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Deutsche Zusammenfassung

In dieser Arbeit behandeln wir sogenannte Gibbs Mafe auf Funktionenrdumen. Diese sind heuris-
tisch durch den Ausdruck

efs(d’)du

gegeben. Dabei ist

S(6)=A /A V(p)da

wobei V: R — R eine von unten beschrinkte analytische Funktion ist und A = R%, T¢ mit d = 2,
3 und p ein Gausssches MaR mit Kovarianz (m? — A), m? > 0. Wir beschriinken uns hier auf
die Fille V(¢) = ¢* bekannt als ®) Modell und V(¢) = sin(f¢) mit 32 < 47 bekannt als Sine-
Gordon Modell. Das Hauptproblem bei der Konstruktion dieser Objekte ist, dass der Triger des
Mafies p Distributionen mit negativer Regularitdt beinhaltet und es deshalb nicht klar ist wie
die Nichtlinearitdt V(¢) zu interpretieren ist. Um diese Schwierigkeit zu umgehen werden in der
Literatur diese Objekte mittels Approximation konstruiert, dabei ndhert man g durch Gausssche
Mafe pr an, welche in reguldren Rdumen getragen sind. Zudem ersetzt man das Potential V' durch
ein "renormiertes” Potential Vr, dies ist notig um im Limes ein nichttriviales Objekt zu erhalten.
In unserer Arbeit setzen wir zu diesem Zweck die folgende Formel ein die urspriinglich von Boué
und Dupuis bewiesen und in der Theorie der Grofsen Abweichungen eingesetzt wurde. Diese Formel
lautet:

_ _ . 1

_log/e f(o) )\IVT((b)d’uT: 1€n]1_fI E f(WT—I—IT(u))—l—/\/VT(WT—I—IT(u))+§HU”%2(R+XA) (D)
u a A

Hierbei ist Wr ein Gausscher Prozess mit Law(Wr) = up, H, ist ein Raum von Prozessen die

beziiglich Wr adaptiert sind und Ir ist eine lineare Abbildung L?(R; x R?) — C([0, oo}, H').

In Kapitel 2 konstruieren wir mithilfe dieser Formel das ®3 Maf auf T3. Es gehort seit lingerer
Zeit zum , Volksglauben“ der mathematischen Physik, dass ®4 singulir beziiglich p ist. Aus diesem
Grund gab es unseres Wissens nach bisher keine Beschreibung diese Mafses in der Literatur welche
nicht Bezug auf ein Approximationsverfahren nimmt. In Kapitel 2 sind wir fahig eine solche
Beschreibung fiir die Laplacetransformation zu geben indem wir mittels I'-Konvergenz den Limes
in Gleichung (1) nehmen.

In Kapitel 3 setzen wir unsere Untersuchung des ®3 Mafes fort. Wir geben einen Beweis der
Singularitit von ®3 beziiglich . Weiterhin konstruieren wir ein Hilfsmaf v sodass einerseits ®3
beziiglich v absolut stetig ist, anderseits v relativ einfach zu konstruieren und zu analysieren ist.

In Kapitel 4 beschiiftigen wir uns mit dem Sine-Gordon Modell, diesmal auf IR?. Anders als in
den vorherigen Kapiteln geht die Hauptschwierkeit hier vom unendlichen Volumen von R2. Mit-
hilfe von Sdtzen aus der Stochastischen Kontrolle und der Polchinki Gleichung studieren wir die
Abhéangigkeit des Minimierers auf der rechten Seite von (1) von f. Dadurch kénnen wir erneut
eine Beschreibung der Laplacetransformation des Sine-Gordon Modells geben. Aufierdem geben
wir einen neuen Beweis der Osterwalder Schrader Axiome fiir Sine-Gordon.
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CHAPTER 1

INTRODUCTION

In this thesis we will consider measures on spaces of the space of Schwartz distributions .#’'(A)
where A = T% RY, of the form

e 99y, (1.1)

with S(¢) being an action-functional of the form
S@=A[ V(o) +m? [+ [IVop, Ve ®mR)
A

and d¢ being a formal notation for the nonexistent Lebesgue measure in infinite dimensions.We
will call such measures Gibbs measures. To give a meaning to eq. (1.1) we first observe that for
A =0 we obtain the quadratic action

Sfree:m2/¢2+/|v¢|2~

In this case the eq. (1.1) can be interpreted as the gaussian measure p with covariance

/<f,¢><g,¢>du:<f,(m2*A)’lg>,

this is known as the Gaussian Free Field(GFF). The Gaussian Free Field is known to be supported
in Besov-Holder spaces of regularity (2 — d) /2 — ¢ for any 6 > 0. This means that for d > 2 its
samples are genuine distributions and not functions.

Now let us turn to models where A\ # 0 . The case V(¢) = ¢* is known as the ®; model,the
V() = cos(f¢) case is known as the Sine-Gordon model and V(¢) = exp(f¢) is known as the
Hgegh-Krohn model. If we want to make sense of the Gibbs measures corresponding to these
actions naively we would write

e MaVoledgy, (1.2)

However this only works in d =1, since for d> 2 we would be required to make sense of A [, V/(¢(z))
for ¢ a distribution. At first sight this seems to be impossible, however we will show that one can
leverage the properties of p to make sense of eq. (1.2). The standard playbook to achieve this is
the following:

e Approximate p with Gaussian measures ;' supported in more regular spaces.

e Replace the potential V' by an adjusted ("renormalized”) potential Vi, for example for the
¢* model one replaces

T
with a7, br — oo while for Sine Gordon
cos(fp) — arcos( )
with ar — .

e  Take the weak limit of
e—/\_[AVT(¢>(w))dMT.
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The second step is known as renormalization, it is necessary to obtain a nontrivial limit. Let
us briefly comment on the role of the constants \, 3. For finite volume, that is A =T¢, the size of
A is not particularly important for the analysis. However for A = R% the models behave different
depending on the size of \. For example for the ¢* model the correlation functions that is quantities
which are formally written as

Cey)= [olame W ap— [o)e WO [(z)e b e

decay exponentially in |y — z| for small A while they decay only algebraically for large A, see [69, 59,
41]. In total we can say that X is not very influential on small scales but influential on large scales.

On the role of (3 on the other hand is more indicative of the small scale behavior of the model.
The limit 7'— oo outlined above can only be taken for 32 < 8. For (32 > 4r the resulting measure
is expected to become singular with respect to the Gaussian Free Field and becomes increasingly
difficult to construct as 3% approaches 87 [89].

Up to this point we hope that we have conveyed to the reader a (admittedly not very pre-
cise) picture of what some Gibbs measures on function spaces look like, but so far we have not
explained why they should be studied, which shall be our concern for the rest of this section.
The most well known application is the use of Euclidean Quantum Field Theories (EQFTs) in
Constructive Quantum Field Theory (CQFT): Euclidean Quantum Field theories are a special class
of Gibbs measures on .#/(R?) whose correlation function satisfy certain properties known as the
Osterwalder-Schrader Axzioms. Once one has an EQFT, the Osterwalder-Schrader reconstruction
theorem then asserts that one can obtain from it a relativistic QFT in the sense of Wightman,
which is one the aims of CQFT. In the next subsection we will attempt to explain these notions
in more detail.

Before we move on to the next section, let us give a brief (and very incomplete overview) of the
literature. Nelson [99, 100] investigated the relationship of Random Fields with Quantum Field
Theories and studied in this context the Gaussian free field and the ®3 model. Nelson’s analysis
required the random field to satisfy a Markov property, which, in general, can be very tricky to
prove, since as already outlined EQFT’s are usually constructed by approximation with more
regular measures and the Markov Property is hard to carry over to the limit. This problem was
solved by Osterwalder and Schrader [104] who discovered that the Markov property can be replaced
by the weaker Reflection Positivity (see section 1.1.2 and also [51]). Many works on <I>‘21,3, the Sine-
Gordon as well as the exponential interaction, constructing these models in both finite and infinite
volume and giving proofs of the Osterwalder-Schrader azioms (see Section 1.1.2), soon followed: [6,
66, 60, 61, 53, 107, 18, 31] is only and incomplete list. This development culminated in the works
of Feldman and Osterwalder [54] and Magnen and Sénéor [92] where the authors gave a complete
proof of the Osterwalder-Schrader axioms for ®4 for small A . Even though the Markov property was
shown for Sine-Gordon (at least for small 3) and ®3 [8, 7] to our knowledge it remains open for ®3.

There have also been some results on dimensions d > 4: Aizenman [1] and Frohlich [58] provided
proofs of the triviality of ®; with d > 5, in the sense that a large class of approximations converge
to Gaussian measures. These results were recently extended by Aizenman and Duminil-Copin to
®} [2], which is a case of substantial physical interest since physical space time is 4-dimensional.
Later the @%73, Sine-Gordon models were revisited using Renormalization Group methods [28, 33,
34, 16, 35, 36]. In recent years these models or more generally CQFT have again received substan-
tial attention due to their connections with Singular Stochastic PDE’s (see Section 1.2.1), whose
understanding saw rapid progress after the pioneering works of Da Prato-Debussche [43], Hairer
[77] and Gubinelli-Tmkeller-Perkowski [73]. Another fascinating development is the connection with
Liouville Quantum Gravity, and Conformal Field Theory [45, 86, 87, 74]. In this connection the
Liouville measure, which is the Hgegh-Krohn model with m? =0 plays a vital role. We shall not
further discuss this here, instead we refer to the nice reviews [85, 110].
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1.1. RELATIVISTIC AND EUCLIDEAN QUANTUM FIELD THEORIES

In this section we will give an overview of Quantum Field Theories in the sense of Wightman,
and their relationship with Wightman functions and Euclidean Quantum Field Theories. We will
follow [112] the contribution of Kazhdan to [46] and [113] for the Wightman axioms, and [67,
51] for the Osterwalder Schrader axioms. We can consider Quantum Field Theory as an attempt
to reconcile Quantum Mechanics and Relativity Theory into a single framework. Heuristically
Qantum Mechanics would entail that the states of our system should be described as vectors in a
(separable) Hilbert space, with observables being described by operators. Relativity theory should
imply that the system is invariant under an action of the Poincaré-Group and that observables
commute on “space like” (see Definition 1.5 below) separated regions. This is made precise in the
axioms detailed in the following subsection.

1.1.1. Wightman Axioms

In this section we discuss the Wightman axioms for Quantum Field Theory. We restrict ourselves
to spinless bosonic theories.

DEFINITION 1.1. Throughout this subsection we will denote for x,y e R* by x-y=a'y' —22y%>—... —
2% the Lorenz scalar product,and by x*> = x - x. The Lorentz group £ is the group of linear
transformations that leave the Lorentz scalar product invariant. The Poincaré group & consists
of transformations {a, A} with

{a,A}e=Axz+a
with A€ %L and a € R and the group law defined by the composition.
DEFINITION 1.2. (WIGHTMAN DATA) Wightman’s description of a quantum field theory begins
with the following data:
e A separable Hilbert space H
o A unitary representation U: & — Aut(H)

e A dense subspace D CH such that for any p € &, U(p)D C D and a unique vector ) € D
such that U(p)Q=Q for any pe .

o A linear map ¢: . (R? C) — Op(H), where Op(H) is the space of unbounded operators on
H called the field map, such that for any f € (R% C) D CDom(¢(f)), and for any x €D
o(flxzeD.

Axiom 1.3. (SPECTRAL CONDITION) Since operators of the form U(a, 1) with a € R, and 1
denoting the identity matriz form a unitary subgroup of Aut(H) they can be written as

Ula,1) =€~ aiP
with generators P;. We assume that the Spec (P) C V., where we have written P = (P;)_, and
spec(P) = H?Zl spec(P;) while
V+:{p€R+ X Rd_11p2>0}.

where we recall that p>=p- p is the Lorentz scalar product.

As in Quantum Mechanics the spectrum of P should be thought of as describing the energy of
the system, so Axiom 1.3 is essentially a requirement for the energy to be positive. This condition

also implies that we can define by spectral calculus the mass operator M = ,/Pf — Z?ZQPE. If
Spec M C{0} U[m,o0) for some m >0 we say that the theory has a mass gap.

AXI0M 1.4. (POINCARE COVARIANCE) The field map ¢ satisfies the following transformation rule:

U(aaA)(b(f)U(a’ A)_l = (b({a?A}f)
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DEFINITION 1.5. We say that f, g €. (R%, C) are space like separated if for any x,y € R x R4~1!
such that (x —y)%2>0 it holds that f(z)g(y)=0.

AXIOM 1.6. (CAUSALITY) If f, g€ . (R% C) are space like separated
[6(f), &(9)] =0,

where [-,-] as usual denotes the commutator of two operators.

Axiom 1.7. (Cycrycrry) The set

N
{h: h= H o(f:)Q, for some f; € (R, C),N e JN}
1s dense in H. =t

If Wightman data satisfies these axioms, we will say that it is a Quantum Field Theory. For a
Quantum Field Theory we can consider the Wightman functions given by

Wi f1, es fn) = (2, ¢ f1)--0( fn)). (1.3)

The Schwartz nuclear theorem (see for instance Theorem 2 on page 158 in [119]) implies the
existence of a tempered distributions W, € ./(R"%, C) such that

Wn(fl; s )= Wh 1®...® fn>L2(]Rnd)

It is natural to ask what kind of properties the W, obey and under which conditions the Quantum
Field Theory can be reconstructed from the Wightman functions. The answer to those questions
is the content of the following two propositions:
PROPOSITION 1.8. Let W, W, be constructed as above. Then they satisfy the following properties:
o W, is invariant under P for all n € N. In particular W, is translation invariant, hence
Wn($1, ceey IEn) = Wn(gl; ceey gnfl)
where & =xj — 41, for unique W, € (R~ ).
o Let Wn be the Fourier transform of W,,. Then
supp W, C (V,)"~!
where Vi is defined in Aziom 1.3.
o Wulft, oo 1) =Wh(f1, oy fn) where f5(x)= f(x) and = denotes complex conjugation.

e Let 7 be a permutation of {1,...,n} and assume that (x;—x;)>>0 for anyi,j€{1,....,n}.
Then

W(Zr(1)s0s Tr(n)) = W(T1, ..0s Tnr).
o Let f,e (R C) n< M for some M € N. Then
Z Witk(f® fr) 20

Ji.k<M
o Let ac€RY such that |a|=1. Then as A\— oo
Wn(acl, Ly, L1+ Aa, Ty + )\a) — Wj(l‘l, ...,.Z‘j)Wn_j(.Z‘j+1, ,.Z‘n)

where the convergence is in .#'(R"?, C).

Remark 1.9. The last property of the Wightman functions is known as the cluster decomposition
property or simply clustering. It is related to the vacuum vector €2 in Definition 1.2 being unique.
In principle one does not have to require €2 to be unique in which case the cluster decomposition
property does not hold however we will not go into this here.
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The above theorem gives necessary conditions for the W, to be coming from a Quantum Field
Theory. It turns out these conditions are also sufficient.

PROPOSITION 1.10. Let W, €.7'(R™,C) be a family of tempered distributions such that it satisfies
all the properties from Proposition 1.8. Then there exists a Quantum Field Theory such that
eq.(1.3) holds.

For proof of Proposition 1.8 and Proposition 1.10 see [112] Section 3.3 and Section 3.4.

1.1.2. Osterwalder-Schrader Axioms

In view of the preceding section it is enough to construct the vacuum expectation values W,
to construct a Quantum Field Theory. Then the question becomes how to construct vacuum
expectation values. Wightman functions are difficult to construct directly so instead we opt to
construct their cousins: Schwinger functions. Heuristically Schwinger functions are Wightman
functions formally evaluated in complez Euclidean points: for a point z € R"%, x = ((11, v1), ---,
(T, Yn)) with 7; € R, y; € R~ we write the corresponding complex Euclidean point as z(z) = (((i71,
Y1), -y (iTn, Yn))) € (C x R471)™ and so if one can construct an extension of W, to (C x R4~1)"
we can think of S, as defined by

“In practice” often the reverse procedure is applied, the Schwinger functions are constructed first

and then the Wightman functions are recovered by analytic continuation.
Note that

(2(x))* =]z

where by |z|? we have denoted the euclidean norm on R?, since

n

(@)= =)+ |pl2 =3 72+ |2 =2

=1 1=1

so (at least heuristically) if the Wightman functions are invariant under the action of the Poincare
group, the Schwinger functions should be invariant under the actions of the Fuclidean group, which
is one of the reasons they are easier to construct. In fact, in many cases Schwinger functions can
be constructed as moments of a random field, as shall be described below. However as our primary
interest in this section is to construct a Quantum Field Theory let us turn to how one can recover
the Wightman functions (and subsequently the QFT) from Schwinger functions. The condition
under which this is possible are known as the Osterwalder Schrader axioms.
In the following let {S,, €.%/(R"?)},,en be a family of distributions.

