
A variational approach to Gibbs measures
on function spaces

Dissertation
zur

Erlangung des Doktorgrades (Dr. rer. nat.)
der

Mathematisch-Naturwissenschaftlichen Fakultät
der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von
Nikolay Barashkov

aus
Saratov, Russland

Bonn, 23. Dezember 2020



Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der
Rheinischen Friedrich-Wilhelms-Universität Bonn

1. Gutachter: Prof. Massimiliano Gubinelli
2. Gutachter Prof. Sergio Albeverio

Tag der Promotion: 25.03.2021
Erscheinungsjahr: 2022



Deutsche Zusammenfassung

In dieser Arbeit behandeln wir sogenannte Gibbs Maÿe auf Funktionenräumen. Diese sind heuris-
tisch durch den Ausdruck

e¡S(�)d�

gegeben. Dabei ist

S(�) =�

Z
�

V (�)dx

wobei V :R!R eine von unten beschränkte analytische Funktion ist und �=Rd;Td mit d= 2;
3 und � ein Gausssches Maÿ mit Kovarianz (m2 ¡ �); m2 > 0. Wir beschränken uns hier auf
die Fälle V (�) = �4 bekannt als �d4 Modell und V (�) = sin(��) mit �2 < 4� bekannt als Sine-
Gordon Modell. Das Hauptproblem bei der Konstruktion dieser Objekte ist, dass der Träger des
Maÿes � Distributionen mit negativer Regularität beinhaltet und es deshalb nicht klar ist wie
die Nichtlinearität V (�) zu interpretieren ist. Um diese Schwierigkeit zu umgehen werden in der
Literatur diese Objekte mittels Approximation konstruiert, dabei nähert man � durch Gausssche
Maÿe �T an, welche in regulären Räumen getragen sind. Zudem ersetzt man das Potential V durch
ein �renormiertes� Potential VT , dies ist nötig um im Limes ein nichttriviales Objekt zu erhalten.
In unserer Arbeit setzen wir zu diesem Zweck die folgende Formel ein die ursprünglich von Boué
und Dupuis bewiesen und in der Theorie der Groÿen Abweichungen eingesetzt wurde. Diese Formel
lautet:

¡log
Z
e¡f(�)¡�

R
VT(�)d�T = inf

u2Ha

E

�
f(WT +IT(u))+�

Z
�

VT(WT + IT(u))+
1
2
kukL2(R+��)

2

�
: (1)

Hierbei ist WT ein Gausscher Prozess mit Law(WT) = �T , Ha ist ein Raum von Prozessen die
bezüglich WT adaptiert sind und IT ist eine lineare Abbildung L2(R+�R2)!C([0;1]; H1).

In Kapitel 2 konstruieren wir mithilfe dieser Formel das �34 Maÿ auf T3. Es gehört seit längerer
Zeit zum �Volksglauben� der mathematischen Physik, dass �34 singulär bezüglich � ist. Aus diesem
Grund gab es unseres Wissens nach bisher keine Beschreibung diese Maÿes in der Literatur welche
nicht Bezug auf ein Approximationsverfahren nimmt. In Kapitel 2 sind wir fähig eine solche
Beschreibung für die Laplacetransformation zu geben indem wir mittels ¡-Konvergenz den Limes
in Gleichung (1) nehmen.

In Kapitel 3 setzen wir unsere Untersuchung des �34 Maÿes fort. Wir geben einen Beweis der
Singularität von �3

4 bezüglich �. Weiterhin konstruieren wir ein Hilfsmaÿ � sodass einerseits �34

bezüglich � absolut stetig ist, anderseits � relativ einfach zu konstruieren und zu analysieren ist.

In Kapitel 4 beschäftigen wir uns mit dem Sine-Gordon Modell, diesmal auf R2. Anders als in
den vorherigen Kapiteln geht die Hauptschwierkeit hier vom unendlichen Volumen von R2. Mit-
hilfe von Sätzen aus der Stochastischen Kontrolle und der Polchinki Gleichung studieren wir die
Abhängigkeit des Minimierers auf der rechten Seite von (1) von f . Dadurch können wir erneut
eine Beschreibung der Laplacetransformation des Sine-Gordon Modells geben. Auÿerdem geben
wir einen neuen Beweis der Osterwalder Schrader Axiome für Sine-Gordon.
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Chapter 1

Introduction

In this thesis we will consider measures on spaces of the space of Schwartz distributions S 0(�)
where �=Td;Rd, of the form

e−S(�)d�; (1.1)

with S(�) being an action-functional of the form

S(�)=�
Z
�

V (�)+m2

Z
�2+

Z
jr�j2; V 2C1(R;R);

and d� being a formal notation for the nonexistent Lebesgue measure in infinite dimensions.We
will call such measures Gibbs measures. To give a meaning to eq. (1.1) we first observe that for
�=0 we obtain the quadratic action

Sfree=m2

Z
�2+

Z
jr�j2:

In this case the eq. (1.1) can be interpreted as the gaussian measure � with covarianceZ
hf ; �ihg; �id�= hf ; (m2−�)−1gi;

this is known as the Gaussian Free Field(GFF). The Gaussian Free Field is known to be supported
in Besov-Hölder spaces of regularity (2 − d) /2 − � for any � > 0. This means that for d > 2 its
samples are genuine distributions and not functions.

Now let us turn to models where � =/ 0 . The case V (�) = �4 is known as the �d4 model,the
V (�) = cos(��) case is known as the Sine-Gordon model and V (�) = exp(��) is known as the
Høegh-Krohn model. If we want to make sense of the Gibbs measures corresponding to these
actions naively we would write

e−�
R
�V (�(x))d�: (1.2)

However this only works in d=1, since for d>2 we would be required to make sense of �
R
�
V (�(x))

for � a distribution. At first sight this seems to be impossible, however we will show that one can
leverage the properties of � to make sense of eq. (1.2). The standard playbook to achieve this is
the following:

� Approximate � with Gaussian measures �T supported in more regular spaces.

� Replace the potential V by an adjusted (�renormalized �) potential VT , for example for the
�4 model one replaces

�4! �4− aT�2− bT

with aT ; bT!1 while for Sine Gordon

cos(��)!�Tcos(��)

with �T!1.

� Take the weak limit of

e−�
R
�VT(�(x))d�T :
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The second step is known as renormalization, it is necessary to obtain a nontrivial limit. Let
us briefly comment on the role of the constants �; �. For finite volume, that is �=Td, the size of
� is not particularly important for the analysis. However for �=Rd the models behave different
depending on the size of �. For example for the �4model the correlation functions that is quantities
which are formally written as

C(z; y)=
Z
�(z)�(y)e−�

R
�V (�(x))dxd�−

Z
�(y)e−�

R
�V (�(x))dxd�

Z
�(z)e−�

R
�V (�(x))dxd�

decay exponentially in jy−z j for small � while they decay only algebraically for large �, see [69, 59,
41]. In total we can say that � is not very influential on small scales but influential on large scales.

On the role of � on the other hand is more indicative of the small scale behavior of the model.
The limit T!1 outlined above can only be taken for �2< 8�. For �2> 4� the resulting measure
is expected to become singular with respect to the Gaussian Free Field and becomes increasingly
difficult to construct as �2 approaches 8� [89].

Up to this point we hope that we have conveyed to the reader a (admittedly not very pre-
cise) picture of what some Gibbs measures on function spaces look like, but so far we have not
explained why they should be studied, which shall be our concern for the rest of this section.
The most well known application is the use of Euclidean Quantum Field Theories (EQFTs) in
Constructive Quantum Field Theory (CQFT): Euclidean Quantum Field theories are a special class
of Gibbs measures on S 0(Rd) whose correlation function satisfy certain properties known as the
Osterwalder-Schrader Axioms. Once one has an EQFT, the Osterwalder-Schrader reconstruction
theorem then asserts that one can obtain from it a relativistic QFT in the sense of Wightman,
which is one the aims of CQFT. In the next subsection we will attempt to explain these notions
in more detail.

Before we move on to the next section, let us give a brief (and very incomplete overview) of the
literature. Nelson [99, 100] investigated the relationship of Random Fields with Quantum Field
Theories and studied in this context the Gaussian free field and the �24 model. Nelson's analysis
required the random field to satisfy a Markov property, which, in general, can be very tricky to
prove, since as already outlined EQFT's are usually constructed by approximation with more
regular measures and the Markov Property is hard to carry over to the limit. This problem was
solved by Osterwalder and Schrader [104] who discovered that the Markov property can be replaced
by the weaker Reflection Positivity (see section 1.1.2 and also [51]). Many works on �2;34 , the Sine-
Gordon as well as the exponential interaction, constructing these models in both finite and infinite
volume and giving proofs of the Osterwalder-Schrader axioms (see Section 1.1.2), soon followed: [6,
66, 60, 61, 53, 107, 18, 31] is only and incomplete list. This development culminated in the works
of Feldman and Osterwalder [54] and Magnen and Sénéor [92] where the authors gave a complete
proof of the Osterwalder-Schrader axioms for �34 for small � . Even though the Markov property was
shown for Sine-Gordon (at least for small �) and �24 [8, 7] to our knowledge it remains open for �34.

There have also been some results on dimensions d>4: Aizenman [1] and Fröhlich [58] provided
proofs of the triviality of �d4 with d> 5, in the sense that a large class of approximations converge
to Gaussian measures. These results were recently extended by Aizenman and Duminil-Copin to
�44 [2], which is a case of substantial physical interest since physical space time is 4-dimensional.
Later the �2;34 , Sine-Gordon models were revisited using Renormalization Group methods [28, 33,
34, 16, 35, 36]. In recent years these models or more generally CQFT have again received substan-
tial attention due to their connections with Singular Stochastic PDE's (see Section 1.2.1), whose
understanding saw rapid progress after the pioneering works of Da Prato-Debussche [43], Hairer
[77] and Gubinelli-Imkeller-Perkowski [73]. Another fascinating development is the connection with
Liouville Quantum Gravity, and Conformal Field Theory [45, 86, 87, 74]. In this connection the
Liouville measure, which is the Høegh-Krohn model with m2= 0 plays a vital role. We shall not
further discuss this here, instead we refer to the nice reviews [85, 110].
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1.1. Relativistic and Euclidean Quantum Field Theories

In this section we will give an overview of Quantum Field Theories in the sense of Wightman,
and their relationship with Wightman functions and Euclidean Quantum Field Theories. We will
follow [112] the contribution of Kazhdan to [46] and [113] for the Wightman axioms, and [67,
51] for the Osterwalder Schrader axioms. We can consider Quantum Field Theory as an attempt
to reconcile Quantum Mechanics and Relativity Theory into a single framework. Heuristically
Qantum Mechanics would entail that the states of our system should be described as vectors in a
(separable) Hilbert space, with observables being described by operators. Relativity theory should
imply that the system is invariant under an action of the Poincaré-Group and that observables
commute on �space like� (see Definition 1.5 below) separated regions. This is made precise in the
axioms detailed in the following subsection.

1.1.1. Wightman Axioms
In this section we discuss the Wightman axioms for Quantum Field Theory. We restrict ourselves
to spinless bosonic theories.

Definition 1.1. Throughout this subsection we will denote for x; y2Rd by x � y=x1y1−x2y2− :::−
xdyd the Lorenz scalar product,and by x2 = x � x. The Lorentz group L is the group of linear
transformations that leave the Lorentz scalar product invariant. The Poincaré group P consists
of transformations fa;Ag with

fa;Agx=Ax+ a

with A2L and a2Rd and the group law defined by the composition.

Definition 1.2. (Wightman Data) Wightman's description of a quantum field theory begins
with the following data:

� A separable Hilbert space H

� A unitary representation U :P!Aut(H)

� A dense subspace D �H such that for any p 2P, U(p)D �D and a unique vector 
 2D
such that U(p)
=
 for any p2P.

� A linear map �:S (Rd;C)!Op(H), where Op(H) is the space of unbounded operators on
H called the field map, such that for any f 2S (Rd;C) D�Dom(�(f)), and for any x2D
�(f)x2D.

Axiom 1.3. (Spectral Condition) Since operators of the form U(a; 1) with a 2 Rd; and 1
denoting the identity matrix form a unitary subgroup of Aut(H) they can be written as

U(a; 1)= ei
P

i=1
d aiPi:

with generators Pi. We assume that the Spec (P ) � V+, where we have written P = (Pi)i=1d and
spec(P )=

Q
i=1
d spec(Pi) while

V+= fp2R+�Rd−1: p2> 0g:

where we recall that p2= p � p is the Lorentz scalar product.

As in Quantum Mechanics the spectrum of P should be thought of as describing the energy of
the system, so Axiom 1.3 is essentially a requirement for the energy to be positive. This condition

also implies that we can define by spectral calculus the mass operator M = P1
2−
P
i=2
d Pi

2
q

. If
SpecM �f0g[ [m;1) for some m> 0 we say that the theory has a mass gap.

Axiom 1.4. (Poincare Covariance) The field map � satisfies the following transformation rule:

U(a;A)�(f)U(a;A)−1= �(fa;Agf):

1.1 Relativistic and Euclidean Quantum Field Theories 9



Definition 1.5. We say that f ; g 2S (Rd;C) are space like separated if for any x; y 2R�Rd−1

such that (x− y)2> 0 it holds that f(x)g(y)=0.

Axiom 1.6. (Causality) If f ; g 2S (Rd;C) are space like separated

[�(f); �(g)]=0;

where [�; �] as usual denotes the commutator of two operators.

Axiom 1.7. (Cyclycity) The set(
h:h=

Y
i=1

N

�(fi)
; for some fi2S (Rd;C); N 2N

)
is dense in H.

If Wightman data satisfies these axioms, we will say that it is a Quantum Field Theory. For a
Quantum Field Theory we can consider the Wightman functions given by

W~n(f1; :::; fn)= h
; �(f1):::�(fn)
i: (1.3)

The Schwartz nuclear theorem (see for instance Theorem 2 on page 158 in [119]) implies the
existence of a tempered distributions Wn2S 0(Rnd;C) such that

W~n(f1; :::; fn)= hWn; f1
 :::
 fniL2(Rnd)

It is natural to ask what kind of properties theWn obey and under which conditions the Quantum
Field Theory can be reconstructed from the Wightman functions. The answer to those questions
is the content of the following two propositions:

Proposition 1.8. Let W~ ;Wn be constructed as above. Then they satisfy the following properties:

� Wn is invariant under P for all n2N. In particular Wn is translation invariant, hence

Wn(x1; :::; xn)=Wn(�1; :::; �n−1)

where �j=xj−xj+1, for unique Wn2S 0(R(n−1)d;C).

� Let Ŵn be the Fourier transform of Wn. Then

supp Ŵn� (V+)n−1

where V+ is defined in Axiom 1.3.

� W~n(f1�; :::; fn�)=W~n(f1; :::; fn) where f�(x)= f(x) and �� denotes complex conjugation.

� Let � be a permutation of f1; :::; ng and assume that (xi−xj)2> 0 for any i; j 2f1; :::; ng.
Then

W(x�(1); :::; x�(n))=W(x1; :::; xn):

� Let fn2S (Rnd;C) n6M for some M 2N. ThenX
j;k6M

W~ j+k(fj�
 fk)> 0

� Let a2Rd such that jaj=1. Then as �!1
Wn(x1; :::xj ; xj+1+�a; xn+�a)!Wj(x1; :::; xj)Wn−j(xj+1; :::; xn)

where the convergence is in S 0(Rnd;C).

Remark 1.9. The last property of the Wightman functions is known as the cluster decomposition
property or simply clustering. It is related to the vacuum vector 
 in Definition 1.2 being unique.
In principle one does not have to require 
 to be unique in which case the cluster decomposition
property does not hold however we will not go into this here.
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The above theorem gives necessary conditions for the Wn to be coming from a Quantum Field
Theory. It turns out these conditions are also sufficient.

Proposition 1.10. LetWn2S 0(Rnd;C) be a family of tempered distributions such that it satisfies
all the properties from Proposition 1.8. Then there exists a Quantum Field Theory such that
eq.( 1.3) holds.

For proof of Proposition 1.8 and Proposition 1.10 see [112] Section 3.3 and Section 3.4.

1.1.2. Osterwalder-Schrader Axioms
In view of the preceding section it is enough to construct the vacuum expectation values Wn

to construct a Quantum Field Theory. Then the question becomes how to construct vacuum
expectation values. Wightman functions are difficult to construct directly so instead we opt to
construct their cousins: Schwinger functions. Heuristically Schwinger functions are Wightman
functions formally evaluated in complex Euclidean points: for a point x 2 Rnd; x = ((�1; y1); :::;
(�n; yn)) with �i2R; yi2Rd−1 we write the corresponding complex Euclidean point as z(x)=(((i�1;
y1); :::; (i�n; yn)))2 (C�Rd−1)n and so if one can construct an extension of Wn to (C�Rd−1)n

we can think of Sn as defined by

Sn(x)=Wn(z(x)):

�In practice� often the reverse procedure is applied, the Schwinger functions are constructed first
and then the Wightman functions are recovered by analytic continuation.

Note that

(z(x))2= jxj2

where by jxj2 we have denoted the euclidean norm on Rd, since

(z(x))2=
X
i=1

n

−(i�i)2+ jyij2=
X
i=1

n

�i
2+ jyij2= jxj2:

so (at least heuristically) if the Wightman functions are invariant under the action of the Poincare
group, the Schwinger functions should be invariant under the actions of the Euclidean group, which
is one of the reasons they are easier to construct. In fact, in many cases Schwinger functions can
be constructed as moments of a random field, as shall be described below. However as our primary
interest in this section is to construct a Quantum Field Theory let us turn to how one can recover
the Wightman functions (and subsequently the QFT) from Schwinger functions. The condition
under which this is possible are known as the Osterwalder Schrader axioms.

In the following let fSn2S 0(Rnd)gn2N be a family of distributions.

Axiom 1.11. (Regularity) S0=1 and there exists a Schwartz semi-norm k�ks such that

jSn(f1
 :::
 fn)j6n!
Y
i=1

n

kfiks

Axiom 1.12. (Euclidean Invariance) Let the Euclidean group with G=(R;a) R2O(d); a2Rd

acts on functions by

(Gf)(x)= f(Rx−a):
Then

Sn(Gf1
 :::
Gfn)=Sn(f1
 :::
 fn):

Axiom 1.13. (Reflection Positivity) Let R+
nd be the set

fx2Rnd:x=(x1; ::::; xn) andxi=(�i; yi)with �i> 0 and yi2Rd−1g

Furthermore define the reflection �(x) = �((� ; y)) = (−� ; y) and its action on a function f 2
S 0(Rnd) by

�f(x1; :::; xn)= f(�x1; ::::;�xn):

1.1 Relativistic and Euclidean Quantum Field Theories 11



Now we require that for all finite families ffn2S (Rnd)gn6M such that supp fn�R+
nd we have

X
i;j=1

M

Si+j(�fi
 fj)> 0:

Axiom 1.14. (Symmetry) Let � be a permutation of f1; ::::; ng. Then

Sn(f�(1)
 :::
 f�(n))=Sn(f1
 :::
 fn)

Axiom 1.15. (Clustering) For any j ; n2N, 16 j6n and a2Rd such that jaj=1 as �!1

Sn(f1
 :::
 fj
 fj+1(�+�a)
 :::
 fn(�+�a))!Sj(f1
 :::
 fj)Sn−j(fj+1
 :::
 fn):

If furthermore there exists m> 0 such that for any family of fj 2Cc1(Rd) there exists a constant
C > 0 such that

jSn(f1
 :::
 fj
 fj+1(�+�a)
 :::
 fn(�+�a))−Sj(f1
 :::
 fj)Sn−j(fj+1
 :::
 fn)j6Ce−mj�j

We say that the clustering is exponential.

These conditions are sufficient to construct a Quantum Field Theory:

Theorem 1.16. Assume that fSn 2 S 0(Rnd)gn2N satisfies the Osterwalder-Schrader Axioms.
Then there exists a unique corresponding set of Wightman functions satisfying the properties
described in Proposition 1.8. By Proposition 1.10 there also exists a corresponding Quantum Field
Theory.

For a proof see [51].

Remark 1.17. Let us briefly sketch out how the Osterwalder Schrader Axioms relate the prop-
erties of the corresponding Wightman-QFT.

� Axiom 1.11 is a technical condition which makes the proof of Theorem 1.16.

� Euclidean Invariance is equivalent to Poincare of the corresponding Wightman theory.

� Axiom 1.13 enables one to build a Hilbert space for the corresponding Wightman theory.

� Axiom 1.14 is related to the Causality (Axiom 1.6).

� Axiom 1.15 is related to uniqueness of the Vacuum vector 
 in Definition 1.2.

Remark 1.18. If a set of Schwinger functions satisfies exponential clustering the corresponding
Quantum Field Theory is known to have a mass gap: see [111].

We have already mentioned that Schwinger functions can be constructed as moments of a
random field. Indeed, we can modify the definition of Reflection Positivity for measures:

Definition 1.19. Let � be a measure on S 0(Rd). Let A+�L2(�;C) be the set of of functionals
which depend only on f jR+

d ,and � be the reflection as in Axiom 1.13. We say � is reflection positive
if for any A2A+ Z

A(�)(A(��))�(d�)> 0:

Remark 1.20. It is not hard to see that Reflection Positivity is stable under weak convergence:
If �n! � is a sequence of weakly convergent reflection positive measures than also the limit � is
reflection positive.

Then we have the following proposition:
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Proposition 1.21. Let � be a reflection positive measure on S 0(Rd). Furthermore assume that
there exists a Banach space B �S 0(Rd) equipped with the norm k�kB such that for some �> 0Z

e�k�kB�(d�)<1 (1.4)

and that � is invariant under the action of the Euclidean group, meaning that for any F 2L1(�)Z
F (�)d�=

Z
F (G�)d�

for any G=(R; a) R2O(d); a2Rd. Then the moments of �

Sn(f1
 :::
 fn) :=
Z
hf1; �i:::hfn; �i�(d�)

satisfy Axioms 1.11-1.14.

The proof of the proposition is straightforward and we omit it. Note that Proposition 1.21 does
not cover clustering, it has to be verified separately.

Definition 1.22. We say that a measure � on S 0(Rd) satisfies the Osterwalder-Schrader axioms
if it satisfies the assumptions of Proposition 1.21.

Let us now provide an example where the assumptions of Proposition 1.21 are satisfied: The
Gaussian Free Field (GFF), which is the Gaussian measure with covariance (m2−�)−1. We have
already met it the introduction. Fernique's theorem implies that it satisfies eq. (1.4). Furthermore
the GFF is invariant under the action of the Euclidean group since its covariance operator is. We
will now prove that it is reflection positive.

Lemma 1.23. Let � be a Gaussian measure on S 0(Rd) with covariance operator C. Then � is
reflection positive if for any f 2S(Rd)

hCf ;�f iL2(Rd)> 0:

Proof. By density it is enough to show thatZ
A(�)(A(��))�(d�)> 0 (1.5)

for A(�)=
P
k=1
m

cke
ih�;fki with fk2Cc1(R+

d ). Then by the formula for characteristic functions of
Gaussian measures (see [83]) (1.5) reduces toX

k;j=1

m

ckcj

Z
eih�;fk−�fjid�

=
X
k;j=1

m

ckcje
−hfk−�fj;C(fk−�fj)i/2

=
X
k;j=1

m

ckcje
−hfk;Cfki/2e−hfj;Cfji/2ehfj;C�fki

Now if we denote byM=(Mjk)j;k6m,Mjk=ehfj;C�fki and v=(e−hf1;Cf1i/2c1; ::::; e−hfm;Cfmi/2cm)2
Rm and viewing M as an m�m matrix our computation becomes:Z

A(�)(A(��))�(d�)= hMv ; viRm:

It remains to prove that M is positive semi-definite. By the Schur-Hadamard product theorem
this follows from Ni;j = hfi; C�fji being positive semi-definite, which in turn follows from the
assumption. �

We now have the following lemma showing that the covariance of the Free Field is indeed
reflection positive:
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Lemma 1.24. Let C =(m2−�)−1 m> 0. Then for any f 2L2(Rd)

hCf ;�f iL2(Rd)> 0: (1.6)

Proof. Here we follow [80]. For p=(�; q)2Rd with � 2R; q 2Rd−1

Ff(p) =
Z
e−ipxf(x)dx

=
Z
R+

Z
Rd−1

e−i(qy+��)f(� ; y)dyd�

and we can continue this analytically in standard fashion in � to the lower half plane in the variable
�. By abuse of notation we denote with Ff also the analytic continuation. In particular we obtain

(Ff)(−iE; q)=
Z
R+

Z
Rd−1

e−iqy−E�f(� ; y)dyd�

While for �f

F�f(p) =
Z
eipx�f(x)dx

=
Z
R+

Z
Rd−1

eiqy−i��f(� ; y)dyd�

and again this can be analytically continued to the lower half plane and we get

F�f(−iE; q)=
Z
R+

Z
Rd−1

eiqy−iE�f(� ; y)dy�� :

Note that F�f(−iE; q)=Ff(−iE; q).
After this preliminary analysis we can rewrite

hCf ;�f iL2(Rd) =
Z

Ff(p)F�f(p) 1
jpj2+m2

dp

=
Z

Ff(�; q)F�f(�; q) 1
jq j2+m2+ �2

dqd�

We now want to use the contour integral argument to compute the � integral. Indeed the poles of
in � are

��=�iw=�i(jq j2+m2)

The Residue of

Ff(�; q)F�f(�; q) 1
jq j2+m2+ �2

=Ff(�; q)F�f(�; q) 1
(� − �+)(� − �−)

at �− is

Ff(iw−; q)F�f(iw−; q)
1

i(w+−w−)
so by the contour argument Z

Ff(�; q)F�f(�; q) 1
jq j2+m2+ �2

dqd�

= 2�i
Z

Ff(iw−; q)F�f(iw−; q)
1

i(w+−w−)
dq

= 2�
Z
jFf(iw−; q)j2

1
2(jq j2+m2)

dq

> 0
�

Remark 1.25. It is also possible to show that the covariance operator (m2−�)−s for 0< s < 1
is reflection positive [71]. However for s> 1 that is not the case.
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So we have seen that the GFF satisfies the assumptions of Proposition 1.21. We will now show
that its moments satisfy exponential clustering, thus satisfying all Osterwalder Schrader axioms.

Lemma 1.26. Let � be the Gaussian measure with covariance (m2−�)−1 with m2> 0. Then its
moments satisfy exponential clustering.

Proof. We want to show thatZ Y
i=1

k

hfi; �i
Y

i=k+1

n

hfi(�+a); �id�−
Z Y
i=1

k

hfi; �id�
Z Y
i=k+1

n

hfi; �id�

6 Ce−mj�j

if fi2Cc1
Denote by Pn the set of partitions of f1; :::; ng into pairs. Then by Wick's theorem (see for

example Theorem 1.28 in [82]), defining by f~i= fi if i6 k and f~i= fi(�+a) for i >k we haveZ Y
i=1

n

hf~i; �id�=
X
p2Pn

Y
fi;jg2p

Z
hf~i; �ihf~j ; �id�=

X
p2Pn

Y
fi;jg2p

hf~i; (m2−�)−1f~ji:

Now denote by Pnk the set of partitions of f1; :::; ng into pairs such that each pair is contained in
either f1; :::; kg or fk+1; :::;ng. Then it is not hard to see using that � is translation invariant thatZ Y

i=1

n

hf~i; �id�−
Z Y
i=1

k

hfi; �id�
Z Y
i=k+1

n

hfi; �id�

=
X

p2PnnPnk

Y
fi;jg2p

hf~i; (m2−�)−1f~ji:

Now assume that p 2 Pn n Pnk. Then there exists at least one pair fi; jg 2 p such that i6 k and
j > k: For this pair

hf~i; (m2−�)−1f~ji= hfi; (m2−�)−1fj(�+a)i6Ce−mjaj;
which implies the statement. �

1.2. Connections with PDE's

In this section we will outline some connections of Gibbs measures on function spaces of the form
e−

R
V (�)�(d�) with partial differential equations. We choose to focus here on two ways of connecting

to PDE's.

1.2.1. Stochastic Quantization
Gibbs measures in the continuum have dynamical counterparts, formally given by the stochastic
PDE's

@tu(t; x)+ (m2−�)u(t; x)+V 0(u(t; x)) = �(t; x)
u(0) = u0

with � is a space time white noise on R+��, which has covariance

E[h�; f iL+2 (R��)h�; f iL+2 (R��)] = hf ; giL+2 (�):

One expects that the Gibbs measure is the equilibrium for this Stochastic Partial Differential
Equation, that is one can find, stationary solutions u such that formally for any t2R+

u(t; �)� exp88
�Z

�

�(m2−�)�−
Z
�

V (�)
�
d�00

and in some cases one even has convergence of the Law of u(t; x) to the Gibbs measure as t!1
for a large class of initial conditions u0.
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Let us focus on the case V (u)= �

4
u4 and d=2. Then we end up with the equation

@tu+(m2−�)u−u3 = �

u(0; x) = u0(x)

It is known that in this case � has spacial regularity −2− � for any � > 0, so we cannot expect
u to have spacial regularity any better that −�, and because of this we run into the problem of
making sense of the non linearity u3. The remedy for this is very similar to the one for the measure
described above: We approximate the noise with a sequence of smooth noises �", and replace the
third power by the Wick ordered (see chapter 3 in [82]) third power u3! u3−C"u= Ju"3K, where
the notation J�K is defined by

Ju"3K := u"
3− 3E[�"2(0; 0)]u";

Ju"2K := u"
2−E[�"2(0; 0)]

(note that E[�"2(t;x)] is does not depend on t;x) and we have denoted by �" the stationary solution
to

@t�"+(m2−�)�"= �":

We see that the solution to

@tu"+(m2−�)u"− Ju"3K = �"

u"(0; x) = u0(x)

satisfies u"= �"+ v" where v solves

@tv"+(m2−�)v"− J(�"+ v")3K = 0
v"(0; x) = u0(x)− �"(x)

Now

J(�"+ v")3K=
X
i=1

3

J�"iK(v")3−i

and using probabilistic arguments one can show that as "! 0 J�"iK, converges to a random distri-
bution of regularity −� for any � > 0. By a contraction argument one can then make sense of the
limiting equation for v". The idea to consider the equation for v"=u"− �" instead of the equation
for u directly is known as the Da Prato-Debussche trick [43].

For d=3 the Da Prato-Debussche trick is not enough, since one no longer has that J�"iK converges
in a space of regularity −� (instead converging in a space of regularity −i/2), and one has to look
for a more complicated ansatz for u and one needs more tools. Their development was achieved
by Hairer [77] and Gubinelli Imkeller and Perkowski [73] which was applied to �34 in [40], see also
[78] for the parallel development for Sine-Gordon. In the approach of [73, 40] one takes further
specified v as

@tv"+(m2−�)v"= J�"3K+ J�"2K� v"+w"
where w" is another remainder term and � is a para-product ; it is a bilinear operation on functions
and has the property that the function f � g behaves at large frequencies like f , so in particular
the regularity of the para-product is dictated by f , see appendix A for details. If one then adds
additional renormalization constants beyond Wick ordering, one can solve the equation also in three
dimensions. The goal of the program known as Stochastic Quantization is to use these equations to
obtain control over the associated invariant measures (which we are also interested in). These has
been achieved for �34 in finite volume [9] and infinite volume in [71]. In [115] exponential convergence
of the dynamical �24 model in finite volume to equilibrium was proven, that is starting from any
initial data the law of the solution at fixed time will converge to the �24 measure. We note also
that the development described here took place on T2;3, except for [71]. In infinite volume further
work is necessary to handle the divergence of the noise see [72, 71, 95, 94, 96].

Recently another class of Stochastic SPDE's was shown to exhibit a connection to euclidean
quantum field theories. These are elliptic PDE's on R2�Rd which formally look like

−�u+m2u+V 0(u)= �
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where � is a white noise on R2�Rd. Then one expects that for any z 2R2 u(z; �) is distributed
according to

u(z; �)� exp88
�Z

�

�(m2−�)�−
Z
�

V (�)
�
d�00

see [4, 11].

1.2.2. Random Data dispersive equations
Gibbs measures in infinite dimensions can also be useful as invariant measures for certain dispersive
PDE's , this direction of research has recently received some renewed interest as part of the more
general program of studying dispersive PDE's with randomized initial data [38, 39], see also the
review [116]. In [23] Bourgain considered considered the invariance of �24 on T2 with respect to
the flow of nonlinear dispersive equations, for example the nonlinear (cubic) Schrödinger equation

i@tu+�u= Jjuj2uK (1.7)

where the Wick ordering is defined similarly as above. This invariance is nontrivial to interpret
since this equation is known to be well posed for initial data with regularity 0 but not below, on the
other hand the �24 measure is known to be supported on spaces of regularity just below 0. Indeed
one of the main contributions of Bourgain is that he was able to show that the flow of (1.7) is well
defined almost surely with respect to the �24 measure. In this sense one could interpret Bourgain's
result as improving the properties of the equation in a probabilistic setting. Bourgain's argument
consists of the following steps

1. Approximating (1.7) with i@tu
N + �uN = PN juj2u − cNu where PN is a projection on

functions with support in a ball of radius N in the frequency space, and cN is again a
diverging renormalization constant

2. Constructing invariant measures for the approximate equations, which is simpler since they
are Gaussian outside of a finite dimensional space

3. Proving that the solutions of the approximate equations converge to solutions of (1.7) for
small times (this is done via Bourgain's trick which is very similar to the Da Prato Debussche
trick described above).

4. Using invariance of approximate measures under the approximate equations to piece local
solutions together to obtain global solutions (this step is known as Bourgain's globalization
argument).

Since then this program has been carried out for various other dispersive PDE's in finite [21, 102,
101] and infinite volume [22]. Step 3 of this construction is usually carried out for initial data
distributed according to the free field, which then yields the statement for the full measure, since
in finite volume �24 is absolutely continuous with respect for the free field. Let us mention a recent
development in this area which is closely related to Chapter 3 of this thesis. In a recent series
of papers [26, 27] Bringmann carried out this program for the wave equation with Hartree non-
linearity on T3:

−@tt2 u−u−�u= J(V �u2)uK;
where V (x)= c� jxj−(3−�) with 3>�>0. For � <1 the appropriate invariant measures �H

� are not
absolutely continuous with respect to the free field. However relying on the approach developed in
Chapter 3 Bringmann was able to construct reference measures �H

� such that �H
� � �H

� and such
that �H

�=Law(W +I) whereW is distributed according to the free field and I is a random function
with positive regularity. Using this approach he was able to reduce the local theory to constructing
the flow for short times starting from a random function distributed according to the Gaussian
Free Field. Another crucial contribution of [27] is a modification of step 4 to equations whose
invariant measures are not absolutely continuous with respect to the free field. Let us also mention
that closely related to the invariance is the quasi-invariance of Gaussian measures under the flow
of dispersive equations. In this branch of research one wants to construct Gaussian measures for
dispersive PDE's which are quasi-invariant, that is the push forward under the flow of the measure
is absolutely continuous with respect to the Gaussian measure. This is often done by finding a Gibbs
measure which is equivalent to the Gaussian measure and invariant under the flow, see [103, 76].
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1.3. The Sine-Gordon Tranformation of the Yukawa gas

As a last application we explain the relation of the Yukawa gas with the Sine-Gordon model. We
follow here the nice exposition of [89]. The two dimensional Yukawa gas in a domain O�R2 is a
model describing a gas of charged particles interacting via the Yukawa potential given by

Km(x; y)=
Z
0

1 1
4�t

e
− jx−yj

2

4t
−mtdt;

note that Km is the kernel of (m2−�)−1. For the purpose of this section we will take O bounded.
Then the partition function of the Yukawa gas is (at least formally) given by

Z�;�;�
Y =

X
n=0

1
�n

2nn!

X
(�i)i=1

n 2f−1;1gn

Z
On

exp
 
−�2

X
16i<j6n

�i�jKm(xi; xj)
!Y
i=1

n

dxi:

On the other hand let W be a random variable on a probability space P mapping into the Besov-
Hölder space C −"(O) for some small ">0, distributed according to the Gaussian free field, that is

E[hW ; f iL2(O)hW ; giL2(O)] =
Z
R2
Km(x; y)f(x)g(y)dydx:

Let us consider the expectation

E

�
exp
�
−�e

�2

2
Km(0)

Z
O
cos(�W (x))dx

��
:

Obviously this makes no sense a priory since Km(0) is1 and W is only a distribution so cos(�W )
has no meaning. However we can approximate it by

E

�
exp
�
−�e

�2

2
Km
T (0)

Z
O
cos(�WT(x))dx

��
; (1.8)

where

Km
T (x; y)=

Z
0

T 1
4�t

e
− jx−yj

2

4t
−mtdt:

Let WT(x) be a random field with covariance

E[hWT ; f iL2(O)hWT ; giL2(O)] =
Z
R2
Km
T (x; y)f(x)g(y)dydx:

Now (1.8) is well defined since Km
T (0)<1 and consequently WT 2L2(O) almost surely. Further-

more we can compute that for any (�i)i=1n 2f−1; 1gn with k positive elements and n− k negative
ones, we get

E

��Z
O
e
i�WT(x)+

�2

2
Km
T (0)dx

�
k
�Z

O
e
−i�WT(y)+

�2

2
Km
T (0)dy

�
n−k�

=
Z
On

exp
 
−�2

X
16i<j6n

�i�jKm
T (xi; xj)

!Y
i=1

n

dxi:

and so expanding E

�
exp
�
−�e

�2

2
Km
T (0)R

Ocos(�WT(x))dx
��

in a series we obtain

E

�
exp
�
−�e

�2

2
Km
T (0)

Z
O
cos(�WT(x))dx

��
= E

�
exp
�
−�
2

�Z
O
e
i�WT(x)+

�2

2
Km
T (0)dx+

Z
O
e
−i�WT(y)+

�2

2
Km
T (0)dy

��
=
X
n=0

X
k=0

n
�n

2nn!

�
n
k

�
E

��Z
O
e
i�WT(x)+

�2

2
Km
T (0)dx

�
k
�Z

O
e
−i�WT(y)+

�2

2
Km
T (0)dy

�
n−k�

=
X
n=0

1
�n

2nn!

X
(�i)i=1

n 2f−1;1gn

Z
On

exp
 
−�2

X
16i<j6n

�i�jKm
T (xi; xj)

!Y
i=1

n

dxi:
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So sending T!1 we obtain that (at least formally) we have

Z�;�;�
Y =E

�
exp
�
−�e

�2

2
Km(0)

Z
O
cos(�W (x))dx

��
:

Remark 1.27. Let us draw the readers attention to the following detail: Due to the irregularity
of the Gaussian Free Field one would have

cos(�WT)! 0

in a suitable sense as T!1. However

e
�2

2
Km
T (0)cos(�WT)

will converge to a (nontrivial) well defined random distribution as T!1. Usually this renormal-
ization has to be put in somewhat artificially and lacks an obvious physical meaning, however here
it comes out as a the correct quantity from a physically sensible computation.

1.4. Contributions

The main theme of this thesis is the study of continuum Gibbs measures through variational/sto-
chastic control techniques. The objects we study will always (at least formally) be of the form
(1.2). We can take advantage of this by using the a formula first established by Boué and Dupuis
[20] in the context of large deviations and later generalized by Üstünel [117]. Before stating the
formula let us introduce a way to regularize the gaussian free field which will be convenient for us:
Below we will take WT to be a gaussian process on a probability space P such that

� WT is a continuous martingale in T with values in the space of Schwartz functions S (�).

� WT is smooth almost surely for T <1.

� Law(WT)! � where � is the gaussian free field.

We will always construct W as stochastic integral of a cylindrical Brownian motion on L2(�) with
�=Td for d=2;3 or �=R2. At this point it will be convenient to change notation and denote by

VT(�)=
Z
�

�4−aT
Z
�

�2+ bT or VT(�)=�T
Z

sin(��)

with suitably chosen aT ; bT ;�T!1. Then we we will be able to express the approximate measures
as defined by exp(−VT(�))�(d�) as

�T(A)=PT(WT 2A)
with

dPT = exp(−VT(WT))dP

Theorem 1.28. Assume that V:C1!R such that E[jV(WT)j2] +E[exp(−2V(WT))]<1, then

−logE[exp(−V(WT))]= inf
u2Ha

E

�
V(WT + IT(u))+

1
2

Z
0

T

kutkL2(�)2 dt
�
: (1.9)

Here

� Ha is the space of processes adapted to the filtration generated by (Wt)t2R+ such thatR
0

1kutkL2(�)2 dt<1 P-almost surely,

� I is a bounded linear map from L2([0;1)��)!C([0;1];H1(�)).

All of the subsequent chapters will make heavy use of this formula of this formula in somewhat
different ways. We will give a proof of a modified version, in chapter 2, relying on Girsanov's
transform, and another proof in chapter 4 based on stochastic control theory.
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1.4.1. Chapter 2
Our aim in Chapter 2, which closely follows the paper [13], will be to construct the �2;34 measure
on the finite domain �=T2;T3. Inspired by section 1.2.1 let us introduce the Wick ordering

JWT
4K := WT

4− 6E[WT
2]WT

2+3E[WT
2]2;

JWT
3K := WT

3− 3E[WT
2]WT ;

JWT
2K := WT

2−E[WT
2]:

One can prove that JWT
iK are martingales in T . For d= 2 we can choose VT(WT) = �

R
�
JWT

4K and
apply eq. (1.9) to obtain

WT(f)
:= −logE[exp(−f(WT)−VT(WT))]

= inf
u2Ha

E

�
f(WT + IT(u))+�

Z
JWT

4K+�
Z
JWT

3KIT(u)+�
Z
JWT

2K(IT(u))2

�

Z
WT(IT(u))3+�

Z
(IT(u))4+

1
2

Z
0

T

kukL2(�)2

� (1.10)

Our objective is to get lower and upper bounds on the right hand side of (1.10) to obtain tightness
for the sequence of measures �T . Note that the terms

R
�
(IT(u))4 +

1

2

R
0

T kutkL2(�)2 dt are �good�
in the sense that they are positive, and we will use them to bound the other terms which do
not have a sign. If f has linear growth on the space Hölder space of regularity C −�(�), that is
jf(')j6C(1+ kf kC −�(�)), we can prove, using that supT 2R+E

�
kJWT

iKkC−�(�)
p �

<1, that

E

�
f(WT + IT(u)) + �

Z
JWT

4K + �

Z
JWT

3KIT(u) + �

Z
JWT

2K(IT(u))2 + �

Z
WT(IT(u))3 +

�

Z
(IT(u))4+

1
2

Z
0

T

kukL2(�)2

�
> −C+ 1

2
E

�
�

Z
�

(IT(u))4+
1
2

Z
0

T

kukL2(�)2

�
> −C:

Where we have used that E[
R
�
JWT

4K]=0 since JWT
4K is a martingale. On the other hand by choosing

u=0 we obtain an upper bound to get

−C6 logE[exp(−f(WT)−VT(WT))]6C

which is the desired goal. For �34 the situation is significantly more complicated since we no longer
have supTE[kJWT

iKkC−�(�)]<1. Instead one can only prove

sup
T

E
�
kWT kC −1/2−�(�)

p �
< 1; sup

T

E
�
kJWT

2KkC−1−�(�)
p �

<1; sup
T

1
log(T )

E
�
kJWT

3KkC −1−�(�)
p �

<

1:
so one can no longer bound the terms

�

Z
JWT

3KIT(u); �

Z
JWT

2K(IT(u))2 (1.11)

by the good terms since
R
0

T kukL2(�)2 only controls the H1 norm of IT(u) uniformly in T . For this
reason we need to introduce additional renormalization constants and choose

VT(WT)=
Z
JWT

4K− 
T
Z
JWT

2K− �T :

After this we have to make the correct ansatz for u so that 1

2

R
0

T kukL2(�)2 cancels the divergent
terms (1.11). This ansatz will be of the form

ut=−JtJWt
3K− JtJWt

2K� �tIt(u)+ lt(u) (1.12)
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where Jt is a Fourier multiplier localized in frequency in an annulus of radius t, �t is a Fourier
multiplier localizing the function in a ball of radius t/2 and lt(u) is a remainder term defined by
this formula. Finally 00�00 is a para-product already mentioned in Section 1:2:1 (see Appendix A
for a precise definition). Performing this �change of variables� and choosing 
T ; �T suitably we can
then obtain

−C 6WT(f)6C

also in the d = 3 case. It is also known that �34 is singular with respect to the free field even in
finite volume ([3] and chapter 3). For this reason to our knowledge an �explicit� description(that
is one not making reference to a limiting procedure) has been lacking so far in the literature. In
this chapter we will obtain such a description in the form of a variational formula for the Laplace
transform of �34 by passing to the limit T!1 in (1.9) , after having made the change of variables
(1.12) using Γ-convergence. To be more precise we will obtain the following statement

Theorem 1.29. Let d = 3 and take a small � > 0. There exist renormalization constants 
T ; �T
(which depend polynomially on �) such that the limit

W(f) := lim
T!1

WT(f);

exists for every f 2 C(C −1/2−�; R) with linear growth. Moreover the functional W(f) has the
variational form

W(f)= inf
u2Ha

−1/2−�
E

�
f(W1+ I1(u))+	1(u)+�kI1(u)kL44 + 1

2
kl(u)kL2([0;1)��)

2

�
where 	1(u) a nice polynomial (non-random) functional of (W ;u),independent of f, and Ha

−1/2−�

is the space of predictable processes (wrt. the Brownian filtration) in L2(R+; H−1/2−�),with H�

being the Sobolev space defined by the norm kf kH�
2 = hf ; (1 − �)2�f iL2(�). In particular the

measures �T converge to a unique limit �1.

1.4.2. Chapter 3
In this chapter, which closely follows the preprint [14] we continue our study of the �34 measure.
As already mentioned a significant difficulty in the study of �34 is that it is singular with respect to
the Gaussian Free Field. In this chapter we will construct a �replacement� for the free field, that
is a measure Qv with respect to which the �34 measure is absolutely continuous. Qv is obtained
from P by a Girsanov transform. Indeed the time t which for us parametrizes the scale provides a
filtration FT (the one generated by the cylindrical Brownian motion on L2(�)). We will then take
Qu to satisfy

dQu

dP

��������
FT

= exp
�
LT
u − 1

2
hLuiT

�
; Lt

v=
Z
0

t

hus;dWsiL2(�) (1.13)

and v is a specific drift which is designed to cancel the divergences in the densities for �34. Indeed
the considerations from Chapter 2 suggest to take v satisfying the equation

u=�(W u; u)=�(W − I(u); u)
with

�s(W ;u) :=−�JsWs
3−�Js(Ws

2� �sIs(u)):

Actually we will have to make some technical modifications to � to simplify the proof construction
of Qv and the proof of absolute continuity but we will not go into this here. We will then consider
the sequence of densities

DT :=
1
ZT
e−VT(WT)

�
dQu

dP

�−1
and see that we can prove localized Lp bound on DT . That is we will be able to show that

sup
T

EQu

�
jDT jp1�kW1kC−1/2−"

6K	�<1:

1.4 Contributions 21



which will imply absolute continuity of any accumulation point of the family PT ,which is given by

dPT = exp(−VT(WT))dP with VT(WT)=
Z
WT

4− aT
Z
WT

2− bT ;

with respect to Qu. As an application of our result we will provide a proof that �34 is singular
with respect to the free field by constructing an event which has probability 0 P and probability
1 under Qu. More precisely we will show that S �C −1/2−"(�) defined by

S :=

(
f 2C −1/2−"(�): 1

Tn
1/2+�

Z
�

J(�Tnf)4K! 0

)

for some suitable sequence Tn!1, and �T being a family of Fourier multipliers localized in a ball
of radius T , satisfies P(W12S)= 1 and Qu(W12S)= 0. Since �34 is absolutely continuous with
respect to Qu this will prove singularity.

1.4.3. Chapter 4
In this chapter we study the Sine-Gordon model on R2. Recall that this is formally defined by

e−�
R
cos(��)�(d�)

with �(d�) now being the Gaussian free field on R2. In the previous chapters we have dealt with
�34 on a finite domain, where the difficulty arose from having to make sense of the non-linearity
applied to an irregular distribution. In this chapter we will encounter the additional complication
of �infrared divergence� that is of having to make sense of

R
cos(��) on the whole space R2 without

cos(��) having any decay property at infinity. After introducing a regularization and a spacial
cutoff � we end up with the measure

�SG
�;T(A)=PT ;�(WT 2A)

with

dPT ;�= 1
ZT ;�

exp
�
−�(T )

Z
�cos(�WT)

�
dP

where WT is constructed in analogy with Chapters 2 and 3, �(T ) is a diverging renormalization
constant introduced to prevent the limit from becoming trivial (see Section 4.2.2 and recall Section
1.3), � 2 Cc1(R2) is a spacial cutoff, and ZT ;� is a normalization constant turning PT ;� into a
probability measure. We will be looking to take the limits �! 1; T!1. Using the Boué-Dupuis
formula we will have

−log
Z
e−f(�)�SG

�;T(d�)

= inf
u2Ha

E

�
f(WT + IT(u))+��(T )

Z
�cos(�WT + �IT(u))+

1
2

Z
0

T

kukL2(R2)
2

�
− inf
u2Ha

E

�
��(T )

Z
�cos(�WT + �IT(u))+

1
2

Z
0

T

kukL2(R2)
2

�
Denoting uf a minimizer of the functional

FT ;�;f(u)=E

�
f(WT + IT(u))+��(T )

Z
�cos(�WT + �IT(u))+

1
2

Z
0

T

kukL2(R2)
2

�
;

we will see that our main goal will be to control the dependence of uf on f and �. In fact we will
show that uf −u decays exponentially fast outside of the support of f or more preciselyZ

0

TZ
exp(
x)jut

f(x)−ut0(x)j2dx (1.14)

Using this and similar estimates we will be able to prove the following results
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Theorem 1.30. �SG
T ;� converges as T!1; �!1 weakly to a measure �SG on S 0(R2). Furthermore

�SG satisfies

−log
Z
e−f(')�SG(d')= inf

u2Df
E

�
f(W0;1+ I0;1(u)+ I0;1(u1))+	(u)+ 1

2

Z
0

1
kutkL22 dt

�
where

� u12L1(P; L1(R+�R2))\L2(P; L2(R+; L
2(hxi−n))) where by L2(hxi−n) we denote the

space equipped with the norm kf kL2(hxi−n)2 =
R
R2hxi−nf(x)dx.u1 does not depend on f.

� I is a linear map improving regularity by 1 similarly as above

� 	(u) is a functional of u which also depends on u1 and W, it will be specified below

� Df is a subspace of Ha containing drifts with exponential decay in space, it will also be
specified below, similarly to eq. ( 1.14)

We will also obtain a description of the Sine-Gordon measure as a random shift of a gaussian
measure, similarly to how we described the drift measure in Chapter 3 but this time for the full
Sine-Gordon measure.

Theorem 1.31. There exists a random variable I 2L1(P;W 1;1(R2)) such that

�SG=LawP(W1+ I):

Furthermore the Law of the pair (W1; I) is invariant under the action of the Euclidean group.

Remark 1.32. We remark here that in comparison with Chapter 3 the description of the random
variable I is more complicated in this case since the equation it solves involves the value function
of the the control problem which is a somewhat �implicit� object (see Proposition 4.13 in Section
4.2 for details).

We will also be able to prove that the Sine-Gordon measure satisfies the OS-Axioms described
in section 1.1.2.

Theorem 1.33. �SG satisfies the Osterwalder-Schrader axioms according to Definition 1.22. Fur-
thermore the clustering is exponential and �SG is non-Gaussian.

1.4.4. Large Deviations
In Chapter 2 and Chapter 4 we will also discuss Large Deviation Principles for the considered
measures, that is the �34 measure on T3 and the Sine-Gordon measure on R2, in the so called
semi-classical limit. The theory of large deviations has seen many nice expositions see [50, 55, 47].
For a sequence of probability measures �n on a metric space S it codifies how fast probabilities of
�unlikely� events go to 0. More precisely as n!1 one looks for an estimate of the form

�n(A)� exp
�
−n inf

x2A
I(A)

�
;

where I:S!R+[f1g is called a rate function. Rigorously we have the following definition:

Definition 1.34. A sequence of measures �n on a polish space S satisfies the Large deviations
principle with rate function I if for any closed set A�S

limsup
n!1

− 1
n
log �n(A)> inf

x2A
I(x)

and for any open set B�S
liminf
n!1

− 1
n
log �n(A)6 inf

x2A
I(x)

Large deviations are equivalent to what is known as the Laplace principle, which is a description
of the limit of the Laplace transforms of �n.
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Definition 1.35. A sequence of measures �n on a polish S satisfies the Laplace principle with rate
function I if for any continuous bounded function f :S!R

lim
n!1

− 1
n
log
Z
e−nf(x)d�n(x)= inf

x2S
ff(x)+ I(x)g:

It is well known that the Large deviations principle and the Laplace principle are equivalent,
see for instance [50], Section 1.2.

To look at the semi-classical limit we have to introduce Planck's constant into the measure.
We can consider the measures formally given by

�~= 1
Z~
e
−1
~
R
��4+

1
2
m2'(x)2+

1
2
jr'(x)j2dxd':

where again Z~ is a normalization constant.One can give a meaning to these measures in the way
that has been shown for � in the previous discussion. More rigorously this should be defined should
be defined by the limit of the measuresZ

g(�)�T~(d�)=
E
h
g(~1/2WT) e

−1
"
VT
~(~1/2WT)

i
Z~
T

:

In Chapter 2 we will consider the �34 model on a finite domain, which again has to be appropriately
renormalized (see Section 2.7 for details). Proving that the T ! 1 limit exists can be done in
exactly the same way as for the ~ = 1 case treated before, and we can also obtain a variational
formula for the Laplace transform. Taking ~! 0 in the variational formula we will obtain the
following theorem.

Theorem 1.36. The sequence of measures �T~ converges weakly on C −1/2−", for any " > 0, to a
unique limit �~ as T!1. Furthermore �~ satisfies a Laplace principle with rate function

I( )=�
Z
 4+m2

Z
 2+

Z
jr j2 (1.15)

as ~! 0.

In Chapter 4 we can obtain a similar situation for Sine-Gordon where we can define �SG;~ as
the limit of

�~
�;T(d')= 1

Z~
�;T

e
−�

~�(T )
R
�cos(~1/2�')

�(d');

as T!1; �! 1. We then have the following theorem.

