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ABSTRACT  

 

In West Africa malaria is an endemic disease and a leading cause of mortality 

and morbidity. Over the years advances in mathematical modeling have improved 

understanding of the disease’s operational mechanisms. However, the heterogeneity in 

malaria epidemics as well as the impact of human behavior toward the adoption of 

protective measures, such as the use of the insecticide-treated bed nets (ITNs), have not 

yet been sufficiently documented using a mechanistic modeling approach.  

In this study, i) the spatial and temporal heterogeneity in the transmission of malaria at 

a fine-scale was characterized while identifying the prevailing conditions of association 

between malaria transmission and urbanization; ii) the main drivers of heterogeneity in 

the transmission and control of malaria in urban areas were identified by revealing the 

interplay between the drivers; iii) the efficiency of the insecticide-treated bed-net rolled 

out in Accra was modeled by accounting for the spatial heterogeneity of the uptake 

behavior of communities.  

The characterization of the epidemic in urban settings was done using 

statistical modeling approaches. A participatory system thinking approach was used, 

combined with network analysis to assess the key covariates that contribute to the 

persistence of malaria in urban settings. A mathematical framework that incorporated 

the empirical findings was developed to show the impact of human behavior on the 

persistence of malaria.  

Malaria incidence proved to be highly heterogeneous over spaces, seasons, 

and age. Beyond, the association between malaria and urbanization is not always linear 

and in urban settings, malaria can be higher than in rural areas. Additional sources of 

heterogeneity in urban malaria epidemics are vegetation cover and population density. 

The denser both the population and the vegetation are, the higher is malaria incidence. 

Moreover, malaria transmission in big cities such as Accra and Kumasi follows a diffusion 

process, with the center of the cities having the highest incidences.  

On the other hand, 45 interactive drivers of the transmission and persistence 

of malaria in urban settings were recorded. Among this set of determinants, human 



behavior, revealed by the network analysis, turned out to be a major contributing factor 

that hinders the control of malaria in urban settings. No evidence of a relationship 

between uptake and ownership of ITN in the communities surveyed in Accra was found. 

Several reasons explain the reluctance of ITN adoption such as the decay of the nets. 

The model demonstrated that the infectiousness of malaria is underestimated when 

space and human behavior heterogeneities are not accounted for.  

Therefore particular emphasis should be given to the education of 

communities. This will foster the uptake of the ongoing non-pharmaceutical measure 

and allow reducing the malaria burden in cities.  

 
  



MODELLIERUNG DER RÄUMLICHEN UND ZEITLICHEN HETEROGENITÄT DER MALARIAÜBERTRAGUNG 

UND -KONTROLLE IM URBANEN GHANA 

KURZFASSUNG  

Malaria ist eine endemische Krankheit in Westafrika und dort eine Hauptursache für 

Mortalität und Morbidität. Im Laufe der Jahre haben Fortschritte in der mathematischen 

Modellierung das Verständnis von funktionellen Mechanismen dieser Krankheit 

verbessert. Die Heterogenität bei Malaria-Epidemien sowie der Einfluss des 

menschlichen Verhaltens auf die Akzeptanz und Annahme von Schutzmaßnahmen, wie 

zum Beispiel dem Einsatz von mit Insektiziden behandelten Moskitonetzen, wurden 

jedoch bisher nicht ausreichend mittels eines mechanistischen Modellierungsansatzes 

dokumentiert. 

In der vorgelegten Arbeit wurden i) die räumliche und zeitliche Heterogenität bei der 

Übertragung von Malaria auf einem feinen Maßstab charakterisiert und gleichzeitig die 

vorherrschenden Bedingungen der Assoziation zwischen Malariaübertragung und 

Urbanisierung identifiziert; ii) die Haupttreiber der Heterogenität bei der Übertragung 

und Kontrolle von Malaria in städtischen Gebieten erkannt, indem das Zusammenspiel 

zwischen den Treibern aufgezeigt wurde; iii) die Effizienz der mit Insektiziden 

behandelten Moskitonetze in Accra unter Berücksichtigung der räumlichen 

Heterogenität des Aufnahmeverhaltens der Gemeinden modelliert. 

Die Charakterisierung der Epidemie in städtischen Umgebungen erfolgte mit 

statistischen Modellierungsansätzen. Ein partizipativer System-Ansatz wurde mit einer 

Netzwerkanalyse kombiniert, um die wichtigsten Kovarianten zu bewerten, die zur 

Persistenz von Malaria in städtischen Umgebungen beitragen. Des Weiteren wurde ein 

mathematischer Rahmen unter Einbezug der empirischen Ergebnissen entwickelt, um 

den Einfluss menschlichen Verhaltens auf die Persistenz von Malaria aufzuzeigen. 

Die Malaria-Inzidenz zeigte eine hohe Heterogenität in Bezug auf Raum, Jahreszeit und 

Alter der betroffenen Personen. Darüber hinaus stellte sich heraus, dass der 

Zusammenhang zwischen Malaria und Urbanisierung nicht immer linear ist und Malaria 

in städtischen Umgebungen höher sein kann als in ländlichen Gebieten. Weitere 

Ursachen der Heterogenität bei urbanen Malaria-Epidemien sind 

Vegetationsbedeckung und Bevölkerungsdichte. Je dichter die Bevölkerung und die 



Vegetation, desto höher ist die Malaria-Inzidenz. Die Malariaübertragung in 

Großstädten wie Accra und Kumasi folgt einem Diffusionsprozess, wobei die inneren 

Bereiche der Städte die höchsten Inzidenzen aufweisen. 

Insgesamt konnten 45 interaktive Treiber für die Übertragung und Persistenz von 

Malaria in städtischen Gebieten aufgezeigt werden. Menschliches Verhalten war im 

Zuge der Netzwerkanalyse ein wichtiger Faktor, der die Malariabekämpfung in 

städtischen Umgebungen erschwert. 

Im Rahmen der Befragungen von unterschiedlichen Gemeinden in Accra ergaben sich 

keine Hinweise auf einen Zusammenhang zwischen der Akzeptanz und dem Besitz von 

Bettnetzen. Mehrere Gründe erklären die Zurückhaltung bei der Einführung dieser, wie 

zum Beispiel der oftmals schnelle Verschleiß der Netze. Das mathematische Modell 

zeigte, dass die Infektiosität von Malaria unterschätzt wird, wenn Heterogenität 

bezüglich Raum und menschlichen Verhaltens nicht berücksichtigt wird. 

Die Ergebnisse dieser Studie unterstreicht die Bedeutung von zielgerichteter Aufklärung 

von betroffenen Gemeinden. Nur so kann eine verbesserte Akzeptanz von nicht-

pharmazeutischen Maßnahmen zur Malariaprävention erreicht werden, was eine 

Verringerung der Malariabelastung in den Städten ermöglichen würde. 
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1. GENERAL INTRODUCTION 

1.1. Malaria transmission and socio-economic heterogeneity 

Malaria is a communicable disease that kills daily 2,000 children worldwide, with 

90% of the victims located in sub-Saharan Africa (SSA) (Sachs and Malaney 2002; 

Ndugwa et al. 2008; CDC 2017). Due to its endemism in West Africa, malaria represents 

a major economic constraint for the region (Sachs and Malaney 2002; Asare and 

Amekudzi 2017). For instance, Ghana invested more than US$ 37.8 million into 

preventive measures against malaria infection in children below 5 years old in 2009 

(Sicuri et al. 2013). At the household level, the incurred expenses to treat a single malaria 

episode in Ghana can reach 34% of the yearly income of a poor household (Akazili et al. 

2008). A similar trend was described in Nigeria where the monthly out-of-pocket 

expenditure for malaria treatments was 8.5% and 5.5% for low and high-income 

households, respectively (Onwujekwe et al. 2009). Recent studies showed that the 

relationship between national economic growth and malaria control expenditure is 

negative and characterized by a vicious reinforcing feedback loop, i.e., infected people 

are unable to produce wealth, and if wealth is low, the risk of exposure to the disease 

increases (Sachs and Malaney 2002; Jowett and Miller 2005). Consequently, malaria can 

be considered both as a cause and consequence of poverty (Wells et al. 2009).  

Furthermore, malaria infection patterns change due to interventions such as the use of 

insecticide-treated bed-nets (ITNs), and in-door residual (insecticide) spraying (IRS). The 

heterogeneity in the use of ITNs and IRS due to the variability in their uptake leads to 

spatio-temporal heterogeneity in malaria transmission that is lower in cities compared 

to peri-urban and rural areas (Robert et al. 2003; Hay et al. 2005b; Tatem et al. 2013).  

1.2. Mechanism of malaria transmission  

Malaria infectious protozoans (of the genus Plasmodium) are injected into the 

human bloodstream (host) after an effective biting of a female mosquito vector that 

occurs when an infectious mosquito successfully injects the parasites into its host. 

During the egg-laying period, the female mosquitoes lack protein and or plant sucrose 

necessary for egg maturation and consequently blood-feed on vertebrate hosts that can 
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subsequently become infected by the pathogens transmitted by the mosquitoes during 

this process (Harrington et al. 2001; Arifin et al. 2014).  

Mosquitoes often found in West Africa belong to the genus Anopheles (Li et al. 

2005), and here in particular to An. gambiae Giles. This species is anthropophilic, i.e., it 

prefers using human blood to complete its gonotrophic cycle, bites preferably indoor 

(endophagic), and rests inside the rooms (endophilic). Considering its feeding habit, An. 

gambiae is the major malaria vector in West Africa (Sinka et al. 2010). However, other 

vectors such as An. arabiensis, An. funestus and An. melas can also transmit Plasmodium 

falciparum, the causal agent of tropical malaria. Like An. gambiae, An. funestus is also 

anthropohilic, endophagic, and endophillic  (Sinka et al. 2010; Asare and Amekudzi 

2017). Conversely, An. arabiensis is zoophilic (i.e., prefers to blood feed on animals), 

exophilic (i.e., bites outdoor), and exophagic (i.e., rests outdoor) (Li et al. 2005). 

Anopheles melas is also anthropophagic, exophagic, and exophilic (Tuno et al. 2010). 

Thus, P. falciparum is highly adaptive to Anopheles species, thereby increasing the hosts’ 

vulnerability to malaria. This large variability in the vectors’ living environment and 

feeding habits expands the geographical heterogeneity in the transmission (Childs et al. 

2015).  

The life cycle of the Anopheles spp. is divided into the aquatic/juvenile phases 

(eggs, larva, and pupa), followed by the adult phases (immature adult, mate-seeking, 

blood meal seeking, blood meal digesting, and gravid) (Arifin et al. 2014). The length of 

the life cycle of the vector depends on climatic conditions, namely temperature and 

humidity (Mordecai et al. 2013; Eikenberry and Gumel 2018). Hence, the vector density, 

longevity, biting habits, and efficiency, as well as the intensity of malaria transmission, 

decrease under unfavorable conditions (White et al. 2014; Chaturvedi et al. 2014; Adu-

Prah and Kofi Tetteh 2015). Nonetheless, vectors' feeding habits and effectivity can 

change over time as shown for instance in a long term (1999-2010) in Kenya (Mwangangi 

et al. 2013). To sum up, the interplay between mosquitoes and their environment 

depicts a complex and extremely dynamic system, which can negatively affect the 

control of malaria. 
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There are some heterogeneities in mosquito biting, which implies that the 

transmission intensity can significantly vary across host populations (Busula et al. 2017). 

The composition of the human body microflora and the reaction to the bite of 

mosquitoes elicit differences in the behavior of mosquitoes (Verhulst et al. 2011). For 

instance, an infected host is more attractive to the mosquitoes than a non-infected one 

(Lacroix et al. 2005). Similarly, as the sweat composition changes during and after the 

puberty of a human host, mosquitoes prefer the scent of children to that of adults 

(Schneider et al. 2004; Busula et al. 2017).  

In SSA, infectious protozoans are, P. falciparum, P. vivax, P. ovale, P. malariae, 

and P. knowlesi, with P. falciparum accounting for 95% of malaria cases (Kafy et al. 2017; 

Karnad et al. 2018). The complete life cycle of P. falciparum is divided into an incubation 

period of 10 days within the vector and from 7 to 20 days within the vertebrate host  

(Institute of Medicine (US) Committee for the Study on Malaria Prevention and Control 

1991; White et al. 2014). During the blood-feeding of the vector, P. falciparum 

protozoans are injected through the vector’s saliva into the host bloodstream, where 

the protozoans complete the last part of their life cycle. Once in the host bloodstream, 

the sporozoites (i.e., the asexual protozoans) move into the host liver, where they 

penetrate the host’s liver cells (hepatocytes). Within the host’s hepatocytes the parasite 

proceeds to multiple asexual divisions, a process termed schizogony (Yam and Preiser 

2017; Karnad et al. 2018). Eventually, the hepatocytes break releasing merozoites 

(protozoan in the feeding stage produced by multiple fission capable to initiate a sexual 

or asexual cycle of development) in the host bloodstream, which subsequently invade 

red blood cells. After multiple divisions in the red blood cells, the parasites start their 

sexual differentiation and develop into gametocytes (Talman et al. 2010). Before and 

during this differentiation stage, hosts can express clinical symptoms such as fever, chill, 

and sweat; therefore this period is often referred to as the symptomatic phase of 

malaria. Nonetheless, some hosts may express no clinical symptoms during the 

differentiation stage and thus this phenomenon is termed asymptomatic malaria 

(Bousema et al. 2014). When blood-feeding on infected patients who may or may not 

express symptoms mosquitoes mainly ingest these gametocytes (Talman et al. 2010). 
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Hence the human reservoir of parasites includes both symptomatic and asymptomatic 

cases. The identification of asymptomatic cases is difficult since it requires systematic 

testing of a large fraction of the population and is consequently financially demanding 

(Sturrock et al. 2013). This adds another layer of complexity to the overall management 

strategy, hampers malaria control, and eases its persistence.  

The life cycle of P. falciparum can speed up or slow down depending on the host's 

exposure to mosquito bites, e.g., night-time activities of the human host, seasons of the 

year. A set of within-host factors, such as the genetic make-up (e.g., sickle cell, 

thalassemia), immunity, and age can also impact the life cycle in ways that are not yet 

fully understood (Miller et al. 2002; Casuccio et al. 2014; Tubman and Makani 2017). 

Besides, the migration pattern of both the hosts and vectors, the housing conditions, 

abundance of breeding sites, and the host culture, norms, beliefs, and overall behavior 

further play a role in both the transmission pattern of the disease and in the proliferation 

of mosquitoes (Fobil et al. 2012; Agusto et al. 2015; Diallo et al. 2017; Sumankuuro et al. 

2017; Yam and Preiser 2017; Cohen et al. 2017; Sriwichai et al. 2017; Maity et al. 2017). 

The biology of malaria encompasses several layers of complexity going from the 

environmental factors to the within-host factors that make the mechanism of 

transmission intricately complex and multifactorial.  

1.3. Complexity of the prevention and cure of malaria  

Since malaria transmission requires the recursive interaction between humans, 

mosquitoes, and parasites, the existing control methods are suboptimal as they target 

either mosquitoes or parasites. The control of mosquitoes can be done either through 

the interventions at the larval or adult stages and in general, they intend to diminish the 

entomological inoculation rate, i.e., the number of infectious bites per person per year, 

through physical, biological, or chemical alterations of the vector living and reproduction 

conditions. The physical modification comprises the management of the living 

environment of the larvae through the removal of breeding sites, often using drainage 

and weeding (Tusting et al. 2013). However, this approach requires a constant working 

force for weeding and drain cleaning which led SSA governments to abandon it despite 

its proven effectiveness (Fillinger and Lindsay 2011; Tusting et al. 2013). The chemical 
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interventions in the larval environment imply the application of larvicides and 

insecticides. This method is also costly and often leads to the development of insecticide 

resistance in mosquitoes populations (Liu 2015). Biological and microbiological control 

methods use the natural enemies of mosquito larval such as larvivorous fish and 

mosquito pathogens like the bacteria Bacillus thuringiensis ssp. Israliensis (Bti), 

respectively, but is hindered by the short time persistence of natural enemies in the 

environment (Tusting et al. 2013).  

Control of adult mosquitoes primarily relies on the use of IRS and ITNs. These 

two vector-control strategies have been adopted by the Global Malaria Action Plan 

(GMAP) of the World Health Organization (WHO) since 2010 (Wayback and WHO 2010). 

Synthetic pyrethroids (especially deltamethrin and permethrin) are the main chemical 

compounds in ITNs and IRS, that are lethal, repel mosquitoes, highly persistent in the 

environment, but also not toxic for mammals (Narendra et al. 2008). In the past, the use 

of insecticides led to a sharp decrease in mosquito densities and consequently to a 

considerable decrease in the malaria transmission rate. For example, in Ghana because 

of the successful control of mosquitoes, there was a decline in malaria cases by 41% 

from 2005 to 2010 (Aregawi et al. 2017). Since the same synthetic pyrethroids are also 

used in agriculture there is an increased incidence of insecticide resistance in An 

gambiae populations (Kudom et al. 2018). In addition, because of the widespread use of 

ITNs and IRS malaria-transmitting mosquitoes species, especially populations on An. 

gambiae, have developed different coping mechanisms like earlier biting, and outdoor 

bitting behavior (Mwangangi et al. 2013; Moshi et al. 2017).  

The main approaches to target the parasite within the human host are the use 

of different antimalarial drugs, seasonal prevention, and in the future possibly also the 

use of malaria vaccines. In terms of drugs, GMAP is presently advocating the use of 

Artemisin-based Combination Therapies (ACT) as the first-line curative measure. ACTs 

are highly potent against P. falciparum with the highest clearance rate of the parasite 

compared to other curative therapies (Eastman and Fidock 2009). Yet recently, P. 

falciparum has started developing resistance to ACT (Dondorp et al. 2009; Tusting et al. 

2013; White et al. 2014). Malaria parasite resistance in SSA is exacerbated by the use of 
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falsified ACTs drugs (Yasuoka et al. 2014; Kaur et al. 2017). Another preventive measure 

is intermittent prevention, which is the administration of a single curative dose of an 

anti-malaria drug to pregnant women regardless of their malarial serological status 

(Briand et al. 2007). This includes the combinations of primaquine, sulfadoxine-

pyrimethamine, and amodiaquine, or methylene blue, and dihydroartemisinin-

piperaquine which have been proven be able to prevent the transmission of P. 

falciparum (Dicko et al. 2018). In terms of vaccines, a seasonal vaccine denoted “RTS, 

S/AS01” was effective in protecting children under five years old for a short time and 

was capable of reducing the malaria incidence rate by 82% (Otieno et al. 2016; 

Greenwood et al. 2017).  

Besides, there are prospects to prevent and treat malaria using homeopathy and 

phytotherapy. For example, a study on phyto-compounds identified more than 20 local 

plants and herbs in Central Africa that can heal and prevent malaria transmission 

(Vlietinck et al. 2015) with almost zero risks for P. falciparum to develop resistance 

against these natural compounds (Vlietinck et al. 2015; Tarkang et al. 2016; Cheuka et 

al. 2016). This is due to the synergistic interplay between a wide range of phyto-

compounds with a considerably reduced risk of resistance development of the 

pathogens (Ginsburg and Deharo 2011; Tarkang et al. 2016).  

Development of resistance results either from increased detoxification or 

decreased sensitivity or a complex combination of the two mechanisms (Liu 2015). 

Resistance against insecticides and drugs by the mosquitoes and P. falciparum, 

respectively, hinder the control of malaria in SSA. It leads to the genetic changes of both 

the transmitting mosquitoes and the parasite P. falciparum that can be difficult to track.  

1.4. Mathematical modeling of malaria transmission  

Mathematical modeling of malaria transmission started in 1911 with the 

Susceptible Infectious Removed (SIR) model, which compartmentalized the population 

of hosts and vectors into three (Ross 1911a, b). The compartments were denoted 

susceptible (S), referring to the population likely to become infected, infectious (I), 

composed by the infected fraction of the population, and removed/ recovered (R), 

accounting for the fraction of the population that either died or recovered from the 
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disease. The SIR model assumed a finite and closed population, a homogenous biting 

rate by the mosquito-vectors, and a well-mixed population (Martcheva 2015). Although 

the Ross model failed to adjust with new incidence data due to its limited predictability, 

the SIR model provides insights into the intricate relationship between the number of 

infected hosts and the density of mosquitoes. Because Ross’ model was theoretical and 

simulation-based it failed to document proof for campaigns of mosquito’s eradication.  

Subsequently, George Macdonald complemented Ross’ (1911a) by feeding the 

model with real data and embedding an additional compartment for the latency period 

between the bite of mosquitoes and the onset of symptoms denoted Exposed (E). 

Furthermore, Macdonald’s research theorized on superinfection (Macdonald 1950) 

providing arguments to support a massive campaign of the eradication of mosquitoes. 