AxioMm 1.11. (REGULARITY) So=1 and there exists a Schwartz semi-norm ||||s such that

1Sn(f1® .. ® fu) | <0 I fills
i=1

Axiom 1.12. (EUCLIDEAN INVARIANCE) Let the Buclidean group with G=(R,a) R€ O(d),a € R?
acts on functions by

(G f)(z)= f(Rx —a).
Then
Sn(Gfi®.. QG fu)=Sn(fi®...® fn).

AxioM 1.13. (REFLECTION POSITIVITY) Let R be the set
{x e R™: 2= (21, ..., z,) and x; = (73, y;) withT; >0 and y; € R~}

Furthermore define the reflection ©(x) = O((7, y)) = (=7, y) and its action on a function f €
y/(Rnd) by
O f(x1,...,xn) = f(Ox1,....,Ox,).
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Now we require that for all finite families { f, €. (R"™)},<n such that supp f, C R we have

M
> Siti(0fi® f;) 2 0.

i,j=1
Axiom 1.14. (SYMMETRY) Let w be a permutation of {1,....n}. Then

S’n(fTr(l) ®..0 fﬂ'(n)) :Sn(fl® . ® fn)

Axiom 1.15. (CLUSTERING) For any j,n€N, 1<j<n and a€R? such that |a]=1 as \— o0
Sn(/1©..© f;© fj41(+2a) @ .. ® fu(-+2a)) = Si(1© . ® [5)Sn—j(fi+1© . @ fn)-

If furthermore there exists m >0 such that for any family of f; € C°(RY) there exists a constant
C >0 such that

|Sn(f1® L.® fj® fj+1('+>\a) ®X...Q fn(+>\a>) - Sj(f1® Y fj)Snfj(fj+1® L.® fn)| gce_ml)\‘

We say that the clustering is exponential.
These conditions are sufficient to construct a Quantum Field Theory:

THEOREM 1.16. Assume that {S, € /'(R"?)},en satisfies the Osterwalder-Schrader Azioms.
Then there exists a unique corresponding set of Wightman functions satisfying the properties
described in Proposition 1.8. By Proposition 1.10 there also exists a corresponding Quantum Field
Theory.

For a proof see [51].
Remark 1.17. Let us briefly sketch out how the Osterwalder Schrader Axioms relate the prop-
erties of the corresponding Wightman-QFT.

e Axiom 1.11 is a technical condition which makes the proof of Theorem 1.16.

e FEuclidean Invariance is equivalent to Poincare of the corresponding Wightman theory.

e Axiom 1.13 enables one to build a Hilbert space for the corresponding Wightman theory.

e Axiom 1.14 is related to the Causality (Axiom 1.6).

e Axiom 1.15 is related to uniqueness of the Vacuum vector 2 in Definition 1.2.

Remark 1.18. If a set of Schwinger functions satisfies exponential clustering the corresponding
Quantum Field Theory is known to have a mass gap: see [111].

We have already mentioned that Schwinger functions can be constructed as moments of a
random field. Indeed, we can modify the definition of Reflection Positivity for measures:

DEFINITION 1.19. Let v be a measure on .'(R%). Let Ay C L?(v, C) be the set of of functionals
which depend only on f|Ri,and O be the reflection as in Axiom 1.13. We say v is reflection positive
if for any Ae Ay

/ A(3)(A(O6))(de) >0,

Remark 1.20. It is not hard to see that Reflection Positivity is stable under weak convergence:
If v, — v is a sequence of weakly convergent reflection positive measures than also the limit v is
reflection positive.

Then we have the following proposition:
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PROPOSITION 1.21. Let v be a reflection positive measure on .#'(RY). Furthermore assume that
there exists a Banach space B C.7'(RY) equipped with the norm ||-|z such that for some a >0

/ e 1915,(d ) < 00 (1.4)

and that v is invariant under the action of the Euclidean group, meaning that for any F € L'(v)
/F(gf))dz/:/F(ng)dz/
for any G=(R,a) R€O(d),a € R%. Then the moments of i

Sul 1 f1)i= [ (1 0).el o 8)0(d0)
satisfy Axioms 1.11-1.14.

The proof of the proposition is straightforward and we omit it. Note that Proposition 1.21 does
not cover clustering, it has to be verified separately.

DEFINITION 1.22. We say that a measure v on .#'(R%) satisfies the Osterwalder-Schrader azioms
if it satisfies the assumptions of Proposition 1.21.

Let us now provide an example where the assumptions of Proposition 1.21 are satisfied: The
Gaussian Free Field (GFF), which is the Gaussian measure with covariance (m? — A)~!. We have
already met it the introduction. Fernique’s theorem implies that it satisfies eq. (1.4). Furthermore
the GFF is invariant under the action of the Euclidean group since its covariance operator is. We
will now prove that it is reflection positive.

LEMMA 1.23. Let pu be a Gaussian measure on .'(R%) with covariance operator C. Then yu is
reflection positive if for any f € S(R?)

(cf, @f>L2(]Rd) >0.
Proof. By density it is enough to show that
A a©o)was >0 (15)

for A(¢)=>"", cre! P with f € C°(R%). Then by the formula for characteristic functions of
Gaussian measures (see [83]) (1.5) reduces to

m
Ckcj/ez‘w,fk—@fndu
=1

k,

Ckcje*(fkf@fjvc(fkf@fj»/?

k 1

I
NERINGERTN

crege— O 2= 11,013} /26413, CO 1)
k,j=1

Now if we denote by M = (Mjx); k<m, Mjk:e<fj’cef’“> and v= (e’<f1’cf1>/201, e e’<fm’cfm>/26m) €
R™ and viewing M as an m X m matrix our computation becomes:

/ A(6)(A©)r(dé) = (Mo, v)g

It remains to prove that M is positive semi-definite. By the Schur-Hadamard product theorem
this follows from N; ; = (f;, COf;) being positive semi-definite, which in turn follows from the
assumption. 0

We now have the following lemma showing that the covariance of the Free Field is indeed
reflection positive:
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LEMMA 1.24. Let C=(m?—A)"t m>0. Then for any f € L%(R%)
(Cf,0f)r2may=0. (1.6)
Proof. Here we follow [80]. For p= (¢, q) € R? with (¢ € R, g€ R¢~!
Ff(p) = /e*”’zf(ac)dac
/ / e~ U7 £ (7 y)dydr
RyJRI-1

and we can continue this analytically in standard fashion in 7 to the lower half plane in the variable
£. By abuse of notation we denote with Ff also the analytic continuation. In particular we obtain

N N I (G
While for © f "

7o) = / €70 f(z)dx

= AAW e W f (7, y)dydr
. -1

and again this can be analytically continued to the lower half plane and we get

9@f(—iE,q)=// eI (7 ) dyér.
]R+ ]Rd—l

Note that FO f(—iE, q)=.% f(—iE,q).
After this preliminary analysis we can rewrite

— 1

<Cf> @f>L2(]Rd) = 9]”(27)?9]"(19)@(12’

yf(fa Q)y(_)f(ga Q)mdqdf

We now want to use the contour integral argument to compute the £ integral. Indeed the poles of
in £ are

£+ =Fiw=Fi(|q|* +m?)
The Residue of

yf(‘f:Q)ygf(faQ)mzyf(faQ)ygf('faq}(5_5+)1(€_§_)

at £ is
v
i(wy —w_)

T fliw-, q)FO f(iw-, q)
so by the contour argument

F&,970f(€ q) dgd¢

1
= Zﬂi/ff(iw_,q)y@f(iw—afﬂ .

i(wy — w_)dq

. 9 1
27T/|yf(lw—>Q)| 2(|q|2+m2)dq
0

WV

O

Remark 1.25. It is also possible to show that the covariance operator (m? — A)~* for 0 <s <1

is reflection positive [71]. However for s >1 that is not the case.
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So we have seen that the GFF satisfies the assumptions of Proposition 1.21. We will now show
that its moments satisfy exponential clustering, thus satisfying all Osterwalder Schrader axioms.

LEMMA 1.26. Let p be the Gaussian measure with covariance (m* — A)~! with m? > 0. Then its
moments satisfy exponential clustering.

Proof. We want to show that

k n k n
JIL o) T1 tnran o= [T uotan [ T] thoran
i=1 i=k+1 i=1 i=k+1

—m|A
< Ce m|\|

Denote by P, the set of partitions of {1, ..., n} into pairs. Then by Wick’s theorem (see for
example Theorem 1.28 in [82]), defining by fi= f; if i <k and f;= f;(-+a) for i > k we have

/H (fodydu=>_ 1] /<ﬁ,¢><fj,¢>du: oI (am2=a)71f).
i=1 pEP, {i,j}€p pEP, {i,j}€p

Now denote by PJ the set of partitions of {1,...,n} into pairs such that each pair is contained in
either {1,....,k} or {k+1,...,n}. Then it is not hard to see using that p is translation invariant that

n ~ k n
JIL Geonan= [T] st [ T] (oo
i=1 i=1 i=k-+1
= Z H (fir (m? = 2)71 ).
peP,\P; {i,j}ep

Now assume that p € P, \ P¥. Then there exists at least one pair {4, j} € p such that i <k and
j > k. For this pair

(fi (2= D)) = (fi, (m? — A) 7L fi(+a)) < Cem ™Il

which implies the statement. O

1.2. CoONNECTIONS WITH PDE’s

In this section we will outline some connections of Gibbs measures on function spaces of the form
e V(@) 1(d¢) with partial differential equations. We choose to focus here on two ways of connecting
to PDE’s.

1.2.1. Stochastic Quantization

Gibbs measures in the continuum have dynamical counterparts, formally given by the stochastic
PDE’s

duu(t, ) + (m? — Au(t,z) + V'(u(t,z)) = &(t, )
u(0) = wug

with € is a space time white noise on R4 x A, which has covariance

E[& flrzmxa)(& Flrzmxa)=(f, 9)rza)-

One expects that the Gibbs measure is the equilibrium for this Stochastic Partial Differential
Equation, that is one can find, stationary solutions u such that formally for any t € R

oy~ vesp( [ otm? = 2)0- [ Vi) Jao”

and in some cases one even has convergence of the Law of u(t,z) to the Gibbs measure as t— oo
for a large class of initial conditions wy.
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Let us focus on the case V' (u) :%u‘l and d =2. Then we end up with the equation

Ou+ (m?—Ayu—u? = ¢
u(0,2) = wuo(z)

It is known that in this case £ has spacial regularity —2 — d for any & > 0, so we cannot expect
u to have spacial regularity any better that —d, and because of this we run into the problem of
making sense of the non linearity u3. The remedy for this is very similar to the one for the measure
described above: We approximate the noise with a sequence of smooth noises &, and replace the
third power by the Wick ordered (see chapter 3 in [82]) third power u® — u3 — Cou = [u2], where
the notation [-] is defined by

[ul] = 31E[77€(0 0)]ue,

[ = ui—B{r20,0)

note that [E 7]2 t,x)] is does not depend on ¢, x) and we have denoted by Ne the stationary solution
e\b P ’
to

Ome + (m2 - A)ns =¢..
We see that the solution to
atue (m - ) [[U ]] = ge
us(0,z) = wuo(x)
satisfies u. = 1. + v. where v solves
e + (m2 - A)UE - [[(778 + Us)gﬂ =0
v(0,) = up(w) — ne(z)

Now ;
[[(775 + Ua)s]] = Z [[77;]] (Ua)3_i

and using probabilistic arguments one can show that as e — 0 [1Z], converges to a random distri-
bution of regularity —d for any 6 >0. By a contraction argument one can then make sense of the
limiting equation for v.. The idea to consider the equation for v. = u. — 7. instead of the equation
for u directly is known as the Da Prato-Debussche trick [43].

For d =3 the Da Prato-Debussche trick is not enough, since one no longer has that [1’] converges
in a space of regularity —d (instead converging in a space of regularity —i/2), and one has to look
for a more complicated ansatz for v and one needs more tools. Their development was achieved
by Hairer [77] and Gubinelli Imkeller and Perkowski [73] which was applied to ®3 in [40], see also
[78] for the parallel development for Sine-Gordon. In the approach of [73, 40] one takes further
specified v as

Owve + (m2 - A)Ua = [[n?ﬂ + [[772]] > Ve + We

where w, is another remainder term and > is a para-product; it is a bilinear operation on functions
and has the property that the function f > g behaves at large frequencies like f, so in particular
the regularity of the para-product is dictated by f, see appendix A for details. If one then adds
additional renormalization constants beyond Wick ordering, one can solve the equation also in three
dimensions. The goal of the program known as Stochastic Quantization is to use these equations to
obtain control over the associated invariant measures (which we are also interested in). These has
been achieved for ®4 in finite volume [9] and infinite volume in [71]. In [115] exponential convergence
of the dynamical ®3 model in finite volume to equilibrium was proven, that is starting from any
initial data the law of the solution at fixed time will converge to the ®3 measure. We note also
that the development described here took place on T?3, except for [71]. In infinite volume further
work is necessary to handle the divergence of the noise see [72, 71, 95, 94, 96].

Recently another class of Stochastic SPDE’s was shown to exhibit a connection to euclidean
quantum field theories. These are elliptic PDE’s on R? x R? which formally look like

—Au+mPu+V'(u)=¢
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where ¢ is a white noise on R? x R%. Then one expects that for any z € R? u(z, -) is distributed

according to
u(z) ~“exp( Jom>-my6- [ V(¢)>d¢”

1.2.2. Random Data dispersive equations

see [4, 11].

Gibbs measures in infinite dimensions can also be useful as invariant measures for certain dispersive
PDE’s , this direction of research has recently received some renewed interest as part of the more
general program of studying dispersive PDE’s with randomized initial data [38, 39], see also the
review [116]. In [23] Bourgain considered considered the invariance of ®3 on T? with respect to
the flow of nonlinear dispersive equations, for example the nonlinear (cubic) Schrédinger equation

i0pu + Au = [|u)?u] (1.7)

where the Wick ordering is defined similarly as above. This invariance is nontrivial to interpret
since this equation is known to be well posed for initial data with regularity 0 but not below, on the
other hand the ®3 measure is known to be supported on spaces of regularity just below 0. Indeed
one of the main contributions of Bourgain is that he was able to show that the flow of (1.7) is well
defined almost surely with respect to the ®3 measure. In this sense one could interpret Bourgain’s
result as improving the properties of the equation in a probabilistic setting. Bourgain’s argument
consists of the following steps

1. Approximating (1.7) with i0u®™ + Au" = Py|u|*u — cyu where Py is a projection on
functions with support in a ball of radius IV in the frequency space, and cy is again a
diverging renormalization constant

2. Constructing invariant measures for the approximate equations, which is simpler since they
are Gaussian outside of a finite dimensional space

3. Proving that the solutions of the approximate equations converge to solutions of (1.7) for
small times (this is done via Bourgain’s trick which is very similar to the Da Prato Debussche
trick described above).

4. Using invariance of approximate measures under the approximate equations to piece local
solutions together to obtain global solutions (this step is known as Bourgain’s globalization
argument).