Theorem 1.37. The measures �~
�;T converge weakly on H−1(hxi−n) for n large enough to a limiting

measure �SG;~. �SG;~ satisfies a Large deviation principle with rate function

I(')=�
Z
(cos(')− 1)+ 1

2
m2

Z
'2+ 1

2

Z
jr'(x)j2

as ~! 0.
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Chapter 2
A Variational Approach to �3

4

2.1. Introduction
The �d4 Gibbs measure on the d-dimensional torus �=�L=TL

d=(R/(2�LZ))d is the probability
measure � obtained as the weak limit for T!1 of the family (�T)T>0 given by

�T(d�)=
exp[−VT(�T)]

ZT
#(d�); (2.1)

where

VT(') :=�
Z
�

(j'(�)j4−aT j'(�)j2+ bT)d�; ZT :=
Z
e−VT(�T)#(d�):

Here �> 0 is a fixed constant, � is the Laplacian on �, # is the centered Gaussian measure with
covariance (1−�)−1, ZT is a normalization factor, aT ; bT given constants and �T = �T � � with
�T some appropriate smooth and compactly supported cutoff function such that �T! � as T!1.
In comparison with the introduction have set m2 = 1 here, since we are on finite volume the
mass does not really play a role. The measures # and �T are realized as probability measures on
S 0(�), the space of tempered distributions on �. They are supported on the Hölder�Besov space
C (2−d)/2−�(�) for all small � > 0. The existence of the limit � is conditioned on the choice of a
suitable sequence of renormalization constants (aT ; bT)T>0. The constant bT is not necessary, but
is useful to decouple the behavior of the numerator from that of the denominator in eq. (2.1).

The aim of this paper is to give a proof of convergence using a variational formula for the
partition function ZT and for the generating function of the measure �T . As a byproduct we
obtain also a variational description for the generating function of the limiting measure � via Γ-
convergence of the variational problem. Let us remark that, to our knowledge, it is the first time
that such explicit description of the unregulated �34 measure is available.

Our work can be seen as an alternative realization of Wilson's [118] and Polchinski's [108]
continuous renormalization group (RG) method. This method has been made rigorous by Brydges,
Slade et al. [30, 28, 29] and as such witnesses a lot of progress and successes [33, 34, 16, 35, 36]. The
key idea is the nonperturbative study of a certain infinite dimensional Hamilton�Jacobi�Bellman
equation [32] describing the effective, scale dependent, action of the theory. Here we avoid the
analysis involved in the direct study of the PDE by going to the equivalent stochastic control
formulation, well established and understood in finite dimensions [56]. The time parameter of the
evolution corresponds to an increasing amount of small scale fluctuations of the Euclidean field and
our main tool is a variational representation formula, introduced by Boué and Dupuis [20], for the
logarithm of the partition function interpreted as the value function of the control problem. See
also the related papers of Üstünel [117] and Zhang [120] where extensions and further results on the
variational formula are obtained. The variational formula has been used by Lehec [91] to prove some
Gaussian functional inequalities, following the work of Borell [19]. In this representation we can
avoid the analysis of an infinite dimensional second order operator and concentrate more on path-
wise properties of the Euclidean interacting fields. We are able to leverage techniques developed
for singular SPDEs, in particular the para-controlled calculus developed in [73], to perform the
renormalization of various non-linear quantities and show uniform bounds in the T!1 limit.

Define the normalized free energy WT for the cutoff �34 measure, as the functional

WT(f) :=−
1
j�j log

Z
S 0(�)

exp[−j�jf(�)−VT(�T)]#(d�); (2.2)

for all f 2C(S 0(�);R). The main result of the paper is the following
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Theorem 2.1. Let d = 3 and take a small � > 0. There exist renormalization constants aT ; bT
(which depend polynomially on �) such that the limit

W(f) := lim
T!1

WT(f);

exists for every f 2 C(C −1/2−�; R) with linear growth. Moreover the functional W(f) has the
variational form

W(f)= inf
u2Ha

−1/2−�
E

�
f(W1+Z1(u))+	1(u)+�kZ1(u)kL44 + 1

2
kl(u)kL2([0;1)��)

2

�
where

� E denotes expectations on the Wiener space of a cylindrical Brownian motion (Xt)t>0 on
L2(�) with law P;

� (Wt)t>0 is a Gaussian martingale process adapted to (Xt)t>0 and such that LawP(Wt) =
Law#(�t);

� Ha
−1/2−� is the space of predictable processes (wrt. the Brownian filtration) in L2(R+;

H−1/2−�);

� (Zt(u); lt(u))t>0 are explicit (non-random) functions of u2Ha
−1/2−� and W;

� 	1(u) a nice polynomial (non-random) functional of (W ;u), independent of f.

See Section 2.4 and in particular Lemma 2.22 and Theorem 2.23 for precise definitions of the
various objects and a more detailed statement of this result. With respect to the notations in
Lemma 2.22, observe that

f(W1+Z1(u))+	1(u)=�1(W; Z(u);K(u)):

Theorem 2.1 implies directly the convergence of (�T)T to a limit measure � on S 0(�). Taking f
in the linear dual of C −1/2−� it also gives the following formula for the Laplace transform of �:Z

S 0(�)

exp(−f(�))�(d�)= exp(−j�j(W(f / j�j)−W(0))): (2.3)

To our knowledge this is the first such explicit description (i.e. without making reference of the
limiting procedure). The difficulty is linked to the conjectured singularity of the �34 measure with
respect to the reference Gaussian measure. Another possible approach to an explicit description
goes via integration by parts (IBP) formulas, see [10] for an early proof and a discussion of this
approach. More recently [71] gives a self�contained proof of the IBP formula for any accumulation
point of the �34 in the full space. However is still not clear how to use these formulas directly to
obtain uniqueness of the measure and/or other properties (either on the torus or on the more diffi-
cult situation of the full space). Therefore, while our approach here is limited to the finite volume
situation, it could be used to prove additional results, like large deviations or weak universality
very much like in the case of SPDEs, see e.g. [79, 63].

The parameter L, which determines the size of the spatial domain �=�L, will be kept fixed all
along the paper and we will not attempt here to obtain the infinite volume limit L!1. For this
reason we will avoid to explicitly show the dependence of WT with �. However some care will be
taken to obtain estimates uniform in the volume j�j.

An easy consequence of the estimates needed to establish the main theorem is the following
corollary (well known in the literature, see e.g. [18]):

Corollary 2.2. There exists functions E+(�); E−(�) not depending on j�j, such that

lim
�!0+

E�(�)
�3

=0;

and, for any �> 0,

E−(�)6WT(0)6E+(�):
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A similar statement for d=2 will be sketched below in order to introduce some of the ideas on
which the d=3 proof is based.

The construction of the�2;34 measure in finite volume is a basic problem of constructive quantum
field theory to which many works have been devoted, especially in the d = 2 case. It is not
our aim to provide here a comprehensive review of this literature. As far as the d = 3 case is
concerned, let us just mention some of the results that, to different extent, prove the existence of the
limit as the ultraviolet (small scale) regularization is removed. After the early work by Glimm and
Jaffe [65, 64], in part performed in the Hamiltonian formalism, all the subsequent research has been
formulated in the Euclidean setting: i.e. as the problem of construction and study of the probability
measures � on a space of distributions. Feldman [53], Park [107], Feldman and Osterwalder [54],
Magnén and Sénéor [92], Benfatto et al. [18], Brydges, Fröhlich and Sokal [31] and Brydges,
Dimock and Hurd [28] obtained the main results we are aware of. Recent advances in the analysis of
singular SPDEs put forward by the invention of regularity structures by M. Hairer [77] and related
approaches [73, 40, 105], or even RG�inspired ones [84], have allowed to pursue the stochastic
quantization program to a point where now it can be used to prove directly the existence of the
finite volume �34 measure in two different ways [97, 9]. Uniqueness by these methods requires addi-
tional efforts but seems at reach. Some results on the existence of the infinite volume measure [71]
and dynamics [72] have been obtained recently. For an overview of the status of the constructive
program wrt. the analysis of the �2;34 models the reader can consult the introduction to [9] and [71].

This chapter is organized as follows. In Section 2.2 we set up our main tool, the Boué�Dupuis
variational formula of Theorem 2.4. Then, as a warm-up exercise, we use the formula to show
bounds and existence of the �24 measure in Section 2.3. We then pass to the more involved situa-
tion of three dimensions in Section 2.4 where we introduce the renormalized variational problem.
In Section 2.5 we establish uniform bounds for this new problem and in Section 2.6 we prove
Theorem 2.1. Section 2.8 and Section 2.9 are concerned with some details of the analytic and
probabilistic estimates needed throughout the paper. Appendix A gathers background material on
functional spaces, paraproducts and related functional analytic background material.

Convention. Let us fix some notations and objects.

� For a2Rd let hai := (1+ jaj2)1/2.
� The various constants appearing in the estimates will be understood uniform in j�j, unless

otherwise stated.

� The constant � > 0 represents a small positive number which can be different from line to
line.

� Denote with S (�) the space of Schwartz functions on � and with S 0(�) the dual space of
tempered distributions. The notation f̂ or Ff stands for the space Fourier transform of f
and we will write g(D) to denote the Fourier multiplier operator with symbol g:Rn!R,
i.e. F (g(D)f)= gFf .

� In order to easily keep track of the volume dependence of various objects we normalize the
Lebesgue measure on � to have unit mass. We denote the normalized integral and measure
by Z

−f := 1
j�j

Z
�

f ; d/x= 1
j�jdx;

where j�j is the volume of �. Norms in all the related functional spaces (Lebesgue, Sobolev
and Besov spaces) are understood similarly normalized unless stated otherwise. This nor-
malization of the functional spaces is used not because it is the most convenient one but
because it is the one relevant to obtain uniform estimates in the volume of the variational
functional. For example, another normalization of H1 norm would no longer be controlled
by the L2 norm of the drift appearing in Theorem 2.4 below uniformly in j�j. Note that
that with our choice of normalization the Sobolev embedding no longer holds uniformly in
j�j. This is the reason why we carefully avoid to use it in the estimates of Section 2.8.
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The reader is referred to Appendix A for an overview of the functional spaces and the additional
notations used in the paper.

2.2. A stochastic control problem

We begin by constructing a probability space (
; B ; P) endowed with a process (Wt)t2[0;1]

belonging to C([0; 1]; C (2−d)/2−�(�)) and such that Law#(�T) = LawP(WT) for all T > 0 and
LawP(W1)=#, the Gaussian free field with covariance (1−�)−1.

Fix � < −d / 2 and let 
 := C(R+; H−�), (Xt)t>0 the canonical process on 
 and B the
Borel ��algebra of 
. On (
;B) consider the probability measure P which makes the canonical
process X a cylindrical Brownian motion in L2(�). In the following E without any qualifiers
will denote expectations wrt. P and EQ will denote expectations wrt. some other measure Q.
On the probability space (
;B ;P) there exists a collection (Btn)n2(L−1Z)d of complex (2-dimen-
sional) Brownian motions, such that Btn = Bt

−n, Btn; Btm independent for m =/ �n and Xt =
j�j−1/2

P
n2(L−1Z)de

ihn;�iBt
n. Note that X has a.s. trajectories in C(R+;C

−d/2−"(�)) for any ">0
by standard arguments.

Fix some �2Cc1(R+;R+), decreasing such that �(s)=1 for any s61/2 and �(s)=0 for any
s> 1 . For x2Rd, set, �t(x) := �(hxi/t) and

�t(x) :=
�
d
dt
(�t2(x))

�
1/2

=(2�_t(x)�t(x))1/2=(−2(hxi/t)�(hxi/t)�0(hxi/t))1/2/t1/2;

where �_t is the partial derivative of �t with respect to t. Consider the process (Wt)t>0 defined by

Wt :=
1

j�j1/2
X

n2(L−1Z)d

Z
0

t�s(n)
hni e

ihn;�idBsn; t> 0: (2.4)

It is a centered Gaussian process with covariance

E[hWt; 'ihWs;  i] = 1
j�j

X
n;m2(L−1Z)d

E

�Z
0

t�u(n)
hni dBun '̂(n)

Z
0

s�u(m)
hmi dBsm  ̂(m)

�

= 1
j�j

X
n2(L−1Z)d

�min(s;t)
2 (n)
hni2 '̂(n) ̂(n);

for any ';  2S (�) and t; s>0, by Fubini theorem and Itô isometry. By dominated convergence

limt!1E[hWt; 'ihWt;  i] = j�j−1
P
n2(L−1Z)d hni

−2'̂(n) ̂(n) for any ';  2L2(�).
Note that up to any finite time T the r.v. WT has a bounded spectral support and the stopped

process Wt
T =Wt^T for any fixed T > 0, is in C(R+;W

k;2(�)) for any k2N. Furthermore (Wt
T)t

only depends on a finite subset of the Brownian motions (Bn)n. Denote

Wt=
Z
0

t

JsdXs; t> 0; (2.5)

with Js := hDi−1�s(D). Observe that Wt has a distribution given by the push-forward (�t(D))�# of
# through �t(D). We write the measure �T in (2.1) in terms of expectations over P asZ

g(�)�T(d�)=
E[g(WT) e−VT(WT)]

ZT
; (2.6)

for any bounded measurable g:S 0(�)!R.
For fixed T the polynomial appearing in the expression for VT(WT) is bounded below (since

�> 0) and ZT is well defined and also bounded away from zero (this follows easily from Jensen's
inequality). However as T!1 we tend to loose both these properties due to the fact that we will
be obliged to take aT ! +1 to renormalize the non�linear terms. To obtain uniform upper and
lower bounds we need a more detailed analysis and we proceed as follows.
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Denote by Ha the space of progressively measurable processes which are P�almost surely in
H :=L2(R+��). We say that an element v of Ha is a drift . Below we will need also (generalized)
drifts belonging to H� :=L2(R+;H�(�)) for some �2R, we denote the corresponding space with
Ha
�. Consider the measure QT on (
;B) whose Radon�Nykodim derivative wrt. P is given by

dQT

dP
= e−VT(WT)

ZT
:

Since WT depends on finitely many Brownian motions (Bn)n, it is well known [109, 57] that any
P�absolutely continuous probability can be expressed via Girsanov transform. In particular, by
the Brownian martingale representation theorem there exists a drift uT 2Ha such that

dQT

dP
= exp

�Z
0

1
us
TdXs−

j�j
2

Z
0

1
kusT kL22 ds

�
;

(recall that we normalized the L2(�) norm) and the entropy of QT wrt. P is given by

H(QT jP)=EQT

�
log

dQT

dP

�
= j�j

2
EQT

�Z
0

1
kusT kL22 ds

�
:

Here equality holds also if one of the two quantities is +1. By Girsanov theorem, the canonical
process X is a semimartingale under QT with decomposition

Xt=X~t+
Z
0

t

us
Tds; t> 0;

where (X~t)t is a cylindrical QT�Brownian motion in L2(�). Under QT the process (Wt)t has the
semimartingale decomposition Wt=W~t+Ut with

W~t :=
Z
0

t

JsdX~s; and Ut= It(uT);

where for any drift v 2Ha we define

It(v) :=
Z
0

t

Jsvsds:

The integral in the density can be restricted to [0; T ] since utT =0 if t >T . Now

−logZT =−log
�
e−VT(WT)

�
dQT

dP

�−1�
=VT(WT)+

Z
0

1
us
TdXs−

j�j
2

Z
0

1
kusT k2ds; (2.7)

and taking expectation of (2.7) wrt QT we get

−logZT =EQT

�
VT(W~T + IT(uT))+

j�j
2

Z
0

1
kusT k2ds

�
: (2.8)

For any v 2Ha define the measure Qv by

dQv

dP
= exp

�Z
0

1
vsdXs−

j�j
2

Z
0

1
kvsk2ds

�
:

Denote withHc�Ha the set of drifts v2Ha for whichQv(
)=1, in particular uT 2Hc. By Jensen's
inequality and Girsanov transformation we have

−logZT =−logEP[e−VT(WT)] =−logEv

h
e
−VT(WT)−

R
0
1
vsdXs+

j�j
2

R
0
1kvsk2ds

i
6Ev

�
VT(WT)+

Z
0

1
vsdXs−

j�j
2

Z
0

1
kvsk2ds

�
;

for all v 2Hc, where Ev :=EQv. We conclude that

−logZT 6Ev

�
VT(WT

v+ IT(v))+
j�j
2

Z
0

1
kvsk2ds

�
; (2.9)
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where W =WT
v + IT(v) and LawQv(W v) = LawP(W ). The bound is saturated when v = uT . We

record this result in the following lemma which is a precursor of our main tool to obtain bounds
on the partition function and related objects.

Lemma 2.3. For any f 2C(C −1/2−�;R) with linear growth, the following variational formula for
the free energy holds:

WT(f)=−
1
j�j logE

�
e−VT

f(WT)
�
= min
v2Hc

Ev

�
1
j�jVT

f(WT
v+ IT(v))+

1
2

Z
0

1
kvskL22 ds

�
:

where VT
f := j�jf +VT.

This formula is nice and easy to prove but somewhat inconvenient for certain manipulations
since the space Hc is indirectly defined and the reference measure Ev and the process W v depend
on the drift v. A more straightforward formula has been found by Boué�Dupuis [20] which involves
the fixed canonical measure P and a general adapted drift u2Ha. This formula will be our main
tool in the following.

Theorem 2.4. For any f 2C(C −1/2−�;R) with linear growth the Boué�Dupuis (BD) variational
formula for the free energy holds:

WT(f)=−
1
j�j logE

�
e−VT

f(WT)
�
= inf
v2Ha

E

�
1
j�jVT

f(WT + IT(v))+
1
2

Z
0

1
kvskL22 ds

�
:

where the expectation is taken wrt to the measure P on 
.

Proof. The original proof can be found in Boué�Dupuis [20] for functionals bounded from above.
In our setting the formula can be proved using the result of Üstünel [117] by observing that VT

f(YT)
is a tame functional, according to his definitions. Namely, for some p; q>1 such that 1/p+1/ q=1
we have

E[jVT
f(WT)jp] +E[e−qVT

f(WT)]<+1: �

Remark 2.5. Some observations on these variational formulas.

a) They originates directly from the variational formula for the free energy of a statistical
mechanical systems: VT

f playing the role of the internal energy and the quadratic term
playing the role of the entropy.

b) The infimum might not be attained in Theorem 2.4 (see e.g. Theorem 8 in [117]) while it
is attained in Lemma 2.3.

c) The drift generated by absolutely continuous perturbations of the Wiener measure has been
introduced and studied by Föllmer [57].

d) They are a non�Markovian and infinite dimensional extension of the well known stochastic
control problem representation of the Hamilton�Jacobi�Bellman equation in finite dimen-
sions [56].

e) The BD formula is easier to use than the formula in Lemma 2.3 since the probability
do not depend on the drift v. Going from one formulation to the other requires proving
that certain SDEs with functional drift admits strong solutions and that one is able to
approximate unbounded functionals VT by bounded ones. See Üstünel [117] and Lehec [91]
for a streamlined proof of the BD formula and for applications to functional inequalities on
Gaussian measures. For example, from this formula it is not difficult to prove integrability
of functionals which are Lipschitz in the Cameron�Martin directions.

The next lemma provides a deterministic regularity result for I(v) which will be useful below.
In particular, it says that the drift v generates shifts of the Gaussian free field in directions which
belong to H1 uniformly in the scale parameter up to 1. The space H1 is the Cameron�Martin
space of the free field [82].
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Lemma 2.6. Let �2R. For any v 2L2([0;1);H�) we have

sup
06t6T

kIt(v)kH�+1
2 + sup

06s<t6T

kIt(v)− Is(v)kH�+1
2

1^ (t− s) .
Z
0

T

kvrkH�
2 dr;

and

sup
06t6T

kIt(v)kH�+1
2 6

Z
0

T

kvrkH�
2 dr:

Proof. Using the fact that �s(D) is diagonal in Fourier space, and denoting with (ek)k2(L−1Z)d
the basis of trigonometric polynomials, we have







Z

r

t

�s(D)vsds









H�

2

= 1
j�j

X
k2(L−1Z)d

hki2�
��������Z
r

t

h�s(D)ek; vsids
��������2

6 1
j�j

X
k2(L−1Z)d

hki2�
�Z

r

t

jh�s(D)ek; ekij2ds
��Z

r

t

jhek; vsij2ds
�

6
Z
r

t

kvskH�
2 ds sup

k

Z
r

t

hek; �s(D)2ekids

6
Z
r

t

kvskH�
2 ds sup

k

hek; �t2(D)eki6
Z
0

T

kvskH�
2 ds:

Which is the second statement. On the other hand �s(D) is a smooth Fourier multiplier and using
Proposition A.7 we have the estimate k�s(D)f kH�. kf kH�/hsi1/2 uniformly in s> 0, therefore,
for all 06 r6 t6T , we have







Z

r

t

�s(D)vsds









H�

2

6
�Z

r

t

k�s(D)vskH�ds
�
2

6 (t− r)
Z
r

t

k�s(D)vskH�
2 ds

. (t− r)
Z
0

T

kvskH�
2 ds:

We conclude that

k It(v)− Ir(v)kH�+1
2 .









Z
r

t

�s(D)vsds









H�

2

6 [1^ (t− r)]
Z
0

T

kvskH�
2 ds:

�

Notation 2.7. In the estimates below the symbol E(�) will denote a generic positive deterministic
quantity, not depending on j�j and such that E(�)/�3! 0 as �! 0. Moreover the symbol QT will
denote a generic random variable measurable wrt. �((Wt)t2[0;T ]) and belonging to Lp(P) uniformly
in T and j�j for any 16 p<1.

2.3. Two dimensions
As a warm up consider here the case d=2 setting f =0 for simplicity. From Theorem 2.4 we see
that the relevant quantity to bound is of the form

FT(u) :=E

�
1
j�jVT(WT + IT(u))+

1
2
kukH2

�
; (2.10)

for u2Ha. From now on we leave implicit the integration variable over the spatial domain � and
let Zt= It(u) for brevity. Choosing

aT =6E[WT(0)2]; bT =3E[WT(0)2]2; (2.11)
we have

1
j�jVT(WT +ZT)=�

Z
−JWT

4K+4�
Z
−JWT

3KZT +6�
Z
−JWT

2KZT2 +4�
Z
−WTZT

3 +�
Z
−ZT4 ;

where
JWT

4K := WT
4− 6E[WT

2]WT
2+3E[WT

2]2;
JWT

3K := WT
3− 3E[WT

2]WT ;

JWT
2K := WT

2−E[WT
2];
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denote the Wick powers of the Gaussian r.v. WT [82]. These polynomials, when seen as stochastic
processes in T , are P�martingales wrt. the filtration of (Wt)t. In particular they have an expression
as iterated stochastic integrals wrt. the Brownian motions (Btn)t;n introduced in eq. (2.4). Using
Theorem 2.4 with u=0 we readily have an upper bound for the free energy:

− 1
j�j logZT 6�E

�Z
−JWT

4K
�
=0:

For a lower bound we need to estimate from below the average underP of the variational expression

�

Z
−JWT

4K+4�
Z
−JWT

3KZT +6�
Z
−JWT

2KZT2 +4�
Z
−WTZT

3 +�
Z
−ZT4 +

1
2
kukH2 :

The strategy we adopt is to bound path-wise, and for a generic drift u, the contributions

�T(Z) := 4�
Z
−JWT

3KZT||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
I

+6�
Z
−JWT

2KZT2||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
II

+4�
Z
−WTZT

3||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
III

;

in term of quantities involving only the Wick powers of W which we can control in expectation
and the last two positive terms

1
2
kukH2 +�

Z
−ZT4 :

Any residual positive contribution depending on u can be dropped in the lower bound making the
dependence on the drift disappear. To control term I we see that by duality and Young's inequality,
for any � > 0,��������4�Z−JWT

3KZT
��������6 4�kJWT

3KkH−1kZT kH16C(�; d)�2kJWT
3KkH−12 + �

Z
0

T

kuskL22 ds: (2.12)

For the term II the following fractional Leibniz rule is of help:

Proposition 2.8. Let 1< p <1 and p1; p2; p10 ; p20 > 1 such that 1

p1
+ 1

p2
= 1

p1
0 +

1

p2
0 =

1

p
. Then for

every s; �> 0 there exists a constant C such that

khDis(fg)kLp6CkhDis+�f kLp2 khDi−�gkLp1+CkhDis+�gkLp10 khDi
−�f k

Lp2
0:

Proof. See [75]. �

Using Proposition 2.8 we get, for any � > 0, 1> "> 0,��������6�Z−JWT
2KZT2

�������� . �kJWT
2KkW−";5kZT2 k

W
";
5
4

. �kJWT
2KkW−";5kZT kW ";2kZT k

L
10
3

. �kJWT
2KkW−";5kZT kW 1;2kZT kL4

6 C2�3

2�
kJWT

2KkW−";5
4 + �

4
kZT kW 1;2

2 + ��
4
kZT kL44 :

(2.13)

In order to bound the term III we observe the following:

Lemma 2.9. For any "> 0 there exists a 16 p<1, and K<1 such that for any f 2W−1/2−";p

and g 2W 1;2\L4

�

��������Z−fg3��������6E(�)kf kW−1/2−";p
K + �(kgkW 1−";2

2 +�kgkL44 ):

Proof. By duality j
R
−fg3j 6 kf kW−1/2−";pkg3k

W 1/2+";p0. Applying again Proposition 2.8 and
Proposition A.8 of the appendix, we get

kg3kW 1/2+";14/13 . khDi1/2+�g3kL14/13. khDi5/8gkL14/6kgkL42

. kgk
H7/8
5/7 kgkL4

17/7
:
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So

�

��������Z−fg3�������� . �kf kW−1/2−";14kgk
H7/8
5/7 kgkL4

17/7

. �11kf kW−1/2−";14
28 + �(kgkH7/8

2 +�kgkL44 ):
�

Using Lemma 2.9 we deduce��������4�Z−WTZT
3

��������6E(�)kWT kW−1/2−";p
K + � (kZT kW1−";2

2 +�kZT kL44 ): (2.14)

Remark 2.10. This estimate is not optimal for d= 2. Indeed in this case (WT)T stays bounded
in W−";p for any large p and it would have been enough to estimate ZT3 in W ";p0. The stronger
estimate will be useful below for d=3 since there we will only have WT 2W−1/2−";p.

Using eqs. (2.12), (2.13) and (2.14) we obtain, for � small enough,

j�T(Z)j6QT + �
�
1
2
kukH2 +�

Z
−ZT4

�
; (2.15)

where

QT =O(�2)[1+ kJWT
3KkH−12 + kJWT

2KkW−";5
4 + kWT kW−1/2−";p

K ]:
Therefore

FT(u)>−E[QT ] + (1− �)
�
1
2
kukH2 +�

Z
−ZT4

�
>−E[QT ]:

This last average do not depends anymore on the drift and we are only left to show that

sup
T

E[QT ]<1:

However, it is well known that the Wick powers of the two dimensional Gaussian free field are
distributions belonging to La(
;W−";b) for any a>1 and b>1 and hypercontractivity plus an easy
argument gives the uniform boundedness of the above averages, see e.g. [98]. We have established:

Theorem 2.11. For any �> 0 we have

sup
T

1
j�j jlogZT j.O(�2);

where the constant in the r.h.s. is independent of �.

Remark 2.12. Observe that the argument above remains valid upon replacing � with �p with
p> 1. This implies that e−VT(YT) is in all the Lp spaces wrt. the measure P uniformly in T and
for any p> 1.

2.4. Three dimensions

In three dimensions the strategy we used above fails. Indeed here the Wick products are less regular:
JWT

2K2C −1−� uniformly in T for any small �>0 and JWT
3K does not even converge to a well-defined

random distribution. This implies that there is no straightforward approach to control the termsZ
−JWT

3KZT ; and
Z
−JWT

2KZT2 ; (2.16)

like we did in Section 2.3. The only apriori estimate on the regularity of ZT=IT(u) is inH1, coming
from Lemma 2.6 and the quadratic term in the variational functional FT(u). It is also well known
that in three dimensions there are further divergences beyond the Wick ordering which have to be
subtracted in order for the limiting measure to be non-trivial. For these reasons in the energy VT
we introduce further scale dependent renormalization constants 
T ; �T to have

1
j�jVT

f(YT)= f(YT)+
Z
−(�JYT4K−�2
TJYT2K− �T): (2.17)
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where we Wick products JYT4K; JYT2K are taken with respect to the variance of WT (as opposed to
YT).

Repeating the computation from Section 2.3 we arrive at

FT(u) = E

�
f(WT +ZT)+�

Z
−WT

3ZT +
�
2

Z
−WT

2ZT
2 +4�

Z
−WTZT

3

�
−E
�
2�2
T

Z
−WTZT +�2
T

Z
−ZT2 + �T

�
+E

�
�

Z
−ZT4 +

1
2
kukH2

�
:

(2.18)

where we introduced the convenient notations

Wt
3 := 4JWt

3K; Wt
2 := 12JWt

2K; t> 0;

and we recall that f is a fixed function belonging to C(C −1/2−�;R) with linear growth.
As already observed, this form of the functional is not very useful in the limit T !1 since

some of the terms, taken individually, are not expected to behave well. We will perform a change
of variables in the variational functional in order to obtain some explicit cancellations which will
leave only quantities well behaved as T!1. The main drawback is that the functional will have
a less compact and canonical form.

Some care has to be taken in order for the resulting quantities to be still controlled by the
coercive terms. We need to introduce a regularization which make compatible Fourier cutoffs
with L4 estimates. To introduce such a regularization fix smooth functions �~; �: Rd! R+ such
that �~(�) = 1 if j� j6 1/4 and �~(�) = 0 if j� j> 1/3 , �(�)= 1 if j� j6 1 and �(�) = 0 if j� j> 2. Set
�~t(�) := �~(�/t), then define

�t(�)= (1− �(�))�~t(�)+ �(t)�(�)�~t(�)

where �(t):R+!R is a smooth function such that �(t)= 0 for t6 10 and �(t)= 1 for t> 11.

�t(�)�s(�) = 0 for s> t,
�t(�) = 1 for j� j6 ct for some c> 0 provided that t> 11.

(2.19)

By the Mihlin-Hörmander theorem we deduce that the operator �t=�t(D) is bounded on Lp for any
1< p<1, see Proposition A.7. In the following, for any f 2C([0;1];S 0(�)) we define ft[ := �tft
then

Zt
[= �tZt=

Z
0

t

�thDi−1�s(D)us ds=
Z
0

T

�thDi−1�s(D)usds= �tZT :

In this way we have kZt[kLp. kZT kLp for all t6T . In the sequel we will always assume T > 11.
The renormalized functional will depend on some specific renormalized combinations of the

martingales (JWt
kK)t;k. Therefore it will be also convenient to introduce a collective notation for

all the stochastic objects appearing in the functionals and specify the topologies in which they are
expected to be well behaved. Let

W := (W1;W2;Wh3i;W[3]�1;W2�[3];Wh2i�h2i);

with W1 :=W ,

Wt
h3i :=JtWt

3; Wt
[3] :=

Z
0

t

JsWs
h3ids; Wt

[3]�1 :=Wt
1 �Wt

[3];

Wt
2�[3] :=Wt

2 �Wt
[3]+2
tWt

1; Wt
h2i�h2i := (JtWt

2) � (JtWt
2)+ 2
_t:

where � denotes the resonant product (see Definition A.9 in Appendix A). We do not need to
include W[3] in the data since it can be obtained as a function of Wh3i thanks to the bound

kWt
[3]−Ws

[3]kC 1/2−2�6
Z
s

t

kJrWr
h3ikC 1/2−2�dr6

�Z
0

T

kJrWr
h3ikC 1/2−2�

2 dr
�
1/2

jt− sj1/2

6
�Z

0

T

kWr
h3ikC −1/2−�

2 dr
hri1+2�

�
1/2

jt− sj1/2. sup
r2[0;T ]

kWr
h3ikC −1/2−�

2 jt− sj1/2;
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valid for all 06 s6 t6T which shows that the deterministic linear map Wh3i 7!W[3] is continuous
from C([0; 1]; C −1/2−�) to C1/2([0; 1]; C 1/2−2�). The path-wise regularity of all the other
stochastic objects follows from the next lemma, provided the function 
 is chosen appropriately.

Lemma 2.13. There exists a function 
t2C1(R+;R) such that

j
tj+ htij
_tj. loghti; t> 0: (2.20)

and such that the vector W is almost surely in S where S is the Banach space

S=C([0;1];W)\fWh3i2L2(R+;C
−1/2−�);Wh2i�h2i2L1(R+;C −�)g

with

W=W� :=C −1/2−��C −1−��C −1/2−��C −��C −1/2−��C −�;

and equipped with the norm

kWkS := kWkC([0;1];W)+ kWh3ikL2(R+;C
−1/2−�)+ kW

h2i�h2ikL1(R+;C −�):

The norm kWkS belongs to all Lp(P) spaces. Moreover the averages of the Besov norms Bq;r� of
the components of W of regularity � are uniformly bounded in the volume j�j if r <1.

Proof. The proof is based on the observation that one can choose 
 in such a way that every
component W(i) of the vector W is such that (�qWt

(i)(x))t>0 for q>−1 and x2� is a martingale
wrt. the Brownian filtration (possibly modulo a deterministic term we can control). This can be
seen by writing these terms as iterated stochastic integrals. For example, introducing the notation
dws(k)= hki−1�s(k)dBsk we can write

WT
2(x) = 24

X
k1;k2

ei(k1+k2)�x
Z
0

TZ
0

s2

dws1(k1)dws2(k2)

so, recalling the definition of Littlewood-Paley kernels %i from Appendix A, we have

�iWT
2(x)= 24

X
k1;k2

ei(k1+k2)�x%i(k1+ k2)
Z
0

TZ
0

s2

dws1(k1)dws2(k2):

By Burkholder's inequality and Fubini's theorem

E
�
sup
t6T

k�iWt
2kLp
p
�
.

0@X
k1;k2

%i(k1+ k2)
Z
0

TZ
0

s2�s1
2 (k1)
hk1i2

�s2
2 (k2)
hk2i2

ds1ds2

1Ap/2
. 2p(2+�)i/2;

uniformly in T and so

E
�
sup
t6T

kWT
2k
Bp;p
−1−�

p
�
6 E

��X
i

2p(−1−�)isup
t6T

k�iWt
2kLp
p
��

.
X
i

2p(−1−�)iE
�
sup
t6T

k�iWt
2kLp
p
�

.
X
i

2p(−1−�)i2p(1+�/2)i.
X
i

2−pi�/2<+1

By Besov embedding this implies that E[supT<1 kWT
2k
Bp;q
−1−�

p ] is finite for any p; q <1 uniformly

in the volume and E[kWT
2kCC−1−

p ] is finite. Since WT
2 is a continuous, L2-bounded martingale,

it converges and therefore it belongs to C([0; 1]; C −1−). The same reasoning can be carried
out for the more complicated terms Wh3i;W[3]�1;W2�[3];Wh2i�h2i. The details can be found in
Section 2.9. �

For convenience of the reader we summarize the probabilistic estimates in Table 3.1.

2.4 Three dimensions 37



W1 W2 Wh3i W[3] W[3]�1 W2�[3] Wh2i�h2i

CC −1/2− CC −1− CC −1/2−\L2C −1/2− CC 1/2− CC 0− CC −1/2− CC 0−\L1C 0−

Table 2.1. Regularities of the various stochastic objects, the domain of the time variable is understood to
be [0;1]. Estimates in these norms hold a.s. and in Lp(P) for all p>1 (see Lemma 2.13).

Remark 2.14. The requirement that Wh3i 2 L2C −1/2− will be used in Section 2.6 to establish
equicoercivity and to relax the variational problem to a suitable space of measures.

We are now ready to perform a change of variables which renormalizes the variational func-
tional.

Lemma 2.15. Define l= lT(u) 2Ha, Z = Z(u)2C([0;1]; H1/2−�), K =K(u)2C([0;1]; H1−�)
such that

Zt(u) := It(u);
lt
T(u) :=ut+�1t6TWt

h3i+�1t6TJt(Wt
2�Zt[(u));

Kt(u) := It(w(u)); with wt(u) :=−�1t6TJt(Wt
2�Zt[(u))+ ltT(u);

t> 0: (2.21)

Then the functional FT(u) defined in eq. ( 2.18) takes the form

FT(u) = E

�
�T(W; Z(u);K(u))+�

Z
−(ZT(u))4+

1
2
klT(u)kH2

�
;

where

�T(W; Z ;K) := f(WT +ZT)+
X
i=1

6

�(i);

�T
(1) := −�

2
K2(WT

2 ;KT ;KT)+
�

2

Z
−(WT

2 �KT)KT −�2
Z
−(WT

2 �WT
[3])KT ;

�T
(2) := �

Z
−(WT

2 � (ZT −ZT[ ))KT ;

�T
(3) := �

Z
0

TZ
−(Wt

2�Z_ t[)Ktdt;

�T
(4) := 4�

Z
−WTKT

3 − 12�2
Z
−WTWT

[3]
KT
2 + 12�3

Z
−WT(WT

[3])2KT ;

�T
(5) := −2�2

Z
−
TZT[ (ZT −ZT[ )−�2

Z
−
T(ZT −ZT[ )2− 2�2

Z
0

TZ
−
tZt[Z_ t[dt;

�T
(6) := −�2

Z
−WT

2�[3]KT −
�2

2

Z
0

TZ
−Wt

h2i�h2i(Zt[)2dt−
�2

2

Z
0

T

K3;t(Wt
2;Wt

2; Zt
[; Zt

[)dt:

Here K2 and K3;t are linear forms defined in Proposition A.14 and A.15 in Appendix A (and
recalled in the proof below). Moreover we have chosen the renormalization constant �T appearing
in equation ( 2.17) to be

�T := −�
2

2
E

Z
0

TZ
−(Wt

h3i)2dt+ �3

2
E

Z
−WT

2(WT
[3])2

+2�3
TE
Z
−WTWT

[3]− 4�4E
Z
−WT(WT

[3])3:
(2.22)

Proof.

Step 1. We are going to absorb the mixed terms (2.16) via the quadratic cost function. To do so
we develop them along the flow of the scale parameter via Itô formula. For the first we have

�

Z
−WT

3ZT =�
Z
0

TZ
−Wt

3Z_ tdt+martingale;
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and we can cancel the first term on the r.h.s. by introducing

wt :=ut+�1t6TWt
h3i
; t> 0; (2.23)

into the cost functional to get

�

Z
−WT

3ZT +
1
2

Z
0

1
kuskL22 ds=−

�2

2

Z
0

TZ
−(Wt

h3i)2dt+ 1
2

Z
0

1
kwskL22 ds+martingale;

where we used that Jt is self-adjoint. Taking into account (here and below) that the martingale
term will average to zero, we have replaced the divergent term

R
−WT

3ZT with a divergent but purely
stochastic term

R
0

T R−(Wt
h3i)2dt which does not affect anymore the variational problem and can be

explicitly removed by adding its average to �T . As a consequence, we are no more able to control
(Zt)t in H1 and we should rely on the relation (2.21) and on a control over the H1 norm of (Kt)t
coming from the residual quadratic term kwkH2 .

Step 2. From (2.23) we have the relation

ZT =−�WT
[3]+KT ;

which can be used to expand the second mixed divergent term in (2.16) as

�
2

Z
−WT

2ZT
2 = �3

2

Z
−WT

2(WT
[3])2−�2

Z
−WT

2WT
[3]
KT +

�
2

Z
−WT

2KT
2 : (2.24)

Again, the first term on the r.h.s. a purely stochastic object and will give a contribution indepen-
dent of the drift u and absorbed in �T . We are still not done since this operation has left two new
divergent terms on the r.h.s. of eq. (2.24): the H1 regularity of KT is not enough to control the
products with W2 which has regularity C −1−�, a bit below −1. In order to proceed further we will
isolate the divergent parts of these products via a paraproduct decomposition (see Appendix A for
details) and expand

−�2
Z
−WT

2WT
[3]KT +

�
2

Z
−WT

2KT
2 = �

Z
−(WT

2 �ZT)KT −�2
Z
−(WT

2 �WT
[3])KT

−�2
Z
−(WT

2 �WT
[3])KT +

�
2

Z
−(WT

2 �KT)KT

+�
2

�Z
−(WT

2 �KT)KT −
Z
−(WT

2 �KT)KT

�
:

The first two terms will require renormalizations which we put in place in Step 3 below. All the
other terms will be well behaved and we collect them in �T

(1). In particular we observe that the
last one can be rewritten as

�
2

�Z
−(WT

2 �KT)KT −
Z
−(WT

2 �KT)KT

�
=−�

2
K2(WT

2 ;KT ;KT)

introducing the trilinear form K2 whose properties are detailed in Proposition A.14 below.

Step 3. As we anticipated, the resonant term WT
2 �WT

[3] needs renormalization. In the expression
of FT in (2.18) we have the counterterm −2�2
T

R
−WTZT available, which we put now in use writing

−�2
Z
−(WT

2 �WT
[3])KT − 2�2
T

Z
−WTZT =−�2

Z
−
(
WT

2 �WT
[3]+2
TWT

�|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
WT

2�[3]

KT +2�3
T
Z
−WTWT

[3]:

The first contribution is collected in �T
(6) and the expectation of the second will contribute to �T .

As far as the term �
R
−(WT

2 �ZT)KT is concerned, we want to absorb it into
R
kwsk2ds like we

did with the linear term in Step 2. Before we can do this we must be sure that, after applying Itô's
formula, it will be still possible to use

R
−ZT4 to control some of the growth of this term. Indeed the

quadratic dependence inKT (via ZT) cannot be fully taken care of by the quadratic cost
R
kwsk2ds.
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We decompose

�

Z
−(WT

2 �ZT)KT =�
Z
−(WT

2 �ZT[ )KT +�
Z
−(WT

2 � (ZT −ZT[ ))KT

and using the fact that the functions ZT − ZT
[ and KT −KT

[ are spectrally supported outside of
a ball or radius cT we will be able to show that the second term is nice enough as T!1 to not
require further analysis and we collect it in �T

(2). For the first we apply Itô's formula to decompose
it along the flow of scales as

�

Z
−(WT

2 �ZT[ )KT =�
Z
0

TZ
−(Wt

2�Zt[)Kt
_ dt+�

Z
0

TZ
−(Wt

2�Z_ t[)Ktdt+martingale:

The second term will be fine and we collect it in �T
(3).

Step 4. We are left with the singular term
R
0

T R−(Wt
2�Zt[)Kt

_ dt. Using eq. (2.21) and expanding
w in the residual quadratic cost function obtained in Step 1, we compute

�

Z
0

TZ
−(Wt

2�Zt[)Kt
_ dt+ 1

2

Z
0

1
kwtkL22 dt=−

�2

2

Z
0

TZ
−(Jt(Wt

2�Zt[))2dt+
1
2

Z
0

1
kltkL22 dt

=−�
2

2

Z
0

TZ
−(Jt(Wt

2�Zt[))(Jt(Wt
2�Zt[))dt+

1
2
klkH2 (2.25)

To renormalize the first term on the r.h.s. we observe that the remaining counterterm can be
rewritten as

−�2
T
Z
−ZT2 =−�2
T

Z
−(ZT[ )2− 2�2
T

Z
−ZT[ (ZT −ZT[ )−�2
T

Z
−(ZT −ZT[ )2: (2.26)

Differentiating in T the first term in the r.h.s. of eq. (2.26) we get

−�2
T
Z
−(ZT[ )2=−�2

Z
0

TZ
−
_t(Zt[)2dt− 2�2

Z
0

TZ
−
tZt[Z_ t[dt: (2.27)

The last term in eq. (2.27) and the last two contributions in (2.26) are collected in �T
(5). The first

contribution in eq. (2.27) has the right form to be used as a counterterm for the resonant product
in (2.25). Using the commutator K3;t introduced in Proposition A.15 we have

−�
2

2

Z
0

TZ
−[(Jt(Wt

2�Zt[))(Jt(Wt
2�Zt[))+2
_t(Zt[)2]dt

=−�
2

2

Z
0

TZ
−[(JtWt

2) � (JtWt
2)+ 2
_t]||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

Wh2i�h2i

(Zt[)2dt−
�2

2

Z
0

T

K3;t(Wt
2;Wt

2; Zt
[; Zt

[)dt

and we collect both terms in �T
(6).

Step 5. Finally, we are left with the cubic term which we rewrite as

4�
Z
−WTZT

3 =−4�4
Z
−WT(WT

[3])3+ 12�3
Z
−WT(WT

[3])2KT − 12�2
Z
−WTWT

[3]KT
2 +4�

Z
−WTKT

3 :

The average of the first term is collected in �T while all the remaining terms in �T
(4). At last we

have established the claimed decomposition since the residual cost functional, from eq. (2.25) is
indeed klkH2 /2. �

2.5. Bounds

The aim of this section is to give upper and lower bounds on WT(f) uniformly on T and j�j. In
particular we will prove the bounds of Corollary 2.2 taking the explicit dependence on the coupling
constant � into account.
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Lemma 2.16. There exists a finite constant C, which does not depend on �, such that

sup
T

jWT(f)j6C:

Proof. Observe that, from Lemma 2.15 and from the analysis in Section 2.8, we have that

j�T(W; Z ;K)j6QT + "
�
�kZT kL44 + 1

2

Z
0

1
kltT(u)kL22 dt

�
;

which immediately gives

−E[QT ]6−E[QT ] + (1− ")E
�
�kZT kL44 + 1

2

Z
0

1
kltT(u)kL22 dt

�
6WT(f): (2.28)

On the other hand for any suitable drift u�2Ha we get the bound

WT(f)6E[QT ] + (1+ ")E
�
�kIT(u�)kL44 + 1

2

Z
0

1
kltT(u�)kL22 dt

�
; (2.29)

where
lt
T(u�)=u�t+�1t6TJt(Wt

3+Wt
2� (It(u�))[): (2.30)

Therefore it remains to produce an appropriate drift u� for which the r.h.s. in eq. (2.29) is finite
(and so uniformly in j�j and of order o(�3)).

One possible strategy is to try and choose u� such that lT(u�)=0, however this fails since estimates
on this choice of drift via Gronwall's inequality would rely on the Besov-Hölder norm of W2 for
which we do not have any uniform control in the volume. In order to overcome this problem we
decompose W2 and use weighted estimates similarly as done in [72] in the SPDE context.

Consider the decomposition
Ws

2=U>Ws
2+U6Ws

2;

where the random field U>Ws
2 is constructed as follows. Let ' be smooth function, positive and

supported on [−2; 2]3 and such that
P
m2�\Zd'

2(�−m) = 1. Denote 'm := '(�−m). Let �~ be a
smooth function supported in B(0; 1), denote by X>N the Fourier multiplier operator �~(D/N)

and similarly X6N := (1− �~(D/N)). Set Lm(s) := (1+ k'mWs
2k)

C −1−�

1
2� , let

U>Ws
2 :=

X
m2�\Zd

'mX>Lm(s)('mWs
2)

and
U6Ws

2 :=
X

m2�\Zd
'mX6Lm(s)('mWs

2):

(with slight abuse of notation we drop the dependence on time of the operators U6, U>).
Observe that the laws of both U>Ws

2 and U6Ws
2 are translation invariant w.r.t to translations

by m2�\Zd. By [114], Theorem 2.4.7 and Bernstein inequality

kU>Ws
2kC −1−3� . sup

m

kX>Lm(s)('mWs
2)kC−1−3�

. sup
m

1
1+ k'mWs

2kC −1−�
k'mWs

2kC −1−�. 1:

Furthermore for a polynomial weight � (see Appendix A for precisions on the weights and the
weighted spaces Lp(�), C �(�) and Bp;q� (�) used below):

kU6Ws
2kC −1+�(�2) . sup

m

k'mU6Ws
2kC −1+�(�2)

. sup
m

(1+ k'mWs
2kC−1−�)k'mWs

2kC−1−�(�2)

. sup
m

�(m) (1+ k'mWs
2kC−1−�)k'mWs

2kC−1−�(�)

. sup
m

(1+ k'mWs
2kC−1−�(�))k'mWs

2kC −1−�(�)

. 1+ kWs
2kC −1−�(�)
2 ;

(2.31)
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where we used the possibility to compare weighted and unweighted norms once localized via 'm.
We now let u� be the solution to the linear integral equation

u�t=−�1t6T [Wt
h3i+ JtU>Wt

2� �t(It(u�))]; t> 0; (2.32)

which can be solved globally. For 2� < 1/2, p> 1 and t2 [0; T ], we have

kIt(u�)kBp;p1/2−2�
(�)
.�
Z
0

th
kJs2Ws

3k
Bp;p
1/2−2�

(�)
+�kJs2U>Ws

2� �s(Is(u�))kBp;p1/2−2�
(�)

i
ds

.�
Z
0

t ds
hsi1/2+�

kJsWs
3k
Bp;p
−1/2−�

(�)
+�
Z
0

t ds
hsi1+�

kU>Ws
2kC −1−�kIs(u�)kBp;p1/2−2�

(�)
:

Gronwall's lemma implies that, for t2 [0; T ]:

kIt(u�)kBp;p1/2−�
(�)

.
 
�

Z
0

T ds
hsi1/2+�

kJsWs
3k
Bp;p
−1/2−�

(�)

!
exp
�
�

Z
0

T kU>Ws
2kC −1−�ds
hsi1+�

�
.
 
�

Z
0

T ds
hsi1/2+�

kJsWs
3k
Bp;p
−1/2−�

(�)

!
. �kWh3ik

L2(R+;Bp;p
−1/2−�

(�))
:

(2.33)

Note that eq. (2.33) is also valid replacing the weighted norm Bp;p
1/2−�(�) with the standard (nor-

malized) norm Bp;p
1/2−�, from which, using Besov embedding we deduce:

sup
T

EkIT(u�)kL44 .�4E
 Z

0

1 ds
hsi1/2+�

kJsWs
3k
B4;4
−1/2−�

!
4

.�4:

Computing lT(u�) from eq. (2.30) and (2.32), we obtain

lt
T(u�)=�1t6TJtU6Wt

2� �t(It(u�)); t> 0:

It remains to prove that E[klT(u�)kH2 ].O(�3) uniformly in T > 0. Note that, for s2 [0; T ],

kJsU6Ws
2� �s(Is(u�))kL2(�3) .

1
hsi1/2+�/2

kU6Ws
2� �s(Is(u�))kB2;2−1+�/2(�3)

. 1
hsi1/2+�/2

kU6Ws
2kC −1+�/2(�2)kIs(u�)kB2;21/2−3�(�):

(2.34)

We know that the distribution of u� is invariant under translation by m 2 � \ Zd. Recalling thatP
m2�\Zd'

2(�−m) = 1 and letting � be a polynomial weight with sufficient decay and such that
�5> '2, we have

E[klT(u�)kH2 ] = �2E[ks 7!1s6TJsU6Ws
2� �s(Is(u�))kH2 ]

6 �2
X

m2�\Zd
E[ks 7! '(�−m)JsU6Ws

2� �s(Is(u�))kH2 ]

(by trans. inv.) . �2j�jE[ks 7!1s6T'JsU6Ws
2� �s(Is(u�))kH2 ]

(using �5> '2) . �2
Z
0

T

dsE[kJsU6Ws
2� �s(Is(u�))kL2(�5)2 ]

(by eq. (2.34)) . �2
Z
0

T ds
hsi1+�

E
h
kU6Ws

2kC −1+�/2(�2)
2 kIs(u�)kB2;21/2−3�(�)

2
i

. �2
Z
0

T ds
hsi1+�

E
h
�2kU6Ws

2kC −1+�/2(�2)
4 +�−2kIs(u�)kB2;21/2−3�(�)

4
i

(by eqs. (2.33),(2.31)) . �4
Z
0

1 ds
hsi1+�

h
1+EkWs

2kC−1−�/2(�)
8 +�EkWh3ik

L2(R+;Bp;p
−1/2−�

(�))
4

i
. �4

�
1+ sup

s>0
EkWs

2kC−1−�/2(�)
8 +�EkWh3ik

L2(R+;Bp;p
−1/2−�

(�))
4

�
. O(�4):
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The last inequality is the consequence of bounds on the two expectations on the r.h.s. obtained as
follows. For p sufficiently large we have�

EkWs
2kC −1−�/2(�)
8

�
p/86EkWs

2k
C−1−�/2(�)
p 6EkWs

2k
Bp;p
−1−�(�p)

p

=
X
i>−1

2i(−1−�/2)p
Z
�

dxj�(x)jpEj�iWs
2(x)jp.

X
i>−1

2i(−1−�/2)pEj�iWs
2(0)jp. 1;

uniformly in s> 0. Similarly, we haveh
EkWs

3k
Bp;p
−�/2

(�)
�4
i
p/46EkWs

3k
Bp;p
−�/2(�)

p .EjWs
3(0)jp:

By Lemma 2.53

EjWs
3(0)jp. (EjWs

3(0)j2)p/2. hsi3p/2;

and using the standard multiplier bounds for Js we conclude

EkWh3ik
L2
(
R+;Bp;p

−1/2−�(�)
�4 . E

�Z
0

1
kJsWs

3k
Bp;p
−1/2−�(�)

2 ds
�
2

. E

 Z
0

1







�s(D)hDi Ws
3










Bp;p
−1/2−�

(�)

2

ds

!
2

. E

�Z
0

1
hsi−1−�

�
hsi−3/2kWs

3k
Bp;p
−�/2

(�)

�
2
ds
�
2

.
Z
0

1
hsi−1−�E

�
hsi−3/2kWs

3k
Bp;p
−�/2

(�)

�
4
ds

. 1:
�

Remark 2.17. The decomposition of the noise is similar to the one given in [72] but differs in the
fact that we choose the frequency cutoff dependent on the size of the noise instead of the point,
to preserve translation invariance. The price to pay is that the decomposition is nonlinear in the
noise, however this does not present any inconvenience in our context.

2.6. Gamma convergence

In this section we establish the Γ-convergence of the variational functional obtained in Lemma 2.15
as T!1. Γ-convergence is a notion of convergence introduced by De Giorgi which is well suited
for the study of variational problems. The book [24] is a nice introduction to Γ-convergence in the
context of the calculus of variations. For the convenience of the reader we recall here the basic
definitions and results.

Definition 2.18. Let T be a topological space and let F ;Fn:T !(−1;1]. We say that the sequence
of functionals (Fn)n Γ-converges to F iff

i. For every sequence xn!x in T
F (x)6 liminf

n!1
Fn(xn);

ii. For every point x there exists a sequence xn! x (called a recovery sequence) such that

F (x)> limsup
n!1

Fn(xn):

Definition 2.19. A sequence of functionals Fn:T ! (−1;1] is called equicoercive if there exists
a compact set K�T such that for all n2N

inf
x2K

Fn(x)= inf
x2T

Fn(x):
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A fundamental consequence of Γ-convergence is the convergence of minima.

Theorem 2.20. If (Fn)n Γ-converges to F and (Fn)n is equicoercive, then F admits a minimum
and

min
T

F = lim
n!1

inf
T
Fn:

For a proof see [44].

In this section we allow all constants to depend on the volume j�j: this is not critical since, at
this point, the aim is to obtain explicit formulas at fixed �.

We denote

H�;p :=L2([0;1);W�;p); �2R; 1< p<1;

and byHw
�;p the reflexive Banach spaceH�;p endowed with the weak topology. With this definitions

we have H�=H�;2 and H=H0;2. Moreover for small enough �> 0 (fixed once and for all) we let
L :=H−1/2−�;3. This space will be useful as it gives sufficient control over Z:

Lemma 2.21. For � small enough, u 7!Z(u) is a compact map L!C([0;1]; L4).