Consequently, the WHO through the Global Malaria Eradication Program (GMEP) 

implemented widespread and rigorous mosquito eradication campaigns from 1955 to 

1969. In these campaigns, the pesticide Dichlorodiphenyltrichloroethane (DDT) was 

successfully applied to control malaria in major European and Latin American countries 

(Nájera et al. 2011). However, GMEP failed to eradicate malaria worldwide due to the 

increasing resistance of mosquitoes to DDT (WHO 1969). In SSA, aside from the 

insecticide resistance of mosquitoes, the absence of basic healthcare services, the high 

intensity of malaria transmission, and other socio-ecological factors weakened the 

success of the eradication campaigns (Smith et al. 2017).  

Since then, the mathematical epidemiology of malaria has evolved steadily from 

“toy models” (i.e., those that are not realistic but capture only the key features of the 

disease) to “high-level models” (which are more realistic, precise, and sacrificing 

generality) (May 1973). Complex models display a common feature such as having 

interplaying between a large number of components and their resilience (Colizza et al. 

2007).  

An important metric that summarizes the transmission of a disease is the 

reproductive number (R0) which represents the expected number of infected hosts after 

effective mosquito bites in a fully susceptible population (Macdonald 1950; Aikins and 

Pickering 1994; Smith et al. 2005, 2009). R0 provides, thus, a measurement for the 
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intensity of transmission and contributes to the definition of disease-endemic areas 

when surpasses one (R0>1) (Smith et al. 2007b). Henceforth, heterogeneity was 

incorporated in populations for the computation of R0. These include, for example, the 

age structure of the hosts (Heesterbeek et al. 2015), migration of the vectors and hosts  

(Cohen et al. 2017), host beliefs and practices (Agusto et al. 2015), and host income 

classes (Ross 1902; Mushayabasa et al. 2012; Agusto et al. 2015; Cohen et al. 2017). R0 

also varies with the degree of complexity introduced into the compartmentalization of 

the population (Agusto et al. 2015). The more the modeling framework embodies the 

heterogeneity in the host populations, the closer to real-life transmission dynamics the 

value obtained for R0 becomes (Smith et al. 2007a; Xia et al. 2017). Although pioneering 

models helped to provide insight into the dynamics of malaria and the means for its 

controls, they are not realistic for different reasons, and the maximum control is hardly 

reached (Smith ehht al. 2017). Most specifically, a large R0 indicates a higher density of 

mosquitoes that reduces the effectiveness of ITNs in a large and likely heterogeneous 

host population (Smith et al. 2007a).  

Upon those advances, a wide range of mathematical models was developed 

combining the compartments S, E, I, and R (e.g., SIR, SIS, SI, SIRS, SEIR, SEIRS, SEI) and 

including the heterogeneity of the populations (i.e., meta-population modeling 

approaches) s(Hethcote 1994). Nonetheless, these models are hardly capable to capture 

sub-population dynamics of malaria as most models assume large and homogenous 

populations, and where the existence and particularities of sub-populations tend to be 

neglected (Mandal et al. 2011; Mecoli et al. 2013). Furthermore, they often omit host 

behavior that confounds the dynamics of the disease (Agusto et al. 2013) as well as its 

control  (Agusto et al. 2013; Ngonghala et al. 2014). Moreover, compartmental models 

are either knowledge and data-driven, like the Ross model and Macdonald models. In 

both cases, the models are unable to address the complex interactions and dynamics of 

the transmission. For example, socio-economic determinants interfere with the 

parameters generally considered in the calculation of R0 such as mortality, mobility, and 

the birth rate (Agusto et al. 2015). Thus, models that capture realistically the 

transmission process of malaria are still missing. 
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1.5. Problem statement 

The urbanization in Africa set by the rapid development of cities and the anarchic 

occupation of the space, often in unsanitary conditions, has created conditions prone 

for malaria spreading (Traoré et al. 2019). Although a large body of literature depicted 

the proneness of the urban epidemic, the conclusions on the effect of urbanization on 

malaria are still mixed. This is essentially due to the level of granularity considered to 

describe the relationship between malaria and urbanization. While some studies 

documented a significant reduction in urban malaria (Hay et al. 2005a; Tatem et al. 2013; 

Kabaria et al. 2017), others proved that the urbanization process will rather inflate the 

current transmission (Klinkenberg et al. 2005; Donnelly et al. 2005). Hence, to consider 

the heterogeneity in the malaria epidemiology modeling, and to assess at a fine-scale of 

granularity the prevailing conditions of the association between urbanization and 

malaria, could result in better strategies to combat malaria in cities and contribute to an 

improved malaria control (Snow 2015). The assessment of the heterogeneity in the 

transmission of malaria is even more acute in cities since dwellers are considered at 

higher risk of severe malaria (Hay et al. 2005b).  

The heterogeneity in urban malaria epidemiology results from the complex interplay of 

interacting determinants, which are: environmental-, policy-, human-, vector-, and 

parasite-related determinants. Mapping the interplay between them, e.g., by identifying 

the sources of heterogeneity in urban malaria transmission, could help to design 

improved interventions (Woolhouse et al. 1997). Besides, disclosing the interplay 

between different determinants, reduce the data granularity of some variables in the 

transmission and the control of malaria (Midega et al. 2012; Irvine et al. 2018).  

Yet, the interplay among determinants is not well documented by the complex and 

nonlinear nature of their interactions. Moreover, studies to display the interplay among 

determinants are scarce, since the quantification of factors is costly and the scale of 

these factors are not the same (Bannister-Tyrrell et al. 2017; Kabaghe et al. 2018). 

Identifying the key drivers of the heterogeneity in the transmission and control of 

malaria allows the design of more suitable pharmaceutical (e.g., seasonal malaria 

chemoprophylaxis) and non-pharmaceutical (e.g., ITNs) interventions chemoprophylaxis 



Chapter 1 

22 

 

(Walker et al. 2013; Amratia et al. 2019). So far, the key drivers of heterogeneous 

transmission of malaria in cities remain poorly documented.  

The mathematical modeling of malaria transmission took a new direction when the 

heterogeneity started to be accounted for (Woolhouse et al. 1997; Cooper et al. 2019). 

Woolhouse et al. (1997) and Cooper et al. (2019) proved that a small group of super-

spreaders that had been heavily bitten amplified the risk of transmission in the 

population. These studies demonstrated that the risk-taking behavior of a community 

could hamper control interventions; and on the other hand, that the efficacy of ITNs 

used as a frontline non-pharmaceutical intervention in urban settings is often limited by 

a compliant human behavior (Ngonghala et al. 2014). Not accounting for human 

behavior leads to an overestimation of the performance of ITNs and an underestimation 

of the transmission of the disease. More specifically, the potential of transmission 

calculated after the basic reproduction rate is higher in a heterogeneous compared to a 

homogenous population (Woolhouse et al. 1997). Therefore, it is hypothesized that part 

of the dynamics of the disease transmission and its control with ITNs is not shown when 

the population heterogeneity is not accounted for in the mathematical model.  

In African cities such as Accra, pioneer spatial modeling has shown uneven transmission 

patterns of malaria but failed to characterize and identify the sources, and model the 

heterogeneity of this spatial pattern (Fobil et al. 2012).  

1.6. General and specific objectives  

This thesis overall objective is to disclose the spatial and temporal 

heterogeneity of urban malaria transmission and ITNs interventions rolled out in Accra 

More specifically, this thesis intends to:  

i) To characterize the spatial and temporal heterogeneity in the transmission of malaria 

at a fine-scale while identifying the prevailing conditions of association between malaria 

transmission and urbanization.  

ii) To identify the main drivers of heterogeneity in the transmission and control of 

malaria in urban areas by revealing the interplay between the drivers. 

iii) To model the efficiency of ITNs rolled out in Accra by accounting for the spatial 

heterogeneity of the uptake behavior of communities.  
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1.7. Organization of the thesis  

In the first chapter, the spatial and temporal heterogeneity of malaria is 

described, aiming at substantiating the problem that malaria modeling intends to 

answer: how disclosing the malaria transmission and infection heterogeneity can be 

used to reduce its transmission and enhance its control in urban settings.  

In the second chapter, an overview of the modeling approaches applied is 

given, as well as the objectives and data they require. In the third chapter, the spatial 

and temporal heterogeneity of malaria transmission, particularly in relation to the 

urbanization processes occurring in urban Ghana is characterized. This chapter 

investigated the question: In which conditions do malaria incidence and urbanization 

processes are associated in urban Ghana? In the fourth chapter, the drivers of 

heterogeneity that play a role in the transmission and control of malaria are explored, 

while answering the following question: What are the major determinants that explain 

malaria persistence in urban settings? In the fifth chapter, the bias in modeling by 

accounting for the heterogeneous behavior of communities is estimated. This chapter 

answered the question: To what extent are classical meta-population (SIR) models 

underestimated the infectiousness of malaria in Accra? Finally, in the sixth chapter, the 

findings, strengths, and weaknesses of this dissertation are summarized, and some 

conclusions and suggestions for follow-up studies are provided. Finally, several “take-

home” messages for policymakers with regard to ways of improving non-pharmaceutical 

malaria-controlling interventions in urban conditions are proposed.  

 



Chapter 2 

24 

 

2. MATERIAL AND METHODS 

2.1 Study areas 

The research was carried out in Ghana working at the scale of the country (chap. 3) and 

at a scale of Accra (Chap. 4 & 5). With a population estimate at 31,860,142, Ghana is considered 

the second most populated country in West Africa (UN population estimate and projections 

2019). Ghana demographics are dominated by children and Ghana embedded six distinct 

ecological zones namely the Guinea savannah zone, Forest-savannah transition zone, Semi-

deciduous forest zone, Sudan savannah zone, Coastal savannah zone, and the Rain forest zone 

(Asravor et al. 2019). The ecological differences impact the seasonal pattern on the transmission 

pattern of malaria with more pronounced variations in the Guinea savannah and Sudan savannah 

zones (USAID President’s Malaria Initiative 2020). A detailed description of Accra is provided in 

chapters 4 and 5.  

2.2. Methods 

In this section, an overview of the methods (Table 2.1) for each of the subsequent 

chapters as well as the data recorded is given. More details on the different modeling 

approaches are provided in the respective research chapters.  

Table 2 1: Synoptic view of the objectives and modeling process of the thesis  

Objectives Sub-objectives  Tested hypotheses Data used  Modeling process 

To characterize the 
spatial and temporal 
heterogeneity in the 
transmission of 
malaria at a fine 
scale, while 
identifying the 
prevailing conditions 
of association 
between malaria 
transmission and 
urbanization 

i) Model the 
heterogeneity in 
the malaria 
epidemic 

There is spatial and 
temporal 
heterogeneity in 
Ghanaian malaria 
epidemiological 
data 

Epidemiological 
time series from 
2015-2018 

Multi-level 
modeling  

 ii) Document the 
association 
between malaria 
and urbanization  

The association 
between malaria 
and urbanization 
can be linear or 
nonlinear 

Cross-sectional data 
on the density of 
the population 
Cross-sectional data 
on the built 
intensity  

Linear and 
nonlinear 
correlation  
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Cross-sectional data 
on built areas 

 iii) Determine the 
prevailing 
conditions of 
association 

Some conditions 
determine the 
existence of an 
association 
between malaria 
and urbanization  

Cross-sectional data 
on mortality of 
children under five, 
the proportion of 
literate men and 
women, rate of 
immunization, the 
proportion of ITNs 
ownership, the 
proportion of 
households that 
lack toilet facilities, 
proportion of 
households using an 
improved water 
source, rainfall, and 
vegetation coverage 

Machine learning 
processes 

To identify the main 
drivers of 
heterogeneity in the 
transmission and 
control of malaria in 
urban areas by 
revealing the 
interplay between 
the drivers  
  

i) Exhibit the 
interplay between 
sources of 
heterogeneity  

There is a causal 
and complex 
association 
between 
determinants of 
malaria 
transmission in 
cities  

Participatory 
modeling section  

Causal-loop diagram 

 ii) Identify the key 
sources of 
heterogeneity  

Among the web of 
determinants, 
some can leverage 
the system of 
transmission of 
urban malaria 

- Network analysis 

To model the 
efficiency of ITNs 
roll-out in Accra by 
accounting for the 
spatial heterogeneity 
of the uptake 
behavior of 
communities.  
 

i) Document the 
empirical 
knowledge and 
behavior of 
communities living 
in urban malaria 
hotspots  

Knowledge of the 
disease determine 
the behavior of the 
communities 
toward the uptake 
of ITNs 

Empirical survey on 
1028 households  

Descriptive and 
inferential statistics 
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 ii) Assess the 
magnitude of bias 
in modeling by 
incorporating 
spatial human 
behavior 
heterogeneity  

There is a gap in 
the efficiency of 
ITNs that can be 
quantified  

Theoretical 
mathematics and 
applications 

Ordinary differential 
equations and 
computer 
simulations 
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3. A CONTEXTUAL ASSOCIATION BETWEEN MALARIA AND URBANIZATION: TEMPORAL AND 

SPATIAL ANALYSIS IN GHANA1 

3.1. Introduction 

Coupled changes in vector ecology and human dynamics are leading to changing risk of 

malaria incidence, and urbanization is a key factor in this process (Caminade et al. 2014). These 

changes are notable in the global south where the unprecedented scale and rate of changes in 

human settlement patterns play a major role in malaria epidemiology. The dominant 

understanding considers malaria as a rural disease (Awuah et al. 2018) but rural-urban migration, 

among others, can fuel malaria incidences in urban areas (Wesolowski et al. 2012). In this paper, 

we examine the prevailing conditions for an association between malaria incidence and 

urbanization using the case of Ghana. 

The majority of Ghana’s population lives in urban areas, and the rural-to-urban 

demographic shift is likely to continue in the future (GSS 2013). By 2050, Ghana’s urban 

population will be over double fold its rural population (UN 2018). Like many developing 

countries, urbanization in Ghana is accompanied by adverse outcomes such as traffic congestion, 

unregulated informal economic activities, and social inequalities (Cobbinah and Niminga-Beka 

2017). Furthermore, expanding cities tend to hold and increase the rural-urban linkages and 

intensify human mobility, as happens in Accra and Kumasi, the two larger urban areas of Ghana 

(Amoateng et al. 2013; Akubia and Bruns 2019). The impending transition, along with other 

associated socio-demographic shifts and disease ecology, can change the existing malaria burden  

(Hay et al. 2005a; UN 2018). Still, little is known about the confluence of urbanization dynamics 

and malaria disease burden.  

Urbanization has changed disease epidemiology and favored the spread of emerging 

and re-emerging diseases (Alirol et al. 2011; Neiderud 2015). Similarly, urbanization has altered 

malaria epidemiology in urban Africa (Castro et al. 2004; Keiser et al. 2004; Tatem and Hay 2004; 

                                                      
1A modified version of this manuscript is submitted with Merveille Koissi Savi, Bhartendu Pandey, Anshuman 
Swain, Jeongki Lim, Daniel Callo-Concha, Mohammed Wahjib, Caroline O. Buckee, Christian Borgemeister  
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Hay et al. 2005a; Tatem et al. 2008, 2013), but the conclusions are mixed. Some studies show 

reduced malaria prevalence in urban areas due to urbanization benefits (e.g. improvement, 

accessibility, and availability of health system, etc.) (Coene 1993; Snow et al. 2005; Donnelly et 

al. 2005; Smith et al. 2005; Machault et al. 2010; Noor et al. 2014). For example, the 

entomological inoculation rate, a proxy to assess malaria risk, is lower in urban and peri-urban 

areas, as compared to rural areas (Hay et al. 2005a) and vegetation loss reduces the potential 

breeding sites of the Anopheles mosquito (Awine et al. 2018). Other studies associate higher 

malaria risks with increasing urbanization. For instance, the acquired immunization to malaria 

decreases in urban areas due to the lack of repeated exposure (Baragatti et al. 2009), and 

unplanned urbanization (Klinkenberg et al. 2005; Fillinger et al. 2008; Eder et al. 2018), poverty, 

and lack of sanitation infrastructure (Alemu et al. 2011; Awuah et al. 2018) magnify malaria 

incidence, especially among young children (Awolola et al. 2007). Furthermore, people living 

close to urban and peri-urban farms are more exposed to malaria than people living far away 

(Hay et al. 2005a; Stoler et al. 2009). These interdependencies between urbanization and malarial 

incidence suggest a rather contextual association. Therefore, we hypothesize that some 

prevailing conditions are determining the association between malaria and urbanization. 

Urbanization has been diversely defined and different spatial analysis approaches and 

analytical techniques have been used to explore its impact on malaria (Hay et al. 2005a, b; 

Omumbo et al. 2005; Tatem et al. 2013). Multiple dimensions of urbanization and multiple ways 

of measuring them present an important challenge to malaria control in urban settings, given the 

nature and extent of the problem in urban localities are both underappreciated and under-

researched. In many studies urbanization is reported as a singular metric (based on the 

administrative definition of urbanization), whereas it is a multidimensional phenomenon and 

process. Similarly, studies often focused on average malaria incidences whereas there can be 

inter-generational and sex disparities.  

In this paper, we analyze how urbanization is associated with heterogeneity in malaria 

incidence in Ghana, and identify factors undergirding this association. To this end, we examine 

the role of urbanization by using estimates from census and satellite data and perform a novel 
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spatially detailed examination of urbanization and malaria incidences at the national scale in 

Ghana, which includes sex- and age-categorized numbers of cases at the district level. 

3. 2. Data and Methods 

3.2.1 Clinical data 

We obtained clinical data from the Ghana District Health Information Management 

System (DHIMS) which is a decentralized system working at different administrative levels, 

providing preliminary data that helps inform public health policy decisions. Clinical data 

comprises explicit data of the number of confirmed uncomplicated malaria cases aggregated by 

month, district (n=216), age categories (n=11), and sex (n=2) over four years from 2015 to 2018. 

The data contain anonymized outpatient records. 

3.2.2 Census and satellite data 

We obtained current district boundary data from the Government of Ghana (GoG) 

website (https://data.gov.gh/dataset/shapefiles-all-districts-ghana-2012-216-districts) and 

merged it with the clinical data, creating a spatialized version of the clinical dataset. We also 

acquired the 2010 Ghana census, from the Ghana Statistical Service for erstwhile 170 districts, 

whose boundary data were gathered from the GoG website 

(https://data.gov.gh/dataset/shapefiles-all-districts-ghana-170-districts). Due to differences in 

the number of districts over time, we merged the two datasets using spatial join and spatial 

intersection tools in QGIS. To correct for differences in the number of districts, we calculated a 

weighted average of population counts for each district, where built intensities for the year 2014 

(built area/total area) derived from the Global Human Settlement Layer (GHSL) were used as 

weights (Pesaresi et al. 2013). This approach yielded a combined spatially explicit census and 

clinical malaria cases dataset. In further analysis, we assumed that the cross-sectional 

distribution of population counts and urbanization levels did not significantly change since the 

last population census. 

In addition to the census-based urbanization measurement, we computed urbanization 

metrics using a satellite-derived GHSL dataset (v 1.0) for the year 2014, obtained from 

http://cidportal.jrc.ec.europa.eu/ftp/jrc-opendata/GHSL/GHS_BUILT_LDSMT_GLOBE_R2015B/. 

https://data.gov.gh/dataset/shapefiles-all-districts-ghana-2012-216-districts
https://data.gov.gh/dataset/shapefiles-all-districts-ghana-170-districts
http://cidportal.jrc.ec.europa.eu/ftp/jrc-opendata/GHSL/GHS_BUILT_LDSMT_GLOBE_R2015B/
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For each district, we calculated the total built area (km2) and built intensity (built area/total area) 

as two additional measures of urbanization. 

We estimated the density of socio-demographic groups in each district from 2015 to 

2018 with a gridded population estimated at 100m spatial resolution WorldPops’ dataset  

(GeoData Institute 2020). Under-five mortality rates, men and women literacy rates, 

immunization rates, the proportion of insecticide-treated bed-net possession, the proportion of 

households lacking toilet facilities, and the proportion of households using an improved water 

source were aggregated at the district level from the Demographic and Health Survey (USAID 

2015) gridded dataset. Average precipitation from 2015 to 2018 at the district level was 

estimated from the Global Precipitation Measurement (GPM)-based merged satellite-gauge 

precipitation estimates in Google Earth Engine. Similarly, we used Landsat 8-derived normalized 

vegetation difference index (NDVI) to estimate median vegetation cover from 2015 to 2018 at 

the district level. 

3.2.3 Statistical analysis 

3.2.3.1. Malaria incidence across space, time, and socio-demographic groups  

We developed a three-level model to examine the heterogeneity in malaria incidence 

with respect to the socio-demographic groups (age and sex), and location (districts). Detailed 

identification of the temporal and spatial heterogeneity was done using the seasonal-trend 

decomposition using locally estimated scatterplot smoothing (LOESS) global and local Moran’s I 

statistics, respectively. 

We fit a single-level model, also denoted unconditional means model, (Eq. 3.1) to 

estimate the overall incidence during the period of data collection for the period of 2015-2018. 

Here we evaluated the proportion of variation in the incidence due to the location using the intra-

class correlation coefficient (ICC).  