Since then this program has been carried out for various other dispersive PDE’s in finite [21, 102,
101] and infinite volume [22]. Step 3 of this construction is usually carried out for initial data
distributed according to the free field, which then yields the statement for the full measure, since
in finite volume ®3 is absolutely continuous with respect for the free field. Let us mention a recent
development in this area which is closely related to Chapter 3 of this thesis. In a recent series
of papers [26, 27] Bringmann carried out this program for the wave equation with Hartree non-
linearity on T3:
—03u —u— Au=[(V *u?)u],

where V (2) = ¢g|z|~®~# with 3> 3> 0. For <1 the appropriate invariant measures y5 are not
absolutely continuous with respect to the free field. However relying on the approach developed in
Chapter 3 Bringmann was able to construct reference measures u,‘f, such that ug < u,‘f, and such
that vy = Law(W 4 1) where W is distributed according to the free field and I is a random function
with positive regularity. Using this approach he was able to reduce the local theory to constructing
the flow for short times starting from a random function distributed according to the Gaussian
Free Field. Another crucial contribution of [27] is a modification of step 4 to equations whose
invariant measures are not absolutely continuous with respect to the free field. Let us also mention
that closely related to the invariance is the quasi-invariance of Gaussian measures under the flow
of dispersive equations. In this branch of research one wants to construct Gaussian measures for
dispersive PDE’s which are quasi-invariant, that is the push forward under the flow of the measure
is absolutely continuous with respect to the Gaussian measure. This is often done by finding a Gibbs
measure which is equivalent to the Gaussian measure and invariant under the flow, see [103, 76].
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1.3. THE SINE-GORDON TRANFORMATION OF THE YUKAWA GAS

As a last application we explain the relation of the Yukawa gas with the Sine-Gordon model. We
follow here the nice exposition of [89]. The two dimensional Yukawa gas in a domain O CR?is a
model describing a gas of charged particles interacting via the Yukawa potential given by

© 1] _lz—wl?
K, ’ = by a dt;
(z,9) /O P

note that K, is the kernel of (m? — A)~1. For the purpose of this section we will take O bounded.
Then the partition function of the Yukawa gas is (at least formally) given by

oo n n

Y _ 2

=Y o > nexp(—ﬁ > mijm,m)dei.
n=0 (ri)f=1e{-1,1}n 1<i<j<n i=1

On the other hand let W be a random variable on a probability space IP mapping into the Besov-
Holder space € —¢(O) for some small £ > 0, distributed according to the Gaussian free field, that is

ELW. f)10) W a)sso)] = [ K. ) f@)o(u)dyd.

Let us consider the expectation

E{exp( 2T >/Ocos(5W(x))dx)].

Obviously this makes no sense a priory since K,,(0) is co and W is only a distribution so cos(8W)
has no meaning. However we can approximate it by

E{exp( T 7Tn<0>/ocos(5WT(x))dx>}, (1.8)

Koo,y = [ e 5t
m yY) = 0 47Tt .

where

Let Wr(x) be a random field with covariance

By Fusio(Wr.ghio) = [ Kh(w.)[(@)g(u)dyda.

Now (1.8) is well defined since KL(0) < oo and consequently Wy € L?(0O) almost surely. Further-
more we can compute that for any (;)7=; € {—1, 1}" with k positive elements and n — k negative

ones, we get
iowr(e)+Z o), \*( [ —iswr)+ZxLo) , "
E /e 2 om e /e 2 o mdy
o o

= /O exp(ﬂQ Z TZ‘TjK.?,;(ZL'i,ZL'j)>H dZL',L
" i=1

1<i<j<n

B‘Z
and so expanding ]E|:6Xp<—)\€2KE'(O)IOCOS(ﬁWT($))d$)] in a series we obtain

E[exp( )\62 ’”(O)/ cos(ﬁWﬂx))d:r)]
O
E{ﬂp(i(/ eiﬁWT(z)+622K7Tn(0)dx+/eiﬁWT(y)+6;KZL(O)dy):|
2\ Jo o
A” ( ) K/ W)+ KEO) g, ) (/ e—wWT(y)#fK%(O)dy)"k}
O O

n
‘/O exp<52 Z TZTJKTn(xz,LTJ))H dx;.
" i=1

L]

s

(Tl)l 1€{-1,13n I<i<jsn
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So sending T'— oo we obtain that (at least formally) we have

Z};_ﬂ,)\ = E[exp()\eﬁ;Km(o)/ cos(ﬂW(:r))dx)}.
(@]

Remark 1.27. Let us draw the readers attention to the following detail: Due to the irregularity
of the Gaussian Free Field one would have

cos(BWr) —0

in a suitable sense as T'— oco. However

B‘Z
eTK’E ©cos (BWr)

will converge to a (nontrivial) well defined random distribution as T'— oco. Usually this renormal-
ization has to be put in somewhat artificially and lacks an obvious physical meaning, however here
it comes out as a the correct quantity from a physically sensible computation.

1.4. CONTRIBUTIONS

The main theme of this thesis is the study of continuum Gibbs measures through variational/sto-
chastic control techniques. The objects we study will always (at least formally) be of the form
(1.2). We can take advantage of this by using the a formula first established by Boué and Dupuis
[20] in the context of large deviations and later generalized by Ustiinel [117]. Before stating the
formula let us introduce a way to regularize the gaussian free field which will be convenient for us:
Below we will take Wr to be a gaussian process on a probability space [P such that

e TWris a continuous martingale in T with values in the space of Schwartz functions .7 (A).
e Wy is smooth almost surely for 7' < co.
e Law(Wp)— u where p is the gaussian free field.

We will always construct W as stochastic integral of a cylindrical Brownian motion on L?(A) with
A=T%for d=2,3 or A=IR? At this point it will be convenient to change notation and denote by

V() = /A o —ar[ 4ty or vT<¢>:aT/ sin(5¢)

with suitably chosen ar,br,a” — co. Then we we will be able to express the approximate measures
as defined by exp(—Vr(¢))u(de) as

VT (A) =PT(Wr € A)
with
dPT = exp(—Vp(Wr))dP

THEOREM 1.28. Assume that V:C™ — R such that E[|V(Wr)|?] + Elexp(—2V(Wr))] < oo, then

: I
Here ‘ 0
o I, is the space of processes adapted to the filtration generated by (Wi)ier, such that

f;o||ut|\%2(/\)dt < oo P-almost surely,
e [ is a bounded linear map from L?([0,00) x A) — C([0, <], H'(A)).
All of the subsequent chapters will make heavy use of this formula of this formula in somewhat

different ways. We will give a proof of a modified version, in chapter 2, relying on Girsanov’s
transform, and another proof in chapter 4 based on stochastic control theory.
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1.4.1. Chapter 2

Our aim in Chapter 2, which closely follows the paper [13], will be to construct the ®3 .3 measure
on the finite domain A = T2, T3. Inspired by section 1.2.1 let us introduce the Wick ordermg

[W#] = Wi —6E[
W] = Wi —3E[WZ]|Wr,
[WA] = W#—E[WZ.

One can prove that [W] are martingales in 7. For d =2 we can choose Vp(Wr) = A [, [W] and
apply eq. (1.9) to obtain

Wr(f)
:= —logE[exp(— f(Wr) — Vip(Wr))]
- E[f(wT #1200+ 3 [ I+ [ 003G+ [ D81 0)* o

/ Waltr()*+ 2 [ (tr) + 3 [l |

Our objective is to get lower and upper bounds on the right hand side of (1.10) to obtain tightness

for the sequence of measures vy. Note that the terms [, (Ir(u))* + %IOT HutH%z(A)dt are “good”
in the sense that they are positive, and we will use them to bound the other terms which do
not have a sign. If f has linear growth on the space Holder space of regularity % ~%(A), that is
|f()| SCA A+ fll¢-5a)), we can prove, using that supTeRJE[H[[WT"]]H%,J(A)} < 00, that

[f(WT + Ir(u)) + A/[[WT‘*I] + A/[[W%’]]IT + A/[[WT]] (Ir(u))? + A/WT(IT(u))3 +

3 ()5 / fuliscn |
> —C’—l—%]E{/\/A(IT(u))‘l—i—%/Oﬂu|%z(A)}

> —C.

Where we have used that B[ [, [W#]] =0 since [W] is a martingale. On the other hand by choosing
u =0 we obtain an upper bound to get

—C <logElexp(— f(Wr) — Vr(Wr))|<C

which is the desired goal. For ®3 the situation is significantly more complicated since we no longer
have suprE[||[W2] ||l -s (n)] <oo. Instead one can only prove

1
supE| [WrlI2 .- < oo, supE[|[W# . < o0, su W - <
1p W ||E - e 5(A)} 1p NIWADII -1 -5 )] D1oa(T) E[[[WAI% -1-5() ]
0.

so one can no longer bound the terms
3L, A [ WL ) (111)

by the good terms since fOT Hu||%z(A) only controls the H! norm of I7(u) uniformly in T'. For this
reason we need to introduce additional renormalization constants and choose

Ve (W) = / (WA — e [ W] - 6.

After this we have to make the correct ansatz for u so that % J OT Hu||%z( ) cancels the divergent
terms (1.11). This ansatz will be of the form

’U/t:—Jt[[mgﬂ —Jt[[I/VtQH >9tlt(u)+lt(u) (112)
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where J; is a Fourier multiplier localized in frequency in an annulus of radius ¢, ; is a Fourier
multiplier localizing the function in a ball of radius ¢/2 and I4(u) is a remainder term defined by
this formula. Finally ”>" is a para-product already mentioned in Section 1.2.1 (see Appendix A
for a precise definition). Performing this “change of variables” and choosing ~r, 07 suitably we can
then obtain

-C<Wr(f)<C

also in the d = 3 case. It is also known that ®3 is singular with respect to the free field even in
finite volume ([3] and chapter 3). For this reason to our knowledge an “explicit” description(that
is one not making reference to a limiting procedure) has been lacking so far in the literature. In
this chapter we will obtain such a description in the form of a variational formula for the Laplace
transform of ®4 by passing to the limit 7— oo in (1.9) , after having made the change of variables
(1.12) using I'-convergence. To be more precise we will obtain the following statement

THEOREM 1.29. Let d =3 and take a small k > 0. There exist renormalization constants vy, dp
(which depend polynomially on \) such that the limit

W(f):= lim Wi(f),

exists for every f € C(€ /27" R) with linear growth. Moreover the functional W(f) has the
variational form

W(f)= _ inf Ef(WOOJrIOO(u))+\I/OO(U)+>‘HIOO(U)||%4+%Hl(u)”%2([0.,oo)><A)

weH-1/2-"

where Uoo(u) a nice polynomial (non-random) functional of (W ,u),independent of f, and ]H;lﬂfk"

is the space of predictable processes (wrt. the Brownian filtration) in L*(Ry; H_1/2_”),with He
being the Sobolev space defined by the norm || f|#e = (f, (1 — A)Qaf>Lz(A). In particular the
measures V1 converge to a unique limit v>°.

1.4.2. Chapter 3

In this chapter, which closely follows the preprint [14] we continue our study of the ®3 measure.
As already mentioned a significant difficulty in the study of ® is that it is singular with respect to
the Gaussian Free Field. In this chapter we will construct a “replacement” for the free field, that
is a measure QV with respect to which the ®4 measure is absolutely continuous. Q" is obtained
from IP by a Girsanov transform. Indeed the time ¢ which for us parametrizes the scale provides a
filtration .Z7 (the one generated by the cylindrical Brownian motion on L?(A)). We will then take
Q™ to satisfy

dQ"
dPp

1 t
:exp(L%—5<L“>T>, Lf:/ (us, dWo)r2(0) (1.13)
Fr 0

and v is a specific drift which is designed to cancel the divergences in the densities for ®3. Indeed
the considerations from Chapter 2 suggest to take v satisfying the equation

u=E(W" u)=2(W —I(u),u)
with
Es(W o) i= = AT W2 — AT (W2 = 0,1,(u)).

Actually we will have to make some technical modifications to = to simplify the proof construction
of QY and the proof of absolute continuity but we will not go into this here. We will then consider

the sequence of densities
R S Vg dQ" -1
DT T ZTe dIP

and see that we can prove localized LP bound on Dp. That is we will be able to show that

supBoe[|DT1"L{jwl, -1/a- i} ] < 00
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which will imply absolute continuity of any accumulation point of the family IP? which is given by
dPT = exp(—Vy(Wr))dP  with WM@fﬁW_W‘W_W

with respect to Q*. As an application of our result we will provide a proof that ®3 is singular
with respect to the free field by constructing an event which has probability 0 IP and probability
1 under Q*. More precisely we will show that S C % ~*/275(A) defined by

S:= {f € ‘5*1/2*8(/\)1#[\[[(9%,1")4]} - 0}

for some suitable sequence T;, — 0o, and 61 being a family of Fourier multipliers localized in a ball
of radius 7', satisfies P(Wy, € S) =1 and Q%(Wx € S) =0. Since ®f is absolutely continuous with
respect to Q" this will prove singularity.

1.4.3. Chapter 4
In this chapter we study the Sine-Gordon model on R2. Recall that this is formally defined by

e—A_[cos(ﬁd))M(d(b)

with p(d¢) now being the Gaussian free field on R?. In the previous chapters we have dealt with
®4 on a finite domain, where the difficulty arose from having to make sense of the non-linearity
applied to an irregular distribution. In this chapter we will encounter the additional complication
of “infrared divergence” that is of having to make sense of f cos(3¢) on the whole space R? without
cos(B¢) having any decay property at infinity. After introducing a regularization and a spacial
cutoff p we end up with the measure

VT (4) = PT-#(Wy € )
with

apTe =t
Zr.,

exp(a(T) / pcos(ﬂWﬂ)dIP

where Wr is constructed in analogy with Chapters 2 and 3, «(T) is a diverging renormalization
constant introduced to prevent the limit from becoming trivial (see Section 4.2.2 and recall Section
1.3), p € C(R?) is a spacial cutoff, and Zr , is a normalization constant turning P7+” into a
probability measure. We will be looking to take the limits p— 1,7 — oo. Using the Boué-Dupuis
formula we will have

—log [ e (g (o)

T
= inf E[f(WT+IT(U)) +)\04(T)/PCOS(5WT+ Blr(u)) +%/o |U|%2(]R2)]

uweH,

T
— inf E[Aa(T)/pcos(ﬁWT+6]T(u))Jr%/o ||'UJ||%2(R2):|

uweH,

Denoting u/ a minimizer of the functional

T
FT.,pyf(u)E{f(WTJrIT(u))+)\a(T)/pcos(6WT+ﬂIT(u))+%/O ||U|%2(]R2):|,

we will see that our main goal will be to control the dependence of u/ on f and p. In fact we will
show that u/ —u decays exponentially fast outside of the support of f or more precisely

/0 / exp(12)|uf () — ul () de (1.14)

Using this and similar estimates we will be able to prove the following results
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THEOREM 1.30. Vgép converges as T — 0o, p— 1 weakly to a measure vsg on .#'(R?). Furthermore
usa satisfies

. 1 [
_log/e*f(@)yscr(d(p) = lnﬂng f(Wooo + IO,oo(U) + IOOO(UOO)) + \I/(’u,) —|—§/ |Ut||%2dt:|
ue 0

where

o u*c L®(P, LRy x R?))N L3P, L*(R4, L?({x)™™))) where by L*({x)~™) we denote the
space equipped with the norm ||f||%2(<w>—n) = [ge(®) 7" f(2)dz.u> does not depend on f.

e [ s a linear map tmproving reqularity by 1 sitmilarly as above
o U(u) is a functional of u which also depends on u™ and W, it will be specified below

o D7 is a subspace of H, containing drifts with exponential decay in space, it will also be
specified below, similarly to eq. (1.14)

We will also obtain a description of the Sine-Gordon measure as a random shift of a gaussian
measure, similarly to how we described the drift measure in Chapter 3 but this time for the full
Sine-Gordon measure.

THEOREM 1.31. There exists a random variable I € L>=(IP, W*°(IR?)) such that
vsg = LaW]p(Woo + I)

Furthermore the Law of the pair (Wxo, I) is invariant under the action of the FEuclidean group.

Remark 1.32. We remark here that in comparison with Chapter 3 the description of the random
variable I is more complicated in this case since the equation it solves involves the value function
of the the control problem which is a somewhat “implicit” object (see Proposition 4.13 in Section
4.2 for details).

We will also be able to prove that the Sine-Gordon measure satisfies the OS-Axioms described
in section 1.1.2.

THEOREM 1.33. vgq satisfies the Osterwalder-Schrader axioms according to Definition 1.22. Fur-
thermore the clustering is exponential and vsg is non-Gaussian.

1.4.4. Large Deviations

In Chapter 2 and Chapter 4 we will also discuss Large Deviation Principles for the considered
measures, that is the ®3 measure on T and the Sine-Gordon measure on R?, in the so called
semi-classical limit. The theory of large deviations has seen many nice expositions see [50, 55, 47].
For a sequence of probability measures v, on a metric space S it codifies how fast probabilities of
“unlikely” events go to 0. More precisely as n— oo one looks for an estimate of the form

Un(A) ~ exp(—n inf I(A)),

z€A

where I: S — R4 U{oco}is called a rate function. Rigorously we have the following definition:

DEFINITION 1.34. A sequence of measures v, on a polish space S satisfies the Large deviations
principle with rate function I if for any closed set A C S

limsup — %log n(A) > inf I(x)

n— oo z€A

and for any open set BC S
liminf — llog vn(A) < inf I(x)

n— oo n €A

Large deviations are equivalent to what is known as the Laplace principle, which is a description
of the limit of the Laplace transforms of v,,.
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DEFINITION 1.35. A sequence of measures v, on a polish S satisfies the Laplace principle with rate
function I if for any continuous bounded function f:S— R

lim 7%10g/67nf(z)dl/n(x):zilelg{f($)+1(x)}.

n— o0

It is well known that the Large deviations principle and the Laplace principle are equivalent,
see for instance [50], Section 1.2.