Proof. By definition of Z we have for any 0<"< 1/8−�/2,

kZt2(u)−Zt1(u)kW ";4 =








Z

t1

t2

Jsusds









W ";4

6
Z
t1

t2








�s(D)hDi us










W ";4

ds

.
Z
t1

t2

khDi−1+"uskW";4
ds

hsi1/2+"

.
Z
t1

t2

khDi−1+"uskW1/4+";3
ds

hsi1/2+"

.
�Z

0

1
kuskW−1/2−�;3

2 ds
�
1/2
�Z

t1

t2 ds
hsi1+2"

�
1/2

.
�Z

t1

t2 ds
hsi1+2"

�
1/2

kukL:

where we have used the Sobolev embedding W 1/4+";3 ,−!W ";4. Since

lim
t1!t2

Z
t1

t2 ds
hsi1+2" =0;

Z
0

1 ds
hsi1+2"ds<1;

for any t2 2 [0; 1], we can conclude by the Rellich�Kondrachov embedding theorem and the
Ascoli�Arzelá theorem, that bounded sets in L are mapped to compact sets in C([0;1];L4), proving
the claim. �

In the sequel, by an abuse of notation, we will denote both a generic element of S and the
canonical random variable on S by

X=(X1;X2;Xh3i;X[3]�1;Xh2i�h2i;X2�[3]):

We will need the following lemma, which establishes point-wise convergence for the functional �T
defined in Lemma 2.15.

Lemma 2.22. Define l1(u)= l1(X; u)2Ha by

lt
1(u) :=ut+�Xt

h3i+�Jt(Xt
2�Zt[(u)); t> 0: (2.35)

For any sequence (XT ; uT)T such that uT! u in Lw, lT = lT(XT ; uT)! l= l1(X; u) in Hw and

XT = (XT ;1;XT ;2;XT ;h3i;XT ;[3]�1;XT ;h2i�h2i;XT ;2�[3])
#
X = (X1;X2;Xh3i;X[3]�1;Xh2i�h2i;X2�[3])
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in S we have

lim
T!1

�T(XT ; Z(uT);K(uT))=�1(X; Z(u);K(u)):

Here Zt(u)= It(u), we let Kt(u) :=Zt(u)−�Xt
[3] and �1 is defined by

�1(X; Z(u);K(u)) := f(X11 +Z1(u))+
X
i=1

6

�1
(i)(X; Z(u);K(u));

with �1
(i)(X; Z ;K)=�1

(i) given by

�1
(1) := �

2
K2(X12 ;K1;K1)+

�
2

Z
−(X12 �K1)K1−�2

Z
−(X12 �X1

[3])K1;

�1
(2) = 0;

�1
(3) := �

Z
0

1Z
−(Xt

2�Z_ t[)Ktdt;

�1
(4) := 4�

Z
−X11 K13 − 12�2

Z
−(X11 X1

[3])K12 + 12�3
Z
−X11 (X1

[3])2K1;

�1
(5) := −2�2

Z
0

1Z
−
tZt[Z_ t[dt;

�1
(6) := −�

2

2

Z
−X1

2�[3]K1−�2
Z
0

1Z
−Xt

h2i�h2i(Zt[)2dt−
�2

2

Z
0

1
K3;t(Xt

2;Xt
2; Zt

[; Zt
[)dt;

where K1; K2; K3;t are the multilinear forms defined in Proposition A.13, Proposition A.14 and
Proposition A.15 respectively and where, with abuse of notation, we let

X1
1 X1

[3] := X1
1 �X1

[3]+X1
1 �X1

[3]+X1
[3]�1;

X1
1 (X1

[3])2 := X1
1 (X1

[3] �X1
[3])+ 2X1

[3]�1X1
[3]+2K1(X1

[3];X1
[3];X1

1 )
+2X11 � (X1

[3]�X1
[3])+ 2X11 � (X1

[3]�X1
[3]):

(2.36)

Proof. Lemma 2.21 implies that for any uT!u in Lw we have Z(uT)!Z(u) in C([0;1];L4) and
by the convergence of lT! l in Hw we have also K(uT)!K(u) in C([0;1];H1−�). The products
XT
T ;1XT

T ;[3] and XT
T ;1(XT

T ;[3])2 can be decomposed using paraproducts and, after identifying the
resonant products with the corresponding stochastic objects in XT , we obtain the finite T analogs
of the expressions in eq. (2.36). After this preprocessing, it is easy to see by continuity that we
have XT

T ;1XT
T ;[3]!X1

1 X1
[3] and XT

T ;1(XT
T ;[3])2!X1

1 (X1
[3])2 in C 1/2−�. For �(1) and �(4) and the

first term of �(6) the statement follows from the fact that they are bounded multilinear forms on
S� C([0;1]; H1/2−�)� C([0;1]; H1−�) . For �(2) and the first two terms of �(5) convergence
to 0 follows from the bounds established in Lemma 2.46 and the proof Lemma 2.49 (in particular
eq. (2.62) and eq. (2.63)). For �(3), the last term of �(5) and the last two terms of �(6) we can
establish point-wise convergence under the time integrals since the integrands are again bounded
(uniformly in time) multilinear forms, and conclude by dominated convergence. �

Going back to our particular setting recall that from Lemma 2.15 we learned

WT(f)= inf
u2Ha

FT(u);

with

FT(u)=E

�
�T(W; Z(u);K(u))+�kZT(u)kL44 + 1

2
klT(u)kH2

�
;

where lT(u); Z(u); K(u) are functions of u according to eq. (2.21). This form of the functional is
appropriate to analyze the limit T!1 and obtain the main result of the paper, stated precisely
in the following theorem.

Theorem 2.23. We have

lim
T!1

WT(f)=W(f) := inf
u2Ha

F1(u);
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where

F1(u)=E

�
�1(W; Z(u);K(u))+�kZ1(u)kL44 + 1

2
kl1(u)kH2

�
;

with �1 and l1 introduced in Lemma 2.22.

Proof. The statement is a direct consequence of Theorem 2.27 below. �

In order to use Γ-convergence, we need to modify the variational setting to guarantee enough
compactness and continuity uniformly as T!1.

As long as T is finite, the original potential VT is bounded below so in particular we have

−CT +E

�
1
2
kukH2

�
6FT(u): (2.37)

which quantifies the coercivity of FT . Unfortunately, this estimate does not survive the limit.
However the analytic estimates contained in Section 2.8 below on the renormalized control problem
allow to infer that there exists a small �2 (0;1), and a finite constant C>0 independent of T , such
that

−C+(1− �)E
�
�kZT(u)kL44 + 1

2
klT(u)kH2

�
6FT(u); (2.38)

and

FT(u)6C +(1+ �)E
�
�kZT(u)kL44 + 1

2
klT(u)kH2

�
: (2.39)

Moreover the cost functional �kZT(u)kL44 + 1

2
klT(u)kH2 control the L norm of u uniformly in T ,

modulo constants depending only on kWkS and which are bounded in average uniformly in T .
More precisely we have (in a more general setting, useful below)

Lemma 2.24. Let � be a probability measure on S�L with first marginal LawP(W) and denote
with (X; u) the canonical variable on S� L. Then there exists a constant C, depending only on
�, such that

E�[kukL2 ].C +2�E�[kZT(u)kL44 ] +E�[klT(u)kH2 ]:

Proof. We use klT(u)kL. klT(u)kH in the bound

E�[kukL2 ] . �E�[kXh3ikL2 ] +�E�[ks 7! Js(Xs
2� �sZT(u))kL2 ] +E�[klT(u)kH2 ]

. �E�[kXh3ikL2 ] +�E�
�Z

0

1kXs
2kC −1−�
2

hsi1+� kZT(u)kL42 ds
�

+E�[klT(u)kH2 ]

. �E�[kXh3ikL2 ] +
�

2
E�

�Z
0

1kXs
2kC −1−�
4

hsi1+� ds
�
+2�E�[kZT(u)kL44 ]

+E�[klT(u)kH2 ]:
�

From this we conclude that we can relax the optimization problem and ask that u2La where
La is the space of predictable processes in L:

WT(f)= inf
u2La

FT(u):

For future reference note that eq. (2.38) implies also that for any sequence (uT)T such that FT(uT)
remains bounded we must have that also

sup
T

E[klT(uT)kH2 ]<1: (2.40)

46 A Variational Approach to �3
4



To prove Γ-convergence we need to set up the problem in a space with a topology which, on the
one hand is strong enough to enable to prove the Γ-liminf inequality, and on the other hand allows
to obtain enough compactness from FT . Almost sure convergence on S � L would allow for the
former but is too strong for the latter. For this reason we need a setting based on convergence in
law as made precise in the following definition.

Definition 2.25. Denote by (X; u) be the canonical variables on S�L and consider the space of
probability measures

Y := f�2P(S�L) jE�[kukL2 ]<1g

equipped with the following topology: �n! � iff

a) �n converges to � weakly on S�Lw,

b) supnE�n[kukL2 ]<1.

Let

X := f�2Y j �=LawP(W; u) for some u2La g

and denote by X� �Y the closure of X in Y.

Remark 2.26. Condition (b) allows to exclude pathological points in X� and makes possible
Lemma 2.34 below.

With these new notations we have

WT(f)= inf
�2X

F�T(�); (2.41)

where

F�T(�) :=E�

�
�T(X; Z(u); K(u))+�kZT(u)kL44 + 1

2
klT(u)kH2

�
and where E� denotes the expectation on S�L wrt. the probability measure �. We also define
the corresponding limiting functional as

F�1(�) :=E�

�
�1(X; Z(u);K(u))+�kZ1(u)kL44 + 1

2
kl1(u)kH2

�
: (2.42)

Finally we can state the key result of this section.

Theorem 2.27. The family (F�T)T Γ�converges to F�1 on X�. Moreover

lim
T
WT(f)= lim

T
inf
�2X�

F�T(�)= inf
�2X�

F�1(�)=W(f):

Proof.
Step 1. (Relaxation) We will prove below that:

a) the family (F�T)T is indeed equicoercive on X� (Lemma 2.29);

b) the variational problems for F�T (with T < 1 or T = 1) on X and on X� are equivalent
(Lemma 2.35 and Lemma 2.38).

Step 2. (liminf inequality) Consider a sequence �T! � in X�. We need to prove that

liminf
T!1

F�T(�T)>F�1(�):

It is enough to prove this statement for a subsequence, the full statement follows from the fact that
every sequence has a subsequence satisfying the inequality. Take a subsequence (not relabeled)
such that

sup
T

F�T(�T)<1: (2.43)
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If there is no such subsequence there is nothing to prove. Otherwise tightness for the subsequence
follows like in the proof of equicoercivity in Lemma 2.29 below. Then invoking the Skorokhod
representation theorem of [81] we can extract a subsequence (again, not relabeled) and find random
variables (X~ T ; u~T)T and (X~ ; u~) on some probability space (
~ ;P~ ) such that LawP~(X~

T ; u~T) = �T ,
LawP~(X~ ; u~) = � and almost surely X~ T ! X~ in S, u~T ! u~ in Lw. Note that l~T := lT(X~ T ;
u~T)! l := l1(X~ ; u) in Lw and using (2.43) we deduce that the almost sure convergence lT! l in
Hw, maybe modulo taking another subsequence, again not relabeled. Note that, by the analytic
estimates of Section 2.8 (which hold point-wise on the probability space) we have

�T(X~ T ; Z(u~T);K(u~T))+�kZT(u~T)kL44 + 1
2
klT(u~T)kH2 +Q(X~ T)> 0;

for some L1(P~ ) random variable Q(X~ T) such that EP~ [Q(X~
T)] = E[Q(W)] (for example we can

take Q(X~ T)=C(1+ kX~ T kS
p ) for some large enough p). Fatou's lemma and Lemma 2.22 then give

liminf
T!1

F�T(�T)= liminf
T!1

EP~

�
�T(X~ T ; Z(u~T);K(u~T))+�kZT(u~T)kL44 + 1

2
klT kH2

�
=liminf
T!1

EP~

�
�T(X~ T ; Z(u~T);K(u~T))+�kZT(u~T)kL44 + 1

2
klT kH2 +Q(X~ T)

�
−E[Q(W)]

>EP~ liminf
T!1

�
�T(X~ T ; Z(u~T);K(u~T))+�kZT(u~T)kL44 + 1

2
klT kH2 +Q(X~ T)

�
−E[Q(W)]

>EP~

�
�1(X~ ; Z(u~);K(u~))+�kZ1(u~)kL44 + 1

2
kl1(u~)kH2

�
=F�1(�);

which is the Γ-liminf inequality.
Step 3.(limsup inequality) Now all that remains is constructing a recovery sequence, for this we can
again assume w.l.o.g that F�1(�)<1. From Lemma 2.37 there is �L such that jF�1(�)−F�1(�L)j<
1

L
and (2.50) is satisfied. Then choosing �LT = Law�L(X; 1ft6T gut) we obtain that lT(1f�6T gu) =

1f�6T gl1(u), so klT(1f�6T gu)kH 6 kl1(u)kH, and kZT(1f�6T gu)kL44 = kZT(u)k4 6 kukL4 , which is
integrable by (2.50). By dominated convergence and Lemma 2.22 we obtain limT!1F�T(�LT) =
F�1(�L). Extracting a suitable diagonal sequence gives the required recovery sequence. �

The rest of this section contains the auxiliary lemmas required to complete the proof of the
previous theorem.

Lemma 2.28. Let G � X� such that sup�2G E�[kukL2 ] < 1. Then G is tight on S � Lw and in
particular compact in X�.

Proof. Observe that for all � 2G, Law�(X) = LawP(W) and that LawP(W) on S is tight since
S is a separable metric space, so for any " > 0, we can find a compact set K"1 � S such that
�((S nK"1)�L)<"/2. Now let K"2 :=K"1�B(0; C)�S�L, for some large C to be chosen later.
Then K"2 is a compact subset of S�Lw and

P�[(X; u)2/ K"2]6
"
2
+ 1
C
E�[kukL2 ]:

Choosing C > sup�2G 2E�[kukL2 ]/" gives tightness of the family G. �

Lemma 2.29. The family (F�T)T is equicoercive on X�.

Proof. Define for some K > 0 large enough

K := f�2X�:E�[kukL2 ]6Kg:

Note that K is compact from Lemma 2.28. From eq. (2.38) we have

�E�[kZT(u)kL44 ] +
1
2
E�[klT(u)kH2 ]6C +2F�T(�):
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Indeed, note that the analytic estimates of Section 2.8 are path-wise and holds also wrt. (X; u)
under the measure � (the point is that here u is not necessarily adapted to X), while for the
probabilistic estimates on QT(W) we have E[QT(W)] = E�[QT(X)] since Law�(X) = LawP(W).
From this we deduce that for some C; c> 0

F�T(�)

> �

2
E�[kZT(u)kL44 ] +

1
4
E�[klT(u)kH2 ]−C

> cE�[kukL2 ]−C

where in the last line we have used Lemma 2.24. Therefore inf�2KcF�T(�)> cK −C. On the other
hand from eq. (2.39) it follows that supT inf�2X�F�T(�)<1. So for K large enough

inf
�2X�

F�T(�)= inf
�2K

F�T(�):
�

To be able to use this equicoercivity we will need to show that we can extend the infimum
in (2.41) to X�. For this we will first need some properties of the space X�. In particular we will
need to show that measures with sufficiently high moments are dense in X� in a way which behaves
well with respect to F�T . With this aim we introduce some useful approximations.

Definition 2.30. Let u2L, N 2N, and (�")">0 be a smooth Dirac sequence on � and ('")">0 be
another smooth Dirac sequence compactly supported on R+��. Denote by �� the convolution only
wrt the space variable, and by � the space-time convolution. Define the following approximations
of the identity:

(regx;"(u)) := u �� �";

(regt:x;"(u))(t) := e−"tu � '"(t)= e−"t
Z
0

t

u(t− s)��'"(s) ds:
Let

T~N(u) := inf
�
t> 0

��������Z
0

t

ku(s)kW−1/2−�;3
2 ds>N

�
;

and

(cutN(u))(t) :=u(t)1ft6T~N(u)g:

Observe the following properties of these maps:

� regx;" is a continuous map Lw!Hw and L!H;

� regt:x;" is a continuous map Lw!H;

� cutN is continuous as a map L!B(0; N)�L;
� if u is a predictable process then regx;"(u), regt:x;"(u), cutN(u) will also be predictable.

Furthermore we have the bounds

kregx;"(u)kL; kregt:x;"(u)kL; kcutN(u)kL6 kukL:

uniformly in ";N, and for every u2L,

lim
"!0

kregx;"(u)−ukL= lim
"!0

kregt:x;"(u)−ukL= lim
N!1

kcutN(u)−ukL=0:

With abuse of notation, for �2P(S�L) and f :L!L, we let

f��=(Id; f)��=Law�(X; f(u)):

Remark 2.31. Let us briefly comment on the rationale for these approximations. regt:x;" will
be used when one wants to obtain a sequence of weakly convergent measures on S�H or S�L
from a sequence of measures weakly convergent on S�Lw. regx;" will be used when one wants to
obtain a measure on S�H from one on S�L, while preserving the estimates on the moments of
Z(u) since Z(u �� �")=Z(u) �� �".

Lemma 2.32. Let �2X�. There exist (�n)n in X such that �n! � on S�L (now with the norm
topology) and supnE�n[kukL2 ]<1.
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Proof. By definition of X� of there exists �~n ! � weakly on S � Lw. Then (regt:x;")��~n !
(regt:x;")�� on S�L as n!1, and since (regt:x;")��! � weakly on S�L as "! 0, we obtain
the statement by taking a diagonal sequence. �

Lemma 2.33. Let �n! � on S�L, such that supnE�n[kukL2 ]<1. Then

1. for every Lipschitz function f on L, E�n[f(u)]!E�[f(u)];

2. for every Lipschitz function f on C([0;1]; L4) we have E�n[f(Z(u))]!E�[f(Z(u))].

Proof. Let f be a Lipschitz function on L with Lipschitz constant L. Let �2C(R;R) be supported
on B(0; 2) with �=1 on B(0; 1), and �N(x)= �(x/N). Then u 7! f(u) �N(kukL) is bounded,

lim
n!1

E�n[f(u) �N(kukL)]=E�[f(u) �N(kukL)];
and

E�n[f(u)�N(kukL)]−E�n[f(u)] = E�n[(f(u)�N(kukL)− f(u))1fkukL>Ng]
6 E�n[2LkukL1fkukL>Ng]
6 2LE�n[kukL2 ]1/2�n(kukL>N)
6 2L

N
E�n[kukL2 ]:

Using that supnE�n[kukL2 ]<1 we have

lim
n!1

jE�n[f(u)]−E�[f(u)]j 6
������ lim
n!1

E�n[f(u) �N(kukL2 )]−E�[f(u) �N(kukL2 )]
������

+sup
n

jE�n[f(u) �N(kukL2 )]−E�n[f(u)]j

+jE�[f(u) �N(kukL2 )]−E�[f(u)]j

6 4L
N

sup
n

E�n[kukL2 ].N−1;

and sending N ! 1 gives the statement. The second statement follows from the first and
Lemma 2.21. �

The next lemma proves that we can approximate measures in X� by measures with bounded
support in the second marginal which are still in X�.

Lemma 2.34. Let �2X� such that E�[kZT(u)kL44 ]+E�[kukL2 ]<1. For any L>0 there exists �L2X�
such that kukL6L, �L-almost surely, �L! � weakly on S�L as L!1,

E�L[kZT(u)kL44 ]!E�[kZT(u)kL44 ]; and E�L[kukL2 ]!E�[kukL2 ]:

Furthermore for any �L there exists (�L;n)n � X such that kukL 6 L, �L;n-almost surely and
�L;n! �L weakly on S�Lw.

Proof.
Step 1 First let us show how to approximate � with �~L which are defined such that kZT(u)kL46
L, �~L almost surely. As � 2 X�, there exists (�n)n � X such that �n ! � on S � L and
supnE�n[kukL2 ]<1. Since �n 2X there exist (un)n adapted such that �n= Law(W; un). Define

Z~s
n :=E

�R
0

T
Jtut

ndt
����Fs�= R0TJtE[utnjFs]dt. Then Z~ is a martingale with continuous paths in L4(�).

Define the stopping time TL;n= inf ft2 [0; T ]jkZ~tnkL4>Lg where the infimum is equal to T if the
set is empty. Observe that Z~TL;n=

R
0

T
JtE[utnjFTL;n]dt=ZT(uL;n) with ut

L;n :=E[utnjFTL;n] adapted,
by optional sampling, and almost surely kZ~TLkL46L. Now set �~L;n :=LawP(W; uL;n).
Step 1.1 (Tightness) The next goal is to show that for fixed L, we can select a suitable convergent
subsequence from (�~L;n)n. For this we first show that (�~L;n)n is tight on S � Lw. From the
definition of X we have that supnE�n[kukL2 ]<1, and by construction

sup
n

E�~L;n[kukL2 ]6 sup
n

EP[kE[utnjFTL;n]kL2 ]6 sup
n

EP[kunkL2 ] = sup
n

E�n[kukL2 ]<1;

which gives tightness according to Lemma 2.28. We can then select a subsequence which converges
on Lw.
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Step 1.2 (Bounds) Let �~L be the limit of the sequence constructed in Step 1.1. In this step we
prove bounds on the relevant moments of �~L. Let f1M ; f2M be sequences of functions on R which
are Lipschitz, convex and monotone for every M , while for every x2R

06 f1M(x)6x2; lim
M!1

f1
M(x)=x2;

06 f2M(x)6x4; lim
M!1

f2
M(x)=x4:

Then f1M(kukL) is a lower-semi continuous positive function on Lw so by the Portmanteau lemma
we have

E�~L[f1
M(kukL)]6 liminf

n!1
E�~L;n[f1

N(kukL)];

and since it is also Lipschitz continuous and convex we have

liminf
n!1

E�~L;n[f1
M(kukL)] = liminf

n!1
EP[f1M(kE[unjFTL;n]kL)]

6 liminf
n!1

EP[f1M(kunkL)]=E�[f1M(kukL)]:

Therefore

E�~L[kukL2 ] = lim
M!1

E�~L[f1
M(kukL)]

6 lim
M!1

E�[f1M(kukL)]=E�[kukL2 ]:

Proceeding similarly for Z, we see that f2M(kZT kL4) is a continuous function on L4 bounded below,
Lipschitz continuous and convex on L4 so we again can estimate

E�~L[f2
M(kZT kL4)]= lim

n!1
E�~L;n[f2

M(kZT kL4)];

E�~L[f2
N(kZT kL4)] = lim

n!1
E�~L;n[f2

M(kZT kL4)]

= lim
n!1

EP[f2M(kE[ZT(un)jFTL;n]kL4)]

6 lim
n!1

EP[f2M(kZT(un)]kL4)]=E�[f2M(kZT(un)]kL4)]:

Taking N!1, we obtain
E�~L[kZT kL44 ]6E�[kZT kL44 ]:

Step 1.3 (Weak convergence) Now we prove weak convergence of �~L to � on S�L. Let f :S�L!
R be bounded and continuous. By dominated convergence and continuity of f , lim"E�~L[f(X;
regt:x;"(u))] = E�~L[f(X; u)]. Using furthermore that (X; u) 7! f(X; regt:x;"(u)) is continuous on
S�Lw and Lemma 2.21 in the 5th line below, we can estimate

lim
L!1

jE�[f(X; u)]−E�~L[f(X; u)]j

= lim
L!1

lim
"!0

������ lim
n!1

E�n[f(X; regt:x;"(un))]−E�~L;n[f(X; regt:x;"(un))]
������

= lim
L!1

lim
"!0

������ lim
n!1

EP[f(W; regt:x;"(un))− f(W;E[regt:x;"(un)jFTL])]
������

= lim
L!1

lim
"!0

������ lim
n!1

EP[f(W; regt:x;"(un))− f(W;E[regt:x;"(un)jFTL])1fTL<1g]
������

6 lim
L!1

lim
"!0

������ lim
n!1

EP[f(W; regt:x;"(un))− f(W;E[regt:x;"(un)jFTL])1fkunkL>cLg]
������

6 2
c

�
sup
S�L

j f j
�

lim
L!1

sup
n

E[kunkL2 ]
L2

=0:

Step 2 In this step we improve the approximation to have bounded support. Let �n ! � be
the subsequence selected in Step 1.1. Recall that �n = Law(W; un) with adapted un. Define
Z~t
n;N := E[ZT(cutN(u)) j Ft], and similarly to Step 1, Tn;L;N := inf ft > 0 jkZ~t

n;NkL4 > Lg. Set
un;N;L := E[cutN(u) j FTn;L;N], then kun;N;LkL 6 N uniformly in n and P-almost surely, so
�n;L;N =Law(W; un;N;L) is tight on S�Lw and we can select a weakly convergent subsequence.
Denote the limit by �L;N. Now we follow the strategy from Step 1.
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Step 2.1 (Bounds) We now prove bounds on �L;N uniformly in L; N similarly to step 1.2. Let
f1
M be defined like in Step 1.2. Then again we have

liminf
n!1

E�n;L;N[f1
M(kukL)] = liminf

n!1
EP[f1MkE[cutN(un)jFTn;L;N]kL)]

6 lim
n!1

EP[f1M(kcutN(un)kL)]

= lim
n!1

E�n[f1
M(kcutN(u)kL)]6E�[f1M(kukL)]:

It follows that

E�L;N[kukL2 ] = lim
M!1

E�~L;N[f1
M(kukL)]

6 lim
M!1

liminf
n!1

E�n;L;N[f1
M(kukL)]

6 lim
M!1

E�[f1M(kukL)]=E�[kukL2 ]:

Step 2.1 (Weak convergence) Now we prove that �L;N ! �~L weakly on L. Let f : S � L !
R be bounded and continuous. By dominated convergence and continuity of f , lim"E�~L[f(X;
regt:x;"(u))] = E�~L[f(X; u)], and furthermore sincef(X; regt:x;"(u)) is continuous on S � Lw we
have (recall that T~N(un) is introduced in Definition 2.30)

lim
N!1

jE�~L[f(X; u)]−E�L;N[f(X; u)]j

= lim
N!1

lim
"!0

������ lim
n!1

E�n;L[f(X; regt:x;"(u))]−E�~n;L;N[f(X; regt:x;"(u))]
������

= lim
N!1

lim
"!0

������ lim
n!1

EP[f(W;E[regt:x;"(un)jFTL])− f(W;E[regt:x;"(u�n;N)jFTn;L;N])]
������

= lim
N!1

lim
"!0

������ lim
n!1

EP[(f(W;E[regt:x;"(un)jFTL])−

f(W;E[regt:x;"(u�n;N)jFTn;L;N]))1fT~N(un)<1g]
������

6 lim
N!1

sup
"

��������sup
n

EP[(f(W;E[regt:x;"(un)jFTL])−

f(W;E[regt:x;"(u�n;N)jFTn;L;N]))1fkunkLg>Ng]
��������

6
�

sup
S�L

j f j
�

lim
N!1

sup
n

E[kunkL2 ]
N2

= 0

Step 3. We now put everything together. Since all �L;N are supported on the set fu:kZT(u)kL46
Lg, weak convergence and Lemma 2.21 imply

lim
N!1

E�N;L[kZT(u)kL44 ] =E�~L[kZT(u)kL44 ]:

By the Portmanteau lemma,

liminf
N!1

E�N;L[kukL2 ]>E�~L[kukL2 ]; (2.44)
and

liminf
L!1

E�~L[kukL2 ]>E�[kukL2 ]

which together with Step 1.2 imply limL!1E�~L[kukL2 ] = E�[kukL2 ], and by the same argument
limL!1E�~L[kZT(u)kL44 ] =E�[kZT(u)kL44 ]. For any � > 0 we can choose a �~L such that

jE�~L[kZT(u)kL44 ]−E�[kZT(u)kL44 ]j+ jE�~L[kukL2 ]−E�[kukL2 ]j6 �:
By (2.44)

E�[kukL2 ]> liminf
N!1

E�N;L[kukL2 ]>E�[kukL2 ]− �;

and we can choose N large enough so that

jE�N;L[kZT(u)kL44 ]−E�[kZT(u)kL44 ]j+ jE�N;L[kukL2 ]−E�[kukL2 ]j6 �;
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which implies the statement of the theorem. �

Lemma 2.35. If T <1 we have

inf
�2X

F�T(�)= inf
�2X�

F�T(�):

Proof. To prove the claim it is enough to show that for any � 2X�, for any �> 0, there exists a
sequence �n2X such that limsupn!1F�T(�n)6F�T(�)+�. W.l.o.g we can assume that F�T(�)<1.
Observe that, as long as T <1 we can also express

F�T(�)=E�

�
1
j�jVT(XT

1 +ZT(u))+
1
2
kukH2

�
;

and deduce that E�[kukH2 ]<1 since VT is bounded below at fixed T . By Lemma 2.34 there exists
a sequence (�L)L�X� , such that �L(kukL6 L) = 1, �L! � on S�L and by weak convergence
and domination,

E�L[kZT(u)kL44 ]!E�[kZT(u)kL44 ]; E�L[kukL2 ]!E�[kukL2 ]:

First we have to improve the regularity of �L to get convergence on S�Hw but without affecting
our control on the moments of ZT , so let �L" := (regx;")��L and �" := (regx;")��. Then

E�L
" [kZT(u)kL44 ]!E�"[kZT(u)kL44 ]; E�L"[kukH

2 ]!E�"[kukH2 ];

and �L
" ! �" on S�H. By continuity of F�T and the bound (2.39), F�T(�L")! F�T(�") as L!1

and F�T(�")!F�T(�) as "!0. In particular we can find L and " such that jF�T(�L")−F�T(�)j<�/2.
By Lemma 2.34 there exists a sequence (�n;L)n;L�X such that each measure �n;L is supported
on S � B(0; L) and �n;L! �L weakly on S � Hw. Setting �n;L

";� := (regt;x;�)�(regx;")��n;L and
�L
";� := (regt;x;�)�(regx;")��L we have �n;L

";� ! �L
";� on S�H with norm topology. It is not hard too

see that VT(XT
1 + ZT(u)) .T kXkS4 + kukH4 and since on the support of �n;L

";� , kukH6 L and the
first marginal of �n;L

";� is fixed we have again by domination and weak convergence

lim
n!1

E�n;L
";�

�
1
j�jVT(XT

1 +ZT(u))+
1
2
kukH2

�
=E�L

";�

�
1
j�jVT(XT

1 +ZT(u))+
1
2
kukH2

�
and by dominated convergence (since �L

";� is supported on S�B(0; L)) we can find a � such that
jF�T(�L

";�)−F�T(�L")j<�/2 which proves the statement. �

The proof of Lemma 2.35 does not apply when T =1. An additional difficulty derives from
the fact that in approximating the drift u we might destroy the regularity of l1(u), since now
l1(u) needs to be more regular than u, contrary to the finite T case. To resolve this problem we
need to be able to smooth out the remainder without destroying the bound on ZT(u). To do so
smoothing l1(u) directly, and constructing a corresponding new u will not work, since l1(u) by
itself does not give enough control on u and Z(u). However we are still able to prove the following
lemma by regularizing an �augmented� version of l1(u).

Lemma 2.36. There exists a family of continuous functions rem": S � L ! L, which are also
continuous S�Lw!Lw, such that for any T 2 [0;1],

krem"(X; u)kL . kXkS+ kukL;
kZT(rem"(X; u))kL4 . kXkS+ kZT(u)kL4;
kl1(rem"(X; u))kH2 ." (1+ kXkS)4+ kZ1(u)kL44 + kukL2 ;

and kl1(rem"(X; u))kH depends continuously on (X; u)2S�L. Furthermore

rem"(X; u)!u in L;
and if l1(u)2H

l1(rem"(X; u))! l1(u) in H as "! 0:
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Proof. Let X2 = U6X2 + U>X2 be the decomposition introduced in Section 2.5, and observe
that for any c> 0 we can easily modify it to ensure that kU>X2kC −1−�<c , almost surely for any
� 2 X� and for any 1 6 p <1, E�[kU6X2kC −1+�

p ] 6 C where C depends on j�j; �; c; p. Now set
l~t(u)=−�Jt(U6Xt

2�Zt[(u))+ lt1(u). Then u satisfies

us=−�Xs
h3i−�Js(U>Xs

2�Zs[)+ l~s(u):

From this equation we can see that, like in Section 2.5,

kukL.�kXh3ikL+�
Z
0

1 1
hsi1+"kU>Xs

2kC −1−�dskukL+ k l~s(u)kL;

and choosing c small enough we get

kukL.�kXh3ikL+ kl~(u)kL: (2.45)
Similarly we observe that

ZT(u)=−�XT
[3]−�

Z
0

T

Js
2(U>Xs

2�Zs[(u))ds+ZT(l~(u));

so again with c small enough and since Zs[= �sZT for s6T :

kZT(u)kL4.�




XT

[3]





L4+ kZT(l~(u))kL4: (2.46)

Conversely, it is not hard to see that we have the inequalities

kZT(l~(u))kL4 . �




XT

[3]





L4+ kZT(u)kL4; (2.47)

and
kl~(u)kL.�kXh3ikL+ kukL: (2.48)

Clearly the map (X; u) 7! (X; l~(u)) is continuous as a map S�L!S�L and using Lemma 2.21
also as a map S�Lw!S�Lw , and the inverse is clearly continuous S�L!S�L. We now
show that it is also continuous as a map S�Lw!S�Lw. Assume that l~(un)! l(u) weakly, since
then kl(un)kL bounded, this implies by (2.45) that also kunkL is bounded, and so we can select a
weakly convergent subsequence, converging to u?. Then u? solves the equation

us
?=−�Xs

h3i−�Js(U>Xs
2�Zs[(u?))+ l~s(u);

(which can be seen for example by testing with some h 2 L�) which implies that u? = u (e.g. by
Gronwall). Now define rem"(u) to be the solution to the equation

rem"(u)=−�Xs
h3i−�Js(U>Xs

2�Zs[(rem"(u)))+ regx;"( l~s(u)):

Then by the properties discussed above (X; u) 7! (X; rem"(u)) is continuous in both the weak and
the norm topology and we also have from (2.45) and (2.48) that

krem"(u)kL . �kXh3ikL+ kukL:

From (2.46) we have
kZT (rem"(u))kL4.�





XT
[3]





L4+ kZT(u)kL4;

and by definition of rem"(u)

kl~(rem"(u))kH = kregx;"(l~(u))kH
." �kXh3ikL+ kukL: (2.49)

Now observe that

kl1(rem"(u))kH2 . ks 7!�Js(U6Xs
2�Zs[(rem"(u)))kH2 + kl~(rem"(u))kH2

." �

Z
0

1 1
hsi1+�kU6Xs

2kC−1+�
2 kZs[(rem"(u))kL42 ds+�kXh3ikL2 + kukL2

. �(1+ kXkS)4+ kZ1(rem"(u))kL44 + kukL2

. �(1+ kXkS)4+ kZ1(u)kL44 + kukL2 :
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Since also k�Jt(U6Xt
2 � Zt

[(rem"(u)))kH depends continuously on (X; u) (both in the weak and
strong topology on L) we obtain the statement. �

Lemma 2.37. For any �2X� such that F�1(�)<1 there exists a sequence of measures �L2X� such
that

i. For any p<1,

E�L[kukL
p] +E�L[kl1(u)kH

p ]<1; (2.50)

ii. �L! � weakly on S�L and Law�L(l
1(u))!Law�(l1(u)) weakly on H,

iii.

lim
L!1

F�1(�L)=F�1(�);

iv. For any �L there exists a sequence �n;L2X such that

sup
n

(E�n;L[kukL
p] +E�n;L[kl1(u)kH

p ])<1; (2.51)

�n;L! �L weakly on S�Lw and Law�n;L(l1(u))!Law�(l1(u)) weakly on Hw.

Proof. By Lemma 2.34 there exists a sequence �L~! � weakly on S�L such that

E�L~[kZT(u)kL4
4 ]!E�[kZT(u)kL44 ]; E�L~[kukL

2 ]!E�[kukL2 ];

and �L~ is supported on S�B(0; L~)�S�L. Now set �L~
" := (rem")��L~. Then �L~

"! �" := (rem")��
on S � L and by the bounds from Lemma 2.36 also E�

L~
" [kZT(u)kL44 ] ! E�"[kZT(u)kL44 ] and

E�
L~
" [kl1(u)kH2 ] ! E�"[kl1(u)kH2 ]. The bounds from Lemma 2.36 imply also E�"[kZT(u)kL44 ] !

E�[kZT(u)kL44 ], E�"[kl1(u)kH2 ]!E�[kl1(u)kH2 ], and furthermore

E�
L~
" [kukL

p].E�L~
(kXkS

p + kukL
p).E�L~(kXkS

p )+L~p;

and similarly

E�
L~
" [kl1(u)kL

p].E�L~(kXkS
p + kukL

p).E�L~(kXkS
p )+L~p;

and by continuity of F�1 and domination using (2.39) we are also able to deduce that we can
find " small enough and L~ large enough depending on " such that jF�1(�")−F�1(�)j< 1/2L and
jF�1(�L")−F�1(�")j< 1/2L. Choosing �L= �L~

" we obtain the first three points of the Lemma. For
the fourth point recall that from Lemma 2.34 we have sequences �n;L~! �L~ weakly on S � Lw,
and �n;L~ 2X , which have support in S�B(0; L~) and since rem" is continuous on S�Lw setting
�n;L~
" := (reg")��n;L~ we obtain the desired sequence. �

Lemma 2.38. If T =1 we have

inf
�2X

F�1(�)= inf
�2X�

F�1(�):

Proof. One can now proceed very similarly to the proof of Lemma 2.35. Let � 2 X� such that
F�1(�)<1. By Lemma 2.37, for any L; �2X�, there exists a �L such that jF�1(�)−F�1(�L)j<1/L,
and a sequence (�n;L)n such that �n;L 2 X , �n;L! �L weakly on S � Lw, and such that (2.51)
is satisfied. Define �n;L

";� := Law(X; rem"(regt:x;"(u))), and observe that now �n;L
";� ! �L

";� on
S�L, Law�n;L";� (X; l1(u))! Law�L";�(X; l

1(u)) on S�H, and that we have supn (E�n;L";� [kukL
p] +

E�n;L
";� [kl1(u)kH

p ])<1. Then for some �2C(R;R); �=1 onB(0; 1) supported on B(0; 2), for any
N 2N, the function

�

�
kXkS+ kukL+ kl1(u)kH

N

��
�1(X; Z(u);K(u))+�kZ1(u)kL44 + 1

2
kl1(u)kH2

�
=: �~N(X; u)

�
�1(X; Z(u);K(u))+�kZ1(u)kL44 + 1

2
kl1(u)kH2

�
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is bounded and continuous on S�L, and so by weak convergence

lim
n!1

jF�1(�n;L
";� )−F�1(�L

";�)j

6 lim
n!1

��������E�n;L";�

�
�~N(X; u)

�
�1(X; Z(u);K(u))+�kZ1(u)kL44 +

1
2
kl1(u)kH2

��
−

−E�L
";�

�
�~N(X; u)

�
�1(X; Z(u);K(u))+�kZ1(u)kL44 + 1

2
kl1(u)kH2

����������
+sup

n

E�n;L
";�

���������(1− �~N(X; u))��1(X; Z(u);K(u))+�kZ1(u)kL44 + 1
2
kl1(u)kH2

��������� �
+E�L";�

���������(1− �~N(X; u))��1(X; Z(u);K(u))+�kZ1(u)kL44 + 1
2
kl1(u)kH2

��������� �
6 2sup

n

E�n;L
";�

�
1fkXkS+kukL+kl1(u)kH>Ng

���������1(X; Z(u);K(u))+�kZ1(u)kL44 + 1
2
kl1(u)kH2

�������� �
. sup

n

(
�n;L
";� (kXkS+ kukL+ kl1(u)kH>N)E�n;L";� [kXkS

p + kukL8 + kl1(u)kH4 ]
�

. sup
n

�
1
N
E�n;L

";� [kXkS+ kukL+ kl1(u)kH]E�n;L";� [kXkS
p + kukL8 + kl1(u)kH4 ]

�
! 0 as N!1

As we can find "; � such that jF�1(�L
";�)−F�1(�L)j< 1/L we conclude. �

2.7. Large Deviations

In this section we want to discuss a Laplace principle for the �34 measure in the �small noise limit�.
We introduce the family �T~ of measures given by

Z
g(�)�T~(d�)=

E
h
g(~1/2WT) e

−1
~VT

~(~1/2WT)
i

ZT
~ ; (2.52)

where simililarly to above

VT
~(') :=�

Z
�

(j'(�)j4− aT~ j'(�)j2+ bT~)d� ZT
~ :=

Z
e−VT

~(�T)#(d�)

for any bounded measurable g: S 0(�)! R. In this section we will take all integrals to be non-
normalized for simplicity since we wish to derive a large deviations principle for fixed volume.

This corresponds (modulo renormalization) to the measure heuristically defined by

e
−1
~
R
�'(�)4+'(�)2+jr'(�)j2d�d'

Our goal is now to show that �~ given as the weak limit of �T~ satisfies a Laplace principle according
to the following definition.

Definition 2.39. A sequence of measures �~ on S 0(�) satisfies the Laplace principle with rate
function I if for any continuous bounded function f :S 0(�)!R

lim
~!0

− ~ log
Z
e
− 1
~f( )d�~( )= inf

 2S 0(�)
ff( )+ I( )g:

Our goal for the rest of this section will be to prove the following theorem:

Theorem 2.40. The sequence of measures �T~ converges to a unique limit �~ as T!1. Further-
more �~ satisfies a Laplace principle with rate function

I( )=�
Z
 4+

Z
 2+

Z
jr j2 (2.53)

as ~! 0.
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We will have to analyze the quantity

WT
~(f)=−~logE

�
e
− 1
~(f(~

1/2WT)+VT
~(~1/2WT))

�
First we have to choose VT~ appropriatly. Set WT

~= ~1/2WT . Again we choose aT~ ; bT~ so that

VT(WT
~)=

Z
J(WT

~)4K− 
T~
Z
J(WT

~)2K+ �T~ ;

where now the Wick product is taken with respect to law of WT
~ and not WT , and 
~; �~ will be

fixed below. Now most of the analysis from sections 2.4, 2.5, 2.6 carries over into this situation for
fixed ~. By the BD formula we have

WT
~(f)= inf

u2Ha

F~T~(u)
with

F~T~(u)=E

�
f(~1/2WT +~1/2IT(u))+VT~(WT

~+ ~1/2IT(u))+
~
2

Z
0

T

kuskL22
�
:

And by the change ~1/2u!u of variables we get

WT
~(f)= inf

u2Ha

FT
~(u);

with

FT
~(u)=E

�
f(~1/2WT + IT(u))+VT~(WT

~+ IT(u))+
1
2

Z
0

T

kuskL22
�
:

Lemma 2.41. Define l= lT ;~(u)2Ha, Z=Z(u)2C([0;1];H1/2−�), K=K~(u)2C([0;1];H1−�)
such that

Zt(u) := It(u);
lt
T ;~(u) :=ut+�~3/21t6TWt

h3i+�~1t6TJt(Wt
2�Zt[(u));

Kt
~(u) := It(w~(u));with wt~(u) :=−�~1t6TJt(Wt

2�Zt[(u))+ lt
T ;~(u);

t> 0: (2.54)

Then the functional FT(u) takes the form

FT
~(u) = E

�
f(~WT +ZT)+�T~ (W; Z(u);K(u))+�

Z
−(ZT(u))4+

1
2
klT ;~(u)kH2

�
;

where

�T~ (W; Z;K~) :=
X
i=1

6

�T
(i);~

;

�T
(1);~ := −�

2
~K2(WT

2 ;KT
~ ;KT

~)+ �
2
~
Z
−(WT

2 �KT
~)KT

~ −�2~5/2
Z
−(WT

2 �WT
[3])KT

~ ;

�T
(2);~ := �~

Z
(WT

2 � (ZT −ZT[ ))KT
~ ;

�T
(3);~ := �~

Z
0

TZ
(Wt

2�Z_ t[)Kt
~dt;

�T
(4);~ := 4�~1/2

Z
WTKT

3 − 12�2~2
Z
WTWT

[3](KT
~)2+ 12�3~7/2

Z
WT(WT

[3])2KT
~ ;

�T
(5);~ := −2�2~2

Z

TZT

[ (ZT −ZT[ )−�2~2
Z

T(ZT −ZT[ )2− 2�2~2

Z
0

TZ

tZt

[Z_ t[dt;

�T
(6);~ := −�2~5/2

Z
WT

2�[3]
KT
~ − �2

2
~2
Z
0

TZ
Wt
h2i�h2i(Zt[)2dt−

�2

2
~2
Z
0

T

K3;t(Wt
2;Wt

2; Zt
[; Zt

[)dt:

Moreover we have chosen 
T~ = ~2
T and the renormalization constant �T~ to be

�T
~ := −�

2

2
~3E

Z
0

TZ
(Wt

h3i)2dt+ �3

2
~4E

Z
WT

2(WT
[3])2

+2�3~2
T~E
Z
WTWT

[3]− 4�4~5E
Z
WT(WT

[3])3:
(2.55)
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The proof of Lemma 2.41 is analogous to the proof of Lemma 2.15.

Now for fixed ~ reasoning analogous to Theorem 2.23 we can conclude that

lim
T!1

WT
~(f)

= W~(f)

= inf
u2Ha

E

�
f(~1/2W1+ I1(u))+�1~ (W"; Z(u);K~(u))+�kZ1kL4(�)4 + 1

2
kl~(u)kL2(R+��)

2

�
where

lt
~(u)=ut+�~3/2Wt

h3i+�~Jt(Wt
2�Zt[(u)):

and �1~ (W; Z ;K~) :=
P
i=1
6 �1

(i);~

�1
(1);~ := −�

2
~K2(W1

2 ;K1
~ ;K1

~ )+ �

2
~
Z
(WT

2 �K1~ )K1~ −�2~5/2
Z
(W1

2 �W1
[3])K1~ ;

�1
(2);~ := 0

�1
(3);~ := �~

Z
0

1Z
(Wt

2�Z_ t[)Kt
~dt;

�1
(4);~ := 4�~1/2

Z
W1(K1~ )3− 12�2~2

Z
W1W1

[3](K1~ )2+ 12�3~7/2
Z
W1(W1

[3])2K1~ ;

�1
(5);~ := 2�2~2

Z
0

1Z

tZt

[Z_ t[dt;

�1
(6);~ := −�2~5/2

Z
W1

2�[3]K1
~ − �2

2
~2
Z
0

1Z
Wt
h2i�h2i(Zt[)2dt

−�
2

2
~2
Z
0

1
K3;t(Wt

2;Wt
2; Zt

[; Zt
[)dt:

Now it remains to prove
lim
~!0

W~(f)= inf
 2S 0(�)

ff( )+ I( )g

with I defined by (2.53). For this in analogy with Section 2.6 we introduce

F�~(�) :=E�

�
f(~1/2W1+ I1(u))+�1~ (X; Z(u);K~(u))+�kZ1kL44 + 1

2
kl~(u)kH2

�
where the functional is again defined on the space X and

W~(f)= inf
�2X

F�~(�)

and and in the same way as for Lemma 2.38 we can show that

W~(f)= inf
�2X�

F�~(�)
Next we claim that taking

F�0(�)=E�

�
f(Z1(u))+�kZ1(u)kL44 + 1

2
kukH2

�
we have the following statements

Lemma 2.42. The family F�~(�) is equicoercive on X�

Proof. In analogy with Section 2.4 it is not hard to see that

F�~(�)>−C+ 1
2
E

�
�kZ1kL44 + 1

2
kl~(u)kH2

�
and also that E�[kukL2 ].C+2�E�[kZ1(u)kL44 ] +E�[kl~(u)kH2 ], Define the set

K= f�:E�[kZ1(u)kL44 ] +E�[kl~(u)kH2 ]6Kg
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note that K is compact from Lemma 2.28 . Now we can prove in the same way as in Section 2.5 that

sup
~

inf
�2X�

F�~(�)<1:

So choosing K large enough we have that

inf
�2/K

F�~(�)> cK −C > sup
~

inf
u2X�

F�~(�)

which implies

inf
�2X�

F�~(�)= inf
�2K

F�~(�)

�

Lemma 2.43. F�~(�) Γ-converges to F�0(�) on X�

Proof.
Step 1. First we prove the liminf inequality. Consider a sequence �~! � in X�, our aim is to

prove that

liminf
~!0

F�~(�~)>F�0(�):

As before it is enough to prove the statement for a subsequence of �~. W.l.o.g we can assume that

sup
~
(E�~[kZ1(u)kL44 ] +E�~[kl~(u)kH2 ])<1: (2.56)

Now from the estimates in Section 2.8 and the definition of �1~ we observe that for any �~2X�

E�~[j�1~ j]6~1/2(E�~[kZ1(u)kL44 ] +E�~[kl~(u)kH2 ]);

so for for any sequence satisfying (2:56) E�~[j�1~ j]! 0. By the Portmanteau Lemma we have

liminf
~!0

E�~[kZ1(u)kL44 ]>E�[kZ1(u)kL44 ]:
We claim that also

liminf
~!0

E�~[kl~(u)kH2 ]>E�[kukH2 ]:

For this we find a subsequence of �~ (not relabeled) and a sequence of random variables (X~; u~) on
a probability space (
~ ;P~ ) such that Law(X~; u~)= �~ and X~!X in S and u~!u0 in Lw, where
Law(X; u0) = �. Then from eq. (2.56) we can pick a further subsequence such that l~(u~)! l? in
Hw. The definition of l~ implies

lt
~(u) = ut+�~3/2Xt

h3i;~+�~Jt(Xt
2;~�Zt[(u))

and testing and taking limits this implies

l?=u;

which implies our claim. Now from weak convergence it follows that provided that f is bounded
and continuous on H−�(�).

lim
~!0

E�~[f(~1/2X1+Z1(u))]=E�[f(Z1(u))];

which completes Step 1.
Step 2. Now we construct the recovery sequence , more precisely we prove that for every �

there exists �~! � such that

limsup
~!0

F�~(�~)6F�0(�):

By Lemma 2:34 for any � such that F�0(�) <1 (otherwise there is nothing to prove) we have a
sequence �n such that kukL 6 n �n-almost surely and limn!1F�0(�n) = F�0(�). By a diagonal
argument it is enough to find sequences �n;~ such that

limsup
~!0

F�~(�n;~)6F�0(�n):
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For this consider u~ to be the solution to

ut = ut
~+�~3/2Xt

h3i+�~Jt(Xt
2�Zt[(u~)):

This can be proven to exist by a standart fixpoint and Gronwall argument. Applying J and
integrating we obtain

Zt(u~)=Zt(u)−�~3/2Xt
[3]−�~

Z
0

t

Js
2(Xs

2�Zs[(u~))ds (2.57)

so by Gronwall's lemma

kZt(u~)kL4(�) 6 sup
s6t

(
kZt(u)kL4+�~3/2





Xt
[3]





L4(�)

�
e
�~
R
0
thsi−(2−�)kXs

2k
C−1−�(�)ds

6 sup
s6t

(
kukL2 +�~3/2





Xt
[3]





L4(�)
2

�
+ e

2�~
R
0
thsi−(2−�)kXs

2k
C−1−�(�)ds (2.58)

This together with the definition of u~ implies that

kZt(u~)−Zt(u)kL44

6 ~

 
�~3/2





Xt
[3]





L4
4 − sup

s6t

(
kukL8 +�~3/2





Xt
[3]





L4(�)
8

�
+ e

8�~
R
0
thsi−(2−�)kXs

2k
C−1−�(�)ds

!
+�~3/2





Xt
[3]





L4

So by dominated convergence

E�nkZt(u~)−Zt(u)kL44 ! 0

since kukL 6 n �n almost surely. Now set �n;~ = Law�n(X; u~). Clearly l~(u~) = u, so
E�n;~[kl~(u)kH2 ] = E�n[kukH2 ] and we have already established that E�n;~[kZ1(u)kL4(�)4 ] !
E�n[kZ1(u)kL4(�)4 ].

Now together with the fact that

E�n;~[j�1~ (W~; Z(u);K~(u))j]6~1/2(E�n;~[kZ1(u)kL4(�)4 ] +E�n;~[kl~(u)kH2 ])! 0

we can conclude. �

Lemma 2.44. inf
�2X�

F�0(�)= inf
u2Ha

F (u)= inf
 2S 0(�)

ff( )+ I( )g

where

F (u)=E

�
f(Z1(u))+�kZ1(u)kL44 + 1

2
kukH2

�
Proof. The first equality can easily be proven in the same fashion as Lemma 2.38. We only prove
the second equality.

Step 1. First we prove

inf
u2Ha

F (u)6 inf
 2S 0(�)

ff( )+ I( )g:

Restricting the infimum to processes of the form

us=Jshri2 
with  2H2(�), we see that

Z1(u)=
Z
0

1
Jsusds=

Z
0

1
Js
2hri2 ds=  

we also compute

kukH2 =
Z
0

1Z
�

us
2ds=

Z
0

1
hJs2hri2 ; hri2 iL2(�)ds= h ; hri2 iL2(�)= k kH1

2

so

inf
u2Ha

F (u)6 inf
us=Jshri2 

F (u)= inf
 2H2

ff( )+ I( )g= inf
 2S 0(�)

ff( )+ I( )g
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where the last equality follows from approximation of  2 H1(�) with H2(�) functions, and
f( )+ I( ) is understood to be =1 if  2/ H1(�).