 𝐼𝑖𝑗 = 𝜇0 + 휀𝑖𝑗, 휀𝑖𝑗~ 𝑁 (0, 𝜎
2)  

(3.1) 

where I is the malaria incidence of the district i (i=1, …, 216) for the year j (j=2015,…, 

2018), 𝜇0 is the average incidence across districts, and 휀𝑖𝑗is the residual for a specific district and 

year (difference between the mean value of incidence and the observed value).  
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We extended the single-level to a two-level model, also known as the unconditional 

growth model (Eq. 3.2), where the effect of time (random effect) was measured as nested to the 

district. We computed the ICC of the unconditional growth model, to malaria incidence way 

across time and location (district).  

 𝐼𝑖𝑗 = 𝜇0 +  (𝜇𝑗 + 휀𝑖𝑗), 𝜇𝑗~ 𝑁 (0, 𝜎𝜇
2), 휀𝑖𝑗~ 𝑁 (0, 𝜎

2)  

(3.2) 

Where 𝜇0 represents the average incidence per year associated with the fixed effect. 𝜇𝑗 the 

variation due to the district is considered as a random effect together with the residual of the 

model. Both 𝜇𝑗 , 휀𝑖𝑗 are the random effects of the models assumed to be independent and 

identically distributed, i.e., assumed to follow a normal distribution with the mean 0 and 

variance, respectively 𝜎𝜇
2 and 𝜎2.  

We further extended the previous model to a three-level model while adding sex 

(dummy variable) and age groups (with eleven levels) as fixed effects to compare and contrast 

the effect of sex and age on malaria incidence. 𝜇𝑗  in Eq. 3.3 becomes  

 𝜇𝑗 = 𝛾𝑖0 + 𝛾𝑖𝑗 + ℇ𝑖𝑗  

(3.3) 

where 𝛾𝑖0 represents the average incidence associated with either sex or age; 𝛾𝑖𝑗 the 

effects associated with either the sex at the location or the age group on the location. We 

selected the better-fit model between the additive and multiplicative using a chi-square test 

where the additive model was the best fit. Similarly, we used the same test to select the better-

fit structure of the matrix of variances-covariance for both the residual and the random 

components of the model (Eq. 3.3). Then, the matrix of variances-covariance of residuals selected 

was the first-order autoregressive indicating that the correlation between two observations gets 

weaker as the distance between them increases, whereas, the unstructured matrix fitted better 

for the random effects, indicating that there is no constraint across random effects. The statistical 

difference between socio-demographic groups and location was visualized using histograms and 

maps. To examine the statistical difference across years, we decomposed malaria incidence time-

series using an additive decomposition into seasonality, trend, and remainder components, also 

denoted seasonal-trend decomposition using LOESS (STL)  (Cleveland et al. 1990). 
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To check the consistency in the spatial structuring of malaria incidence, we computed 

the Global Moran’s I statistic using the Queen’s contiguity matrix (Eq. 3.4).  

 
𝐼 =

𝑁

𝑊

∑ ∑ 𝑤𝑖𝑗(𝑥𝑖 − �̅�)(𝑥𝑗 − �̅�)𝑗𝑖

∑ (𝑥𝑖 − �̅�)2𝑖
 

 

(3.4) 

 

where 𝑁 is the number of districts, 𝑥 the incidence of malaria, 𝑥  their mean, 𝑤𝑖𝑗 the 

Queen’s contiguity matrix (where 𝑤𝑖𝑗 =  0), and 𝑊 the sum of all 𝑤𝑖𝑗. The local Moran’s I was 

computed to assess the number of spatial clusters and establish the local indicators of spatial 

association (LISA) map to visualize the most significant local spatial correlations.  

3.2.3.2. Association between malaria incidence and urbanization 

As we did not assume any nature (linear or not) of the association between urbanization 

and malaria burden, we examined both linear and nonlinear correlations between three variables 

quantifying urbanization, i.e., the administrative-defined urbanization, the total built areas, and 

built intensity against the aggregated median monthly malaria incidence between 2015 and 

2018. The linear association was checked with Pearson correlation and the nonlinear association 

was checked using spatial sampling.  

3.2.3.3. Contextual association between malaria incidence and urbanization 

The heterogeneity in malaria incidence and urbanization data was first described using 

a principal component analysis (PCA). As the heterogeneity in malaria is peculiar to geographical 

space (Klinkenberg et al. 2005) and social factors (Awuah et al. 2018), we defined the contextual 

association as the set of conditions underneath the relationship between urbanization and 

malaria burden. These conditions were assessed after clustering and cluster-specific random 

forest regression model (RF). The clusters of incidences were defined using k-means of district-

level data on median monthly malaria incidence across various age and sex groups. The number 

of clusters and their membership (districts) was optimized using the Bayesian Information 

Criterion (BIC). The outcome was used for a cluster-specific RF, i.e., RF regression of health and 

hygiene and education (mortality of children under five, the proportion of literate men and 

women, the rate of immunization, the proportion of insecticide-treated bed-net possession, the 

proportion of households that lack toilet facilities, and the proportion of household using an 
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improved water source), environmental (rainfall, and vegetation coverage) and urbanization 

measures against malaria incidence. Each RF regression was done using 10,000 trees to identify 

which parameters are the strongest predictors of median monthly malaria incidence. We 

optimized the number of parameters available for splitting at each tree node in the RF using out-

of-box error (OBE).  

To get a better understanding of malaria in big cities such as Accra (Greater Accra) and 

Kumasi (Ashanti), we performed a series of descriptive statistics.  

3.3. Results  

3.3.1 Spatio-temporal distribution of malaria epidemics across socio-demographic groups 

The highest malaria incidence was observed among children from one to five years old, 

while the lowest was among children less than a month regardless of the location between 2015 

and 2018. We found over 19 million clinical cases of malaria in Ghana between 2015 and 2018. 

The region of Upper East recorded the highest median incidence ~248 per 100,000 cases for 

children under five years old (Figure 3.1). The lowest maximum of the median malaria incidence 

was recorded in the region of Greater Accra for women from 20-34 years old, which was ~52 per 

100,000 population. The lowest median average was found in the overall region (~ 0.32 per 

100,000 population) corresponding to one confirmed case. This lowest record indicates that 

regardless of the time and the location, there is at least one case of malaria confirming that 

Ghana is a malaria-endemic region. The overall lowest median was recorded in the Northern 

region (~7 per 100,000 population) whereas the overall highest median was recorded in both the 

regions of Brong Ahafo and Western (~21 per 100,000 population) (Suppl. Table 1). Conversely, 

the overall lowest median was not found in urban areas (Hay et al. 2005b; Kabaria et al. 2017) 

such as Ashanti and Greater Accra. These findings suggest malaria incidence varies with respect 

to age and geography, and question precedent narrative stating that the lowest incidences are 

found in urban settings. 

The average incidence of malaria within the country estimated by the unconditional 

means model (level 1) was 25.66 per 100,000 ± 1.89 (P < 0.0001) (Table 3.1- Level 1) and 

confirmed the spatial clustering since the 16.39% (ICC, Table 3.1) of the total variation in malaria 

incidence is due to between district variation. The spatial clustering in the epidemics has been 
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confirmed by Moran’s I statistic (see section 3.3.1 last paragraph). The unconditional growth 

model (level 2) captured more variability than the previous (ICC 19.8, Table 3.1), and there is a 

significant variation in malaria incidence across years (Table 3.1). A chi-square test confirms the 

three-level additive model as a better fit than the three-level multiplicative model (P < 0.01). 

Furthermore, this model revealed that malaria incidence varied significantly between years, ages, 

and sex (Table 3.1 Level 3), with 50.09% due to between-district variations and 49.90% due to 

within-district variations.  
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Table 3 1: Multilevel model showing the variation over years, sex, and age 

 Null model (Level 1) Unconditional growth model (Level 2) Three levels model (Level 3) 

Predictors Estimates CI P df Estimates CI p df Estimates CI p df 

 (Intercept) 25.66 23.77 – 27.56 <0.001 98034 -2489.24 -
2848.42 – 
-2130.05 

<0.001 98033 -
3679.6
9 

-
4487.81 – 
-2871.58 

<0.001 98031 

Year 
    

1.25 1.07 – 1.43 <0.001 98033 1.85 1.44 – 2.25 <0.001 98031 

sex [m] 
        

-6.65 -7.18 – -
6.12 

<0.001 98031 

Age 
        

-0.37 -0.38 – -
0.35 

<0.001 98031 

Random Effects 

σ2 1014.21 1012.26 1100.25 

τ00 198.88 District 0.00 District 0.00 District 

τ11 
 

0.00 District.Year 0.00 District.Year 

ρ01   0.89 0.00 

ICC  0.1639 0.1978 0.1978 

N 216 District 216 District 216 District 

Observations 98250 98250 98250 

Marginal R2 / 
Conditional 
R2 

0.000 / NA 0.002 / 0.166 0.087 / 0.087 
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Children under five years old recorded the highest incidence, whereas children 

below a month recorded the lowest malaria incidence (Fig 3.1). Independent of the 

location female always had the highest incidence than males between 2015 and 2018. 

There is a variation in the incidence over time regardless of the location with the highest 

records observed in 2017 (Fig 3.1). The Upper East region has the highest and the 

Northern region has the lowest incidence (Fig 3.1). We observed that malaria incidence 

in Ghana varied across years, ages, sex, and locations, corroborating previous evidence 

(Feachem et al. 2010; Trauer et al. 2019).  

Regarding the temporal heterogeneity in malaria incidence, the STL showed an 

overall decrease in the disease, but at the district level an overall increase in every region 

except in the Upper West and Upper East regions (Fig. 3.1). Moreover, there are 

seasonal fluctuations, which are more pronounced in Brong-Ahafo, Eastern, Northern, 

Upper East, and Upper West regions (Fig. 3.1). The softened peaks of malaria incidence 

observed in urban dominated regions such as Greater Accra and Ashanti could be 

explained by the constant influx of people (Molina Gómez et al. 2017), contrary to the 

other regions where urbanization and immigration are lower.  

 

Fig.3. 1: Distribution of the incidence in regions by year and age. 

Regarding the above-mentioned spatial heterogeneity, our analysis confirmed 

a geographic dependence at the district level (Moran’s I = 0.2596, P = 2.827e-10). Thus, 
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we found persistent high incidences in 34 districts located in Greater Accra, Western, 

Upper East, Brong-Ahafo, Ashanti, and Northern regions (Suppl. Fig. 4), which suggests 

an association of malaria incidence with environmental factors.  

3.3.2. Malaria incidence and urbanization 

The degree of urbanization differs according to the proxy, i.e., census versus 

satellite data (Suppl. Fig. 3.4). We found a weak linear and significant correlations 

(Pearson’s coefficient) between median monthly malaria incidence and 

administratively-defined urbanization (r= 0.32, P < 0.001), and built areas (r = 0.31, p < 

0.001) but not significant between median monthly malaria incidence and built intensity 

(r= 0.07, P = 0.32). The first two linear associations suggest that urbanization increases 

malaria incidences conversely to the most documented narrative (Hay et al. 2005b; 

Tatem et al. 2013). However, more than 60% of the association is not explained by a 

linear relationship. With the spatial sampling method, we found a slightly stronger 

nonlinear correlation with administratively-defined urbanization (r=0.34, P = 0.004), 

built areas (r = 0.31, P < 0.001) and malaria incidence. There is not a sufficient argument 

to conclude in favor of a significant nonlinear correlation between malaria incidence and 

the built intensity (r = 0.00001, P = 0.45). The two associations are, however, weak since 

more than 60% of the variations in median monthly malaria incidence are nonlinear. 

This indicates that the relationship between urbanization and malaria incidence is rather 

contextual.  

3.3.3. Contextual association between malaria and urbanization 

Given that the linear and nonlinear associations between malaria incidence 

and urbanization were not strong, we turned to examine the underlying heterogeneities 

in the aggregated monthly median malaria incidence and their association with socio-

economic, environmental, and urbanization determinants. To understand the gradient 

of heterogeneities in the median incidence data, the k-means analysis distinguished 

three clusters of incidence, namely low, high and median monthly malaria incidence. 

Besides, the PCA revealed variability in the cluster with respect to socio-economic, 

environmental, and urbanization determinants. The three clusters of monthly malaria 

incidence spatially coexist, indicating that even in urban areas there are some districts 
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with high, medium, and low monthly malaria incidence, likewise for rural areas (Fig 

3.2A).  

There is a component of urbanization explaining the spread within each of the 

clusters (Fig. 3.2B) as indicated by the cluster-specific RF and PRCC. The variance 

described by the RF models for median incidence for Group 1 to 3 is 67.38%, 51.26%, 

and 62.93%, respectively. The built areas are the major driver of monthly malaria 

incidence in the group of low median incidence (group 1, Fig. 3.2B, C). Thus, the 

transmission gets higher in the cluster of low median incidence when more areas are 

built, suggesting men-made mosquito breeding sites are the leading cause of malaria 

infection. This cluster is a mix of varying degrees of low and medium urbanized localities 

(Suppl. Table 1). Although the overall variance explained by NDVI is low, the more 

vegetation cover there is, the higher the malaria incidence is (Fig.3.2C). 

The built intensity, the built areas, and the NDVI drive malaria incidence in the 

cluster of median malaria incidence (group 2, Fig. 3.2B, C). Unequivocally, dense 

vegetation cover and higher built areas fuel malaria incidence whereas a higher built 

intensity decreases it. This suggests both anthropogenic and environmental factors as 

drivers of malaria incidence in the cluster of districts having medium monthly malaria 

incidence. This cluster is situated mostly in peri-urban areas (Fig. 3.2A) where, albeit 

with a lower percentage of explained variance, the mortality of children under five also 

influences the incidence.  

Administrative-defined urbanization is the main driver of high median monthly 

malaria incidence (group 3, Fig. 3.2B, C). Administratively, in Ghana, an area with a 

population surpassing 5,000 people per km2 is characterized as urbanized (GSS 2013). 

Thus, the denser the population is the higher the incidence will be. This cluster 

encompasses mostly the highly urbanized areas (Suppl. Table 1). Notwithstanding the 

lower percentage of variance explained, the mortality of children under five is negatively 

associated with median monthly malaria incidence.  

Besides, the lack of toilet facilities exacerbated malaria incidence in the three 

groups.  
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Concisely, the degree of urbanization solely does not determine median 

monthly malaria incidence since it depends not only on the degree of urbanization but 

also on the environment (men-made or natural) and the health and sanitation of the 

population.  

 

Fig.3. 2: Contextual association between urbanization and the monthly median 

incidence of malaria: (A) Clusters of districts by the similarity of malaria 

incidence across all age-sex groups (obtained using k-means clustering); (B) 

Normalized Variable Importance scores (IncNodePurity) from Random Forest 

regression analysis of how within each cluster (obtained in [B]), different 

urbanization features predict average malaria incidence; (D) Partial Rank 
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Correlation Coefficients (PRCC) of how within each cluster (obtained in [B]), 

different urbanization features affect median malaria incidence.  

Besides, in the region of bigger cities in Ghana such as Greater Accra and 

Ashanti, there is a positive association between built areas, built intensity, and median 

monthly malaria incidence, confirming that men-driven malaria incidence in Accra and 

Kumasi (Fig.3.3). However, the ITN coverage and the vegetation cover have an adverse 

effect on malaria incidence. The latter should be read the less there is a vegetation cover 

and the more malaria increases (Fig. 3.3). Moreover, there is a positive association 

between population density and median monthly malaria incidence in the Ashanti and 

Greater Accra regions.  

  

Fig.3. 3: Heat map showcasing the visualization of the normalized value of some key 

covariates in the district located in the Greater Accra and Ashanti regions NDVI 

is the vegetation cover; BuiltIten represents the built intensity, ITN represents the use of ITN, 

Med_Inc represents the median monthly incidence and BuiltAr represents the built area  

The spatial distribution showed (Fig.3.4.) that at the district level even in these 

regions, the repartition of the covariate is highly heterogeneous with Accra and Kumasi 
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having the highest incidence. Most importantly, the surrounding of Accra and Kumasi 

also recorded a higher incidence of malaria. Hence, there is likely diffusion of malaria 

incidence from urban to peri-urban areas. However, this hypothesis has not been 

explicitly tested in the scope of this study. Surprisingly, Accra and Kumasi also recorded 

the lowest use of ITN (Fig. 3.4) conversely to the neighboring district where the coverage 

rate of ITN increases as the gyration radiation increases. Besides, the density of the 

population in the neighboring districts does not follow a diffusion. Accra and Kumasi 

concentrate the highest density of population whereas in the neighboring district the 

density of population is lower.  

 

   

Fig.3. 4: Thematic map of the spatial repartition of the normalized value of key covariate 

that explains the incidence of malaria in the Greater Accra and Ashanti 

regions  

3. 4. Discussion  

3.4.1 Malaria pattern in Ghana  

Although at the country level malaria incidence decreased over time, at the 

regional level, the incidence increased almost everywhere, except in the Upper East and 

Upper West regions. This is probably the result of an increase in awareness of the 

population that is now inclined to healthcare support upon the onset of malaria 

symptoms. Since 2005, Ghana is implementing universal health coverage for all the 

citizens through its National Health Insurance (NHI) scheme (Ministry of Health 2004). 

The implementation of the NHI in Ghana fivefold increased the willingness of the 
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population to seek treatment in healthcare facilities (Fenny et al. 2015). Besides, the 

increase in malaria incidence can be attributed to changes in factors influencing malaria 

epidemiology. For instance, the 3.5% increase in malaria incidence in 2016 was 

associated with the use of falsified drugs and the practice of self-medication (Ghana 

Health Service 2016). An increase in precipitation can equally exacerbate malaria 

incidence, where a monthly augmentation of 10 mm of rainfall increases clinical malaria 

by 1% (M’Bra et al. 2018). While factors like greater awareness, access to healthcare, 

and monitoring impetus suggest a positive change in health-seeking behavior, changes 

in the social and physical environments can support the factors increasing the 

epidemiology of the disease. Due to limited data used in the scope of this study, we 

cannot elaborate on the healthcare-based drivers and their association with the 

observed trends, and thus, we focus on spatial analysis. Alternatively, the decreasing 

rate in Upper East and Upper West is possibly associated with the use of indoor residual 

spraying since 2016; however, stronger evidence is needed to confirm this association 

(Gogue et al. 2020).  

We observed a strong seasonality in malaria incidence which is associated with 

rainfall patterns where the increase in the incidence coincides with the peaks in rainfall 

but differs slightly from one region to another along a north-south gradient (Awine et 

al. 2018). Donovan et al. (2012) and Awine et al. (2018) explained that the clinical cases 

rise during rainy seasons and fall during dry seasons, the latter likely due to a decrease 

in vector density. 

Regardless of location (urban versus rural) and socio-demographic groups, the 

highest incidence was recorded for children under five years old with children below 

one year as the group with the lowest risk. Two major reasons can be attributed to the 

latter observation: (1) the positive outcome of malaria policy and (2) evidence of 

maternal immunity. Children-targeted interventions have been proved to reduce 

malaria mortality and morbidity by up to 18.8% in Ghana (Afoakwah et al. 2015), and 

through poorly understood mechanisms, children under six months are protected by 

maternal antibodies (Dobbs and Dent 2016). Arguably, such antibodies are acquired by 

juveniles through maternal parity, intermittent preventive drugs, and recall response of 
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juvenile blood lymphocytes to malaria antigens (Dent et al. 2006; Metenou et al. 2007; 

Apinjoh et al. 2015). We suspect a reporting bias for women, especially since we found 

a higher incidence in women especially in urban areas in Ghana where they are given 

insecticide-treated bed-net and malaria chemotherapy on antenatal visits (Afoakwah et 

al. 2018). We hypothesize that women in cities are more informed about the World 

Health Organization (WHO) policy on intermittent preventive treatment in pregnancy 

than those in rural areas. This hypothesis was supported by a recent study in neighboring 

Burkina Faso where urban women are more aware of malaria causes, symptoms, and 

preventions than rural ones (Yaya et al. 2017).  

3. 4.2 Malaria and urbanization in Ghana  

We found that even in cities the seasonal decomposition of the incidence time 

series revealed an increasing malaria rate. Besides, the LISA map showed that in some 

districts, such as Accra, there is a locally higher and significant incidence. Similar 

observations were made in other cities such as Douala and Yaoundé (Cameroon) where 

Anopheles gambiae thrive in complex human habitats and even adapt to pyrethroid-

polluted water where their larvae develop (Tene Fossog et al. 2012). The adaptation of 

An. gambiae to the urban environment cut across their entire life cycle and was shown 

to be a signature of the human-driven evolution of the genetic make-up of the species 

(Alberti et al. 2017; Hendry et al. 2017). Similarly, the recently introduced Asian 

Anopheles stephensi could colonize 22 urban settings in Africa, including Accra, putting 

more than 40% of the continent’s urbanites at high risk of malaria (Surendran et al. 2018; 

The World Bank 2020; Sinka et al. 2020). An. stephensi is more effective at transmitting 

the disease than An. gambiae since it can bite outdoors from 6 PM to 6 AM (Massey et 

al. 2016).  