To look at the semi-classical limit we have to introduce Planck’s constant into the measure.
We can consider the measures formally given by

pho LRI A mIp @) 3|V e@)Pdey

Zn,
where again Z, is a normalization constant.One can give a meaning to these measures in the way
that has been shown for v in the previous discussion. More rigorously this should be defined should
be defined by the limit of the measures

B[ gt/ 2w == )]
Zy;

/ 9($)H(de) =

In Chapter 2 we will consider the ®4 model on a finite domain, which again has to be appropriately
renormalized (see Section 2.7 for details). Proving that the 7' — oo limit exists can be done in
exactly the same way as for the 7 = 1 case treated before, and we can also obtain a variational
formula for the Laplace transform. Taking % — 0 in the variational formula we will obtain the
following theorem.

THEOREM 1.36. The sequence of measures v} converges weakly on € ~/27¢, for any € >0, to a

unique limit v™ as T — co. Furthermore v" satisfies a Laplace principle with rate function

1(v) =A/¢4+m2/w2+/|vw|2 (1.15)

as h— 0.

In Chapter 4 we can obtain a similar situation for Sine-Gordon where we can define usg,p as
the limit of

1 —2a(T) [ pcos(h/?
Vg,T(dSD):We 3 (T) [ peos( @P)M(d@),
I

as T'— 0o, p— 1. We then have the following theorem.

THEOREM 1.37. The measures vE"" converge weakly on H='((x)~") forn large enough to a limiting
measure vsq,h- VsG,n satisfies a Large deviation principle with rate function

160) =2 [ (cos() =)+ [ 245 [196(@)P

as h— 0.
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CHAPTER 2

A VARIATIONAL APPROACH TO &3

2.1. INTRODUCTION

The ®} Gibbs measure on the d-dimensional torus A = A, = Tf = (R /(27 LZ)) is the probability
measure v obtained as the weak limit for T'— oo of the family (v7)r>q given by

_ exp[—Vr(ér)]
vr(de) —Tﬂ(dqb), (2.1)

where

VT(@):=A/A(Iw(«ﬁ)l“—ale(§)|2+bT)d€, %r:/e‘VTWT)ﬂ(dﬂﬁ)-

Here A >0 is a fixed constant, A is the Laplacian on A, 9 is the centered Gaussian measure with
covariance (1 — A)~1, 2% is a normalization factor, ar, by given constants and ¢ = pr * ¢ with
pr some appropriate smooth and compactly supported cutoff function such that pr— 9 as T'— oc.
In comparison with the introduction have set m? = 1 here, since we are on finite volume the
mass does not really play a role. The measures ¢ and v are realized as probability measures on
Z'(A), the space of tempered distributions on A. They are supported on the Holder-Besov space
¢ 2=D/2=5(A) for all small £ > 0. The existence of the limit v is conditioned on the choice of a
suitable sequence of renormalization constants (ar,br)rso. The constant by is not necessary, but
is useful to decouple the behavior of the numerator from that of the denominator in eq. (2.1).

The aim of this paper is to give a proof of convergence using a variational formula for the
partition function 27 and for the generating function of the measure vp. As a byproduct we
obtain also a variational description for the generating function of the limiting measure v via I'-
convergence of the variational problem. Let us remark that, to our knowledge, it is the first time
that such explicit description of the unregulated ®3 measure is available.

Our work can be seen as an alternative realization of Wilson’s [118] and Polchinski’s [108]
continuous renormalization group (RG) method. This method has been made rigorous by Brydges,
Slade et al. [30, 28, 29] and as such witnesses a lot of progress and successes [33, 34, 16, 35, 36]. The
key idea is the nonperturbative study of a certain infinite dimensional Hamilton—Jacobi-Bellman
equation [32] describing the effective, scale dependent, action of the theory. Here we avoid the
analysis involved in the direct study of the PDE by going to the equivalent stochastic control
formulation, well established and understood in finite dimensions [56]. The time parameter of the
evolution corresponds to an increasing amount of small scale fluctuations of the Euclidean field and
our main tool is a variational representation formula, introduced by Boué and Dupuis [20], for the
logarithm of the partition function interpreted as the value function of the control problem. See
also the related papers of Ustiinel [117] and Zhang [120] where extensions and further results on the
variational formula are obtained. The variational formula has been used by Lehec [91] to prove some
Gaussian functional inequalities, following the work of Borell [19]. In this representation we can
avoid the analysis of an infinite dimensional second order operator and concentrate more on path-
wise properties of the Euclidean interacting fields. We are able to leverage techniques developed
for singular SPDEs, in particular the para-controlled calculus developed in [73], to perform the
renormalization of various non-linear quantities and show uniform bounds in the T'— oo limit.

Define the normalized free energy Wy for the cutoff ®3 measure, as the functional
1
Wr(f):=—pxloe [ expl=|ALf(6) = Va(6n)lo(do). (2.2)
AT f in)

for all feC(<’(A);R). The main result of the paper is the following

27
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THEOREM 2.1. Let d = 3 and take a small kK > 0. There exist renormalization constants ar, by
(which depend polynomially on \) such that the limit

W(f):= lim Wi(f),

exists for every f € C(€ Y27 R) with linear growth. Moreover the functional W(f) has the
variational form

. 1

W(f)= Hl{llf/HE f(WOOJrZOO(u))+\I/OO(U)+)‘HZOO(U)HI%“+§Hl(u)”%2([0,oo)><A)
uweld,

where

e IE denotes expectations on the Wiener space of a cylindrical Brownian motion (X;)i>0 on
L2(A) with law P;

o (W)i>0 is a Gaussian martingale process adapted to (X;)i>0 and such that Lawp(W;) =
Lawy (1) ;

. ]I-Ia_l/Q_"i is the space of predictable processes (wrt. the Brownian filtration) in L?*(R.y;
H*l/an)’.

° Zi(u),ly(uw))>0 are explicit (non-random) functions ofUGIH_lm_K and W;
( ( )7 /O p a ’

o U (u) a nice polynomial (non-random) functional of (W ,u), independent of f.

See Section 2.4 and in particular Lemma 2.22 and Theorem 2.23 for precise definitions of the
various objects and a more detailed statement of this result. With respect to the notations in
Lemma 2.22, observe that

fWoo + Zoo(u)) + Voo (u) = Poo (W, Z(u), K (u)).

Theorem 2.1 implies directly the convergence of (vr)r to a limit measure v on ./(A). Taking f
in the linear dual of /27" it also gives the following formula for the Laplace transform of v:

/ exp(—f(¢))v(de) = exp(=[A|(W(f/[A]) = W(0))). (2:3)
FI(N)

To our knowledge this is the first such explicit description (i.e. without making reference of the
limiting procedure). The difficulty is linked to the conjectured singularity of the ®3 measure with
respect to the reference Gaussian measure. Another possible approach to an explicit description
goes via integration by parts (IBP) formulas, see [10] for an early proof and a discussion of this
approach. More recently [71] gives a self-contained proof of the IBP formula for any accumulation
point of the ®4 in the full space. However is still not clear how to use these formulas directly to
obtain uniqueness of the measure and/or other properties (either on the torus or on the more diffi-
cult situation of the full space). Therefore, while our approach here is limited to the finite volume
situation, it could be used to prove additional results, like large deviations or weak universality
very much like in the case of SPDEs, see e.g. [79, 63].

The parameter L, which determines the size of the spatial domain A=Ay, will be kept fixed all
along the paper and we will not attempt here to obtain the infinite volume limit L — co. For this
reason we will avoid to explicitly show the dependence of Wr with A. However some care will be
taken to obtain estimates uniform in the volume |A|.

An easy consequence of the estimates needed to establish the main theorem is the following
corollary (well known in the literature, see e.g. [18]):

COROLLARY 2.2. There exists functions E+(\), E_(\) not depending on |A|, such that

. Ei(N)
Alil& A3

:0,
and, for any A >0,
E_(\) <Wr(0) < B+ (M.
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A similar statement for d =2 will be sketched below in order to introduce some of the ideas on
which the d =3 proof is based.

The construction of the <I>‘21, 3 measure in finite volume is a basic problem of constructive quantum
field theory to which many works have been devoted, especially in the d = 2 case. It is not
our aim to provide here a comprehensive review of this literature. As far as the d = 3 case is
concerned, let us just mention some of the results that, to different extent, prove the existence of the
limit as the ultraviolet (small scale) regularization is removed. After the early work by Glimm and
Jaffe [65, 64], in part performed in the Hamiltonian formalism, all the subsequent research has been
formulated in the Euclidean setting: i.e. as the problem of construction and study of the probability
measures v on a space of distributions. Feldman [53], Park [107], Feldman and Osterwalder [54],
Magnén and Sénéor [92], Benfatto et al. [18], Brydges, Frohlich and Sokal [31] and Brydges,
Dimock and Hurd [28] obtained the main results we are aware of. Recent advances in the analysis of
singular SPDEs put forward by the invention of regularity structures by M. Hairer [77] and related
approaches [73, 40, 105], or even RG—inspired ones [84], have allowed to pursue the stochastic
quantization program to a point where now it can be used to prove directly the existence of the
finite volume ®4 measure in two different ways [97, 9]. Uniqueness by these methods requires addi-
tional efforts but seems at reach. Some results on the existence of the infinite volume measure [71]
and dynamics [72] have been obtained recently. For an overview of the status of the constructive
program wrt. the analysis of the ®3 3 models the reader can consult the introduction to [9] and [71].

This chapter is organized as follows. In Section 2.2 we set up our main tool, the Boué-Dupuis
variational formula of Theorem 2.4. Then, as a warm-up exercise, we use the formula to show
bounds and existence of the ®3 measure in Section 2.3. We then pass to the more involved situa-
tion of three dimensions in Section 2.4 where we introduce the renormalized variational problem.
In Section 2.5 we establish uniform bounds for this new problem and in Section 2.6 we prove
Theorem 2.1. Section 2.8 and Section 2.9 are concerned with some details of the analytic and
probabilistic estimates needed throughout the paper. Appendix A gathers background material on
functional spaces, paraproducts and related functional analytic background material.

Convention. Let us fix some notations and objects.
e For acRelet (a):=(1+|a?)'/2

e The various constants appearing in the estimates will be understood uniform in |A|, unless
otherwise stated.

e The constant x > 0 represents a small positive number which can be different from line to
line.

e Denote with .#(A) the space of Schwartz functions on A and with .#"/(A) the dual space of
tempered distributions. The notation f or .% f stands for the space Fourier transform of f
and we will write g(D) to denote the Fourier multiplier operator with symbol g: R* — R,

ie. Z(g(D)f)=g.7f.
e In order to easily keep track of the volume dependence of various objects we normalize the
Lebesgue measure on A to have unit mass. We denote the normalized integral and measure

by
fregifp. oo

where |A| is the volume of A. Norms in all the related functional spaces (Lebesgue, Sobolev
and Besov spaces) are understood similarly normalized unless stated otherwise. This nor-
malization of the functional spaces is used not because it is the most convenient one but
because it is the one relevant to obtain uniform estimates in the volume of the variational
functional. For example, another normalization of H' norm would no longer be controlled
by the L? norm of the drift appearing in Theorem 2.4 below uniformly in |A|. Note that
that with our choice of normalization the Sobolev embedding no longer holds uniformly in
|A|. This is the reason why we carefully avoid to use it in the estimates of Section 2.8.
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The reader is referred to Appendix A for an overview of the functional spaces and the additional
notations used in the paper.

2.2. A STOCHASTIC CONTROL PROBLEM

We begin by constructing a probability space (2, %4, IP) endowed with a process (W:):c(o,]
belonging to C([0, oc], € 2~9/27%(A)) and such that Lawy(¢r) = Lawp(Wr) for all T > 0 and
Lawp(Wa) =4, the Gaussian free field with covariance (1 —A)~1.

Fix @ < —d /2 and let Q := C(R4; H™%), (X;)1>0 the canonical process on Q and # the
Borel o—algebra of Q. On (Q, &) consider the probability measure IP which makes the canonical
process X a cylindrical Brownian motion in L?(A). In the following |E without any qualifiers
will denote expectations wrt. P and Eq will denote expectations wrt. some other measure Q.
On the probability space (€2, %, P) there exists a collection (B{"),¢(r-1z)e of complex (2-dimen-
sional) Brownian motions, such that B = B; ™, B, Bi" independent for m # +n and X; =
|A|71/22716(L,lz)de“”*')B{L. Note that X has a.s. trajectories in C(R,,% ~%27¢(A)) for any € >0
by standard arguments.

Fix some p € CS°(R4, Ry), decreasing such that p(s)=1 for any s<1/2 and p(s) =0 for any
s>1. For z € R, set, py(x) := p({x)/t) and

1/2
0t($)i<%(p?(w))> = (2pu(x) pul@))'/? = (=2((a) /) p(() /) p' () /1)) 1/2 /12,

where p; is the partial derivative of p;, with respect to ¢. Consider the process (W});>o defined by

t =

/"6 (m)dBr,  t>0. (2.4)

1/2
|A| / ne(L 12):1

It is a centered Gaussian process with covariance

_ L tgu(n) nSin SUU(m) m 7 m
B )W) = 7 3 )E[ [ 2asy o) [ app iom)

2 n N
_ |_/:l\| Z pmm(s,t)( )¢(n)1/)(n);

2
ne(L—1z)d <n>
for any ¢, 1 €.(A) and t,s >0, by Fubini theorem and It6 isometry. By dominated convergence
lim— oo B[(W;, ) (Wi, )] = |A|_1Zne(fflz)d (n)=2p(n)1h(n) for any ¢, 1h € LA(A).
Note that up to any finite time 7" the r.v. W has a bounded spectral support and the stopped

process Wi = Wi for any fixed T >0, is in C(R, W*?2(A)) for any k€ N. Furthermore (W;');
only depends on a finite subset of the Brownian motions (B™),. Denote

t
m:/ JdX,, >0, (2.5)
0

with Js:= (D) los(D). Observe that W; has a distribution given by the push-forward (p:(D)).0 of
9 through p¢(D). We write the measure v in (2.1) in terms of expectations over P as

o Vr(Wr)
J e (26)

for any bounded measurable g:.%’(A) — R.

For fixed T the polynomial appearing in the expression for Vp(Wr) is bounded below (since
A>0) and Z7 is well defined and also bounded away from zero (this follows easily from Jensen’s
inequality). However as T'— oo we tend to loose both these properties due to the fact that we will
be obliged to take ap — 400 to renormalize the non-linear terms. To obtain uniform upper and
lower bounds we need a more detailed analysis and we proceed as follows.
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Denote by H, the space of progressively measurable processes which are IP-almost surely in
H:=L*(R4 x A). We say that an element v of H, is a drift. Below we will need also (generalized)
drifts belonging to H®:= L?(R4; H*(A)) for some o € R, we denote the corresponding space with
Hg. Consider the measure Qr on (2, #) whose Radon—Nykodim derivative wrt. P is given by

dQr e Vr(Wr)
ap 2y

Since Wr depends on finitely many Brownian motions (B™),, it is well known [109, 57] that any
P—absolutely continuous probability can be expressed via Girsanov transform. In particular, by
the Brownian martingale representation theorem there exists a drift u” € H, such that

dQr T oray AL e
dIP eXp(/O Ug dXS 2 0 Hu’é ||L2ds )

(recall that we normalized the L?(A) norm) and the entropy of Q7 wrt. P is given by

d A e
H(QrlP) =B | 052 | = Bl B, [ s |

Here equality holds also if one of the two quantities is +0o0. By Girsanov theorem, the canonical
process X is a semimartingale under Qr with decomposition

~ t
Xt:Xt—f—/uSTds, t>0,
0

where (X;); is a cylindrical Qr—Brownian motion in L*(A). Under Q7 the process (W), has the
semimartingale decomposition W; =W, + U; with

~ t ~
W, ::/ JdX,, and Up=I;(u”),
0
where for any drift v € H, we define
t
I(v) ::/ Jovgds.
0
The integral in the density can be restricted to [0, 7] since u} =0 if ¢t >T. Now
-1 00 o}
—log %7 = —log | e~ Vr(W7) dQr =Vr(Wr) + uSTdXS—m |l ||?ds, (2.7)
dP 0 2 Jo
and taking expectation of (2.7) wrt Qr we get
. Al [o®
—log 27 = IEQT[VT(WT + I7(uT)) + %/ f|lul ||2d3] . (2.8)
0
For any v € H, define the measure Q" by

dQv _ = AL e
P exp(/O vsd X > |, |vs||*ds ).

