cycles. For distinct i, j ∈ {1, 2, 3, 4}
there is a cycle

(xpi , y
p
i ) ◦ (ypi , x

p
j ) ◦ (xpj , y

p
j ) ◦ (ypj , x

p
i ),

which has negative weight as all arcs are negative. Moreover, there are the cycles

(ẍpi , ÿ
p
i ) ◦ (ÿpi , ẋ

p
i ) ◦ (ẋpi , ẏ

p
i ) ◦ (ẏpi , ẍ

p
i )

for i ∈ {2, 3}, both of which are negative as all their arcs are negative. Now, any set of
four arcs is disjoint from at least one of these cycles. So every solution deletes at least
five arcs from every mini-gadget. As there are a + 3 arc-disjoint mini-gadgets, every
solution has size at least 5(a+ 3).

Note, any solution that deletes exactly five arcs from a mini-gadget must use at
least two of these arcs to hit cycles involving the dotted vertices. Thus, there are only
three arcs to intersect the cycles on non-dotted vertices. As the cycles for (i, j) and
(j, i) are distinct (but not disjoint), these three arcs have the form (xpi , y

p
i ) as otherwise

one of the non-dotted cycles is not hit. To hit the two cycles involving dotted vertices,
a solution has to spend exactly one arc on every cycle. As the arcs (ẏpi , ẍ

p
i ) and (ÿpi , ẋ

p
i )

are doubled, the solution must delete either (ẋpi , ẏ
p
i ) or (ẍpi , ÿ

p
i ) for i ∈ {2, 3}. ■

Claim 2. Consider Ra,b as Negative Directed Feedback Arc Set instance. Then
for every p⋆ ∈ {1, . . . , a} there is a solution Sp⋆ of size 5(a+3) such any vrin → vrout-path
in Ra,b − Sp⋆ has weight φr(p⋆) for any r ∈ {1, . . . , b}.

Proof of Claim 2. Let SP ⋆ consist of the following arcs with non-dotted endpoints:

• for −1 ≤ p < p⋆ − 1, the arcs (xp2, y
p
2), (xp3, y

p
3), and (xp4, y

p
4),

• for p⋆ − 1 the arcs (xp
⋆−1

1 , yp
⋆−1

1 ), (xp
⋆−1

2 , yp
⋆−1

2 ) and (xp
⋆−1

4 , yp
⋆−1

4 ),

• for p⋆ the arcs (xp
⋆

1 , y
p⋆

1 ), (xp
⋆

3 , y
p⋆

3 ) and (xp
⋆

4 , y
p⋆

4 ),

• for p⋆ < p ≤ a+ 1, the arcs (xp1, y
p
1), (xp2, y

p
2), and (xp3, y

p
3).
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Additionally, Sp⋆ contains the following arcs with dotted endpoints:

• for −1 ≤ p < p⋆ − 1, the arcs (ẍp2, ÿ
p
2) and (ẍp3, ÿ

p
3),

• for p⋆ − 1 the arcs (ẍp
⋆−1

2 , ÿp
⋆−1

2 ) and (ẋp
⋆−1

3 , ẏp
⋆−1

3 ),

• for p⋆ the arcs (ẋp
⋆

2 , ẏ
p⋆

2 ) and (ẍp
⋆

3 , ÿ
p⋆

3 ),

• for p⋆ < p ≤ a+ 1, the arcs (ẍp2, ÿ
p
2) and (ẍp3, ÿ

p
3).

We have to check that Ra,b − Sp⋆ has no cycle of negative weight. Note that the
vertices xpi where (xpi , y

p
i ) is deleted have out-degree zero and thus are not part of any

cycles. The same holds for the vertices ypi where (xpi , y
p
i ) is deleted as they have in-

degree zero. The argument also holds for ẍpi and ÿpi with (ẍpi , ÿ
p
i ) deleted. In addition,

ẋpi and ẏpi are never part of any cycle, as for any p either (ẋpi , ẏ
p
i ) is deleted, and they

have either in- or out-degree zero, or (xpi , y
p
i ) and (ẍpi , ÿ

p
i ) are deleted, of which at least

one is part of any cycle involving ẋpi and ẏpi . Moreover, the vertices vrin, vrout, grin and
grout are never part of any cycle in Ra,b. So the only vertices on a cycle are

• the vertices si, ti (non-dotted, top level),

• the vertices xpi , y
p
i where (xpi , y

p
i ) is not deleted, (non-dotted, mini-gadget),

• the vertices s̈i, ẗi (dotted, top level),

• the vertices ẍpi , ÿ
p
i where (ẍpi , ÿ

p
i ) is not deleted, (dotted, mini-gadget).

Note that as ẋpi and ẏpi are never part of any cycle, there is no cycle involving both the
non-dotted and the dotted part of our gadget. Thus, we can analyze them separately.

First for the non-dotted part: By leaving out the vertices that do not form a cycle
(see above), the mini-gadgets form an si → ti-path for certain i’s. The only remaining
arcs (those that are not part of these paths) are the backwards arcs (ti, sj) on the
top-level. We analyze the si → ti-paths first. As we are interested only whether there
are negative cycles and not their exact weight, we may restrict ourselves to minimum
weight paths of this kind. Observe that in Ra,b − Sp⋆

• any s1 → t1-path has weight at least −(A+ p⋆),

• the only s2 → t2 path has weight −(A− p⋆),

• the only s3 → t3 path has weight −(A+ p⋆), and

• any s4 → t4-path has weight at least −(A+ p⋆).

The backward arcs (ti, sj) have weight A and exist only for |i− j| odd. Therefore, on
every cycle we have that si → ti-paths of weight at least −(A − p⋆) and of weight at
least −(A+p⋆) alternate. Also, between them lies an arc of weight A. To return to the
starting point a walk has to consist of only such pairs (as the backward arcs only exist
for |i− j| odd. Each such pair has weight at least −(A−p⋆)+A− (A+p⋆)+A = 0 and
thus every closed walk in the non-dotted part of Ra,b − Sp⋆ has non-negative weight.
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xp1/yp1

xp2/yp2

xp3/yp3

xp4/yp4

. . . . . . . . .

−1 p̂ p̂+ 1 p̃ p⋆ p̌ a+ 1

Figure 6.4: Structure of undeleted arcs (xpi , y
p
i ) as proven in Claim 3.

For the dotted part of the gadget, note that of the arcs of the form (ẍpi , ÿ
p
i ), only

(ẍp
⋆

2 , ÿ
p⋆

2 ) and (ẍp
⋆−1

3 , ÿp
⋆−1

3 ) are undeleted. So the only cycle in the dotted part is
s̈2, ẍ

p⋆

2 , ÿ
p⋆

2 , ẗ2, s̈3, ẍ
p⋆−1
3 , ÿp

⋆−1
3 , ẗ3, s̈2 of weight −(A+p⋆)+A−(A−(p⋆−1+1))+A = 0.

Thus, there are no negative cycles in Ra,b − Sp⋆ and Sp⋆ is a solution of size 5(a+ 3).
It remains to show that any vrin → vrout-path has weight φr(p⋆) for any r ∈ {1, . . . , b}.

Note that any vrin → vrout-path in Ra,b has to start with a subpath vrin, g
r
in, x

p
2, y

p
2 and to

end with a (potentially overlapping) subpath xp
′

2 , y
p′

2 , g
r
out, v

r
out for some (not necessarily

distinct) p, p′ ∈ {−1, 0, . . . , a+ 1}. As (xp2, y
p
2) is contained in Sp⋆ for any p ̸= p⋆, we

have that the only vrin → vrout-path is vrin, grin, x
p
2, y

p
2 , g

r
out, v

r
out. It’s weight is

−(A− p⋆)− (A+ p⋆)−M + φr(p⋆) + 2A+M = φr(p⋆). ■

Claim 3. Let S be a solution to Ra,b as Negative Directed Feedback Arc Set
instance of size 5(a+ 3). Then there is a p⋆ ∈ {1, . . . , a} such that any vrin → vrout-path
in Ra,b − S has weight φr(p⋆) for any r ∈ {1, . . . , b}.
Proof of Claim 3. We want to prove that S has the structure of undeleted arcs that is
show in Fig. 6.4.