Different predictors were relevant to explain the association between the 

incidence of malaria and the degree of urbanization. In poorly to moderately urbanized 

areas the incidence of malaria is mainly driven by vegetation cover and man-made 

environments. There is an inverse association only when the vegetation cover is sparse. 

Moderate or dense vegetation is a necessary ecological condition that enables mosquito 

vectors to forage in urban environments. The vegetation provides refuge for adult 
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mosquitoes during the daytime, while precipitation allows the female mosquito to breed 

(Ricotta et al. 2014). The interaction between vegetation cover and men-made breeding 

sites is particularly acute in urban settings where mosquitoes' ideal reproductive sites 

(clean and shallow water and vegetation) are not always present (Mattah et al. 2017). 

Because of the unfavorable breeding conditions of mosquitoes, urbanites are less 

exposed to their bite leading them to be more vulnerable to malaria (Gardiner et al. 

1984; Frank et al. 2016; Kabaria et al. 2017). A loss in the vegetation cover generates an 

increase in local temperature and consequently alters the risk of contracting malaria 

(Olson et al. 2010). Nonetheless, Afrane et al. (2005) demonstrated that an increase in 

the local temperature in Western Kenya caused by deforestation increased the vectorial 

capacities of An. gambiae. According to the same authors, this increase reduces the 

sporogonic cycle and triple the risk to contract malaria.  

In highly urbanized areas instead, population density is the main driver of 

malaria incidence. This can probably be explained by the immigration and the 

accessibility to primary care facilities in urban settings. People from peri-urban and rural 

centers move to better and affordable healthcare facilities especially when the travel 

time is below two hours (O’Meara et al. 2009). Therefore, such imported malaria cases 

are counted in cities such as Accra and Kumasi where the incidence is then higher than 

in the neighboring districts. More specifically, healthcare facilities are more accessible 

in Accra and Kumasi although efforts have been made to reduce the burden of these 

healthcare delivery systems (Frimpong 2013). For example, a recent study showed that 

people living in the rural Ashanti Region travel a long distance to Kumasi to access 

healthcare (Ashiagbor et al. 2020). On the other hand, in Tema, a district located in the 

Greater Accra region, there is a high prevalence of malaria among the mobile population 

of hawkers and long-distance truck drivers (Diallo et al. 2017). A cross-sectional study 

conducted in Accra and Kumasi revealed the presence of Plasmodium falciparum in the 

blood smear of children under five of people who traveled the last three weeks before 

the study (Klinkenberg et al. 2006). Consequently, Accra and Kumasi represent 

healthcare catchment accounting for malaria imported cases. 
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We found that the lack of toilet facilities increased malaria incidence regardless 

of the degree of urbanization. In highly urbanized areas in Ghana, private toilet facilities 

are often missing in deprived communities populated by poor urbanites. This lack of 

toilet facilities can be considered as a cofactor underpinning the poverty of citizens who 

due to their activities, are more exposed to mosquito bites (Awuah et al. 2018).  

We used datasets generated from satellite images or spatial modeling 

techniques. Thus, each of the variables has its bias that may affect our estimation of the 

incidence as well as the prevailing conditions of an association between malaria 

incidence and urbanization. These biases could be multiplicative or additive, and 

consequently, our conclusion could have over- or underestimated the prevailing 

conditions. Therefore, there is a need to validate our findings with empirical data. 

Nonetheless, our study went beyond an assessment of association and revealed some 

sets of the prevailing conditions for an association between malaria incidence and 

urbanization. Importantly, the current study reunited the two postulates and revealed 

that malaria in urban settings is more complex than that described by urbanization level, 

regardless of how we measure urbanization. Instead, understanding the association 

between malaria and urbanization will require a focus on social and ecological 

heterogeneities. Our results suggest that examining whether urbanization or urbanicity 

uniquely increases or decreases malaria incidences in Ghana requires a contextual lens. 

Examining the association and drawing inferences can benefit from a focus on the socio-

ecological contexts and how they vary with human settlements. A chief implication of 

our study is on the complexities of malaria epidemiology and urbanization, and 

addressing these complexities would need a multidisciplinary approach. 

3. 5. Conclusion 

In this study, we analyzed a recent spatially- and temporally-detailed dataset 

of malaria incidence in Ghana from 2015-2018. Our analysis derived a series of stylized 

facts about malaria incidences in Ghana, suggesting significant underlying complexities 

in malaria epidemiology. Chiefly, we find evidence of heterogeneity in malaria incidence 

that varies across regional and urban contexts. The drivers of malaria incidence depend 

on the degree of urbanization opening up avenues for future research on the marginal 
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effect of the drivers on malaria disease dynamics in urban malaria-endemic areas. 

Observations derived from our analysis, therefore, will be useful in future modeling 

work to understand the implications of climate change and urbanization-led changes in 

malaria dynamics for health inequities in Ghana and beyond. 
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4. EMERGING PROPERTIES OF MALARIA TRANSMISSION AND PERSISTENCE IN URBAN 

ACCRA, GHANA: EVIDENCE FROM A PARTICIPATORY SYSTEM APPROACH2 

4.1 Introduction  

Malaria is still the deadliest infectious disease, responsible for more than 

380,000 deaths in 2018 only (WHO 2020). In endemic areas of sub-Saharan Africa (SSA), 

the expenses for its control and prevention reach up to 40% of all public health 

expenditures (WHO/UNICEF 2015), and its effects were estimated to have reduced the 

GDP by 9% in 2010 in affected countries in SSA (Mwabu et al. 2011). Due to the 

collaborative efforts of governments and development partners, malaria mortality has 

been reduced by 66% from 2007 to 2017 (World Health Organization 2017), but the 

challenge is yet far from being solved.  

Africa’s population is expected to triple by 2050 (Donnelly et al. 2005), with 

major growth occurring in urban areas. For example, the population of major Ghanaian 

cities has grown by 3.5% per annum from 1984 to 2010 (Owusu and Yankson 2017). 

Urbanization has shifted the priorities of the public health system from the control of 

vector-borne diseases such as malaria to environmental public health challenges, such 

as traffic congestion, slumming, and pollution (Cabannes 2015). For example, in Accra, 

the capital of Ghana, urbanization-related issues often overshadow the infectious 

diseases related ones, with the local government investing less than 50USD per person 

per year on health (Elsey et al. 2019). Moreover, the poorest communities experience 

the greatest harm (Elsey et al. 2019), like Accra’s head porters, especially challenged by 

the nature of their work and often not able to afford the national insurance scheme 

(Lattof 2018). 

A pressing public health issue is the prevalence of vector-borne diseases, like 

malaria (Keiser et al. 2004; Kabaria et al. 2017). Its predominant vector Anopheles 

gambiae, whose customary habitat for reproduction used to be rural, clean, and shallow 

water ponds surrounded by grassy fields, has now adapted to the urban conditions and 

                                                      
2A slightly modified version of this manuscript was published in Malaria Journal 

(doi.org/10.1186/s12936-021-03851-7) with Merveille Koissi Savi, Daniel Callo-Concha, Henri E.Z. 
Tonnang, Christian Borgemeister.  

https://doi.org/10.1186/s12936-021-03851-7
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prospers in polluted waters, such as clogged gutters or puddles, characteristic of poor 

urban housing (Keiser et al. 2004; Mattah et al. 2017).  

This example shows the complex and adaptive character of the malaria 

transmission system, where the humans, vectors, the environment, and parasites 

interact in an iterative and nonlinear manner (Endo and Eltahir 2016). Earlier modeling 

approaches rarely considered such complexity, and instead conceived transmission 

causal and unilaterally, which contributed to the development of policies favoring the 

promotion of single-intervention programs, like the free provision of malaria drugs (Van 

Der Geest 1987; Adome et al. 1996; Williams and Jones 2004).  

A complex system is one where its components, apparently disconnected and 

performing their roles after their interests, align together to perform more sophisticated 

functions (Mitchell 2011). This tends to be the case for most social and ecological 

phenomena, as they do not occur in isolation but intermingled (Berkes et al. 2002). The 

unraveling of complex systems is operationalized through approaches, methods, and 

tools that instead of assessing the determinants individually, focus on the interactions 

among them, and the overall function of the system (Ludwig 1950). In that regard, the 

involvement of local stakeholders appears key, as it reduces the bias of researchers and 

increases the legitimacy of the outcomes (Walker et al. 2002).  

We have applied such approaches in this study and visualized the interactions 

among the determinants of malaria transmission in urban conditions using a Causal Loop 

Diagram (CLD) and displayed emergent properties of the system via Network Analysis 

(NA).  

CLD can support the visualization of the interplay among determinants and 

assist in the identification of causal relationships among them (Baugh Littlejohns et al. 

2018). Moreover, to better understand the complexity of malaria transmission, CLD can 

also help to devise improved strategies for more effective control of the disease in cities 

(and beyond) by scouting underplayed channels (Endo and Eltahir 2016).  

NA is based on the principles of network theory, where a system is considered 

a web of edges (interactions) that connect the nodes (determinants) (Borgatti and Halgin 

2011). The examination of the network properties (e.g. density) and its topology, e.g. 
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centrality, indicate the nature of the information flow and reveal the most sensitive 

determinants and their roles (Sporns et al. 2007; McGlashan et al. 2016). Furthermore, 

by applying graph theory, NA offers powerful visualizations of the analyzed phenomena  

(Borgatti and Halgin 2011; Prell 2011). A successful application of NA can display some 

emerging properties of complex systems, such as McGlashan et al. (2016) did in 

identifying the leverage points, i.e., where one can intervene to alter the system of 

childhood obesity in Australia. 

We hypothesized that by combining participatory CLD and NA we would be 

able to better accomplish the aims of this study, that are (i) to understand the interplay 

between determinants of the system of transmission and persistence of malaria in urban 

settings, and subsequently (ii) to identify its emerging properties (i.e., properties of the 

network and leverage points of the system and derive potential interventions on the 

system).  

4.2. Methods 

4.2.1. Study area 

Accra, the capital city of Ghana, is located on the coast of the West African Gulf 

of Guinea. Its climate is tropical alternating wet and dry phases, mainly due to the 

cyclical harmattan winds. The average annual rainfall is 730 mm and bimodally 

distributed, the temperature average reaches 26.6°C, and the relative humidity rounds 

81%, with little variations along the year (Awine et al. 2017; Wikipedia 2020). Accra’s 

current population is 2,3 million, to a great extent composed of migrants from 

successive waves of rural-urban migration across the last 50 years. Housing is uneven in 

infrastructure quality and service provision, but standards are generally low. The worst 

affected areas are old central neighborhoods, where slums abound, and peripheral 

settlements, where new developments happen (Songsore 2008).  

Although malaria is traditionally considered a predominantly country-side 

disease, recent evidence showed that mortality and morbidity in SSA’s urban and rural 

areas are highly heterogeneous (Donnelly et al. 2005; Tatem et al. 2008, 2014). For 

example, in Accra, slums and poorly-managed urban areas such as James-Town and 
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Korle-Dudor districts recorded the highest malaria indices of morbidity and mortality 

(Austin 2015).  

4.2.1.1. Identification of key experts and Causal Loop Diagram elicitation 

Initially, we held an informal meeting with district assembly members of 

James-Town and Korle-Dudor districts and other members of the communities, to 

identify the key institutions and experts working on the prevention and treatment of 

malaria. The list of institutions and experts was consolidated to include twelve 

representatives from the Ghana National Malaria Program, Malaria Initiative/ USAID, 

World Health Organization, Ghana Health Service, Plant Protection and Regulatory 

Services/ Ministry of Food and Agriculture, Noguchi Memorial Institute for Medical 

Research, several NGOs, and local healthcare facilities (Suppl. Table 1). 

The experts met in two recorded qualitative workshops, which were facilitated 

by a modeling team (modeler, facilitator, and wall-builder) following Hovmand’s 

guidelines (Hovmand 2014). The architecture of the workshop is documented by 

(Hovmand et al. 2013; Hovmand 2014). Most specifically, in the first workshop, we 

refined the problem, defined the variables of the model using five thematic clusters 

(vector, parasite, environment, human, and health care system), and drew an initial CLD. 

A CLD aims to show the interplay between components of a complex system, eliciting 

the feedback loops, and facilitate the understanding of a given problem (Binder et al. 

2004; Purwanto et al. 2019). For that, we set the background by presenting the 

outcomes of precedent informal interviews; then, together with the experts, the 

boundaries of the malaria-related transmission and persistence CLD were defined. We 

set a time horizon of ten years to guide the discussion and the modeling. Consequently, 

determinants that are not very specific and have long time effects on the overall system 

(e.g., climate change) were removed from the discussion. However, their specific 

parameters (e.g. rainfall and temperature) were included.  

In the CLD, a cause is a determinant from which the arrow emerges, and an 

effect a determinant that receives the arrow. The positive or negative sign of the arrow 

explains the type of association, i.e., a cause A implying an effect B showing a positive 

sign should be read: An increase in A implies an increase in B. Inversely, A implying B 

http://mesamalaria.org/sites/default/files/2018-12/PMI_Strategy%202015-2020%20%281%29.pdf
https://mofa.gov.gh/site/?page_id=85
https://mofa.gov.gh/site/?page_id=85
https://www.noguchimedres.org/
https://www.noguchimedres.org/


Chapter 4 

51 

 

with a negative sign should be read: An increase in A causes a decrease in B (Fig. 4.1). 

Subsequently, some determinants that were not locally relevant, e.g., indoor residual 

spray (not used in Accra) were excluded and exogenous determinants were limited to 

the minimum as suggested (Sterman 2000).  

During the second participatory workshop, we refined and validate the CLD. 

Thus, new determinants were added whereas others were merged into more inclusive 

ones, and some determinants judged non-relevant were removed, which led to changes 

in the causal linkages. The model obtained (Suppl. Fig. 1) was fine-tuned by the modeling 

team based on the recordings.  

All expert participants were informed and agreed to be recorded and 

consented to the scientific use of those recordings.  

4.2.1.2. Network analysis  

The emerging properties of the system represented by the CLD were displayed 

by the properties of the network and its most central determinants. The most central 

determinants stand for the leverage points for transmission and persistence of malaria 

in Accra. These points can enhance the control of malaria when they are adjusted 

according to the properties displayed by the system.  

The CLD represents an unweighted directed network 𝐺 = (𝑉, 𝐸), where 𝑉 and 

𝐸 are respectively the set of the nodes and the edges. The connectivity in 𝐺 is 

represented by the adjacency non-symmetric and unweighted matrix 𝐴𝑖𝑗 (Eq. 4.1)  

(McGlashan et al. 2016),  

 
𝐴𝑖𝑗 = {

1, 𝑖𝑓 {𝑖, 𝑗} ∈ 𝐸
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
 

(4.5) 

The properties of the network were estimated through the computation of the 

density, the average path length, and the modularity of the CLD network. The functional 

importance of the determinants was captured via the calculation of six measures of 

centrality, i.e., degree (𝐾), in-degree  (𝐾𝑖𝑛), out-degree  (𝐾𝑜𝑢𝑡), PageRank (𝑥), 

closeness (𝐶), and betweenness (𝐵).  
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The degree centrality (𝐾) assesses the determinants' connectivity. With 

respect to the adjacency matrix, the degree 𝐾𝑖  can be calculated for a network 𝐺 

containing 𝑁 nodes:  

 𝐾𝑖 = 𝐾𝑖
𝑖𝑛 + 𝐾𝑗

𝑜𝑢𝑡  

(4.6) 

 

where  

 
𝐾𝑖
𝑖𝑛 =∑𝐴𝑖𝑗,

𝑁

𝑗=1

    𝐾𝑗
𝑜𝑢𝑡 =∑𝐴𝑖𝑗 ,

𝑁

𝑖=1

 
 

(4.7) 

 

𝐾𝑖
𝑖𝑛and 𝐾𝑗

𝑜𝑢𝑡 stand for in-degree and out-degree centralities and indicate the 

direction of the connection between determinants, the former as a recipient (effect), 

and the latter as emitter (cause).  

PageRank centrality 𝑥𝑖  estimates the influence of certain determinants on the 

whole network (Golbeck 2015; Newman 2018) and is given by  

 
𝑥𝑖 = 0.85 ×∑𝐴𝑖𝑗

𝑏𝑗

𝑘𝑗
𝑜𝑢𝑡

𝑗

 
 

(4.8) 

where 𝑥𝑖 is the out-degree of the node 𝑖. Thus, 𝑏𝑗 is given by 𝑏𝑗 =

{
0
1
𝑖𝑓 𝑖𝑛 − 𝑑𝑒𝑔𝑟𝑒𝑒
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

.  

The closeness centrality 𝐶𝑖 calculates the proximity among determinants and 

identifies which one spreads more efficiently information in the network (Bavelas 1950; 

Sabidussi 1966; Sporns et al. 2007; Newman 2018). 𝐶𝑖 is defined by  

 𝐶𝑖 =
𝑛

∑ 𝑔𝑖𝑗𝑗
  

(4.9) 

where 𝑛 represents the total number of the shortest paths (the shortest self-

avoiding route that runs from one determinant to another along with the connectivity  

(Newman 2018)) between the determinant 𝑖 and 𝑗, and 𝑔𝑖𝑗 is each elementary shortest 

path or the distance between the determinants 𝑖 and 𝑗. 

The betweenness centrality 𝐵𝑖 measures how a determinant serves as a bridge 

between different parts of the network (Freeman 1977; Golbeck 2015; McGlashan et al. 

(

2) 

(

3) 

(

4) 

(

5) 
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2016; Newman 2018). Assuming that 𝑔𝑠𝑡 is the total number of shortest paths from 

𝑠 to 𝑡 then 𝑛𝑠𝑡
𝑖  is the number of shortest paths from the determinants 𝑠 to 𝑡. Simply 

𝑛𝑠𝑡
𝑖 = {

1 
0
𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠 𝑎𝑛𝑑 𝑡

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 .  

The computation of 𝐵𝑖 is given by  

 
𝐵𝑖 =∑

𝑛𝑠𝑡
𝑖

𝑔𝑠𝑡
𝑠𝑡

 
 

(4.10) 

All the analyses were run using R (R Core Team 2013).  

All participants involved in this study were informed and signed their consent 

for the recording and the use of the meetings’ materials for scientific purposes. 

4.3. Results 

4.3.1. A system model of malaria transmission and persistence 

The transmission and persistence of malaria in Accra are portrayed in a CLD of 

the complex system model, entailing 56 interactions among 45 determinants (Suppl. 

Table1). This model shows three sub-models triggered each by a reinforcing loop, i.e., (i) 

the urbanization-related transmission and acquired resistance of Anopheles to 

insecticides (green), (ii) the human's infection-prone behavior (red), and (iii) the 

healthcare efficiency and Plasmodium resistance (blue) (Fig. 4.1).  

Urbanization-related transmission and resistance of Anopheles to insecticides  

The deficient city planning and planning enforcement, inadequate housing 

conditions, and limited waste and sewage infrastructure lead to the proliferation of 

Anopheles breeding sites, which is worsened by the excavation of wells for urban and 

peri-urban agriculture and rainfall. Besides, a temperature range between 26 and 33°C 

in Accra, contributes to the increase in the reproductive rate of Anopheles, their 

absolute numbers, and finally their survival, augmenting the risk of infection. 

Furthermore, the preventive use of insecticides in households, agricultural 

sites, and healthcare facilities leaves residues that contribute to the development of 

insecticide resistance in local mosquito populations. Thus, in the reinforcing loop one 

(R1, Fig4.1), we observe that the transmission of malaria depends not only on the 

environmental factors, such as temperature and rainfall but also on the lack of 

regulations to prevent and control the proliferation of mosquito breeding sites. These 

(

6) 
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effects are exacerbated by the widespread use of insecticides. Hence, this reinforcing 

loop portrayed the environment as a pathway of both, the infection and the 

development of resistance of mosquitoes to insecticides (Fig. 4.1).  

Humans infection-prone behavior  

At the individual and household levels, ideally, the awareness of malaria risk 

leads to the reduction of nighttime activities, as well as the use of protective/preventive 

measures against mosquito bites, such as the use of insect-proof mesh for doors and 

windows and insecticide-treated bed-nets (ITNs). The more these measures are 

accepted and used, the lower the infection will be. In addition, human migration 

increases the number of infected cases by importation. More infected people in Accra 

imply a greater number of mosquitoes becoming infected that will subsequently 

transmit the pathogens to new hosts. This reinforcing loop two (R2, Fig 4.1) highlights 

the importance of individual and household decisions, and how a changing behavior can 

prevent the transmission and its persistence by, for instance, reducing the nighttime 

activities and using protective measures like ITNs. (Fig 4.1.). 