Denote with H. C H, the set of drifts v € H, for which QV(Q) =1, in particular u” € H,.. By Jensen’s
inequality and Girsanov transformation we have

—log 27 = —log Ep[e~"7(W1)] = _log ]E'U{e_VT(WT)_-f"oovstSJr%f"w”Us“zds

<EU[VT(WT) +/ e —%/ |vs|2ds],
0 0
for all v € H,, where EV:=Eg». We conclude that

A o0
“log Q”Tg]E“{VT(Wf—FIT(v))—F'—Q'/ ||vs||2ds} (2.9)
0
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where W = W£ + Ir(v) and Lawge(W") = Lawp(W). The bound is saturated when v =u”. We
record this result in the following lemma which is a precursor of our main tool to obtain bounds
on the partition function and related objects.

LEMMA 2.3. For any f € C(€ /27" R) with linear growth, the following variational formula for
the free energy holds:

__1 ~VEWn)] — min EBY| vl (W LY T
= |A|log1E[e T ]752}1?61]5 |A|VT(WT+IT(’U)>+2 . ||’U5HL2C18 .

where Vi{ .= |A|f + Vi,

Wr(f)

This formula is nice and easy to prove but somewhat inconvenient for certain manipulations
since the space H, is indirectly defined and the reference measure [EV and the process W depend
on the drift v. A more straightforward formula has been found by Boué-Dupuis [20] which involves
the fixed canonical measure IP and a general adapted drift v € H,. This formula will be our main
tool in the following.

THEOREM 2.4. For any f € C(€ /27" R) with linear growth the Boué-Dupuis (BD) variational
formula for the free energy holds:

= —Llog]E [eng(WT)] = inf E 1

Wrlh)=—1g] Bl

1 o0
V(Wi + Ir(v)) +5/ ||vs|%2ds}.
0
where the expectation is taken wrt to the measure P on €.

Proof. The original proof can be found in Boué-Dupuis [20] for functionals bounded from above.
In our setting the formula can be proved using the result of Ustiinel [117] by observing that Vi (Yz)
is a tame functional, according to his definitions. Namely, for some p,q>1such that 1/p+1/¢g=1
we have

B[V (W] + Ele " V)] < 4o, 0

Remark 2.5. Some observations on these variational formulas.

a) They originates directly from the variational formula for the free energy of a statistical

mechanical systems: qu playing the role of the internal energy and the quadratic term
playing the role of the entropy.

b) The infimum might not be attained in Theorem 2.4 (see e.g. Theorem 8 in [117]) while it
is attained in Lemma 2.3.

¢) The drift generated by absolutely continuous perturbations of the Wiener measure has been
introduced and studied by Follmer [57].

d) They are a non—-Markovian and infinite dimensional extension of the well known stochastic
control problem representation of the Hamilton—Jacobi-Bellman equation in finite dimen-
sions [56].

e) The BD formula is easier to use than the formula in Lemma 2.3 since the probability
do not depend on the drift v. Going from one formulation to the other requires proving
that certain SDEs with functional drift admits strong solutions and that one is able to
approximate unbounded functionals V7 by bounded ones. See Ustiinel [117] and Lehec [91]
for a streamlined proof of the BD formula and for applications to functional inequalities on
Gaussian measures. For example, from this formula it is not difficult to prove integrability
of functionals which are Lipschitz in the Cameron—Martin directions.

The next lemma provides a deterministic regularity result for I(v) which will be useful below.
In particular, it says that the drift v generates shifts of the Gaussian free field in directions which
belong to H! uniformly in the scale parameter up to co. The space H' is the Cameron—Martin
space of the free field [82].
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LEMMA 2.6. Let a € R. For any v € L*([0,00), H®) we have

L(v) = I;(v)[|%a T
sup [ I(v)|[fra+1+  sup “ t(1> ts(_)“H HS/ [[vp]|Fradr,
p 0<t<T 0<s<t<T A(t—s) 0

an

T
sup ||It(v)|\?{a+1</ or [Zredr.
0<t<T 0

Proof. Using the fact that o5(D) is diagonal in Fourier space, and denoting with (ex)sc(r-12)
the basis of trigonometric polynomials, we have

2 2

t 1 t
os(D)veds - = > <k>2a/< os(D)er, vs)ds
‘ﬁ He |A|ke(L 17)d
< % </|c7S ek,ek|ds></|ek,vs|ds>
| |ke( 1Z)d
< /||Us||Hadssup/ (e, 05(D)%er)ds
T

< / vslZeds sup {ex, p3(D)er) < / Jos|feds.
r k 0

Which is the second statement. On the other hand o4(D) is a smooth Fourier multiplier and using
Proposition A.7 we have the estimate |oo(D) f||gra < || f lre/ (s)'/? uniformly in s > 0, therefore,

for all 0 <r <t < T, we have
t 2 t
( / ||as<D>vs|Hads) < (=) [ louDyuluds
s T

t 2
‘/US(D)’US(‘IS
r H
T
S (=) [ Ilfreas
0

We conclude that
t
/ os(D)veds

1 1(v) = I (v) [fges1 S
NOTATION 2.7. In the estimates below the symbol E(\) will denote a generic positive deterministic
quantity, not depending on |A| and such that E(\)/X*—0 as A— 0. Moreover the symbol Q will
denote a generic random variable measurable wrt. o((Ws)icjo, 1)) and belonging to LP(IP) uniformly
in T and |A] for any 1< p<oo.

2 T
g[m(t—r)]/ vs]|Zeds.
H~ 0 0

2.3. TwO DIMENSIONS

As a warm up consider here the case d =2 setting f =0 for simplicity. From Theorem 2.4 we see
that the relevant quantity to bound is of the form

Fr(u) =B V(e + Toa) + gl (2.10)

for u € H,. From now on we leave implicit the integration variable over the spatial domain A and
let Z; = I(u) for brevity. Choosing

aT:6]E[WT(O)2], bT:3E[WT(O)2]2, (2.11)
we have

1

WVT(WT +Z7)= Af W] + 4>\7[ Wi Zr + 6)\7[ WA 2% + 4)\][WTZ% + >\7[Z§1~,

where
WAL = Wi — 6E[WZ] W + SE[WZP,
[Wi#] Wi — 3E[W]Wr,
W] = W2 -EW,
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denote the Wick powers of the Gaussian r.v. Wr [82]. These polynomials, when seen as stochastic
processes in T, are P—martingales wrt. the filtration of (W;);. In particular they have an expression
as iterated stochastic integrals wrt. the Brownian motions (B}');,, introduced in eq. (2.4). Using
Theorem 2.4 with u =0 we readily have an upper bound for the free energy:

*|—/1X|10g Zr < /\IE[][ [[Wflﬂ =
For a lower bound we need to estimate from below the average under IP of the variational expression
4 3 21 2 3 a 10
A H‘A/i’ﬂ -+ 4\ H‘A/i’llégj“ ‘f’(i)\ HIA/iWIIZZq” ‘f"l)\ IA/ingj“ ‘f';\ 2?7ﬁ‘4* E§-||1L|‘71.
The strategy we adopt is to bound path-wise, and for a generic drift u, the contributions

Op(7):= 4)\][ WR& Zr+ 6)\][ WA Z3+ 4/\][WTZ%,

1 1I II1

in term of quantities involving only the Wick powers of W which we can control in expectation
and the last two positive terms

1
sllulfi+A{z4.

Any residual positive contribution depending on u can be dropped in the lower bound making the
dependence on the drift disappear. To control term I we see that by duality and Young’s inequality,
for any § > 0,

‘4>\][ IWH Zr

AWl Zr | < O, N[ [WAT 17 - 1+5/ lus72ds. (2.12)

For the term IT the following fractional Leibniz rule is of help:

PROPOSITION 2.8. Let 1< p < oo and py, p2, pi, ps > 1 such that — Jr é =14 % :%. Then for
2

every s,a >0 there exists a constant C such that i
KD)*(fg)llLe < CIKD)** f|Lr2 [ (D) =g llLes + C DY gl g D)= f s
Proof. See [75]. O
Using Proposition 2.8 we get, for any § >0, 1 >¢>0,
T
MDAl <ol Ze lweell Zr ]l 0

A”[[W%HHW*E’C’”ZT”Wl 2| Zr |
C 3
55 WA s+ HZTwaJr ||ZT||L4

o fviz

MIWVANw - ol 22 . 2
w

(2.13)

AN N N

N

In order to bound the term III we observe the following:

LEMMA 2.9. For any e >0 there exists a 1< p<oo, and K < co such that for any f e W—1/2==»p

and ge Wh2n L4
"

Proof. By duality |ff¢% < ||f||W71/275,p||g3||W1/2+5,pr. Applying again Proposition 2.8 and
Proposition A.8 of the appendix, we get

g%l r2ens1s S I{DY2H063 prasna S DY Byl prasellg |12
5/7 17/7
gl mrsllgllps "

SEMNF-1r2-c0 + (g 312+ AllgllZa)-

N
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o

Using Lemma 2.9 we deduce

So

5/7 17/7
S M llyy-rz-eaall g2l g5

S NI -12-caa+ (Nl g s + Al glIEa)-

‘4>\][ Wi

< E()\)HWT”IV[(/fl/Z—E,p +0 (HZTHI%VI*E,?JF)\HZTHé‘l)- (2.14)

Remark 2.10. This estimate is not optimal for d =2. Indeed in this case (Wr)r stays bounded
in WP for any large p and it would have been enough to estimate Z3 in W', The stronger
estimate will be useful below for d =3 since there we will only have Wr € W—1/2-ep,

Using eqgs. (2.12), (2.13) and (2.14) we obtain, for § small enough,

1
©1(2)| < Qr+ 8| lulf+ 224 | (2.15)
where
Qr =001+ | IWRTE -+ VAN by .o+ (W 2]

Therefore

Fr(u) > ~E[Qr] + (1) JlulB+ Xfz#| > Bl

This last average do not depends anymore on the drift and we are only left to show that

sup E[Qr] < c0.
T

However, it is well known that the Wick powers of the two dimensional Gaussian free field are
distributions belonging to L*(Q2, W ~-®) for any a >1 and b > 1 and hypercontractivity plus an easy
argument gives the uniform boundedness of the above averages, see e.g. [98]. We have established:

THEOREM 2.11. For any A >0 we have

sup L|10g; 25| SO(N?),

7 [Al
where the constant in the r.h.s. is independent of A.

Remark 2.12. Observe that the argument above remains valid upon replacing A with Ap with
p>1. This implies that ¢~"707) is in all the LP spaces wrt. the measure P uniformly in 7' and
for any p>1.

2.4. THREE DIMENSIONS

In three dimensions the strategy we used above fails. Indeed here the Wick products are less regular:
[W#] €€ —'~* uniformly in T for any small x>0 and [IW7] does not even converge to a well-defined
random distribution. This implies that there is no straightforward approach to control the terms

7[ Wil Zr, and ][ Wiz, (2.16)

like we did in Section 2.3. The only apriori estimate on the regularity of Zr= I7(u) is in H!, coming
from Lemma 2.6 and the quadratic term in the variational functional Frp(u). It is also well known
that in three dimensions there are further divergences beyond the Wick ordering which have to be
subtracted in order for the limiting measure to be non-trivial. For these reasons in the energy Vr
we introduce further scale dependent renormalization constants ~vr, 7 to have

1

f _ 47 _ )2 o1 _
ATV () = £(v) + D] = X7 ] — 6r). (217)
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where we Wick products [Y£], [Y#] are taken with respect to the variance of Wy (as opposed to
Yr).
Repeating the computation from Section 2.3 we arrive at

Fr(u) = E[ fWr+ Zr) + A][W%ZT + %fw%z% + 4>\][WT Z%}
(2.18)

1
—]E[Q)\QVT][WTZT—% w]/z%w] +E[A7/z%+§|u|%].

where we introduced the convenient notations
W3 = 4[W], W7 :=12[W], t>0,

and we recall that f is a fixed function belonging to C(% ~/27*;R) with linear growth.

As already observed, this form of the functional is not very useful in the limit 7" — oo since
some of the terms, taken individually, are not expected to behave well. We will perform a change
of variables in the variational functional in order to obtain some explicit cancellations which will
leave only quantities well behaved as T'— oco. The main drawback is that the functional will have
a less compact and canonical form.

Some care has to be taken in order for the resulting quantities to be still controlled by the
coercive terms. We need to introduce a regularization which make compatible Fourier cutoffs
with L* estimates. To introduce such a regularization fix smooth functions 8, n: R4 — R such
that 0(&) =1if [£]<1/4 and 0(€) =0if [£]>1/3 , n(€)=1if || <1 and (&) =0 if |£] > 2. Set
0,(€):=0(&/t), then define

0:(€) = (1= n(£)8:(€) + C(t)n(£)0:(€)
where ((t): R4+ — R is a smooth function such that ((¢) =0 for ¢t <10 and ((¢t) =1 for ¢ > 11.

0:(&)os(§) = 0for s>1,

0:(8) = 1 for |¢] < ct for some ¢ > 0 provided that ¢ > 11. (2.19)

By the Mihlin-Hérmander theorem we deduce that the operator §;=0;(D) is bounded on L? for any
1 < p < oo, see Proposition A.7. In the following, for any f € C([0,cc],.#'(A)) we define f}:=6,f;
then

t T
Z,?:GtZt:/ 9t<D)_1as(D)usds:/ 0,(D) 1o (D)usds = 0, Z7.
0 0

In this way we have ||Z}||z» < || Zr||pr for all t <T. In the sequel we will always assume 7 >11.

The renormalized functional will depend on some specific renormalized combinations of the
martingales ([Wf]); . Therefore it will be also convenient to introduce a collective notation for
all the stochastic objects appearing in the functionals and specify the topologies in which they are
expected to be well behaved. Let

W:= (W W2 W, wihlel w2el] W<2>°<2>),
with Wl:=W,

t
W= wp, W= / JWds, Wit .=wiowf,
0

Wl = W2 o W 4 29, Wi, WP = (W) o (J;WP) + 24,

where o denotes the resonant product (see Definition A.9 in Appendix A). We do not need to
include W in the data since it can be obtained as a function of W thanks to the bound

) ¢ T 1/2
||w,£3hwf’]|\%l/2,2~</ |er§3>||<gl/2%dr<{/ W20 adr | [t — 5|2
s 0

T (3))12 dr 1/2 1/2 < (3))12 1/2
< AWK |\%71/27N<r>1+2n [t =5/ sup |[[W |2 —1jz—nt —s]7/2,
0 relo,
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valid for all 0 < s <t < T which shows that the deterministic linear map W — W is continuous
from C([0, o], €~1/27%) to CV/2([0, o], €'/272%). The path-wise regularity of all the other
stochastic objects follows from the next lemma, provided the function + is chosen appropriately.

LEMMA 2.13. There exists a function v; € C*(R4,R) such that
[vel + (8)|7el Slogt),  t>0. (2.20)

and such that the vector W is almost surely in & where G 1is the Banach space

S= C([Oﬂ oo]ﬂ QU) n {W<3> € L2(IR+’ %_1/2_R)7 W<2>0<2> € Ll(IR+, %7ﬁ)}
with

W=90,.:=€ /2 "x Gl rx @ V2 hxgrxE 12 rxgn,

and equipped with the norm

[Wlle:=[[Wllc(o,o0],20) + HW HL?(]R+ ¢-1/2—r)F ||W HLl(]R+ & —r)-

The norm |[W||s belongs to all LP(IP) spaces. Moreover the averages of the Besov norms By, of
the components of W of regularity o are uniformly bounded in the volume |A| if r < co.