Step 2.We now prove the converse inequality

inf
u2Ha

F (u)> inf
 2S 0(�)

ff( )+ I( )g:

Recall that from the proof of Lemma 2.6 kukH> kZ1(u)kH1 so

inf
u2Ha

F (u) > inf
u2Ha

E

�
f(Z1(u))+�kZ1(u)kL44 + 1

2
kZ1(u)kH1

2

�
> inf

 2S 0(�)
ff( )+ I( )g:

�

2.8. Analytic estimates
In this section we collect a series of analytic estimates which together allow to establish the point
wise bounds (2.38) and (2.39) and the continuity required for Lemma 2.22. First of all note that

kKtkH1−�
2 . �2

Z
0

t 1
hti1+�

kWs
2kB4;1s
2 ds kZT kL42 +

Z
0

t

klskL22 ds

. �3
�Z

0

t 1
hti1+�

kWs
2kB4;1s
2 ds

�
2

+�kZT kL44 +
Z
0

t

klskL22 ds;
(2.59)

which implies that quadratic functions of the norm kKtkH1−� with small coefficients can always be
controlled, uniformly in [0;1], by the coercive term

�

Z
−ZT4 +

1
2

Z
0

1
klskL22 ds:

Lemma 2.45. For any small "> 0 there exists � > 0 such that

j�T
(1)j6C("; �)E(�)QT + "kKT kH1−�

2 + "�kZT kL44 :

Proof. By Proposition A.14,

�jK2(WT
2 ;KT ;KT)j . �kWT

2k
B7;1
−9/8 kKT kB7/3;29/16

2 .�kWT
2k
B7;1
−9/8 kKT kB7/3;7/35/8

2

. �kWT
2k
B7;1
−9/8 kKT kH7/8

10/7kKT kB4;40
4/7

. �6kWT
2k
B7;1
−9/8

7 + kKT kH7/8
2 +�kKT kL44 :

(2.60)

By Proposition A.10, ���������Z−(WT
2 �KT)KT

�������� . �kWT
2k
B7;1
−9/8 kKT kB7/3;29/16

2

which can be estimated in the same way, and finally���������2Z−(WT
2 �WT

[3])KT

�������� . �2kWT
2k
B4;4
−1−�/2 kWT

[3]k
B4;4
1/2−�/2kKT kH1/2+�

6 C(")�4
�
kWT

2k
B4;4
−1−�/2 kWT

[3]k
B4;4
1/2−�/2

�
2
+ "kKT kH1/2+�

2 :

�

Lemma 2.46. For any small "> 0 there exists � > 0 such that�����T(2)���� 6 T−�(C("; �)E(�)QT + "kKkH1−�+ "�kZT kL4)

Proof. Using the spectral support properties of the various terms we observe that

kWT
2kBp;q−1+�. kWT

2kBp;q−1+�T
2�;
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and

T 2�kZT −ZT[ kL2. kZT −ZT[ kH2�. kZT −ZT[ kH1/2−�

2�
1/2−� kZT −ZT[ kL2

1/2−3�
1/2−�

.kZT kH1/2−�

2�
1/2−� kZT kL2

1/2−3�
1/2−� ;

where we used also interpolation and the L2 bound kZT[ kL2. kZT kL2. We recall also that

ZT =KT +�WT
[3]: (2.61)

Therefore we estimate as follows

�

Z
−(WT

2 � (ZT −ZT[ ) )KT = �

Z
−(WT

2 � (KT −KT
[ ) )KT +�2

Z
−
(
WT

2 �
(
WT

[3]−WT
[3];[� �

KT

For the second term we can estimate

�2
Z
−
(
WT

2 �
(
WT

[3]−WT
[3];[� �KT . �2kWT

2kB4;1−1+�




WT

[3]−WT
[3];[





B4;2
0 kKT kH1−�

. �2T−�kWT
2kB4;1−1−�





WT
[3]





B4;2
3� kKT kH1−�;

while for the first term we get

�

Z
−(WT

2 � (KT −KT
[ ) )KT . �kWT

2k
B7;1
−1/2−�kKT kB7/3;20 kKT kB7/3;21/2+�

. �kWT
2kB7;1−1−�T

1/2T−1/2−�kKT kB7/3;21/2+�
2

. �T−�kWT
2kB7;1−1−�kKT kB7/3;21/2+�

2 ;

which we can again estimate like in Lemma 2.45. �

Lemma 2.47. For any small ~> 0 there exists � > 0 such that�����T(3)���� 6 C("; �)E(�)QT + " sup
06t6T

kKtkH1−�
2 + "�kZT kL44 :

Proof. First note that for t>11 we have �_t(D)=(hDi/t2)�~_(hDi/t). In particular Z_ t[ is spectrally
supported in an annulus with inner radius t/4 and outer radius t/3. Then for any � 2 [0; 1]

kZ_ t[kBp;qs+�=








�~_� hDit

�
hDi
t2
ZT










Bp;q
s+�
.








�~_� hDit

�
hDi1+�
t2+�

ZT










Bp;q
s+�
. kZT kBp;q

s

hti1+�
:

The same estimate holds trivially for t6 11.

By Proposition A.10, for any "> 0 there exists � > 0 such that���������Z
0

TZ
−(Wt

2�Z_ t[)Kt dt
��������.�Z

0

T

kWt
2kB6;1−1+�kZ

_
t
[kB3;20 kKtkH1−�dt

.�
Z
0

T

kWt
2kB6;1−1+�kZT kB3;23� kKtkH1−�

dt
hti1+3�

.�kZT kB3;34� sup
06t6T

kKtkH1−�

Z
0

T

kWt
2kB6;1−1+�

dt
hti1+�

.�kZT kH1/2−�
1/2 kZT kB4;4

1/2 sup
06t6T

kKtkH1−�

Z
0

T

kWt
2kB6;1−1+�

dt
hti1+�

.�kZT kL4
1/2 sup

06t6T
kKtkH1−�

3/2
Z
0

T

kWt
2kB6;1−1+�

dt
hti1+�

+�3/2kZT kL4
1/2 sup

06t6T
kKtkH1−�kWT

[3]kH4�
1/2
Z
0

T

kWt
2kB6;1−1+�

dt
hti1+�
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and again

�kZT kL4
1/2 sup

06t6T
kKtkH1−�

3/2
Z
0

T

kWt
2kB7;1−1+�

dt
hti1+�

6C�7
Z
0

T

kWt
2kB7;1−1+�
8 dt

hti1+�
+ " sup

06t6T
kKtkH1−�

2 + "�kZT kL44 :
While

�3/2kZT kL4
1/2 sup

06t6T
kKtkH1−�kWT

[3]kH4�
1/2
Z
0

T

kWt
2kB6;1−1+�

dt
hti1+�

6 C�11/3
Z
0

T

kWt
2k
B7;1
−1+�

8/3 dt
hti1+�

kWT
[3]kH4�

8/6 + sup
06t6T

kKtkH1−�
2 +�kZT kL4:

�

Lemma 2.48. For any small "> 0 there exists � > 0 such that�����T(4)����6C("; �)E(�)QT + "kKT kH1−�
2 + "�kZT kL44 :

Proof. Using Lemma 2.9 we establish that���������Z−WTKT
3

��������6E(�)kWT kW−1/2−";p
K + �(kKT kH1−"

2 +�kKT kL44 ):

Next, we can write,

�3
��������Z−WT(WT

[3])2KT

��������.�3��������Z−WT

(
WT

[3]�WT
[3]�

KT

��������+�3kWT kB6;1−1/2−�




WT

[3]





B6;4
−1/2−�

2 kKT kH1−":

which can be easily estimated by Young's inequality. Decomposing

WT(WT
[3]�WT

[3])=WT � (WT
[3]�WT

[3])+WT � (WT
[3]�WT

[3])+WT � (WT
[3]�WT

[3]):

We can estimate the first two terms by

�3
��������Z−WT �

(
WT

[3]�WT
[3]�

KT

��������.�3kWT kB6;1−1/2−�




WT

[3]





B6;2
0

2 kKT kH1−";

and

�3
��������Z−WT �

(
WT

[3]�WT
[3]�

KT

��������.�3kWT kB6;2−1/2−�




WT

[3]





B6;1
0

2 kKT kH1−":

Young's inequality gives then the appropriate result. For the final term we use Proposition A.13
to get

�3
��������Z−WT �

(
WT

[3]�WT
[3]�

KT

��������
.�3

��������Z−WT
[3]WT

1�[3]KT

��������+�3kWT kB4;1−1/2−�




WT

[3]





B4;2
−1/2−�

2 kKT kH1−�

.�3




WT

[3]





B4;1
1/2−�





WT
1�[3]





B4;2
−�kKT kH1−�+�3kWT kB4;1−1/2−�





WT
[3]





B4;2
−1/2−�

2 kKT kH1−�

.�6C(�; ")
h



WT

[3]





B4;1
1/2−�





WT
1�[3]





B4;2
−�+ kWT kB4;1−1/2−�





WT
[3]





B4;2
−1/2−�

2
i
2
+ "kKT kH1−�

2 :

For the last term we estimate���������2Z−(WTWT
[3]�KT

2

�������� . �2




WTWT

[3]





B7;1
−1/2−� kKT kB7/3;21/2+�

2 ;

which can be estimated like in Lemma 2.45 after we observe that



WTWT
[3]





B7;1
−1/2−�6





WT �WT
[3]





B7;1
−1/2−�+





WT �WT
[3]





B7;1
−1/2−�+





WT �WT
[3]





B7;1
−1/2−�

.kWT kB14;1
−1/2−�





WT
[3]





B14;1
0 +





WT
1�[3]





B7;1
−�

and use Lemma 2.52 to bound WT
1�[3]. �
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Lemma 2.49. For any small "> 0 there exists � > 0 such that�����T(5)����6C"E(�)
"
j
T j
hT i1/4

+
Z
0

T j
tjdt
hti5/4

#
2

+ "kZT kH1/2−�
2 + "�kZT kL44 :

Proof. We can estimate���������2
TZ−ZT[ (ZT −ZT[ )��������6�2j
T jkZT[ kL2kZT −ZT[ kL2.�2 j
T jhT i1/4
kZT[ kL2kZT −ZT[ kH1/4; (2.62)

and ���������2
TZ−(ZT −ZT[ )2��������6�2j
T jkZT −ZT[ kL22 .�2 j
T jhT i1/4
kZT[ −ZT kL2kZT −ZT[ kH1/4: (2.63)

For the last term we can apply the estimate���������2Z
0

TZ
−
tZt[Z_ t[dt

��������6�2Z
0

T

j
tjkZt[kL2 kZ_ t[kL2dt.�2kZT kL2 kZT kH1/4

Z
0

T j
tjdt
hti5/4

:

Collecting these bounds we get

�����T(5)����.C"�7
"
j
T j
hT i1/4

+
Z
0

T j
tjdt
hti5/4

#
2

+�"kZT kL44 + "kZT kH1/2−�
2 : �

Remark 2.50. Note that

sup
T

"
j
T j
hT i1/4

+
Z
0

T j
tjdt
hti5/4

#
<1;

provided 
T does not grow too fast in T which is indeed guaranteed by the choice of renormalization
made in Lemma 2.52.

Lemma 2.51. For any small "> 0 there exists a � > 0 such that�����T(6)���� 6 C("; �)E(�)QT + "kKT kH1−�
2 + "�kZT kL44 :

Proof. We start by observing that

�2
��������Z−(WT

2 �WT
[3]+2
TWT

�
KT

��������.�2



WT
2�[3]





W−1/2−";2kKT kW1/2+";2:

and using Lemma 2.52 and eq. (2.59) we have this term under control. Next split���������22 E

Z
0

TZ
−[(Jt(Wt

2�Zt[))2+2
_t(Zt[)2]dt
��������

.�
2

2

��������Z
0

TZ
−((JtWt

2�Zt[))2− (JtWt
2 �JtWt

2)(Zt[)2dt
��������+�2��������Z

0

TZ
−Wt

h2i�h2i(Zt[)2dt
��������:

Recall that t1/2Jt is a Fourier multiplier with symbol

hki−1(−2�0(hki/t)�(hki/t)(hki/t))1/2= hki−1�(hki/t);

where � is a smooth function supported in an annulus of radius 1. From this we prove that t1/2Jt
satisfies the assumptions of Proposition A.12 with m=−1. Therefore

kJt(Wt
2�Zt[)− (JtWt

2)�Zt[kH1/4−2�. hti−1/2kWt
2kB6;1−1−�kZt

[ k
B3;3
−1/4−�;

and by Proposition A.7,

kJt(Wt
2�Zt[)kH−2�+ kJt(Wt

2�Zt[)kH−2�. hti−1/2−�kWt
2kB6;1−1−�kZt

[ kB3;30 :
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Therefore ���������22
Z
0

TZ
−(Jt(Wt

2�Zt[))2dt−
�2

2

Z
0

TZ
−((JtWt

2)�Zt[)2dt
��������

.�2 sup
t6T

h
kZt[ kB3;30 kZt

[ k
B3;3
1/4−�

iZ
0

T

kWt
2kB6;1−1−�
2 dt

hti1+�

.�2 sup
t6T

[kZt[ kL4kZt[ kH1/2−�]
Z
0

T

kWt
2kB6;1−1−�
2 dt

hti1+�
;

which can be easily estimated by Young's inequality. From Proposition A.14 and Proposition A.4���������22
Z
−((JtWt

2�Zt[))2−
�2

2

Z
−(JtWt

2�Zt[) � JtWt
2Zt

[

��������.�2kJtWt
2kB6;1−1−�
2 kZt[kB3;1−1/4−� kZt

[kB3;30

and by interpolation

.�2kJtWt
2kB6;1−1−�
2 kZt[ kL4kZt[ kH1/2−�:

The integrability of this term in time follows from the inequality

kJtWt
2kB6;1−1−�
2 . hti−1−2�kWt

2kB6;1−1−�
2 :

Using again Proposition A.7 for t1/2Jt gives the estimate. Applying Proposition A.13 and Propo-
sition A.4 we get

�2k(JtWt
2�Zt[) � JtWt

2− (JtWt
2 � JtWt

2)(Zt[)kB3/2;10 .�2kJtWt
2kB6;1−1−�
2 kZt[kB3;13� :

and after using duality and interpolation we obtain

�2

2

��������Z
0

TZ
−((JtWt

2�Zt[))2− (JtWt
2 �JtWt

2)(Zt[)2dt
��������

.�2 sup
t6T

[kZt[ kL4kZt[ kH1/2−�]
Z
0

T

kWt
2kB6;1−1−�
2 dt

hti1+�

."
 
1
2
sup
t6T

kZt[ kH1/2−�
2 +�kZT kL44

!
+C("; �)�7

�Z
0

T

kWt
2kB6;1−1−�
2 dt

hti1+�

�
4

."
�
1
2
kZT kH1/2−�

2 +�kZT kL44
�
+C("; �)�7

Z
0

T

kWt
2kB6;1−1−�
8 dt

hti1+�
:

Finally we have

�2
��������Z
0

TZ
−Wt

h2i�h2i(Zt[)2dt
��������.�2�Z

0

T



Wt
h2i�h2i





L4dt
�
kZT kH"kZT kL4

6C(")�7
�Z

0

T

kWt
h2i�h2ikL4dt

�
4

+�"kZT kL44 + "kZT kH1/2−�
2 :

Using eq. (2.61) to control kZT kH1/2−� in terms of KT we obtain the claim. �

2.9. Stochastic estimates

In this section we close our argument proving the following lemmas which give uniform estimates
as T!1 of some of the stochastic terms appearing in our analytic estimates.

Lemma 2.52. For any ">0 and any p>1; r <1; q2 [1;1], there exists a constant C("; p; q) which
does not depend on � such that

sup
T

E
h



WT �WT

[3]





Br;q
−"

p
i
6C("; p; q): (2.64)
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Moreover there exists a function 
t2C1(R+;R) such that for any "> 0 and any p> 1,

sup
T

E
h



(WT

2 �WT
[3]− 2
TWT)






Br;q
−1/2−"

p
i
6C("; p; q); (2.65)

E

��Z
0

1
kJtWt

2 � JtWt
2− 2
_tkBr;q−"dt

�p�
6C("; p; q): (2.66)

sup
t

E
�
kJtWt

2 �JtWt
2− 2
_tkBr;q−"

�
6C("; p; q)

and

j
tj+ htij
_tj. 1+ loghti; t> 0: (2.67)

Furthermore 
 is independent of �. By Besov embedding, the Besov-Hölder norms of these objects
are also uniformly bounded in T (but not uniformly in �).

Proof. We will concentrate in proving the bounds on the renormalized terms in eqs. (2.65) and
(2.66) and leave to the reader to fill the details for the easier term in eq. (2.64). Recall the
representation of (Wt)t in terms of the family of Brownian motions (Btn)t;n in eq. (2.4). Wick's
products of the Gaussian field WT can be represented as iterated stochastic integrals wrt. (Btn)t;n.
In particular, if we let dws(k)= hki−1�s(k)dBsk, we have

WT
2(x)= 12JWT

2K(x)= 24
X
k1;k2

ei(k1+k2)�x
Z
0

TZ
0

s2

dws1(k1)dws2(k2);

WT
[3](x)= 24

X
k1;k2;k3

eik(123)�x
Z
0

TZ
0

s3
Z
0

s2
 Z

s3

T �u
2(k(123))
hk(123)i2

du

!
dws1(k1)dws2(k2)dws3(k3);

where we denote k(1���n) := k1+ ��� + kn for any n> 2. Now products of iterated integrals can be
decomposed in sums of iterated integrals and we get

�q(WT
2�[3])(x) = �q

(
WT

2 �WT
[3]− 2
TWT

�
(x)

=
X

k1;:::;k5

Z
AT
5
G0;q
2�[3]((s; k)1���5)dws1(k1)���dws5(k5)

+
X

k1;:::;k3

Z
AT
3
G1;q
2�[3]((s; k)1���3)dws1(k1)���dws3(k3)

+
X
k1

Z
AT
1
G2;q
2�[3]((s; k)1)dws1(k1);

(2.68)

where ATn := f06 s1< ���<sn6T g� [0; T ]n and where the deterministic kernels are given by

G0;q
2�[3]((s; k)1���5) := (242)%q(k(1���5))e

i(k(1���5))�x
X

�2Sh(2;3)

X
i�j

�

�%i(k(�1�2))%j(k(�3�4�5))
 Z

s�5

T �u(k(�3�4�5))
2

hk(�3�4�5)i2
du

!
;

G1;q
2�[3]((s; k)1���3) := (242)%q(k(1���3))e

i(k(1���3))�x
X

�2Sh(1;2)

X
i�j

X
p

Z
0

T

dr�r(p)
2

hpi2 �

�%i(k�1+ p)%j(k(�2�3)− p)

 Z
s�3_r

T �u(k(�2�3)− p)2
hk(�2�3)− pi2

du

!
;

G2;q
2�[3]((s; k)1) := (242)%q(k1)eik1�x

X
i�j

X
p1;p2

Z
0

T

dr1
Z
0

T

dr2
�r1(p1)2

hp1i2
�r2(p2)2

hp2i2
�

�%i(p1+ p2)%j(k1− p1− p2)
�Z

r1_r2_s1

T �u(k1− p1− p2)2
hk1− p1− p2i2

du
�
;

G2;q
2�[3]((s; k)1) := G2;q

2�[3]((s; k)1)− 2
T%q(k1) eik1�x;
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where Sh(k; l) is the set of permutations � of f1; :::; k+ lg keeping the orders �(1)< ���<�(k) and
�(k+1)< ���<�(k+ l) and where, for any symbol z, we denote with expression of the form z1���n

the vector (z1; :::; zn). Estimation of �q(WT
2 �WT

[3])(x) reduces then to estimate each of the three
iterated integrals using BDG inequalities to get, for any p> 2,

I0;q=

8<:E

24���������� X
k1;:::;k5

Z
AT
5
G0;q
2�[3]((s; k)1���5)dws1(k1)���dws5(k5)

����������
2p
359=;

1/p

.
X

k1;:::;k5

Z
AT
5

����G0;q2�[3]((s; k)1���5)����2�s1(k1)2hk1i2
����s5(k5)

2

hk5i2
ds1���ds5:

The kernel G0;q
2�[3]((s; k)1���5) being a symmetric function of its argument, we can simplify this

expression into an integral over [0; T ]5:

I0;q.
X

k1;:::;k5

Z
[0;T ]5

����G0;q
2�[3]((s; k)1���5)

����2�s1(k1)2
hk1i2

����s5(k5)
2

hk5i2
ds1���ds5:

Under the measure �s5(k5)
2

hk5i2
ds5, we have����������

Z
s�5

T �u(k(�3�4�5))
2

hk(�3�4�5)i2
du

����������. 1
hk�5i2

:

Therefore with some standard estimates we can reduce this to

I0;q.
X

k1;:::;k5

Z
[0;T ]5

%q(k(1���5))2

hk5i4
1k(12)�k(345)

�s1(k1)2

hk1i2
����s5(k5)

2

hk5i2
ds1���ds5

.
X

k1;:::;k5

Z
[0;T ]5

%q(k(1���5))2

hk5i4
1k(12)�k(345)

�s1(k1)2

hk1i2
����s5(k5)

2

hk5i2
ds1���ds5

.
X

k1;:::;k5

%q(k(1���5))2

hk5i4
1k(12)�k(345)

1
hk1i2

��� 1
hk5i2

.
X
p1;p2

1p1�p2%q(p1+ p2)2
X

k1;:::;k5

1
hk5i4

1k(12)=p1;k(345)=p2
1

hk1i2
��� 1
hk5i2

.
X
p1;p2

1p1�p2%q(p1+ p2)2
1
hp1i

1
hp2i4

.
X
p1;r

%q(r)2
1
hp1i

1
hp1+ ri4

.
X
r

%q(r)2
1
hri2 . 2

q:

Now by similar reasoning we also have����G1;q2�[3]((s; k)1���3)����. X
�2Sh(1;2)

j%q(k(1���3))j
X
i�j

X
p

Z
0

T

dr
�r(p)2j%i(k�1+ p)%j(k(�2�3)− p)j

hpi2hk�1+ pi2

.
X

�2Sh(1;2)

j%q(k(1���3))j
hk�1i

so

I1;q=

8<:E

24���������� X
k1;:::;k3

Z
AT
3
G1;q
2�[3]((s; k)1���5)dys1(k1)���dys3(k3)

����������
2p
359=;

1/p

.
X

k1;:::;k3

Z
[0;T ]3

������������
X

�2Sh(1;2)

j%q(k(1���3))j
hk�1i

������������
2

�s1(k1)2

hk1i2
����s3(k3)

2

hk3i2
ds1���ds3

.
X

k1;:::;k3

j%q(k(1���3))j2
hk1i4hk2i2hk3i2

.
X
r

%q(r)2

hri2 . 2
q:
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Finally, we note that the same strategy cannot be applied to the first chaos, since the kernel G2;q
2�[3]

cannot be uniformly bounded. We let

AT(s1; k1) := (242)
X
i�j

X
q1;q2

Z
0

T

dr1
Z
0

T

dr2
�r1(q1)2

hq1i2
�r2(q2)2

hq2i2
�

�%i(q1+ q2)%j(k1− q1− q2)
�Z

r1_r2_s1

T �u
2(k1− q1− q2)
hk1− q1− q2i2

du
�
;

so

G2;q
2�[3]((s; k)1)= %q(k1)eik1�x[AT(s1; k1)− 2
T ]:

Observe that

AT(0; 0) = (122 � 2)
X
q1;q2

Z
0

T

dr1
Z
0

T

dr2
�r1(q1)2

hq1i2
�r2(q2)2

hq2i2
�

�
Z
r1_r2

T �u
2(q1+ q2)
hq1+ q2i2

du
X
i�j

%i(q1+ q2)%j(−q1− q2):

We choose 
T as


T =AT(0; 0)= (122 � 2)
X
q1;q2

Z
0

T

du
Z
0

u

dr1
Z
0

u

dr2
�r1(q1)2

hq1i2
�r2(q2)2

hq2i2
�u
2(q1+ q2)
hq1+ q2i2

(2.69)

where we used the fact that for all q 2Rd we have
P
i�j %i(q)%j(q)= 1, since

R
f � g=

R
fg. Note

that, as claimed,

j
T j.
X
q1;q2

1jq1j;jq2j;jq1+q2j.T
hq1i2hq2i2hq1+ q2i2

. 1+ loghT i:

Now

AT(s1; k1)− 2
T =(242 � 6)
X
q1;q2

Z
0

T

dr1dr2
�r1(q1)2

hq1i2
�r2(q2)2

hq2i2
X
i�j

%i(q1+ q2)�

�
�
%j(k1− q1− q2)

Z
s1_r1_r2

T �u
2(k1− q1− q2)
hk1− q1− q2i2

du− %j(q1+ q2)
Z
r1_r2

T �u
2(q1+ q2)
hq1+ q2i2

du
�

so there existst a constatn C such that, when jq1+ q2j>C jk1j, the quantity in round brackets can
be estimated by jk1jhq1+ q2i−4 while when jq1+ q2j6C jk1j it is estimated by hq1+ q2i−2. We have

jAT(s1; k1)− 
T j.
X
q1;q2

1
hq1i2

1
hq2i2

1
hq1+ q2i2

�
1jq1+q2j6C jk1j+ 1jq1+q2j>C jk1j

jk1j
hq1+ q2i2

�
.1+ loghk1i:

And then with this choice of 
T the kernel G2;q
2�[3] stays uniformly bounded as T!1 and satisfies����G2;q

2�[3]((s; k)1)
����. %q(k1)loghk1i:

From this we easily deduce that

I2;q=

(
E

"����������X
k1

Z
AT

G2;q
2�[3]((s; k)1)dys1(k1)

����������
2p
#)

1/p

. q2q; q>−1:

All together these estimates imply that

E




�qWT

2�[3]




L2p
2p . (q2q/2)2p; q>−1:

Standard argument allows to deduce eq. (2.65). The analysis of the other renormalized product
proceeds similarly. Let

V (t) :=Wt
h2i�h2i= JtWt

2 � JtWt
2− 2
_t; t> 0:
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First note that by definition of Besov spaces we have

E

��Z
0

1
kV (t)k

Br;r
−"−d/rdt

�p�
.E

240@Z
0

1 X
q

2−qr("+d/r)k�qV (t)kLr
!
1/r

dt

1Ap35:
By Minkowski's integral inequality this is bounded by

.

0@Z
0

1
dt

8<:E

24 X
q

2−qr("+d/r)k�qV (t)kLrr
!
p/r

359=;
1/p
1Ap:

When r> p Jensen's inequality and Fubini's theorem give

.

0@Z
0

1
dt

(X
q

2−qr("+d/r)
Z
�

dx
j�j E[j�qV (t)(x)j

r]

)
1/r
1Ap:

Finally hypercontractivity and stationarity allow to reduce this to bound

.

0@Z
0

1
dt
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q

2−qr("+d/r) (E[j�qV (t)(0)j2])r/2
)
1/r

1Ap:
Letting Iq(t)=E[j�qV (t)(0)j2] we have

E

��Z
0

1
kWt

h2i�h2ik
Br;r
−"−d/rdt

�p�
.

0@Z
0

1
dt
(X

q

2−qr("+d/r) (Iq(t))r/2
)
1/r

1Ap:
Now we decompose the random field�q(Wt

h2i�h2i)(x) into homogeneous stochastic integral as above
and obtain

�q(Wt
h2i�h2i)(x) =

X
k1;:::;k4

Z
At
4
G0;q
h2i�h2i((s; k)1���4)dws1(k1)���dws4(k4)

+
X
k1;k2

Z
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2
G1;q
h2i�h2i((s; k)12)dws1(k1)dws2(k2)

+G2;q
h2i�h2i

(2.70)

with

G0;q
h2i�h2i((s; k)1���4) = (242)%q(k(1���4))e
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�
X

�2Sh(2;2)

X
i�j

%i(k(�1�2))%j(k(�3�4))
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�t(q1+ q2)2
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−2
_t1q=−1:

Using our choice of 
T in eq. (2.69) we have that


_t=(122 � 2)
X
q1;q2

Z
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t
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Z
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�r1(q1)2
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�r2(q2)2
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which implies also that

G2;q
h2i�h2i=0; and j
_tj.

1+ loghti
hti :

as claimed. We pass now to estimate the other two chaoses. The technique is the same we used
above. Consider first

I0;q(t) :=E

24���������� X
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where we used that j�t(x)j. t−1/21x�t. Now taking "+ d/r > 0 we have

Z
0

1
dt
(X

q

2−qr("+d/r) (I0;q(t))r/2
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1
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. 1:

Taking into account that jk1j; jk2j. t we can estimate
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from which we deduce that
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and then, as for I0;q, we haveZ
0

1
dt
 X

q

2−qr("+d/r) (I1;q(t))r/2
!
1/r

.
Z
0

1 dt
hti2

 X
q

2qr(1−"−d/r)12q.t

!
1/r

. 1;

70 A Variational Approach to �3
4



as claimed. From these estimates standard arguments give eq. (2.66). �

Lemma 2.53. We have

E[kWT
3kLp

p ]1/p.T 3/2:

This implies that Wh3i2C
(
[0;1]; Bp;p

−1/2−��\L2(R+; Bp;p
−1/2−�� for any p <1 uniformly in the
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−1/2−�).
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Now the remaining properties follow by the fact that �t is supported in an annulus of radius t, so
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h3i
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and the Hölder estimates follow by Besov embedding (but with constants which depends on the
volume). �

2.9 Stochastic estimates 71





Chapter 3

�3
4 via Girsanov Transform

3.1. Introduction

The �34 measure on the three dimensional torus �=T3=(R/2�Z)3 is the probability measure �
on distributions S 0(�) corresponding to the formal functional integral

�(d')=
88� 1
Z
exp
�
−�
Z
�

('4−1'2)dx
�
�(d')

�00
(3.1)

where � is the law of the Gaussian free field with covariance (1−�)−1 on �, Z a normalization
constant and � the coupling constant. The 1 appearing in this expression reminds us that many
things are wrong with this recipe. The key difficulty can be traced to the fact that the measure we
are looking for is not absolutely continuous wrt. the reference measure �. This fact seems part of
the folklore even if we could not find a rigorous proof for it in the available literature apart from
a work of Albeverio and Liang [3] which however refers to the Euclidean fields at time zero.

As already motioned in section 1.2.1 in recent years the rigorous study of the �34 model has
been pursued from the point of view of stochastic quantization. In the original formulation of
Parisi�Wu [106], stochastic quantization is a way to introduce additional degrees of freedom (in
particular a dependence on a fictious time) in order to obtain an equation whose solutions describe a
measure of interest, in this case the �34 measure on � as in (3.1) or its counterpart in the full space.

A conceptual advantage of stochastic quantization is that it is insensitive to questions of
absolute continuity wrt. to a reference measure. This, on the other hand, is the main difficulty
of the Gibbsian point of view as expressed in eq. (3.1). In order to explore further the tradeoffs
of different approaches we have developed in Chapter 2 a variational method for the construc-
tion and description of �34. We were able to provide an explicit formula for the Laplace transform
of �34 in terms of a stochastic control problem in which the controlled process represents the
scale-by-scale evolution of the interacting random field.

This chapter is the occasion to explore further this point of view by constructing a novel measure
via a random translation of the Gaussian free field and by proving that the �34 measure can be
obtained as an absolutely continuous perturbation thereof. Without entering into technical details
now, let us give the broad outline of this construction. We consider a Brownian martingale (Wt)t>0
with values in S 0(�) and such that Wt is a regularization of the Gaussian free field � at (Fourier)
scale t. Let us denote P its law and E the corresponding expectation. In particular, Wt!W1 in
law as t!1 and W1 has law �. We can identify the �34 measure � as the weak limit �T! � as
T!1 of the family of probability measures (�T)T>0 on S 0(�) defined as

�T(�)=PT(WT 2 �);

where PT is the measure on paths (Wt)t>0 with density

dPT

dP
= 1
ZT
e−VT(WT);

and

VT(') :=�
Z
�

('(x)4− aT'(x)2+ bT)dx;
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is a quartic polynomial in the field ' with (aT ; bT)T a family of (suitably diverging) renormalization
constants. The presence of the scale parameter t2R+ allows to introduce a filtration and a family
of measures Qv defined as the Girsanov transformation

dQv

dP

��������
FT

= exp
�
LT
v − 1

2
hLviT

�
; Lt

v=
Z
0

t

hvs;dWsiL2(�) (3.2)

where (hLvit)t>0 is the quadratic variation of the (scalar) local martingale (Ltv)t>0 and (vt)t>0 is
an adapted process with values in L2(�). Let

DT :=
1
ZT
e−VT(WT)

�
dQv

dP

�−1
;

be the density of PT wrt. Qv. We will show that it is possible to choose v in such a way that the
family (DT)T>0 is uniformly integrable under Qv and that DT ! D1 weakly in L1(Qv). With
particular choice of v we call Qv the drift measure: it is the central object of this paper. By
Girsanov's theorem the canonical process (Wt)t>0 satisfies the equation

dWt= vtdt+dW~t; t> 0;

where (W~t)t>0 is a Gaussian martingale under Qv (and has law equal to that of (Wt)t>0 under
P, that is is a regularized Gaussian free field). We will show also that the drift vt can be written
as a (polynomial) function of (W~s)s2[0;t], that is vt=V~t((W~s)s2[0;t]). Therefore we have an explicit
description of the process (Wt)t>0 under the drift measure Qv as the unique solution of the path-
dependent SDE

dWt=V~t((W~s)s2[0;t])dt+dW~t; t> 0: (3.3)

Let us note that this formula expresses the �interacting� random field (Wt)t as a function of the �free�
field (W~t)t. In this respect it shares very similar technical merits with the stochastic quantization
approach.

Intuitively this new measure Qv is half way between the variational description in 2 and the
(formal) Gibbsian description of eq. (3.1). It constitutes a measure which is relatively explicit, easy
to construct and analyze and which can be used as reference measure for �34, very much like the
Gaussian free field can be used as reference measure for �24 [68].

As an application we provide a self-contained proof of the singularity of the �34 measure � wrt.
the Gaussian free field �. As we already remarked the singularity of �34 seems to belongs to the
folklore and we were not able to trace any written proof of that. However, M. Hairer, during a
conference at Imperial College in 2019, showed us an unpublished proof of him of singularity using
the stochastic quantization equation. Our proof and his are very similar and we do not claim any
essential novelty in this respect. Albeit the proof is quite straightforward we wrote down all the
details in order to provide a reference for this fact. The main contribution of the present paper
remains that of describing the drift measure as a novel object in the context of �34 and similar
measures.

Our proof of singularity, in particular also shows that the drift measure Qv is singular wrt. P.
The intuitive reason is that the drift (Vt)t>0 in the SDE (3.3) is not regular enough (as t!1)
to be along Cameron�Martin directions for the law P of the process (Wt)t>0 and therefore the
Girsanov transform (3.2) gives a singular measure when extended all the way to T =+1.

Notations. Let us fix some notations and objects.

� For a2Rd we let hai := (1+ jaj2)1/2. B(x; r)�R denotes the open ball of center x2R and
radius r > 0.

� The constant " > 0 represents a small positive number which can be different from line to
line.
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� Denote with S (�) the space of Schwartz functions on � and with S 0(�) the dual space of
tempered distributions. The notation f̂ or Ff stands for the space Fourier transform of f
and we will write g(D) to denote the Fourier multiplier operator with symbol g:Rn!R,
i.e. F (g(D)f)= gFf .

� Bp;q
� = Bp;q

� (�) denotes the Besov spaces of regularity � and integrability indices p; q
as usual. C � = C �(�) is the Hölder�Besov space B1;1� , W�;p = W�;p(�) denote the
standard fractional Sobolev spaces defined by the norm kf kWs;q := khDisf kLq and H� =
W�;2. The symbols �;�; � denotes spatial paraproducts wrt. a standard Littlewood�Paley
decomposition. The reader is referred to Appendix A for an overview of the functional spaces
and paraproducts.

3.2. The setting

The setting of this chapter is the same of that of Chapter 2. In this section we will briefly recall
it and also state some results from that chapter which will be needed below. They concern the
Boué�Dupuis formula and certain estimates which are relevant to our analysis of absolute conti-
nuity.

Let 
 := C(R+; C −3/2−"(�)) and F be the Borel ��algebra of 
. On (
; F ) consider the
probability measure P which makes the canonical process (Xt)t>0 a cylindrical Brownian motion
on L2(�) and let (Ft)t>0 the associated filtration. In the following E without any qualifiers will
denote expectations wrt. P and EQ will denote expectations wrt. some other measure Q.

On the probability space (
;F ;P) there exists a collection (Btn)n2(Z)3 of complex (2-dimen-
sional) Brownian motions, such that Btn = Bt

−n, Btn; Btm independent for m =/ �n and Xt =P
n2Z3 e

ihn;�iBt
n, for example in S 0(�).

Fix some decreasing �2Cc1(R+;R+) such that �=1 on B(0; 9/10) and supp ��B(0; 1). For
x2R3 let �t(x) := �(hxi/t) and

�t(x) :=
�
d
dt
(�t2(x))

�
1/2

=(−2(hxi/t)�(hxi/t)�0(hxi/t))1/2/t1/2:

Denote Js=�s(D)hDi−1 and consider the process (Wt)t>0 defined by

Wt :=
Z
0

t

JsdXs=
X
n2Z3

eihn;�i
Z
0

t�s(n)
hni dBs

n; t> 0: (3.4)

It is a centered Gaussian process with covariance

E[hWt; 'ihWs;  i] =
X
n2Z3

�min(s;t)
2 (n)
hni2 '̂(n) ̂(n);

for any ';  2S (�) and t; s>0, by Fubini theorem and Ito isometry. By dominated convergence
limt!1E[hWt; 'ihWt;  i] =

P
n2Z3 hni

−2'̂(n) ̂(n) for any ';  2 L2(�). For any finite �time� T
the random field WT on � has a bounded spectral support and the stopped process Wt

T =Wt^T
for any fixed T > 0, is in C(R+; C

1(�)). Furthermore (Wt
T)t only depends on a finite subset of

the Brownian motions (Bn)n2Z3.

Observe that Jt satisfies the following bound

kJtf kBp;ps+1−�. hti−�−1/2kf kBp;ps

for any function f 2Bp;ps with p2 [1;1] and s2R and for any �2R.
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We will denote by JWt
nK, n=1; 2; 3, the n-th Wick-power of the Gaussian random variable Wt

(under P) and recall the convenient notations Wt
2 := 12JWt

2K, Wt
3 := 4JWt

3K. Furthermore we will
write J(hDi−1/2Wt)nK; n2N for the n-th Wick-power of hDi−1/2Wt . It exists for any 0<t<1 and
any n> 1 since it is easy to see that hDi−1/2Wt has a covariance with a diagonal behavior which
can be controlled by loghti. These Wick powers converge as T!1 in spaces of distributions with
regularities given in the following table:

W W2 s 7!JsWs
3 J(hDi−1/2W )nK

CC −1/2− CC −1− CC −1/2−\L2C −1/2− CC 0−

Table 3.1. Regularities of the various stochastic objects. The domain of the time variable is understood
to be [0;1], CC �=C([0;1];C �) and L2C �= L2(R+;C �). Estimates in these norms holds a.s. and in
Lp(P) for all p>1 (see Chapter 2).

We denote by Ha the space of (Ft)t>0-progressively measurable processes which are P-almost
surely in H :=L2(R+��). We say that an element v of Ha is a drift . Below we will need also drifts
belonging to H� :=L2(R+;H�(�)) for some �2R where H�(�) is the Sobolev space of regularity
� 2R and we will denote the corresponding space with Ha

�. For any v 2Ha define the measure
Qv on 
 by

dQv

dP
= exp

�Z
0

1
vsdXs−

1
2

Z
0

1
kvskL22 ds

�
:

Denote with Hc�Ha the set of drifts v2Ha for which Qv(
)=1, and set W v :=W − I(v), where

It(v)=
Z
0

t

Jsvsds:

We will need also the following objects. For all t>0 let �t:R3! [0;1] be a smooth function such that

�t(�)�s(�) = 0 for s> t,
�t(�) = 1 for j� j6 t/2 provided that t>T0

(3.5)

for some T0 > 0. For example one can fix smooth functions �~; �: R3! R+ such that �~(�) = 1 if
j� j61/2 and �~(�)=0 if j� j>2/3 , �(�)=1 if j� j61 and �(�)=0 if j� j>2. Then let �~t(�) :=�~(�/t)
and define

�t(�) := (1− �(�))�~t(�)+ �(t)�(�)�~t(�);

where �(t):R+!R is a smooth function such that �(t)= 0 for t6 10 and �(t)= 1 for t> 3. Then
eq. (3.5) holds with T0=3. Let

f [ := �(D)f (3.6)

for any f 2S 0(�).

Our aim here to study the measures �T defined on C −1/2−" as

d�T
dP

= e−VT(WT)

with

VT(') :=�
Z
�

('4− aT'2+ bT)dx; '2C1(�); (3.7)

and suitable aT ; bT ! 1. For convenience the measure �T is not normalized and, wrt. to the
notations in the introduction we have

dPT

d�T
= 1
�T(
)

:

Recall the following results of Chapter 2.

Theorem 3.1. For any aT ; bT 2R, and f :C −1/2−"(�)!R with linear growth let

VT
f(') := f(')+VT(');
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where VT is given by ( 3.7). Then the variational formula

−logE
�
e−VT

f(WT)
�
= inf
u2Ha

E

�
VT
f(WT + IT(u))+

1
2

Z
0

T

kutkL2(�)2 dt
�

(3.8)

holds for any finite T.

This is a consequence of the more general Boué�Dupuis formula.

Theorem 3.2. (BD formula) Assume F :C([0; T ]; C1(�))!R, be Borel measurable and such
that there exist p; q 2 (1;1), with 1/p+ 1/ q= 1, E[jF (W )jp]<1 and E[je−F (W )jq]<1(where
we can regard W as an element of C([0; T ]; C1(�)) by restricting to [0; T ]). Then

−logE[e−F (W )] = inf
u2Ha

E

�
F (W + I(u))+ 1

2

Z
0

T

kuskL2(�)2

�
: (3.9)

We will use several times below eq. (3.9) in order to control exponential integrability of var-
ious functionals. By a suitable choice of renormalization and a change of variables in the control
problem (3.8) we were able in Chapter 2 to control the functional in Theorem 3.1 uniformly up to
infinity.

Theorem 3.3. There exist a sequence (aT ; bT)T with aT ; bT!1 as T!1, such that

E

�
VT
f(WT + IT(u))+

1
2

Z
0

T

kutkL2(�)dt
�

= E

�
	T
f(W ; I(u))+�

Z
�

(IT(u))4+
1
2
klT(u)kH2

�
where (recall that It[(u)= �(D)It(u) by ( 3.6))

lt
T(u) :=ut+�1t6TJtWt

3+�1t6TJt(Wt
2� It[(u)) (3.10)

and the functionals 	T
f :C([0; T ]; C1(�))�C([0; T ]; C1(�))!R satisfy the following bound

j	T
f (W ; I(u))j6QT(W )+ 1

4
(kIT(u)kL44 + klT(u)kH2 )

where QT(W ) is a function of W independent of u and such that supT E[jQT(W )j]<1.

As a consequence we obtain the following corollary (cfr. Corollary 2.2 in Chapter 2)

Corollary 3.4. For f :C −1/2−"(�)!R with linear growth the bound

−C 6E�T [ef]6C;
holds, with a constant C independent of T. In particular �T is tight on C −1/2−".

3.3. Construction of the drift measure

We start now to implement the strategy discussed in the introduction: identify a translated measure
sufficiently similar to �34. Intuitively the �34 measure should give rise to a canonical process which
is a shift of the Gaussian Free Field with a drift of the form given by eq. (3.10). Indeed this drift
u should be the optimal drift in the variational formula. A small twist is given by the fact that
the relevant Gaussian Free Field entering these considerations is not the process W =W (X) but
that obtained from the shifted canonical process Xtu=Xt−

R
0

t
usds which we denote by

W u :=W (Xu)=W − I(u):

Moreover, to prevent explosion at finite time, we have to modify the drift in large scales and add
a coercive term.This will also allow later to prove some useful estimates. As a consequence, we
define the functional

�s(W ;u) :=−�JsWs
3−�1fs>T�gJs(Ws

2� Is[(u))+ JshDi−1/2(J(hDi−1/2Ws)nK); s> 0; (3.11)
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where T� > 0; n 2 N are constants which will be fixed later on and where we understand all the
Wick renormalizations to be given functions of W , i.e. polynomials in W where the constants are
determined according to the law of W under P. We look now for the solution u of the equation

u=�(W u; u)=�(W − I(u); u): (3.12)

Expanding the Wick polynomials appearing in �(W − I(u); u) we obtain the equation

us = �(W − I(u); u)
= −�Js[Ws

3−Ws
2Is(u)+ 12Ws(Is(u))2− 4(Is(u))3]

−�1fs>T�gJs[((Ws
2− 24WsIs(u)+ 12(Is(u))2))� Is[(u)]

+
X
i=0

n �
n
i

�
JshDi−1/2[J(hDi−1/2Ws)iK(−hDi−1/2Is(u))n−i]

(3.13)

for all s> 0. This is an integral equation for t 7! ut with smooth coefficients depending smoothly
on W and can be solved via standard methods. Since the coefficients are of polynomial growth the
solution could explode in finite time. Note that for any finite time the process (us)s>0 has bounded
spectral support. As a consequence we can solve the equation in L2 and as long as

R
0

t kukL22 ds is
finite we can see from the equation that sups6t kuskL22 is finite. By the existence of local solutions
we have that, for all N > 0, the stopping time

�N := inf
�
t> 0

��������Z
0

t

kuskL22 ds>N
�
;

is strictly positive P-almost surely and u exists up to the (explosion) time Texp := supN2N �N. The
following lemma will help show that P-almost surely Texp=+1 and will also be very useful below.

Lemma 3.5. Let

Auxs(W ;w) :=
X
i=0

n �
n
i

�
JshDi−1/2(J(hDi−1/2Ws)iK(hDi−1/2Is(w))n−i):

then we have

E

Z
0

t

kwskL22 ds+ sup
s6t

EkIs(w)kW−1/2;n+1
n+1 . 1+

Z
0

t

(2Ekws+ gskL22 +4Ekgs−Auxs(W ;w)kL22 )ds;

uniformly in t> 0, for any pair of adapted processes w; g 2L2(P;H) such that

E

Z
0

t

kgs−Auxs(W ;w)kL22 ds<1:

Proof. Take �n= inf ft > 0:
R
0

t kwskL22 ds>N g. By Ito's formula we haveZ
0

t^�NZ
�

Auxs(W ;w)wsds=Auxt^�N(W ;w)+martingale

where

Auxt(W ;w) :=
X
i=0

n
1

n+1− i

�
n
i

�Z
�

(J(hDi−1/2Wt)iK(hDi−1/2It(w))n+1−i):

Integrating over the probability space and using Cauchy�Schwarz inequality, we obtain

d
dt

E

�Z
0

t^�N
kwskL22 ds+4Auxt^�N(W ;w)

�
= E

�Z
�

1ft6�Ng(wt
2+4Auxt(W ;w)wt)

�
6 E

�
1ft6�Ng

�
2kwt+ gtkL22 +4

Z
�

(Auxt(W ;w)− gt)wt−kwtkL22
��

6 2E1ft6�Ngkwt+ gtkL22 +4E1ft6�Ngkgt−Auxt(W ;w)kL22 :
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where gt is an arbitrary function. By Lemma 3.11 below, we have constants c; C and a random
variable QT(W ) such that

sup
t2R

sup
N2N

E[jQt^�N(W )j]<1;
and for any stopping time �

c

Z
0

�

kwskL22 ds+ ckI�(w)kW−1/2;n+1
n+1 −Q�(W )6

Z
0

�

kwskL22 ds+Aux�(W ;w)

6CkI�(w)kW−1/2;n+1
n+1 +C

Z
0

�

kwskL22 ds+Q�(W ):

As a consequence, we deduce

E

Z
0

t

1fs6�NgkwskL22 ds+EkI�N(w)kW−1/2;n+1
n+1

. 1+
Z
0

t

(2E1fs6�Ngkws+ gskL22 +41fs6�NgEkgs−Auxs(W ;w)kL22 )ds:

6 1+
Z
0

t

(2Ekws+ gskL22 +4Ekgs−Auxs(W ;w)kL22 )ds:

And we can conclude by sending N!1 and using Fatou's Lemma. �

In particular, taking w=−1t6�Nu and g=−w, we have

E

Z
0

t

k1s6�NuskL22 ds+ sup
s6t

EkIs(1�6�Nu)kW−1/2;n+1
n+1 . 1+

Z
0

t

E(1s6�Nkus−Auxs(W ;−u)kL22 )ds;

for all t6T , where, using (3.13),

us−Auxs(W ;−u) = −�Js[Ws
3−Ws

2Is(u)+ 12Ws(Is(u))2− 4(Is(u))3]
−�1fs>T�gJs[((Ws

2− 24WsIs(u)+ 12(Is(u))2))� Is[(u)]:
(3.14)

Then, for any s6T we have

E(1s6�Nkus−Auxs(W ;−u)kL22 )6CT +EkIs(1s6�Nu)kW−1/2;n+1
n+1 ;

provided n is chosen sufficiently large. Using Gronwall's inequality this gives E
R
0

T k1s6�NuskL22 ds.
CT , and we can let N!1 to obtain

E

Z
0

T

kuskL22 ds.CT

which implies Texp=+1. In addition and by construction, the process utN := 1ft6�Ngut satisfies
Novikov's condition, so it is in Hc and Girsanov's transformation allows us to define the probability
measure QuN on C(R+;C

−1/2−"(�)) given by

dQuN := e
R
0
1
us
NdXs−1

2

R
0
1kusNkL2(�)

2 dsdP;

under which Xt
uN = Xt −

R
0

t
us
Nds is a cylindrical Brownian motion. Moreover, under QuN the

process (Wt
uN :=

R
0

t
JsdXsu

N

)t>0 has the same law as (Wt)t>0 under P. We observe also that
Ws

uN=Wsu for 06 s6 �N and that u satisfies the equation

us=−�JsWs
u;3−�1fs>T�gJs(Ws

u;2� It[(u))+JshDi−1/2(J(hDi−1/2Wsu)nK); s2 [0; �N]; (3.15)

where we introduced the notations Ws
u;3 := 4J(Wsu)3K and Ws

u;2 := 12J(Wsu)2K. Note that here the
Wick powers are still taken to be given functions of W , i.e we are still taking the Wick ordering
with respect to the law of W under P (or, equivalently, the law of W uN under QuN).
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If we think of the terms containing W u as given (that is, we ignore their dependence on u),
eq. (3.15) is a linear integral equation in u which can be estimated via Gronwall-type arguments.
In order to do so, let us denote by U :H 7! û the solution map of the equation

û=�(H; û): (3.16)

This last equation is linear and therefore has nice global solutions (let's say in C(R+; L
2)) and by

uniqueness and eq. (3.15) we have ut=Ut(W u) for t2 [0; Texp). From this perspective the residual
dependence on u will not play any role since under the shifted measure the law of the process W u

does not depend on u. By standard paraproduct estimates (see Appendix A) we have

kIt(u)kL1 . H~t+
Z
0

t

1fs>T�gkJs2(Ws
u;2� Is[(u))kL1ds

. H~t+T�−"
Z
0

t

hsi−3/2kWs
u;2kC −1−"kIs[(u)kL1ds;

where we have crucially exploited the presence of the cutoff 1fs>T�g to introduce the small factor
T�−" and we have employed the notation

H~t :=
Z
0

t

[kJs2Ws
u;3kL1+ kJshDi−1/2(J(hDi−1/2Wsu)nK)kL1]ds

.
Z
0

t 1
hsi1/2−"

kJsWs
u;3kC −1/2−"ds+

Z
0

t 1
hsi3/2

kJ(hDi−1/2Wsu)nKkH−1/2ds:

By Gronwall's lemma,

sup
t6�N

kIt(u)kL1 . H~�N exp
�
CT�−"

Z
0

�N

kWs
u;2kC −1−"

ds
hsi1+"

�
: (3.17)

Under QuN, the terms in H~�N are in all the Lp spaces by hypercontractivity and moreover for any
p> 1 one can choose T� large enough so that also the exponential term is in Lp. Using eq. (3.15)
it is then not difficult to show that E

Qu
N1[kuN2kH−1/2−"

p ] <1 for any p > 1 (again provided we

take T� large enough depending on p) as long as N1>N2. By the spectral properties of J and the
equation for u, the process t 7!1ft6T gut is spectrally supported in a ball of radius T , so we get in
particular that

E
Qu

N1

�Z
0

�N2^T
kuskL22 ds

�
.T 1+";

uniformly for any choice of N1>N2> 0.

Lemma 3.6. The family (QuN)N weakly converges to a limit Qu on C(R+;C
−3/2−"). Under Qu

it holds Texp=1 almost surely and LawQu(Xu)=LawP(X). Moreover for any finite T

dQujFT

dPjFT

= exp
�Z

0

T

usdXs−
1
2

Z
0

T

kuskL22 ds
�
:

Proof. Consider the filtration (GN = F�N)N and observe that (QuN jGN)N is a consistent family
of inner regular probability distributions and therefore there exists a unique extension Qu to
G1=_NGN. Next observe that fTexp<1g=

S
T2N fTexp<T g�

S
T 2N

T
N2N f�N<T g and that

for any N;T <1, we have

EQu

�Z
0

�N^T
kuskL22 ds

�
=E

QuN

�Z
0

�N^T
kuskL22 ds

�
.T 1+":

On the event f�N 6T g we have Z
0

�N^T
kuskL22 ds=N;
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and therefore we also have Qu(f�N 6 T g)6CT 1+"N−1 which in turn implies Qu(Texp< T ) = 0.
This proves that Texp=+1 under Qu, almost surely. As a consequence we can extend Qu to all
of F =_TFT since for any A2FT we can set

Qu(A)=Qu(A\fTexp=+1g)= lim
N

Qu(A\fTexp=+1; �N >T g)= lim
N

QuN(A\f�N>T g):

If A2FT then by monotone convergence

EQu[1A(Xu)] = lim
N!1

EQu[1A\fT6�Ng(X
u)]= lim

N!1
E

QuN[1A\fT6�Ng(X
uN)]

= lim
N!1

EP[1A\fT6�Ng(X)]=EP[1A(X)]

This establishes that LawQu(Xu) = LawP(X). On the other hand if A 2 FT we have, using the
martingale property of the Girsanov density,

EQu[1A] = lim
N!1

EQu[1A\fT6�Ng] = lim
N!1

E
QuN[1A\fT6�Ng]

= lim
N!1

E
h
1A\fT6�Nge

R
0
�NusdXs− 1

2

R
0
�NkuskL2

2 ds
i

= lim
N!1

E
h
1A\fT6�Nge

R
0
T
usdXs−1

2

R
0
T kuskL2

2 ds
i
:

=E
h
1Ae

R
0
T
usdXs− 1

2

R
0
T kuskL2

2 ds
i

by monotone convergence and the fact that Texp=1 P-almost surely. Therefore

dQujFT

dPjFT

= e
R
0
T
usdXs− 1

2

R
0
T kuskL2

2 ds
;

as claimed. �

The following lemma will also be useful in the sequel and it is a consequence of the above
discussion:

Lemma 3.7. For any p> 1 there exists a suitable choice of T� such that

EQu

�
sup
t>0

kIt(u)kL1
p
�
<1:

Proof. This follows from the bound (3.17), after choosing T� large enough. �

3.3.1. Proof of absolute continuity
In this section we prove that the measure �T is absolutely continuous with respect to the measure
Qu we constructed in Lemma 3.6. First recall that the measures �T defined on 
 as

d�T
dP

= e−VT(WT)

can be described, using Lemma 3.6, as a perturbation of Qu with density DT given by

DT :=
d�T
dQu

��������
FT

= d�T
dP

��������
FT

dP
dQu

��������
FT

= e−VT(WT)−
R
0
T
udX+

1
2

R
0
T kutkL2

2 dt
;

at least on FT .

Lemma 3.8. There exists a p> 1, such that for any K> 0,

sup
T

EQu

�
jDT jp1�kW1kC−1/2−"

6K	�<1:
in particular, the family (DT)T is uniformly integrable under Qu.
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Proof. The proof of the first claim is given in Section 3.3.2 below. For the second claim fix "> 0.
Our aim is to show that there there exists � > 0 such that Qu(A)<� implies

R
A
DTdQu<". From

corollary 3.4 for any "> 0 there exists a K> 0 such that

"/2>�T(fkW1kC −1/2−">Kg)=
Z
�
kW1kC−1/2−"

>K	DTdQu:

Then for any A2F such that Qu(A)(p−1)/p<"/
(
2supTEQu

�
jDT jp1�kW1kC−1/2−"

6K	��Z
A

DTdQu

=
Z
A\

�
kW1k

C−1/2−"
>K	DTdQu+

Z
A\

�
kW1k

C−1/2−"
6K	DTdQu

6 "/2+ sup
T

EQu

�
jDT jp1�kW1kC−1/2−"

6K	�Qu(A)(p−1)/p

6 "

�

Corollary 3.9. The family of measures (�T)T>0 is sequentially compact w.r.t. strong convergence
on (
;F ). Furthermore any accumulation point is absolutely continuous with respect to Qu.