Healthcare efficiency and Plasmodium resistance 

Malaria carriers can be asymptomatic, and as Ghana’s healthcare system is 

often unable to detect them, they frequently remain untreated and thus keep spreading 

the disease. Knowledge of malaria symptomatology and a sufficient household income 

leads to more visits to healthcare facilities. If healthcare workers are well trained, adhere 

to prescription protocols, and patients comply with the prescribed treatment, the 

reinforcing loop three (R3, Fig4.1) will operate, and trust in the health system will grow. 

If patients do not trust the health system, the use of inadequate medication and misuse 

of adequate medication will increase, and alongside the resistance of the Plasmodium 

parasite to preventive and curative drugs. Besides, the free availability of heavily 

subsidized drug treatments augments self-medication and indirectly enhances drug-

resistance development in Plasmodium. This loop reveals that a good healthcare system 

requires to be well endowed logistically and in terms of personnel. Substituting such a 

healthcare system with highly accessible low-priced drugs can increase the prevalence 

of resistant strains of Plasmodium. Moreover, this loop revealed an unintended pathway 
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of malaria treatment policies (Hovmand 2014), which, although well-intentioned, can be 

counter-productive. Relatedly, symptomatic patients, unsatisfied with allopathic 

treatments and drug resistance, may opt for alternative medicines, despite their often 

uncertain outcomes.  

 

Fig.4. 1: Causal loop diagram depicting the complexity in malaria transmission and 

persistence in Accra (Ghana). In green the urbanization-related transmission 

sub-model, in red the human's infection-prone behavior of malaria sub-

model, and the healthcare efficiency and Plasmodium resistance sub-model 

(blue).  

4.3.2. Network analysis of the CLD  

Properties of the network  

The network representing the CLD displayed a structure of small-world, 

meaning that all determinants are not interconnected but are anyhow reachable by a 

small number of steps  (Hexmoor 2016). It shows an average path of 6.309, meaning 

that each determinant can reach any other on average through 6.309 paths. Still, it has 

a low density (0.028), presenting only 2.8% of possible edges in a completely 

interconnected network, and suggesting that a change in a determinant will have only a 
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limited impact on the whole system. This indicates that despite its apparent complexity, 

there is a small connection path among determinants, allowing the information to 

spread rapidly (Albert et al. 2002; McGlashan et al. 2016). Furthermore, a modularity of 

0.619 implies a structural clustering among determinants, indicating that acting on the 

determinants of the highest betweenness will have a spillover effect on the whole 

system (McGlashan et al. 2016). In other words, an effective way to impulse a change in 

the system is to induce a change in the mediator.  

Network metrics 

The CLD has a scale-free distribution, meaning that its in-degree and out-

degree metrics showed a heavy-tailed distribution with values ranging from 0 to 5 

(Suppl. Fig. 2). Few nodes show 0 out-degree, indicating that most of the determinants 

influence other determinants. This configuration describes well real-world networks and 

suggests a high resilience of the system (Hein et al. 2006) (Table 4.1 & Suppl. Fig. 2). 

Thus, beyond the mediator of the system, the other leverage points also needed to be 

strategically adjusted to efficiently fine-tune the system.  

The network centrality metrics revealed that malaria-positive cases, was the 

determinant of higher centrality, either impacting or been impacted by seven 

determinants. Also, the number of breeding sites was impacted by five other 

determinants, (𝑘𝑖𝑛 = 5) namely: 1. more rainfall, 2. the hygiene and sanitation of 

householders’ compound, 3. the adequate housing construction, 4. a convenient waste 

and sewage management, and 5. the wells excavation. Conversely, the householders' 

awareness and decision-making on malaria infection risk was the main cause of 

transmission and persistence, as it impacts five other determinants (𝑘𝑜𝑢𝑡= 5) namely 1. 

the hygiene and sanitation of household compound, 2. the use of ITN, 3. the frequency 

and duration of nighttime activities, 4. the use of door and windows mesh, and 5. self-

medication.  

Predictably, the determinant of highest betweenness that connects most 

clusters of determinants is the malaria positive cases (𝐵 = 328); and the one with the 

highest Page rank, and, thus, the most influential is the malaria positive cases (𝑥 =
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 0.086). Also, the determinant with the greatest closeness centrality, i.e., with the 

shortest distance to all others is drug prescription (𝐶 =0.381) (Table 4.1).  

Interestingly, determinants participating directly in the infection process, such 

as the number of breeding sites, the malaria positive cases, or not, such as the drug 

prescription and householders' awareness and decision-making on malaria infection risk 

are also important leverage points (influential points in the system where a small change 

in these determinants can induce a big change in the whole system (Fischer and Riechers 

2019)) that can affect the system.  

Table 4 1: Metrics of the network analysis of determinants of transmission and 

persistence of malaria in Accra 

Label K C B x Kin Kout 

Existence and enforcement of city planning and 
regulation 2 0.116 0 0.004 0 2 

Adequate housing construction 2 0.119 10 0.006 1 1 

Convenient waste and sewage management 2 0.119 10 0.006 1 1 

Urban agriculture 1 0.111 0 0.004 0 1 

Wells excavation 2 0.119 20 0.008 1 1 

Number of breeding sites 6 0.128 147 0.032 5 1 

More rainfall 1 0.119 0 0.004 0 1 
Householders' awareness and decision-making on 
malaria infection risk 5 0.266 0 0.004 0 5 

Hygiene and sanitation of households' compound 3 0.119 16 0.007 2 1 

Household income 2 0.200 0 0.004 0 2 

Temperature between 26 and 33°C 1 0.119 0 0.004 0 1 

Higher reproduction rate of female Anopheles 2 0.128 19 0.008 1 1 

Number of female Anopheles 3 0.140 192 0.039 2 1 

Surviving of female Anopheles 4 0.153 262 0.080 2 2 

Use of insecticide in household 1 0.140 0 0.004 0 1 

Insecticide resistant Anopheles strain 5 0.134 34 0.050 4 1 
Pest management with pyrethroid-based insecticide in 
urban agriculture 1 0.124 0 0.004 0 1 

Disinfection of healthcare facilities 1 0.124 0 0.004 0 1 

Mosquito bites 2 0.160 246 0.038 1 1 

Use of insecticide-treated bed-nets (ITN) 4 0.160 23 0.011 3 1 

Perceived-inconvenience of ITN 1 0.145 0 0.004 0 1 

Frequency and duration of nighttime activities 2 0.160 2 0.005 1 1 

Use of door and windows mesh 2 0.160 2 0.005 1 1 

Infectious mosquito bites 5 0.177 313 0.047 4 1 

Population receiving infected bites 2 0.209 298 0.044 1 1 

Malaria positive cases 7 0.255 328 0.086 4 3 

Human migration 1 0.214 0 0.004 0 1 
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Human age category 1 0.186 0 0.004 0 1 

Immune state of human host 2 0.214 15 0.008 1 1 

Asymptomatic cases 1 0.000 0 0.029 1 0 

Symptomatic cases 3 0.250 273 0.029 1 2 

Health literacy 2 0.250 224 0.017 1 1 

Visit to a healthcare facility 4 0.296 255 0.057 3 1 

Enough and well trained healthcare-workers 1 0.233 0 0.004 0 1 

Adherence to prescription protocol 2 0.273 9 0.008 1 1 

Diagnosis (anamnesis and blood analysis) 3 0.333 239 0.060 2 1 

Drug prescription 3 0.381 205 0.056 1 2 

Compliance with the treatment 2 0.222 61 0.028 1 1 

Satisfaction with the treatment 2 0.242 27 0.028 1 1 

Trust in the healthcare system 3 0.267 47 0.043 2 1 

Inadequate utilization of the medication 2 0.267 68 0.028 1 1 

Increase in Plasmodium resistance to drug 4 0.296 61 0.034 2 2 

Alternative medicine 2 0.000 0 0.031 2 0 
Subsidy and availability on the preventive and curative 
malaria measures 2 0.236 0 0.004 0 2 

Self-medication 3 0.250 18 0.007 2 1 

degree (𝐾), in-degree  (𝐾𝑖𝑛), out-degree  (𝐾𝑜𝑢𝑡), PageRank (𝑥), closeness (𝐶), and betweenness (𝐵); 

Values in bold represent the higher value of centrality 

4.4. Discussion 

4.4.1. System model of malaria transmission and persistence in Accra  

We found that the most central determinants also standing for the leverage 

points of the system, aside from the environmental-related ones, are those resulting 

from the citizens’ awareness of malaria infection risks, and household income, and 

derived empowerment. These findings corroborate earlier studies that showed that 

poor-income households are more vulnerable to the disease, by facing a double burden: 

Malaria hotspots in Accra are in economically deprived communities, where malaria 

infection risk is additionally fueled by the economic needs, leading to community 

members to take up jobs that increase their exposure (Fobil et al. 2012); and, poor-

income households spend relatively more of their earnings on the treatment of malaria 

than the higher-income ones (Chuma et al. 2006).  

Our results also stress the importance of an efficient healthcare system, a 

structural issue in most countries of the Global South. We found particularly relevant 

the trust in the healthcare system, which can be reinforced through training and 

supervision of health workers on malaria diagnosis and treatment-related protocols, and 
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the adherence of the health workers to it. Supporting this, a system dynamics simulation 

on policies for improving neonatal health in Uganda demonstrated that the workload of 

healthcare workers affects the development of trust of patients, especially when it leads 

to long waiting times for attention (Rwashana Semwanga et al. 2016). Likewise, a study 

in England and Wales revealed that the reduction of waiting time built the trust of 

patients and enhanced healthcare efficiency (Calnan and Sanford 2004). On the other 

hand, the non-adherence to the prescription and treatment protocols by health workers 

can lead communities to underestimate malaria infection and increase its effects, which 

augments the distrust in the health system.  

Relatedly, we found that the subsidy on anti-malaria drugs instead of 

promoting a more holistic public health policy contributes to patients’ self-medication  

(Winstanley et al. 2004), highlighting the sometimes counterproductive effects of a sole 

focus of public health programs on biomedical policies as this ignores the complexity of 

malaria transmission (Haynes et al. 2020). Previous research showed that patients' self-

medication leads to arbitrary dosage and posology of anti-malaria drugs, and tends to 

exacerbate the symptoms and augments the morbidity and mortality of malaria (Awuah 

et al. 2018). Such situations are worse in poor-income households, where people often 

self-medicate with inadequate or counterfeit drugs, and/or inappropriate dosages and 

posologies at the onset of malaria symptoms (Winstanley et al. 2004).  

Humans can be infected with P. falciparum and be symptomatic or 

asymptomatic. The latter is most often undiagnosed because random testing of the 

population is costly  (Sturrock et al. 2013). Besides, the conventional rapid diagnostic 

test is not sensitive enough to allow efficient screening of low-level parasitemia 

observed in asymptomatic infections (Yeung et al. 2020). This contributes to feeding a 

permanent human reservoir of P. falciparum and thereby contributing to the 

persistence of malaria (Tao et al. 2019). Also, imported cases by human migration 

amplify the number of cases in cities and at times can initiate the resurgence of malaria 

in locations where it had been previously under control (Martens and Hall 2000; Buckee 

et al. 2013).  
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Our findings also suggest that deficient urban sanitation and poor urban 

planning increase the number of mosquito breeding sites. About 10% of Anopheles 

mosquito breeding sites in Accra are situated around construction sites  (Mattah et al. 

2017). Similar observations were made in Nigeria and Tanzania, where clogged gutters 

and sewage channels are playing similar roles (Adeleke et al. 2008). Thus, the ecology- 

and behavior-related adaptations of the mosquitoes delay control and make such efforts 

less effective, thereby contributing to the persistence of malaria in cities (Wilke et al. 

2019).  

4.4.2. Emergent properties of malaria transmission  

The small-world and scale-free properties that feature our CLD indicate that 

the network is resilient and the identified leverage points could help to set more 

adequate policy recommendations.  

The functional analysis of the network allowed to identify the determinants of 

the more central standing for potential intervention points such as causal, impacted, 

spreader, mediator, and influential, and derive from them key leverage points. Thus, we 

found that the determinant i) the malaria-positive cases was both, the most influential 

and the greatest mediator; and ii) the number of breeding sites had the larger effects. 

These findings align with a recent review of malaria determinants for sub-Saharan Africa  

(De Silva and Marshall 2012) that highlights the surge of infection as an intricate 

interplay between mosquitoes, humans, and their environments. Furthermore, i) the 

drug prescription was the determinant with the highest closeness centrality, and ii) the 

householders' awareness and decision-making on malaria infection risk the most 

important cause. This indicates that malaria transmission and persistence rely heavily 

on human behavior, which opens opportunities for more targeted policy action.  

The CLD was able to disclose the interactions among malaria determinants and 

also permitted to track the causal links among them that preserve transmission and the 

feedback loops that reinforce certain sets of determinants (Rickles et al. 2007), which 

permits signaling emerging properties of the system post the NA (Ahn et al. 2006).  
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4.4.3. Limitations of the study 

The CLD is a systemic tool capable to depict how determinants are 

interconnected. In our case, the CLD has been collectively built enabling the generation 

of a group thinking model (Purwanto et al. 2019). As such, CLD may preclude its 

replicability and reproducibility because the model is contingent on the experts’ 

perception of the system. Therefore, for the same problem, more determinants can be 

always identified. Thus, the CLD is an over-simplification of the real-world system. 

Nonetheless, Richardson (Richardson 1986) argues that CLD still contains information 

that could be further transferred to the decision-makers as it is meant to embody the 

premises underpinning the functioning of the system (Schaffernicht 2010).  

On the other hand, CLD is described as a qualitative and often perception-

based model that should be read as a causal-effect model (Sterman 2000). As such it is 

based on a set of qualitative interviews, workshops, or qualitative reviews. For instance, 

it has been used to document the interplay between factors that lead to childhood 

obesity in the US (Allender et al. 2015), to display the obesity-related behavior in youth 

(Waterlander et al. 2021), and to highlight a pathway for the prevention and the 

response to covid-19 (Bradley et al. 2020). Since the CLD is not sustained by empirical 

observations (Sterman 2000), it leaves room to question the causal inferences drawn 

from its interpretation. Nonetheless, we trust this study shed light on potential avenues 

for forthcoming empirical test the causality among the determinants of the transmission 

and persistence of malaria in Accra and other urban settings.  

The validation of the topology of a network is often carried out through 

structural modifications of the network using random addition and removal of nodes 

and edges (Narayanam and Narahari 2009; Zitnik et al. 2019; Stadtfeld et al. 2020). This 

operation allows displaying the resilience of the network (Zitnik et al. 2019). It has been 

extensively used in social networks and protein network analyses to validate the most 

important nodes (after re-computation of the centrality metrics) without ruining the 

underlining problem of friendship building or elaboration of proteins. However, as our 

CLD is a thematic network, a structural modification of the network will also lead to a 

functional change of the network deviating from the identification of the leverage point 
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of a system of transmission and persistence of malaria in Accra. Nonetheless, the 

calculation of the metrics combined with the properties of the network enables the 

identification of potential strategies that may guide policy recommendations for better 

control of malaria.  

4.5. Conclusions  

The proposed CLD contributed to illustrating the complexity of malaria 

transmission and persistence in our case study, Accra, Ghana. It showed that beyond the 

mere biological processes and the physical environment, the behavior of people plays a 

key role in malaria transmission and persistence. The CLD embodies three major loops 

that trigger and maintain transmissions in urban environments. Furthermore, the NA 

enabled the detection of emergent properties of the system and the identification of 

the key levering determinants. Besides, the topology disclosed by the CLD revealed that 

all leverage points need to be accounted for strategic policy development. Hence, major 

efforts toward preventing malaria transmission are needed, and on that, the key 

priorities should be: to reduce malaria persistence by reducing mosquito density, for 

instance, through the regular drainage of gutters or treating breeding sites with 

larvicides; and reducing infections by increasing the awareness of city dwellers on 

malaria literacy, for instance, through regular campaigns in deprived communities, both, 

on the field and social media. Ongoing measures, like, protecting windows and doors 

with mosquito-proof netting and the use of ITNs, should be intensified. Besides, an 

improvement of the healthcare system through regular training of the healthcare 

workers in malaria can enhance trust in the healthcare system and limit the risk of 

patients' non-compliance to malaria-drugs prescription. 
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5. MATHEMATICAL MODELING OF SPATIAL-DEMOGRAPHIC HETEROGENEITY IN 

URBAN MALARIA EPIDEMICS TO ASSESS THE IMPACT OF INSECTICIDE-TREATED BED-

NETS IN ACCRA, GHANA3 

5.1. Introduction 

The female mosquito is considered to be the deadliest animal since it is 

responsible for more than 1,000,000 deaths per year (Prudêncio 2020). As such, 

mosquitoes are the carrier of the pathogens of several infectious diseases including 

Chikungunya, Zika, Dengue, West Nile, Yellow fever, filariasis, and malaria, the latter 

being the leading cause of mortality and morbidity in sub-Saharan Africa (SSA). In 2019, 

the SSA fatality of malaria was estimated at 384,000 deaths representing a decrease of 

67% compared to the early 2000s (World Health organization 2020). This milestone 

resulted from the use of preventive measures such as i) indoor residual spraying (IRS), 

ii) the distribution and use of insecticide-treated bed-nets (ITNs), and curative therapy, 

i.e., Arthemisin-based Combination Therapy (ACT). However, with the surge of the 

global pandemic of COVID 19 in January 2020, caused by SARS-CoV-2 (Senghore et al. 

2020), there was a disruption in the malaria control programs, affecting the use of these 

preventive measures namely the free distribution of ITNs. Evidence suggested that this 

disruption will exacerbate malaria-induced death in SSA as was observed during the 

surge and resurgence of Ebola in West Africa in 2017 (World Health Organization 2020; 

Sherrard-Smith et al. 2020; Aborode et al. 2021). Likewise, the fatality induced caused 

by malaria so far exceeded the one of COVID 19 in SSA and could possibly double 

compared to the number of 2019 if ITNs distribution campaigns are halted (World Health 

organization 2020). Consequently, the costs for the preventive measures will also be 

higher than in 2019 (White et al. 2011; Wisniewski et al. 2020).  

ITNs are the most prominent malaria preventive intervention whose 

widespread adoption resulted in an unprecedented level of control of malaria vectors 

and a substantial decrease in Plasmodium parasitemia in SSA (Lengeler 2004; Lim et al. 

2011). Impregnated with pyrethroids, ITNs kill and repel mosquitoes with little to no 

                                                      
3A slightly modified version of this manuscript will be submitted with Merveille Koissi Savi , Lauren M. 
Childs , Christian Borgemeister  
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toxicity to mammals, and are considered cost-effective (Lengeler 2004; Koenker et al. 

2018). Despite the huge effort of the Roll Back Malaria initiative to attain the universal 

ITNs coverage of 80%, today still less than 2% of children sleep under fully functioning 

ITNs in SSA (Yamey 2004; Lim et al. 2011). This is due to their loss of physical and/ or 

chemical integrity, their repurposing, being moved out of the target areas, and other 

human behavior (Ngonghala et al. 2014; Scates et al. 2020). For instance, according to 

studies from the Coastal region in Ghana, including the capital Accra, between 20% and 

40% of people who possess ITNs do not sleep under them. The reasons for the 

reluctance of use are related to human behavior that is often undermined in the 

planning and management of the free distribution campaigns (Elder et al. 2011; Ahorlu 

et al. 2019).  

Mathematical models have been widely used to obtain insights into the 

dynamics of malaria (Ross 1902, 1911b; Macdonald 1950). They have played a valuable 

role in documenting policy for disease management (Heesterbeek et al. 2015). As such 

they have been used to design strategies of vector control (Ross 1911a), define 

vaccination threshold  (McLean and Anderson 1988), and evaluate the effectiveness of 

ITNs (Bhatt et al. 2015). Since Ross's (1911a) susceptible-infected-recovered ordinary 

differential equations (ODE) model, mathematical models describing malaria have 

steadily evolved in complexity. This has led to accuracy in the predictability of the model 

when more data becomes available (Mandal et al. 2011). The increase of model 

complexity leans on the integration of spatial heterogeneity, i.e. patch models  (Lutambi 

et al. 2013; Bichara and Iggidr 2018a), demographic heterogeneity, i.e., age structure 

model (Aron and May 1982; Yan et al. 2015), host genetic heterogeneity (Gupta et al. 

1994; RodrÍguez and Torres-Sorando 2001), and acquired immunity (Aron 1988; Filipe 

et al. 2007). An important metric allowing to measure the persistence of the disease is 

the basic reproduction number (R0) representing the number of secondary infections 

produced by a single infected host in an immunologically naïve population. When R0<1 

the epidemic will die out whereas the epidemic will persist when R0>1. Thus R0 assesses 

the magnitude of the disease and guides the effort for its control (Heesterbeek and Dietz 

1996).  
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Previous mathematical studies assessed the impact of ITNs on the dynamics of 

the disease and predicted a globally stable mosquito-free equilibrium when R0<1 with a 

constant rate of ITNs usage underestimating the magnitude of the disease (Ngonghala 

et al. 2016). In a heterogeneous host population, the increase of ITNs coverage causes a 

decrease in the proportion of host-seeking mosquitoes, benefiting both the ITN users 

and the non-users (Chitnis et al. 2009). While comparing different malaria control 

measures using the ODEs framework, Chitnis et al. (2010) concluded that the ITNs are 

more effective than the IRS. Okumu et al. (2013) showed that the protection against a 

malaria infection depends more on individual protection than the efficacy of the ITNs 

and the IRS. Most of the models implicitly associated the coverage rate, i.e., possession, 

with the use of ITNs at a constant rate, thus, failing to consider the heterogeneity in the 

use, leading to an overestimation of ITNs’ effectiveness (Killeen et al. 2007; Killeen and 

Smith 2007; Gu and Novak 2009; Govella et al. 2010; Okumu et al. 2013; Agusto et al. 