Proof. The proof is based on the observation that one can choose v in such a way that every
component W) of the vector W is such that (Ath(i)(x))@o for ¢>—1 and x € A is a martingale
wrt. the Brownian filtration (possibly modulo a deterministic term we can control). This can be
seen by writing these terms as iterated stochastic integrals. For example, introducing the notation
dws(k) = (k) 'oy(k)dBY we can write

Wi(z) = 242 eilk1+k2): a:/ / dws, (k1)dws,(k2)

k1,k2

so, recalling the definition of Littlewood-Paley kernels g; from Appendix A, we have
AWF(z) =24 etk 2o, (k) 4 ky) / / dws, (k1)dws,(ks).
k‘l ko
By Burkholder’s inequality and Fubini’s theorem

p/2

T [%203 (k1) 03, (ko)
51 =522 2/ ds;ds
/0 (k02 (k)2 2

E[sup ||Az-wf|£p] S| et [
t<T

k1,k2 0
< 2p(2+n)i/2
~ )

uniformly in 7" and so
E|sup [WHIE | < B[ (3 2 Vsupllanw?i )|
t<

Z op(=1-k)i[m |:Sllp HA W ||L1’:|

S, Z 2;0( 1— n)z2p(1+n/2 152 27pin/2<+oo

N

By Besov embedding this implies that E[supr < s ||Y\N%Hg,l,m] is finite for any p, ¢ < oo uniformly
p,q

in the volume and E[|[W#7 % _,_] is finite. Since W# is a continuous, L*bounded martingale,

it converges and therefore it belongs to C([0, oc], € ~17). The same reasoning can be carried
out for the more complicated terms W3 Wlet yw2eBl w . The details can be found in
Section 2.9. O

For convenience of the reader we summarize the probabilistic estimates in Table 3.1.
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Wi W2 W(d) W[d] W[B]ol W2<>[3] W(2)0(2>
Ce~Pm cetm ceT P LT P ot Pt et ce Pt OO nLiE0

Table 2.1. Regularities of the various stochastic objects, the domain of the time variable is understood to
be [0, 00]. Estimates in these norms hold a.s. and in LP(IP) for all p >1 (see Lemma 2.13).

Remark 2.14. The requirement that W e L2% ~1/2~ will be used in Section 2.6 to establish
equicoercivity and to relax the variational problem to a suitable space of measures.

We are now ready to perform a change of variables which renormalizes the variational func-
tional.

LEMMA 2.15. Define | =1T(u) € Hy, Z = Z(u) € C([0, 0], H/?7%), K = K (u) € C([0, 00], H'~*)
such that

Zy(u) := Ii(u),
l?(u) ut+)\11t<TW +>\ﬂt<TJt(Wt > Zt( ), t>0. (2.21)
Ki(u):=Li(w(u)), with wy(u):= f)\llthJt(Wt - Zf(u)) +17 (u),

Then the functional Fr(u) defined in eq. (2.18) takes the form

Fru) = B| @(W. 200, K(0) + 3 f(Zr() + 07 0|

where
6

(I)T(Wa Za K) = f(WT+ZT) +Z T(l)a

1=1

T}l) :: _%RQ(W%)KT)KT)+%][(W%-<KT)KT—AQf(W%<W¥])KTa
TP = Aj[(w%>-(ZT*Zg"))KT’

b T .
T = )\/ ][(WE>Z’;)tht,
0

T = 4)\7[WTK%—12)\2][WTW7[§]K%+12/\3][WT(W1[§])2K

T .
P = fQAQﬁTZ%(ZT—Z%)fAvaT(ZT—Z%LW / fuzizia,
2 2
T = A2][W2°[31K A/ ][W th—)é ﬁgt(wt,wt,Zt,Zt)d

Here Ry and R3¢ are linear forms defined in Proposition A.1/ and A.15 in Appendiz A (and
recalled in the proof below). Moreover we have chosen the renormalization constant d7 appearing
in equation (2.17) to be

S = IE/ ][ 2dt+—1E][WT ) 0.22)

+2>‘37T1E][WTWT — >\4E][WT T )3.
Proof.

Step 1. We are going to absorb the mixed terms (2.16) via the quadratic cost function. To do so
we develop them along the flow of the scale parameter via It6 formula. For the first we have

T .
)\][W%ZT = )\/ ][WE’tht + martingale,
0
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and we can cancel the first term on the r.h.s. by introducing

wpi=us+ AL W, 120, (2.23)

into the cost functional to get

[e%) 2 T o
A]['W%ZT + % / utg]|2dls = f% / ][ (W)2de + % / |[ws||22ds + martingale,
0 0 0

where we used that J; is self-adjoint. Taking into account (here and below) that the martingale
term will average to zero, we have replaced the divergent term JCW%ZT with a divergent but purely

stochastic term |, OT f(Wt<3>)2dt which does not affect anymore the variational problem and can be
explicitly removed by adding its average to dr. As a consequence, we are no more able to control
(Z¢)¢ in H* and we should rely on the relation (2.21) and on a control over the H! norm of (K;);
coming from the residual quadratic term ||w||%.

Step 2. From (2.23) we have the relation

Zr=- WS + K1,

which can be used to expand the second mixed divergent term in (2.16) as
3
%fw%z% - %][w%(wﬁﬁ - )\2][W%W1[§]KT + %fw%}(% (2.24)

Again, the first term on the r.h.s. a purely stochastic object and will give a contribution indepen-
dent of the drift 4 and absorbed in 7. We are still not done since this operation has left two new
divergent terms on the r.h.s. of eq. (2.24): the H' regularity of K7 is not enough to control the
products with W2 which has regularity € ~'~", a bit below —1. In order to proceed further we will
isolate the divergent parts of these products via a paraproduct decomposition (see Appendix A for
details) and expand

—AQ][W%Wq[f’]KT + %fw%f(% = >\7[ (W3 = Zp) K7 — A27[ (W2 o Wi Kr

X Wh < WK+ 5 (Wh< ) K

+%<][(W% oKr)Kr— ][(W% - KT)KT>.

The first two terms will require renormalizations which we put in place in Step 3 below. All the

other terms will be well behaved and we collect them in T}l). In particular we observe that the
last one can be rewritten as

A A
5(][(‘7‘7% o Kp)Krp — ][(W% - KT)KT) = *553»2(“7\7%, Kr,Kr)

introducing the trilinear form K2 whose properties are detailed in Proposition A.14 below.

Step 3. As we anticipated, the resonant term W#o Y\N[T“)’ | heeds renormalization. In the expression
of Frin (2.18) we have the counterterm 72)\2fnyWTZT available, which we put now in use writing

fAQ][(W% o WP K, — 2A27T7[WTZT = 7/\2f (W2 o W+ 2970 ) K + 2A37T][WTY\N7[§].

W%O[S]

The first contribution is collected in T%G) and the expectation of the second will contribute to Jr.
As far as the term A\ f (W2 = Z7)Kr is concerned, we want to absorb it into [ [|ws||ds like we
did with the linear term in Step 2. Before we can do this we must be sure that, after applying It6’s
formula, it will be still possible to use JCZ% to control some of the growth of this term. Indeed the
quadratic dependence in K (via Zr) cannot be fully taken care of by the quadratic cost [ [[ws|[*ds.
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We decompose
M (WE Z) K =M (Wh 20) K+ M (Wh - (2~ Z) K

and using the fact that the functions Zp — Z5 and K — K} are spectrally supported outside of
a ball or radius ¢T" we will be able to show that the second term is nice enough as T'— co to not
require further analysis and we collect it in Tg). For the first we apply It6’s formula to decompose
it along the flow of scales as

T . T .
>\7[ (W2 > Z5)Kp =\ / ][ (W2 > Z2) K, dt + X / ][ (W2 > Z2) K ,dt + martingale.
0 0
The second term will be fine and we collect it in Tﬁ)

Step 4. We are left with the singular term fOTJC(WtQ ~ Z2)K,dt. Using eq. (2.21) and expanding
w in the residual quadratic cost function obtained in Step 1, we compute

T . o]
Aoz zngae g [ HthLthff—/ Wz a5 [ e
0 0

—;ATf(Jt(WE = ZD)(J{(W2 = Z7))dt + %Hz 113, (2.25)

To renormalize the first term on the r.h.s. we observe that the remaining counterterm can be
rewritten as

—A%TfZ% _ —A%T][ (232 — 2A27T7[Z%(ZT . A%T][ (Zr— Z3)2. (2.26)

Differentiating in T the first term in the r.h.s. of eq. (2.26) we get

T T .
f)\nyT][(Z%)Q:fAQ / ][fyt(ZE)th—QAQ / ][fytZEZEdt. (2.27)
0 0

The last term in eq. (2.27) and the last two contributions in (2.26) are collected in T( ). The first
contribution in eq. (2.27) has the right form to be used as a counterterm for the resonant product
n (2.25). Using the commutator K3 ; introduced in Proposition A.15 we have

a2 T .
-5/ ]/[uxw%zb)ut(w#Z%>>+2vt<zf>21dt
)\2
/][tht ) o (JeW2) +27,](Z7)2dt — = 5 ﬁ3t(wtawtaztazt)d
we@

and we collect both terms in T;G)
Step 5. Finally, we are left with the cubic term which we rewrite as

4/\][WTZT = —4)\4][WT Bhys 4 12)\3’][WT Bh2p, — 12/\2][WTW[3]K% + 4A][WTK%.

The average of the first term is collected in dr while all the remaining terms in T}‘l). At last we
have established the claimed decomposition since the residual cost functional, from eq. (2.25) is
indeed ||1]3/ 2 O

2.5. BOUNDS

The aim of this section is to give upper and lower bounds on Wy( f) uniformly on T" and |A|. In
particular we will prove the bounds of Corollary 2.2 taking the explicit dependence on the coupling
constant A into account.
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LEMMA 2.16. There exists a finite constant C, which does not depend on A, such that
sup [Wr(f)|<C.
T

Proof. Observe that, from Lemma 2.15 and from the analysis in Section 2.8, we have that

1 e}
or(W. 2,5 < Qr+2( Al Zrlge+ 5 [Tt
0

which immediately gives

1 e}
~BQr] < ~ElQr] + (1~ B MZrlat 3 [ IRt ) < W) (228)
0

On the other hand for any suitable drift @ € H, we get the bound

. 1 [ .
W) <ElQal + (1 + B Mrr(@be 5 [ I (@) Rt ). (2:29)

where 0

I () = i+ ALycr (Wi + W2 (1(0))°). (2.30)

Therefore it remains to produce an appropriate drift @ for which the r.h.s. in eq. (2.29) is finite
(and so uniformly in |A| and of order o(A\?)).

One possible strategy is to try and choose @ such that 7 (1) =0, however this fails since estimates
on this choice of drift via Gronwall’s inequality would rely on the Besov-Hélder norm of W? for
which we do not have any uniform control in the volume. In order to overcome this problem we
decompose W? and use weighted estimates similarly as done in [72] in the SPDE context.

Consider the decomposition
W2 =UsW2 + UCWZ,
where the random field 25 W2 is constructed as follows. Let ¢ be smooth function, positive and
supported on [—2,2]® and such that Y e Anz ©?(e—m) = 1. Denote ¢y, := p(e—m). Let Y be a
smooth function supported in B(0, 1), denote by X~y the Fourier multiplier operator x(D/N)
1

and similarly X<y :=(1— X(D/N)). Set Lp(s) :=(1+ | omW2|[)22_, 5, let
U>Ws2:: Z SDmX>Lm(s)(SDmWs2)

meANZ

UWZ = D omder,(s)(pmW2).

meANZ

and

(with slight abuse of notation we drop the dependence on time of the operators Ug, Us).
Observe that the laws of both 2/~ W2 and UgWSQ are translation invariant w.r.t to translations
by m € ANZ® By [114], Theorem 2.4.7 and Bernstein inequality

LW leg-1-05 < sup | Xs L, () (9m W) | =135
m

~

< sup 1
~m 1+H‘PmWs2H<€*1*

Furthermore for a polynomial weight p (see Appendix A for precisions on the weights and the
weighted spaces LP(p), €“(p) and By 4(p) used below):

W15 S 1.

HL{<W52H<€’1+5(;;2) SUPHWngWSQH%st(pz)

m

<
< sup (14 [[0mWellg-1-5) | om Wl -1-5(2)
< sup p(m) (L+ [ omWe o -1-6) | 0mWe |l -1-5() (2.31)

< sup (14 | omWellg—1-50p) [l 0mWe [ 15 )
< 1+||Ws2”<25*1*5(,1)7



42 A VARIATIONAL APPROACH TO &%

where we used the possibility to compare weighted and unweighted norms once localized via ¢,,.
We now let % be the solution to the linear integral equation

U= —AL<r[W + JLUSW2 = 0,(1i(w))],  ¢>0, (2.32)
which can be solved globally. For 26 <1/2, p>1 and t € [0,T], we have

t
||It(a)||3;{§*25(p) S )‘/0 [||J3W53|‘B;{§*25(p) + )‘HJ52L{>W52 - es(ls(a))HB;{ﬁ*%(p)}ds

t ds t
§>\/ WHJWV lp-172-5,, )+>\/ o >1+5|\u>w2|\cg - |l La(0) | 1 /225 -

Gronwall’s lemma implies that, for ¢ € [0, 71

T T 2
. ds 3 ||U>Ws ||‘?f’1’5d8
||It(U)HB,1,,/§*5(p) S (A/O <S>1/2+6|J8W5||Bp,2/25(p)>eXp<)‘A (s)t+o

T
N (2.33)
S )\/ 1/2+6HJW HB )

0 (s)
S MW o, 1250,

Note that eq. (2.33) is also valid replacing the weighted norm Bl/2 5( ) with the standard (nor-

malized) norm Bl/ 20 , from which, using Besov embedding we deduce:

4
< ds
NS 3 < )4
SI;P]E”IT(U)HMN)\ E(/o <S>1/2+5||J5Ws |B47}/25> SAL

Computing [T (1) from eq. (2.30) and (2.32), we obtain
(1) = My r i UWE = 0,(Ty(w)),  t>0.

It remains to prove that E[|[I7(@)[|3] < O(A\%) uniformly in 7' > 0. Note that, for s € [0, T7,

< 1
~ <S>1/2+5/2

1 ~
S W||U<W52H<gfl+d/2(pg)Hls(u)||B;/22735(p)_

”Jsu<w3>'05(IS("1>)”L2(p3) ||U<W2>'9( (ﬁ))I\B 3T2(p3)

(2.34)

We know that the distribution of # is invariant under translation by m € A N Z<. Recalling that
ZmeAmZd ©?(e—m) =1 and letting p be a polynomial weight with sufficient decay and such that

p° > ¢?%, we have
E[T(@)3] = NE[||s — Lyen)sUW?2 = 0,(I,(1))|[3]
N2OST E[s e (e—m) JUSWE - 0,(1u(1w)) ]3]

meANZa

NIAE[ls — Ls<ro s USWS = 05(L(w) | 7]
T

N

(by trans. inv.)

N

AN

(using p° > ¢?) A2 dsIE[HJ USWE = 04(Is(1)) ||%2(p5)]

s—

(by eq. (2.34)) <

Sy W2 sy ) - |

N

(by egs. (2.33),(2.31)) < X 1+]EHW2H% . 5/2(p)+)\]E||W @34

S)I+0 L*(Ry,B, ”2*%))}

N

A +Sup]EHW [ s/z(p)—i—)\]EHW @34

/ 1+5 B[ XIUCWENY 11573y + X gz, |
{1

L3Ry, B, /"~ 5<p>>]

oX

N
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The last inequality is the consequence of bounds on the two expectations on the r.h.s. obtained as
follows. For p sufficiently large we have

[EIW2IE 1572, |75 <E|W2| | <E|W?

s/ [——
w02 By L")

= § giti-o/2 / dar|p(x) PEIAWE @) S S 21 1-0/ 0| A W2(0))P S 1,
A

i>—1 i>—1

uniformly in s > 0. Similarly, we have

p/4 :
[BIWE a2, | <EIWEIL oo, SEIWEQO)P.
By Lemma 2.53

E[W2(0)|7 S (BJW3(0)[2)7/2 S ()72,

and using the standard multiplier bounds for J; we conclude

00 2
EHW<3>Hi2(]R+,B;;/276(p)) S E(/O |JSW§||;p;/2a(p)dS>
00 2 2
E / ds
0 B, /2 %(p)

= 5 3/2)7W3 2. \?
E(/O <3>*1* (<s>_ / HWSHB;’i/z(p)) ds)

®—1-8 —3/2|ww3| . 4
[ ()W ) s
1.

os(D)

3
oy

A

A

A

A

O

Remark 2.17. The decomposition of the noise is similar to the one given in [72] but differs in the
fact that we choose the frequency cutoff dependent on the size of the noise instead of the point,
to preserve translation invariance. The price to pay is that the decomposition is nonlinear in the
noise, however this does not present any inconvenience in our context.