By Claim 1 our solution S has to delete exactly three arcs of type (spi , t
p
i ) in every

mini-gadget, which is equivalent to leaving exactly one arc (xpip , y
p
ip

) undeleted for every
p ∈ {0, 1, . . . , a + 1} with ip ∈ {1, 2, 3, 4}. Note that by doubling (x−1

1 , y−1
1 ) and

(xa+1
4 , ya+1

4 ), these are the undeleted arcs for p ∈ {−1, a+ 1}.
For ease of notation we let wi(p) denote the weight of the arc (xpi , y

p
i ) for any

i ∈ {1, 2, 3, 4} and any p ∈ {−1, 0, . . . , a + 1}. Then for any two distinct indices
p, p′ ∈ {−1, 0, . . . , a+ 1} with |ip − ip′ | odd, we have that the cycle

(sip , x
p
ip

) ◦ (xpip , y
p
ip

) ◦ (ypip , tip) ◦ (tip , sip′ ) ◦ (sip′ , x
p′

ip′ ) ◦ (xp
′

ip′ , y
p′

ip′ ) ◦ (yp
′

ip′ , tip′ ) ◦ (tip′ , sip)

exists in Ra,b − S. This cycle we denote by Cp,p′ . The weight of this cycle is 2A +
wip(p) +wip′ (p′). As S is a solution to Ra,b as Negative Directed Feedback Arc
Set instance, these cycles always have non-negative weight.

Let p̂ be the maximum p such that (xp1, y
p
1) is undeleted, i.e. p̂ = max{p | ip = 1}.

Analogously, let p̌ be the minimum p such that (xp4, y
p
4) is undeleted, i.e. p̌ = min{p |

ip = 4}. Note that both exist, since we doubled the arcs (x−1
1 , y−1

1 ) and (xp+1
4 , yp+1

4 ).
So the cycle Cp̌,p̂ exists and has non-negative weight 0 ≤ 2A− (A+ (p̂+ 2))− (A−

(p̌− 1)) = p̌− p̂− 3. This is equivalent to p̂+ 3 ≤ p̌. So for every index p̂ < p < p̌ both
arcs (xp1, y

p
1) and (xp4, y

p
4) are deleted and there are at least two such indices.
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Next we show that (xp̂+1
2 , yp̂+1

2 ) is also deleted. Otherwise, we have that ip̂+1 = 2
and thus the cycle Cp̂,p̂+1 has weight 2A− (A+ (p̂+ 2))− (A− (p̂+ 1)) = −1, which is
a contradiction to Cp̂,p̂+1 having non-negative weight. So we have that ip̂+1 = 3. Now
define p̃ to be the maximum p such that (xp3, y

p
3) is undeleted, i.e. p̃ = max{p | ip = 3}.

By the previous argument we know that this maximum exists and p̂+ 1 ≤ p̃.
Now consider the cycle Cp̌,p̃. Since this cycle again has non-negative weight, we

have 0 ≤ 2A− (A+ (p̌− 1))− (A− (p̃+ 1)) = p̌− p̃− 2. This is equivalent to p̃+ 2 ≤ p̌.
Note that for the index p̃+ 1, we have that p̂, p̃ < p̃+ 1 < p̌. That means the only

arc that can be undeleted for p̃+ 1 is (xp̃+1
2 , yp̃+1

2 ), i.e. ip̃+1 = 2. We want to show that
p⋆ = p̃ + 1 is indeed the only index p with ip = 2. For this let ←−p ⋆ = min{p | ip = 2}
and −→p ⋆ = max{p | ip = 2}. By the weight of C←−p ⋆,p̃ being non-negative, we get
0 ≤ 2A− (A−←−p ⋆)− (A+ (p̃+ 1)) =←−p ⋆ − p̃− 1, i.e. p̃+ 1 ≤ ←−p ⋆.

Now consider any i ∈ {2, 3} and any p ∈ {−1, 0, . . . , a + 1}. By Claim 1, we have
that S contains either (ẋpi , ẏ

p
i ) or (ẍpi , ÿ

p
i ), but none of the arcs (ypi , ẋ

p
i ) and (ẏpi , x

p
i ).

Thus, if (xpi , y
p
i ) is undeleted, by the negative cycle (xpi , y

p
i )◦ (ypi , ẋ

p
i )◦ (ẋpi , ẏ

p
i )◦ (ẏpi , x

p
i ),

we have that (ẋpi , ẏ
p
i ) is deleted and thus (ẍpi , ÿ

p
i ) is undeleted. So for p̃, the arc (ẍp̃3, ÿ

p̃
3)

is undeleted, and for −→p ⋆ the arc (ẍ
−→p ⋆

2 , ÿ
−→p ⋆

2 ) is undeleted. By Claim 1, we also get that
none of the other arcs of the following cycle C̈−→p ⋆,p̃ are deleted:

(s̈2, ẍ
−→p ⋆

2 ) ◦ (ẍ
−→p ⋆

2 , ÿ
−→p ⋆

2 ) ◦ (ÿ
−→p ⋆

2 , ẗ2) ◦ (ẗ2, s̈3) ◦ (s̈3, ẍ
p̃
3) ◦ (ẍp̃3, ÿ

p̃
3) ◦ (ÿp̃3 , ẗ3) ◦ (ẗ3, s̈2).

As this cycle exists in Ra,b − S, it has non-negative weight, which implies

0 ≤ −(A+−→p ⋆) +A− (A− (p̃+ 1)) +A = p̃−−→p ⋆ + 1.

This is equivalent to −→p ⋆ ≤ p̃+ 1. Overall we have p̃+ 1 ≤ ←−p ⋆ ≤ −→p ⋆ ≤ p̃+ 1. So indeed
the only index p with (xp2, y

p
2) undeleted is p⋆ = p̃+ 1.

Now we want to consider the vrin → vrout-paths in Ra,b − S for r ∈ {1, . . . , b}. Note
that each such path starts with the subpath vrin, grin, x

p
2, y

p
2 and ends with the (potentially

overlapping) subpath xp
′

2 , y
p′

2 , g
r
out, v

r
out for p, p′ ∈ {−1, 0, . . . , a+ 1}. As the only index

with (xp2, y
p
2) undeleted is p⋆ = p̃+ 1, we have that the only vrin → vrout-path in Ra,b−S

has the form vrin, g
r
in, x

p⋆

2 , y
p⋆

2 , grout, v
r
out. This path has weight

−(A− p⋆)− (A+ p⋆)−M + φr(p⋆) + 2A+M = φr(p⋆).

It only remains to show that p⋆ ∈ {1, . . . , a}. For this note that −1 ≤ p̂ ≤ p̃ − 1
which is equivalent to 1 ≤ p̃+ 1 = p⋆, and that p⋆ = p̃+ 1 ≤ p̌− 1 ≤ a. ■

After we have proven what minimum solutions look like for our meta gadget we can
now give the overall reduction from Clique. Let v1, . . . , vn be an arbitrary ordering
of V (G) and e1, . . . , em be an arbitrary ordering of E(G). For every i ∈ {1, . . . , k},
we introduce a vertex gadget H i which is a copy of the meta gadget Ra,b with a = n,
b = 2, M = n and the functions φ1(p) = p and φ2(p) = −p. Moreover, we rename
the vertices v1

in and v1
out of Hi to s and z+

i and the vertices v2
in and v2

out of Hi to s and
z−i . For every i, j ∈ {1, . . . , k} with i < j, we introduce an edge gadget H i,j which is
a copy of the meta gadget Ra,b with a = m, b = 4, M = n and the functions defined
as follows. For every eℓ = {vp, vq} ∈ E(G) with p ≤ q we let φ1(ℓ) = −p, φ2(ℓ) = p,
φ3(ℓ) = −q and φ4(ℓ) = q.
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Moreover, we rename the vertices in the following way:

• v1
in and v1

out of Hi,j become z+
i and t,

• v2
in and v2

out of Hi,j become z−i and t,

• v3
in and v3

out of Hi,j become z+
j and t,

• v4
in and v4

out of Hi,j become z+
j and t,

Any renamed vertices sharing the same name are identified with each other. Finally,
we add an arc (t, s) of weight 0. Call the resulting graph H. We claim that H as
Negative Directed Feedback Arc Set instance has a solution of size at most
d = k · 5(n+ 3) + 1

2k(k + 1) · 5(m+ 3) if and only if G has a clique of size k.
For the forward direction let S be any solution to H as Negative Directed

Feedback Arc Set instance of size at most d. By Claim 1, we know that S restricted
to any H i has size at least 5(n+3) and restricted to any H i,j has size at least 5(m+3).
By d matching exactly the total of these numbers, we know that S has exactly these
sizes in the gadgets. Moreover, (t, s) is not contained in S.

Using Claim 3, we get that for every H i there is a pi ∈ {1, . . . , n} such that any
s→ z+

i -path has weight pi and any s→ z−i -path has weight −pi. Also, we get that for
every H i,j there is an ℓi,j such that for eℓi,j

= {vp, vq} we have that any z+
i → t-path

has weight −p, any z−i → t-path has weight p, any z+
j → t-path has weight −q and any

z−j → t-path has weight q. Let now

V ′ = {vpi | i ∈ {1, . . . , k}} ⊆ V (G) and E′ = {eℓi,j
| i, j ∈ {1, . . . , k}, i < j} ⊆ E(G).