2013; Briët et al. 2013). In Ngonghala et al. (2014) study, the ODEs quantified the impact 

of physical and chemical decay in ITNs, however, the authors failed to consider both the 

spatial and demographical heterogeneity in the host population. Human behavior can 

have a significant impact on the dynamics of the disease. This effect can be beneficial. 

For example, Funk et al. (2009) demonstrated that increased awareness in communities 

can reduce the spread of infectious diseases or hinder the control of the epidemics, for 

the latter for example the social scare of vaccines could exacerbate the spread of an 

infectious disease (Oraby et al. 2014). Likewise, it was theorized that host behavior can 

impact the effect of ITNs and hence there is a need to embody human behavior for a 

more realistic assessment of ITNs use for malaria control (Agusto et al. 2013). So far only 

a few studies have embedded human behavior in mechanistic frameworks to assess the 

effectiveness of ITNs.  

In the present study, we provide empirical evidence of human behavior and 

how the misrepresentation in modeling can hinder the control of malaria after surveying 

two communities in Accra’s malaria hotspot. We developed a patch and age-structured 

model i.e., an extended susceptible-infected-recovered-susceptible – susceptible-

infected (SIRS-SI) model. The rationale for developing such a model lies in i) previous 
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studies that revealed spatial heterogeneity in malaria incidence in Accra with high levels 

in poorly managed areas (Fobil et al. 2012) and ii) the fact that the incidence rate of 

malaria in Accra is highly heterogeneous in Accra with the respect to the demographic 

structure of the population (Frank et al. 2016). We integrated the empirical findings into 

a mechanistic model to mimic the misrepresentation of community behavior to assess 

the effectiveness of ITNs.  

5.2. Method 

5.2.1. Study area 

Accra is located in the Greater Accra Metropolitan Area (GAMA), which 

stretches between 5° 28' N to 5°52' N and 0° 32' W to 0°02' E. It is one of the fastest-

growing cities in Western African with an annual population growth rate of 3.1% (GSS 

2013). GAMA is a densely populated area with 1,236 people per km2. Accra is the main 

administrative and economic center of Ghana with 69.7% of the national private 

informal workforce employment, 15% of the private formal, 12.8% of the public, and 

2.2% of other workforce employed in 2008 (GSS 2008).  

The rapid urbanization in Accra generated an increase in the price of affordable 

accommodation, compelling 15% of Accra’s population to live in informal settlements, 

i.e., poorly managed areas and slums (UN-Habitat Ghana 2009). Accra is facing a heavy 

burden of malaria, driven by the fast-growing population density, especially in the 

deprived community areas. The mortality and morbidity of malaria remain high in such 

neighborhoods, for instance in Korle-Dudor and James Town (Fobil et al. 2012; Austin 

2015).  

The James Town community is a poorly managed area designed by the Accra 

Metropolitan Assembly as a tenure-secured slum (Tutu et al. 2017). Accounting for an 

averagely of 8.5 occupants per room, this community is facing serious sanitation 

problems underpinned by public garbage disposal (Awuah et al. 2014; Tutu et al. 2017). 

The Korle-Dudor community exhibits some characteristics of a slum such as the self-

made drains and the inexistence of the tared roads (Awuah et al. 2018). Korle-Dudor is 

populated mainly by migrants coming from all parts of Ghana and who often work in the 

informal sector.  
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Since 2007, Ghana has initiated a policy of extensive and free distribution of 

insecticide-treated bed nets (ITNs) that has reached a coverage rate of 85% in 2017 

(Awine et al. 2017). However, the expected reduction of malaria incidence due to the 

implementation of the ITNs distribution policy is still far below the predictions.  

5.2.2. Community survey  

To assess the perception of malaria in an urban setting such as Accra, we 

surveyed the two poorly urbanized communities (James Town and Korle-Dudor). Prior 

to that, in August 2018, we identified gatekeepers and community leaders. The 

community entry and the identification of the gatekeepers granted support to conduct 

a cross-sectional household survey from January to February 2019. Twenty enumeration 

areas were randomly selected out of a total of 53 in the two communities. Following the 

randomized selection of the enumeration areas, the data collection team proceeded to 

perform a detailed enumeration of the households in each of the 20 enumeration areas. 

We randomly selected 1,200 households for a cross-sectional in-depth interview. Out of 

the selected households, we obtained a response rate of 85.67% that represented 1,028 

households that participated in the survey. Within each household, we applied Kish 

criteria (Kish 1949) considering that any resident of a given household who was between 

18 to 82 years old and who had spent at least the last six months in the household has 

good knowledge of the disease situations. Therefore, regardless of gender, any member 

of the household > 17 years had a chance to participate in the study on behalf of the 

household.  

5.2.3. Statistical analysis 

Community perception was assessed based on the general knowledge about 

malaria, the care-seeking behavior as well as the assessment of the risk factors of ITNs 

use. Descriptive statistics were used to assess the general knowledge assessment as well 

as health-seeking behaviors. We ran two generalized linear models to assess i) the 

relationship between the use and ownership of ITNs, and ii) the determinants of ITNs 

use.  

To assess the relationship between use and ownership of ITNs, we regressed 

the number of households who used the ITNs against the possession of ITNs. We 
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estimated the probability value of the statistics using 1,000 Monte Carlo permutations 

of Poisson regression. Robust standard errors were used for parameters estimation to 

control for over-dispersion around the mean as suggested by Cameron and Trivedi  

(2009). The goodness of fit of the model was substantiated using a chi-square test.  

We applied the same procedure to explain the determinants of ITNs use with 

the help of logistic regression. The reasons for the non-use of ITNs were analyzed by 

means of descriptive statistics.  

5.2.4. Mathematic model formulation and assumptions 

We developed a SIRS-SI model incorporating both patches and the age 

structure of the population. The SIRS structure for each age group of the host population 

is located in each patch and SI structure for the population of mosquitoes within each 

patch. We assumed that depending on the disease state and the spatial location, the 

total population of humans in a patch 𝑗 is 𝑁𝑗
𝐻and the total An. gambiae in the same 

patch (which is the main mosquito species transmitting malaria in Accra) population is 

𝑁𝑗
𝑉. The total populations of both humans and mosquitoes are arbitrarily structured in 

𝑣 patches. In addition, within the hosts' population, there are interactions among 𝑖 age 

groups. Thus, we are accounting for both spatial and group heterogeneity as suggested 

by Bichara and Iggidr  (Bichara and Iggidr 2018a). We assumed that the risk of getting 

infected depends on the location. For instance, the exposure risk to malaria is higher in 

slums and poorly managed areas than in standard and well-managed areas (Fobil et al. 

2012). We also assumed the migration rate 𝑚𝑖𝑗 between patches is serological status 

specific. Thus, susceptible and removed compartments can freely move from one patch 

to another whereas the infected compartment has reduced the mobility that tends to 0 

with the duration of the disease ( lim
𝑡→ ∞

𝑚𝑖𝑗 = 0). As a patch represents the location 

where an individual spend the majority of the time, we assumed that the likelihood of 

an individual to spend a long time in a patch that is not where she/he lives is very low. 

At a time 𝑡 the population of a given human group 𝑗 (𝑖 = 1, … , 𝑢), is structured into 

susceptible (𝑆𝑗
𝐻), infected (𝐼𝑗

𝐻) and recovered with partial immunity (𝑅𝑗
𝐻), while the 

population of mosquitoes was divided into susceptible (𝑆𝑗
𝑉) and infected (𝐼𝑗

𝑉).  
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The model assumed that: a) there is no incubation period prior to potential 

transmission; b) every infectious person is symptomatic; c) the life span of the mosquito 

is so short that they are unable to recover from their infection before they die and ; d) 

the group of humans and mosquitoes spend the maximum time in their respective 

patch, (𝑗 = 1,… , 𝑣). The total human population 𝑁𝑗
𝐻  in a patch 𝑗 at the time 𝑡 is  

𝑁𝑗
𝐻 = 𝑆𝑗

𝐻 +  𝐼𝑗
𝐻 + 𝑅𝑗

𝐻  

Similarly, the total population of mosquitoes 𝑁𝑗
𝑉at this same time 𝑡 is  

𝑁𝑗
𝑉 = 𝑆𝑗

𝑉 + 𝐼𝑗
𝑉 

 𝛽𝑖 is the risk of malaria infection for the group 𝑖, 𝛾𝑖 is the recovery rate of the 

infectious individuals of the same group, ∧i
𝐻 as the recruitment rate of the susceptible 

human population. 𝜇𝑖
𝐻is the natural mortality rate, and 𝜎𝑖 the rate of immunity lost. The 

remaining parameters of the model are described below (Table 5.1) and the interactions 

between humans and mosquitoes are represented in the flow diagram (Fig. 5.1).  

Table 5 1: Descriptions, ranges of values of parameters for the malaria model Eq. (5.1) 

Parameters  Description Range Unit References 

∧i
𝐻  Recruitment rate of each group  0.000001- 

6.438356e-05 
day-

1 
 (GSS 2013; 
Awine and 
Silal 2020)  

𝛽𝑖
𝐻  

  
Probability of transmission from 
infected human group 

0.1-0.24 day-

1 
 (Smith et al. 
2012) 

𝜇𝑖
𝐻  Natural death rate of each human 

group 
1/63.48*365-
23.5/1000 

day-

1 
 (GSS 2013; 
Awine and 
Silal 2020) 

𝛿𝑖
𝐻  

  
Malaria-induced death rate of each 
group 

0.000174-0.00035 day-

1 
 
(Forouzannia 
and Gumel 
2014; Awine 
and Silal 
2020) 

𝜎𝑖
𝐻  

 
Proportion of getting immune of each 
human group 

5.5/52 -  (Awine and 
Silal 2020) 

Λ𝑉   Recruitment rate of mosquitoes 0.35-0.5 day-

1 
Estimated 

𝜇𝑉  
 

Death rate of mosquitoes 0.1 day-

1 
Estimated 

𝛾𝑖
𝐻  Recovery rate of each human group  0.00274 day-

1 
 (Nakul et al. 
2006) 



Chapter 5 

70 

 

𝛽𝑉  Probability of transmission from 
infected mosquitoes  

0.024 -  (Chitnis et 
al. 2009) 

𝜓𝑖
𝐻   Function of ITNs use - - Estimated 

휁 Efficacy of ITNs 0.398 -  (Awine and 
Silal 2020) 

a Biting rate of mosquitoes 0.35-0.5 day-

1 
 
(Forouzannia 
and Gumel 
2014) 

𝑚𝑖𝑗   Migration rate of the human group 𝑖 
between patches 𝑗 

- day-

1 
Estimated 

 

Fig.5. 1: Flow diagram of patch model of malaria. In green, the human compartments 

move from one patch to another, in red the compartment of infectious 

humans and mosquitoes; in blue the compartment of susceptible mosquitoes 

move freely within their specific patch. The dotted red arrows represent the 

interaction between humans-mosquitoes while the plain arrows show the 

flow from one compartment to another.  

The interactions between hosts and vectors within patches 𝑗 are described by 

the following system of non-linear ordinary differential equations:  
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 (5.1) 

{
 
 
 
 
 

 
 
 
 
 
𝑑𝑆𝑗

𝐻

𝑑𝑡
= Λ𝑗

𝐻 −
𝛽𝑗
𝑉𝑎(1− 𝜓𝑗

𝐻)𝐼𝑗
𝑣(𝑡)

𝑁𝑗
𝐻 𝑆𝑗

𝐻 + 𝜎𝑗
𝐻𝑅𝑗

𝐻 − 𝜇𝑗
𝐻𝑆𝑗

𝐻 + ∑ 𝑚𝑖𝑗𝑆𝑖
𝐻𝑣

𝑗=1

𝑑𝐼𝑗
𝐻

𝑑𝑡
=

𝛽𝑗
𝑉𝑎(1− 𝜓𝑗

𝐻)𝐼𝑗
𝑣

𝑁𝑗
𝐻 𝑆𝑗

𝐻 − (𝛾𝑗
𝐻 + 𝜇𝑗

𝐻 + 𝛿𝑗
𝐻)𝐼𝑗

𝐻

𝑑𝑅𝑗
𝐻

𝑑𝑡
= 𝛾𝑗

𝐻𝐼𝑗
𝐻 − (𝜇𝑗

𝐻 + 𝜎𝑗
𝐻  )𝑅𝑗

𝐻 + ∑ 𝑚𝑖𝑗𝑅𝑖
𝐻𝑣

𝑗=1

𝑑𝑆𝑗
𝑉

𝑑𝑡
= Λj

𝑉 − 𝜇𝑗
𝑉𝑆𝑗

𝑉 −
𝛽𝑗
𝐻𝐼𝑗

𝐻𝑎(1− 𝜓𝑖𝑗
𝐻)

𝑁𝑗
𝐻 𝑆𝑗

𝑉 − 휁𝜓𝑗
𝐻𝑎𝑆𝑗

𝑉

𝑑𝐼𝑗
𝑉

𝑑𝑡
=

𝛽𝑗
𝐻𝐼𝑗

𝐻𝑎(1− 𝜓𝑖𝑗
𝐻)

𝑁𝑗
𝐻 𝑆𝑗

𝑉 − 휁𝜓𝑗
𝐻𝑎𝐼𝑗

𝑉 − 𝜇𝑗
𝑉𝐼𝑗
𝑉

 

Where Λ𝐽
𝐻 = ∑ Λ𝑖𝑗

𝑣
𝑖 , 𝜓𝑗

𝐻 = ∑ 𝜓𝑖𝑗 
𝐻 ,𝑣

𝑖  𝜎𝑗
𝐻 = ∑ 𝜎𝑖𝑗

𝐻 ,𝑣
𝑖 𝜇𝑗

𝐻 = ∑ 𝜇𝑖𝑗
𝐻 , 𝛽𝑗

𝐻 𝑣
𝑖 =

∑ 𝛽𝑖𝑗
𝐻 , 𝛾𝑗 = ∑ 𝛾𝑖𝑗 

𝑣
𝑖 , 𝜎𝑗 = ∑ 𝜎𝑖𝑗

𝑣
𝑖  , 𝑆𝑗

𝐻 = ∑ 𝑆𝑖
𝐻 ,𝑣

𝑖  𝑣
𝑖  𝐼𝑗

𝐻 = ∑ 𝐼𝑖
𝐻,𝑣

𝑖  𝑅𝑗
𝐻 = ∑ 𝑅𝑖

𝐻,𝑣
𝑖  

When the rate of change in human and mosquitoes are zero in a patch 𝑗 (
𝑑𝑁𝑗

𝐻

𝑑𝑡
=

0,
𝑑𝑁𝑗

𝑉

𝑑𝑡
= 0) we can see that 𝑁𝑗

𝐻 =
Λ𝑗
𝐻

𝜇𝑗
𝐻−∑ 𝑚𝑖𝑗𝑗

 and 𝑁𝑗
𝑉 =

Λ𝑗
𝑉

𝜇𝑗
𝑉+𝑎 𝜓𝑗

𝐻 

5.2.5. Analysis of the model 

Positivity and boundedness of solutions 

The biological interest of the previous system of nonlinear ODE (Eq.5.1) admit 

its solutions in a set denoted Ω and defined as follow  

Ω = {(𝑆𝑗
𝐻, 𝐼𝑗

𝐻, 𝑅𝑗
𝐻, 𝑆𝑗

𝑉 , 𝐼𝑗
𝑉) ∈  ℝ+

5𝑣  | 𝑆𝑗
𝐻 + 𝐼𝑗

𝐻 + 𝑅𝑗
𝐻 ≤ 1, 𝑆𝑗

𝑉 + 𝐼𝑗
𝑉 ≤ 1 } 

At a steady-state, the disease-free equilibrium (DFE) of the model in patch 𝑗 is 

given by 휀0 = (
Λ𝑗
𝐻

𝜇𝑗
𝐻−∑ 𝑚𝑖𝑗𝑗

, 0,0,
Λ𝑗
𝑉

𝜇𝑗 
𝑉+𝜓𝑗𝑎

, 0).  

Using the next-generation method  (van den Driessche 2017) we calculated the 

reproduction number of the system (Eq. 5.1).  

The system (Eq. 5.1) has two infected states, 𝐼𝑗
𝐻 and 𝐼𝑗

𝑉and three uninfected 

states 𝑆𝑗
𝐻, 𝑅𝑗

𝐻 and 𝑆𝑗
𝑉. At a steady-state 𝑆𝑗

𝐻 = 𝑁𝑗
𝐻 and 𝑆𝑗

𝑉 = 𝑁𝑗
𝑉 and DFE of the model 

is given by 휀0 = (
Λ𝑗
𝐻

𝜇𝑗
𝐻−∑ 𝑚𝑖𝑗𝑗

, 0,0,
Λ𝑗
𝑉

𝜇𝑗 
𝑉+ 𝜓𝑗𝑎

, 0). The linearized infected compartments  

𝑑𝐼𝑗
𝐻

𝑑𝑡
= 𝛽𝑗

𝑉𝑎(1 − 휁𝜓𝑗
𝐻)𝐼𝑗

𝑣(𝑡) − (𝛾𝑗
𝐻 + 𝜇𝑗

𝐻 + 𝛿𝑗
𝐻)𝐼𝑗

𝐻  

𝑑𝐼𝑗
𝑉

𝑑𝑡
=
𝛽𝑗
𝐻Λ𝑗

𝑉 𝑎(1 − 휁𝜓𝑖𝑗
𝐻) (𝜇𝑗

𝐻 − ∑ 𝑚𝑖𝑗𝑗 )

Λ𝑗
𝐻 (𝜇𝑗

𝑉 + 𝑎휁𝜓𝑗
𝐻)

𝐼𝑗
𝐻 −  (휁𝜓𝑗

𝐻𝑎+𝜇𝑗
𝑉)𝐼𝑗

𝑉  

The nonlinear terms with new infection ℱ and the outflow term 𝒱 are given by 
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ℱ = (

𝛽𝑗
𝑉𝑎(1 − 휁𝜓𝑗

𝐻)𝐼𝑗
𝑣

𝛽𝑗
𝐻Λ𝑗

𝑉𝑎(1− 𝜓𝑖𝑗
𝐻) (𝜇𝑗

𝐻−∑ 𝑚𝑖𝑗𝑗 )

Λ𝑗
𝐻 (𝜇𝑗

𝑉+𝑎 𝜓𝑗
𝐻)

𝐼𝑗
𝐻
) and 𝒱 = (

(𝛾𝑗
𝐻 + 𝜇𝑗

𝐻 + 𝛿𝑗
𝐻)𝐼𝑗

𝐻

(휁𝜓𝑗
𝐻𝑎 + 𝜇𝑗

𝑉)𝐼𝑗
𝑉 ). 