2.6. GAMMA CONVERGENCE

In this section we establish the I'-convergence of the variational functional obtained in Lemma 2.15
as T'— oo. I'-convergence is a notion of convergence introduced by De Giorgi which is well suited
for the study of variational problems. The book [24] is a nice introduction to I'-convergence in the
context of the calculus of variations. For the convenience of the reader we recall here the basic
definitions and results.

DEFINITION 2.18. Let T be a topological space and let F, F,,: T — (—00,00]. We say that the sequence
of functionals (Fy,), T'-converges to F iff

1. For every sequence x, —x in T
F(z) < liminf F,,(z,);

n—oo
ii. For every point x there exists a sequence x,, — x (called a recovery sequence) such that

F(x) = limsup F,(x,).

n— oo

DEFINITION 2.19. A sequence of functionals F,,: T — (—00,00] is called equicoercive if there exists
a compact set I C T such that for all n €N
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A fundamental consequence of I'-convergence is the convergence of minima.

THEOREM 2.20. If (F},), I'-converges to F and (F,), is equicoercive, then F admits a minimum
and

min F'= lim inf F,.
T n—oo 7T

For a proof see [44].

In this section we allow all constants to depend on the volume |A[: this is not critical since, at
this point, the aim is to obtain explicit formulas at fixed A.

We denote
HP = L2([0, 00); WP), acR,1<p<oo,

and by H,,'? the reflexive Banach space H*'? endowed with the weak topology. With this definitions
we have H®=H*? and H ="H"2. Moreover for small enough > 0 (fixed once and for all) we let
L£:=H"/2=%3 This space will be useful as it gives sufficient control over Z:

LEMMA 2.21. For k small enough, u— Z(u) is a compact map L — C([0, 00}, L*).

Proof. By definition of Z we have for any 0<e<1/8—£/2,

12 t2
/ Jsusds < /
t1 we4 t1

t2 ds
/ ||<D>’1“us||wa4m

ty

JS(D)U
(D)

ds
W5,4

122, (w) = Ziy(w) lwer =

A

t2 ds
—14¢
J L e

o0 1/2 2 g 1/2
2
(/0 ||u5||W1/2N,3ds> ([1 —<s>1+2€)
to dS 1/2
() e
1

where we have used the Sobolev embedding W'/4+¢:3 W4, Since

A

A

A

. 2 (g > ds
lim —<s>1+25:0’ /0—<S>1+2€ds<oo,

t1—to t1

for any to € [0, oo], we can conclude by the Rellich-Kondrachov embedding theorem and the
Ascoli-Arzela theorem, that bounded sets in £ are mapped to compact sets in C([0, 00|, L*), proving
the claim. g

In the sequel, by an abuse of notation, we will denote both a generic element of & and the
canonical random variable on & by

X = (Xl, XQ, X<3>, X[3]°1, X(2>o<2>, X2<>[3]).

We will need the following lemma, which establishes point-wise convergence for the functional &1
defined in Lemma 2.15.

LEMMA 2.22. Define 1°°(u) =1°(X, u) € H, by
19°(u) i=ug + AXS + AJ(X2 - Z2(u)),  t>0. (2.35)
For any sequence (X1, uT)7 such that uT — u in L, 1T =1T(XT uT) —1=1°(X,u) in H, and

XT — (XT’l, XT’Q, XT’<3>, XT,B]OI) XT,(Q)O(Q)) XT,20[3])

l
X

(Xl, XQ, X<3>, X[B]ol’ X(2><>(2)’ X20[3])
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mn & we have
Tlim Or(XT, Z(ul), K(ul)) = ®oo(X, Z(u), K (u)).
Here Zy(u) = I,(u), we let Ky(u):=Zy(u) — AX and ®o is defined by
6
Poo(X, Z (), K (u)) = f(Xho + Zoo(w) + > T(X, Z(w), K (),
=1

with Tc(é)(X, Z,K)= TY given by

oo

TC();) = %RQ(XC%O,KOO,KOO)+%][(Xgo<KOO)KOO—)\2][(X?>O<XEZ])KOO,
r® = o

& = / ][X - Z0) Kdt,

T = 4>\fX}X)K§’Of 12A2f(xgox£i])ff§o+12A3][Xgo(xg)21(m,

o0
T = -2 / ][%Z,?Z'kdt,
0
2
T = f%fxig[?’} >\2/ fX@ (7 thf—/ Rs (X2, X2, 20, Z2)dt,

where R1, Ro, Ra,r are the multilinear forms defined in Proposition A.13, Proposition A.1j/ and
Proposition A.15 respectively and where, with abuse of notation, we let

XLXE = x - xBl x < x B4 xBlet
X;O(XE;]V = XL (XE o xBl 4 ox BBl ogy (x B xB x1) (2.36)
+ox, - (X x B oxd, < (xB- x B,

Proof. Lemma 2.21 implies that for any u” —u in £,, we have Z(u”) — Z(u) in C([0, 0], L*) and
by the convergence of [T — [ in H,, we have also K (uT) — K (u) in C([0, 0], H!~*). The products
X?lxﬁm and Xg’l(X?’m)Q can be decomposed using paraproducts and, after identifying the
resonant products with the corresponding stochastic objects in X7, we obtain the finite 7" analogs
of the expressions in eq. (2.36). After this preprocessing, it is easy to see by continuity that we
have XFX?[P’] —>XC1XJXE;] and Xg"l(X 18 ]) — X! (X[ ]) in €/2=% For Y and Y™ and the
first term of T(®) the statement follows from the fact that they are bounded multilinear forms on
S x C([0, 00], HY/27%) x C([0, 00], H' %) . For T®) and the first two terms of Y(®) convergence
to 0 follows from the bounds established in Lemma 2.46 and the proof Lemma 2.49 (in particular

eq. (2.62) and eq. (2.63)). For T, the last term of T and the last two terms of T(®) we can
establish point-wise convergence under the time integrals since the integrands are again bounded
(uniformly in time) multilinear forms, and conclude by dominated convergence. O

Going back to our particular setting recall that from Lemma 2.15 we learned
Wr(f)= inf Fp(u),
ueH,
with
1
Fr(u)=E| @1(W, Z(u), K (u)) + M| Zr () |2+ + 5 117 ()15 |

where [7(u), Z(u), K (u) are functions of u according to eq. (2.21). This form of the functional is
appropriate to analyze the limit 7'— oo and obtain the main result of the paper, stated precisely
in the following theorem.

THEOREM 2.23. We have
lim Wp(f)=W(f):= inf Fx(u),

T— o0 u€H,
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where

1 oo
Foo(u)=E <I>oo(W,Z(U),K(U))+>\|\Zoo(U)||}‘i4+§Hl ()l |,
with o, and [*° introduced in Lemma 2.22.

Proof. The statement is a direct consequence of Theorem 2.27 below. g

In order to use I'-convergence, we need to modify the variational setting to guarantee enough
compactness and continuity uniformly as T'— oo.

As long as T is finite, the original potential Vr is bounded below so in particular we have
1
cTHE[gnu@] < Fr(u). (2.37)

which quantifies the coercivity of Fp. Unfortunately, this estimate does not survive the limit.
However the analytic estimates contained in Section 2.8 below on the renormalized control problem
allow to infer that there exists a small 6 € (0,1), and a finite constant C' > 0 independent of T', such
that
1
~C+ (1= OB\ A Zr ()l + 31T < Frw), 2.39)

and

Fr(u) C+ (1+ B A Zr(lfs+ gl W] | (2.39)

Moreover the cost functional || Zp(u)||za + %HlT(u)H% control the £ norm of u uniformly in T,

modulo constants depending only on ||W||e and which are bounded in average uniformly in 7.
More precisely we have (in a more general setting, useful below)

LEMMA 2.24. Let p be a probability measure on & x L with first marginal Lawp(W) and denote
with (X, u) the canonical variable on & x L. Then there exists a constant C, depending only on
A, such that

Epull|ul|2] S C + 2B, [[| Zr(u) | 74] + EulllIT () 7.

Proof. We use [[I7(u)||z < [[I*(u)]]7 in the bound

Bullul2] § AELIXOIE + AEu[lls — J(X2 - 6,Z0(w) 2] + Bl (w)]13
< B 0, [Tl 2 s
TR ()3
< ABL[IX@2] + iE#[ / m%ds}wmm(u)nm

Epu {7 (u)3).
O

From this we conclude that we can relax the optimization problem and ask that u € I, where
L, is the space of predictable processes in L:

Wr(f)= inf Fr(u).

For future reference note that eq. (2.38) implies also that for any sequence (ul)7 such that Frr(uT)
remains bounded we must have that also

Sup E[[lI7 (uT)[17] < oo. (2.40)
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To prove I'-convergence we need to set up the problem in a space with a topology which, on the
one hand is strong enough to enable to prove the I'-liminf inequality, and on the other hand allows
to obtain enough compactness from Frp. Almost sure convergence on & x £ would allow for the
former but is too strong for the latter. For this reason we need a setting based on convergence in
law as made precise in the following definition.

DEFINITION 2.25. Denote by (X, u) be the canonical variables on & x L and consider the space of
probability measures

Yi={n€P(6 x L) | Ey[l|ulZ] < oo}
equipped with the following topology: p, — p iff
a) pn converges to p weakly on & x L,
b) supnEy, [[[ullZ] < oo.
Let
X:={pe)Y|pu=Lawp(W,u) for some ueL, }
and denote by X CY the closure of X in Y.

Remark 2.26. Condition (b) allows to exclude pathological points in X and makes possible
Lemma 2.34 below.

With these new notations we have

Wr(f) = inf Fr(p), (2.41)
HEX
where

Fr()i= B, #r(K, Z(0, K(0) + M Ze(lfs+ g1 W

and where IE,, denotes the expectation on & x £ wrt. the probability measure . We also define
the corresponding limiting functional as

o 1
Foo(p) ::Eu[q)OO(Xa Z(u), K(u)) + AIIZoo(u)Ilﬁngll""(u)llﬂ- (2.42)
Finally we can state the key result of this section.

THEOREM 2.27. The family (FT)T I'-converges to F. on X. Moreover
lim Wr(f) =lim inf Fr(p)= i
T T pex I
Proof.
Step 1. (Relaxation) We will prove below that:

a) the family (Fr)r is indeed equicoercive on X (Lemma 2.29);

b) the variational problems for Fr (with 7' < 0o or T = o0) on X and on X are equivalent
(Lemma 2.35 and Lemma 2.38).

Step 2. (liminf inequality) Consider a sequence u’ — p in X. We need to prove that
liminf Fr(pT) > Fao(p).
T— o0

It is enough to prove this statement for a subsequence, the full statement follows from the fact that
every sequence has a subsequence satisfying the inequality. Take a subsequence (not relabeled)
such that

sup Fp(pT) < oc. (2.43)
T
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If there is no such subsequence there is nothing to prove. Otherwise tightness for the subsequence
follows like in the proof of equicoercivity in Lemma 2.29 below. Then invoking the Skorokhod
representation theorem of [81] we can extract a subsequence (again, not relabeled) and find random

variables (X7, @7)7 and (X, @) on some probability space (€, P) such that Lawg (X7, a”) = u”,
Lawg(X, @) = p and almost surely X7 — X in &, @7 — @ in £,. Note that [T := [T(XT,
") — 1:=1°(X,u) in L, and using (2.43) we deduce that the almost sure convergence [ — [ in
‘H.,, maybe modulo taking another subsequence, again not relabeled. Note that, by the analytic
estimates of Section 2.8 (which hold point-wise on the probability space) we have

er(XT, Z(a"), K(@")) + M| Zr(a") |14 +%HlT(ﬂT)H%¢ +Q(X") >0,

for some L'(P) random variable Q(X”) such that E[Q(X”)] = E[Q(W)] (for example we can
take Q(XT)=C(1+ || XT||%) for some large enough p). Fatou’s lemma and Lemma 2.22 then give

liminf Frp(pT) = liminf B or(XT, Z ("), K(aT)) + M| Zr(aT)|[1a+ %|ZT||%{]
— 00

T—oo

Stmint B @1 (K7, 2(a7), K(i) + Al 2@l + 7 e+ Q)| - Bl(w)

T— oo

> B it | 7(X7, 2(7), K@) + Al Zr(@)lls + JI7 e+ Q)| - BlQ(w)

S | 0, 2(0), K(0) + A 2@+ (DB | = Pl

which is the I-liminf inequality.

Step 3. (limsup inequality) Now all that remains is constructing a recovery sequence, for this we can
again assume w.1.0.g that Fio (1) < co. From Lemma 2.37 there is pu7, such that |EFao(p) — Foo(pin)| <
% and (2.50) is satisfied. Then choosing pf = Law,, (X, L{;<ryu¢) we obtain that {7(L{.<ryu) =
Tparyl™(w), so (1<)l < 1)l and | Zr(Lp<yu)lids = | Zr(w)]* < ull2, which is
integrable by (2.50). By dominated convergence and Lemma 2.22 we obtain limp_, oo Fp(pf) =
Foo( pr). Extracting a suitable diagonal sequence gives the required recovery sequence. O

The rest of this section contains the auxiliary lemmas required to complete the proof of the
previous theorem.

LEMMA 2.28. Let G C X such that sup,eq E,l|lu||?] < co. Then G is tight on & x L, and in
particular compact in X.

Proof. Observe that for all p € G, Law,(X) = Lawp(W) and that Lawp(W) on & is tight since
G is a separable metric space, so for any € > 0, we can find a compact set K C & such that
p((G\ K1) x L) <e/2. Now let K2:=K! x B(0,C) C & x L, for some large C' to be chosen later.
Then K2 is a compact subset of & x £,, and

Pu(X,u) ¢ K2 <5+ S Elull2]

Choosing C >sup,ecc2E,[[|u]|?] /¢ gives tightness of the family G. O

LEMMA 2.29. The family (FT)T is equicoercive on X.

Proof. Define for some K >0 large enough
K:={neX:Eyllullz] <K}

Note that K is compact from Lemma 2.28. From eq. (2.38) we have

AE (|| Z7(w)l|L4] +%E#[IIZT(U)H%] <C+2Fr(p).
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Indeed, note that the analytic estimates of Section 2.8 are path-wise and holds also wrt. (X, u)
under the measure p (the point is that here w is not necessarily adapted to X), while for the
probabilistic estimates on QQ7(W) we have E[Qr(W)] = E,[Q7r(X)] since Law,(X) = Lawp(W).
From this we deduce that for some C,c>0

Fr(p)
%EM[”ZT(U)”%“] +%Eu[||lT(U)H31] -C

> cByullz] -C

WV

where in the last line we have used Lemma 2.24. Therefore inf,, ¢ xccFrr(p) > ¢ K — C. On the other
hand from eq. (2.39) it follows that suprinf, ¢ pF7(1) <oco. So for K large enough
inf Fp(p) = inf Fr(p).
nEX peK
O
To be able to use this equicoercivity we will need to show that we can extend the infimum
in (2.41) to X. For this we will first need some properties of the space X. In particular we will
need to show that measures with sufficiently high moments are dense in X in a way which behaves
well with respect to Fr. With this aim we introduce some useful approximations.

DEFINITION 2.30. Letu€ L, N €N, and (1:)e>0 be a smooth Dirac sequence on A and (pe:)eso be
another smooth Dirac sequence compactly supported on R4 x A. Denote by x5 the convolution only
wrt the space variable, and by x the space-time convolution. Define the following approximations
of the identity:

(regy,=(u)) UHA e,

(g0 )(0) = e tur gty == u(t — saapa(s) ds.
Let 0
TN (u) :inf{t > 0‘/t|u(s)|$,vl/2n,3ds > N},
and 0
(cutn (u))(t) == u(t) L (uyy-

Observe the following properties of these maps:

e reg, . is a continuous map Ly, — Hy and L—H;

e reg, . 18 a continuous map L, — H;

e cuty is continuous as a map L— B(0,N) C L;

e ifu is a predictable process then reg, .(u), reg;., (u), cuty(u) will also be predictable.