We claim that (V ′, E′) is a clique in G of size k. As V ′ and E′ have exactly the right
cardinality, we only have to proof that for any unordered pair vpi , vpj ∈ V ′ there is an
edge between them. Without loss on generality we can assume i < j, otherwise swap
the indices. Moreover, let eℓi,j

= {vp, vq}.
Consider the cycle consisting of the arc (t, s), the s → z+

i -path in H i − S and the
z+
i → t-path in H i,j −S. This cycle is non-negative and has weight pi− p, thus p ≤ pi.

By considering the cycle consisting of the arc (t, s), the s → z−i -path in H i − S and
the z−i → t-path in H i,j − S, we get a non-negative cycle of weight −pi + p. Thus,
p ≥ pi and combined with the former inequality, p = pi. Analogously, by using the
paths starting and ending in z+

j and z−j instead, we get that pj = q. Thus, we get that
indeed the edge {vpi , vpj} = {vp, vq} = eℓi,j

∈ E(G). So G contains the clique (V ′, E′)
of size k.

For the backward direction consider any clique on vertices vp1 , . . . , vpk
in G. Choose

by Claim 2 a solution Si of size 5(n+3) for every gadget H i such that any s→ z+
i -path

has weight pi and any s → z−i -path has weight −pi. Analogously, by Claim 2 choose
a solution Si,j of size 5(n + 3) for every gadget H i,j such that any z+

i → t-path has
weight −pi, any z−i → t-path has weight pi, any z+

j → t-path has weight −pj and
any z−j → t-path has weight pj . Note that the latter solution can be chosen that way,
because {vpi , vpj} ∈ E(G) and i < j.

We claim that S = ⋃
i S

i ∪
⋃
i<j S

i,j is a solution to H of size d. The size bound
follows from adding up the sizes of the individual solutions. It remains to check that
H − S contains no negative cycles. As S constraint to a single gadget was chosen as
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a solution, the only negative cycles that can exists use some high-level vertices. There
are two different types of such cycles. The first type uses the arc (t, s), followed by an
s → z+

i -path in H i for some i and an z+
i → t-path in some H i,j or Hj,i. Our partial

solutions were chosen such that these cycles have weight 0 + pi − pi. The other type
uses the arc (t, s), followed by an s→ z−i -path in H i for some i and an z−i → t-path in
some H i,j or Hj,i. But by choice of S these paths have weight 0 − pi + pi. So H − S
contains no negative cycles.

Bounding of Parameters: It remains to show that the treedepth and the number
of arcs with positive weight is bounded. First we will derive bounds for these parameters
on the meta gadgets Ra,b. For the treedepth we will use the recursive formula of
Theorem 6.2. Consider the set

D = {s1, s2, s3, s4, t1, t2, t3, t4, s̈2, s̈3, ẗ2, ẗ3} ∪ {grin, grout, v
r
in, v

r
out | r ∈ {1, . . . , b}}.

Note that Ra,b−D consists only of the mini-gadgets, which are connected components
of size 16 each. Thus, td(Ra,b) ≤ |D|+ 16 = 28 + 4b.

For the number of arcs with positive weight note that A and M are chosen such
that the only positive arc weights are A and 2A+M . Of the former there are ten and
of the later there are b many in every meta gadget. Thus, the number of arcs with
positive weight in Ra,b is bounded by 10 + b.

For the graphH we can combine the above bounds. For treedepth note that forD′ =
{s, t} ∪ {z+

i , z
−
i | i ∈ {1, . . . , k}}, the graph H −D′ consists of connected components

that only form subgraphs of the H i and H i,j . By Theorem 6.2:

td(H) ≤ |D′|+ td(H −D′) ≤ |D′|+
k∑
i=1

td(H i) +
k∑

j=i+1
td(H i,j)


≤ |D′|+ 36k + 22k(k + 1) ≤ 22k2 + 60k + 2.

For the number of positive arcs note that we did not add any new arc of positive
weight. Thus, the number of positive arcs in H is bounded by 12k + 7k(k + 1).

6.6.4 W[1]-hardness for
Pathwidth, Deletion Size and Few Positive Arcs

In this section we will show W[1]-hardness for Negative Directed Feedback Arc
Set with general integral weights when parameterized in pw(G) + k+w+. We will see
how this implies W[1]-hardness for Negative Directed Feedback Arc Set param-
eterized in pw(G) + k for instances with weights of the form w : A(G)→ {−1, 0, 1}.

Theorem 6.44. Negative Directed Feedback Arc Set is W[1]-hard when pa-
rameterized in the pathwidth, deletion size and number of positive arcs. This still holds
for instances (G,w, k), where w : A(G)→ Z ∩ [−|V (G)|2, |V (G)|2].

Proof. We prove W[1]-hardness by doing a parameterized reduction from Multicol-
ored Clique. In Multicolored Clique, we are given an undirected graph G, a
non-negative integer k, and a k-partition ⋃̇ki=1V

i of V (G). The task is to decide whether
G contains a clique with k vertices v1, . . . , vk where vi ∈ V i. This problem is W[1]-hard
(cf. [CFK+15, Section 13.2]).
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Figure 6.5: Gadgets used in the construction of Theorem 6.44
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For our reduction let (G, k) an instance of Multicolored Clique with V (G) =⋃̇k
i=1V

i. For ease of notation define for 1 ≤ i < j ≤ k the set Ei,j to be the set of edges
of type {vi, vj} with vi ∈ V i and vj ∈ V j . Moreover, we abuse this notation slightly
by defining Ej,i = Ei,j but with the order of vertices switched, i.e. {vi, vj} ∈ Ei,j but
{vj , vi} ∈ Ej,i.

We are going to construct an equivalent instance (H,w, d) of Negative Directed
Feedback Arc Set. See Fig. 6.5 for an illustration. The graph H will have three
types of gadgets:

1. a vertex gadget H i representing V i for every i ∈ {1, . . . , k},

2. an edge gadget H i,j representing Ei,j for every 1 ≤ i < j ≤ k, and

3. a consistency gadget Ci for every i ∈ {1, . . . , k}.

The gadgets H i representing V i = {vi1, . . . , vi|V i|} consist of one vertex ti and the
vertices of V i. H i contains two types of arcs. It has an arc (vir, ti) of weight 0 for every
vir ∈ V i and an arc (vir, vir+1) of weight −n for every r ∈ {1, . . . , |V i|}, where we define
vi|V i|+1 = vi1.

The gadgets H i,j representing Ei,j = {ei,j1 , . . . , ei,j|Ei,j |} consist of one vertex si,j

and one vertex for every ei,jr ∈ Ei,j . H i,j contains two types of arcs. It has an arc
(si,j , ei,jr ) of weight 0 for every ei,jr ∈ Ei,j and an arc (ei,jr , e

i,j
r+1) of weight −n for every

r ∈ {1, . . . , |Ei,j |}, where we define ei,j|Ei,j |+1 = ei,j1 .
Finally, the consistency gadgets Ci consist of the vertices ni and pi and interconnect

the existing gadgets as follows. First there is an arc (ti, si,j) of weight n(|V i|+|Ei,j |−1)
for every j ∈ {1, . . . , k}\{i}. Then we need a bijective function φi : V i → {1, . . . , |V i|}
(for example φi(vir) = r will do). We abuse the notation and that every edge of E has at
most one endpoint in every V i and define for ei,j = {vi, vj} ∈ Ei,j that φi(ei,j) = φi(vi).
With this definition we add the following arcs to Ci:

• (ei,j , ni) of weight −(n− φi(ei,j)) for every j ∈ {1, . . . , k} \ {i} and ei,j ∈ Ei,j ,

• (ei,j , pi) of weight −φi(ei,j) for every j ∈ {1, . . . , k} \ {i} and ei,j ∈ Ei,j ,

• (ni, vi) of weight −φi(vi) for every vi ∈ V i, and

• (pi, vi) of weight −(n− φi(vi)) for every vi ∈ V i.

We call the resulting graph consisting of all the gadgets H and the corresponding
weights w. By choosing d = k+

(k
2
)
, we get our Negative Directed Feedback Arc

Set instance (H,w, d).
Negative Directed Feedback Arc Set to Multicolored Clique: Let S be an
solution to (H,w, d). The gadgets H i and H i,j each contain a negative cycle consisting
of the arcs (vir, vir+1) or (ei,jr , e

i,j
r+1), respectively. As there are exactly k +

(k
2
)

such
gadgets and their cycles are disjoint, S has size exactly d and contains exactly one arc
(viri

, viri+1) for every i ∈ {1, . . . , k} and one arc (ei,jri,j
, ei,jri,j+1) for every 1 ≤ i < j ≤ k.