This gives the Jacobian matrices 𝐹 and 𝑉 at DFE 

𝐹 = (
0

𝛽𝑗
𝐻Λ𝑗

𝑉𝑎(1− 𝜓𝑖𝑗
𝐻) (𝜇𝑗

𝐻−∑ 𝑚𝑖𝑗𝑗 )

Λ𝑗
𝐻 (𝜇𝑗

𝑉+𝑎 𝜓𝑗
𝐻)

𝛽𝑗
𝑉𝑎(1 − 휁𝜓𝑗

𝐻) 0

) and 

𝑉 = (
휁𝜓𝑗

𝐻𝑎 + 𝜇𝑗
𝑉 0

0  (𝛾𝑗
𝐻 + 𝜇𝑗

𝐻 + 𝛿𝑗
𝐻)
) 

Let us found the inverse of 𝑉 (𝑉−1 ) since 𝑉 is diagonal  

𝑉−1 = (

1

𝑎 𝜓𝑗
𝐻+𝜇𝑗

𝑉 0

0
1

 (𝛾𝑗
𝐻+𝜇𝑗

𝐻+𝛿𝑗
𝐻)

)  

Hence, the next generation matrix is given by  

𝐾 = 𝐹𝑉−1 =

(

 
 

0
𝛽𝑗
𝐻Λ𝑗

𝑉𝑎(1 − 휁𝜓𝑗
𝐻)(𝜇𝑗

𝐻 − ∑ 𝑚𝑖𝑗𝑗 )

Λ𝑗
𝐻 (𝜇𝑗

𝑉 + 𝑎휁𝜓𝑗
𝐻) (𝛾𝑗

𝐻 + 𝜇𝑗
𝐻 + 𝜎𝑗

𝐻)

𝛽𝑗
𝑉𝑎(1 − 휁𝜓𝑗

𝐻)

𝜇𝑗
𝑉 + 𝑎휁𝜓𝑗

𝐻 0
)

 
 

 

Given |𝐾 − 𝜆𝐼| = 0 we have  

𝜆2 =
𝛽𝑗
𝐻𝑎(1− 𝜓𝑗

𝐻)(𝜇𝑗
𝐻−∑ 𝑚𝑖𝑗𝑗 )

Λ𝑗
𝐻 (𝜇𝑗

𝑉+𝑎 𝜓𝑗
𝐻) (𝛾𝑗

𝐻+𝜇𝑗
𝐻+𝜎𝑗

𝐻)
×
𝛽𝑗
𝑉𝑎(1− 𝜓𝑗

𝐻)

𝜇𝑗
𝑉+𝑎 𝜓𝑗

𝐻   

Accordingly, the reproduction number is given by  

ℛ0
𝑁𝐺 = √ (

𝛽𝑗
𝐻𝑎(1− 𝜓𝑗

𝐻)(𝜇𝑗
𝐻−∑ 𝑚𝑖𝑗𝑗 )

Λ𝑗
𝐻 (𝛾𝑗

𝐻+𝜇𝑗
𝐻+𝛿𝑗

𝐻)
×
𝛽𝑗
𝑉Λ𝑗

𝑉𝑎(1− 𝜓𝑗
𝐻)

(𝜇𝑗
𝑉+𝑎 𝜓𝑗

𝐻)
2 )  

We can proceed to the study of the local stability of the DFE. The Jacobian of the system 

(Eq. 5.1) at the DFE is given by  

𝐽 =

(

 
 
 
 
 −𝜇𝑗

𝐻+𝑚𝑗

0

0
0
0

 

0

−(𝛾𝑗
𝐻+𝜇𝑗

𝐻+𝛿𝑗
𝐻)

𝛾𝑖𝑗
𝐻

−
𝛽𝑗
𝐻𝑎(1− 𝜓𝑗

𝐻)

𝑁𝑗
𝐻 𝑆𝐽

𝑉∗

−
𝛽𝑗
𝐻𝑎(1− 𝜓𝑗

𝐻)

𝑁𝑗
𝐻 𝑆𝐽

𝑉∗

 

𝜎𝑗
𝐻

0

∑  𝑗 𝑚𝑖𝑗 − (𝜇𝑖𝑗
𝐻 + 𝜎𝑗

𝐻  )

0
0

 

0
0

0
− (𝜇𝑗

𝑉 + 𝑎휁𝜓𝑗
𝐻)

0

 

−
𝛽𝑗
𝑉𝑎(1−𝜁𝜓𝑖𝑗

𝐻)

𝑁𝑗
𝐻 𝑆𝑗

𝐻∗

𝛽𝑗
𝑉𝑎(1−𝜁𝜓𝑖𝑗

𝐻)

𝑁𝑗
𝐻 𝑆𝑗

𝐻∗

0
0

−𝑎휁𝜓𝑗
𝐻 − 𝜇𝑗

𝑉
)
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Where 𝑆𝑖𝑗
𝐻∗ =

Λ𝑗
𝐻

𝜇𝑗
𝐻−∑  𝑗 𝑚𝑖𝑗

, 𝑆𝐽
𝑉∗ =

Λ𝑗
𝑉

𝜇𝑗 
𝑉+ 𝜓𝑗

𝐻.  

The three first eigenvalues of 𝐽 are obtained using the Laplace expansion  (Poole 2005) 

of 𝐽. We can see that 𝜆1 = −𝜇𝑗
𝐻 + ∑  𝑗 𝑚𝑖𝑗 , 𝜆2 = ∑  𝑗 𝑚𝑖𝑗 −  (𝜎𝑗

𝐻 + 𝜇𝑗
𝐻) and 𝜆3 = 𝜇𝑗

𝑉 +

𝑎휁𝜓𝑗
𝐻  Thus, the two remainings are given by the matrix 𝐽1  

𝐽1 =

(

 
 
−(𝛾𝑗

𝐻 + 𝜇𝑗
𝐻 + 𝛿𝑗

𝐻 )
𝛽𝑗
𝑉𝑎(1 − 휁𝜓𝑗

𝐻)

𝑁𝑗
𝐻 𝑆𝐽

𝐻∗

𝛽𝑗
𝐻𝑎(1 − 휁𝜓𝑗

𝐻)

𝑁𝑗
𝐻 𝑆𝐽

𝑉∗ −𝑎휁𝜓𝑖𝑗
𝐻 − 𝜇𝑗

𝑉

)

 
 

 

The determinant of 𝐽1 gives the quadratic function denoted 𝑃  

𝑃 = 𝜆2 + 𝜆𝐴 + 𝐵 

With 𝐴 = 𝑎휁𝜓𝑗
𝐻 + 𝜎𝑗

𝐻 + 𝜇𝑗
𝐻 + 𝜇𝑗

𝑉 + 𝛾𝑗
𝐻 

𝐵 = (𝛾𝑗
𝐻 + 𝜇𝑗

𝐻 + 𝜎𝑗
𝐻)(𝑎휁𝜓𝑗

𝐻 + 𝜇𝑗
𝑉) − 𝛽𝑗

𝑉𝑎(1 − 휁𝜓𝑗
𝐻) × 𝛽𝑗

𝐻𝑎(1 − 휁𝜓𝑗
𝐻)

×
Λ𝑗
𝑉

 (𝜇𝑗
𝑉 + 𝑎휁𝜓𝑗

𝐻) 
×
𝜇𝑗
𝐻 − ∑  𝑗 𝑚𝑖𝑗

Λ𝑗
𝐻  

Theorem If ℛ0 > 1 the DFE is unstable and 𝑃(𝜆) = 0 has a real positive zero 

since 𝐵 < 0 and 𝑙𝑖𝑚
𝜆→∞

𝑃(𝜆) = ∞ ; if ℛ0 < 1 implies that the DFE is locally asymptotically 

stable and 𝑃(𝜆) = 0 has only negative  

Proof. Let prove using the Routh-Hurwitz stability criteria  (Routh 1877; 

Hurwitz 1895)  

ℛ0 < 1 ↔ 𝐵 > 0 

𝐵 > 0 → (𝛾𝑗
𝐻 + 𝜇𝑗

𝐻 + 𝜎𝑗
𝐻) > 𝛽𝑗

𝑉𝛽𝑗
𝐻𝑎2(1 − 휁𝜓𝑗

𝐻)
2
×
𝜇𝑗
𝐻−∑  𝑗 𝑚𝑖𝑗

Λ𝑗
𝐻 ×

Λ𝑗
𝑉

 (𝜇𝑗
𝑉+𝑎 𝜓𝑗

𝐻)2 
 (a) 

And 𝜇𝑗
𝑉 + 𝑎휁𝜓𝑗

𝐻 < 𝜇𝑗
𝑉 + 𝑎휁𝜓𝑗

𝐻 + 2 (𝜇𝑗
𝐻 + 𝛾𝑗

𝐻) (b). From the inequalities (a) 

and (b) we have 𝐵 > 0. 𝐴 > 0 as a sum of positive factors (c). From (c) we can conclude 

that the DFE is locally asymptotically stable if ℛ0 < 1. 

5.2.6. Numerical simulations and scenarios 

This model was parameterized using existing data from the literature, the 

population census of Ghana (2013), and the findings of the community survey (Table 

5.1). Moreover, we used a model containing two age groups (juvenile and adults) and 



Chapter 5 

74 

 

two patches (well-urbanized areas and slums) and developed three scenarios to account 

for misrepresentations in modeling and behavior. 

i) The parameter 𝜓𝑖
𝐻  is considered a constant in the two patches with the 

condition 𝜓1
𝐻 ≪ 𝜓2

𝐻 with 𝜓1
𝐻  standing for the rate of ITNs in the well-urbanized areas, 

and 𝜓2
𝐻  in the slum and poorly managed areas;  

ii) 𝜓𝑖
𝐻  stands for a linear association between ownership and uptake where the 

slope is higher in the well-urbanized areas.  

ii) 𝜓𝑖
𝐻 is decreasing over time, assuming that the ITNs have an exponential 

decay rate given by f (𝜓𝑗
𝐻) =  𝜓𝑗

𝐻𝑒𝑥𝑝−𝜆𝑗𝑡, (where 𝜆𝑗 represents the rate of physical and 

(or) chemical decay of the ITNs in patches with the decay rate higher in the slums 𝑗). 

Scenario i) and ii) account for the common misconceptions whereas iii) stand for 

behavior toward the use of ITNs. 

We quantified the magnitude of the misrepresentation through the 

computation of the relative error using the basic reproduction rate of the baseline (i.e., 

constant and homogeneous uptake of ITNs regardless of the patch) as the gold standard 

of comparison.  

5.2.7. Global uncertainty and Sensitivity analyses  

A sensitivity analysis was performed, using the Latin Hyper-cube Sampling 

(LHS) and Partial Rank Correlation Coefficient (PRCC) techniques to evaluate the critical 

inputs (parameters and initial conditions) of the model and quantify how uncertainty 

impacts the reproductive number of the system (Eq. 5.1)  (Marino et al. 2008). More 

specifically, we performed the analysis on 12 parameters and assessed their influence 

on the R0. All the parameters are assumed following uniform distribution and 

partitioned into 100 equi-probable subintervals.  

5.3. Results 

5.3.1. Empirical evidence of good knowledge on malaria and its risks  

In the two surveyed communities, malaria is perceived as the major threat to 

health (Suppl. Fig. 1) suggesting that the risk of malaria infection is well perceived. In 

addition, the major raining season was identified as a critical period of the year where 

the incidence of malaria is higher (Suppl. Fig.2). These findings corroborated previous 
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studies that showed that from May to June, corresponding to the major raining period 

(Awine et al. 2018).  

To prevent malaria infections, the communities from James Town and Korle-

Dudor, primarily used ITNs, followed by repellent coils and other alternative prevention 

methods (Suppl. Fig. 3). This suggests that the community members perceived ITNs as 

the most efficient way to prevent mosquito bites, which also implies that they have 

access to information on the disease.  

The model of ITNs uptake is not statistically significant (residual deviance = 

17.75675; df = 18 and p value= 0.472) indicating there is no evidence of a linear/ pseudo-

linear relationship between ownership and the uptake of ITN across communities (Table 

5.2). This finding highlights two major misrepresentations both by modelers and 

policymakers: i) the coverage rate of ITNs represents the uptake of ITN by communities 

and ii) the hypothesis of a linear or pseudo-linear relationship between ownership and 

uptake of ITNs. Furthermore, imposing a threshold of uptake in models is not justified. 

Overall, the uptake of ITN depends on other co-factors apart from share ownership.  

Table 5 2: Relationship between ownership and use of the ITNs in James Town and Korle-

Dudor communities of Accra, Ghana 

 
Estimate Robust SE Pr (>|z|) LL UL 

 (Intercept) 13.074 1.216 0.913 8.907 19.190 

ITNs ownership 1.012 1.005 0.075 1.001 1.023 

LL= Lower limit UL= Upper limit 

The results of the logistic regression to assess the other co-factors favoring the 

use of ITNs revealed that the model with a logit link fit better than the other links and 

that the model is statically significant (logLik test= 7.069; pvalue= 0.99). Moreover, the 

variable “Health checking the week before the survey” turned out to be significant (Table 

5.3). A unit increase in the number of times households checked their health status in 

the week before the survey increases the odds of ITN use by a factor of 1.53. These 

findings suggested that the reminding effect is very important to stimulate the use of 

ITNs and it also corroborates the notion that when people experience their relatives in 

the hospital they tend to take fewer malaria risks (Bernard et al. 2009). Thus, we can 

assume that education/ awareness, e.g. using the right channel (one-on-one 



Chapter 5 

76 

 

conversation), can improve the uptake of ITNs in the communities like James Town and 

Korle-Dudor.  

Table 5 3: Determinants of ITNs use 

 
Estimate  Std. 

Error 
z 
value 

Pr (>|z|) LL UL 

 (Intercept) 0.576 0.120 -4.586 4.52E-
06 

0.45
5 

0.72
9 

Proximity to a stagnant water 0.997 0.002 -1.581 0.1139 0.99
4 

1.00
1 

Per capita prevalence 1.218 0.126 1.563 0.118 0.95
1 

1.56
4 

Immediate care seeking 1.296 0.146 1.78 0.0751 0.97
4 

1.72
6 

Health check in the week before the 
survey 

1.530 0.178 2.383 0.0172 1.07
8 

2.17
1 

Yet in total less than 40% of the people surveyed used ITNs. Six reasons explain 

their reluctance to use the ITNs, i.e., by order of importance, (i) heat generated 

overnight, (ii) lack of space, (iii) itchiness of nets, (iv) the impossibility/ difficulty to 

breathe properly while using the nets, (v) physical/ chemical decay of the nets, and (vi) 

repurposing of ITNs (Suppl. Fig. 4).  

5.3.2. Magnitude of the epidemics  

With a uniform ITNs coverage of 60% in every community in Accra regardless 

of their location and their age class, the epidemic will die out since the total R0 is 0.80 

with a lesser progression within the group of children (Table 5.4). Besides, due to the 

difference in parameters (ecological conditions) pre-existing in the two patches (well-

urbanized versus surveyed communities i.e., poorly urbanized), in the poorly urbanized 

areas (mosquito-related parameter higher, Table 5.4), the disease will progress faster 

than in the well-urbanized areas (Fig. 5.1 A -D). 
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Fig.5. 2: Epidemiological curve showing the fraction of infected for baseline and the 

three others scenario. B, HU, LA, and D stand for baseline, heterogeneous use 

of ITN, Linear association between possession and use, and physical or 

chemical decay of ITN, respectively. WU and PU referred to well-urbanized 

and poorly-urbanized 

With the heterogeneous uptake of ITNs (60% in well-urbanized patches and 

30% in poorly urbanized areas), the R0 increased and the epidemics persist (R0=1.02). 

The disease progresses faster in poorly compared to well-urbanized areas (Table 5.4). 

As observed in the baseline, children record a slower progression of the disease 

compared to adults (Fig. 5.1A-D). Not considering the heterogeneity in ITN use (e.g. by 

policy-makers or modelers) results in a relative error of 28.19%.  

When a linear association is made between the ownership and the use of ITNs 

with a heterogeneous uptake rate (80% in well- vs. 30% in poorly-urbanized areas) and 

homogeneous ownership of 60%, the epidemics progresses faster than both in the 

baseline and the heterogeneous coverage (Fig. 5.1 A-D) and the persist (R0= 1.23). 
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Moreover, the highest progression is observed in poorly urbanized areas. The relative 

error, while not considering a threshold of use, is 55.23% 

When a physical decay is integrated into the model, the epidemics persist (R0= 

2.10; Table 5.4) with the highest records among adults living in poorly urbanized areas. 

Regardless of the scenario used we observed that both in well- and poorly-urbanized 

areas, fewer children than adults are infected (Fig.5.1 A-D). The relative error, while 

undermining the behavioral effect i.e., decay, is 163.68 (Table 5.4).  

Table 5 4: Reproduction number by patch and age with the respect to the baseline and 

the scenario mimicking the conceptual misrepresentation and the behavior 

of the communities towards ITNs.  

  Children Adults R0 Total Relative error  

Baseline Well urbanized  0.0261518 0.3895110 0.7967822  
Poorly 
urbanized  

0.0428304 0.3382890 

Heterogeneous 
coverage  

Well urbanized  0.02615180 0.38951105 1.021384 28.19% 
Poorly 
urbanized  

0.06807126 0.53764979 

Linear 
association  

Well urbanized  0.03057684 0.45541860 1.236843 55.23% 
Poorly 
urbanized  

0.08438062 0.66646663 

Decay of ITNs  Well urbanized  0.06307077 0.93939094 2.100959 163.68% 
Poorly 
urbanized  

0.12344969 0.97504737 

 

5.3.3. Sensitivity analysis 

The results of the sensitivity analysis carried out on the parameters of the 

model (Eq. 5.1) with the R0 as a response function showed that three main parameters 

are dominant in Accra: i) the migration rate (mobility of the population between 

ecological patches) (𝑚), ii) the function of the use of ITNs (𝑓 (𝜓𝑗
𝐻)), and iii) the natural 

death rate of the population (𝜇𝑗
𝐻) irrespective of the scenario (Fig. 5.2). The correct 

identification of these parameters is crucial for improving ITNs use. Regardless of the 

type of scenario, we found that increasing the uptake of ITNs in every age category and 

the ecological patch, decreasing the mobility between patches will significantly reduce 

the spread of malaria in Accra.  
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D 

 

Fig.5. 3: Partial rank correlation values for the model (Eq. 5.1) using the basic 

reproduction number as the response function. A, B, C, and D stand for 

baseline, heterogeneous use, linear association between ownership and use, 



Chapter 5 

83 

 

and decay of ITNs scenarios.Λ11𝐻 , Λ12𝐻 ,  Λ21𝐻 , Λ22𝐻  recruitment rate of children, adults 

living in the first patch and of children and adult living in the second patch, respectively; 

𝜇11
𝐻 , 𝜇12

𝐻 , 𝜇21
𝐻 , 𝜇22

𝐻  death rate of children and adults in the first patch and children and adults 

in the second patch, respectively; 𝛾11
𝐻 , 𝛾12

𝐻 , 𝛾21
𝐻 , 𝛾22

𝐻  recovery rate of children and adults in the 

first patch and children and adults in the second patch, respectively; 𝛽11
𝐻 , 𝛽12

𝐻 , 𝛽21
𝐻 , 𝛽22

𝐻  the 

transmission rate from infectious human to mosquitoes of children and adults in the first 

patch and children and adults in the second patch, respectively; 𝛿11
𝐻 , 𝛿12

𝐻 , 𝛿21
𝐻 , 𝛿22

𝐻  disease 

induced death of children and adults in the first patch and children and adults in the second 

patch, respectively;𝑚11, 𝑚12, , 𝑚22 migration rate between patch of children and adults in 

the first patch and children and adults in the second patch, respectively; 𝜓11
𝐻 , 𝜓12

𝐻 , 𝜓21
𝐻 , 𝜓22

𝐻  

proportion of ITN use of children and adults in the first patch and children and adults in the 

second patch, respectively; 𝜇1
𝑉 , 𝜇2

𝑉 death rate of mosquitoes living in the patch 1 and 2, 

respectively; 𝑎1, 𝑎2 biting rate of mosquitoes living in the patch 1 and 2, respectively; Λ1
𝑉 , Λ2

𝑉  

recruitment rate of mosquitoes living in the patch 1 and 2, respectively; 𝛽1
𝑉 , 𝛽2

𝑉  transmission 

rate from infected mosquitoes to humans living in the patch 1 and 2, respectively 

5.4. Discussion  

Ghana has made a lot of progress to control malaria over the last two decades, 

which lead to a significant reduction of disease-induced mortality (Awine et al. 2017). 

This progress was achieved using both pharmaceutical (ACT-based therapy) and non-

pharmaceutical control (i.e., seasonal indoor residual spraying and high coverage of 

ITNs). Yet, in cities such as Accra, the non-pharmaceutical and proactive control 

measures are limited to the distribution of ITNs. Despite the proven benefits of ITNs in 

Ghana (Scates et al. 2020), there are still some pockets of reluctance to use this 

preventive control measure in Accra (Ahorlu et al. 2019). Our empirical study showed 

that contrary to popular belief, that there is no significant causal relationship between 

the ownership and the use of ITNs. Several earlier cross-sectional studies also reported 

that high ownership did not necessarily cause high uptake of ITNs in Ghana (Abotsi 2009; 

Nyavor et al. 2017; Kanmiki et al. 2019). Among the factors responsible for the 

reluctance of ITN usage, Abotsi et al. (2009) showed that in high-density households, 

dwellers tend not to use ITN. Although household density was not explicitly covered by 

our cross-sectional study, it seems to play a considerable role in the reluctance of using 

ITNs. To reduce the costs for rent, dwellers in the James Town and Korle-Dudor 
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communities of Accra often live in a group of ten and more in one room of less than 

12m2  (Danso-Wiredu 2018) which is probably insufficient space for all tenants to use 

ITNs. Our empirical findings showed that people are aware of the malaria risk and the 

benefit of using ITNs as a preventive measure. Yet, in addition to the space constraint 

surveyed participants described a web of reasons for their reluctance in using ITNs, 

where one of the most important is repurposing. Doda et al. (2018) argued that malaria 

risk perception becomes less of a pressing issue when confronted with clear benefits 

stemming from repurposing of the ITNs, especially for people living in deprived 

conditions. Therefore, the mass distribution of ITN alone will not lead to the effective 

control of malaria in Accra (Bertozzi-Villa et al. 2021).  