Proof. We choose a sub-sequence (not relabeled) such that DT!D1 weakly in L1(Qu), for some
D12L1(Qu). It always exists by uniform integrability. We now claim that for any A2F

lim
T!1

�T(A)=
Z
A

D1dQu:

It is enough to check this for A 2FS for any S 2R+ since these generate F . But there we have
for T >S,

�T(A)=
Z
A

DTdQu!
Z
A

D1dQu

by weak L1 convergence. �

Recall that the �34 measure can be defined as a weak limit of the measures �T on C −1/2−" given
by Z

f (')�T(d')=
Z
f(')e−VT(')#T(d')=EP[f(WT)e−VT(WT)]

where #T is the gaussian measure with covariance �T2 (D)hDi−2. From this together with the above
considerations we see that any accumulation point �1 of �T satisfies

�~1(A)=EQu[1A(W1)D1] (3.18)

for some D12L1(Qu).

3.3.2. Lp bounds

Now we will prove local Lp-bounds on the density DT . In the sequel we will denote W~ =W u, with
u satisfying (3.13), namely u= U(W~ ). Before we proceed let us study how the functional U(W~ )
behaves under shifts of W~ , since later we will want to apply the Boué�Dupuis formula and this
kind of behavior will be crucial. Let w 2L2([0;1)��) and denote

uw :=U(W~ + I(w)) and hw :=U(W~ + I(w))+w=uw+w:

The process hw satisfies

hw−w=uw=�(W~ + I(w); uw):
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More explicitly, for all s> 0 we have

hs
w−ws = −4�JsJW~s3K− 12�JsJW~s2KIs(w)− 12�JsW~s(Is(w))2− 4�Js(Is(w))3

−12�1fs>T�gJs(JW~s2K� Is[(uw))− 24�1fs>T�g(Js(W~sIs(w)� Is[(uw)))
−12�1fs>T�gJs((Is(w))2� Is[(uw))

+
X
i=0

n �
n
i

�
JsJ(hDi−1/2W~s)iK(hDi−1/2Is(w))n−i:

Decomposing

JW~s2KIs(w)= JW~s2K� �sIs(w)+ JW~s2K� (1− �s)Is(w)+ JW~s2K � Is(w)+ JW~s2K� Is(w);

we can write

uw=U(W~ + I(w))=−4�JsJW~s3K− 12�Js(JW~s2K� Is[(hw))+ rsw; (3.19)

with

rs
w = −12�JsJW~s2K� (1− �s)Is(w)− 12�Js(JW~s2K � Is(w))− 12�JsJW~s2K� Is(w)

−12�JsW~s(Is(w))2− 4�Js(Is(w))3− 24�1fs>T�g(Js(W~sIs(w)� �sIs[(uw)))
−12�1fs>T�gJs((Is(w))2� Is[(uw))+ 12�1fs<T�gJs(JW~s2K� Is[(uw))

+
X
i=0

n �
n
i

�
JshDi−1/2[J(hDi−1/2Ws)iK(hDi−1/2Is(w))n−i]:

(3.20)

The first two terms in (3.19) will be used for renormalization while the remainder rw contains
terms of higher regularity which will have to be estimated in the sequel.

Proof of Lemma 3.8. Observe that

1�kW1kC−1/2−"
6K	.K;n exp(−kW1kC −1/2−"

n )= exp(−kW~1+ I1(U(W~ ))kC−1/2−"
n )

and

jDT jp= e
−p
h
VT(W~T+I(U(W~ )))+

R
0
T
U(W~ )dX~+

1
2

R
0
T kUt(W~ )kL2

2 dt
i
:

Combining these two facts we have

EQu

�
jDT jp1�kW k

C−1/2−"
6K	�

.K;nEQu

�
exp
�
−p
�
VT(W~T + IT(U(W~ )))+

Z
0

T

Ut(W~ )dXte + 1
2

Z
0

T

kUt(W~ )kL22 dt
�

−kW~1+ I1(U(W~ ))kC−1/2−"
n

��
=E
�
exp
�
−p
�
VT(WT + IT(U(W )))+

Z
0

T

Ut(W )dXt+
1
2

Z
0

T

kUt(W )kL22 dt
�

−kW1+ I1(U(W ))kC−1/2−"
n

��
:

The Boué�Dupuis formula (3.9) provides the variational bound

−logEQu

�
jDT jp1�kW k

C−1/2−"
6K	�

& inf
w2Ha

E

�
p

�
VT(WT + IT(hw))+

1
2

Z
0

T

khwkL22 dt
�

+1− p
2

Z
0

T

kwtkL22 dt+ kW1+ I1(hw)kC−1/2−"
n + 1

2

Z
T

1
kwtkL22 dt

�
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where we have set hw=w+U(W + I(w)) as above. Recall now that from Theorem 3.3 there exists
a constant C, independent of T , such that for each hw,

E

�
p

�
VT(WT + IT(hw))+

1
2

Z
0

T

khwkL22 dt
��
>−C+ 1

4
EP

�
�kIT(hw)kL44 +

Z
0

T

klT(hw)kL22
�

where

lt
T(hw)=htw+�1t6TJtWt

3+�1t6TJt(Wt
2� It[(hw)):

Using eq. (3.19) we compute

1t6T ltT(hw) = 1t6T htw+�1t6TJtWt
3+�1t6TJt(Wt

2� It[(hw))
= 1t6T(utw+wt)+�1t6TJtWt

3+�1t6TJt(Wt
2� It[(hw))

= 1t6T(rtw+wt):

At this point we need a lower bound for

E

�
1
4

�
�kIT(hw)kL44 +

Z
0

T

krtw+wtkL22 dt
�
+ 1− p

2

Z
0

T

kwtkL22 dt

+kW1+ I1(hw)kC −1/2−"
n + 1

2

Z
T

1
kwtkL22 dt

�
−C:

Given that we need to take p > 1, estimating this expression presents a difficulty in the fact that
the term

R
0

T kwtkL22 dt appears with a negative coefficient. Note that this term cannot easily be

controlled via
R
0

T krtw+wtkL22 dt since the contribution rw, see eq. (3.20), contains factors which are
homogeneous in w of order up to 3. This is the reason we had to localize the estimate, introduce
the �good� term kW1 + I1(hw)kC −1/2−"

n , and introduce the term JshDi−1/2(J(hDi−1/2Ws)nK) in
(3.11) which will help us to control the growth of rw. Indeed in Lemma 3.10 below, a Gronwall
argument will allow us to show that

R
0

T kwtkL22 dt can be bounded by a combination of the other
�good� terms as

E

�Z
0

T

kwkL22 dt
�
.E

�
kIT[ (h)kL44 + kIT[ (h)kC −1/2−"

n +
Z
0

T

kwt+ rtwkL22 dt+1
�
:

This implies that for 1< p� 2,

−logEQu

�
jDT jp1�kW k

C−1/2−"
6K	�

> inf
w2Ha

E

�
1
4

�
�kIT(hw)kL44 +

Z
0

T

kltT(hw)kL22 dt
�

+(1− p)C
�
kIT[ (hw)kL44 + kIT[ (hw)kC −1/2−"

n +
Z
0

T

kltT(hw)kL22 dt
�

+kW1+ I1(hw)kC −1/2−"
n

�
−C

>−C

which gives the claim. Note that here we used the bound

EkI1(hw)kC −1/2−"
n .EkW1kC−1/2−"

n +EkW1+ I1(hw)kC−1/2−"
n

.C +EkW1+ I1(hw)kC −1/2−"
n

as well as the fact that kIt[(hw)kC −1/2−". kI1(hw)kC −1/2−" to conclude. �

The following lemmas complete the proof.

Lemma 3.10. For n2N odd and large enough

E

Z
0

T

kwskL22 ds.E

Z
0

T

kws+ rswk2ds+EkIT[ (hw)kC −1/2−"
n+1 + kIT[ (hw)kL44 +1:
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Proof. Let us recall the notation

Auxs(W ;w) :=
X
i=0

n �
n
i

�
JshDi−1/2(J(hDi−1/2Ws)iK(hDi−1/2Is(w))n−i):

Write rsw= r~sw+Auxs(W ;w) and observe that by Lemma 3.5 we with g= rw we have

E

Z
0

t

kwskL22 ds+ sup
s6t

EkIs(w)kW−1/2;n+1
n+1 . 1+

Z
0

t

(2Ekws+ rskL22 +4Ekr~swkL22 )ds;

Now by Lemma 3.12 below

hti1+"kr~twkL22 .
Z
0

t

kwskL22 ds+ kIt(w)kW−1/2;n+1
n+1 + kIt[(hw)kC −1/2−"

n+1 + kIt[(hw)kL44 +Qt(W )

for a random variable Qt(W ) such that supt2RE[Qt(W )]<1. Now Gronwalls inequality allows
us to conclude. �

Lemma 3.11. There exists constants c;C and a random variable QT(W ) such that for any stopping
time �

sup
T

E[jQ�^T(W )j]<1;
and

−Q�(W )+ c
Z
0

�

kwskL22 ds+ ckI�(w)kW−1/2;n+1
n+1

6
Z
0

�

kwskL22 ds+Aux�(W ;w)

6 CkI�(w)kW−1/2;n+1
n+1 +C

Z
0

�

kwskL22 ds+Q�(W )

Proof. We recall that

Aux�(W ;w) =
X
i=0

n
1

n+1− i

�
n
i

�Z
�

(J(hDi−1/2W�)iK(hDi−1/2I�(w))n+1−i)

=
X
i=1

n
1

n+1− i

�
n
i

�Z
�

(J(hDi−1/2W�)iK(hDi−1/2I�(w))n+1−i)

+ 1
n+1

kI�(w)kW−1/2;n+1
n+1

and since E[supT<1 kJ(hDi−1/2WT)iKkC−"
p ] < 1 for any p < 1 and any " > 0 it is enough to

bound k(hDi−1/2I�(w))n+1−ikB1;1"
q for some q > 1 by the terms kI�(w)kW−1/2;n+1

n+1 and kI�(w)kH1
2 .R

0

� kwskL22 ds. By interpolation we can estimate, for i> 1,

k(hDi−1/2I�(w))n+1−ikB1;1" . khDi−1/2I�(w)kBn;1"
n +C

. kI�(w)kW−1/2;n+1

n− 1
(n−1) kI�(w)kH1

1
n−1 +C

�
let "= 1

n(n− 1)

�
Choosing q=n/

�
n− 1

(n− 1)

�
> 1, we have�

kI�(w)kW−1/2;n+1

n− 1
(n−1) kI�(w)kH1

1
n−1

�q
= kI�(w)kW−1/2;n+1

n kI�(w)kH1

n

(n−1)n−1:

Now for n large enough n

(n− 1)n− 1 6
2

n+1
and using Young's inequality we can estimate

kI�(w)kW−1/2;n+1
n kI�(w)kH1

n

(n−1)n−1 . kI�(w)kW−1/2;n+1
n

�
kI�(w)kH1

2
n+1 +1

�
. kI�(w)kW−1/2;n+1

n+1 + kI�(w)kH1
2 +1
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�

Lemma 3.12. Let

r~sw = −12�JsJWs2K� (1− �s)Is(w)+ 12�Js(JWs2K � Is(w))+ 12�JsJWs2K� Is(w)
−12�JsWs(Is(w))2− 4�Js(Is(w))3− 24�(Js(WsIs(w)� Is[(uw)))
−12�Js((Is(w))2� Is[(uw))+�1fs<T�gJs(Ws

2� Is[(uw)):

Setting hw=u+w, there exists a random variable Qt(W ) such that suptE[jQt(W )j]<1 and

hti1+"kr~twk2.
Z
0

t

kwskL22 ds+ kIt(w)kW−1/2;n+1
n+1 + kIt[(hw)kC −1/2−"

n+1 + kIt[(hw)kL44 +Qt(W ):

Proof. Note that

k1fs<T�gJs(Ws
2� Is[(uw))kL22 .T�

1
hsi2kWs

2kC−1−"
2 kIs[(uw)kL42

. 1
hsi2(kWs

2kC −1−"
4 + kIs[(uw)kL44 ):

Moreover hw=uw+w implies

kIt[(uw)kC−1/2−"
n+1 . kIt[(w)kC −1/2−"

n+1 + kIt[(hw)kC −1/2−"
n+1 ;

and kIt[(uw)kL44 . kIt[(hw)kL44 + kIt[(w)kL44 . From Lemma 3.19 we get

kIt[(w)kL44 .C +
Z
0

t

kwskL22 ds+ kIt(w)kW−1/2;n+1
n+1 :

The estimation for the other terms is easy but technical and postponed until Section 3.5. �

3.4. Singularity of �3
4 w.r.t. the free field

The goal of this section is to prove that the �34 measure is singular with respect to the Gaussian free
field. For this we have to find a set S�C −1/2−"(�) such that P(W12S)=1 and Qu(W12S)=0.
Together with (3.18), this will imply singularity. We claim that setting

S :=

(
f 2C −1/2−"(�): 1

Tn
1/2+�

Z
�

J(�Tnf)4K! 0

)
for some suitable sub-sequence Tn and a small � > 0, does the job. Here

J(�Tf)4K=(�Tf)4− 6E[(�TW1(0))2](�Tf)2+3E[(�TW1(0))2]2

denotes the Wick ordering with respect to the Gaussian free field. Let us prove first that indeed
P(W12S)= 1 for some Tn. For later use we define

Wt
�T ;3=4(�TWt)3− 12E[(�TWt(0))2](�TWt)

and

Wt
�T ;2= 12((�TWt)2−E[(�TWt(0))2]):

Lemma 3.13. For any � > 0

lim
T!1

E

��
1

T (1+�)/2

Z
�

J(�TW1)4K
�
2
�
=0:

Proof. Wick products correspond to iterated Ito integrals. Introducing the notation

dwt
�T = �TJtdXt;
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we can verify by Ito formula thatZ
�

J�TW14 K=
Z
0

1Z
�

Wt
�T ;3dwt

�T =
Z
0

1Z
�

�TJtWt
�T ;3dXt:

Since �TJt=0 for t>T , Ito isometry gives

E

��������Z
0

1Z
�

�TJtWt
�T ;3dXt

��������2=E

Z
0

TZ
�

(�TJtWt
�T ;3)2dt:

Then, again by Ito formula the expectation on the r.h.s. can be estimated as

E

�Z
�

(Wt
�T ;3)2

�
= 4E

24���������� X
k1;k2;k3

Z
0

tZ
0

s1
Z
0

s2

dws1
�T(k1)dws2

�T(k2)dws3
�T(k3)

����������
2
35

= 24E

24 X
k1;k2;k3

Z
0

tZ
0

s1
Z
0

s2�T
2 (k1)�s1

2 (k1)
hk1i2

�T
2 (k2)�s2

2 (k2)
hk2i2

�T
2 (k3)�s3

2 (k3)
hk3i2

ds1ds2ds3

35
6 24E

24 X
k1;k2;k3

Z
0

tZ
0

tZ
0

t�s1
2 (k1)
hk1i2

�s2
2 (k2)
hk2i2

�s3
2 (k3)
hk3i2

ds1ds2ds3

35
. t3

Now recall that kJtf kL2(�). hti−3/2kf kL2(�) to conclude:

E

�
1

T 1+�

Z
0

TZ
�

(�TJtWt
�T ;3)2dt

�
6 1
T 1+�

Z
0

T 1
t3
E[k(�TWt

�T ;3)kL2(�)2 ]dt! 0 �

The lemma implies that 1

T (1+�)/2

R
�
J(�TW1)4K! 0 in L2(P). So there exists a sub-sequence Tn

such that 1

Tn
(1+�)/2

R
�
J(�TnW1)4K! 0 almost surely.

The next step of the proof is to check that Qu(W12S)=0. More concretely we will show that
for a sub-sequence of Tn (not relabeled)

1
Tn
1−�

Z
�

J(�TnW1)4K!−1;
Qu almost surely. Observe thatZ

�

J(�TW1)4K =
Z
0

1Z
�

�TJtWt
�T ;3dXt

=
Z
0

1Z
�

�TJtWt
�T ;3dXtu+

Z
0

1Z
�

�TJtWt
�T ;3utdt

=
Z
0

1Z
�

�TJtWt
�T ;3dXtu−�

Z
0

1Z
�

(�TJtWt
�T ;3)JtWt

u;3dt

−�
Z
T�

1Z
�

(�TJtWt
�T ;3)Jt(Wt

u;2� It[(u))dt

+
Z
0

1Z
�

(�TJtWt
�T ;3)JthDi−1/2J(hDi−1/2Wt

u)nKdt:

We expect the term Z
0

1Z
�

(�TJtWt
�T ;3)JtWt

u;3dt

to go to infinity faster than T 1−�,Qu-almost surely. To actually prove it, we start by a computation
in average.

Lemma 3.14. It holds

lim
T!1

1
T 1−�

E

�Z
0

1Z
�

(�TJtWt
�T ;3)JtWt

3dt
�
=1:
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Proof. Recall that dwt
�T = �TJtdXt. With a slight abuse of notation we can writeZ

0

1Z
�

(�TJtWt
�T ;3)JtWt

3dt

= 16
Z
0

1X
k

�T(k)�t2(k)
hki2

 X
k1+k2+k3=k

Z
0

tZ
0

s1
Z
0

s2

dws1
�T(k1)dws2

�T(k2)dws3
�T(k3)

�
X

k1+k2+k3=k

Z
0

tZ
0

s1
Z
0

s2

dws1(k1)dws2(k2)dws3(k3)

!
dt

and by Ito isometry

E

" X
k1+k2+k3=k

Z
0

tZ
0

s1
Z
0

s2

dws1
�T(k1)dws2

�T(k2)dws3
�T(k3)

�
X

k1+k2+k3=k

Z
0

tZ
0

s1
Z
0

s2

dws1(k1)dws2(k2)dws3(k3)

#
= 6

X
k1+k2+k3=k

Z
0

tZ
0

s1
Z
0

s2�T(k1)�s1
2 (k1)

hk1i2
�T(k2)�s2

2 (k2)
hk2i2

�T(k3)�s3
2 (k3)

hk3i2
ds1ds2ds3

For T large enough and since �2 and � are positive, we haveZ
0

1X
k

�T(k)�t2(k)
hki2

X
k1+k2+k3=k

Z
0

tZ
0

s1
Z
0

s2�T(k1)�s1
2 (k1)

hk1i2
�T(k2)�s2

2 (k2)
hk2i2

�T(k3)�s3
2 (k3)

hk3i2
ds1ds2ds3dt

>
Z
T /8

T /2X
k

�t
2(k)
hki2

X
k1+k2+k3=k

Z
0

T /8Z
0

s1
Z
0

s2�s1
2 (k1)
hk1i2

�s2
2 (k2)
hk2i2

�s3
2 (k3)
hk3i2

ds1ds2ds3dt

Introduce the notation Z+
3 =fn2Z3:n=(n1;n2;n3)withni>0g. After restricting the sum to (Z+3 )3

we get the bound

>
Z
T /8

T/2X
k

�t
2(k)
hki2

X
k1;k2;k32Z+3
k1+k2+k3=k

Z
3T /32

T /8 Z
3T /32

s1
Z
3T /32

s2 �s1
2 (k1)
hk1i2

�s2
2 (k2)
hk2i2

�s3
2 (k3)
hk3i2

ds1ds2ds3dt

& 1
T 2

X
k2Z+3

(�T /2(k)− �T /8(k))
X

k1;k2;k32Z+3
k1+k2+k3=k

Z
3T /32

T /8 Z
3T/32

s1
Z
3T /32

s2 �s1
2 (k1)
hk1i2

�s2
2 (k2)
hk2i2

�s3
2 (k3)
hk3i2

ds1ds2ds3

Now, for large enough T if k1+ k2+ k3= k and hkii6T /8 then hki6T /2� 0.9. Furthermore if
T large enough and k1; k2; k32Z+

3 and k1+ k2+ k3= k, while hkii> (3T /32)� 0.9 (recall that if
hkii< (3T /32)� 0.9 and s> 3T /32 then �s(k1)= 0) we have hki>T /8. So for any k for which
the integral is nonzero we have �T /2(k)− �T /8(k) = 1 (recall that �= 1 on B(0; 9/10) and �= 0
outside of B(0; 1)). This implies

1
T 2

X
k2Z+3

(�T/2(k)− �T /8(k))
X

k1;k2;k32Z+3
k1+k2+k3=k

Z
3T /32

T /8 Z
3T /32

s1
Z
3T /32

s2 �s1
2 (k1)
hk1i2

�s2
2 (k2)
hk2i2

�s3
2 (k3)
hk3i2

ds1ds2ds3

= 1
T 2

X
k1;k2;k32Z+3

Z
3T /32

T /8 Z
3T/32

s1
Z
3T /32

s2 �s1
2 (k1)
hk1i2

�s2
2 (k2)
hk2i2

�s3
2 (k3)
hk3i2

ds1ds2ds3

& T

�

Next we upgrade this bound to almost sure divergence.
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Lemma 3.15. There exists a �0>0 such that for any �0> � >0, ,there exists a sequence (Tn)n such
that P− almost surely

1
Tn
1−�

Z
0

1Z
�

(�TnJtWt
�Tn;3)JtWt

3dt!1:

Proof. Define

GT :=
1

T 1−�

Z
0

1Z
�

(�TJtWt
�T ;3)JtWt

3dt+ sup
t<1

kWtkC−1/2−"
K :

We will show that e−GT! 0 in L1(P), which implies that there exists a sub-sequence Tn such that
e−GTn! 0 almost surely. From this our statement follows. By the Boué�Dupuis formula

−logE[e−GT ] = inf
v2Ha

E

�
1

T 1−�
16
Z
0

1Z
�

(�TJtJ�T((Wt+ It(v))3)K)JtJ(Wt+ It(v))3Kdt+

+ sup
t<1

kWt+ It(v)kC −1/2−"
K + 1

2

Z
0

1
kvtkL22 dt

�
= inf

v2Ha

E

�
1

T 1−�

Z
0

1Z
�

(�TJtWt
�T ;3)JtWt

3dt+

+ 1
T 1−�

X
(i;j)2f0;1;2;3g2n(0;0)

Z
0

TZ
�

At
iBt

jdt

+ sup
t<1

kWt+ It(v)kC −1/2−"
K + 1

2

Z
0

1
kvtkL22 dt

�
> inf

v2Ha

E

�
1

T 1−�

Z
0

1Z
�

(�TJtWt
�T ;3)JtWt

3dt

+ 1
T 1−�

X
(i;j)2f0;1;2;3g2n(0;0)

Z
0

TZ
�

At
iBt

jdt

+1
2
sup
t<1

kIt(v)kC−1/2−"
K −C sup

t<1
kWtkC −1/2−"

K + 1
2

Z
0

1
kvtkL22 dt

�
where where have used that �TJt=0 for t>T and introduced the notations, for 06 i6 3,

At
i := 4

�3
i

�
Jt�T(J(�TWt)3−iK(�TIt(v))i);

and

Bt
i := 4

�3
i

�
Jt(JWt

3−iK(It (v))i):

Our aim now to prove that the last three terms are bounded below uniformly as T!1 (while we
already know that the first one diverges). For i2f1; 2; 3g

kAtikL22 + kBtikL22 . hti−1+�(kIt(u)kC −1/2−"
K + kIt(u)kH1

2 +Qt(W ))

by Lemmas 3.21 and 3.23. Here Qt(W ) is a random variable only depending on W such that
suptE[jQt(W )jp]<1 for any p<1. Then

1
T 1−�

X
(i;j)2f0;1;2;3g2n(0;0)

Z
0

TZ
�

jAtiBt
j jdt

6 1
T 1−�

X
(i;j)2f1;2;3g2

Z
0

T

kAtikL22 + kBt
jkL22 dt

+ 1
T 1−�

X
i2f1;2;3g

Z
0

T

kAt0kL2 kBtikL2dt+
1

T 1−�

X
i2f1;2;3g

Z
0

T

kAtikL2 kBt0kL2dt:

3.4 Singularity of �3
4 w.r.t. the free field 89



Now for the first term we obtain

E

24 1
T 1−�

X
(i;j)2f1;2;3g2

Z
0

T

kAtikL22 + kBt
jkL22 dt

35
= E

24 1
T 1−�

X
(i;j)2f1;2;3g2

Z
0

T

hti−1+�(kIt(v)kC −1/2−"
K + kIt(v)kH1

2 +Qt(W ))dt

35
= C

T 1−2�
E

�
sup
t

(kIt(v)kC −1/2−"
K + kIt(v)kH1

2 )
�
+ C

T 1−2�
:

For the second term we use that kAt0kL26Qt(W ) so

1
T 1−�

E

�Z
0

T

kAt0kL2 kBtikL2dt
�

6 1
T 1−�

E

�Z
0

T

hti−1/2kAt0kL22 dt+
Z
0

T

hti1/2kBtikL22 dt
�

. 1
T 1−�

E

�Z
0

T

hti−1/2kAt0kL22 dt
�

+ 1
T 1−�

E

�Z
0

T

hti−1/2+�(kIt(v)kC −1/2−"
K + kIt(v)kH1

2 +Qt(W ))dt
�

. C

T 1/2−2�
E

�
sup
t

(kIt(v)kC −1/2−"
K + kIt(v)kH1

2 )
�
+ C

T 1/2−2�

Since supt kIt(v)kH1
2 .

R
0

1kvtkL22 dt in total we obtain for T large enough. The third term is
estimated analogously.

−logE[e−GT ]

> inf
v2Ha

E

�
1

T 1−�

Z
0

1Z
�

(�TJtWt
�T ;3)JtWt

3dt+
�
1
2
− C

T 1/2−2�

�
sup
t<1

kIt(v)kC −1/2−"
K

−C sup
t<1

kWtkC −1/2−"
K +

�
1
2
− C

T 1/2−2�

�Z
0

1
kvtkL22 dt−

C

T 1/2−2�

�
> E

�
1

T 1−�

Z
0

1Z
�

(�TJtWt
�T ;3)JtWt

3dt
�
−C!1

�

Next we prove an estimate which will help with the proof of the main theorem.

Lemma 3.16. We have

sup
T

EQu

�Z
0

1Z
�

1
t1+�

(�TJtWt
�T ;3)2dt

�
<1:

Furthermore, there exists a (deterministic) sub-sequence (Tn)n such that

1

Tn
1/2+�

��������Z
0

1Z
�

�TnJtWt
�Tn;3dXtu

��������! 0

Qu almost surely.

Proof. Recall that under Qu we have Wt =Wt
u + It(u) where u is defined above by (3.13) and

LawQu(W u)=LawP(W ). With this in mind we computeZ
0

TZ
�

1
t1+�

(�TJtWt
�T ;3)2dt=

X
i;j63

Z
0

TZ
�

1
t1+�

At
iAt

jdt;

where, as above,

At
i=4

�3
i

�
Jt�T(J(�TWt

u)3−iK(�TIt(u))i):
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By Lemmas 3.21 and 3.23 we have that EQu[kAtikL22 ]6C so the Cauchy�Schwartz inequality gives
the result. �

Theorem 3.17. There exists a sequence (Tn)n such that, Qu almost surely,

1
Tn
1−�

Z
�

J(�TnW1)4K!−1:

Proof. We have Z
�

J(�TW1)4K=
Z
0

1Z
�

�TJtWt
�T ;3dXt:

Now since dXt=dXtu+utdt we have

1
T 1−�

Z
0

1Z
�

�TJtWt
�T ;3dXt

= 1
T 1−�

Z
0

1Z
�

�TJtWt
�T ;3dXtu+

1
T 1−�

Z
0

1Z
�

�TJtWt
�T ;3utdt

= 1
T 1−�

Z
0

1Z
�

�TJtWt
�T ;3dXtu−

�

T 1−�

Z
0

1Z
�

�TJtWt
�T ;3JtWt

u;3dt

− �

T 1−�

Z
T�

1Z
�

�TJtWt
�T ;3Jt(Wt

u;2� It[(u))dt

+ 1
T 1−�

Z
0

1Z
�

�TJtWt
�T ;3JthDi−1/2J(hDi−1/2Wt

u)nKdt:

The first term goes to 0 Qu-almost surely by Lemma 3.16. To analyze the third term we estimate

1
T 1−�

Z
T�

1Z
�

�TJtWt
�T ;3Jt(Wt

u;2� It[(u))dt

= 1
T 1−�

Z
T�

TZ
�

�TJtWt
�T ;3Jt(Wt

u;2� It[(u))dt

6 1
T 1−�

Z
T�

T

k�TJtWt
�T ;3kL2kJt(Wt

u;2� It[(u))kL2dt

. 1
T 1−�

Z
T�

T

t−1/2+�/2k�TJtWt
�T ;3kL2 kWt

u;2kC −1−�/2kIt(u)kL2dt

6 T−1/2−2�
�Z

T�

T

k�TJtWt
�T ;3kL22 dt

�
1/2

�T−1/2+2�
�Z

T�

T

t−1+�(kWt
u;2kC −1−�/2kIt(u)kL2)2

�
1/2

(3.21)

By the computation from Lemma 3.16 we have

EQu

�
T−1/2−2�

�Z
T�

T

k�TJtWt
�T ;3kL22 dt

�
1/2
�
! 0;

and suptEQu[(kWt
u;2kC −1−�/2kIt(u)kL2)2]<1, so (3.21) converges to 0 in L1(Qu). For the fourth

term we proceed in the same way:��������Z
0

1Z
�

�TJtWt
�T ;3JthDi−1/2J(hDi−1/2Wt

u)nKdt
��������

=
��������Z
0

TZ
�

�TJtWt
�T ;3JthDi−1/2J(hDi−1/2Wt

u)nKdt
��������

6
Z
0

T

k�TJtWt
�T ;3kL2kJthDi−1/2J(hDi−1/2Wt

u)nKkL2dt

.
Z
0

T

(k�TJtWt
�T ;3kL2)t−2+�kJ(hDi−1/2Wt

u)nKkH−�dt

6
�Z

0

T

t−2(1−�)(k�TJtWt
�T ;3kL2)2

�
1/2
�Z

0

T

t−2(1−�)kJ(hDi−1/2Wt
u)nKkH−�2

�
1/2
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which is bounded in expectation uniformly in T , so the fourth term goes to 0 in L1(Qu) as well.
It remains to analyze the second term. Again introducing the notation

At
i=4

�3
i

�
Jt�T(J(�TWt

u)3−iK(�TIt(u))i);

Wt
�T ;u;3=4J(�TWt

u)3K;
we have

1
T 1−�

Z
0

1Z
�

�TJtWt
�T ;3JtWt

u;3dt

= 1
T 1−�

Z
0

TZ
�

�TJtWt
�T ;u;3JtWt

u;3dt+
X

16i63

1
T 1−�

Z
0

TZ
�

At
iJtWt

u;3dt:

Now observe that

1
T 1−�

Z
0

TZ
�

�TJtWt
�T ;u;3JtWt

u;3dt Qu�P
1

T 1−�

Z
0

TZ
�

�TJtWt
�T ;3JtWt

3dt;

so the limsup of this is 1 almost surely. To estimate the sum we again observe that for i > 3
EQu[kAtikL22 ]. hti−1+� and by Young's inequalityZ

0

TZ
�

At
iJtWt

u;3dt 6
Z
0

TZ
�

kAtikL2kJtWt
u;3kL2dt

6
Z
0

TZ
�

hti1/3kAtikL2hti−1/3kJtWt
u;3kL2dt

6
Z
0

TZ
�

hti2/3kAtikL22 +
Z
0

TZ
�

hti−2/3kJtWt
u;3kL22 dt:

Taking expectation we obtain

1
T 1−�

E

�Z
0

TZ
�

At
iJtWt

u;3dt
�

6 1
T 1−�

E

�Z
0

TZ
�

hti2/3kAtikL22
�
+ 1
T 1−�

E

�Z
0

TZ
�

hti−2/3kJtWt
u;3kL22 dt

�
. 1

T 1−�

Z
0

TZ
�

hti−1/3+�+ 1
T 1−�

Z
0

TZ
�

hti−2/3dt! 0

We have deduced that

1
T 1−�

Z
�

J(�TW1)4K=− 1
T 1−�

Z
0

TZ
�

�TJtWt
�T ;u;3JtWt

u;3dt+RT ;

where RT! 0 in L1(Qu). We can conclude by selecting a sub-sequence (Tn)n such that

1
Tn
1−�

Z
0

Tn
Z
�

�TJtWt
�Tn;u;3JtWt

u;3dt!1

Qu-almost surely and RTn! 0, Qu-almost surely. �

3.5. Some analytic estimates

We collect in this final section various technical estimates needed to complete the proof of
Lemma 3.12.

Proposition 3.18. Let 1< p<1 and p1; p2; p10 ; p20 > 1 such that 1

p1
+ 1

p2
= 1

p1
0 +

1

p2
0 =

1

p
. Then for

every s; �> 0

khDis(fg)kLp. khDis+�f kLp2 khDi−�gkLp1+ khDis+�gkLp10 khDi
−�f k

Lp2
0:
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Proof. See [75]. �

Lemma 3.19. There exists " > 0; n 2N such that for any � > 0 there exists C�<1 for which the
following inequality holds for any �2H1(�)

k�kL4
4+"6Ck�k

W−1/2;n+1
n+1 + �k�kH1

2 +C�:

Proof. Z
�4dx 6 khDi−1/2�kL8khDi1/2�3kL8/7

6 khDi−1/2�kL8khDi1/2�kL8/3k�kL4
2

6 khDi−1/2�kL8k�kH1
1/2k�kL4

5/2

So

(k�kL44 )21/20 6 khDi−1/2�kL8
21/20k�kH1

21/40k�kL4
104/40

and applying Young's inequality with the exponents (32; 32/9; 32/22), we obtain

khDi−1/2�kL8
21/20k�kH1

21/40k�kL4
104/40 6 C�khDi−1/2�kL8

168/5+ �k�kH1
16/9+ �k�kL4

208/55

6 khDi−1/2�kL834+ �k�kH1
2 + �(k�kL44 )21/20+C�

and subtracting �(k�kL44 )21/20 on both sides of the inequality gives the result. �

Lemma 3.20. The following estimates hold with "> 0 small enough

kJt(JWt
2K� (1− �t)It(w))kL22 .

1
hti1+"

�Z
0

t

kwsk2ds+ kIt(w)kW−1/2;n+1
n + kJWt

2KkC −1−"
n

�

kJt(JWt
2K � It(w))kL22 .

1
hti1+"

�Z
0

t

kwsk2ds+ kIt(w)kW−1/2;n+1
n + kJWt

2KkC−1−"
n

�

kJtJWt
2K� It(w)kL22 .

1
hti1+"

�Z
0

t

kwsk2ds+ kIt(w)kW−1/2;n+1
n + kJWt

2KkC −1−"
n

�

Proof. We observe that since JWt
2K is spectrally supported in a ball or radius st

kJWt
2KkC −1+". hti2"kJWt

2KkC −1−" :

For the first estimate we know that (1 − �t)It(w) is supported in an annulus of radius �t,
so k(1 − �t)It(w)kL2 . hti−1+"kIt(w)kH1−" and furthermore by interpolation kIt(w)kH1−" .
kIt(w)kH1

1−"kIt(w)kL2" .kIt(w)kH1
1−"kIt(w)kL4" . By definition hti1/2Jt is a uniformly bounded Fourier

multiplier regularizing by 1, and putting everything together, by paraproduct estimates

kJt(JWt
2K� (1− �t)It(w))kL22 . hti−1hti2"hti−2+2"kJWt

2KkC −1−"
2 kIt(w)kH1−"

2

. hti−1hti2"hti−2+2"kJWt
2KkC −1−"

2 kIt(w)kH1
2−2"kIt(w)kL42"

("=2/7) . hti−3/2(kJWt
2KkC −1−"

14 + kIt(w)kH1
2 + kIt(w)kL44 )

. hti−3/2
�Z

0

t

kwk2ds+ kIt(w)kW−1/2;n+1
n + kJWt

2KkC −1−"
14

�
For the second term in addition observe that the function hti1/2Jt is spectrally supported in an
annulus of radius �t, and regularizes by 1 so again by estimates for the resonant product

kJt(JWt
2K � It(w))kL22 . hti−3kJWt

2KkC −1+2"
2 kIt(w)kH1−"

2

. hti−3hti6"kJWt
2KkC −1−"

2 kIt(w)kH1−"
2

For the third estimate again applying paraproduct estimates and the properties of J ,

kJt(JWs2K� It(w))kL22 . hti−3+4"kJWs2KkC −1−"
2 kIt(w)kH1−"

2 :
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Now, the claim follows from interpolation and Young's inequality

kJWt
2KkC−1−"

2 kIt(w)kH1−"
2

. kJWt
2KkC−1−"

2 kIt(w)kH1
2−2"kIt(w)kL42"

("=2/7) . kJWt
2KkC−1−"

14 + kIt(w)kH1
2 + kIt(w)kL44

.
�Z

0

t

kwskL22 ds+ kIt(w)kW−1/2;n+1
n + kJWt

2KkC −1−"
14

�
:

�

Lemma 3.21. Let f 2C([0;1];C −1/2−") and g2C([0;1];H1) such that ft; gt have spectral support
in a ball of radius proportional to t. There exists n2N such that the following estimates hold:

kJt(ftgt2)kL22 . hti−3/2kftkC−1/2−�
2 kgtkL44 ;

kJt(ftgt2)kL22 . hti−3/2(kftkC −1/2−�
n + kgtkH1

2 + kgtkW−1/2;n
n );

and

kJt(gt3)kL22 . hti−3/2(kgtkH1
2 + kgtkW−1/2;n

n ):

Proof. By the spectral properties of Jt,

kJt(ftgt2)kL22 . hti−3kftkL12 kgtkL44 . hti−3/2kftkC −1/2−�
2 kgtkL44 :

Applying Young's inequality with exponents
�
n

2
;

n/2

(n/2− 1)

�
with n such that 2n

(n/2− 1) 64+" where
" is chosen as in Lemma 3.19 we have

hti−3/2kftkC −1/2−�
2 kgtkL44 6 hti−3/2(kftkC −1/2−�

n + kgtkL4
4+")

6 hti−3/2(kftkC −1/2−�
n + kgtkW−1/2;n

n + kgtkH1
2 )

Now the second estimate follows from chosing n large enough (depending on �) and using Besov
embedding after taking f = g. �

Lemma 3.22. The following estimates hold

hti1+"kJs(WsIt(w)� It[(u))kL22 . kIt(w)kL44+"+ kIt[(u)kL44 + kWtkC −1/2−"
n ;

hti1+"kJs((Is(w))2� Is[(u))kL22 . kIt(w)kL44+"+ kIt[(u)kC−1/2−"
n :

Proof. For the first estimate we again use the spectral properties of W ; I ; and J and obtain by
paraproduct estimate

kJs(WtIt(w)� It[(u))kL22 . hti−3kWtkL12 kIt(w)kL42 kIt[(u)kL42

. hti−3hti1+4"kWtkC−1/2−"
2 kIt(w)kL42 kIt[(u)kL42

and the claim follows by Young's inequality. For the second

kJs((Is(w))2� Is[(u))kL22 . hti2−2"k(Is(w))kL44 kIt[(u)kC −1/2−"
2 ;

and the claim follows again by Young's inequality. �

Lemma 3.23. Let ft 2 C([0;1]; C −1/2−�) and gt 2 C([0;1]; H1) such that ft; gt have spectral
support in a ball of radius proportional to t. Then the following estimates hold

k(Jt(ftgt))kL22 . hti−1+2�kftkC−1−�
2 kgtkL22

k(Jt(ftgt))kL22 . hti−1+2�(kftkC −1−�
8 + kgtkH−14 + kgtkH1

2 )

Proof.

k(Jt(ftgt))kL22 . hti−3kftkL12 kgtkL22 . hti−1+2�kftkC −1−�
2 kgtkL22 :
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This proves the first estimate. For the second we continue

hti−1+2�kftkC −1−�
2 kgtkL22 . hti−1+2�kftkC −1−�

2 kgtkH1kgtkH−1
. hti−1+2�(kftkC −1−�

8 + kgtkH−14 + kgtkH−12 ):

�

Lemma 3.24. It holdsZ
0

TZ
�

(Jt(Wt
2� It[(w)))2.T 3�

�
sup
t

kWt
2kC−1−�
2

��
sup
t

kIt(w)kL22
�
;

and Z
0

TZ
�

(Jt(Wt
2� It[(w)))2.T 3�

�
sup
t

kIt(w)kH−14 +
Z
0

T

kwtkL22 dt+ sup
t

kWt
2kC −1−�
8

�
:

Proof. This follows in the same fashion as Lemma 3.23 . �
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Chapter 4

A Stochastic Control approach to Sine-Gordon

4.1. Introduction

In this chapter we will consider the Sine-Gordon measure formally given by

�SG(d�)=
1
Z
e−�

R
cos(�')�(d') (4.1)

where � is the Gaussian free field onR2 with massm , that is the Gaussian measure with covariance
(m2 − �)−1 and Z is a normalization factor. Again we run into small scale divergencies as in
Chapter 2 and Chapter 3, however this time we also have to deal with large scale divergencies (since
we work onR2 instead of a bounded domain). These are essentially due to the fact that realizations
of the GFF do not exhibit decay in space. As a first step we approximate with (4.1) with

�SG
T ;�(d�)= 1

ZT ;�
e−��(T )

R
�cos(�')�T(d') (4.2)

where as in the previous chapters �T will be a family of Gaussian measures on spaces of smooth
functions such that as T !1 �T ! � and � 2 Cc1(R2; [0; 1]) is a spatial cutoff while ZT ;� is a
normalization factor. Note also that we have introduced the constant �(T )!1 as T!1. This
is necessary to prevent the measure from becoming trivial in the T!1 limit, and plays the same
role as Wick ordering for �24. We then want to achieve the following goals

1. Prove that a weak limit of (4.2) exists as T!1; �! 1.

2. Characterize it via a variational formula and as a random shift of the GFF.

3. Prove that it satisfies the Osterwalder Schrader axioms

The main difficulty in implementing this program compared to Chapter 2 is the aforementioned
infrared divergence. Let us briefly sketch our strategy for dealing with this: We will study the
Laplace transform Z

e−f(�)�SG
�;T(d�)

for f(�) depending only on the value of � in a bounded region. Then the Boué-Dupuis (Theorem
2.4 above or Corollary 4.14 below) formula will give

−log
Z
e−f(�)�SG

�;T(d�)

= inf
u2Ha

E

�
f(WT + IT(u))+��(T )

Z
�cos(�WT + �IT(u))+

1
2

Z
0

T

kukL2(R2)
2

�
− inf
u2Ha

E

�
��(T )

Z
�cos(�WT + �IT(u))+

1
2

Z
0

T

kukL2(R2)
2

�
where IT(u) is a linear map behaving similarly to (m2−�)−1/2 as in Chapter 2 and Chapter 3.

Denoting by uf a minimizer of

E

�
f(WT + IT(u))+��(T )

Z
�cos(�WT + �IT(u))+

1
2

Z
0

T

kukL2(R2)
2

�
;
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provided it exists (which we will show) we end up with

−log
Z
e−f(�)�SG

�;T(d�)

= E

�
f(WT + IT(uf))+��(T )

Z
�(cos(�WT + �IT(uf))− cos(�WT + �IT(u0)))

+ 1
2

Z
0

T

kufkL2(R2)
2 − 1

2

Z
0

T

ku0kL2(R2)
2

�
and we want to control this quantity in the T!1; �! 1 limit. Since after we send �! 1 we will
have an integral over R2, we will need to have some decay of uf − u0 to be able to control the
limit. In fact we will show that uf − u decay's exponentially fast away from the support of f or
more precisely Z

0

TZ
exp(
x)jut

f(x)−ut0(x)j2dxdt <1 (4.3)

for some 
 > 0. So one could say that the main contribution of this chapter is controlling the
dependence of the minimizer on perturbations in bounded regions. A related issue is the problem
of controlling the dependence of u0 on � as �! 1 and showing that it has a unique limit, which is
needed for proving rotation invariance of the measure.

We will carry our our analysis of the Sine-Gordon model in the case �2<4�. However it is known
that the measure can be (and has been) constructed for the range �2<8�, [48, 89, 49].For �2>4�
the Sine Gordon measure becomes singular with respect to the free field, even in finite volume,
similarly to �34, as shown in Chapter 3. At the thresholds �2> 8�(1− 1/2n) n 2N the partition
function acquires more and more divergent contributions which require renormalization, however
contrary to �34 it is sufficient to subtract constant terms from the potential to make the measure
convergent, in particular no �mass renormalization� is necessary. It would be very interesting to
extend our analysis to the range �2<8� (or even any other threshold beyond 4�). Before we move
on to the main results of this chapter let us make some conventions.

Convention 4.1.

� For a2Rd we let hai := (1+ jaj2)1/2. B(x; r)�R denotes the open ball of center x2R and
radius r > 0.

� Denote with S (�) the space of Schwartz functions on � and with S 0(�) the dual space of
tempered distributions. The notation f̂ or Ff stands for the space Fourier transform of f
and we will write g(D) to denote the Fourier multiplier operator with symbol g:Rn!R,
i.e. F (g(D)f)= gFf .

� Bp;q
� = Bp;q

� (R2) denotes the Besov spaces of regularity � and integrability indices p;
q as usual. By Bp;q

� (hxi−n) we denote the weighted Besov space with weight h�i−n see
Appendix A for details . C �=C �(R2) is the Hölder�Besov space B1;1� ,W�;p=W�;p(R2)
denote the standard fractional Sobolev spaces defined by the norm kf kW s;q := khDisf kLq
and H� =W�;2. The reader is referred to Appendix A for an overview of the functional
spaces and paraproducts.

Convention 4.2. In the sequel C will be a large constant which changes from line to line and
can depend on �2, but non on �; �; T : � will be a small constant which changes from line to line.
Furthermore for �2 2 [0; �~], �~ < 4�, C will always be uniformly bounded from above, � will be
uniformly bounded above and away from 0.

Convention 4.3. Throughout the chapter we will frequently compute Gradients and Hessian of
functionals on f : L2(R2)!R. We will always interpret rf('), to be an element L2(R2) by the
Riesz representation theorem. Similarly we will always interpret Hess f(') to be an operator on
L2(R).
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Convention 4.4. We will say that family of spacial cutoffs �N 2Cc1(R2; [0; 1]) converges to 1 or
�N! 1 if for any K> 0 there exists N02N such that �N(x)= 1 for any x2B(0;K) and N >N0.
Often we will drop the index N and simply write �! 1 in this case.

Let us now state the results we will prove in this chapter.

4.1.1. Overview of the results

4.1.1.1. Descriptions of the measure

In Chapter 2 we obtained a variational description of the Laplace transform of �34 in finite volume.
The importance of this result lies in fact that �34 is not absolutely continuous with respect to the free
field and so it is hard to describe explicitly. Similarly to �24 the Sine Gordon measure for �2< 4�
on the other hand is absolutely continuous with respect to the free field in finite volume. However
this property is lost once one removes the infrared cutoff. For this reason it is still interesting to
obtain a description of the Laplace transform of the Sine Gordon measure in infinite volume. Our
first result will indeed be such a description (we adapt the notation for weighted spaces introduced
in the appendix):

Theorem 4.5. �SG
T ;� weakly converges as T!1; �! 1 to a measure �SG on S 0(R2). Furthermore

�SG satisfies

−log
Z
e−f(')�SG(d')= inf

u2Df
E

�
f(W0;1+ I0;1(u)+ I0;1(u1))+	(u)+ 1

2

Z
0

1
kutkL22 dt

�
where similarly to Chapter 2:

� W is a gaussian process and a martingale, and Law(WT) = �T, Ha�L2(P; L2(R+�R2))
is the space of square integrable processes adapted to the filtration generated by W.

� u12L1(P; L1(R+�R2))\L2(P; L2(R+; L
2(hxi−n))) where by L2(hxi−n) we denote the

space equipped with the norm kf kL2(hxi−n)2 =
R
R2hxi−nf(x)dx. u1 does not depend on f.

� I is a linear map improving regularity by 1, see eq. ( 4.1.2.1) below for details.

� 	(u) is a functional of u which also depends on u1 and W, but not on f, it will be specified
below.

� Df is a subspace of Ha containing drifts with exponential decay in space, it will also be
specified below.

We will also obtain a description of the Sine Gordon measure as a random shift of a Gaussian
measure, similarly to how we described the drift measure in Chapter 3.

Theorem 4.6. There exists a random variable I 2L1(P;W 1;1(R2)) such that

�SG=LawP(W1+ I):

Furthermore the Law of (W1; I) is invariant under the action of the Euclidean group.

From this we immediately obtain that �SG has gaussian tails:

Corollary 4.7. For any " there exists an �> 0 such thatZ
e
+�k'k

H−"
(
hxi−n

�2

d�SG<1:

The estimates we will prove for this will be strong enough to partially recover the results of [62].
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Theorem 4.8. �SG satisfies the Osterwalder-Schrader axioms. Furthermore the clustering is expo-
nential and �SG is non-Gaussian.

Proof. Euclidean invariance follows from Theorem 4.6. Corollary 4.7 implies that the measure is
exponentially integrable. Reflection Positivity is proved in Section 4.8.1 and exponential clustering
is proved in section 4.8.2 while non Gaussianity is shown in Section 4.8.3. �

4.1.1.2. Large deviations

As in Section 2.7 we will discuss large deviations for �SG in a semi-classical limit. For this we have
to introduce Planck's constant into the measure. Indeed we want to look at the measure formally
given by

d�SG;~=
1
Z~
e
− 1
~
R
�cos(�'(x))+ 1

2
m2'(x)2+

1
2
jr'(x)j2dxd':

This can be rewritten as

�SG;~(d')=
1
Z~
e
−�

~

R
cos(~1/2�')

�(d'):

where Z~ is normalization constant and we are interested in the limit ~! 0. These measure can
be made sense of in the same way as �SG. We will prove

Theorem 4.9. �SG;~ satisfies a large deviations principle with rate function

I(')=�
Z
(cos('(x))− 1)dx+ 1

2
m2

Z
'2(x)dx+ 1

2

Z
jr'(x)j2dx:

or equivalently

lim
~!0

− ~log
Z
e
−1
~f(')d�SG;~= inf

'2H−1(hxi−n)
ff(')+ I(')g:

Similar results were obtained by Lacoin Rhodes and Vargas for the Liouville measure on a
compact surface [88, 90], however to our knowledge this is the first such result in infinite volume.

4.1.2. Strategy
In order to achieve (4.3) we would like to use the convexity of

��(T )
Z
�cos(�WT + �IT(u))+

1
2

Z
0

T

kutkL22 dt

in u. However it is quite obvious that even if � is small this functional is not convex for large T
since �(T )!1 as T!1. To remedy this we will make use of the stochastic control structure of
the problem.

4.1.2.1. Polchinski equation and stochastic control

Let Xt be a cylindrical Brownian motion on L2(R2) and let

Ws;t=
Z
s

t

QldXl

with Qt=
( 1
t2
e−(m

2−�)/t�1/2. We use here the heat kernel instead of a decomposition with compact
support in Fourier space, because it has exponential decay in space. This will be useful in proving
exponential clustering. One can check that Law (W0;T)! � by computing the covariance. Let us
introduce the effective potential for '2L2(R2)

Vt;T
f (')=−logE

�
exp
�
−f(Wt;T + ')−��(T )

Z
�cos(�Wt;T + �')

��
with f being a sufficiently nice functional (to be made more precise below).
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We will show below following [15] that Vt;T
f (') satisfies the Polchinski equation [108]

@
@t
vt;T(')+

1
2
Tr(C_ tHess vt;T('))−

1
2
kQtrvt;T(')kL2(R2)

2 =0:

By the BD formula we will also have writing VT
f(')= f(')−��(T )

R
�cos(�')

Vt;T
f (')= inf

u2Ha

E

�
VT
f(Wt;T + It;T(u)+ ')+ 1

2

Z
t

T

kuskL22 ds
�
;

where Ha is as in the previous chapters the space of square integrable adapted processes, Wt;T will
be a Gaussian process described more precisely below and

It;T(u)=
Z
t

T

Qsusds:

Now by dynamic programming (see Proposition 4.12 below) we have

Vs;T
f (')= inf

u2Ha

E

�
Vt;T
f (Ws;t+ Is;t(u)+ ')+ 1

2

Z
s

t

kuwkL22 dw
�
:

What allows use convexity to control the minimizer is the following:

� For t > T /2 and � small enough ��(T )
R
�cos(�Wt;T + It;T(u) + �') + 1

2

R
s

t kuwkL22 dw is
convex in u.

� Vt;T
0 = ��(t)

R
�cos(�') +Rt;T(') where sup'2L2(R2) kHessRt;T(')k is bounded uniformly

in t; T .

� r(Vt;T
f (') − Vt;T

0 (')) is small away from the support of f , where we interpret rVt;T
f

according to Convention 4.3.

The first fact is quite obvious. The second and the third fact are nontrivial and will be discussed
in Section 4.4 and Section 4.3 respectivly.

4.1.2.2. Outline of the chapter

In Section 4.2 we will recall the derivation of the Polchinski equation for vt;T , and recall some
notions from stochastic optimal control and some properties of the renormalized cosine, establishing
that it converges to a well defined random distribution. In Section 4.3 we will derive (4.3) provided
that the value function satisfies some properties. In Section 4.4 we will establish the necessary
control on the Hessian to apply the result of Section 4.3 and obtain (4.3). In Section 4.5 we
will refine our estimates to understand the dependence of minimizer u0 on the spacial cutoff �.
Section 4.6 will be used to derive Theorem 4.5 from the preceeding analysis. In Section 4.7 we
will show how to express expectations under the Sine Gordon measure in terms of the minimizer
in the variational problem and prove Theorem 4.6. In the final two sections of the chapter we will
establish the Osterwalder-Schrader Axioms and the Large Deviations Principle (Theorems 4.8 and
4.9) respectively.