Define K = ({vir | i ∈ {1, . . . , k}, r ∈ {2, . . . , |V i| + 1}, (vir−1, v
i
r) ∈ S}, {ei,jr | 1 ≤ i <

j ≤ k, r ∈ {1, . . . , |Ei,j |}, (ei,jr , e
i,j
r+1) ∈ S}). We claim that K is a solution to (G, k) i.e.

a multicolored clique in G. As K contains exactly one element of every V i and Ei,j ,
we only have to check that the edges really connect to the vertices of K.
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Assume for contradiction that this is not the case, i.e. there is a vertex vi ∈
V i ∩ V (K) and an edge ei,j ∈ Ei,j ∩ E(K) for some 1 ≤ i, j ≤ k, i ̸= j, such that
ei,j = {ui, wj} with ui ̸= vi. For ei,j we have deleted only the outgoing arc in gadget
H i,j , so there is an si,j → ei,j-path P of length |Ei,j | that uses one arc of weight 0 and
(|Ei,j | − 1) many arcs of weight −n. So w(P ) = −n(|Ei,j | − 1).

Likewise, we deleted only the incoming arc of vi in the gadget H i. Therefore, there
is an vi → ti-path Q of length |V i| that uses one arc of weight 0 and (|V i| − 1) many
arcs of weight −n. Thus, w(Q) = −n(|V i|−1). We link P and Q together with the arc
(ti, si,j) of weight n(|V i|+ |Ei,j | − 1) to an overall vi → ei,j-path R = Q ◦ (ti, si,j) ◦ P
of weight n(|V i|+ |Ei,j | − 1)− n(|Ei,j | − 1)− n(|V i| − 1) = n.

Let us now consider the unique ei,j → vi-paths

W+ = {(ei,j , pi), (pi, vi)} and W− = {(ei,j , ni), (ni, vi)}

in the consistency gadget Ci. These are using only the internal vertices pi or ni,
respectively. Their weights are

w(W+) = −(n− φi(vi))− φi(eij) = (φi(vi)− φi(ui))− n and
w(W−) = −(n− φi(eij))− φi(vi) = (φi(ui)− φi(vi))− n.

If we join these two paths with R, we get two cycles with weights

w(W+ ◦R) = (φi(vi)− φi(ui))− n+ n = φi(vi)− φi(ui) and
w(W− ◦R) = (φi(ui)− φi(vi))− n+ n = φi(ui)− φi(vi).

As vi ̸= ui and φi is bijective, we have that either w(W+ ◦R) or w(W− ◦R) is negative.
Thus, R ◦W+ or R ◦W− is a negative cycle, a contradiction to H − S containing no
negative cycles. Hence, K must be consistent and a clique in G.
Multicolored Clique to Negative Directed Feedback Arc Set: Now suppose
that K is a multicolored clique on k vertices in G, i.e. a solution to (G, k). We choose
S to be the set {(viri−1, v

i
ri

) | i ∈ {1, . . . , k}, viri
∈ V i ∩ V (K)} ∪ {(ei,jri,j

, ei,jri,j+1) | 1 ≤
i < j ≤ k, ei,jri,j

∈ Ei,j ∩ E(K)}. Note that now every gadget H i and H i,j is acyclic on
its own. Furthermore, the whole graph H without our set S and the arcs (ti, si,j) is
acyclic.

Claim 1. Every si,j → ti
′-path in H − S has weight at least −n(|V i′ |+ |Ei,j | − 1).

Proof of Claim 1. Assume for contradiction that there is a si,j → ti
′-path in H − S of

weight lower than −n(|V i′ |+ |Ei,j | − 1). Let P the shortest among them with respect
to the number of arcs. Then P does not use any arc of type (tp, sp,q), as they have
weight n(|V p| + |Ep,q| − 1) and therefore either w(P [si,j , tp]) < −n(|V p| + |Ei,j | − 1)
or P [sp,q, ti′ ] < −n(|V i′ |+ |Ep,q| − 1) and those have fewer arcs. But as P doesn’t use
any arc of type (tp, sp,q) it can only go from the gadget H i,j to H i′ once with the help
of Ci′ and does not use other gadgets. Moreover, we have that i′ ∈ {i, j}. W.l.o.g. we
can assume i′ = i. Then P leaves H i,j exactly once and enters H i exactly once. Let
ei,ja be the last vertex of H i,j and vib the first vertex of H i our path P visits. Note
that w(P [si,j , ei,ja ]) and w(P [vib, ti]) are always multiples of n and have weight at least
−n(|Ei,j | − 1) and −n(|V i| − 1), respectively. Also, this weight is only attained if and
only if a = ri,j or b = ri, respectively.
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In any case, P [ei,ja , vib] consists of three vertices with ni or pi being the middle one.
By choice of weights in Ci, the lowest weight P [ei,ja , vib] can achieve is 1 − |V i| − n >
−2n. Also, if a = ri,j and b = ri the weight is −n. So in any case the composition
P = P [si,j , ei,ja ] ◦ P [ei,ja , vib] ◦ P [vib, ti] has weight at least −n(|V i| + |Ei,j | − 1) — a
contradiction to the choice of P . ■

As every cycle in H −S has to use an arc (ti, si,j) of weight n(|V i|+ |Ei,j | − 1) and
every path completing this arc to a cycle has weight at least −n(|V i′ |+ |Ei,j | − 1), the
graph H − S contains no negative cycle.

For the size bound note that S contains exactly one arc from every H i and H i,j .
Thus, it has size k +

(k
2
)

= d. So S is a solution to (H,w, d).
Bounding the pathwidth of H: The pathwidth of H is defined as the pathwidth of
the underlying undirected graph H̄. We will show that pw(H̄) ∈ O(k2).

Note that, if for some set U ⊆ V (H̄) we get a path decomposition of H̄ − U with
bag size at most b, we get a path decomposition for H̄ with bag sizes at most b + |U |
by adding U to every bag. Thus, pw(H̄) ≤ pw(H̄ − U) + |U |. Let

U =
k⋃
i=1
{ti, ni, pi, vi|V i|} ∪

⋃
1≤i<j≤k

{si,j , ei,j|Ei,j |}.

This set U has size 4k+k(k−1) = k2+3k. Observe that the graph H̄−U consist exactly
of paths of the following form. Each vertex gadget H i turned into a path consisting of
the edges {viℓ, viℓ+1} for ℓ ∈ {1, . . . |V i| − 2}. Meanwhile, each edge gadget H i,j turned
into a path consisting of the edges {ei,jℓ , v

i,j
ℓ+1} for ℓ ∈ {1, . . . |Ei,j | − 2}.

Furthermore, note that if we have a path decomposition for every connected compo-
nent, then we can concatenate them to one path decomposition. Thus, the pathwidth
of H̄ − U is the maximum pathwidth of its connected components. But these are all
paths and have pathwidth one. Thus, pw(H̄) ≤ pw(H̄−U)+ |U | = k2 +3k+1 ∈ O(k2).

Overall we have proven that our reduction produces an instance whose pathwidth
and deletion size are bounded by some function in the parameter of the original Multi-
colored Clique instance. Moreover, by choice of φ, the only arcs of positive weight
are the arcs of type (ti, si,j) of which only k(k − 1) many exist. So we have a pa-
rameterized reduction from Multicolored Clique with parameter k to Negative
Directed Feedback Arc Set with parameters pathwidth, deletion size and number
of positive arcs.

To see that the weights have the claimed form, first note that all of them are
integral. Moreover, the highest absolute weight have the arcs (ti, si,j), which have
weight n(|V i| + |Ei,j | − 1). As |V (H)| ≥ |V i| + |Ei,j | and |V (H)| ≥ n, we have that
indeed w : A(H)→ Z ∩ [−|V (H)|2, |V (H)|2], proving the theorem.

From this theorem we are also able to infer W[1]-hardness for Negative Directed
Feedback Arc Set parameterized in pw(G) + k on instances with weights restricted
to w : A(G)→ {−1, 0, 1}.

Theorem 6.45. Negative Directed Feedback Arc Set is W[1]-hard when pa-
rameterized in the pathwidth and deletion size, even on instances with weights of the
form w : A(G)→ {−1, 0, 1}.
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Proof. We proof the theorem by showing how an instance described by Theorem 6.44
can be turned into one with its pathwidth increased by two and weights of the form
w : A(G) → {−1, 0, 1} while keeping the deletion size the same. In the process, it
loses the property of having only a bounded number of positive arcs. Let (G,w, k) be
a Negative Directed Feedback Arc Set instance as described by Theorem 6.44.
In particular, we have w : A(G) → Z ∩ [−|V (G)|2, |V (G)|2]. From this instance we
obtain an instance (G′, w′, k) by replacing every non-zero arc a ∈ A(G) by a path Pa
of |w(a)|-many arcs all having weight 1 if w(a) > 0 or −1 if w(a) < 0. We denote
by (G′, w′) the resulting graph and weights. It remains to show that (G,w, k) and
(G′, w′, k′) are equivalent and pw(G′) ≤ pw(G) + 2.