We showed that the odds of ITN use increased in the households where a 

member had visited a healthcare facility the week before our cross-sectional survey. In 

a qualitative study, Ahorlu et al.(2019) observed that falling ill to malaria improved ITN 

uptake. Along the same lines in our analysis, a visit to a healthcare facility most likely 

improved the awareness of household members of the dangers of malaria and hence 

increased their willingness to use ITNs. In a cluster-randomized trial, Kilian et al. (2015) 

demonstrated additionally that increasing awareness of participants on ITNs through a 

regular one-on-one discussion increased their usage significantly. The same was 

observed in rural Ethiopia where another cluster-randomized control trial, the uptake of 

ITNs increased when the head of the household was knowledgeable about malaria 

(Deribew et al. 2012). Similarly, the uptake increased when pregnant women were 

malaria-educated (Amoran et al. 2012) and when the education was followed by an 

incentive (Krezanoski et al. 2010). 

Our model provided evidence to support that with a homogenous use of ITN 

at 60%, the epidemics will end. However, when the spatial heterogeneity is included in 

the parameterization of our multi-patch mechanistic model we found that malaria 

becomes persistent in Accra. Thus, our findings support the previously already 

articulated need to consider spatial heterogeneity in malaria transmission (Frank et al. 

2016). Moreover, our study results showed that policy-makers and modelers tend to 

underestimate malaria transmission when the behavior and attitude of communities vis-
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à-vis ITNs are not considered in the model. Like in Ebola (Castillo-Chavez et al. 2015, 

2016) group and individual behavior impact the transmission of infectious diseases like 

malaria. However, few frameworks embody host behavior into a mechanistic model 

(Fenichela et al. 2011). Yet, it is important to stress that our model does not consider an 

adaptive behavioral change despite its impact on the pattern of infectious diseases but 

instead considers a static behavior. Yet, our study clearly revealed how important is to 

consider human behavior in the mechanistic models testing the efficacy of ITNs.  

Our sensitivity analysis showed that the human mobility between the 

ecological patches significantly impacts malaria transmission and therefore supports 

previous evidence from previous patch models (Auger et al. 2008; Gao and Ruan 2012; 

Agusto 2014; Gao et al. 2014; Bichara and Iggidr 2018b). Hence a thorough 

understanding of human mobility can substantially improve the control of malaria.  

5.2 Conclusion 

Our study provided empirical evidence of the heterogeneous uptake of ITNs in 

Accra. We could also show that the uptake or the absence of it is influenced by human 

behavior that is spatially heterogeneous. Although the surveyed communities in Jame 

Town and Korle-Dudor (Accra) acknowledge the benefits of using ITNs to control 

malaria, their uptake is hampered by the often perceived rapid decay of nets. Hence 

ITNs should be distributed at shorter intervals than the currently used 3 years cycle. 

Moreover, our model emphasized the usefulness of integrating human behavior in the 

ordinary differential framework to quantify the effectiveness of ITNs. More specifically, 

we found that the integration of this layer of heterogeneity in the compartmental model 

allowed us to better estimate the infectiousness of malaria which turned out to be two-

fold higher than estimated by simple SIR models. In addition, we found that a one-on-

one discussion could increase the odds of uptake. Therefore, we suggest that the ITN 

distribution in communities should go hand in hand with regular malaria education 

programs, coupled with follow-up on ITN use for instance by youth volunteers from the 

neighborhoods. As the most affected societal segment by malaria burden remain poor 

city dwellers, addressing their living conditions probably will significantly reduce the 

overall malaria disease level in cities, thereby contributing to a progressive elimination 
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of the disease. The efficacy and impact of other preventive and curative measures used 

by the surveyed communities as well as future interventions like malaria vaccine remain 

to be investigated in cities across Africa.  
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6. GENERAL CONCLUSIONS 

6.1. Malaria, urbanization, and sources of heterogeneity 

Although in ten years from 2005 to 2015 malaria incidence in Ghana has been 

reduced by 15%, the disease is still a major public health concern (Shretta et al. 2020). 

The steady reduction in malaria transmission is, however, hampered by the transition of 

Ghana from a low to a middle-income country (World Bank 2019). One consequence of 

this economic transition was a considerable drop in foreign aid received for combatting 

malaria (Aregawi et al. 2017). Given the situation, more strategic control of malaria in 

Ghana would require a better understanding of both the transmission dynamics of the 

disease and the presently applied non-pharmaceutical control measures. Throughout 

this thesis, it could be demonstrated that the transmission of malaria was spatially and 

temporarily heterogeneous in Ghana and particularly in urban areas where a 

constellation of drivers represents the key sources of heterogeneity. Moreover, it was 

proven that when key sources of heterogeneity are not embedded in the model, the 

efficacy of ITNs is overestimated.  

The findings showed that space, season, and age represented important 

sources of heterogeneity. However, contrary to the common thought that malaria is 

primarily a rural disease, the findings showed that the malaria burden can be also high 

in urban areas. The findings further suggested that in big cities such as Accra and Kumasi, 

the disease incidence increase with the density of the population. Besides, the study 

showed that there is a diffusion in the epidemics, suggesting the existence of healthcare 

catchment areas and the mobility of populations towards the centre of the cities.  

Moreover, it could be revealed that 45 determinants related to different 

intervention sectors interacted to maintain the transmission of malaria in cities (chapter 

4). It was additionally observed that trust in physicians can reduce the transmission but 

patients’ noncompliance can exacerbate the disease transmission, potentially fueling 

drug resistance of the parasite. Thus, communities’ behaviors were spotted as a key 

source of heterogeneity.  

Integrating communities’ behavior into an ordinary differential model allowed 

us to demonstrate that the infectiousness of the disease is often underestimated 
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(chapter 5). Moreover, it could be shown that reducing the movement of communities 

can help to reduce malaria transmission in cities. On the other hand, the empirical data 

analyses revealed that the uptake of ITNs is mostly triggered by a visit to a healthcare 

facility that can be interpreted as a reminding effect. Several reasons explain the 

reluctance of ITN use namely, the lack of space, the itchiness of nets, the perceived 

difficulty to breathe properly when under the nets, the physical/ chemical decay of the 

nets, and the repurposing.  

Overall, the study illustrated the complex nature of malaria transmission and 

control in highly heterogeneous urban settings in Ghana. Spotting the sources of 

heterogeneity and accounting for them in malaria control will improve targeted 

interventions and further contribute to the elimination of the disease.  

6.2. Strengths and limitations  

The detailed analyses of the empirical data using statistical modeling revealed 

that the relationship between urbanization and malaria is contextual. Most specifically, 

evidence could be provided that in big cities such as Accra and Kumasi, the incidence 

follows a diffusion process that could be explained by the mobility patterns of city 

dwellers. Therefore, it can be hypothesized that monitoring mobility can contribute to 

more effective control of malaria in urban environments. Most importantly, results from 

this study showed that the link between urbanization and malaria incidence is nonlinear 

and multifactorial. Therefore, defining the prevailing conditions of a given association 

between malaria and urbanization united the large body of literature that documents 

this association. It could be particularly demonstrated that malaria incidence is highly 

heterogeneous and that its dynamic in cities depends on the density of the population 

and the vegetation cover.  

To document the other sources of urban malaria heterogeneity a participatory 

system modeling and network analysis revealed that the behavior of communities plays 

a key role in the transmission and the persistence of malaria in Accra. These findings 

enabled the development of a mathematical framework to strengthen the uptake of 

existing malaria-related public health recommendations and stimulate the co-learning 

of participants. Besides, the study results displayed the complex character of the 
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transmission and persistence of malaria in Accra while disclosing the web of interacting 

sources of heterogeneity.  

Rooting on the above-mentioned sources of heterogeneity, and more 

specifically those related to human behavior, the magnitude of the bias in disease 

infectiousness was quantified by means of mathematical modeling. While increasing the 

realism of the mathematical framework through the integration of i) spatial 

heterogeneity, ii) demographic heterogeneity, and iii) behavior of both modelers and 

communities, it could be shown that the mobility pattern within urban areas can hamper 

malaria control and thus jeopardizes the envisaged malaria elimination in Accra and 

other urban areas of Ghana.  

Nonetheless, this research has some limitations that need to be mentioned. 

Due to the lack of documented traveling history of patients, it was impossible to figure 

out the direction of the diffusion process. This could be particularly important in the 

cities such as Accra, which are in the malaria pre-elimination stage.  

Moreover, to document the additional sources of heterogeneity, a qualitative 

system approach was used to map both the complexity and the interplay between 

causal drivers of the transmission and the persistence of malaria in Accra. As the study 

is perception-based, it leaves room to question the causality and the interplay between 

the drivers.  

The mathematical model embedding communities’ behavior fails to consider 

human behavior as a systematic factor, i.e., as an additional compartment of the model, 

but rather embodies human behavior as a parameter that affects the contact with 

mosquitoes. This approach lacked to consider group dynamics in communities, e.g. 

competition and influence. Yet, taking into account the group dynamic can help to target 

the type of malaria education/awareness to provide and the persons who need to be 

trained to increase the uptake of ITNs. 

6.3. Implications of the thesis and policy recommendations  

In this research, several sources of heterogeneity in the urban malaria 

epidemic were identified. Data-driven sources of heterogeneity (chapter 3) allowed us 

to emphasize the importance of environmental factors in epidemics. Therefore, 
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surveillance of environmental factors and vectors can most help to reduce the risk of 

malaria in cities. Such surveillance is more crucial in a context where the recently 

introduced An stephensi may be a new threat in African cities (Sinka et al. 2020). This 

species, contrary to An. gambiae can feed on both animals and humans and thrives more 

in an urban environment. Moreover, the three clusters of malaria detected indicated 

that there is a need for a differential implementation of policy recommendations. In 

addition, the sources of heterogeneity in malaria epidemics involved different sectors 

with often-conflicting policies (chapter 4). For instance, there is an inherent conflict 

between the uses of pyrethroid-based insecticides in urban agriculture and for malaria 

control as it may lead to resistance development in mosquitoes. Therefore, a one-health 

multi-sectoral collaboration can be used to resolve policy conflicts. Besides, the three 

main loops (Chapter 4) give a hint on the three potential domains of policy 

recommendation. They are related to i) the urbanization-related transmission and 

acquired resistance of Anopheles to insecticides, (ii) the human's infection-prone 

behavior, and (iii) the healthcare efficiency and Plasmodium resistance. Moreover, it can 

be shown that the mobility pattern of communities affects the infectiousness of malaria 

in urban Ghana (chapter 5). Such findings indicated that there is a need to monitor 

mobility for better control of malaria. This calls for monitoring of communities 

movement as well as an improvement of communities’ awareness for better control.  

6.4. Future directions 

Several future research directions can be foreseen as a result of this study. 

Results of this research are specific to the city of Accra and some extent also on Kumasi. 

Yet, heterogeneity in cities development vary. Therefore, findings from this study should 

be corroborated from other municipalities in Ghana and beyond. A better understanding 

of the dynamics of malaria based on those of urbanization can help develop pro-active 

control measures with a view to malaria elimination in Africa.  

The inability to disentangle the direction of the observed diffusion in malaria 

transmission in bigger cites requires further studies, for instance, those that account for 

the travel history of malaria patients. Such data could be overlaid with the disease 

pattern to ascertain that the respective cities represent the malaria healthcare 
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catchment areas. Besides, such sites would help to not only clarify the direction of the 

diffusion process but also identify the places of infection that are often confused with 

the places where the disease has been reported.  

The causal links identified (chapter 4) were done by the means of a semi-

quantitative approach leaving room for the accuracy of the causal associations. 

Therefore, conducting empirical studies on the causal links in form of random-clinical 

trials could help to ascertain the reliability of the causal link suggested in this study.  

As the behavior of communities plays an important role in the chain of 

transmission in cities, it was integrated into a mathematical framework as a parameter. 

Such an approach does not consider larger communities' behavior such as collaboration 

and influence of peers in the uptake of ITNs. Therefore, developing a compartmental 

model with a compartment dedicated specifically to group behavior should be 

envisaged. To account for the randomness in human behavior, such a model can be a 

stochastic model and simulations can be done using the Monte Carlo process.  
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APPENDICES 

 

Appendix 1: Chapter 2  

Table 1. Distribution of malaria incidence from 2015-2018 per region in Ghana 

 

Region Median Mean 
Standard 
deviation 

Ashanti 12.952 22.489 28.188 

Brong Ahafo 20.359 36.111 44.424 

Central 17.663 28.034 29.580 

Eastern 17.042 27.519 28.847 

Greater Accra 9.477 16.272 21.100 

Northern 6.318 14.735 24.912 

Upper East 18.746 39.661 58.977 

Upper West 12.525 22.694 28.685 

Volta 10.598 17.703 19.330 

Western 20.359 36.342 44.399 
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Fig 1. Incidence decomposition showing the seasonality and the trend in each region and the overall country 



Appendices 

124 

 

The STL decomposition showed dominance in the overall country incidence 

around September but this dominant pick is not observed in the same month when 

regions are considered.  

 

 

 

Fig. 2: Local Indicator of the spatial association cluster map 

The following map (Fig. 4) projects the spatial location of the urban areas in 

Ghana. Based on the proxy of urbanization used the location of urban areas varied.  



Appendices 

125 

 

 

Fig. 3: Spatial repartition of urban areas according to the three definitions 

 

Figure 4: Bayesian information criterion (BIC) values from k-means clustering 

for different numbers of components/clusters and for different multivariate mixture 

models of clustering. Legend reference:- "EII" spherical, equal volume; "VII" spherical, 

unequal volume; "EEI" diagonal, equal volume and shape; "VEI" diagonal, varying 
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volume, equal shape; "EVI" diagonal, equal volume, varying shape; "VVI" diagonal, 

varying volume and shape; "EEE" ellipsoidal, equal volume, shape, and orientation; 

"EVE" ellipsoidal, equal volume and orientation; "VEE" ellipsoidal, equal shape and 

orientation; "VVE" ellipsoidal, equal orientation; "EEV" ellipsoidal, equal volume and 

equal shape; "VEV" ellipsoidal, equal shape; "EVV" ellipsoidal, equal volume; and "VVV" 

ellipsoidal, varying volume, shape, and orientation. Among these models, VEE model 

with 3 components/clusters performed the best. 
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Appendix 2: Chap 3 

Table 1: Composition of the group building sessions 

Institutions Field of expertise  
Number of 
participants  

Ghana National Malaria Program Entomology surveillance 1 

Malaria Initiative/ USAID 
Prevention campaign and 
ITN distribution 1 

World Health Organization Prevention and control 1 

Ghana Health Service Public awareness 1 
Plant Protection and Regulatory Services/ Ministry 
of Food and Agriculture Pest management 1 

Noguchi Memorial Institute for Medical Research Genetic  1 

VectorWork ITN distribution  1 

Korle Bu Teaching Hospital Physician  1 

Dodowa Health Research Center Research 1 

School of Public Health Ghana 
Medical geography and 
malaria expert 1 

Greater Accra Municipal Assemblies Community service  1 

Ghana National Malaria Program Prevention and control 1 

 

 

Table 2: Operationalization of the determinants  

 Label Operationalization  

1 
Existence and enforcement of city 
planning and regulation 

Legal dispositions regulating the construction and renovation 
of buildings in cities. e.g., laws preventing mosquito breeding 
sites in building/renovation activities. It also includes 
disposition on urban planning.  

2 Adequate housing construction 
House building after the recommendations of the city 
planning offices 

3 
Convenient waste and sewage 
management 

Regular waste collection and disposal, and existence and 
maintenance of drain and gutters for sewage evacuation  

4 Urban agriculture 
Farming activities carried out nearby urban housings. Usually 
associated with the use of pesticides, digging of wells, and 
also hosting conditions 

5 Wells excavation 
For irrigation purposes, which also offer sites for mosquito 
egg-laying  

6 Number of breeding sites 
Temporary or permanent pits and ponds that can offer 
breeding conditions for mosquitoes 

7 More rainfall 
Between 800-1200 millimeters a year, optimal for mosquitoes 
mating and reproduction  

8 
Householders' awareness and 
decision-making on malaria infection 
risk 

People information and empowerment of measures leading 
to prevent the infection and properly treat malaria 

9 
Hygiene and sanitation of 
households' compound To prevent mosquito breeding sites 



Appendices 

128 

 

10 Household income 
Financial/monetary income of the household, correlated to 
higher capabilities to acquire medicines, look for medical 
treatment, etc.  

11 Temperature between 26 and 33°C 
Ideal temperature or mating and the eggs-laying of 
mosquitoes 

12 
Higher reproduction rate of female 
Anopheles 

As female mosquitoes are the ones that transmit malaria, 
their relative increase relates to mating, egg-laying, and 
blood-sucking activities. A mosquito carried the parasites bite 
a human and inject into him the parasites. Through 
multiplication firstly in the leaver and then in the 
bloodstream, the parasite creates a series of symptoms. 
These symptoms can be expressed as fever, chill, sweating in 
that the person is symptomatic. In some cases, the person 
carrying alongside the parasite may not express any symptom 
and this person is denoted as asymptomatic.  

13 Number of female Anopheles Related to 12 

14 Surviving of female Anopheles Related to 12 

15 Use of insecticide in household 
Specific insecticide is used in the household to kill 
mosquitoes, which in the long run these tend to increase 
their tolerance and eventually resistance  

16 Insecticide resistant Anopheles strain 
Eventually, mosquitoes mutate and get adapted to chemical 
compounds that are supposed to kill them 

17 
Pest management with pyrethroid-
based insecticide in urban agriculture 

Inadequate use and disposal of insecticide and pesticide-
based pyrethroid pollutes the environment and drives the 
resistance of mosquitoes to insecticides. 

18 Disinfection of healthcare facilities 
Residuals of the pesticides applied remain in the environment 
and by their low doses augment mosquito resistance  

19 Mosquito bites Infection means, not all stings are infectious 

20 
Use of insecticide-treated bed-nets 
(ITN) 

Used to repel mosquitoes and prevent infectious contacts 
with humans 

21 Perceived-inconvenience of ITN 

Acceptability of the ITN. Some populations allude as causes to 
reject them: increase in temperature, the itchiness of 
compound contains in the ITNs, the impossibility to breath, 
etc.  

22 
Frequency and duration of nighttime 
activities 

Duration of the activities overnight can increase the exposure 
risk  

23 Use of door and windows mesh Indoor and windows to prevent mosquitoes entry 

24 Infectious mosquito bites 
Bite with a high likelihood of transmitting Plasmodium 
parasite to the human. Not all of the bites are infectious.  

25 Population receiving infected bites The fraction of the population that gets the infectious bite  

26 Malaria positive cases 
Population carrying Plasmodium parasite. This fraction of the 
population contains symptomatic and asymptomatic cases.  

27 Human migration 
Mobility of the population, which may imply the arrival of 
infected individuals  

28 Human age category 
The infectiousness is age-related, for example, children are 
more vulnerable to getting infected than adults 

29 Immune state of human host Natural protection good health safeguard  

30 Asymptomatic cases 
The fraction of the population carrying the parasite but not 
expressing any symptoms of the disease 

31 Symptomatic cases Malaria clinical cases, so showing symptoms 

32 Health literacy 
Peoples level of information on how to prevent malaria 
infection and what to do in case been infected  

33 Visit a healthcare facility Check-up for diagnosis or treatment  
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34 
Enough and well trained healthcare-
workers 

Personnel well-trained implies better and earlier malaria 
diagnostic and more timely and efficient treatment 

35 Adherence to prescription protocol 
The patient adherence to the prescribed treatments is related 
to a prompt and more comprehensive recovery 

36 
Diagnosis (anamnesis and blood 
analysis) 

Proper and effective diagnosis, imply an adequate medicine 
prescription, often measures to optimize it: anamnesis and 
blood screening, are poorly implemented or absent 

37 Drug prescription Prescription of malaria drug by health personnel 

38 Compliance with the treatment 
Patient strict observance of the posology and prescribed 
doses of the prescribed medicines. Also, neglection is 
frequent 

39 Satisfaction with the treatment Patient recovery with the received treatment 

40 Trust in the healthcare system Reaction to the effectiveness of the healthcare system 

41 
Inadequate utilization of the 
medication Misuse of drugs, which tends to weaken its efficiency  

42 
Increase in Plasmodium resistance to 
drug 

By the inadequate treatment, non-compliance of treatment, 
etc. resistance of the parasite to the given medicine 

43 Alternative medicine 
All the alternatives used to prevent and treat malaria, often 
traditional medicines like phytotherapy 

44 
Subsidy and availability on the 
preventive and curative malaria 
measures 

There is an old tradition to subsidize malaria drugs and make 
them freely (no-prescription needed) available to the 
population  

45 Self-medication 
Use of medication without a formal prescription, quite strong 
in the case of anti-malaria drugs 

 

 

 

Fig.1: Earlier system depicting the complexity of malaria in urban settings.  
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Appendix 3: chap 4 

 

 

 

Fig. 1 Identification of the major health threats in the communities 
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Fig. 2: Prevention measures used by the surveyed communities  
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Fig.3: Reasons for nonuse of ITN  
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