4.2. Setup

4.2.1. Stochastic optimal control

We consider the decomposition (with L=(m2−�))

L−1=
Z
0

1
Qt
2dt

where

Qt=
�
1
t2
e−L/t

�
1/2

:
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We denote by

Ct=
Z
0

t

Qs
2ds=L−1e−L/t; (4.4)

and by Kt(x; y) the kernel of Ct. From the definitions one can see that

Kt(x; y)=
Z
0

t

e−m
2/s

�
1
s2

s
4�
e−4sjx−y j

2

�
ds=

Z
0

t

e−m
2/s2
�

1
4�s

e−4sjx−y j
2

�
ds

so

Kt(x; x)=
Z
0

t

e−m
2/s2
�

1
4�s

�
ds=1t>1

1
4�

log t+C(t)

where supt2R+C(t) <1. Let 06 s < t and u 2 L2([s; t]; L2(R2)): For later use we introduce the
notation

Is;t(u)=
Z
s

t

Qluldl:

We are interested in studying the quantities

vt;T(')=−logE[exp(−VT('+Wt;T))]

where Wt;T =
R
t

T
QsdXs,with X being a cylindrical Brownian motion on L2(R2), and Zt;T =

exp(−vt;T), for '2L2(R2):
For the rest of this chapter we will denote by Cn(L2(R2)) functions L2(R2)!R which are n

times continuously Fréchet differntiable with bounded derivatives. Next we can derive a Hamilton-
Jacobi-Bellmann equation for vt;T , known in the physics literature as the Polchinski equation.

Proposition 4.10. Assume that VT 2C2(L2(R2)). Then vt;T satisfies

@
@t
vt;T(')+

1
2
Tr(C_tHess vt;T('))−

1
2
kQtrvt;T(')kL2(R2)

2 =0

vT ;T(')=VT('):

Furthermore if VT 2C2(L2(R2)) then vt;T 2C([0; T ]; C2(L2(R2)))\C1([0; T ]; C(L2(R2))).

Proof. Write Zt;T = exp(−vt;T) = E[exp(−VT(' + Wt;T))]. Noting that Wt;T has covariance
CT −Ct it is not hard to see that

@
@t
Zt;T = @

@t
E[exp(−VT('+Wt;T))]

= −E[hWt;T ; (CT −Ct)−2C_ tWt;T iL2(R2)exp(−VT('+Wt;T))]:

Now using Gaussian integration by parts (see [17] Exercise 2.1.3)

−E[hWt;T ; (CT −Ct)−2C_ tWt;T iL2(R2)exp(−VT('+Wt;T))]

= −Tr(C_tHessZt;T(')):

Applying chain rule we get

@
@t
vt;T = − @

@t
logZt;T

= −
@

@t
Zt;T

Zt;T

=
Tr(C_ tHessZt;T('))

Zt;T

= e
vt;TTr(C_tHess e−vt;T)

= −Tr(C_tHess vt;T)+ hrvt;T ; C_trvt;T iL2(R2)
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For the second statement differentiating under the expectation we obtain Zt;T(')2C2(L2(R2)),
so using our first computation we can deduce from this that also Zt;T 2C1([0; T ];C(L2(R2))). Now
observing that if VT 2C2(L2(R2)) then inft;'Zt;T(')>0, and using chain rule we can conclude. �

Definition 4.11. Let T > 0, H be a Hilbert space and VT :H!R measurable,bounded below. Let
Xt be a cylindrical process on some Hilbert space �. Let � be a Polish space and u: [0; T ]!� be
a process adapted to Xt. Let Ys;t('; u) be a solution to the equation

dYs;t(u; ')= �(t; Ys;t(u; '); ut)dt+�(t; Ys;t(u; '); ut)dXt (4.5)

Ys(u; ')= ':

Where �: [0; T ]�H ��!H and �: [0; T ]�H ��!L(�; H) are measurable. Then we say that
Vt;T is the value function on the stochastic control problem if

Vt;T(')= inf
u2A([s;T ])

E

�
VT(Ys;T(u; '))+

Z
s

T

lt(Ys;t; ut)dt
�
;

with l: [0; T ]�H � �!R measurable, bounded below and we denote by A([s; t]) the space of all
processes u: [s; t]!� which are adapted to Xt.

Proposition 4.12. (Dynamic programming) Vt;T as defined above satisfies for any S <T

Vt;T(')= inf
u2A([t;S])

E

�
VS;T(Yt;S(u; '))+

Z
t

S

ls(Yt;s; ut)dt
�
:

For a proof see [52] Theorem 2.24.

Now assume that �(t; Yt; ut) is self adjoint.We can associate a HJB equation to the control
problem from Definition 4.11 . It is:

@
@t
v(t; ')+ 1

2
inf
a2�

[Tr(�2(t; '; a)Hess v(t; '))+ hrv; �(t; '; a)iH+ l(t; '; a)]= 0: (4.6)

v(T ; ')=VT(')

We have the following theorem relating (4.6) to the solution of the control problem:

Proposition 4.13. (Verification) Assume that v 2 C([0; T ]; C2;loc(H)) \ C1;loc([0; T ]; C(H))
and v solves (4:6) with v(T ; ')=VT('). Furthermore assume that there exists u2A([t; T ]) and Y
such that u; Y satisfy (4:5) and

ut2 argmina2�[Tr(�2(t; Yt; ut)Hess v(t; Yt))+ hrv(t; Yt); �(t; Yt; a)iH+ l(t; Yt; a)]: (4.7)

Then v(t; ')=Vt;T(') and the pair u; Y is optimal.

For a proof see [52] Theorem 2.36. Now consider the case H =�=L2(R2) and

�(t; '; a) = Qta

�(t; '; a) = Qt

l(t; Yt; a) = 1
2
kakL2(R2)

2 :

Then (4.7) becomes a minimization problem for a quadratic functional and reduces to

ut=−Qtrv(t; Ys;t):

This means if we can solve the equation

dYs;t=−Qtrv(t; Ys;t)dt+QtdXt; (4.8)
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we can apply the verification theorem. Furthermore in this case (4.6) takes the form

@
@t
v(t; ')+ 1

2
Tr(C_tHess v(t; '))−

1
2
kQtrv(t; ')kL2(R2)

2 =0: (4.9)

since

inf
a2�

[Tr(�(t; '; a)Hess v(t; '))+ hrv; �(t; '; a)iH+ l(t; '; a)]

= inf
a2�

�
Tr(Qt2Hess v(t; '))+ hrv; QtaiL2(R2)+

1
2
kakL2(R2)

2

�
= 1

2
Tr(C_tHess v(t; '))−

1
2
kQtrv(t; ')kL2(R2)

2

Corollary 4.14.

−logE[e−VT('+Wt;T)] = inf
u2Ha

E

�
VT(Ys;T(u; '))+

1
2

Z
s

T

kutkL22 dt
�

where Ha is the space of processes adapted to Xt such that E[
R
0

1kutkL22 dt] and Yt(u; ') satisfies

dYs;t(u; ')=−Qtutdt+QtdWt

Ys;s(u; ')= ':

Note that Ys;T(u; ')= '+Wt;T + It;T(u). Furthermore the infimum on the r.h.s is attained

Proof. As already noted vt;T = −logE[e−VT('+Wt;T)] satisfies the HJB equation (4.9) and is in
C([0; T ];C2(L2(R2))), so rvt;T is Lipschitz continuous uniformly in T and bounded. By a standard
fix-point argument we can then solve (4:8), and so applying the verification theorem we obtain

−logE[e−VT('+Wt;T)] = inf
u2A([s;T ])

E

�
VT(Ys;T(u; '))+

1
2

Z
s

T

kutkL22 dt
�
:

Since VT is bounded below we can clearly restrict the infimum on the right hand side to u2Ha. �

This proof of the Boue-Dupuis formula is very similar to the one that can be found in [37]
Chapters 8.1.3 and 8.1.4.

4.2.2. Martingale cutoff and renormalized cosine
We recall the definition of the regularized GFF as

Wt=W0;t=
Z
0

t

QsdXs

where Xs is a cylindrical Brownian motion on L2. We can calculate:

E[Wt(x)Wt(y)]=Kt(x; y):

Now it is not hard to see from Ito's formula that the quantity

e
�2

2
Kt(x;x)cos(�Wt(x)) :=�(t)cos(�Wt(x)) (4.10)

is a martingale. We will write

Jcos(�Wt)K(x) = �(t)cos(�Wt(x))
Jsin(�Wt)K(x) = �(t)sin(�Wt(x))

Jei�WtK(x) = �(t)eiWt(x)

We claim that is Jcos(�Wt)K bounded in L2(P;H−1+�(hxi−n)) uniformly in t; g. Since it is also a
martingale it converges almost surely. To prove this the following lemma will be helpful:
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Lemma 4.15.

jE[Jcos(�Wt)K(x)Jcos(�Wt)K(y)]− 1j6 1
jx− y j�2/2�

Proof. Recall that e
�2

2
Kt(x;x): =�(t)6C hti

�2

8� . By Ito's formula

dJcos(�Wt)K (x)=−��(t)sin(�Wt(x))dWt(x);

so by Ito's isometry:

jE[Jcos(�Wt)K(x)Jcos(�Wt)K(y)]− 1j

= �2
��������EZ

0

t

�2(t)sin(�Ws(x))sin(�Ws(y))dhWs(x)Ws(y)i
��������

6 �2
Z
0

t

�2(t)jE[sin(�Ws(x))sin(�Ws(y))]jQs(x; y)ds

6 C�2
Z
0

t

�2(t)Qs(x; y)dt

6 C�2
Z
0

t

hsi
�2

4�e−m
2/s2
�

1
4�s

e−4sjx−y j
2

�
6 C�2

Z
0

1
hsi

�2

4�e−m
2/s2
�

1
4�s

e−4sjx−y j
2

�
6 C�2

1
jx− y j�2/2�

where in the last line we have used the change of variables s0= sjx− y j2. �

Lemma 4.16. Let Nt be a family of random functions in L1 such that

jE[Nt(x)Nt(y)]j6C jx− y j−


with 
 < 2. Then for any � > 0 small enough

sup
t

E
�
kNtkH−
/2−�(hxi−n)

2
�
6C:

Proof. Recall the devinition of the Littlewood-Palye blocks �iNt='i�Nt. Using the Littlewood-
Paley characterization we can estimate

E
�
kNtkH−
/2−�(hxi−n)

2
�

=
X
i

2−(
−2�)E[k�iNtkL2(hxi−n)2 ]

6 C sup
i

2−
−�E[k�iNtkL2(hxi−n)2 ]:

Now 'i satisfies,by interpolation







Z hx− yin'i(x− y)hx− yin'i(x− z)dx








Lk(dydz)

. k'ikL2(hxin)
2(1−1/k)k'ikL1(hxin)

2/k
:

since 







Z hx− yi−nj'i(x− y)jhx− yi−nj'i(x− z)jdx








L1

6 k'ikL2(hxin)2







Z hx− yi−nj'i(x− y)jhx− yi−nj'i(x− z)jdx








L2

6 k'ikL1(hxin)2

Recall that

sup
i

k'ikL1(hxin)6C and k'ikL2(hxin)6C2i
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Using thsi we get:�Z
�E(�iNt)2dx

�
= E

�Z
hxi−2n

Z
'i(x− y)Nt(y)dy

Z
'i(x− z)Nt(z)dzdx

�
6 C

�ZZ
hx− yinj'i(x− y)jhx− yinj'i(x− z)jdx

hyi−nhzi−n
jy− z j
 dydz

�
6 C









Z hx− yinj'i(x− y)jhx− yinj'i(x− z)jdx








Lk(dydz)









hyi−nhzi−njy− z j











Ll(dydz)

6 C(22i)1−1/k

where we have chosen l such that 
/(2+ �)<l< 
/2, 1/k+1/l=1, so

1− 1
k
= 1
q
< 
/(2+ �)

and

(22i)1−1/k< (22i)
/(2+�);

so all together, since






 hxi−nhyi−njy− zj









Ll(dydz)

<1 we deduce

E[k�iNtkL2(hxi−n)2 ]2< (2i)2
/(2+�)

and choosing � small enough such that 2
/(2+ �)< 
+ � we can conclude. �

Lemma 4.17.

sup
t<1

E
h
kJcos(�Wt)Kk

Bp;p
−�2/4�−�

p
i
<1

Proof.

E
h
kJcos(�Wt)Kk

Bp;p
−�2/4�−2�

2
ip

=
X
i

2−p(2"−�
2/2�)E[k�iJcos(�Wt)KkLpp ]

6 C sup
i

2−p�
2/2�(1+�)E[k�iJcos(�Wt)KkLpp ]

Using this we can estimate using Fubini's theorem and BDG inequality

C sup
i

2−p�
2/2�(1+�)E[k�iJcos(�Wt)KkLpp ]

= C sup
i

2−p�
2/2�(1+�)E

�Z
�j(�iJcos(�Wt)K)jp

�
= C sup

i

2−p�
2/2�(1+�)

�Z
�Ej(�iJcos(�Wt)K)jp

�
6 C sup

i

2−p�
2/2�(1+�)

�Z
�Ej(�iJcos(�Wt)K)j2

�
p/2

6 CE
h
kJcos(�Wt)KkH−�2/4�−�(�)

2
i
p/2

and now the statement follows from Lemma 4.15 and Lemma 4.16. �

Definition 4.18. Since Jcos(�Wt)K is a martingale and

sup
t

E
h
kJcos(�Wt)Kk

Bp;p
−�2/4�−2�

(hxi−n)
p

i
<1
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it converges in Lp
(
P;Bp;p

−�2/4�−2�(hxi−n)
�
to a limit. We will denote this limit by Jcos(�W1)K(and

analogously for �(t)sin(Wt) and �(t)eiWt).

Remark 4.19. From Lemma 4.15 we see that as � ! 0 E[k�i(Jcos(�Wt)K − 1)kL2(hxi−n)2 ]! 0.
Together with Lemma 4.17 we can easily deduce from this that

E
h
k(Jcos(�Wt)K− 1)k

Bp;p
−�2/4�−3"(hxi−n+1)

2
i
! 0;E

h
k(Jsin(�Wt)K)k

Bp;p
−�2/4�−3"(hxi−n+1)

2
i
! 0:

At this point we are ready to define the approximate measures �SG
�;T in a precise way.

Definition 4.20. A Let �T be a Gaussian measure with covariance CT(m2−�)−1 and �2Cc1(R2;
[0; 1]). Then we define

�SG
�;T(d�)= 1

ZT ;�
exp
�
−�(T )

Z
R2
�(x)cos(��(x))ds

�
�T(d�)

and ZT ;� is the normalization constant

ZT ;�=
Z

exp
�
−�(T )

Z
R2
�(x)cos(��(x))ds

�
�T(d�):

4.2.3. Weighted estimates
In this section we collect some estimates on Q; I which will be important in the sequel. We invite
the reader to read this section only superficially and to return to it once the estimates discussed
here become important.

Lemma 4.21.

k(m2−�)1/2I0;1(u)kL22 6
Z
0

1
kuskL22 ds

Proof. Z
R2
((m2−�)1/2I0;1(u))2dx

=
Z
R2
(m2+ jk j2)(FI0;1(u)(k))2dk

=
Z
R2
(m2+ jk j2)

�Z
0

11
t
e−(m

2+jkj2)/2tFut(k)dt
�
2

dk

6
Z
R2
(m2+ jk j2)

�Z
0

1 1
t2
e−(m

2+jkj2)/tdt
�Z

0

1
(Fus(k))2dsdk

=
Z
R2

Z
0

1
(Fus(k))2dsdk

=
Z
0

1
kuskL22 ds

�

Definition 4.22. Let A�R2, r2R, We define the weight

!A;r(x)= exp(rd(x;A))

where d(x;A)= infy2A jx− y j.

Definition 4.23. For a set A�R2,r 2R we define the weighted Lp spaces

kf kLp;r(A)=
�Z

(wA;r(x))pf p(x)dx
�
1/p
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And

kf kW1;p;r(A)= kf kLp;r(A)+
�Z

(wA;r(x))p(rf(x))pdx
�
1/p

We will also set H1;r(A)=W 1;2;r(A). Furthermore we will set

kf kLp;r= kf kLp;r(B(0;1)); kf kW1;p;r= kf kW 1;p;r(B(0;1)):

It is not hard to see that denoting Ai= fy: i− 16 d(y;A)6 ig there exist c; C > 0 such that

c

 X
i=1

1

exp(2ri)k1Aif kL22
!
1/2

6 kf kL2;r(A)6C
 X
i=1

1

exp(2ri)k1Aif kL2(A)2

!
1/2

:

Lemma 4.24. Let r > 0. Then for f 2L2;r1(A); g 2L2;r2(B)Z
fgdx6 exp(−(r1^ r2)d(A;B))kf kL2;r1(A)kgkL2;r2(B)

where d(A;B)= infx2A;y2B jx− y j.

Proof. Z
fgdx

6
Z

exp(r1 d(x;A))exp(r2 d(x;B))exp(−r1^ r2 d(A;B))f(x) g(x)dx

= exp(−r1^ r2 d(A;B))
Z

exp(r1 d(x;A))f exp(r2 d(x;B))gdx

6 exp(−(r1^ r2)d(A;B))kf kL2;r1(A)kgkL2;r2(B)

where we have used that by triangle inequality

r1 d(x;A)+ r2 d(x;B)− r1^ r2 d(A;B)> 0:
�

Lemma 4.25. For any 
 > 0; n6 0

kf kL2(hxi−n)6C hd(0; A)i−n/2kf kL2;
(A)

Proof. Z
f2(x)hxi−ndx

=
Z
f2(x)e2d(x;A)e−2d(x;A)hxi−ndx

6
Z
f2(x)e2d(x;A)hd(x;A)i−nhxi−ndx

6 C hd(0; A)i−n
Z
f2(x)e2d(x;A)dx

�

Lemma 4.26. Let s2f0; 1g r > 0 and f 2Wp
s;r is supported on B(0; N)c, N > 1. Then

kf kWp
s;r−�6N−�kf kWp

s;r
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Proof. �Z
f pexp((r−�)pjxj)dx

�
1/p

=
�Z

jxj>N
f pexp((r−�) pjxj)dx

�
1/p

6 N−�
�Z

f pexp(rpjxj)dx
�
1/p

= N−�kf kLp;r

This proves the claim with s=0. Applying this inequality also torf we obtain the full statment. �

Lemma 4.27.

kQtf kL16 t−1kf kL1

Proof. This follows directly from Young's inequality. �

Lemma 4.28. Assume that t/26 s6 t, or 06 t6 1 then

kIs;t(u)kL16CkukL1([s;t]�R2):

Proof.

sup
x

����������
Z
s

tZ
R2
e
−1
2
m2/l 1

4�
p

l1/2
e−2ljx−y j

2
ul(y)dldy

����������
6 sup

x

Z
s

tZ
R2
e
−1
2
m2/l 1

4�
p

l1/2
e−2ljx−y j

2
dldykukL1([s;t]�R2)

6
Z
s

t

e
−1
2
m2/l

l−1dlkukL1([s;t]�R2)

Now in the case t/26 s6 tZ
s

t

e
−1
2
m2/l

l−1dlkukL1([s;t]�R2)6
Z
t/2

t

l−1dlkukL1([s;t]�R2)6 log2 kukL1([s;t]�R2)

and in the case 06 t6 1Z
s

t

e
−1
2
m2/l

l−1dlkukL1([s;t]�R2)6
Z
0

1

e
−1
2
m2/ldlkukL1([s;t]�R2)6CkukL1([s;t]�R2):

�

Lemma 4.29.

kIs;t(u)kW 1;16Ckhli1/2+�ulkLl1([s;t]�R2)

Proof.

sup
x

����������
Z
s

tZ
R2
rxe−

1
2
m2/l 1

4�
p

l1/2
e−2ljx−y j

2
ul(y)dldy

����������
= sup

x

����������
Z
s

tZ
R2
e
−1
2
m2/l2(x− y)l1/2

�
p e−2ljx−y j

2
ul(y)dldy

����������
6 sup

x

��������Z
s

tZ
R2
e
−1
2
m2/l2(x− y)hli−�

�
p e−2ljx−yj

2hli1/2+�ul(y)dldy
��������

6
Z
s

t

hli−�
Z
R2
e
−1
2
m2/l2(x− y)

�
p e−2ljx−y j

2
dydlkhli1/2+�ulkLl1([s;t]�R2)
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6
��������Z
s

1

hli−�
Z
R2
e
−1
2
m2/l2(x− y)

�
p e−2ljx−yj

2
dydl

��������khli1/2+�ulkLl1([s;t]�R2)

+
��������Z
1

t

hli−�
Z
R2
e
−1
2
m2/l2(x− y)

�
p e−2ljx−yj

2
dydlkhli1/2+�ulkLl1([s;t]�R2)

��������
6
��������Z
s

1

hli−�
Z
R2
e−mjx−yjjx− y jdydl

��������khli1/2+�ulkLl1([s;t]�R2)��������Z
1

t

hli−�
Z
R2
e
−1
2
m2/l2(x− y)

�
p e−2ljx−yj

2
dydl

��������khli1/2+�ulkLl1([s;t]�R2)

6 Ckhli1/2+�ulkLl1([s;t]�R2)

+
��������Z
1

t

hli−�
Z
R2
e
−1
2
m2/l

e−ljx−y j
2
dydl

��������khli1/2+�ulkLl1([s;t]�R2)

6 Ckhli1/2+�ulkLl1([s;t]�R2)

�

Definition 4.30. For A�R2 we say that u2L2([0;1)�R2), is in Dr(A) if

kukDr(A) :=
�Z

0

1
kutkL2;r2 dt

�
1/2

<1:

Lemma 4.31. Let A�R2 , and assume that −m+�6 r6m−�, s6 t,

kIs;t(u)kL2;r(A)6C hsi−1/2kukDr(A)

where the constant depends on �.

Proof. It is enough to prove the inequality for s; t 6 1 and s; t > 1, then the general case will
follow from Is;t(u)= Is;1(u)+ I1;t(u). In the proof we will use several times that

erd(x;A)e−jrjjx−yj6 erd(y;A)

For s; t> 1 Z
R2

����������
Z
s

tZ
erd(x;A)e

−1
2
m2/l 1

4�
p

l1/2
e−2ljx−y j

2
ul(y)dldy

����������
2

dx

6
Z
R2

�Z
R2
erd(x;A)

�Z
s

t

e−m
2/l 1
4�l

e−4ljx−y j
2
dl
�
1/2
�Z

s

t

ul
2(y)dl

�
1/2

dy
�
2

dx

6 Cs−1
Z
R2

�Z
R2
erd(x;A)

�
1

jx− y j2e
−4sjx−yj2

�
1/2
�Z

s

t

ul
2(y)dl

�
1/2

dy
�
2

dx

6 Cs−1
Z
R2

�Z
R2
erd(x;A)

1
jx− y je

−2sjx−y j2
�Z

s

t

ul
2(y)dl

�
1/2

dy
�
2

dx

6 Cs−1
Z
R2

�Z
R2

1
jx− y je

−sjx−y j2
�Z

s

t

e2rd(y;A)ul
2(y)dl

�
1/2

dy
�
2

dx

6 Cs−1kukDr(A)
2 ;

where in the last line we have used Young's inequality. We now treat the s; t6 1 case.

kIs;t(u)kL2;r(A)2

6 C

Z
exp(2rd(x;A))

Z
s

t
����������
Z
R2
e
−1
2
m2/l 1

4�
p

l1/2
e−2ljx−yj

2
ul(y)dy

����������
2

dxdl
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Note that e−
1
2
m2/l 1

4�
p

l1/2
e−2ljx−yj

26C�e−(m−�)jx−yj so using Jensen's inequality

kIs;t(u)kL2;r(A)2

6
Z
s

tZ
R2

����������
Z
R2
erd(x;A)e

−1
2
m2/l 1

4�
p

l1/2
e−2ljx−y j

2
ul(y)dy

����������
2

dxdl

6 C

Z
s

tZ
R2

��������Z
R2
e−(m−�/2)jx−y jerd(x;A)ul(y)dy

��������2dxdl
6 C�

Z
s

tZ
R2

��������Z
R2
e−(m−�/2−r)jx−yjerd(y;A)ul(y)dy

��������2dxdl
6 C�

Z
s

t

kerd(y;A)ul(y)kL22 dydl

6 C�kukDr(A)
2 ;

as long as m− r−�> 0 and we have used Young's inequality. �

Lemma 4.32. Let A�R2 , and assume that −m/26 r6m/2, s6 t,Then for any � > 0

kIs;t(u)kH1;r(A)6CkukDr(A)

Proof. We first discuss the case s; t>m. We calculate

krIs;t(u)kL2;r(A)2

=
Z

exp(2rd(x;A))

����������
Z
s

tZ
R2
e
−1
2
m2/lrx

1
4�

p
l1/2

e−2ljx−yj
2
ul(y)dldy

����������
2

dx

=
Z

exp(2rd(x;A))

����������
Z
s

tZ
R2
e
−1
2
m2/l2l1/2(x− y)

�
p e−2ljx−yj

2
ul(y)dldy

����������
2

dx

6
Z

exp(2rd(x;A))

 Z
s

tZ
R2

2l1/2jx− y j
�

p e−2ljx−yj
2jul(y)jdldy

!
2

dx

6
Z  Z

s

tZ
R2

2l1/2jx− y j
�

p e−ljx−yj
2
(erd(y;A)jul(y)j)dldy

!
2

dx

6
Z �Z

R2
jx− y j

�Z
s

t2l
�
e−2ljx−yj

2
dl
�
1/2
�Z

s

t

(e2rd(y;A)jul(y)j)2dl
�
1/2

dy
�
2

dx

Now integrating by parts�Z
s

t2l
�
e−2ljx−yj

2
dl
�

= 1
2� jx− y j2(se

−2ljx−yj2− te−2tjx−y j2)+ 1
2� jx− y j2

Z
s

t

e−2ljx−y j
2
dl

= 1
2� jx− y j2(se

−2ljx−yj2− te−2tjx−y j2)+ 1
2� jx− y j4e

−2sjx−y j2− e−2tjx−y j2

So taking square root�Z
s

t2l
�
e−2ljx−y j

2
dl
�
1/2

6 1
2

p
� jx− y j

(s1/2 e−sjx−yj
2
+ t1/2 e−tjx−yj

2
)+ 1

2
p

� jx− y j2
(e−sjx−y j

2
+ e−tjx−yj

2
)
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Now plugging the first term back in our original computation we getZ �Z
R2
(s1/2 e−sjx−yj

2− t1/2 e−tjx−y j2)
�Z

s

t

(erd(x;A)jul(y)j)2dl
�
1/2

dy
�
2

dx

6 2
Z
R2

�Z
R2
se−2sjx−y j

2
Z
s

t

(erd(x;A)jul(y)j)2dldy
�
2

dx

6 2
Z Z

s

t

(erd(x;A)jul(y)j)2dldy= kukDr(A)
2 :

by Young's inequality, since kse−2sjyj2kL1(R2)6C uniformly in s. Pluggin the second term we getZ �Z
R2

��������� 1
2jx− y je

−2sjx−y j2− e−2tjx−yj2
����������Z

s

t

(erd(x;A)jul(y)j)2dl
�
1/2

dy
�
2

dx

6 kukDr(A)
2

by Young's inequality since

sup
s;t>m









� 1
2jy j(e

−2sjyj2− e−2tjy j2)
�









L1(R2)

6C

for s; t>m. For s; t6m we compute using e−
1
2
m2/l

e−2ljx−yj
26 e−mjx−y j

krIs;t(u)kL2;r(A)2

=
Z

exp(2rd(x;A))

����������
Z
s

tZ
R2
e
−1
2
m2/l2l1/2(x− y)

�
p e−2ljx−y j

2
ul(y)dldy

����������
2

dx

6
Z

exp(2rd(x;A))
��������Z
s

tZ
R2
e−(m−�)jx−y jul(y)dldy

��������2dx
6
Z �

exp(rd(x;A))
�Z

R2
e−2(m−�)jx−y j

Z
s

t

ul
2(y)dl

�
1/2

dy
�
2

dx

6 C

Z �Z
R2
e−(m−�)jx−yj

Z
s

t

erd(y;A)ul
2(y)dldy

�
2

dx

6 CkukDr
2

again by Young's inequality. In the case s6m; t >m we write Is;t(u)= Is;m(u) + Im;t(u) and we
can reduce the problem to the previous two cases. �

4.3. Locality

The main goal of this section is to prove that the value function satisfies certain locality properties:
If the terminal data is perturbed by a functional whose gradient is supported in a bounded set,
the effect of this perturbation on the value function will be small away from that bounded set. To
encode this we will need the following definition.

Definition 4.33. For a functional G:L2(R2)!R and A�R2 we define the quantities

jGj1;1= sup
'2L2(R2)

krG(')kL1(R2)

jGj1;2;rA = sup
'2L2(R2)

krG(')kL2;r(A)

jGj2= sup
'2L2(R2)

kHessG(')kL2(R2)!L2(R2)

jGj2;�= sup
'2L2(R2)

kHessG(')kL2(R2)!L2(R2)+ sup
h>�

sup
A�R2

sup
'2L2(R2)

kHessG(')kL2;h(A)!L2;h−�(A)
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where

kHessG(')kH!L= sup
 2H

kHessG(') kL
k kL

:

We will also need the following notation.

Notation 4.34. In the sequel c> 0 will always be a small constant such that

m− 4(�+ c)
X
n2N

2n�> 0

and we will denote

ct=(�+ c)
X

n:2n>t
2n�:

We will be interested in value functions of the form with VT
f 2C2(L2(R2);R)

Vs;T
f (') = inf

u2Ha

E

�
VT
f(Ws;T + Is;T(u)+ ')+ 1

2

Z
s

T

kuwkL22 dw
�

= inf
u2Ha

F ';f(u)
(4.11)

where VT
f= f +VT with jf j1;2;r<1 and jVT j2;�+ jVT j1;16� with � small enough. We will denote

the minimizer of the r.h.s of (4.11) by uf. In this section we will consider an �abstract� VT such
that the corresponding value function satisfies the following hypotheses, in the subsequent sections
we will then further specify VT(')=VT

�=�(T )
R
�cos(�') and show that this example satisfies our

hypotheses.

Hypothesis A. Assume that VT =VT0 satisfies

jVT j2;chT i−�6�hT i1/2−�:

This hypothesis is only a restriction on the terminal condition and will be easy to verify.
However we will also require the following hypothesis which is more tricky:

Hypothesis B. Assume that VT =VT0 is such that Vt;T given by

Vt;T(') = inf
u2Ha

E

�
VT
f(Wt;T + It;T(u)+ ')+ 1

2

Z
t

T

kuwkL22 dw
�
;

satisfies

jVt;T j2;chti−�6�hti1/2−�:

Our goal will be to show the following propositions:

Proposition 4.35. Assume that VT satisfies Hypothesis B. Then for any 2(�+ c)hti−� < r <m
there exists a C > 0 such that

jVt;T
f −Vt;T0 j1;2;r−ct6C jf j1;2;r:

and

Proposition 4.36. Assume that VT satisfies Hypothesis B. Then for any B �R2.

E

�Z
0

T

kuf −u0kL2;r−2ct(B)
2 dt

�
6C jf j1;2;rB :

Our strategy in proving these bounds will be the following: We will prove them for t > T /2
where we can use that the convexity provided by the term

1
2

Z
s

t

kuwkL22 dw
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beats the semiconvexity of VT . Under these conditions we will be able to show that

Vt;T
f =Vt;T0 + f~

with jf~j1;2;r−chti−�6C jf j1;2;r: Then using the assumption of Vt;T0 we will iterate the argument to
obtain the full statement. For technical reasons we will prove very similar statements under weaker
hypotheses:

Hypothesis C. VT =VT0 satisfies

jVT j26�hT i1/2−�: (4.12)

Hypothesis D. VT =VT0 is such that satisfies Vt;T given by

Vt;T(') = inf
u2Ha

E

�
VT
f(Wt;T + It;T(u)+ ')+ 1

2

Z
t

T

kuwkL22 dw
�

satisfies

jVt;T j26�hti1/2−�:

We then have

Proposition 4.37. Assume that VT satisfies Hypothesis D. Then

jVt;T
f −Vt;T0 j1;26C jf j1;2:

The proof is again analogous to the proof of Proposition 4.35.

Proposition 4.38. Assume that VT satisfies Hypothesis D. Then

E[kuf −u0kD0
2 ]6C jf j1;2;0:

4.3.1. Interlude: A formula for the gradient of the value function
Before we proceed with the proof let us discuss a formula to represent the gradient of the value
function which will be useful. It can be considered to be a version of the Envelope Theorem [93],
see also [5]. Take V 2C2(L2(R2);R) and consider

Vs;t(') = inf
u2Ha

E

�
Vt(Ws;t+ Is;t(u)+ ')+ 1

2

Z
s

t

kuwkL22 dw
�

= inf
u2Ha

F (u):

Now denote by

X = f�: �=Law(W ;u)with u2Hag
and

X�=
�
�:9�n!�weaklyonC([s; t];C −"(hxi−n))�Lw2 ([s; t]�R2)s.th.�n2X ; sup

n

E�n[kukD0
2 ]<1

�
where as usual Lw2 denotes L2 equipped with the weak topology, and it is possible to show that
indeed W 2C([s; t];C −"(hxi−n)) almost surely, see for instance [72], Theorem 3.1.

One can prove analogously Lemma 2.32 in Chapter 2 that

X�=
�
�:9�n!�weaklyonC([s; t];C −"(hxi−n))�L2([s;t]�R2)s.th.�n2X ;sup

n

E�n[kukD0
2 ]<1

�
;

where by abuse of nation we have denoted by (Ws;t; u) the canonical variables on C([s; t];
C −"(hxi−n))�L2([s; t]�R2). We can define

F~(�)=E�

�
Vt(Ws;t+ Is;t(u)+ ')+ 1

2

Z
s

t

kuwkL22 dw
�
:
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From now on we will consider F~ as a functional on X�. Note that using continuity and boundedness
of Vt we can easily show that

inf
u2Ha

E

�
Vt(Ws;t+ Is;t(u)+ ')+

1
2

Z
s

t

kuwkL22 dw
�
= inf
�2X

F~= inf
�2X�

F~:

With this setup we can prove the following Lemma:

Lemma 4.39.
hrVs;t(');  iL2= inf

�2argminF~
E�[hrVt(Ws;t+ Is;t(u)+ ');  iL2]

where argminF~ denotes the set of minimizers of F~.

Proof. Define the functional

F "(�)=
E�
�
Vt(Ws;t+ Is;t(u)+ '+ " )+ 1

2

R
s

t kuwkL22 dw
�
− inf�2X�F~

"
and observe that

lim
"!0

inf
�2X�

F "= hrVs;t(');  iL2:
So it is enough to show that

lim
"!0

inf
�2X�

F "= inf
�2argminF~

E�[hrVt(Ws;t+ Is;t(u)+ ');  iL2]:

We will show F " Γ-converges (see Section 2.6) to (F )0 where

(F )0(�)=

(
E�[hrVt(Ws;t+ Is;t(u)+ ');  iL2] if �2 argminF~
1 otherwise

and furthermore F " is equicoercive on X�. To prove equicoercivity set K=f�:E�[
R
s

tkuwkL22 dw]6Kg
for K>0 to be chosen later. It is not hard to see that K is compact in X� (see Lemma 2.28 above).
Now

F "(�) =
E�
�
Vt(Ws;t+ Is;t(u)+ '+ " )+ 1

2

R
s

tkuwkL22 dw
�
− inf�2X�F~

"

= 1
"

�
E�

�
Vt(Ws;t+ Is;t(u)+ ')+ 1

2

Z
s

t

kuwkL22 dw
�
− inf
�2X�

F~
�

+1
"
E�[Vt(Ws;t+ Is;t(u)+ '+ " )−Vt(Ws;t+ Is;t(u)+ ')]

= 1
"

�
F~− inf

�2X�
F~
�
+O(1)

where O(1) denotes functionals which are bounded uniformly in �;". This implies sup" inf�F "6C.
On the other hand since V is bounded we have that

F "(�)> 1
"

�
1
2
E�

�Z
s

t

kuwkL22 dw
�
−C

�
so inf�2KcF "(�)> 1

"
(K −C) so choosing K large enough we obtain

inf
�2X�

F "(�)= inf
�2K

F "(�);

which proves equicoercivity. To prove the liminf inequality of Γ-convergence we consider a sequence
�"! � in X� and distinguish two cases � 2 argmin F~ and � 2/ argmin F~. For the first case recall
from above that

F "(�") = 1
"

�
F~(�)− inf

�2X�
F~
�

+1
"
E�"[Vt(Ws;t+ Is;t(u)+ '+ " )−Vt(Ws;t+ Is;t(u)+ ')]

> 1
"
E�"[Vt(Ws;t+ Is;t(u)+ '+ " )−Vt(Ws;t+ Is;t(u)+ ')]

= E�"[hrVt(Ws;t+ Is;t(u)+ ');  iL2] +O(")
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where in the last line we have used Taylor expansion. Now

E�"[hrVt(Ws;t+ Is;t(u)+ ');  iL2]
! E�[hrVt(Ws;t+ Is;t(u)+ ');  iL2]

by continuity and boundedness of rV . For the second case (�2/ argminF~) we consider

liminf
"!0

F "(�") = liminf
"!0

1
"

�
F~(�")− inf

�2X�
F~
�

+liminf
"!0

1
"
E�"[Vt(Ws;t+ Is;t(u)+ '+ " )−Vt(Ws;t+ Is;t(u)+ ')]

= liminf
"!0

1
"

�
F~(�")− inf

�2X�
F~
�
+O(1)

= 1

where in the last line we have used that since F~ is lower semincontinuous so

liminf
"!0

F~(�")>F~(�)

and since �2/ argminF~ there exits c>0 and "0 such that for any "<"0, F~(�")− inf�2X�F~>c. Now
we can conclude that Γ-convergence holds by observing that we can take the recovery sequence
constant. �

Lemma 4.40. Assume that for small �> 0; �< 1: and that VT 2C2(L2(R2)).

kHessVT kL2!L26�hti�: (4.13)

Then recalling that F ';0(u) defined by

F ';0(u)=E

�
VT(Wt;T + It;T(u)+ ')+ 1

2

Z
t

T

kuwkL22 dw
�

is strongly convex in u on D0, with constant 1/4. A minimizer of F ';0 exists by Proposition 4.13
and is unique. We denote it by u'. Furthermore u' satisfies for any u2Ha,

E

�Z
rVT(Wt;T + It;T(u')+ ')It;T(u)+

Z
t

TZ
R2
us
'usds

�
=0 (4.14)

Proof. Strong convexity follows from strong convexity of
R
t

T kuwkL22 dw, the assumption on VT and
Lemma 4.31. Existence of the minimizer follows from Proposition 4.14 and uniqueness is implied
by convexity. To prove (4.14) we proceed in the standard way. Since

F ';0(u'+ "u)−F ';0(u')
"

> 0 for any u2Ha

we can take the limit and obtain

0

6 lim
"!0

F ';0(u'+ "u)−F ';0(u')
"

= lim
"!0

1
"
(E[VT(Wt;T + It;T(u'+ "u)+ ')−VT(Wt;T + It;T(u')+ ')])

+ lim
"!0

1
"
E

�Z
t

T

kus
'+ "uskL22 ds−

Z
t

T

kus
'kL22 ds

�
= E

�Z
rVT(Wt;T + It;T(u')+ ')It;T(u)+

Z
t

TZ
us
'usds

�
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This gives the statement since the converse inequality can be obtained by replacing u with −u. �

Remark 4.41. Strong convexity of F ';0 on D0, with constant 1/4 is equivalent to

F ';0(u1)−F ';0(u2)

> E

�Z
R2
rVT(Wt;T + It;T(u2)+ ')It;T(u1−u2)+

Z
t

TZ
R2
(us1−us2)us2dt+

1
4

Z
t

T

kus1−us2kL22 ds
�

for any u1; u22Ha which together with (4.14) implies

F ';0(u)−F ';0(u')

> E

�
1
4

Z
t

T

kus−us
'kL22 ds

�
for any u2Ha and u' the minimizer from Lemma 4.40.

Lemma 4.42. With the assumptions and notation from Lemma 4.40 and we have

rVt;T(')=E[rV (Wt;T + It;T(u')+ ')]:

Proof. The proof is similar to the proof of Lemma 4.39. Consider the functional

F "(u)= F '+" (u)− infu2HaF
'(u)

"
= F '+" (u)−F '(u')

"

And observe that hrVt;T(');  i= lim"!0infu2Ha
F "(u). Now

F '+" (u)=E[VT(Wt;T + It;T(u)+ '+ " )−VT(Wt;T + It;T(u)+ ')]+F '(u)

so

F "(u)= 1
"
(F '(u)−F '(u'))+O(1)

where again O(1) is a term uniformly bounded in u and ". This implies that

liminf
"!0

F "(u")> liminf
"!0

1
"
(F '(u")−F '(u'))−C > 1

2"
E

�Z
t

T

kus"−us
'k2ds

�
−C

So liminf"!0F
"(u")<1 implies that for a subsequence (not relabeled)

lim
"!0

E

�Z
t

T

kus"−us
'k2ds

�
=0: (4.15)

Now (4.15) implies that, provided that VT 2C2(L2(R2))

lim
"!0

1
"
E[VT(Wt;T + It;T(u")+ '+ " )−VT(Wt;T + It;T(u")+ ')]

= lim
"!0

E

�Z
0

1

hrVT(Wt;T + It;T(u")+ �" + ');  id�
�

= E[hrVT(Wt;T + It;T(u')+ ');  i]

so

liminf
"!0

F "(u")

> lim
"!0

1
"
E[VT(Wt;T + It;T(u")+ '+ " )−VT(Wt;T + It;T(u")+ ')]+ liminf

"!0

1
"
(F '(u")−F '(u'))

> E[hrVT(Wt;T + It;T(u')+ ');  i]

which implies

liminf
"!0

inf
u2Ha

F "(u)>E[hrVT(Wt;T + It;T(u')+ ');  i]:
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For the converse inequality it is enough to observe that

liminf
"!0

inf
u2Ha

F "(u)6 lim
"!0

F "(u')=E[hrVT(Wt;T + It;T(u')+ ');  i]: �

4.3.2. Locality at high frequencies

Lemma 4.43. Assume that VT satisfies Hypothesis C. Then F ';f(u) is defined by

F ';f(u)=E

�
f(Wt;T + It;T(u)+ ')+VT(Wt;T + It;T(u)+ ')+ 1

2

Z
t

T

kuwkL22 dw
�

Assume that u';f is such that F ';f(u';f)6 infu2Ha
F ';f(u) + ". Let u' be the unique minimizer

of F ';0(u): Then

E[ku';f −u'kD0
2 ]6 4hti−1/2jf j1;2;0+ ": (4.16)

Proof. We prove that if eq (4.16) is violated u';f cannot be a minimizer because

F ';f(u')<F ';f(u';f):

Indeed by assumptions on uf ;'

"

> F ';f(u';f)−F ';f(u')
= E[f(Wt;T + It;T(u';f)+ ')− f(Wt;T + It;T(u')+ ')]

+F ';0(u';f)−F ';0(u')

> −jf j1;2;0E[kIt;T(u';f)− It;T(u')kL2(R2)] +
1
4
E[ku';f −u'kD0

2 ]

> −hti−1/2jf j1;2;0E[ku';f −u'kD0
2 ]1/2+ 1

4
E[ku';f −u'kD0

2 ]

which implies the statement. �

Our next aim is to show that if (4.13) holds perturbing VT by a functional f such that jf j1;2;r<
1 amounts to perturbing the value function at time t by an f~ with similar properties, provided
hti>T /2. For this we will need the following notations

Notation 4.44. Let u2L2([0;1)�R2) and B�R2. Define BN=fx2R2 :N −16d(x;B)6N g;
B+n=

S
N>nB

N and denote by uN = 1BN(u−u')

u�−n=u'+
X
N6n

uN ; u−n=
X
N6n

uN

and

u+n=u−u�−n :

Lemma 4.45. We consider a random functional f :L2(R2)!R satisfying

E[(jf j1;2;rB )2]<1

for some B �R2; r > 0. Assume also that VT satisfies Hypothesis A. Now for hti> T /2 consider
the variational problem

inf
u2Ha

E

�
f(Yt;T(u; '))+VT(Yt;T(u; '))+

1
2

Z
t

T

kuskL22 ds
�
= inf
u2Ha

F ';f(u)

Then for any u such that F ';f(u)6 infu2HaF
';f(u)+ ", "> 0 we have for any r <m− chT i−�

E

�Z
t

T

1BNkus−us
'kL22 ds

�
1/2

6 (hti−1/2E[jf j1;2;r2 ]1/2+ exp(rn)") exp(−(r− 2� hti−1+�)n);

where u' is the unique minimizer of F ';0.
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Proof. F ';f(u)6 infu2HaF
';f(u)+ " implies that

F ';f(u)−F ';f(u−n)
= F ';0(u)−F ';0(u−n)+E[f(Wt;T + It;T(u)+ ')− f(Wt;T + It;T(u−n)+ ')]
6 "

Then from Remark 4.41 we have

F ';0(u)−F ';0(u−n)

> E

�Z
R2
rVT(Wt;T + It;T(u�−n)+ ')It;T(u+n)+

Z
t

TZ
R2
u�s
−nus

+nds+ 1
4
ku+nkD0

2

�
= E

�Z
R2
rVT(Wt;T + It;T(u�−n)+ ')It;T(u+n)+

Z
t

TZ
R2
us
'us

+nds+ 1
4
ku+nkD0

2

�
= E

�Z
R2
rVT(Wt;T + It;T(u')+ ')It;T(u+n)+

Z
t

TZ
R2
us
'us

+nds+ 1
4
ku+nkD0

2

�
+E
�Z

R2
(rVT(Wt;T + It;T(u�−n)+ ')−rVT(Wt;T + It;T(u')+ '))It;T(u+n)

�
= E

�Z
0

1Z
R2
It;T(u−n)(HessVT(Wt;T + It;T(u')+ �It;T(u−n)+ ') It;T(u+n))d�+

1
4
ku+nkD0

2

�
where in the last line we have used (4.14) and the fundamental theorem of calculus. Now using
Lemma 4.24 ,with 
=m− chT i−�, denoting

V�=HessVT(Wt;T + It;T(u')+ �It;T(u−n)+ ')

we get:

E

�Z
0

1Z
R2
It;T(u−n)(V� It;T(u+n))d�+

1
4
ku+nkD0

2

�
> −E

" X
N6n

Z
0

1Z
R2
jIt;T(uN)(V�It;T(u+n))jd�

#
+ 1
4
E[ku+nkD0

2 ]

> −E
" X
N6n

exp(−
(n−N))kIt;T(uN)kL2;
(BN)sup
�

kV�It;T(u+n)kL2;
(B+n)

#
+ 1
4
E[ku+nkD0

2 ]

> −�T�hti−1
X
N6n

exp(−
(n−N))E[kuNkDm(BN)
2 ]1/2E[ku+nkDm(B+N)

2 ]1/2+ 1
4
E[ku+nkD0

2 ]

> −�T�hti−1
X
N6n

exp(−
(n−N))E[kuNkD0
2 ]1/2E[ku+nkD0

2 ]1/2+ 1
4
E[ku+nkD0

2 ]:

Now

jE[f(Wt;T + It;T(u)+ ')− f(Wt;T + It;T(u−n)+ ')]j
6 hti−1/2exp(−rn)E[(jf j1;2;rB )2]1/2E[ku+nkDm(B+n)]1/2

Now recall that from our assumption on u we must have F ';0(u)−F ';0(u−n)<", so

0 > −�T�hti−1
X
n6N

exp(−
(n−N))E[kuNkD0
2 ]1/2E[ku+nkD0

2 ]1/2

−hti−1/2exp(−rn)E[(jf j1;2;rB )2]E[ku+nkD0
2 ]1/2+ 1

4
E[ku+nkD0

2 ]− ";

which implies that

E[kun+1kD0
2 ]1/2

6 E[ku+nkD0
2 ]1/2

6 �T�hti−1
X
N6n

exp(−
(n−N))E[kusNkD0
2 ]1/2+ hti−1/2exp(−rn)E[(jf j1;2;rB )2]1/2+ ":
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Setting an=E[kun+1kD0
2 ]1/2 we have the inequality

an 6 �T�hti−1
X

N6n−1
exp(−
(n−N))aN + hti−1/2E[(jf j1;2;rB )2]1/2 exp(−rn)+ "

6 �T�hti−1
X

N6n−1
exp(−r(n−N))aN + hti−1/2E[(jf j1;2;rB )2]1/2 exp(−rn)+ ";

and introducing a~n= exp(rn)an this is equivalent to

a~n 6 �T 1/2−�hti−1
X
N6n

a~N +E[(jf j1;2;rB )2]1/2 hti−1/2+ exp(rn)"

6 2� hti−1/2−�
X
N6n

a~N +E[(jf j1;2;rB )2]1/2 hti−1/2+ exp(rn)":

With this in mind discrete Gronwall lemma [42] gives

c~n6 (E[(jf j1;2;rB )2]1/2hti−1/2+ "exp(rn))exp(2� hti−1/2+�n);

which in turn implies

cn6 (E[(jf j1;2;rB )2]1/2hti−1/2+ "exp(rn))exp(2� hti−1/2+�n− rn): �

Definition 4.46. We write Y = f�: � = Law(W ; u; u') with u'minimizer of F ';0; u 2Hag and
take Y� to the closure of Y under weak convergence on C −"(hxi−n)�L2(R+�R2)�L2(R+�R2).
Observe that X =P �Y ;X� =P �Y� where P is the projection on the first two components.

Lemma 4.47. Assume VT satisfies Hypothesis A. We consider f (deterministic) satisfying

jf j1;2;rB <1;

for some B �R2; 06 r <m− chti−� and hti>T /2. Define

Vt;T
f (')= inf

u2Ha

E

�
f(Yt;T(u; '))+VT(Yt;T(u; '))+

1
2

Z
t

T

kuskL22 ds
�
=: inf

u2Ha

F ';f(u)= inf
�2X�

F~';f(�)

and let u' 2 Ha be the unique minimizer of F ';0(u). Then for any � 2 Y� such that P �� 2
argminF~';f(�) we have

E�
h
ku−u'k

Dr−(2�+c)hti−�/2(B)

2
i
1/26C hti−1/2+� jf j1;2;rB :

In particular if uf ;'2Ha is a minimizer of F ';f then

E
h
kuf ;'−u'k

Dr−(2�+c)hti−�/2(B)

2
i
1/26C hti−1/2+�jf j1;2;rB :

Proof. It is not hard to see that for � such that P �� 2 argminF~';f(�) we have u" such that
Law(W ;u"; u')! � and F ';f(u")6 infu2HaF

';f(u)+ ". Now from Lemma 4.45 we know

E

�Z
t

T

k(us")nkL22 ds
�
1/2

6 (C hti−1/2+ "exp(rn))exp(2� hti−1+�n− rn);

recall Notation 4:44. So

E�

�
1
2

Z
t

T

k(us)nkL22 ds
�
1/2

6 liminf
"!0

E

�
1
2

Z
t

T

k(us")nkL22 ds
�
1/2

6 C hti−1/2jf j1;2;rB exp(2� hti−1+�n− rn):
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Now for any �> 0

E�

�Z
t

T

kus−us
'k
L2;r−2�hti

−1/2−�−�(B)

2 ds
�

6 CE�

"Z
t

TX
N=0

1

exp(2(r− 2�hti−1/2−�−�)N)1BNkus−u'kL22 ds
#

= CE�"

"Z
t

TX
N=0

1

exp(2(r− 2�hti−1/2−�)N)exp(−2�N)1BNkus−u'kL22 ds

#
(4.17)

6 C

2�
sup
N

exp(2(r− 2�hti−1/2−�)N)E
�Z

s

T

1BNkus−u'kL22
�

6 C
2�
hti−1/2−� jf j1;2;rB

if we choose �= chti−� we obtain the statement. �

Lemma 4.48. Assume VT satisfies Hypothesis A. We consider f (deterministic) satisfying

jf j1;2;rB <1

for some B �R2; 06 r <m− � and hti>T /2 Then

Vt;T
f (')= ft;T +Vt;T0 (')

where ft;T satisfies for any c> 0

jft;T j1;2;r−2(�+c)hti−�B 6 (1+C hti−1/2+�)jf j1;2;rB :

Proof. By Lemma 4.39 we have

hrVt;T
f (');  iL2

= inf
�2argminF~';f

E�[hrVT
f(Wt;T + It;T(u)+ ');  iL2]

= inf
�2argminF~';f

E�[hrf(Wt;T + It;T(u)+ ');  iL2+ hrVT(Wt;T + It;T(u)+ ');  iL2]

and so by Lemmas 4.39 and 4.42 with u' being the minimzer of

E

�
VT(Wt;T + It;T(u)+ ')+ 1

2

Z
t

T

kuwkL22 dw
�
;

we can compute

jhrVt;T
f (');  iL2−hrVt;T0 (');  iL2j

=
��������� inf

�2argminF~';f
E�[hrf(Wt;T + It;T(u)+ ');  iL2+ hrVT(Wt;T + It;T(u)+ ');  iL2]

�
−E�[hrVT(Wt;T + It;T(u')+ ');  iL2]

��������
6 sup

�2argminF~f
E�[jhrf(Wt;T + It;T(u)+ ');  iL2j]

+ sup
�2argminF~f

jE�[hrVT(Wt;T + It;T(u)+ ');  iL2−hrVT(Wt;T + It;T(u')+ ');  iL2]j

6 jf j1;2;rB k kL2;−r(B)+ jVT j2;chT i−�

� sup
�2argminF~f

E�

h
kIs;t(u−u')kL2;r−(2�+c)hti−�−chT i−�(B)

i
k k

L2;−r+(2�+c)hti
−�+chT i−�(B)

6 jf j1;2;rB k kL2;−r(B)+�hti−1/2jVT j2;�E�
h
k(u−u')k

Dr−(2�+c)hti−�(B)

i
k k

L2;−r+2(�+c)hti
−�
(B)

6 jf j1;2;rB k kL2;−r(B)+C�hti−� jf j1;2;rB k k
L2;−r+2(�+c)hti

−�
(B)

6 jf j1;2;rB (1+C�hti−�)k k
L2;−r+2(�+c)hti

−�
(B)
;

and we can conclude by duality. �
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Analogously we also have:

Lemma 4.49. Assume VT satisfies Hypothesis C. We consider f (deterministic) satisfying

jf j1;2;0<1
Then for hti>T /2

Vt;T
f (')= ft;T +Vt;T0 (');

where ft;T satisfies

jft;T j1;2;06 (1+C hti−1/2+�)jf j1;2;0:

The proof is analogous to the proof of Lemma 4.48.