To see the equivalence of the instances, note that any cycle in G′ uses a newly
created path Pa either as a whole or not at all. Thus deleting an arbitrary arc of a
path Pa is equivalent to deleting the whole path and this is equivalent to deleting the
arc a in G. For the pathwidth note that replacing arcs by paths can be incorporated
into the path-decomposition as follows. Let Bi the bag that contains the arc a in the
path decomposition of G that defines pw(G). Let x1, . . . , x|w(a)|−1 the internal vertices
of Pa. Then we modify the path decomposition of G by replacing Bi with the sequence
Bi, Bi ∪ {x1, x2}, . . . , Bi ∪ {x|w(a)|−2, x|w(a)|−1}, Bi. This covers all newly created arcs
for Pa. By doing this replacement for all arcs a (while using only Bi of the original
decomposition), this yields a new path-decomposition for G′, where the maximum bag
size increased by at most two. This shows that pw(G′) ≤ pw(G) + 2, concluding the
proof of the theorem.

6.6.5 W[1]-hardness for
Pathwidth, Deletion Size and Few Negative Arcs

In this section we are going to prove W[1]-hardness for Negative Directed Feed-
back Arc Set parameterized in w−, k and pw(G) for general arc weights. We will
do this by doing an intermediate step showing W[1]-hardness for the Bounded Edge
Directed (s, t)-Cut problem in DAGs when parameterized in k and pw(G).

Bounded Edge Directed (s, t)-Cut

Instance: A graph G, vertices s, t ∈ V (G) and two integers k, ℓ ∈ Z≥0.

Task: Find a set S ⊆ V (G) of size at most k such that
every s→ t-path of G− S has length more than ℓ
or decide that no such set exists.

For the undirected Bounded Edge (s, t)-Cut Bentert et al. showed W[1]-hardness
for the parameters maximum vertex degree and pathwidth [BHK19, Theorem 1]. By in-
specting their reduction closely, one easily sees that their proof actually shows hardness
for parameters maximum vertex degree, pathwidth and deletion size. The hardness for
the directed case follows from this by replacing every edge by a forward and backward
arc. For completeness (and bound on the pathwidth) we choose to do a direct reduction
to the directed version here. It has the nice property that it produces acyclic directed
graphs, a property we cannot achieve by replacing arcs with a cycle of length two.
However, note that all important ideas are already present in the paper by Bentert et
al. [BHK19].
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Lemma 6.46. The Bounded Edge Directed (s, t)-Cut problem parameterized in
the pathwidth pw(G), deletion size d and maximum degree of the underlying undirected
graph ∆(G) is W[1]-hard, even when the graph is restricted to be acyclic.

Proof. We start our reduction from the Clique problem. The input of Clique consists
of an undirected graph G and an integer k. The question is, whether there is a vertex
set X ⊆ V (G) of at least k vertices such that G[X] forms a complete graph. Clique
is W [1]-hard parameterized by k.

Let now (G, k) be a Clique instance. We want to construct an equivalent instance
(H, d,Λ) of Bounded Edge Directed (s, t)-Cut whose parameters pw(H), d and
∆(G) are bounded by a function of k only. For notation, we fix some arbitrary ordering
v1, . . . , vn of the vertices V (G). For the edges e ∈ E(G) we define their canonical
representation {vi, vj} to be the order of vertices with i ≤ j. Setting this canonical
representation then defines an ordering e1 ≺ . . . ≺ em of the edges E(G) by e =
{vi, vj} ⪯ e′ = {vi′ , vj′} iff (i, j) ⪯lex (i′, j′), where ⪯lex is the lexicographical ordering
on vectors of length two.

As usual for reduction from cliques we construct two kinds of gadgets, vertex gad-
gets H i and edge gadgets H i,j . The vertex gadgets each choose a vertex in the graph
and the edge gadgets check whether there is indeed an edge between them. For all these
constructions we will use paths of different lengths. For ease of notation we will replace
these paths by arcs with positive integral weights. We make sure that these weights
are bounded by some function of n+m and that parallel arcs have weight at least two.
This way replacing an arc of weight w by a directed path of length w gives us a still
polynomial sized simple graph for Bounded Edge Directed (s, t)-Cut. Also, dele-
tion of an arc of a path whose internal vertices have in-degree and out-degree one and
are disjoint of s and t, means that no arc on this path is part of an s→ t-path anymore.
So a solution does not delete more paths by choosing several arcs on the same replaced
path. This preserves equivalence, between the weighted and the replaced graph.

An important role for the weights plays an integer M which we will choose later.
Our choice of Λ will depend on M , so we also defer its choice until later. For know
think of M as a big integer.

Gadgets: Before introducing the different vertex and edge gadgets, we discuss
some gadget that will be the foundation for both. For any positive integers a, b ∈ Z>0
and any set {φq : {1, . . . , b} → Z∩ [−M,M ] | q ∈ {1, . . . , a}} of functions, we introduce
the gadget Ra,b. Ra,b consists of a many disjoint paths P 1, . . . , P a of length 2b + 2.
For each path P q with q ∈ {1, . . . , a} all arcs of P q have weight 1, and we denote the
vertices of P q in order of there appearance by pqin, p

q
1, p̂

q
1, p

q
2, p̂

q
2 . . . , p

q
b+1, p

q
out. We add

the following “detours” along the paths P q. For every r ∈ {1, . . . , b} there is an arc
(pqr, p

q
r+1) of weight 5M+φq(r). Moreover, we interlink the paths P q and P q+1 for every

q ∈ {1, . . . , a−1} by the following arcs. For every r ∈ {1, . . . , b} there are arcs (p̂qr, p
q+1
r+1)

and (p̂q+1
r , pqr+1) of weight 3M each. Finally, the gadget Ra,b contains the vertices s

and t. To connect those vertices to the rest of the graph, for every q ∈ {1, . . . , a}, there
are two parallel arcs (s, pq1) of weight 2 and two parallel arcs (pqb+1, t) of weight Λ−4M .
This concludes the construction of our gadget. Note that for M ≥ 1 the graph has
positive arc weights and for Λ ≥ 4M + 2 all parallel arcs are of weight at least 2.

We now prove the crucial properties of this gadget:
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Claim 2. Let M ≥ 2b + 2 and Λ ≥ 4M + 2 be integers. For every set S ⊆ A(Ra,b)
such that Ra,b − S contains no s→ t-path of weight ≤ Λ, we have that |S| ≥ a.

Moreover, for every such set S ⊆ A(Ra,b) of size |S| = a, there exists a unique
x ∈ {1, . . . , b} such that for every q ∈ {1, . . . , a} any minimum-weight s → pqout-path
has weight 5M + 2b + 1 + φq(x) and any minimum-weight pqin → t-path has weight
Λ +M + 2b− 1 + φq(x).

Also, for every x ∈ {1, . . . , b}, we can choose a set S ⊆ A(Ra,b) of size a such that
Ra,b − S contains no s → t-path of weight ≤ Λ, any minimum-weight s → pqout-path
has weight 5M + 2b + 1 + φq(x) and any minimum-weight pqin → t-path has weight
Λ +M + 2b− 1 + φq(x).

Proof of Claim 2. Consider for every q ∈ {1, . . . , a} the path s, pq1, p̂
q
1, . . . , p

q
b+1, t. This

path has weight 2 + 2b + Λ − 4M ≤ Λ. Thus, any set S as in the theorem statement
has to contain an arc of all of these s → t-paths. As these paths are arc-disjoint, we
have that all sets have size at least a.

Now we turn to the sets S of size exactly a. Consider the paths from above again.
As there are two parallel arcs for each of (s, pq1) and (pqb+1, t), our set S has to intersect
each P q with exactly one edge that is not (pqin, p

q
1) or (pqb+1, p

q
out).

We claim that there is an x ∈ {1, . . . , b} such that S = {(pqx, p̂qx) | q ∈ {1, . . . , a}}.
Suppose that not, then for some pair (p, q) with q ∈ {1, . . . , a−1} and y ∈ {1, . . . , n} we
have that either P q[pq1, p̂qy] and P q+1[pq+1

y+1, p
q+1
b+1 ] are disjoint from S or P q+1[pq+1

1 , p̂q+1
y ]

and P q[pqy+1, p
q
b+1] are disjoint from S. In the former case, the path

(s, pq1) ◦ P q[pq1, p̂qy] ◦ (p̂qy, p
q+1
y+1) ◦ P q+1[pq+1

y+1, p
q+1
b+1 ] ◦ (pq+1

b+1 , t)

is an s→ t-path in Ra,b − S. In the latter case, the path

(s, pq+1
1 ) ◦ P q+1[pq+1

1 , p̂q+1
y ] ◦ (p̂q+1

y , pqy+1) ◦ P q[pqy+1, p
q
b+1] ◦ (pqb+1, t)

is an s→ t-path in Ra,b − S. So one of these s→ t-paths exists in Ra,b − S. Note that
both paths have weight

2 + (2(y − 1) + 1) + 3M + 2(b− y) + (Λ− 4M) = 2b+ 1 + 3M + Λ− 4M ≤ Λ,

which is a contradiction to the choice of S.
So, if there is a set S such that Ra,b−S contains no s→ t-path of weight ≤ Λ that

has size a, it has the form {(pqx, p̂qx) | q ∈ {1, . . . , a}}. Indeed, for such a set S, we have
that any s→ t-path in Ra,b − S has to use one of the detour arcs (pqx, p

q
x+1) of weight

5M + φq(x) ≥ 4M . Moreover, any s → t-path has to use an arc incident to s and t
of weight 2 and Λ − 4M respectively. So for any x ∈ {1, . . . , b}, each s → t-path in
Ra,b − {(pqx, p̂qx) | q ∈ {1, . . . , a}} has overall weight at least 2 + 4M + Λ− 4M > Λ.

It only remains to prove, that for these solutions S = {(pqx, p̂qx) | q ∈ {1, . . . , a}}, we
have that in Ra,b−S any minimum-weight s→ pqout-path has weight 5M+2b+1+φq(x)
and any minimum-weight pqin → t-path has weight Λ +M + 2b− 1 + φq(x).

Any s→ pqout-path uses exactly one incident edge of s (which has weight 2) and pqout
(which has weight 1). So, for these paths it is enough to prove that any ph1 → pqb+1-path
in Ra,b − S for h ∈ {1, . . . , a} has weight at least 5M + 2(b− 1) + φq(x) and one path
achieves that weight.
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Moreover, any pqin → t-path uses exactly one incident edge of pqin (which has weight
1) and t (which has weight Λ−4M). Thus, for these paths it is enough to prove that any
pq1 → pgb+1-path in Ra,b−S for g ∈ {1, . . . , a} has weight at least 5M + 2(b− 1) +φq(x)
and one path achieves that weight. Together it suffices to show that any ph1 → pgb+1-
path in Ra,b−S has weight at least 5M+2(b−1)+φq(x) and there is a pq1 → pqb+1-path
that achieves this weight.

Notice that any ph1 → pgb+1-path contains a detour arc (prx, prx+1) of weight 5M +
φh(x) ≥ 4M . If a ph1 → pgb+1-path contains another detour arc or an interconnecting
arc, it occurs an additional weight of at least 3M . So any ph1 → pgb+1-path that has
uses arcs other than those of a single P q and the arc (pqx, p

q
x+1) has weight at least

8M . But 5M + 2b + 1 + φq(x) ≤ 7M < 8M . So it is enough to show that there is a
pq1 → pqb+1-path of weight 5M + 2(b− 1) + φq(x).

Notice that P q[pq1, pqx]◦(pqx, p
q
x+1)◦P q[pqx+1, p

q
b+1] has weight 2(x−1)+5M+φq(x)+

2(b− x) = 5M + 2(b− 1) + φq(x) and thus is exactly such a path. ■

We are now ready to define the vertex gadgets and edge gadgets. All vertex gadgets
will be identical and all edge gadgets will be identical, just the interconnection between
them differs.

For all i ∈ {1, . . . , k}, we introduce a vertex gadget H i by setting a = 2, b = n,
φ1(x) = x and φ2(x) = −x. Note that the image of φ1 and φ2 lies in Z ∩ [−M,M ]
for M ≥ n. Thus, the graph R2,n is well-defined. To obtain our gadget H i from this
we forget about the vertices p1

in and p2
in. Furthermore, we rename the vertices p1

out and
p2

out to vi+ and vi−.
For all i, j ∈ {1, . . . , k} with i < j, we introduce an edge gadget H i,j . For this we set

a = 4, b = m and for every x ∈ {1, . . . ,m} and edge ex with canonical representation
(vg, vh), we set φ1(x) = −g, φ2(x) = g, φ3(x) = −h and φ4(x) = h. Again the image
of φ1, . . . , φ4 lies in Z∩ [−M,M ] for M ≥ m. Thus, the graph R4,m is well-defined. By
forgetting the vertices pqout and renaming p1

in, p2
in, p3

in and p4
in to vi+, vi−, vj+ and vj−.

From these gadgets we obtain our complete graph H by taking one copy of each
gadget and identifying all vertices of the same name (s, t, vi+ and vi−). Finally, we set
d = 2n+ 2n(n− 1), M = 2(n+m) + 2 and Λ = 10M + 2(n− 1) + 2(m− 1)− 1. This
completes our construction.

Correctness: We now want to prove that (G, k) as instance of Clique is a “yes”-
instance if and only if (H, d,Λ) as instance of Bounded Edge Directed (s, t)-Cut
is a “yes”-instance.

For the forward direction let U ⊆ V (G) be a clique in G with corresponding edge
set F . Let u1, . . . , uk be the indices of the vertices of v1, . . . , vn corresponding to the
vertices of U in increasing order. Also, let fi,j be the index of the edge {vui , vuj} in
the fixed ordering of E(G). By Claim 2, there is a solution Si of size two to each of
the H i’s such that each s→ vi+-path has weight at least 5M + 2(n− 1) + ui and each
s→ vi−-path has weight at least 5M + 2(n−1)−ui. Moreover, again by Claim 2, there
is a solution Si,j of size four to each of the H i,j ’s such that each vi+ → t-path has weight
at least 5M + 2(m− 1)− ui, each vi− → t-path has weight at least 5M + 2(m− 1) + ui,
each vj+ → t-path has weight at least 5M + 2(m − 1) − uj and each vj− → t-path has
weight at least 5M+2(m−1)+uj . We define our solution S as ⋃ki=1 S

i∪
⋃

1≤i<j≤k S
i,j .
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By definition our S is a solution when restricted to a single vertex gadget or a single
edge gadget. The only s→ t-paths that are not contained in a single gadget consist of an
s→ vi+-path in some vertex gadget and a vi+ → t-path in some edge gadget or of an s→
vi−-path in some vertex gadget and a vi− → t-path in some edge gadget. In each case, as
seen above, these paths have length at least 5M+2(n−1)+ui+5M+2(m−1)−ui = Λ+1.
It only remains to check the size of S which is exactly 2k + 4k(k−1)

2 = d.

For the backwards direction, let S be a solution to (H, d,Λ). From Claim 2, we
get that any solution to a vertex gadget has size at least two and any solution to an
edge gadget has size at least four. As a solution must be a solution to every single
gadget and our gadgets are arc disjoint, we have that any solution must have size at
least 2k+4k(k−1)

2 = d. From this it follows that our solution must have size exactly two
in every vertex gadget and size exactly four in every edge gadget. Claim 2 states that
the structure of these solutions in the vertex gadgets must be such that in H i − S any
minimum weight s→ vi+-path in V i−S has weight 5M+2(n−1)+ui and any minimum
weight s→ vi−-path in V i has weight 5M + 2(n− 1)− ui for some ui ∈ {1, . . . , n}. We
define the vertex set U ⊆ V (G) to be the set {vui | i ∈ {1, . . . , k}}.

We can apply Claim 2 also to the structure of S with respect to H i,j−S. This tells
us that for every 1 ≤ i < j ≤ k there is an index fi,j ∈ {1, . . . ,m} such that for the
canonical representation {vg, vh} of efi,j

, in H i,j−S we have that any minimum weight
vi+ → t-path has weight 5M+2(m−1)−g, any minimum weight vi− → t-path has weight
5M + 2(m− 1) + g, any minimum weight vj+ → t-path has weight 5M + 2(m− 1)− h
and any minimum weight vj− → t-path has weight 5M+2(m−1)+h. If we concatenate
a minimum weight s → vi+-path in V i − S with a minimum weight vi+ → t-path in
H i,j − S, we get an s → t-path of weight 10M + 2(n − 1) + 2(m − 1) + ui − g. As
S is a solution to (H, d,Λ), this path has length more than Λ, which is equivalent to
ui + 1 > g or ui ≥ g. By applying the same argument to minimum weight paths that
concatenate at vi− instead of vi+, we get the inequality ui ≤ g. Together this yields
ui = g. If we swap H i for Hj and vi+ and vi− for vj+ and vj−, we get uj = h in the
same way. So the edge {vui , vuj} = {vg, vh} = efi,j

exists in G. Since this is true for all
1 ≤ i < j ≤ k, U is indeed the vertex set of a clique.