4.3.3. Dependence on the initial condition

Lemma 4.50. With the assumptions and notations from Lemma 4.45 we have

E
h
ku'+ −u'k

Dr−2(�+c)hti−�(A)

2
i
1/26C�T−�E[k kDr(A)

2 ]1/2:

Proof. We can set

f (')=VT('+  )−VT(')=
Z
0

1

hrVT('+� );  iL2d�:
Then

rf (')=
Z
0

1

HessVT('+� ) d�

so

E[krf (')kL2;r−�(A)]6 jVT j2;�E[k kL2;r(A)]6�T 1/2−�E[k kL2;r(A)]:

Now applying Lemma 4.47 we with f = f and "=0, and estimating like in (4.47) we obtain:

E�
h
ku'+ −u'k

Dr−�−2(�+c)hti−�(B)

2 ds
i

6 E�

"Z
t

TX
N=0

1

exp(2(r− 2(�+ c)hti−�− chti−�)N)1BNku'+ −u'kL22 ds

#

= E�"

"Z
t

TX
N=0

1

exp(2(r− 2�hti−�− chti−�)N)exp(−2c hti−�)1BNku'+ −u'kL22 ds
#

(4.18)

6 C sup
N

exp(2(r− 2�hti−�− chti−�)N)E
�Z

t

T

1BNku'+ −u'kL22 dt
�

6 C�T−�E[k kL2;r(B)2 ]1/2:
�

4.3.4. Proofs of Propositions 4.35 and 4.36
For the remainder of this section we will denote by u0 the minimizer of

E

�
VT(Y0;T(u; '))+

1
2

Z
0

T

kuskL22 ds
�

and by uf the minimizer of

E

�
VT(Y0;T(u; '))+ f(Y0;T(u; '))+

1
2

Z
0

T

kuskL22 ds
�
:

Proof of Proposition 4.35. We prove by induction that for any t such that hti> 2−nT .

jVt;T
f (')−Vt;T0 (')j1;2;r−ct−�6Ctjf j1;2;r;
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where ct=4(�+ c)
P
n:2n>t 2

−n� and Ct=
Q
n:2n>t (1+C2

−n�). Note that

sup
t>0

Ct6 exp

 X
n2N

log((1+C2−n�))
!
6 exp

 
C
X
n2N

2−n�
!
<1:

Assume the statement has been proven for t> t~=2−(n−1)T . By Proposition 4.12 we have

Vt;T
f (')=E

"
Vt~;T
0 (Yt;t~(u; '))+ f~(Yt;t~(u; '))+

1
2

Z
t

t~

kuwkL22 dw

#

with f~=V
t~;T
f (')−Vt~;T

0 ('): Now by Lemma 4.48 we know that

jVt;T
f (')−Vt;T0 (')j1;2;r−ct

6 jVt;T
f (')−Vt;T0 (')j1;2;r−ct~+chti−�+2(2�+c)hti−�

6 (1+C hti−�)jf~j1;2;r−ct~
6 (1+C hti−�)Ct~jf j1;2;r
6 Ctjf j1;2;r:

�

We now prove Proposition 4.36.

Proof of Proposition 4.36. For the purposes of this argument we fix C (it can depend on the
constants from the previous statment but cannot change from line to line).We may assume C6�−1
choosing � small enough. We show that for n> 0; rn= r− c0− cn

E

"Z
2N

2N+1

ku';f −u';0kL2;rn(B)
2

#
1/2

6C2−N�jf j1;2;rB

and

E

�Z
0

1

kut
';f −ut

';0kL2;rn(B)
2

�
1/2

6C jf j1;2;rB :

From this the statement will follow. To prove the second inequality we observe that by Proposition
4.12, uf ; u0 are the minimizers for

E

"
Vt~;T
0 (Yt;t~(u; Y0:t(uf)))+ ft~(Yt;t~(u; Y0;t(uf)))+

1
2

Z
t

t~

kuwkL22 dw
#

and

E

"
Vt~;T
0 (Yt;t~(u; Y0;t(u0)))+

1
2

Z
t

t~

kuwkL22 dw
#

respectively. Denote ft~=Vt~;T
f −Vt~;T

0 : Now by our assumptions on V 0 we have by Lemma 4.47Z
0

1

kut
f −ut0kDr−c0−(2�+c)2−�(B)

2 6C jf1j1;2;r−c0B

Now we proceed by induction. Assume we have proved the inequality N 6 n, now want to prove
it for n+1.Note that by Lemma 4.50 we get for any 
 with m− c0> 
 > 0:

E

"Z
2n

2n+1

kut0−u~tkL2;
−(2�+c)2−n�(B)
2 dt

#
1/2

6C�2−�E[kY0;2n(u0)−Y0;2n(uf)kL2;
(B)2 ]1/2:

Here u~ minimizes

E

"
V2n+1;T
0 (Yt;t~(u; Y0;t(uf)))+

1
2

Z
2n

2n+1

kuwkL22 dw

#
:
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Since by the induction assumption we have

E[kY0;2n(u0)−Y0;2n(uf)kL2;r~n
2 ]1/2

6
X
N6n

E[kI2N−1;2N(u0−uf)kLr~n
2 ]1/2

6 2C jf j1;2;rA

 X
N6n

2−N�
!

And by Lemma 4.47 we have

E

"Z
2n

2n+1

kut
f −u~tk

L2;rn−(2�+c)2
−n�

(B)

2 dt

#
1/2

6C2−n�jf j1;2;r

and so by triangle inequality

E

"Z
2n

2n+1

kut
';f −ut

'k
L
2;rn+1(B)
2 dt

#
1/2

6 E

"Z
2n

2n+1

kut
';f −u~t

'k
L
2;rn+1(B)
2 dt

#
1/2

+E

"Z
2n

2n+1

kut
'−u~t

'k
L
2;rn+1(B)
2 dt

#
1/2

6 C 2−n� jf j1;2;rB +C2�2−n� jf1j1;2;rB
X
N6n

2−N�

6 C jf j1;2;rB
X

N6n+1
2−N�

where in the last line we have used �6C−1.This proves the statement. �

4.4. Bounds on the Hessian

In this section we will consider the case

VT
�;R(')=��(T )

Z
R2
�(x)cos(�'(x))dx+R(');

where �2< 4�; � is defined by (4:10) and R2C2(L2(R2)) satisfies

jR(')j1;16�; jR(')j2;chT i−�6C�2: (4.19)

The reason we denote the perturbation by R and not f as in the previous section is to emphasize
the different properties. By f we usually denote a functional satisfying jf j1;2;r<1 for some r>2,
while R usually satisfies (4.19). Again we are interested in the value function

Vt;T
�;R(')= inf

u2Ha

E

�
VT
�;R(Yt;T(u; '))+

1
2

Z
t

T

kuskL22 ds
�

(4.20)

Our goal is to show that Vt;T
�;R satisfies the assumptions of Proposition 4.35, or more precisely

Hypothesis B.

Theorem 4.51. Vt;T
�;R defined by ( 4.20) can be written as

Vt;T
�;R(')=��(t)

Z
�cos(�')+Rt;T(');

where Rt;T satisfies

jRt;T j1;1+ jRt;T j2;chti−�6C�2:

C is independent of R; t; T ; �; �. In particular Vt;T
�;R satisfied Hypothesis B for � small enough.
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Theorem 4.51 will be established in Section 4.4.1 below. This might seem hopeless at first
since for this Vt;T

�;R has to be smaller then the terminal data VT
�;R. However what saves us is the

martingale property of the renormalized cosine and the fact that we can expect I(u) to be small.
Indeed we have the following lemma.

Lemma 4.52. Assume that hti>T /2. There exists a unique u'2Ha such that

inf
u2Ha

E

�
VT
�;R(Yt;T(u; '))+

1
2

Z
t

T

kuskL22 ds
�
=E

�
VT
�;R(Yt;T(u'; '))+

1
2

Z
t

T

kus
'kL22 ds

�
and

ku'kL1([t;T ]�R2)6 4�� hti−1/2−�:

Proof. Note that the assumptions of Lemma 4.42 are satisfied and so u' exists and is unique.
Furthermore

rVt;T
�;R(')=E[rVT

�;R(Wt;T + It;T(u')+ ')]:

In particular jVt;T j1;16 jVT j1;16���(T ). Now by the Verification Principle

us
'=−QsrVs;T

�;R(Yt;s);

where Y is the solution to the equation

dYt;s=−QsrVs;T
�;R(Yt;s)ds+QsdXs; Yt= ':

So by Lemma 4.27, provided hti>T /2:

kut
'kL1(R2)6 hti−1 sup

'2L2(R2)

krVt;T
�;R(')kL1(R2)= jVt;T j1;16 2�hti−1�(T )6 4�� hti−1/2−�: �

We also introduce the map

Rt;T
� (R)(')=Vt;T

�;R(')−��(t)
Z
�(x)cos(�'(x))dx (4.21)

Let us discuss some properties of Rt;T
� .

Lemma 4.53. If R 2 C2(L2(R2)) then so is Rs;t
� (R) for any s; t > 0. Furthermore R� has the

following semi-group property:
Rs;t
� (Rt;T

� (R))=Rs;T
� (R):

Proof. For the first statement observe that by Proposition 4.10 and Corollary 4.14 we have that

Vt;T
�;R(')= inf

u2Ha

E

�
��(T )

Z
�cos(�Yt;T(u; '))+R(Yt;T(u; '))+

1
2

Z
t

T

kuskL22 ds
�

is in C2(L2(R2)). Since ��(t)
R
�cos(�') is clearly in C2(L2(R2)) the definition of Rs;t

� implies the
statement. For the second statement we see that by Proposition 4.12

Rs;T
� (R)(') = inf

u2Ha

E

�
��(T )

Z
�cos(�Ys;T(u; '))+R(Ys;T(u; '))+

1
2

Z
s

T

kuskL22 ds
�

−��(s)
Z
�cos(�')

= inf
u2Ha

E

�
Vt;T
�;R(Ys;t(u; '))+

1
2

Z
s

t

kuskL22 ds
�
−��(s)

Z
�cos(�')

= inf
u2Ha

E

�
��(t)

Z
�cos(�Ys;t(u; '))+Rt;T

� (R)(Ys;t(u; '))+
1
2

Z
s

t

kuskL22 ds
�

−��(s)
Z
�cos(�')dx

= Rs;t
� (Rt;T

� (R))('):
�
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4.4.1. Bounds on the remainder

Lemma 4.54. Assume that hti>T /2. Then for any R with jR(')j1;16� and �> 0:

jRt;T
� (R)j1;1 6 jRj1;1+C�2hti−�

jRt;T
� (R)j2;�+(�+c)hti−� 6 jRj2;�+C�2hti−�

jRt;T
� (R)j2 6 jRj2+C�2hti−�

and for any A�R2;m− �−2(�+c)hti−�>r>0 there exists a constant C� dependent on � such that

jRt;T
� (R)j1;2;rA 6 jRj1;2;rA +C�hti−�

jRt;T
� (R)−Rt;T

� (G)j1;2;r−�−2(�+c)hti−�
A 6 (1+C�hti−�+C�hti−� jRj2;�)(jR−Gj1;2;rA ): (4.22)

Proof. Denote by u';R the minimizer of

E

�
��(T )

Z
�(x)cos(�Yt;T(u; '))dx+R(Yt;T(u; '))+

1
2

Z
t

T

kuskL22 ds
�
:

By Lemma 4.42 we have

rVt;T
�;R(')

= E[rVT
�;R(Wt;T + It;T(u';R)+ ')]

= E[−���(T )�(x)sin(�(Wt;T + It;T(u';R)+ '))+rR(Wt;T + It;T(u';R)+ ')]
= −E[���(T )�sin(�(Wt;T + '))]

−E
�
���(T )

Z
0

1

�cos(�(Wt;T + '+ �It;T(u';R)))It;T(u';R)d�
�

+E[rR(Wt;T + It;T(u';R)+ ')]

(4.23)

and recall that E[���(T )�(x)sin(�(Wt;T + '))]=E[���(t)�(x)sin(�')]. We now write

R~(')=−E
�
���(T )

Z
0

1

� cos(�(Wt;T + '+ �It;T(u';R)))It;T(u';R)d�
�
:

and the previous computation gives rRt;T
� (R)(')=E[rR(Wt;T + It;T(u';R)+ ')]+R~('). Since

by Lemma 4.52 kIt;T(u')kL16ku'kL1([t;T ]�R2)64��hti−1/2−� we have for �2/8�61/2− � and
hti>T /2

sup
'2L2(R2)

kR~(')kL16 4�2�2t−�:
Furthermore

kR~(')−R~( )k
L2;r−2(�+c)hti

−�

=








E����(T )Z

0

1

� sin(�(Wt;T + '+ �It;T(u';R)))It;T(u';R)d�
�

−E
�
���(T )

Z
0

1

� sin(�(Wt;T +  + �It;T(u ;R)))It;T(u ;R)d�
�








L2;r−2(�+c)hti

−�

6 ���(T )








E�Z

0

1

�sin(�(Wt;T + '+ �It;T(u';R)))(It;T(u';R)− It;T(u ;R))d�









L2;r−2(�+c)hti

−�

+








Z

0

1

�(sin(�(Wt;T + '+ �It;T(u';R)))

− sin(�(Wt;T +  + �It;T(u ;R))))It;T(u ;R)d�
�








L2;r−2(�+c)hti

−�

6 ���(T )E[kIt;T(u';R)− It;T(u ;R)kL2;r−2(�+c)hti−�] +���(T )E[kIt;T(u
 ;R)kL1

� (k'−  k
L2;r−2(�+c)hti

−�+ kIt;T(u';R)− It;T(u ;R)kL2;r−2(�+c)hti−�)]

6 C�2hti−�k'−  kL2;r
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where in the last line we have used Lemmas 4.50 and 4.31. Analogously we obtain

kR~(')−R~( )kL26C�2hti−�k'−  kL2:
Clearly

kE[rR(Wt;T + It;T(u';R)+ ')]kL16 sup
�2L2

krR(�)kL1;
while

kE[rR(Wt;T + It;T(u';R)+ ')]−E[rR(Wt;T + It;T(u ;R)+  )]k
L2;r−2�hti

−�−�

6 jR(')j2;�E[k('−  )kL2;r−2�hti−�+ kIt;T(u
';R−u ;R)k

L2;r−2�hti
−�]

6 jR(')j2;�(1+C�hti−�)k('−  )kL2;r;

combining these bounds gives (4.54). To prove the second statement clearly

sup
'

kE[rR(Wt;T + It;T(u';R)+ ')]kL2;r(A)

6 sup
'

kR(')kL2;r(A);

while

���(T )








Z

0

1

�(x)sin(�(Wt;T + '+�It;T(u';R)))It;T(u';R)d�









L2;r(A)

6 ���(T )k�It;T(u';R)kL2;r(A)
6 C���(T )kIt;T(u';R)kL1
6 C�hti−�:

On the other hand we can write G=R−R+G and so applying Lemma 4.47 we obtain

E[kIt;T(u';R−u';G)kL2;r−2�hti−�]
6 C hti−1/2E

�
ku';R−u';Gk

Dr−2�hti−�
�

6 C hti−1/2−� jR−Gj1;2;r;

where we recall that Dr was introduced in definition 4.30. With this in mind we estimate

krRt;T(R)(')−rRt;T(G)(')kL2;r−2�hti−�−�(A)

6 E

�







���(T )Z
0

1

� sin(�(Wt;T + '+ �It;T(u';R)))It;T(u';R)d�

−���(T )
Z
0

1

� sin(�(Wt;T + '+ �It;T(u';G)))It;T(u';G)d�









L2;r−2�hti

−�−�(A)

#
+E
h
krR(Wt;T + It;T(u';R)+ ')−rG(Wt;T + It;T(u';G)+ ')k

L2;r−2�hti
−�−�(A)

i
6 ��(T )E

h
kIt;T(u';R−u';G)kL2;r−2�hti−�−�(A)

i
+��(T )E

h
kIt;T(u';G)kL1kIt;T(u';R−u';G)kL2;r−2�hti−�−�(A)

i
+sup

'

kr(R−G)(')k
L2;r−2�hti

−�
(A)

+ jRj2;�E
h
kIt;T(u';R−u';G)kL2;r−2�hti−�(A)

i
6 (1+C hti−�)j(R−G)(')j1;2;r−2�hti−�

A +C hti−�jRj2;� j(R−G)(')j1;2;rA :

�

We can now iterativly apply this lemma to obtain:

Lemma 4.55. Assume that jRj1;1<�/2. Let t> 0. Then for � small enough

Vt;T
�;R(')=��(t)

Z
� cos(�')+Rt(')
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where Rt satisfies, with Ct defined by Ct=C
P
N :2N>t 2

−�N,

jRtj2;�+(�+c)ct 6 �2Ct+ jRj2;�
jRtj2 6 �2Ct+ jRtj2

jRj1;1 6 �2Ct+ jRj1;1:

Proof. First we prove the statement for hti > 2−NT . Assume the statement holds for t~:
ht~i> 2−N+1T . Then by dynamic programming

Vt;T
�;R(')

= inf
u2Ha

E

"
��(t~)

Z
�cos(�Yt;t~(u; '))+Rt~(Yt;t~(u; '))+

1
2

Z
t

t~

kuskL22 ds
#

where jRt~(')j2;�+ct~6 �2Ct~+ jRj2;�; jRt~(')j1;16 �2Ct~+ jRj1;1. Choosing � small enough we get
jRt~j1;16�. Then we can apply Lemma 4.54 and deduce that

jRtj2;�+(�+c)ct6 jRt~j2;�+(�+c)ct~+C�2hti−�6�2Ct~+�2hti−�+ jRj2;�=�2Ct+ jRj2;�;

and analogously for the bound on jRtj2; jRj1;1. �

Finally we prove another lemma about R which will be useful when removing the UV cutoff.

Lemma 4.56. Assume that jRj2;(�+c)hT i−�6�. Then for any t> 0:

jRt;T
� (R)−Rt;T

� (G)j1;2;r−3ct
A 6C�(jR−Gj1;2;rA ):

Proof. In Lemma 4.54 the statement has been proven for hti > T / 2, furthermore Lemma
4.55 gives, for � small enough jRt;T

� (R)j2;(�+c)hT i−�+(�+c)hti−� 6 jRj2;2(�+c)hti−�+C�2hti−�6� .

Define C�;t=
Q
n:2n>t (1+ (C�+�)2

−n�) with C� being the constant from (4.22) Now assume we
have proven the statement for hti> t~=2−(n−1)T . By Lemma 4.53 and the induction assumptions

jRt;T
� (R)−Rt;T

� (G)j1;2;r−ct
A

= jRt;2t
� (R2t;T

� (R))−Rt;2t
� (R2t;T

� (G))j1;2;r−2(�+c)hti−�−(�+c)hti−�−c2t
A

6 (1+ (C�+�)hti−�)j(R2t;T
� (R))− (R2t;T

� (G))j1;2;r−2c2tA

6 (1+C�hti−�)C�;2tjR−Gj1;2;rA

= C�;tjR−Gj1;2;rA :

�

4.5. Dependence on the spatial cutoff
Lemma 4.57. Let u';� be the minimizer for

E

�
��(T )

Z
� cos(�Y0;T(u; '))+

1
2

Z
0

T

kuskL22 ds
�

in Ha. Assume that �1; �2:R2!R, −16 �i6 1. Then there exists a 
 > 0 such that

E

�Z
0

T



ut';�1−ut';�2



L2;
(supp(�1−�2))2 dt
�
6C( 1+ jsupp(�1− �2)j);

where jsupp(�1− �2)j denotes the measure of the support of �1− �2 and C does not depend on T.

Proof. To prove this observe that form eq. (4.22) we have

Vt;T
�1 (')=Vt;T

�2 (')+ ft(')+��(t)
Z
(�1− �2)cos(�') (4.24)

with jftj1;2;r
supp(�1−�2)6C(1+ jsupp(�1− �2)j) with r=m− c0 and C does not depend on t; T . Note

also that
j�(t)(�1− �2)cos(�')j1;2;r6�(t)jsupp(�1− �2)j1/2:
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By Proposition 4.12 with i2f1; 2g u';�i restricted to [t1; t2] is a minimizer in Ha for

E

�
Vt2;T
�i (Yt1;t2(u; Y0;t1(u

';�i; ')))+ 1
2

Z
t1

t2

kuskL22 ds
�
:

Now we again prove by induction that

E

"Z
2n

2n+1



ut';�1−ut';�2



L2;rn(supp(�1−�2))2 dt

#
6C2−n�

for some C independent of N; T and rn= r− c0− c
P
N6n 2

−N� (recall Notation 4.34). The proof

is analogous to the proof of Proposition 4.36: Note that u';�
i
minimizes

E

�
V1;T
�i (Y0;1(u; '))+

1
2

Z
0

1

kuskL22 ds
�
:

Since

V1;T
�1 (')−V1;T

�2 (')= f1(')+��(1)
Z
R2
(�1− �2)cos(�')

with jf j1;2;r6C jsupp(�1− �2)j1/2 we obtain by applying Lemma 4.47 and using eq. (4.24)

E

�Z
0

1



ut';�1−ut';�2



L2;r−c1(supp(�1−�2))2 dt
�
6C(1+ jsupp(�1− �2)j):

Now by dynamic programming u';�
i
restricted to [2n; 2n+1] minimizes the functional

E

"
��(2n+1)

Z
�icos(�Y2n;2n+1(u; Y0;2n(u';�

i
))) + R2n+1;T

�i (0)(Y2n;2n+1(u; Y0;2n(u';�
i
))) +

1
2

Z
2n

2n+1

kuskL22 ds
#
:

Now setting u~2Ha to be the minimizer of the functional

E

"
��(2n+1)

Z
�1(cos(�Y2n;2n+1(u; Y0;2n(u';�

2
))) + R2n+1;T

�1 (0)(Y2n;2n+1(u; Y0;2n(u';�
2
))) +

1
2

Z
2n

2n+1

kuskL22 ds

#
we have that

E

"Z
2n

2n+1



ut';�1−u~t



L2;rn−c2−n+1(supp(�1−�2))2 dt

#
1/2

6 2−n�E[kY0;2n(u';�
1
)−Y0;2n(u';�

2
)kL2;rn(supp(�1−�2))2 ]1/2

from Lemma 4.50, and analogolously to the proof of Proposition 4.36 we can show that from the
induction assumption it follows that for � small enough

E[kY0;2n(u';�
1)−Y0;2n(u';�

2)kL2;rn(supp(�1−�2))2 ]1/26 2−n�C(1+ jsupp(�1− �2)j)
X
N6n

2−N�:

Applying Lemma 4.47 and using eq. (4.24) we know that

E

"Z
2n

2n+1



ut';�2−u~t



L2;r−c2−n�(supp(�1−�2))2 dt

#
1/2

6 2C(1+ jsupp(�1− �2)j1/2)2−n�:

Adding things up we deduce the claim by induction. �
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Lemma 4.58. Let u';� be a minimizer for

E

�
��(T )

Z
�cos(�Y0;T(u; ')+

1
2

Z
0

T

kuskL22 ds
�
:

Assume that �1; �2:R2!R, −16 �i6 1 and for any jxj6N �1(x)= �2(x)= 1.Let a> 3 Then

E

�Z
0

T



ut';�1−ut';�2



L2(hxi−a)2 dt
�
1/2

6C hN i−(a−3):

from which it trivially follows that for any 
 > 0

E

�Z
0

T



ut';�1−ut';�2



L2;−
2 dt
�
1/2

6C hN i−(a−3);

and C does not depend on N;T or the �i(provided they satisfy the assumptions).

Proof. Write �~n= �1+ 1Ak(�2− �1) with Ak= fx:k− 16 jxj<kg. Then
P
k>N �~

n= �2. Now we
estimate using Lemma 4.57 and Lemma 4.25:

E

�Z
0

T



ut';�1−ut';�2



L2(hxi−a)2 dt
�
1/2

6
X
k>N

E

�Z
0

T



ut';�1−ut';�~n



L2(hxi−a)2 dt
�
1/2

6
X
k>N

hni−aE
�Z

0

T



ut';�1−ut';�~n



L2;
(An)2 dt
�
1/2

6 C
X
k>N

hni−ajAnj

6 C hN i−(a−3):
�

Lemma 4.59. Assume that R satisfies jRj1;16�; jRj2;�6� with � sufficiently small and let � such
that log(t−T )� <m− ct.

jRt;T
�1 (R)−Rt;T

�2 (R)j1;2;m−log2(t−T )�−ct
supp(�1−�2) 6C jsupp(�1− �2)j1/2hti−�

In particular if �6 hT i−� then for T large enough

jRt;T
�1 (R)−Rt;T

�2 (R)j
1;2;m−hT i−�/2−ct
supp(�1−�2) 6C jsupp(�1− �2)j1/2hti−�

and

jRt;T
�1 (0)−Rt;T

�2 (0)j1;2;m−ct
supp(�1−�2)6C jsupp(�1− �2)j1/2hti−�:

Proof. Recall from eq. (4.23) that

r(Rt;T
�1 (R)(')−Rt;T

�2 (R)('))

= E[rR(Wt;T + It;T(u';�
1
)+ ')−rR(Wt;T + It;T(u';�

2
)+ ')]

−���(T )E
�Z

0

1

�1sin(�(Wt;T + '+ �It;T(u';�
1
)))It;T(u';�

1
)d�

−
Z
0

1

�2sin(�(Wt;T + '+ �It;T(u';�
2
)))It;T(u';�

2
)d�
�
:

We first prove the statement for hti>T /2. Denote by A= supp(�1− �2) now we can estimate the
first term by applying Lemma 4.47, we have

E

�Z
t

T



us';�1−us';�2



L2;m−chti−�(A)2 ds
�
1/2

6C�hti−� jAj1/2:
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So

kE[rR(Wt;T + It;T(u';�
1
)+ ')−rR(Wt;T + It;T(u';�

2
)+ ')]k

L2;m−�−chti
−�
(A)

6 jRj2;�E
h
ku';�1−u';�2k

Dm−chti−�(A)

2
i
1/2

6 jRj2;�hti−� jAj1/2:

and furthermore we can decompose

�1sin(�(Wt;T + �It;T(u';�
1)+ '))It;T(u';�

1)
−�2sin(�(Wt;T + '+ �It;T(u';�

2)))It;T(u';�
2)

= �1sin(�(Wt;T + '+ �It;T(u';�
1)))It;T(u';�

1−u';�2)
�1(sin(�(Wt;T + �It;T(u';�

1)+ '))− sin(�(Wt;T + �It;T(u';�
2)+ ')))It;T(u';�

2)
+(�2− �1)sin(�(Wt;T + '+�It;T(u';�

2)))It;T(u';�
2)

and we can estimate

���(T )E
h
k�1sin(�(Wt;T + '+ �It;T(u';�

1
)))It;T(u';�

1−u';�2)k
L2;m−chti

−�
(A)

i
6 ���(T )E

�Z
t

T

ku';�1−u';�2k
L2;m−chti

−�
(A)

2

�
1/2

6 C�2hti−� jAj1/2

similarly

���(T )E
h
k�1(x)(sin(�(Wt;T + �It;T(u';�

1
) + ')) − sin(�(Wt;T + �It;T(u';�

2
) +

')))It;T(u';�
2
)k
L2;m−chti

−�
(A)

i
6 ���(T )E

h
k�1(x)It;T(u';�

1−u';�2)It;T(u';�
2
)k
L2;m−chti

−�
(A)

i
6 ��E

�Z
t

T



us';�1−us';�2



L2;m−chti−�(A)2 dskIt;T(u';�
2
)kL1

�
6 C�2hti−1/2−� jAj1/2

and for the last term

���(T )E[k(�2(x)− �1(x))sin(�(Wt;T + '+�It;T(u';�
2
)))It;T(u';�

2
)kL2;m(A)]

6 ���(T )E[kIt;T(u';�
2
)kL1k�2(x)− �1(x)kL2;m(A)]

6 C�2hti−�k�2(x)− �1(x)kL2;m(A)
6 C�2hti−� jsupp(�1− �2)j1/2

Putting things together implies the statement for hti > T /2. Define an = n� − c2n. Now for the
general statement we proceed by induction: We claim that for hti>T /2n

jRt;T
�1 (R)−Rt;T

�2 (R)j1;2;m−an
supp(�1−�2)6CtjAj1/2

X
m>n

2−m�

where Ct=C
Q
i:2i>t (1+2

(i−1)�)
Assume the statement is proven for hti > T~ = T /2n−1. By choosing � small enough we can

assume that jRt;T
�1 (R)j1;1 + jRt;T

�1 (R)j2;� 6 � from Lemma 4.55. Then triangle inequality we can
write

jRt;T
�1 (R)−Rt;T

�2 (R)j1;2;m−an
A

= jRt;2t
�1 (R2t;T

�1 (R))−Rt;2t
�2 (R2t;T

�2 (R))j1;2;m−an−1−chti−�−�
A

6 jRt;2t
�1 (R2t;T

�1 (R))−Rt;2t
�2 (R2t;T

�1 (R))j1;2;m−an−1−chti−�−�
A

+jRt;2t
�2 (R2t;T

�2 (R))−Rt;2t
�2 (R2t;T

�1 (R))j1;2;m−an−1−chti−�−�
A
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now by our previous considerations

jRt;2t
�1 (R2t;T

�1 (R))−Rt;2t
�2 (R2t;T

�1 (R))j1;2;m−an−1−chti−�−�
A

6 C jAj1/2hti−�

and by Lemma 4.54

jRt;2t
�2 (R2t;T

�2 (R))−Rt;2t
�2 (R2t;T

�1 (R))j1;2;m−an−1−chti−�−�
A

6 (1+ hti−�+ jR2t;T
�1 (R)j2;�+c2t)jR2t;T

�2 (R)−R2t;T
�1 (R)j1;2;m−an−1

A

6 (1+ hti−�+ hti−� jRj2;�)jR2t;T
�2 (R)−R2t;T

�1 (R)j1;2;m−an−1
A

so putting thing together

jRt;T
�1 (R)−Rt;T

�2 (R)j1;2;m−anA

6 C jAj1/2hti−�+(1+ hti−�+ hti−� jRj2;�)jR2t;T
�2 (R)−R2t;T

�1 (R)j1;2;m−an−1A

6 C jAj1/2hti−�+C2t(1+2hti−�)jAj1/2
X
m>n

2−m�

6 CtjAj1/2
X

m>n+1
2−m�+C jAj1/2hti−�

6 CtjAj1/2
X
m>n

2−m�:

�

4.6. Variational description

The purpose of this section is to establish Theorem 4.5. We restate it here in a more precise form.
First we need the following definition.

Definition 4.60. Take r=m− 2c0 (recall that m is the �bare mass of the theory�,more precisely
our base Gaussian measure has covariance m2 − �) with c0 defined in Notation 4.34. Take a C
sufficiently large (to be fixed below) but independent of f. We define the set

Df =
�
u2Ha:E

�Z
0

1
kutkDr(A)

2 dt
�
6C jf j1;2;m

�
:

Theorem 4.61.

−log
Z
e−f(�)�SG

�;T(d�)

= − lim
T!1;�!1

�
logE

�
exp
�
−f(Wt;T)−�(T )

Z
�cos(�Wt;T)

��
− logE

�
exp
�
−�(T )

Z
�cos(�Wt;T)

���
= inf

u2Df
G�;f(u)

where

G�;f(u)

= E

�
f(W0;1+ I0;1(u)+ I0;1(u1))

+�
Z
Jcos(�W0;1)K(cos((�I0;1(u)+ �I0;1(u1))− cos(�I0;1(u1))))

+�
Z
Jsin(�W0;1)K(sin(�(I0;1(u)+ I0;1(u1)))− sin(�I0;1(u1)))

+ 1
2

Z
0

1
kutkL22 dt+

Z
0

1Z
utut

1dt
�
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and khti1/2+�ut1kL1(P;Lt1(R+;L1(R2)))<1.

Proof. By Corollary 4.14

−logE
�
exp
�
−f(Wt;T)−�(T )

Z
�cos(�Wt;T)

��
= inf
u2Ha

F f ;�(u)

with

FT
�;f(u)=E

�
f(Y )��(T )

Z
�cos(�W0;T + �I0;T(u))+

1
2

Z
0

T

kuskL22 ds
�
:

By Theorem 4.62 below

lim
T!1

inf
u2Ha

FT
�(u)= inf

u2Ha

F1
� (u)

with

F1
� (u)

= E

�
�

Z
�Jcos(�W0;1)Kcos(�(I0;1(u)))+�

Z
�Jsin(�W0;1)Ksin(�(I0;1(u)))+ 1

2

Z
0

1
kuskL22 ds

�
:

By Corollary 4.63 below if C in Definition 4.60 is chosen suffiently large

lim
T!1

inf
u2Ha

FT
f ;�(u)−FT

0;�(u)= inf
u2Df(u)

Gf ;�(u):
Here

Gf ;�(u)

= E

�
f(W0;1+ I1(u)+ I1(u1;�))

+�
Z
�(x)Jcos(�W0;1)K(cos(�(I0;1(u)+ I0;1(u1;�)))− cos(�I0;1(u1;�)))

+�
Z
�(x)Jsin(�W0;1)K(sin(�(I0;1(u)+ I0;1(u1;�))− sin(�I0;1(u1;�))))

+ 1
2

Z
0

1
kutkL22 dt+

Z
0

1Z
utut

1;�dt
�

and u1;� is the minimizer of F1
� , it satisfies khti1/2+�ut

1;�kL1(P;Lt1(R+;L1(R2)))<1.
Now by Lemma 4.65 below as �! 1, u�;1converges in L2(P; L2(R+; L

2(hxi−k))), for k large
enough, to a u1 2 L1(P; L1(R+ � R2)) which satisfies khti1/2+�utkL1(P;Lt1(R+;L1(R2))) 6 C.
Furthermore by Proposition 4.66

Gf ;�(u)!Gf(u)

uniformly on Df which proves the statement. �

4.6.1. Removing the UV cutoff
In this section we fix �2Cc1(R2); '2L2(R2). We denote by uT ;�2Ha a minimizer of

FT
�(u)=E

�
��(T )

Z
�cos(�W0;T + �I0;T(u))+

1
2

Z
0

T

kuskL22 ds
�
:

Theorem 4.62. uT ;� converges in Ha to some u1;�2Ha and u1;� minimizes the functional

F1
� (u)

= E

�
�

Z
�Jcos(�W0;1)Kcos(�(I0;1(u)))+�

Z
�Jsin(�W0;1)Ksin(�(I0;1(u)))+ 1

2

Z
0

1
kuskL22 ds

�
in Ha. Furthermore khti1/2+�u1;�kL1(P�[0;T ]�R2)6C�.

Proof. By Lemma 4.55 we know that Vt;T
� given by

Vt;T
� (')= inf

u2Ha

E

�
��(T )

Z
�cos(�Yt;T(u; '))dx+

1
2

Z
t

T

kuskL22 ds
�
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satisfies

Vt;T
� (')=�(t)

Z
� cos(�')+Rt;T(')

with jRt;T j1;1+ jRt;T j2;�6C�2 and for some �6C�2. Furthermore jRt;T j1;2;06C�. This implies
that the equation

dYt=−QtrVt;T
� (Yt)+QtdXt

has a unique solution in C([0; T ]; L2(R2)) by a standard fix-point argument and

ut
T ;�=−QtrVt;T

� (Yt)

by Proposition 4.13 . By definition of R (see eq. (4.21)) we have for T1<T2:

Vt;T1
� (')=�(t)

Z
�cos(�')+Rt;T 1

� (0)(')

and

Vt;T2
� (')=�(t)

Z
�cos(�')+Rt;T 2

� (RT 1;T 2(0))('):
By Lemma 4.54

jRt;T1(0)−Rt;T2(RT 1;T 2(0))j1;2;06C jRT1;T2(0)j1;2;06C�hT1i−� (4.25)

so by Proposition 4.36 we have

E

�Z
0

T1

kut
T1;�−ut

T2;�kL22 dt
�
6C�hT1i−�

Furthermore from we have

jVt;T
� j1;26 jRt;T

� (0)j1;2+�(t)j� sin(� � )j1;26C�hti1/2−�

so , for any '2L2(R2)

kQtrVt;T
� (')kL2([T1;1]�R2)6C�

�Z
T1

1
(t−1/2hti1/2−�)2dt

�
1/2

6C�hT1i−�:

This implies that uT ;� is a Cauchy sequence in L2(P� [0;1]�R2) so it converges to some u1;�,
which in turn implies It;T~(u

T ;�)! It;T~(u
1;�) in H1(R2) for any T� 2 [0;1] by Lemma 4.32. We

are now going to prove that that indeed u1;�2Ha, for which we have to prove that it is adapted.
From (4.25) we have also for any T~<1

sup
t6T~

jVt;T1
� −Vt;T2

� j1;2;0! 0:

So rVt;T
� !rVt;1

� locally uniformly on R+ � L2(R2) and from the fact that jRt;T(')j2 6 C we
deduce that

sup
t6T~

jVt;1
� j26C hT~i�

2/8�<1:

So rVt;1 is Lipschitz in L2(R2). Putting things together we obtain that as T!1, P-almost surely

ut
T ;�=QtrVt;T

� (W0;t+ I0;t(uT ;�))!QtrVt;1
� (W0;t+ I0;t(u1;�)) inL2(R2);

which implies that u1;� is adapted since uT ;� is adapted. Now to prove that u1;�minimizes F1
� (u)

we observe that

FT
�(u) = E

�
��(T )

Z
�cos(�Y0;T(u; '))+

1
2

Z
0

T

kuskL22 ds
�

= E

�
��(T )

Z
�cos(�W0;T)cos(�(I0;T(u)+ '))

+��(T )
Z
�sin(�W0;T)sin(�(I0;T(u)+ '))+ 1

2

Z
0

T

kuskL22 ds
�
:
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Now from Definition 4.18 �(T )cos(�W0;T)! Jcos(�W0;1)K and �(T )sin(�W0;T)! Jsin(�W0;1)K in
L2(P;H−1+�). Note also that I0;T(uT)= I0;1(uT)! I0;1(u1) in H1−� which implies

E

�Z
��(T )cos(�W0;T)cos(�(I0;T(u)+ '))

�
−! E

�Z
�Jcos(�W0;1)Kcos(�(I0;1(u)+ '))

�
and the same holds for the term with sinus. By Fatou's lemma we also know that

liminf
T!1

E

�Z
0

T

kusT kL22 ds
�
>E

�Z
0

1
kus1kL22 ds

�
so we can deduce liminfT!1 FT

�(uT ;�) > F1
� (u1;�), which also implies liminfT!1 inf FT

� >
F1
� (u1;�). Now observe that analogously we can show that limT!1FT

�(u)=F1
� (u) for any u2Ha

which implies that liminfT!1 infu2Ha
FT
�(u)6 infu2Ha

F1
� (u) so

F1
� (u1;�)= liminf

T!1
inf
u2Ha

F1
� (u)= inf

u2Ha

F1
� ()u:

For the L1 bound

kut
T ;�kL1 6 sup

'

kQtrVt;T
� (')kL1

6 hti−1(�k�(t)� sin(�')kL1+ jRj1;1)6C� hti−1(hti1/2−�)
6 C�hti−1/2−�;

which implies the final statement. �

We now discuss what happens in the f =/ 0 case.

Corollary 4.63. Let f 2C2(R2) satisfy jf j1;2;mA <1. Then one can rewrite

inf
u2Ha

FT
f ;�(u)

= inf
u2Ha

E

�
f(W0;T + IT(u))+�(T )

Z
�cos(�(W0;T + I0;T(u)))+

1
2

Z
0

1
kutkL22

�
= inf

u2Dr(A)
E

�
f(W0;T + I0;T(u)+ I0;T(uT ;�))+�(T )

Z
�cos(�(W0;T + I0;T(u)+ I0;T(uT ;�)))

+ 1
2

Z
0

1
kutkL22 dt+

Z
0

1Z
utut

�;Tdt+ 1
2

Z
0

1
kut

�;T kL22 dt
�

=: inf
u2Df

F�T
f ;�(u)

Note that here we have made a change of variables and introduced the functional F�T
f ;�(u) defined

by the second to last line.

Proof. From Theorem 4.51 we obtain that the assumptions of Proposition 4.36 (Hypothesis B)
are satisfied. Then applying Proposition 4.36 we can deduce the statement. �

Proposition 4.64. With F�T
f ;�(u) defined as in 4.63 F�T

f ;�(u)!F�1
;f ;�(u) uniformly on Df, where

F�1
f ;�(u)

= E

�
f(W0;1+ I0;1(u)+ I0;1(u1;�))+�

Z
�Jcos(�W0;1)Kcos(�(I0;1(u)+ I0;1(u1;�)))

+�
Z
�(x)Jsin(�W0;1)Ksin(�(I0;1(u)+ I0;1(u1;�)))+ 1

2

Z
0

1
kutkL22 dt+

Z
0

1Z
utut

�;1dt

+ 1
2

Z
0

1
kut

�;1kL22 dt
�
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Proof. Note that clearly for r > 0 kI0;T(u)kH16 kukD06 kukDr, so for any u2Df,

E[kI0;T(u)kH1
2 ]6C:

Now we decompose:

F�1
f ;�(u)−F�T

f ;�(u)

= E

�
�

Z
�(x)(Jcos(�W0;1)K− Jcos(�W0;T)K)cos(�(I0;1(u)+ I0;1(u1;�)))

+�
Z
�(x)(Jcos(�W0;T)K)(cos(�(I0;1(u)+ I0;1(u1;�)))− cos(�(I0;T(u)+ I0;T(uT ;�))))

+�
Z
�(x)(Jsin(�W0;1)K− Jsin(�W0;T)K)sin(�(I0;1(u)+ I0;1(u1;�)))

+�
Z
�(x)(Jsin(�W0;T)K)(sin(�(I0;1(u)+ I0;1(u1;�)))− sin(�(I0;T(u)+ I0;T(uT ;�))))

f(W0;T + I0;T(u)+ I0;T(uT ;�))− f(W0;1+ I0;1(u)+ I0;1(u1;�))

+
Z
0

1Z
ut(ut

�;1−u�;T)dt+ 1
2

Z
0

1
kut

�;1kL22 dt−
1
2

Z
0

1
kut

�;T kL22 dt
�
:

By Couchy-Schwarz gives:

E

�Z
0

1Z
ut(ut

�;1−u�;T)dt
�
6 E

�Z
0

1
kutkL22 dt

�
1/2

E

�Z
0

1
k(ut

�;1−ut
�;T)kL22 dt

�
1/2

which goes to 0 uniformly on Df. Furthermore

E

�Z
�(Jcos(�W0;1)K− Jcos(�W0;T)K)cos(�(I0;1(u)+ I0;1(u1;�)))

�
2

6 E[k�(Jcos(�W0;1)K− Jcos(�W0;T)K)kH−1+�2 ]E[kcos(�(I0;1(u)+ I0;1(u1;�)))kH1−�
2 ]

6 CE[k�(Jcos(�W0;1)K− Jcos(�W0;T)K)kH−1+�2 ]E[kI0;1(u)+ I0;1(u1;�)kH1
2 ]

again this goes to 0 uniformly on Df. And we can proceed analogously for the sinus term. Fur-
thermore

E

�Z
�(Jcos(�W0;T)K)(cos(�(I0;1(u)+ I0;1(u1;�)))− cos(�(I0;T(u)+ I0;T(uT ;�))))

�
2

6 E[k�(Jcos(�W0;T )K)kH−1+�2 ]E[k(cos(�(I0;1(u) + I0;1(u1;�))) − cos(�(I0;T(u) +
I0;T(uT ;�))))kH1−�

2 ]

6 E[k�(Jcos(�W0;T )K)kH−1+�2 ]E[k(cos(�(I0;1(u) + I0;1(u1;�))) − cos(�(I0;T(u) +
I0;T(uT ;�))))kL22�k(cos(�(I0;1(u)+ I0;1(u1;�)))− cos(�(I0;T(u)+ I0;T(uT ;�))))kH1

2−2�]

6 E[k�(Jcos(�W0;T)K)kH−1+�2 ]E[kIT ;1(u) + I0;1(u1;� − uT ;�)kL22� kIT ;1(u) + I0;1(u1;� −
uT ;�)kH1

2−2�]

6 2E[k�(Jcos(�W0;T)K)kH−1+�2 ]E
�
hT i−�

Z
0

1
kukL22 dt+

Z
0

1
ku1;�−uT ;�kL22 dt

�
which again goes to 0 uniformly on Df. Again we can proceed analogously for the sinus. Finally

E[f(W0;T + I0;T(u)+ I0;T(uT ;�))− f(W0;1+ I0;1(u)+ I0;1(u1;�))]
6 CE[kWT ;1+ IT ;1(u)+ I0;T(uT ;�−u1;�)+ IT ;1(u1;�)kH−1]:

which also goes to 0 uniformly on Df: �
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4.6.2. Removing the IR cutoff
Now we consider the functional

G�;f(u) = F�1
f ;�(u)− inf

u2Ha

F1
� (u)

= F�1
f ;�(u)−F1

� (u�;1)

= E

�
f(W0;1+ I1(u)+ I1(u�;1))

+�
Z
�(x)Jcos(�W0;1)K(cos(�(I0;1(u)+ I0;1(u1;�)))− cos(�I0;1(u1;�)))

+�
Z
�(x)Jsin(�W0;1)K(sin(�(I0;1(u)+ I0;1(u1;�))− sin(�I0;1(u1;�))))

+ 1
2

Z
0

1
kutkL22 dt+

Z
0

1Z
utut

�;1dt
�

The goal of this section is to establish that G�;f(u) has a limit as �! 1. We will always assume
that f :L2(R2)!R is such that jf j1;2;m<1. In particular f is Lipschitz on L2;−m(R2).

Lemma 4.65. As � ! 1, u�;1converges in L2(P; L2(R+; L
2(hxi−k))),for k large enough, to a

u12L1(P;L1(R+�R2)) which satisfies khti1/2+�utkL1(P;Lt1(R+�R2))6C. Furthermore the law
of (W ;u1) is invariant under the action of the Euclidean group, where an element of the Euclidean
group G=(R; a) R2O(2); a2R2 acts on functions by

(Gf)(x)= f(Rx−a):

Proof. Take �1; �2 such that �1(x)= �2(x)=1 on B(0;N). By Theorem 4.62 there exists TN such
that

P
i=1
2 E[kuTN ;�i − u1;�

ikL2(R+;L2(hxi−k))
2 ] 6Pi=1

2 E[kuTN ;�i − u1;�
ikD0
2 ]6 hN i−a for a > 0.

From Lemma 4.58 we know that E[kuT ;�1−uT ;�2kD−
2 ]6C hN i−a uniformly in T . So by triangle
inequality for some k large enough

E[ku1;�1−u1;�2kL2(R+;L2(hxi−k))
2 ]

6
X
i=1

2

E[kuTN ;�i−u1;�ikL2(R+;L2(hxi−k))
2 ] +E[kuTN ;�1−uTN ;�2kL2(R+;L2(hxi−k))

2 ]

6 hN i−a

which implies our statement. To prove the second statement u1 2 L1(P; L1(R+�R2)) follows
from the fact supT<1sup� khti1/2+�uT ;�kL1(P;L1(R+�R2))<1, which was proven in Lemma 4.52.
Now to prove Euclidean invariance we can recall from from Corollary 4.14 we can write

Vt;T
� (G') = −logE

�
exp
�
−�(T )

Z
�sin(�Wt;T + �G')

��
= −logE

�
exp
�
−�(T )

Z
G−1�sin(�G−1Wt;T + �')

��
= −logE

�
exp
�
−�(T )

Z
G−1�sin(�Wt;T + �')

��
= Vt;T

G−1�(')

Now it is not hard to see that Gu�;T is the minimizer of

GFT(u) :=FT(Gu)=E

�
��(T )

Z
(G−1�)cos(�W~0;T + �I0;T(u))+

1
2

Z
0

T

k uskL22 ds
�

where W~0;T =G−1W0;T and by the Verification Principle Gu�;T satisfies

Gut
�;T =−QtrVt;T

G−1�(Y~t):
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Here X~ =G−1X and Y~ solves the equation

dY~t=−QtrVt;T
G−1�(Y~t)+QtdX~t; Y~0=0:

Now Law(X~)=Law(X) implies Law(Y~)=Law(Y�) where Y� is the solution to the equation

dY�t=−QtrVt;T
G−1�(Y�t)+QtdXt; Y�0=0

and Law((GXt; Gu�;T))=Law
((
GXt;−QtrVt;T

G−1�(Y�t)
��
. Now observe that by verification

ut
G−1�;T =−QtrVt;T

G−1�(Y�t):

So in total Law((GX;Gu�;T))=Law
((
X;ut

G−1�;T ��: Taking T!1 we obtain

Law(GX;Gu�;1)=Law(X;uG
−1�;1):

Now sending � ! 1 we get Law(G(X; u1)) = lim�!1Law((GX; Gu�;1)) = lim�!1Law((X;
uG

−1�;1))=Law((X;u1)) by uniqueness. Since W0;1=
R
0

1
QtXtdt this implies the statement. �

Proposition 4.66. As �! 1 G�;f(u)!Gf(u) uniformly on Df, with

Gf(u) = E

�
f(W0;1+ I0;1(u)+ I0;1(u1))

+�
Z
Jcos(�W0;1)K(cos((�I0;1(u)+ �I0;1(u1))− cos(�I0;1(u1))))

+�
Z
Jsin(�W0;1)K(sin(�(I0;1(u)+ I0;1(u1)))− sin(�I0;1(u1)))

+ 1
2

Z
0

1
kutkL22 dt+

Z
0

1Z
utut

1dt
�

Proof.

Gf(u)−G�;f(u)
= E[f(W0;1+ I1(u)+ I1(u1))− f(W0;1+ I1(u)+ I1(u�;1))

+�
Z
�Jcos(�W0;1)K((cos(�(I0;1(u) + I0;1(u1))) − cos(�I0;1(u1)) − (cos(�(I0;1(u) +

I0;1(u1;�)))− cos(�I0;1(u1;�)))

+�
Z
�Jsin(�W0;1)K((sin(�(I0;1(u) + I0;1(u1))) − sin(�I0;1(u1))) − (sin(�(I0;1(u) +

I0;1(u1;�)))− sin(�I0;1(u1;�)))

+�
Z
(1− �)Jcos(�W0;1)K(cos(�(I0;1(u)+ I0;1(u1)))− cos(�I0;1(u1)))

+�
Z
(1− �)Jsin(�W0;1)K(sin(�(I0;1(u)+ I0;1(u1)))− sin(�I0;1(u1)))

+
Z
0

1Z
ut(ut1−ut

�;1)dt
�

So by Interpolation with L1, for q close enough to 1:

k((cos(�(I0;1(u) + I0;1(u1))) − cos(�I0;1(u1))) − cos(�(I0;1(u) + I0;1(u1;�))) −
cos(�I0;1(u1;�)))kBq;q1−�1(hxik)

6 4�
Z
0

1

k(sin(��I0;1(u)+ �I0;1(u1))− sin(��I0;1(u)+ �I0;1(u1;�))I0;1(u)kW 1;1;

1−�1 d�

6 CkI0;1(u1;�)− I0;1(u1)jjH1;−

1−�1 kI0;1(u)kH1;2


1−�1

+CkI0;1(u1;�)− I0;1(u1)kL2;−

�2(1−�1)kI0;1(u)kH1;2


2(1−�1)
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where we have applied Lemma 4.67, using that kI(u1;�)kW1;16C from Lemma 4.65 and Lemma
4.29. It is clear that

kI0;1(u1;�)− I0;1(u1)kL2;−
6 kI0;1(u1;�)− I0;1(u1)kL11−�kI0;1(u1;�)− I0;1(u1)kL2;−
� :

We can then use this estimate to obtain for p large enough such that 1/p+1/q=1

�E

�Z
�Jcos(�W0;1)K((cos(�(I0;1(u) + I0;1(u1))) − cos(�I0;1(u1))) − cos(�(I0;1(u) +

I0;1(u1;�)))− cos(�I0;1(u1;�)))
�

6 CE
h
kJcos(�W0;1)KkBp;p−1+�(hxi−k)

p
i
1/p

E
�(
kI0;1(u1;�) − I0;1(u1)jjH1;−


q(1−�1)kI0;1(u)kH1;2

q(1−�1) +

kI0;1(u1;�)− I0;1(u1)kL2;−

q�2(1−�1)kI0;1(u)kH1;2


q2(1−�1)��1/q
6 E

h
kJcos(�W0;1)KkBp;p−1+�(hxi−k)

p
i
1/p

�E
�(
kI0;1(u1;�)− I0;1(u1)jjH1;−


2q(1−�1)��1/2qE�kI0;1(u)kH1;2

2q(1−�1)�1/2q

+E[kI0;1(u1;�)− I0;1(u1)jjH1;−

2 ]1/q−(1−�1)E[kI0;1(u)kH1;2


2 ](1−�1);

provided that we choose q <1/(1− �1) and �2=2(1− q(1− �1))/ q(1− �1). Now for u2Df the last
line is bounded by

C
(
E
�(
kI0;1(u1;�)− I0;1(u1)jjH1;−


2q(1−�1)��1/2q+E[kI0;1(u1;�)− I0;1(u1)jjH1;−

2 ]1/q−(1−�1)

�
;

which goes to 0. We can proceed analogously for the sinus term. To estimate��������Z (1− �)Jcos(�W0;1)K(cos(�(I0;1(u)+ I0;1(u1)))− cos(�I0;1(u1)))
��������

=
���������Z

0

1Z
(1− �)Jcos(�W0;1)K(sin(�I0;1(u)+ I0;1(u1))I0;1(u)d�

��������
it is not hard to see that that k(1− �)f kW1;1(hxik)6N−k/2kf kW1;1(hxik/2), so interpolating between
W 1;1;
/2 and L1 we have

6 E
h
kJcos(�W0;1)KkBp;p−1+�(hxi−k)

p
i
1/p

�E
�
k(1− �)((sin(�(�I0;1(u)+ I0;1(u1)))I0;1(u))kW 1;1;
/2

(1−�)q �
1/q

6 N−
/2E
h
kJcos(W0;1)KkBp;p−1+�(hxi−k)

p
i
1/p

�E
�
k((sin(�(�I0;1(u)+ I0;1(u1)))I0;1(u))kW 1;1;


(1−�)q �1/q:
Now

E[k((sin(�I0;1(u)+ I0;1(u1))I0;1(u))kW 1;1
1−� ]

can be estimated analogously to the above computations. Finally

E

�Z
0

1Z
ut(ut1−ut

�;1)dt
�
2

6E[kukD

2 ]E[ku1−u�;1kD−
2 ]! 0

and by definition of f

E[jf(W0;1+ I1(u)+ I1(u1))− f(W0;1+ I1(u)+ I1(u�;1))j]6E[ku1−u�;1kD−

2 ]1/2

which allows us to conclude. �

Lemma 4.67. Assume that kf1kW 1;1+ kf2kW 1;16C. Then

k((cos(f1+ g)− cos(f2+ g)g)kW1;1;


6 C(kf1− f2jjH1;−
kgkH1;2
+ kf1− f2kL2;−
� kgkH1;2

2 )

Proof. Set w(x)= exp(
x). Then with 1/p+1/ q+1/2=1 and q close enough to 2 we have
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kr((cos(f1+ g)− cos(f2+ g)g)kL1;1;

6 j

R
R2w(x)(cos(f1+ g)− cos(f2+ g))rgdxj+ j

R
R2w(x)(cos(f1+ g)− cos(f2+ g))grgdxj

+j
R
R2w(x)(cos(f1+ g)− cos(f2+ g))rf1gdxj+ j

R
R2w(x)(cos(f1+ g))(rf1−rf2)gdxj

6
R
R2w(x)jf1− f2jjrg jdx+

R
R2w(x)jf1− f2jjg jjrg jdx+

R
R2w(x)jf1− f2jjrf1jjg jdx

+
R
R2w(x)j(rf1−rf2)jjg jdx

6 krgkL2;2
krf1−rf2jjL2;−
+ kf1− f2kLp;p;−
kgkLqkrgkL2;2
+
krf1kL1kf1− f2kL2;−
kgkL2;2
+ krf1−rf2jjL2;−
kgkL2;2


Now using the Sobolev embedding

kgkLq6 kgkH16 kgkH1;2


we have

krgkL2;2
krf1−rf2jjL2;−
+ kf1− f2kLp;p;−
kgkLqkrgkL2;2
+
krf1kL1kf1− f2kL2;−
kgkL2;2
+ krf1−rf2jjL2;−
kgkL2;2


6 krf1−rf2jjL2;−
(kgkL2;2
+ krgkL2;2
)+ krf1kL1kf1− f2kL−
kgkL2

+kf1− f2kL11−�kf1− f2kL2;−


� kgkH1;2

2

6 C(kf1− f2jjH1;−
kgkH1;2
+ kf1− f2kL2;−

� kgkH1;2


2 )

where in the last line we have applied the assumption kf1kW1;1+ kf2kW1;16C.
Now using that

k((cos(f1+ g)− cos(f2+ g)g)kL1;
6 kf1− f2kL2;−
kgkL2;2

we can conclude. �

4.7. Characterization as a shifted Gaussian measure

This section is dedicated to proving Theorem 4.6. The following Lemma will be very useful in this
endeavor

Lemma 4.68. Let f 2C2(L2(R2)) satisfy
jf j1;2;0A <1;

and g 2C2(L2(R2)) be such that

jg j1;1+ jg j2<1:

Then there exists an s0> 0 such that for all 06 s< s0�Z
fe−sgd�SG

�;T

��Z
e−sgd�SG

�;T

�
= d

dt

�
−log

Z
e−tf−sgd�SG

�;T

�
= E[f(W0;1+ I0;1(usg;T ;�))]:

Here usg;T ;� denotes the minimizer of

E

�
��(T )

Z
�cos(�Y0;T(u; 0))+ sg(Y0;T(u; 0))+

1
2

Z
0

T

kuskL22 ds
�
:

Proof. We set for t> 0

F t(u)=E

�
��(T )

Z
�cos(�Y0;T(u; 0))+ sg(Y0;T(u; 0))+ tf(Y0;T(u; 0))+

1
2

Z
0

T

kuskL22 ds
�
:

By Verification this has a minimizer in Ha which we denote utf+sg;T ;�. By Lemma 4.55 for s small
enough the initial condition VT(') = ��(T )

R
�cos(�') + sg(') satisfies Hypothesis D in Section

4.3. So we can apply Proposition 4.38 to obtain

E[kutf+sg;T ;�−usg;T ;�kD0
2 ]6Ctjf j1;2;0;
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from which we can deduce that

E[f(W0;T + I0;T(utf+sg;T ;�))]!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !t!0
E[f(W0;T + I0;T(usg;T ;�))]:

Now observe that by Corollary 4.14 we have

d
dt

�
−log

Z
e−tf−sgd�SG

�;T

�
= lim

t!0

F t(utf+sg;T ;�)−F 0(usg;T ;�)
t

:

Furthermore

liminf
t!0

F t(utf+sg;T ;�)−F 0(usg;T ;�)
0

= E[f(W0;T + I0;T(utf+sg;T ;�))]+ liminf
t!0

(F 0(utf+sg;T ;�)−F 0(usg;�))
t

> E[f(W0;T + I0;T(usg;T ;�))]:

On the other hand

limsup
t!0

F t(utf+sg;T ;�)−F 0(usg;T ;�)
t

6 limsup
t!0

F t(usg;T ;�)−F 0(usg;T ;�)
t

= E[f(W0;T + I0;T(usg;T ;�))]:
�

We can now prove Theorem 4.6:

Proof of Theorem 4.6. Setting g=0 in Lemma 4.68 we obtain for any f 2C2(L2(R2))Z
fd�SG

�;T =E[f(W0;T + I0;T(uT ;�))]

where uT ;� = u0;T ;� and we recognize that in Lemma 4.65 it was established that uT ;�! u1 in
L2(P; L2(R+; L

2(hxi−k))) as T!1; �! 1. This implies that

I0;T(uT ;�)! I0;1(u1) in L2(P; L2(hxi−n))

so if f is bounded and continuous on H−1(hxi−n) we have

lim
�!1

lim
T!1

Z
fd�SG

�;T =E[f(W0;1+ I0;1(u1))]: (4.26)

Recall also that I0;1(u1) 2 L1(P; L1(R2)). So we will have proven our theorem once we have
extended (4.26) to any f which is continuous on H−1(hxi−k). To do this we claim that for
any f 2 C(H−1(hxi−k)) we can find a sequence fn 2 C2(L2(R2)) \ C(H−1(hxi−k)) such that
sup'2H−1(�) jfnj 6 sup'2H−1(hxi−k) jfnj and for any ' 2 H−1(hxi−k) fn(') ! f(').Here by
fn 2 C2(L2(R2)) \ C(H−1(hxi−k)) we mean that fn 2 C2(L2(R2)) and extends continuous to
a functional in C(H−1(hxi−k)). To do this let Pn be a sequence of projections in H−1(hxi−k)
on finite dimensional subspace on H−1(hxi−k) such that Pn'! ' in H−1(�) as n!1. Defining
f~n= f �Pn we can find for any f~n an fn such that

sup
'2H−1(hxi−k)

jf~n(')− fn(')j6 1/n

and fn2C2(L2(R2))\C(H−1(hxi−k)). Taking a diagonal sequence we can conclude. �

4.8. Osterwalder Schrader Axioms

In this section we complete the proof of Theorem 4.8.

4.8 Osterwalder Schrader Axioms 141



4.8.1. Reflection Positivity
To prove Reflection Positivity we prove that the measure �SG is a limit of reflection positive
measures which is sufficient by Remark 1.20. We denote by �SG

� : =limT!1�SG
�;T . Since �SG

� ! �SG
as �! 1 it is enough to construct a sequence �SG

";�! �SG
� such that �SG

";� is reflection positive. We
can take � being invariant under the time reflection �f(x1; x2) :=f(−x1; x2). To construct �SG

";�

we cannot smooth in the �physical time� direction since this would destroy reflection positivity.
Instead define �= �0
 �, � 2S 0(R2) where � 2Cc1(R2). Also set �"= "−2�(�/") = �0
 �" where
�"= "−1�(�/"). Finally we set WT

"= �" �W0;T , T 2 [0;1]. We define

�SG
";�= e−�

R
��"cos(�W1" )dP:

We will now proceed in three steps: In Step 1 we show that for the correct choice of �"

�"cos(�W1" )! Jcos(�W1)K:
In Step 2 we show that for any p> 1

sup
"

E[e−�p
R
��"cos(�W1" )]<1:

Steps 1 and 2 together imply that �SG
";�! �SG

� : In Step 3 we prove that �SG
";� is indeed reflection

positive.
SSSSSSSSSttttttttteeeeeeeeeppppppppp 111111111.........Observe that

E[�" �W0;T1(x) �" �W0;T2(y)]= (�"
 �" �KT1^T2)(x; y):

Now observe that for T 2 [0;1], KT(x; y)=K�T(x− y) with K�T(x)6− 1

4�
log(T ^ jxj)+ g(x) with

g a bounded function. Furthermore

(�"
 �" �KT)(x; y)= (�" � �" �K�T)(x− y):

Then it not hard to see that

K� "(x)= �" � �" �K1= 1
4�

log
�

1
jxj _ "

�
+ g"(x):

with sup" kg"kL1<1. From this we can deduce that �"�W1(x) is in Lloc
2 (R2) almost surely since

for any bounded U �R2

E

�Z
U

((�" �W0;1)(x))2dx
�
= jU jK� "(0):

We claim that for any f 2Cc1(R2)Z
R2
f�": =

Z
fe

�2

2
K�"(0)

ei�W1
" !

Z
fJei�W1K

where the convergence is in L2(P). To prove this we calculate

E

���������Z
R2
e
1
2
�2K� "(0)

ei�W1
" (x)f(x)− e

1
2
�2KT(0)ei�WT(x)f(x)dx

��������2�
= E

�Z
R2

Z
R2
e�

2K�"(0)ei�(W1
" (x)−W1" (y))− e

�2

2
(K�T(0)+K� "(0))ei�(WT(x)−W1" (y))

�
−e

�2

2
(K�T(0)+K�

"(0))
ei�(W1

" (x)−WT(y))+ e�
2K�T(0)ei�(WT(y)−WT(y))f(x)f(y)dxdy

i
=
Z
R2

Z
R2
e�

2K�"(x−y)+ e�
2K�T(x−y)− 2e�2E[WT(x)W1

" (y)]f(x)f(y)dxdy:

W.l.o.g we can take f>0. Now sinceK�"(x− y)6− 1

4�
logjx− y j+C,KT(x− y)6− 1

4�
log jx− y j+C

we have by dominated convergence and Fatou's lemma

lim
"!0

lim
T!1

Z
R2

Z
R2
e�

2K�"(x−y)+ e�
2K�T(x−y)− 2e�2E[WT(x)W1

" (y)]f(x)f(y)dxdy:

= 0
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which proves the claim. This clearly impliesZ
�e

1
2
�2K�"(0)cos(�W1" )!

Z
�Jcos(�W1)K

in L2(P): In particular we can select a subsequence (not relabeled) such that this implies that
P− a:s

e−�
R
�e

1
2
�2K�"(0)

cos(�W1" )! e−�
R
�Jcos(�W1)K:

SSSSSSSSSttttttttteeeeeeeeeppppppppp 222222222......... Step 1 will imply that �SG
";�! �SG

� as soon as we have established that

sup
"

E
h
e−�p

R
�e�

2K�"(0)cos(�W1" )
i
<1:

From Corollary 4.14 we know

−logE

�
e−�p

R
�e

�2

2
K�"(0)

cos(W1" )

�
= inf
u2Ha

E

�
�p

Z
�e

�2

2
K�"(0)cos(�(W1" + I"(u)))+

1
2

Z
0

1
kutkL22 dt

�
with I"(u)= �" � I0;1(u). Expanding the cosine we get��������Z �e

�2

2
K� "(0)cos(�(W1" + I"(u)))

��������2
=
��������Z �e

�2

2
K� "(0)cos(�W1" )cos(�I"(u))

��������2+ ��������Z �e
�2

2
K� "(0)sin(�W1" )sin(�I"(u))

��������2
6 E

�





�e�22 K� "(0)cos(�W1" )






H−1

2
�
E[kcos(�I"(u))kH1

2 ]

+E

�





�e�22 K� "(0)sin(�W1" )






H−1

2
�
E[ksin(�I"(u))kH1

2 ]

6 C

�
E

�





�e�22 K�"(0)cos(�W1" )






H−1

2
�
+E

�





�e�22 K�"(0)sin(�W1" )






H−1

2
��

E[kI"(u)kH1
2 ]

6 C

�
E

�





�e�22 K�"(0)cos(�W1" )






H−1

2
�
+E

�





�e�22 K�"(0)sin(�W1" )






H−1

2
��

E

�Z
0

1
kutkL22 dt

�
where in the last line we have used Lemma 4.32. This implies by Young's inequality

inf
u2Ha

E

�
�p

Z
�e�

2K� "(0)cos(�(W1" + I"(u)))+
1
2

Z
0

1
kutkL22 dt

�
> −C

�
E

�





�e�22 K� "(0)cos(�W1" )






H−1

2
�
+E

�





�e�22 K� "(0)sin(�W1" )






H−1

2
��

+ 1
4
E

�Z
0

1
kutkL22 dt

�
:

Now note that from a simple calculation we get

E
h������e�22 K�"(0)cos(�W1" (x))e�22 K� "(0)cos(�W1" (y))������ i6C 1

jx− y j�2/2�
;

from which we can conclude by Lemma 4.16 that sup"E
�





�e�22 K� "(0)cos(�W1" )







H−1

2
�
<1, so we

can deduce that sup"E
�
e−�p

R
�e�K

�"(0)cos(�W1" )
�
<1.

SSSSSSSSSttttttttteeeeeeeeeppppppppp 333333333......... We now show that �SG
";� are reflection positive. We can write

�SG
";�= e−�S"

�(�)�F
" (d�); with S"

�(�)= e
1
2
�2K�"(0)

Z
�cos(��)

where �F" =Law(W1" ) is the gaussian measure with covariance operator

C"(f)= �" � (m2−�)−1 � �"f:

We claim that �F" is reflection positive. Since it is Gaussian by Theorem 6.2.2 in [67] it is enough
to show that

hf ;�+�C"�+f iL2> 0:
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Where �+ is the projection on L2(R+�R). Since the convolution with �" commutes with �+ we
have

hf ;�+�C"�+f i
= h�+(�" � f);�(m2−�)−1�+(�" � f)i
> 0;

where in the last line we have used reflection positivity of (m2−�)−1. Now finally we prove that
�SG
";� is indeed reflection positive. Write

S"
�;+(�)= e

�2

2
K�"(0)

Z
R+�R

�cos(��):

Observe that provided � is symmetric

S"
�(�)=S"

�;+(�)+S"
�;+(��):

Then Z
F (�)�F (�)d�SG

";�=
Z
F (�) e−�S"

�;+(�)�
(
F (�) e−�S"

�;+(�)
�
d�F" > 0

by reflection positivity of �F" .

4.8.2. Exponential clustering
In this section we want to study expectations under the Sine Gordon measure of the formZ

S 0(R2)

Y
i=1

k

h i; �iL2(R2)�SG(d�):

Our goal is to show that there exist constants C =C(f igi=1k ) and an mp> 0 independent of  ,
such that for any a2R2����������

Z
S 0(R2)

Y
i=1

l

h i; �iL2(R2)

Y
i=l+1

k

h i(�+a); �i�SG(d�)

−
Z

S 0(R2)

Y
i=1

l

h i; �iL2(R2)�SG(d�)
Z

S 0(R2)

Y
i=l+1

k

h i; �iL2(R2)�SG(d�)

����������
6 C exp(−mpjaj):

In this subsection all constants will be allowed to depend on  i. First note that a simple compu-
tation gives, for f ; g:H−1(hxi−n)!R continuous,bounded

d
dt

d
ds

�
−log

Z
S 0(R2)

e−tf−sgd�SG

�
=
Z

S 0(R2)

fgd�SG−
Z

S 0(R2)

fd�SG
Z

S 0(R2)

gd�SG:

Lemma 4.69. There exists a 
>0 such that for any f ; g:H−1(hxi−n)!R2 such that with A;B�R2

jf j1;2;mA <1; jg j1;2;mB <1

d
dt

d
ds

�
−log

Z
S 0(R2)

e−tf−sgd�SG

�
6C jf j1;2;mA jg j1;2;mB exp(−
d(A;B)):

Proof. By weak convergence it is enough to prove the statement for �SG
�;T with C; 
 uniform in

�; T . By Lemma 4.68 we have

d
ds

d
dt

�
−log

Z
S 0(R2)

e−tf−sgd�SG
�;T

�
= lim
s!0

1
s
(E[f(W0;1+ I0;1(usg;�))]−E[f(W0;1+ I0;1(u0;�))]):

Now from Theorem 4.51 and Proposition 4.36 we get

kI0;T(usg;�)− I0;T(u0;�)kL2;
(B)6 sjg j1;2;mB ;
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so we have by Lemma 4.24

jE[f(W0;T + I0;T(usg;�))]−E[f(W0;T + I0;T(u0;�))]j
6 jf j1;2;mA kI0;T(usg;�)− I0;T(u0;�)kL2;
(B)exp(−
d(A;B))
6 sjf j1;2;mA jg j1;2;mB exp(−
d(A;B))

which implies the statement. �

Finally we are able to prove the exponential clustering: Take �N 2Cc1(R;R) with �N(x) = 1
if jxj6N and �N(x)=0 if jxj>N +1, supN2N k(�N)0kL16C. Now define

fN(�)=
Y
i=1

l

h i; �iL2(R2)�
N(k�kH−1;−
(A)); gN(�)=

Y
i=l+1

k

h i; �iL2(R2)�
N(k�kH−1;−
):

where we have introduced the norm

k�kH−1;−
(A)= k(m2−�)1/2exp(−
(d(x; A))�kL2:

Note that k�kH−1;−
(A)6Ck;
k�kH−1(hxi−k) for any k2N. Furthermore introduce

gN;a(�)=
Y
i=l+1

k

h i(�+a); �iL2(R2)�(k�kH−1;−
(A+a)):

Observe that fN ; gN 2C2(L2(R2)): Note that with w(x)= exp(−
(d(x;A)) by product rule

rfN(�)

= �N(k�kH−1;−
)
X
j=1

l Y
i=0
i=/ j

l

h i; �iL2(R2) j

+(�
N)0(k�kH−1;−
)
k�kH−1;−


Y
i=0

l

h i; �iL2(R2)(w(1−�)−1w�)

so since

kw(1−�)−1w�kL2;
6 k(1−�)−1w�kL26Ck�kH−1;−


jrfN(�)j1;2;
A 6CN l

0@Y
j=1

l

j j j1;2;


1A
and now by exponential integrability and translation invariance of �SGZ

S 0(R2)

����������Y
i=1

l

h i; �iL2(R2)

Y
i=l+1

k

h i(�+a); �i− fN(�)gN;a(�)

�����������SG(d�)
6 C

Z
�
k�k

H−1;−
(A+a)>Nork�k
H−1;−
(A)>N

	k�kH−1;−
(A)l k�kH−1;−
(A+a)
k−l �SG(d�)

6 2�SG(k�kH−1;−
(A)>N)1/2
Z

S 0(R2)

k�kH−1;−
(A)
4l �SG(d�)

Z
k�kH−1;−
(A+a)

4k−4l �SG(d�)

6 C2�SG(k�kH−1;−
(A)>N)1/2
Z

S 0(R2)

k�kH−1;−
(A)
4k �SG(d�)

6 Ce−N:

And analogous statements hold forZ
S 0(R2)

����������Y
i=1

l

h i; �iL2(R2)− fN(�)

�����������SG(d�);
Z

S 0(R2)

���������� Y
i=l+1

k

h i; �i− gN(�)

�����������SG(d�):
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Now by Lemma 4.69��������Z
S 0(R2)

fN(�)gN;a(�)�SG(d�)−
Z

S 0(R2)

fN(�)�SG(d�)
Z

S 0(R2)

gN(�)�SG(d�)
��������

=
��������Z

S 0(R2)

fN(�)gN;a(�)�SG(d�)−
Z

S 0(R2)

fN(�)�SG(d�)
Z

S 0(R2)

gN;a(�)�SG(d�)
��������

6 jrfN(�)j1;2;
A jrgN;a(�)j1;2;
A+aexp(−
a)
= jrfN(�)j1;2;
A jrgN(�)j1;2;
A exp(−
a)
6 CNkexp(−
a)

Putting things together we haveZ
S 0(R2)

Y
i=1

l

h i; �iL2(R2)

Y
i=l+1

k

h i(�+a); �i�SG(d�)

−
Z

S 0(R2)

Y
i=1

l

h i; �iL2(R2)�SG(d�)
Z

S 0(R2)

Y
i=l+1

k

h i; �iL2(R2)�SG(d�)

6 C (Nkexp(−
a)+ exp(−N))
N = 
 jaj = C ((
a)kexp(−
 jaj)+ exp(−
 jaj))

6 C exp(−(1− �)
 jaj):

4.8.3. Non Gaussianity
In this section we prove that �SG is indeed not a Gaussian measure. Assume �SG would be Gaussian,
we can regard it as a gaussian measure on the Hilbert space H−1(hxi−n) with n 2N sufficiently
large. Then there exists a Banach space H�S 0(R2) andM 2H−1(hxi−n) such that for any  2H

log
Z
e−h ;�id�SG(d�)= k kH2 +(M;  )H−1(hxi−n)

(This follows easily from Lemma 5.1 in [83]). On the other hand we know that with VT
�(�) =

�(T )
R
�(x)cos(�(x))dx by the Cameron-Martin theorem for the Gaussian Free Field

log
Z
e−h ;�id�SG(d�)

= lim
�!1;T!1

log
1

Z�;T

Z
e−h ;�id�SG

�;T(d�)

= lim
�!1;T!1

log
1

Z�;T

Z
e−h ;�ie−�VT

�(�)d�T

= lim
�!1;T!1

log
1

Z�;T

Z
e−h ;CT�ie−�VT

�(CT�)d�

= lim
�!1;T!1

log
�
ehCT ;(m

2−�)−1CT i 1
Z�;T

Z
e−�VT

�(�+(m2−�)−1 )d�T

�
= lim

�!1
lim
T!1

(hCT ; (m2−�)−1CT i+V0;T
� ((m2−�)−1 )−V0;T

� (0)):

Recall that since supT jV0;T
� j1;16C� by Theorem 4.51 we have that for  2Cc1

k kH2 −hCT ; (m2−�)−1CT i

= log
Z
e−h ;�id�SG(d�)− (M;  )H−1(hxi−n)−hCT ; (m2−�)−1CT i

6 liminf
�!1;T!1

log
Z
e−h ;�id�SG

�;T(d�)− (M;  )H−1(hxi−n)−hCT ; (m2−�)−1CT i

6 sup
T<1;�2Cc1(R2;[0;1])

jV0;T
� j1;1k(m2−�)−1 kL1−kM kH1(hxi−n)k kH1(hxin)

< 1:
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So in particular H contains Cc1 functions. We now show that lim�!1limT!1Vt;T
� ( ) is not a

quadratic functional which will imply that

lim
�!1

lim
T!1

hCT ; (m2−�)−1CT i+Vt;T
� ( )−V0;T

� (0)=/ k kH2 − (M;  )H−1(hxi−n):

giving a contradiction. Observe that

rV0;T
� ( )=��(0)sin( )+rR0;T( )

with sup 2L2(R2)krR0;T( )kL16C�2,by Theorem 4.51. Now for a quadratic functional we would
have rV ( ) linear in  so

lim
T!1;�!1

rV0;T
� ( + ')+rV0;T

� ( − ')− 2rV0;T
� ( )= 0: (4.27)

However choosing  ; ' such that on ';  2Cc1 and for x 2B(0; 1)  = �/2 and '= �/4. Then
for any x2B(0; 1)

��(0)sin('(x)+  (x))+��(0)sin( (x)− '(x))− 2��(0)sin( (x))=�(2 2
p

/2− 2)=�( 2
p
− 2)

and since krRt;T( )kL16C�2 this implies that for � sufficiently small and x2B(0; 1)

lim
�!1

lim
T!1

rVt;T
� ( + ')(x)+rVt;T

� ( − ')(x)− 2rVt;T
� ( )(x)>�( 2

p
− 2)/2:

This is clearly a contradiction to (4.27).

4.9. Large deviations

In this section we want to discuss a Laplace principle for the Sine-Gordon measure in the �semiclass-
sical limit� as described in the introduction. We introduce the family �SG;~

T ;� of measures given by

Z
S 0(R2)

g(�)�SG;~
T ;� (d�)=

E
h
g(~1/2W0;T) e

−�

"
V~
T ;�(~1/2W0;T)

i
Z~
T ;�

; (4.28)

where similarly as above

V~
�;T(') :=��~(T )

Z
R2
cos(�'(x))dx Z~

T ;� :=E
�
e−V~

�;T(W0;T)
�

for any bounded measurable g:H−1(hxi−n)!R. Here �~(T )=e
�2

2
~K�T(0) and �~(T )cos(~1/2�W0;T)

enjoys the same properties as �(T )cos(�W0;T): It will also be convenient to introduce the unnor-
malized measures �~SG;~

T ;� =Z~
T ;��SG;~

T ;� .
Note that this corresponds (modulo a normalization constant) to the measure heuristically

defined by

e
−1
~

R
R2
��~(T )cos(�'(x))+1

2
m2'(x)2+

1
2
jr'(x)j2dx

d':

Our goal is now to show that � given as the weak limit of �SG;~
T ;� as T!1; �! 1 satisfies a Laplace

principle as ~! 0. We recall the definition of the Laplace principle.

Definition 4.70. A sequence of Borel measures �" on a metric space S satisfies the Laplace
principle with rate function I if for any continuous bounded function f :S!R

− lim
"!0

" log
Z
e
−1
"
f(x)

�"(dx)= inf
x2S

ff(x)+ I(x)g:

Definition 4.71. For a metric space S and let I: S!R be a rate function. A set D � C(S) is
called rate function determining if any exponentially tight sequence �" of measures on S such that

− lim
"!0

" log
Z
e
−1
"
fd�"= inf

x2S
ff(x)+ I(x)g;
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for all f 2D satisfies a large deviations principle with rate function I.

Lemma 4.72. Assume that D�C(S) is bounded below, i.e f>−C for any f 2D with C independent
of f. Furthermore assume that D isolates points i.e for each compact set K � S; x 2 S and " > 0
there exists f 2D such that

� jf(x)j<"

� infy2Kf(y)> 0
� infy2K\Bc(x;")f(y)> "−1

Then D is rate function determining.

For a proof see [55] proposition 3.20.

Lemma 4.73. Let S=H−1(hxi−n) for any 
 > 0 Then

D=C2(L2(R2);R+)\C(H−1(hxi−n))\fjf j1;2;m<1g\ff > 0g

is rate function determining.

Proof. We want to verify the assumptions of Lemma 4.72: By translating it is enough to verify
the assumptions for x = 0 2 H−1(hxi−n). Furthermore we can assume that K � B(0; N) for
some N > 0. Now choose � 2 Cc1(R; R+) such that �(0) = 0 and �(y) > "−1 if N2 > jy j2 > ".
f(') = �(k'kH−1;−m

2 ) satisfies the requirement of Lemma 4.72. Clearly f 2 C2(L2(R2); R+) \
C(H−1(hxi−n)), furthermore

rf(')= 2�0(k'kH−1;−m
2 )(w(1−�)−1w')

where w(y)= exp(−my): This implies that jf j1;2;m<1 since

kw(1−�)−1w'kL2;m6 k(1−�)−1w'kL26 k'kH−1;−m: �

4.9.1. Finite volume
In this section we will investigate Large Deviations of the the measures �SG;~

� : =limT!1�SG;~
�;T .

The fact that this limit exists can easily be seen as in Section 4.6.1. Let us also denote by �~SG;~
� =

limT!1�~SG;~
�;T .

Proposition 4.74. The measures �~SG;~
� satisfy a large deviations principle with rate function

I~�(')=�
Z
�(x)cos(�'(x))dx+ 1

2
m2

Z
'2(x)dx+ 1

2

Z
jr'(x)j2dx:

as ~! 0.

Before we proceed with the proof let us observe that the discussion in Section 4.6.1 can be
easily modified to obtain the following lemma.

Lemma 4.75. Assume that f 2C2(L2(R2)) then

−~ log
Z
e
−1
"
f(')

�~SG;~
� (d')= inf

u2Ha

F~
�;f(u)= inf

u2Df
F~
�;f(u)

with

F~
�;f(u) = E

�
f(~1/2W0;1+ I0;1(u))+�

Z
�Jcos(~1/2�W0;1)Kcos(�I0;1(u))

+�
Z
�Jsin(~1/2�W0;1)Ksin(�I0;1(u))+ 1

2

Z
0

1
kuskL22 dt

�
and Df was introduced in Definition 4.60.
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Proof. From Theorem 2.4 we have

−~ log
Z
e
−1
"
f(')

�~SG;~
� (d')

= inf
u2Ha

E

�
f(~1/2W0;1+~I0;1(u))+�

Z
�Jcos(~1/2�W0;1)Kcos(�~I0;1(u))

+�
Z
�Jsin(~1/2�W0;1)Ksin(�~I0;1(u))+ ~2

Z
0

1
kuskL22 dt

�
= inf

u2Ha

E

�
f(~1/2W0;1+ I0;1(u))+�

Z
�Jcos(~1/2�W0;1)Kcos(�I0;1(u))

+�
Z
�Jsin(~1/2�W0;1)Ksin(�I0;1(u))+ 1

2

Z
0

1
kuskL22 dt

�
:

where in the last line we have employed the change of variables u! ~−1/2u. Now the statement
follows analogously to Section 4.6.1. �

Proof. (of Proposition 4.74) One can easily modify the bound from corollary 4.7 to be uniform
in ~ and conclude that �SG;~

� is exponentially tight on H−1(hxi−n): So it is enough to show the
statement for f 2D, D being defined in Lemma 4.73. We have that as ~! 0 Jcos(~1/2�W0;1)K!1
in H−1(hxi−n) so

sup
u2Df

��������Z �Jcos(~1/2�W0;1)Kcos(�I0;1(u))−
Z
�cos(�I0;1(u))

��������! 0

and analogously

sup
u2Df

��������Z �Jsin(~1/2�W0;1)Ksin(�I0;1(u))
��������! 0

since Jsin(~1/2W0;1)K!0. Since also jf(~1/2W0;1+I0;1(u))− f(I0;1(u))j6C~1/2kW0;1kH1(hxi−n)
we have that

F~
�;f!F0

�;f

uniformly on Df, where

F0
�;f(u)=E

�
f(I0;1(u))+�

Z
�(x)cos(�I0;1(u))+

1
2

Z
0

1
kuskL22 dt

�
:

This implies that

inf
u2Df

F~
�;f(u)! inf

u2Df
F0
�;f(u):

Now from Lemma 4.84 below infu2DfF0
�(u)= infu2HaF0

�(u). Finally Lemma 4.76 below shows that

inf
u2Ha

F0
�;f(u)= inf

 2S 0(R2)
ff( )+ I~�( )g: �

Lemma 4.76. Assume �2Cc1(R2; [0; 1]). Then

inf
u:L2(P;L2(R+�R2))

F0
�(u)= inf

u2Ha

F0
�(u)= inf

 2S 0(R2)
ff( )+ I~�( )g:

Proof. Note that

inf
 2S 0(R2)

ff( )+ I~�( )g= inf
 2H1(R2)

ff( )+ I~�( )g:

Step 1. First we prove

inf
u2Ha

F (u)6 inf
 2S 0(R2)

ff( )+ I~�( )g:

Restricting the infimum to processes of the form

us=Qs(m2−�) 
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with  2H2(�), we see that

I0;1(u)=
Z
0

1
Qsusds=

Z
0

1
Qs
2(m2−�) ds=  :

We also compute

kukD0
2 =

Z
0

1Z
R2
us
2ds=

Z
0

1
hQs2(m2−�) ; (m2−�) iL2(R2)= h ; (m2−�) iL2(R2)

so

inf
u2Ha

F0
�;f(u)6 inf

u=Qs(m2−�)−1 
F0
�;f(u)= inf

 2H2(R2)
ff( )+ I~�( )g= inf

 2H1(R2)
ff( )+ I~�( )g

where the last equality follows from the density of the H2 in H1 and continuity of the functional
in H1.

Step 2.We now prove the converse inequality

inf
u2L2(P;L2(R+�R2))

F0
�;f(u)> inf

 2H1(R2)
ff( )+ I~�( )g:

First note that from Lemma 4.21 kukL2(R+�R2)> k(m2−�)1/2I0;1(u)kL2, so

inf
u2Ha

F0
�;f(u) > inf

u2Ha

E

�
f(I0;1(u))+�

Z
�cos(�I0;1(u))+

1
2

Z
R2
((m2−�)I0;1(u))I0;1(u)

�
> inf

 2H1(R2)
ff( )+ I�( )g:

Now

inf
u2L2(P;L2(R+�R2))

F0
�;f(u)> inf

 2H1(R2)
ff( )+ I~�( )g> inf

u2Ha

F0
�;f(u)> inf

u2L2(P;L2(R+�R2))
F0
�;f(u)

which proves the statement. �

From this we can easily deduce the following

Corollary 4.77. The measures �SG;~
� satisfy a Large Deviations Principle with rate function

I�(')=�
Z
�(x)(cos(�'(x))− 1)ds+ 1

2
m2

Z
'2(x)dx+ 1

2

Z
jr'(x)j2dx

as ~! 0.

Lemma 4.78. For � sufficiently small u=0 is the unique minimizer of F0
�;0.

Proof. From Lemma 4.76

inf
 2S 0(R2)

I~�( )= inf
u2Ha

F0
�;0:

and

I~�(')=
Z
��(x)cos(�'(x))+ 1

2
m2('(x))2dx+ 1

2

Z
jr'j2dx:

Now for � small enough and �6 1

��(cos('(x))− 1)+ m2

2
('(x))2> m2

4
('(x))2

so

I~�(')− I~�(0)> m2

4

Z
('(x))2dx+

Z
jr'j2dx:

so '=0 is the unique minimizer of I~�(') and

inf
'2H1(R2)

I~�(')=�
Z
�(x)dx:

On the other hand

F0
�;0(0)=�

Z
�(x)dx= inf

'2H1(R2)
I~�(')= inf

u2Ha

F0
�;0:

So u=0 is a minimizer of F0
�;0(0). Uniqueness follows since for � small enough F0

�;0(u) is strongly
convex in u. �
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Lemma 4.79. Let u~;� be the minimizer of F~
�;0(u). Then for � sufficiently small

lim
~!0

E[ku~;�kL2(R+�R2)
2 ] = 0:

Proof. We have already established in the proof of Proposition 4.74 above that

lim
~!0

sup
u2Df

jF~
�;0(u)−F0

�;0(u)j=0:

On the other hand for u~;� to be a minimizer we must have

F~
�;0(u~;�)−F~

�;0(0)6 0:
Now

0 > F~
�;0(u~;�)−F~

�;0(0)
> F0

�;0(u~;�)−F0
�;0(0)− sup

u2Df

jF~
�;0(u)−F0

�;0(u)j

> 1
4
E[ku~;�kD0

2 ]− o(~)

Where in the last line we have used that F0
�;0 is strongly convex and 0 is a minimizer of F0

�;0. �

4.9.2. Infinite volume
We now want to discuss large deviations in infinite volume, i.e large deviations for �SG;~ where
�SG;~= lim�!1�SG;~

� and the limit is understood in a weak sense on H−1(hxi−n) for n large enough.
Recall that the variational description of �SG involves the process u1 obtained as a limit of u�.
We can modify that construction and obtain the following:

Lemma 4.80. Let �N 2 Cc1satisfying �N(x) = 1 for x 2 B(0; N). Let u~;� be the minimizer of
F~
�;0(u). There exist processes u~;1 such that

lim
�N!1

sup
~
E[ku~;�−u~;1kD−


2 ]6N−1
and

khti1/2+�u~;1kLt1(L1)6C:
Furthermore

lim
~!0

E[ku~;1kD−
2 ] = 0

almost surely, where C is a deterministic constant (not depending on ~).

Proof. The first two statement's are an easy modification of Lemma 4.65. The second follows
from the first and Lemma 4.79. �

One can easily modify Proposition 4.66 to obtain

Lemma 4.81.

−~log
Z
e
−1
~fd�SG;~= inf

u2Df
G~
f(u)

where

G~
f(u) = E

�
f(~1/2W0;1+ I0;1(u)+ I0;1(u~;1))

+�
Z
Jcos(~1/2�W0;1)K(cos(�I0;1(u)+ �I0;1(u~;1))− cos(�I0;1(u~;1)))

+�
Z
Jsin(~1/2�W0;1)K(sin(�I0;1(u)+ �I0;1(u~;1))− sin(�I0;1(u~;1)))

+ 1
2

Z
0

1
kutkL22 dt+

Z
0

1Z
utut

~;1dt
�

Proposition 4.82. Assume that jf j1;2;m<1 and f :H−1(hxi−n)!R be Lipschitz continuous.

lim
~!0

sup
u2Df

jG~
f(u)−G0

f(u)j=0
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where

G0
f(u)

= E

�
f(I0;1(u))+�

Z
(cos(�I0;1(u))− 1)+

1
2

Z
0

1
kutkL22 dt

�
:

Proof. By Lipschitz continuity of f

jf(~1/2W0;1+ I0;1(u)+ I0;1(u~;1))− f(I0;1(u))j
6 ~1/2EkW0;1kH−1(hxi−n)+E[kI0;1(u~;1)kH−1(hxi−n)]
! 0:

Furthermore��������Z Jsin(~1/2�W0;1)K(sin(�I0;1(u)+ �I0;1(u~;1))− sin(�I0;1(u~;1)))
��������

6 kJsin(~1/2�W0;1)KkBp;p−1+�(hxi−n)
�k(sin(�I0;1(u)+ �I0;1(u~;1))− sin(�I0;1(u~;1)))kBq;q1−�(hxi−n)

Now for q close enough to 1 we have for any 
 > 0

k(sin(�I0;1(u)+ �I0;1(u~;1))− sin(�I0;1(u~;1)))kBq;q1−�(hxi−n)
6 k(sin(�I0;1(u)+ �I0;1(u~;1))− sin(�I0;1(u~;1)))kW1;1;


1−�

6 k(cos(�I0;1(u)+ �I0;1(u~;1))− cos(�I0;1(u~;1)))rI0;1(u~;1)kL1;

1−�

+�k(cos(�I0;1(u)+ �I0;1(u~;1))rI0;1(u)kL1;

1−�

+�k(sin(�I0;1(u)+ �I0;1(u~;1))− sin(�I0;1(u~;1)))kL1;

1−�

6 C(kI0;1(u)kL2;2
krI0;1(u~;1)kL2;−
+ krI0;1(u)kL2;2
+ kI0;1(u)kL2;2
)1−�

so

E

��������Z Jsin(~1/2�W0;1)K(sin(�I0;1(u)+ �I0;1(u~;1))− sin(�I0;1(u~;1)))
��������

6 CE
h
kJsin(~1/2W0;1)KkBp;p−1+�;−


1/�
i

�E[kI0;1(u)kL2;2
krI0;1(u~;1)kL2;−
+ krI0;1(u)kL2;2
+ kI0;1(u)kL2;2
]

6 CE
h
kJsin(~1/2�W0;1)KkBp;p−1+�;−


1/�
i
E[kI0;1(u)kL2;2
2 ] +E[krI0;1(u~;1)kL2;−
2 ]

+E
h
kJsin(~1/2�W0;1)KkBp;p−1+�;−


1/�
i
E[krI0;1(u)kL2;2
+ kI0;1(u)kL2;2
]

and since by Remark 4.19

E
h
kJsin(~1/2�W0;1)KkBp;p−1+�(hxi−n)

1/�
i
! 0;

as ~! 0, we have uniform convergence of this term to 0. We now rewriteZ
Jcos(~1/2�W0;1)K(cos(�I0;1(u)+ �I0;1(u~;1))− cos(�I0;1(u~;1)))

−
Z
(cos(�I0;1(u))− 1)

=
Z
(Jcos(~1/2�W0;1)K− 1)(cos(�I0;1(u)+ �I0;1(u~;1))− cos(�I0;1(u~;1)))

+
Z
(cos(�I0;1(u)+ �I0;1(u~;1))− cos(�I0;1(u~;1)))−

Z
(cos(�I0;1(u))− 1):

The first term can be estimated in the same way as the sinus term, provided we replace
Jsin(~1/2�W0;1)K with Jcos(~1/2�W0;1)K− 1 which also satisfies

E
h
kJcos(~1/2�W0;1)K− 1kBp;p−1+�(hxi−n)

1/�
i
! 0:
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by Remark 4.19. For the second term by fundamental theorem of calculus we can write

(cos(�I0;1(u)+ I0;1(u~;1))− cos(I0;1(u~;1)))− (cos(I0;1(u))− 1)

= −�
Z
0

1

((cos(��I0;1(u)+ �I0;1(u~;1))− cos(��I0;1(u))I0;1(u))d�

= −�
Z
0

1Z
0

1

((cos(��I0;1(u)+ ��I0;1(u~;1))I0;1(u~;1)I0;1(u))d�d�

and so

E

��������Z
0

1Z
0

1

((cos(��I0;1(u)+ ��I0;1(u~;1))I0;1(u~;1)I0;1(u))d�d�
��������

6 E[kI0;1(u~;1)kL2;−
kI0;1(u)kL2;
]
6 E[kI0;1(u~;1)kL2;−
2 ]1/2E[kI0;1(u)kL2;
2 ]1/2

which implies also that term converges to 0. Finally

E

�Z
0

1Z
utut

~;1dt
�
6E[kukD
ku~;1kD−
]6E[kukD


2 ]1/2E[ku~;1kD−
2 ]1/2

and we can conclude. �

We now relate Gf to the rate function.

Lemma 4.83. inf
u2Df

G0
f(u)= inf

 2H1(R2)
ff( )+ I( )g

Proof. By Lemma 4.84 below it is enough to show that

inf
u2Df

G0
f(u)= inf

k k
H1;
6C jf j1;2;


ff( )+ I( )g
for some 
 > 0.

Step 1. First we prove

inf
u2Ha

F (u)6 inf
k k

H1;
6C jf j1;2;

ff( )+ I( )g:

Restricting the infimum to processes of the form

us=Qs(m2−�) 
with  2H2(R2)\H1;2
 ,we see that

I0;1(u)=
Z
0

1
Qsusds=

Z
0

1
Qs
2(m2−�) ds=  :

We also compute

kukD0
2 =

Z
0

1Z
R2
us
2ds=

Z
0

1
hQs2(m2−�) ; (m2−�) iL2(R62)= h ; (m2−�) iL2(R2)

and with w(x)= exp(
x)

kukD

2 =

Z
0

1Z
R2
wus

2ds==
Z
0

1
hwQs2(m2−�) ; (m2−�) iL2(R2)= hw ; (m2−�) iL2(R2)

from which we can deduce that kukD

2 6Ck kH1;
 and u is in Df. So

inf
u2Df

F (u)

6 inf
us=Qs(m2−�) 

 2H2

k k
H1;2
6C jf j1;2;m

F (u)

6 inf
 2H2

k k
H1;2
6C jf j1;2;m

ff( )+ I( )g

6 inf
k k

H1;2
6C jf j1;2;m
ff( )+ I( )g
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where the last equality follows from the density of the H2 in H1;2
 and continuity of the functional
in H1.

Step 2.We now prove the converse inequality

inf
u2Df

F0
�(u)> inf

 2H1(R2)
ff( )+ I( )g:

Recall that from the proof of Lemma 4.21 kukD0> k(m2−�)1/2I0;1(u)kL2 so

inf
u2Df

F (u) > inf
u2Df

E

�
f(I0;1(u))+�

Z
�cos(�I0;1(u))+

1
2

Z
R2
((m2−�)I0;1(u))I0;1(u)

�
> inf

 2H1(R2)
ff( )+ I( )g

which proves the statement.
�

Lemma 4.84. Assume that 2
2 + � < m2. Then for � 2 C1(R2) and �; jr�j 6 1(note that this
includes the �=1 case.)

inf
 2H1(R2)

f(')+ I�(')= inf
k k

H1;
6C jf j1;2;2

f(')+ I�(')

Proof. By a standard argument we obtain that any minimizer of f(')+ I(') satisfies the Euler
Lagrange equation

rf(')+�� sin(�')+m2'−�'=0: (4.29)

Now multiplying (4.29) with w' where w(x)= exp(2
 jxj) and integrating we obtain

0 =
Z
wrf(')'+�

Z
w�sin(�')'+m2

Z
w'2−

Z
w'�'

=
Z
�rf(')'+�

Z
w�sin(�')'+m2

Z
w'2+

Z
w jr'j2+

Z
'rw �r'

now observe that rw=2
 x

jxjexp(2
 jxj) so jrw j6 2
wZ
j'rw �r'j6 2
2

Z
w'2+ 1

2

Z
w jr'j2

note also that

�

Z
j�w sin(�')'j6�

Z
w'2:

Since m2
R
w'2+

R
w jr'j2> 0 we have

0 =
Z
wrf(')'+�

Z
w�sin(�')'+m2

Z
w'2+

Z
w jr'j2+

Z
'rw �r'

> (m2− 2
2+�− �)
Z
w'2+ 1

2

Z
w jr'j2−C jf j1;2;m2

which implies Z
w'2+ 1

2

Z
w jr'j26C
 jf j1;2;m2 :

�
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Appendix A

Besov spaces and paraproducts

In this section we will recall some well known results about Besov spaces, embeddings, Fourier
multipliers and paraproducts. The reader can find full details and proofs in [12, 73] and for weighted
spaces in [72, 96]. First recall the definition of Littlewood�Paley blocks. Let �; % be smooth radial
functions Rd!R such that

� supp��B(0; R), supp%�B(0; 2R) nB(0; R);

� 06 �; %6 1, �(�)+Pj>0 %(2
−j�)=1 for any � 2Rd;

� supp %(2−j � )\ supp %(2−i � )=? if ji− j j> 1.

Introduce the notations %−1= �, %j= %(2−j � ) for j>0. For any f 2S 0(�) we define the operators
�jf := %j(D)f , j>−1.

Definition A.1. Let s2R; p; q 2 [1;1]. For a Schwarz distribution f 2S 0(�) define the norm

kf kBp;qs = k(2jsk�jf kLp)j>−1k`q

where kkLp denotes the normalized Lp(�) norm. The space Bp;qs is the set of functions f 2S 0(�)
such that kf kBp;qs <1 moreover Hs=B2;2s are the usual Sobolev spaces, and we denote by C s the
closure of smooth functions in the B1;1s norm.

Definition A.2. A polynomial weight � is a function �:Rd!R+ of the form �(x) = chxi−� for
�; c> 0. For a polynomial weight � let

kf kLp(�)=
�Z

Rd

jf(x)jp�(x) dx
�
1/p

and by Lp(�) the space of functions for which this norm is finite. For function defined on a torus
in Rd we consider their periodic extensions on Rd.

Definition A.3. For a polynomial weight � let

kf kLp(�)=
�Z

Rd

jf(x)jp�(x) dx
�
1/p

and by Lp(�) the space of functions for which this norm is finite. For functions defined on the
torus � we consider their periodic extensions on Rd. Similarly we define the weighted Besov spaces
Bp;q
s (�) as the set of elements of S 0(Rd) for which the norm

kf kBp;qs (�)= k(2jsk�jf kLp(�))j>−1k`q

is finite and by C s(�) those such that the norm

kf kC s(�)= k(2jsk��jf kL1)j>−1k`1
is finite.

Proposition A.4. Let � > 0.We have for any q1; q22 [1;1]; q1< q2

kf kBp;q2s �kf kBp;q1s �kf kBp;1s+�:

Furthermore, if we denote by W s;p the normalized fractional Sobolev spaces then for any q2 [1;1]

kf kBp;qs �kf kWs+�;p�kf kBp;1s+2�:
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Proposition A.5. For any s1; s22R such that s1<s2, any p; q 2 [1;1] the Besov space Bp;q
s1 is

compactly embedded into Bp;q
s2 .

Definition A.6. A smooth function � is said to be an Sm multiplier if for every multi-index �
there exists a constant C� such that�������� @�@���(�)

��������.� (1+ j� j)m−j�j; � 2Rd: (A.1)

We say that a family �t is a uniformly Sm multiplier if (A.1) is satisfied for every t with C�
independent of t.

Proposition A.7. Let � be an Sm multiplier, s2R, p; q 2 [1;1], and f 2Bp;qs , then

k�(D)f kBp;qs−m. kf kBp;qs :

Furthermore the constant depends only on s; p; q; d and the constants C� in eq. (A.1).

For a proof see [12] Lemma 2.78.

Proposition A.8. Let � p; p1; p2 and s; s1; s2 be such that 1

p
= �

p1
+ 1− �

p2
and s= �s1+ (1− �)s2

and assume that f 2W s1;p1\W s2;p2. Then

kf kW s;p6 kf kW s1;p1
� kf kW s2;p2

1−� :

For a proof see [25].

Definition A.9. Let f ; g 2S (�). We define the paraproducts and resonant product

f � g= g� f :=
X
j<i−1

�if�jg; and f � g :=
X

ji−j j61
�if�jg:

Then

f g= f � g+ f � g+ f � g:

Proposition A.10. For any polynomial weight �, �6 0; �2R and p1; p22 [1;1], 1

p1
+ 1

p2
= 1

p
we

have the estimate
kf � gkBp;q�+�(�) . kf kBp1;1� (�)kgkBp2;q� (�):

For any �; � 2R such that �+ � > 0 the estimate

kf � gkBp;q�+�(�) . kf kBp1;1� (�)kgkBp2;q� (�):

For a proof see Theorem 3.17 and Remark 3.18 in [96].

Proposition A.11. For any polynomial weights � ; � and �6 0; �2R we have

kf � gkBp;q�+�(�p�) . kf kC �(�)kgkBp;q� (�):

The proof is an easy modification of the proof of Theorem 3.17 in [96].

Proposition A.12. Assumem60, �2(0;1); �2R. Let � be an Sm multiplier and q; p1; p22 [1;1],
1

p1
+ 1

p2
= 1

p
, f 2Bp1;1

� , g 2Bp1;1� . Then for any � > 0.

k�(D)(f � g)− (�(D)f � g)kBp;q�+�−m−�. kf kBp1;1� kgkBp1;1� :

The constant depends only on �; �; � and the constants in (A.1).

For a proof see [12] Lemma 2.99.
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Proposition A.13. Let �2(0;1) �; 
2R such that �+ 
<0, �+ �+ 
>0 and p1; p2; p3; p2 [1;1]
such that 1

p1
+ 1

p2
+ 1

p3
= 1

p
. Then there exists a trilinear form K1(f ; g; h) such that ,

kK1(f ; g; h)kBp;1�+�+
. kgkBp1;1� kf kBp2;1� khkBp3;1
 ;

and when f ; g; h2S it has the form

K1(f ; g; h)= (f � g) �h− g(f �h):

Proof. The proof is a slight modification of the one given in [73]. Lemma 2.97 from [12] and an
interpolation imply that k�jfg−�j(fg)kLp� 2−j�kf kW�;p1kgkLp2. This in turn gives after some
algebraic computation (see [73] for details) that

�j(f � g)= (�jf)� g+Rj(f ; g);

with kRj(f ; g)kLp . 2−j(�+�)kf kBp1;1� kgkBp2;1� . Now to prove the statement of the proposition

observe that for smooth f ; g; h we have

K1(f ; g; h)=
X

j;k>−1

X
ji−j j61

�j(f ��kg)�ih−�kg�jf�ih:

Now observe that the term f ��kg has Fourier transform outside of 2kB for some ball B inde-
pendent of k, so choosing N large enough we can rewrite the sum as

K1(f ; g; h)=
X

j;k>−1

X
ji−j j61

1k6i+N(�jf�kg�ih+Rj(f ;�kg))−�kg�jf�ih

X
j;k>−1

X
ji−j j61

1k6i+NRj(f ;�kg)�ih−1k>i+N�kg�jf�ih:

Now we estimate the norm of the two terms separately. First note that for fixed jX
k>−1

X
ji−j j61

1k6i+NRj(f ;�kg)

has a Fourier transform supported in 2jB. By Lemma 2.69 from [12] it is enough to get an estimate
on

sup
k











2(�+�+
)j Xj>−1
X

ji−j j61
1k6i+NRj(f ;�kg)�ih












Lp

to bound it in Bp;1
�+�+
, so by Hölder inequality,











 X

ji−j j61
Rj

 
f ;
X
k>−1

i+N

�kg

!
�ih














Lp

.
X

ji−j j61
2−j(�+�)2−i
kgkBp1;1� kf kBp2;q1� khkBp3;q2


. 2−j(�+�+
)kgkBp1;1� kf kBp2;q1� khkBp3;q2
 :

For the second term observe that for fixed k the Fourier transform ofX
j>−1

X
ji−j j61

1k>i+N�kg�jf�ih

is supported in 2kB. Now we can estimate again by Hölder inequality

.










 Xj>−1

X
ji−j j61

1k>i+N�kg�jf�ih












Lp

. 2−�k
X
j>−1

k+N

2−(�+
)k1k>i+NkgkBp1;1� kf kBp2;1� khkBp1;1


. 2−j(�+�+
)kgkBp1;1� kf kBp2;q1� khkBp3;q2
 :

�
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Proposition A.14. Assume � 2 (0; 1), �; 
 2 R such that � + 
 < 0, and � + � + 
 = 0,
1

p1
+ 1

p2
+ 1

p3
=1 and 1

q1
+ 1

q2
=1. Then there exists a trilinear form K2(f ; g; h) for which

jK2(f ; g; h)j. kf kBp1;1� kgkBp2;q1� khkBp3;q2
 ;

and on smooth functions

K2(f ; g; h)=
Z
−[(f � g)h− g(f �h)]:

Proof. This is modification of the proof of Lemma A.6 in [70]. Repeating an algebraic computation
given in the proof of that lemma, we get that for smooth f ; g; h we have

K2(f ; g; h)=
 X
j6i−1;ji−kj6L

−
X

i�k;j<i+L

!Z
−(�if�jg�kh);

for some L> 1. Then we estimate

jK2(f ; g; h)j .
X
i�j�k

k�if�jg�khkL1

.
X
i�j�k

k�if kLp1k�jgkLp2k�khkLp3

. sup
i

(2�ik�if kLp1)
X
j�k

2(�+
)kk�jgkLp2k�khkLp3

. kf kBp1;1� kgkBp2;q1� khkBp3;q2
 :

�

Proposition A.15. There exists a family (K3;t)t>0 of bounded multilinear forms on C −1−� �
C −1−��H1/2−��H1/2−� such that for smooth ';  ; g(1); g(2) it holds

K3;t(';  ,g(1); g(2))=
Z
−[Jt('� g(1))Jt( � g(2))− (Jt'� Jt )g(1)g(2)];

and

jK3;t(';  ; g(1); g(2))j.
1

hti1+�
k'kC −1−�k kC −1−�kg(1)kH1/2−�kg(2)kH1/2−�:

Proof. Note that hti1/2Jt satisfies the assumptions of Proposition A.12 and withm=−1, therefore
using also Proposition A.4

kJt('� g(1))−Jt'� g(1)kH1/2−3�. hti−1/2k'kC −1−�kg(1)kH1/2−�:

Therefore ��������Z−[Jt('� g(1))− (Jt'� g(1))]Jt( � g(2))��������
. kJt('� g(1))− Jt'� g(1)kH1/2−3�kJt( � g(2))kH−1/2+3�
. hti−1/2k'kC −1−�kg(1)kH1/2−�hti−1/2−�k kC −1−�kg(2)k

H1/2−�

and by symmetry also ��������Z−[Jt('� g(1))Jt( � g(2))− (Jt'� g(1))(Jt � g(2))]��������
. hti−1−�k'kC−1−�kg(1)kH1/2−�k kC −1−�kg(2)k

H1/2−�

Furthermore from Proposition A.14 and for sufficiently small �> 0,��������Z−(Jt'� g(1))(Jt � g(2))− Z−((Jt'� g(1)) �Jt )gt(2)��������
. kJt'kC −2� kg(1)kH1/2−� kJt kC −�kg(2)kH1/2−�

. hti−1−�k'kC −1−� kg(1)kH1/2−� k kC−1−�kg(2)kH1/2−�:
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Applying Proposition-A.13 we get

k(Jt'(1)� g(1)) �Jt t− (Jt't � Jt t)(g(1))kH−1/2+�
. kJt'tkC −2� kg(1)kH1/2−� kJt tkC −�

. hti−1−�k'kC −1−� kg(1)kH1/2−� k kC −1−�

and putting things together gives the required estimate. �
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