Bound on Parameters and Acyclicity: For pathwidth consider the vertex set
U = {s, t}∪⋃ki=1{vi+, vi−}. This is a set of 2(k+1) vertices and will be contained in every
bag of our path decomposition. Note that all vertices ofH−U have no neighbors outside
the gadget they are contained in. So it suffices to find a path decomposition for every
gadget (minus vertices in U), concatenate them and add U to every set. The pathwidth
of this decomposition is then bounded by |U | plus the maximum pathwidth of any
gadget path decomposition. We do this path decomposition on the meta-gadget Ra,b.
For every r ∈ {1, . . . , b} let X2r−1 = {pqr, p̂qr | q ∈ {1, . . . , a}} and for every r ∈
{1, . . . , b − 1} let X2r = {p̂qr, p

q
r+1 | q ∈ {1, . . . , a}}. Then every arc of Ra,b − S is

contained in one of the bags Xi and each vertex in at most two consecutive bags. Thus,
X1, . . . , X2b−1 is a path decomposition. The maximum size of a bag is 2a. For our
specific gadgets a is at most four. Thus, we get that the pathwidth of H is at most
8 + |U | = 2k+ 10. The maximum vertex degree inside a gadget is 6 for the pqr vertices.
However, the vertices vi+, vi−, s and t have neighbors in several gadgets. vi+, vi− have
degree k+ k(k−1)

2 , s has degree 4k and t has degree 16k(k−1)
2 . In any case the maximum

is bounded by a function of k. Last but not least the deletion size is d = 2k + 4k(k−1)
2 .
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For the acyclicity note that the gadgets Ra,b are acyclic (as all arcs only run to
increasing positions along the paths P q). So it only remains to prove that the boundary
vertices s, t, vi+ and vi− are connected in a way that preserves acyclicity. s has only
outgoing arcs and t has only incoming arcs. Moreover, all vi+ and vi− the ingoing arcs
come exactly from the vertex gadgets and the outgoing arcs come exactly form the edge
gadgets and these gadgets are not connected by any other vertices.

Now we use Lemma 6.46 to show hardness for Negative Directed Feedback
Arc Set by weighting all arcs of an Bounded Edge Directed (s, t)-Cut instance
with weight one and introducing (k + 1)-many (t, s) arcs of weight −(ℓ+ 1).

Theorem 6.47. Negative Directed Feedback Arc Set is W[1]-hard when pa-
rameterized in the pathwidth, deletion size and number of negative arcs.

Proof. We show the theorem by reduction from Bounded Edge Directed (s, t)-
Cut on DAGs parameterized by pathwidth and deletion size, which is W[1]-hard by
Lemma 6.46. Let (G, s, t, k, ℓ) be an Bounded Edge Directed (s, t)-Cut instance
with G being a DAG. We construct a equivalent instance (H,w, k) of Negative Di-
rected Feedback Arc Set as follows. To construct H, give all arcs in G weight 1
and introduce k + 1 arcs (t, s) of weight −(ℓ + 1). This completes the construction of
(H,w, k). We now prove the equivalence.
Bounded Edge Directed (s, t)-Cut to Negative Directed Feedback Arc Set:
Let S be a solution to (G, s, t, k, ℓ). We claim that S is also a solution to (H,w, k). The
set S trivially fulfills the size bound of k. Assume now for contradiction that there is
a negative cycle C in H − S. As the only negative arcs of H are those from t to s, C
contains exactly one of these. So C[s, t] is an s→ t-path in G− S and has weight less
than −w((t, s)) = ℓ+ 1. Now, all weights in G are 1 and thus C[s, t] is an s→ t-path
in G − S of length at most ℓ, a contradiction to S being a solution to (G, s, t, k, ℓ).
Thus, S is a solution to (H,w, k).
Negative Directed Feedback Arc Set to Bounded Edge Directed (s, t)-Cut:
Let S be an inclusion-wise minimal solution to (H,w, k). As there are (k + 1)-many
parallel arcs (t, s), one of them does not lie in S. Any cycle in H can use at most one
of these arcs and thus as S is inclusion-wise minimal, S contains non of them, i.e. it
contains only arcs of G. We claim that S is a solution to (G, s, t, k, ℓ). It trivially fulfills
the size bound. Now assume for contradiction that G − S contains an s → t-path P
of length at most ℓ. Then P ◦ (t, s) is a cycle of weight w(P ) − (ℓ + 1) < 0 in H − S,
which is a contradiction to S being a solution to (H,w, k).
Bounding the parameters: The deletion size of our new instance stays the same
and thus is bounded by the deletion size of the old instance. The same holds for the
number of negative arcs, as we only introduced k + 1 of them. Finally, note that we
can turn any pathwidth decomposition of G into one of H by adding {s, t} to all bags.
This shows pw(H) ≤ pw(G) + 2.

6.7 Reductions between Arc and Vertex Deletion Version

In this section we will see parameterized reductions between Negative Directed
Feedback Arc Set and Negative Directed Feedback Vertex Set. For a
formal definition of those two problems refer to Section 6.1.
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Theorem 6.48. Given an instance (G,w, k) of Negative Directed Feedback Arc
Set one can in poly(n) time construct an equivalent instance (G′, w′, k′) of Negative
Directed Feedback Vertex Set, such that

k′ = k w′+ = w+ w′− = w−
td(G′) ≤ (k+ 1) td(G) + 2 pw(G′) ≤ (k+1) pw(G)+2 tw(G′) ≤ (k+1) tw(G)+2

and w′(A(G′)) = w(A(G)) ∪ {0}.
Proof. We construct G′ as follows. The vertex set V (G′) consist of k+ 1 many vertices
x1
v, . . . , x

k+1
v for every v ∈ V (G) as well as two vertices x1

a and x2
a for every a ∈ A(G).

The arc set A(G′) then has for every arc a = (u, v) ∈ A(G) and every i ∈ {1, . . . , k + 1}
two arcs (xiu, x1

a) and (x2
a, x

i
v) of weight 0 and one arc (x1

a, x
2
a) of weight w(a). By

setting k′ = k, this completes the construction of our Negative Directed Feedback
Vertex Set instance.

We now show the equivalence of the instances. Let S ⊆ A(G) be a solution to
(G,w, k). We claim that S′ = {x1

a | a ∈ S} is a solution to (G′, w′, k′). The size bound
holds trivially. Assume for contradiction that G′ − S′ contains a cycle C ′ of negative
weight. As the xiv only have neighbors of type x1

a and x2
a and those have to be traversed

in this order, every cycle in G′ visits subsequent path segments of the form xiu, x
1
a, x

2
a, x

i
v

for some a = (u, v) ∈ A(G). Let C be the ordered (multi-)subset of vertices v that
appear in C ′ as some xiv and order them by their appearances in C ′. By choice of S′,
C is a closed walk in G − S. Moreover, we have by choice of arc weights, that C has
negative weight. Therefore, it contains a negative cycle in G− S, a contradiction to S
being a solution.

For the backward direction of the equivalence, we consider a solution S′ ⊆ V (G′)
of (G′, w′, k′). Let S = {a ∈ A(G) | {x1

a, x
2
a} ∩ S′ ̸= ∅}. We claim that S is a solution

to (G,w, k). The size bound holds trivially. Assume for contradiction that G − S
contains a cycle C of negative weight. Let i ∈ {1, . . . , k + 1} be an index such that
{xiv | v ∈ V (G)} ∩ S′ = ∅. As |S′| ≤ k, such an index exists. Then, by choice of S, the
cycle C induces a cycle C ′ inG′−S′ by replacing the sequence u, v by xiu, x1

(u,v), x
2
(u,v), x

i
v.

Moreover, w′(C ′) = w(C) < 0, a contradiction to S′ being a solution.
It remains to check the claimed bound on the (potential) parameters. We have

k′ = k by construction and w′+ = w+, w′− = w− as every arc a ∈ A(G) corresponds to
the arc (x1

a, x
2
a) ∈ A(G′) of the same weight and all other arcs have weight 0. This also

shows w′(A(G′)) = w(A(G)) ∪ {0}. Now we show the remaining bounds on treedepth,
pathwidth and treedepth. We do this by showing how a decomposition corresponding
to the parameter of the original graph G can be adapted to form a decomposition for G′.
In particular, we show how the different parts of the construction of G′ can be reflected
in the decompositions. First we want to split vertices into k + 1 vertices (the xiv’s).
For treedepth, we replace the appearance of v in the rooted tree by a path of length
k + 1 containing the xiv’s. This leads to a factor k + 1 increase in the threedepth. For
pathwidth and treewidth, we replace v in the bags by the xiv’s also leading to a factor
k+ 1 increase. Afterwards, we want to subdivide a set of arcs twice (creating the xia’s).
For treedepth, we can add the new vertices as child of the leaf of a root-leaf-path where
the subdivided arc appears on. For pathwidth/treewidth, we create a new bag for each
arc originating from the bag that contained it and add the subdivision vertex. By this
method, subdividing a set of arcs increases these parameters by 1. Thus creating the
xia’s increases these parameters by at most 2. Putting both modifications together leads
to the claimed results.
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Theorem 6.49. Given a Negative Directed Feedback Vertex Set instance
(G,w, k), one can in poly(n) time construct an equivalent instance (G′, w′, k′) of Neg-
ative Directed Feedback Arc Set, such that

k′ = k w′+ = w+ w′− = w−
td(G′) ≤ 2 td(G) pw(G′) ≤ 2 pw(G) tw(G′) ≤ 2 tw(G)

and w′(A(G′)) = w(A(G)) ∪ {0}.

Proof. To construct G′, split every vertex v ∈ V (G) into v− inheriting the incoming arcs
of v and v+ inheriting the outgoing arcs of v. Then add an arc (v−, v+) of weight 0.
Setting k′ = k completes the construction of our Negative Directed Feedback
Arc Set instance.

We now prove the equivalence of the instances. Let S ⊆ V (G) be a solution to
(G,w, k). We claim that S′ = {(v−, v+) | v ∈ S} is a solution to (G′, w′, k′). Assume
for contradiction that G′−S′ contains a cycle C ′ of negative weight. As G′ is bipartite
with the v+’s and the v−’s forming the bipartition we have that in C ′ the vertices appear
alternating as u+ and v−. Moreover, as the arc (u−, v+) only exists for u = v /∈ S,
we have that C ′ has pairs of the same vertex appearing after another and contracting
them to the original vertex results in a cycle C in G − S. However, this contraction
only eliminates arc of weight 0, and thus C is a cycle of negative weight in G−S. This
is a contradiction to S being a solution.

For the backward direction of the equivalence, we consider a solution S′ ⊆ A(G′)
of (G′, w′, k′). Choose S = {v ∈ V (G) | (v−, v+) ∈ S′ ∨ (u+, v−) ∈ S′}. We claim
that S is a solution to (G,w, k). Again, the size bound holds trivially. Assume for
contradiction that G− S contains a cycle C of negative weight. Then neither the arcs
(v−, v+) with v ∈ V (C) are in S′ nor the arcs (u+, v−) with (u, v) ∈ A(C) are in S′.
Thus applying the construction of G′ to C yields a cycle C ′ in G′ − S′. As the only
newly introduced arcs have weight 0, this cycle also has negative weight. This is a
contradiction to S′ being a solution.

It remains to check the claimed bound on the (potential) parameters. We have
k′ = k by construction and w′+ = w+, w′− = w− as the only newly introduced arcs
have weight 0. For treedepth, pathwidth and treewidth note that treating v+ and v−

as single vertex for construction of the corresponding decomposition and replacing it
either by a path (treedepth) or adding both to the bag increases the decomposition size
by a factor of 2.
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Chapter 7

Conclusion

In this thesis we have seen algorithms and hardness results for various C-Vertex
Deletion problems. We now summarize these results and discuss possible directions
for future research.

In Chapter 3 we considered the Directed Long Cycle Hitting Set problem,
i.e. the problem of removing all directed cycles above a certain length ℓ from the graph
by deleting a given number k of vertices. We obtained a fixed-parameter algorithm for
the combined parameters k+ ℓ. A NP-hardness reduction shows that none of these can
be omitted.

Here, we introduced the new notion of important ranged deletion separators (c.f.
Section 3.1.4). These generalize the concept of important separators to further consider
the structure of an hereditary C-Vertex Deletion problem. As this tool of impor-
tant ranged deletion separators was formulated independently of the Directed Long
Cycle Hitting Set problem, we hope that it can be applied to other hereditary
C-Vertex Deletion problems.

Furthermore, we obtained a result about a small representative set of paths in
graphs of bounded circumference (Theorem 3.4) that may be of interest for other fixed-
parameter algorithms on graphs of bounded circumference. Or it may be used in
combination with our main result of this section to first delete a certain number of
vertices to reach bounded circumference (if the studied problem permits) and after-
wards use the representative set of paths result on the remaining graph. Finally, this
result might be a foundation for further research on hereditary C-Vertex Deletion
problems in the following way: Neogi, Ramanujan, Saurabh, and Sharma have shown
that C-Vertex Deletion is fixed-parameter tractable in the deletion size for certain
families C that are defined by a set H of forbidden subgraphs [NRSS20]. In particular,
they achieve a fixed-parameter algorithm for the cases where H either contains only
arborescences (rooted directed graphs) or contains at least one directed path. If the set
of forbidden subgraphs is the set Hℓ consisting of all cycles of length at least ℓ+1, then
we obtain exactly the Directed Long Cycle Hitting Set problem. By further
research one might wish to obtain a full characterization of forbidden families H for
which C-Vertex Deletion is fixed-parameter tractable on directed graphs, akin to
the results accomplished by Robertson and Seymour in their graph minor series for
undirected graphs and forbidden minors [RS95, RS04].

We studied in Chapter 4 the Bounded Size Strongly Connected Compo-
nent Vertex Deletion problem, i.e. the problem of deleting a given number k of
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vertices such that every strongly connected component of the remaining graph has size
at most s. We gave a fixed-parameter algorithm for combined parameter k+s with run-
time 2O((k+s)(log k+log s)) poly(n). Bang-Jensen, Eiben, Gutin, Wahlström, and Yeo built
upon our result by replacing our subroutine for guessing the bounded size components
by a randomized algorithm which – using standard techniques – can be derandom-
ized to obtain an improved run-time of 2O(k(log k+log s)) poly(n) [BJEG+20]. The same
run-time was also obtained by Neogi, Ramanujan, Saurabh, and Sharma with their
algorithms for H-free strongly connected components, where in this case H contains all
arborescences on s + 1 vertices [NRSS20]. This run-time dependence on k is unlikely
to be improved without improving the algorithm for Directed Feedback Vertex
Set first, as this is the special case of s = 1. Whether an algorithm with run-time
2o(k log k) poly(n) exists, is still a major open question. Improving the run-time depen-
dence on s is unlikely as well because Drange, Dregi, and van ’t Hof have shown that
even for the undirected version there is no algorithm with run-time 2o(k log s) poly(n)
unless the exponential time hypothesis fails [DDv16].

In Chapter 5, we proved that 1-out-regular Vertex Deletion, i.e. the prob-
lem of deleting a given number k of vertices such that every strongly connected compo-
nent C is rC-out-regular for an rC ≤ 1, is fixed-parameter tractable when parameterized
in k. In particular, we gave an algorithm with run-time 2O(k3) poly(n). This run-time
was later improved by Neogi, Ramanujan, Saurabh, and Sharma to 2O(k log k) poly(n),
matching the best known run-time for Directed Feedback Vertex Set [NRSS20].

It would be of interest to see generalizations of this results to higher degrees of
regularity. But as already extending the maximum regularity from 1 to 2 breaks the
hereditary structure of C, this requires new techniques. Also results on Eulerian
Strongly Connected Component Vertex Deletion, which gave the original
motivation for considering this problem, would be interesting. But again, this goes
beyond the space of hereditary graph classes C.

Finally, we considered in Chapter 6 the Negative Directed Feedback Arc Set
problem, i.e. the problem of deleting a given number k of arcs from a weighted graph
such that no cycle negative weight remains. We considered the parameters deletion
size (k), number of positive (w+) and negative (w−) arcs as well as treewidth (tw),
pathwidth (pw) and treedepth (td) of the underlying undirected graph. For these
parameters we gave an almost complete FPT/W[1]-hard/NP-hard dichotomy which
can be found in Table 6.1 (see Section 6.4). The main open question is whether the two
gaps in this dichotomy can be filled. For further research directions in this area, the
original motivation of removing a minimum number of inequalities from an infeasible
linear program such that it becomes feasible should be considered. The Negative
Directed Feedback Arc Set only addresses the scenario where all constraints are
difference constraints, i.e. inequalities of the form xi − xj ≤ bi,j . Here two natural
questions arise. First, can we extend the algorithmic findings to inequalities with two
arbitrary non-zero coefficients? When formulating this as a problem in graphs, the
feasibility checking becomes the so called Generalized Max Flow problem, which
is an active research area. See e.g. [OV20] for a strongly polynomial algorithm. Second,
it would be interesting to extend the result to inequalities with three variables, as any
linear program can be written in this form. However this seems challenging, as it
requires going from directed graphs to directed hypergraphs.
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