Furthermore we have the bounds
[regs.c(u)llz, [[regt.e,c(u)|lc, [[eutn (u) ||l o < [lulle.
uniformly in e, N, and for every u € L,
lim [[reg, o(u) — ullz = lim [[regs., (u) —ul = lim [cuty(u) —ul/=0.
e—0 e—0 N —o0o
With abuse of notation, for u € P(& x L) and f: L— L, we let
fep=(Id, f).pp=Law, (X, f(u)).

Remark 2.31. Let us briefly comment on the rationale for these approximations. reg;., . will
be used when one wants to obtain a sequence of weakly convergent measures on & X H or & x L
from a sequence of measures weakly convergent on & x L,,. reg, . will be used when one wants to
obtain a measure on G x H from one on & x L, while preserving the estimates on the moments of
Z(u) since Z(u*pne) = Z(u) %z 7.

LEMMA 2.32. Let u € X. There exist (jin)n in X such that p, — p on & x L (now with the norm
topology) and sup,E,, [||lu||Z] < cc.
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Proof. By definition of X of there exists fi, — p weakly on & x L. Then (reg;., .)«fiin —
(regs.. o)+t on & x L as n— 00, and since (regy., o)« — p weakly on & x L as ¢ — 0, we obtain
the statement by taking a diagonal sequence. O
LEMMA 2.33. Let ji, — p on & x L, such that sup,E,, [||lu|%] <oco. Then

1. for every Lipschitz function f on L, E,, [f(u)] = E.[f(uw)];

2. for every Lipschitz function f on C([0,00], L) we have E,, [f(Z(u))] — Eu[f(Z(u))].

Proof. Let f be a Lipschitz function on £ with Lipschitz constant L. Let n € C(R,R) be supported
on B(0,2) with n=1 on B(0,1), and ny(x)=n(z/N). Then ur— f(u) nn(|Jullz) is bounded,

Jim By, [f (u) v ([lull2)] = Eal f (w) nv(lull2)]
and

Ep [f(@)nn((lulle)] = By, [f ()] = B, [(f(@)nv((lulle) = F() L= 53]

E., 2L [ullz 1gu) > Ny]
2LE,, [[[ul2]*?un(|lullz = N)

2L
22 ul2).

INININ

Using that sup,E,, [|u]|Z] < oo we have
Jim (B, [f(w)] = Eu[f()] < | Tm By, (£ () i (e 2)) = Bulf () e ((ul]2)]
+sup [y, [f (u) nv(|ul2)] = By, [f (u)]]

HEuLf (u) an([[w]|2)] = Bl f (w)]]

4L -
< 7 swEy [lulZ] SN

and sending N — oo gives the statement. The second statement follows from the first and
Lemma 2.21. O

The next lemma proves that we can approximate measures in X by measures with bounded
support in the second marginal which are still in X

LEMMA 2.34. Let u€ X such that E,[|| Zr(uw)||£4] + Eul||u||2] < co. For any L >0 there exists ji, € X
such that ||u|z < L, pr-almost surely, pr, — p weakly on & x L as L — oo,

Ep 12724 = BulllZr(w)liza],  and By, [llullZ] — EulllulZ]-

Furthermore for any py, there exists (pur n)n C X such that ||u|lz < L, pr,n-almost surely and
pr,.n— pr, weakly on & X Ly,

Proof.

Step 1 First let us show how to approximate p with fiy, which are defined such that || Z7(u)||rs <
L, fr, almost surely. As u € X, there exists (un)n C X such that g, — g on & x £ and
sup,[E,., [|[u]|2] < co. Since ., € X there exist (u"), adapted such that i, = Law(W,u"). Define
z ::E[foTJtu?dﬂfs} :fOTJtIE[uﬂfs]dt. Then Z is a martingale with continuous paths in L(A).
Define the stopping time T}, , =inf{t € [0, T]||| Z¢'||+ = L} where the infimum is equal to T if the
set is empty. Observe that ZTL,n = fOTJt]E[uﬂ]:TL’n]dt: Zp(uPm) with ul" :=E[uf|Fr, | adapted,
by optional sampling, and almost surely || Zr,||zs < L. Now set fir, ,, := Lawp(W, u™").

Step 1.1 (Tightness) The next goal is to show that for fixed L, we can select a suitable convergent
subsequence from (fir, »)n. For this we first show that (fir n)n is tight on & x L,. From the
definition of X' we have that sup,E,, [[|lu|%] < oo, and by construction

sup Bz, [||ullZ] < supEp(||Bluf|Fr, ,]lIZ] < sup Ep([lu"l|Z] = sup By, [[lul|Z] < oo,
n n n n

which gives tightness according to Lemma 2.28. We can then select a subsequence which converges
on L.
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Step 1.2 (Bounds) Let f, be the limit of the sequence constructed in Step 1.1. In this step we
prove bounds on the relevant moments of jir. Let f{, f2 be sequences of functions on R which
are Lipschitz, convex and monotone for every M, while for every x € R

0< fi(@)<a®, lim fi(z) =a?,
0< f(@)<at,  lim f3'(z) =2

Then f{(||ullz) is a lower-semi continuous positive function on £,, so by the Portmanteau lemma
we have

B[ (lull o)) < liminf g, (]l o)],

and since it is also Lipschitz continuous and convex we have

liminf Bz, [/ (ulle)] = lminf Bp[f{(|Elun|Fr, ,]llc)]

n— oo n—oo

< timint Be[ £ (unlle)] =Byl (Jul)]
Therefore
EnllulZ] = lim B [A(lullo)]
< lim B[ (ulle)] = EplllullZ]
— 00

Proceeding similarly for Z, we see that f27(||Z7||14) is a continuous function on L* bounded below,
Lipschitz continuous and convex on L* so we again can estimate

Ep L1122 120] = lim B, [131(1Z2120)],

hm ]E,;L If 2M(||ZT||L4)]
nllnio Ep[ 3 (|E[Zr(un) | Fr, ] l|Ls)]

Jim Bl £ Zr(un)] o)) = Bl 27 (| Zr(wn)]|4)]-

B [37 (127 |4)]

N

Taking N — oo, we obtain
B 1 Z7 |24 B[l Z7 24,

Step 1.3 (Weak convergence) Now we prove weak convergence of fif, to pon & x L. Let f:& x L—
R be bounded and continuous. By dominated convergence and continuity of f, lim.E;, [f(X,
regs., o(u))] = Eg, [f(X, u)]. Using furthermore that (X, u) — f(X, reg;., .(u)) is continuous on
& x L, and Lemma 2.21 in the 5th line below, we can estimate

Jim (B[ (X, w)] - Bp, [(X, )]
= lim lim | m B, [£(X,regrs o(u")] = By, [£(X, 0810, (u")]
= lim lim | lim Bp[f(W,reg.;.(u")) — (W, Efrege., o(u") 7))
= lim lim | lim Bp[f(W,reg.p.(u")) = (W, Elrege.s ()| F5) 7, <oc)]
() -

L—o00e—0In—o0
J (W, Efregp o()| Fr)) L gunc>er]|

N

lim lim | lim Ep[f(W,reg;., (u”

L—o00e—0In—oo

2 : E[|[u"[Z]
< 2 1 A2l
C(sup | fl )Lgriosgp 72

SxL

Step 2 In this step we improve the approximation to have bounded support. Let u, — u be
the subsequence selected in Step 1.1. Recall that p, = Law(W, u™) with adapted u™. Define
ZN = B[Zr(cuty(u)) | F], and similarly to Step 1, Tj, 1 n := inf {t > 0]||Z;""||z2 > L}. Set
ut ML= Eleutn(u) | Fr, , 5], then [[u™™ 2z < N uniformly in n and P-almost surely, so
pin, 1N = Law (W, u™ L) is tight on & x L,, and we can select a weakly convergent subsequence.
Denote the limit by ur, n. Now we follow the strategy from Step 1.
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Step 2.1 (Bounds) We now prove bounds on py n uniformly in L, N similarly to step 1.2. Let
M be defined like in Step 1.2. Then again we have
timinf B, [ (lulle)) = timint Be £ [Bfeuty(u)|Fr, , )]

lim Ep[ £ ([leutn(u)]2)

lim By, [f([lcutn(u)]l2)] SBR[ ([ulle)]-

N

It follows that
B, ylullZ] = A}EIIOOJEM,N[H”(lIUHz:)]

lim liminf B, , ([/M(|ull)]

M — o0 n—o0

Jim B[ ([Julle)] = EllullZ]

N

N

Step 2.1 (Weak convergence) Now we prove that ur y — fip weakly on £. Let f: & x £ —
R be bounded and continuous. By dominated convergence and continuity of f, lim.E;, [f(X,
reg;., -(u))] = Ez, [ f(X, u)], and furthermore since f(X, reg;., .(u)) is continuous on & x L,, we

have (recall that 7 (u") is introduced in Definition 2.30)
i B [F(X w)] = By y[f (X w)]]

= ngnooshi?) nllnclxj #n,L[f(X; regt:z,s(u»] - Eﬂn,L,N[f(Xa regt:m,s(u))]
= J\}im hl% lim E]P[f(wa E[regt:x,a(un)l}—TL]) - f(W, E[regttx,f(@’n,N)|]:Tn,L,N])]
= th hl% lim E]P[(f(wv E[regtzs(unﬂfTL]) -

S (W, Elregq (@) |Fr, 1 D)L (<ot

N

lim sup
N—oo ¢

SupE]P[(f(Wv E[regt:z,s(unﬂfTL]) -

n

f(w,E[regt:m,gwnvN)|an,L,N1>>1{”un|L}>N}1‘
<sup |f|) lim su
S xL N—oo o

Step 3. We now put everything together. Since all py, n are supported on the set {u: || Zp(u)||ps <
L}, weak convergence and Lemma 2.21 imply

Jim By [l 20 ()24 = B 120 (w) |24]

N

E[]lu"IZ]
N2

=0

By the Portmanteau lemma,
timint By (Jul12) > B, (]2, (2.44)
and

liminf B, [[|u]|2] = E,[||u)|2]
L—oo

which together with Step 1.2 imply limy,—ooEz, [|u|Z] = Eu[||v||Z], and by the same argument
limr,— o, [| Z7(w)||24] = EL[|| Zr(u)||14]. For any § >0 we can choose a fir, such that

B[ Zr(w)|Le] — Bulll Zr(u) |24 + [Ba[llullZ] — Eulllu]Z]] <6
By (2.44)
By([]|2) > Bminf B,y ,[l|w][2) > Bulllullz] -9,

and we can choose N large enough so that

By | Zr () 23] = Bl Zr () 24]] + [Bpuy [llul2] - BulllulZ] <0,
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which implies the statement of the theorem. O

LEMMA 2.35. If T < 0o we have
inf Fip(p) = inf Fp(pu).
peXx HEX
Proof. To prove the claim it is enough to show that for any p € X, for any o > 0, there exists a

sequence [, € X such that limsuanmFT(un) < FT(M) +a. W.l.o.g we can assume that FT(,U) < 00.
Observe that, as long as T' < co we can also express

1

1

Fr(p) =T
and deduce that IE,,[||u|%] < oo since V7 is bounded below at fixed 7. By Lemma 2.34 there exists
a sequence (uz)r, C X, such that up(|jullzc < L)=1, ur — pon & x £ and by weak convergence
and domination,

Ew 1 Zr()is] = BulllZr ()], Bulllullz] = Epllull2]-

First we have to improve the regularity of uy, to get convergence on & x H,, but without affecting
our control on the moments of Zr, so let uf := (reg, .).«ur and p®:= (reg, .).u. Then

Eus 1 Zr ()] = Buelll Zr(w)lizal,  Buglllullf] — Belllul,

and p§ — p€ on & x H. By continuity of Fp and the bound (2.39), Fr(uf) — Fr(pf) as L — oo
and Fp(pf) — Fr(p) as e — 0. In particular we can find L and e such that |Fp(uf) — Fr(p)| <a /2.
By Lemma 2.34 there exists a sequence (pn,1)n,z C X such that each measure iy, 1 is supported
on & x B(0, L) and py,, 1 — pur weakly on & x H,,. Setting uf{i = (regt.5.6)+ (€8s o) sin, and
Mi"5 :=(regy,;,5)+(reg, o)« We have uf{i — ui"s on & x H with norm topology. It is not hard too
see that Vo(XE + Zr(u)) <r ||X||& + ||lu|/%; and since on the support of uf{i, |u]|7 < L and the
first marginal of uf;i is fixed we have again by domination and weak convergence

1 1 1
Vi -+ Zo(u) + gl | =B iV Ot Zr(w0) + 5l

1
llm E e, 6 | ——
Al

| TA
and by dominated convergence (since ui"‘s is supported on & x B(0, L)) we can find a ¢ such that
|Ep(ps®) — Fr(ps)| < /2 which proves the statement. O

The proof of Lemma 2.35 does not apply when T'=o00. An additional difficulty derives from
the fact that in approximating the drift « we might destroy the regularity of [°°(u), since now
1°°(u) needs to be more regular than u, contrary to the finite 7' case. To resolve this problem we
need to be able to smooth out the remainder without destroying the bound on Zr(u). To do so
smoothing {*°(u) directly, and constructing a corresponding new u will not work, since {*°(u) by
itself does not give enough control on u and Z(u). However we are still able to prove the following
lemma by regularizing an “augmented” version of {*°(u).

LEMMA 2.36. There exists a family of continuous functions rem.: & x L — L, which are also
continuous & x L, — L, such that for any T € [0, o],

[rem (X, u)lle S [X[le +[ulle,

[Zr(rems (X, w))|e S [X[le + 127 (u)l|L1,
110 reme (X, u) 13 Se (14 1Xl6)* + | Zoo(u) 124+ [[ullZ,

and ||I%°(rem (X, u))||n depends continuously on (X, u) € & x L. Furthermore

rem (X, u) —u in L,
and if I°(u) e H

1°°(rem (X, u)) = 1°(u) in H as €—0.
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Proof. Let X? =U<X? + U-X? be the decomposition introduced in Section 2.5, and observe
that for any ¢>0 we can easily modify it to ensure that lUsX2||-1-~ < ¢, almost surely for any
p € X and for any 1< p < oo, E,[lU<X2?]|2 _1+.] < C where C depends on |A[, &, ¢, p. Now set
1i(u) = = A\J(U<XZ = Z(u)) 4 15°(u). Then u satisfies
s = —AX “ AL (UsX2 = Z20) + To(u).
From this equation we can see that, like in Section 2.5,
o0 1 -
lulle SAIX® 2+ A/0 WIIU>X§II%4*MSIIUH£+ [11s(u)llz,

and choosing ¢ small enough we get

lulle S MK 2+ 11T (w)]lz- (2.45)
Similarly we observe that

T ~
Zn(u) = —AX A / J2AUSX2 > Z2(w))ds + Zo(I (w),
0

so again with ¢ small enough and since ZE =0,Z7 for s<T:

1Z2 ()l SAXEF Lo+ 122 () [ (2.46)
Conversely, it is not hard to see that we have the inequalities
1Zr@ @)l S AXP o+ 120(w) s, (2.47)
and
()]l SMXB 2+ [ullz. (2.48)

Clearly the map (X,u)— (X, 1(u)) is continuous as a map & x £— & x £ and using Lemma 2.21
also as a map 6 x L, — & x L,, , and the inverse is clearly continuous & x £L — & x L. We now
show that it is also continuous as a map & x L, — & x L,,. Assume that [ (u™) —[(u) weakly, since
then ||{(u™)||z bounded, this implies by (2.45) that also ||u"||z is bounded, and so we can select a
weakly convergent subsequence, converging to u*. Then u* solves the equation

uf = = AXE — ANLUXE - Z5(w)) + La(u),

(which can be seen for example by testing with some h € £*) which implies that v* =wu (e.g. by
Gronwall). Now define rem(u) to be the solution to the equation

remg(u) = —)\X§3> — )\JS(L{>X§ - Zg(remg(u))) + regzys(is(u)).

Then by the properties discussed above (X, u)— (X, rem.(u)) is continuous in both the weak and
the norm topology and we also have from (2.45) and (2.48) that

reme(w)] e S AIX@ e+ [lullz.

From (2.46) we have
1 Zr (veme(u)) [ls S M|XEF| Lo+ 127 (u) |4,

and by definition of rem.(u)

[T (reme ()|l = Ilregq (I(w))llx
Se AMIX® 2+ [lulle. (2.49)

~E

Now observe that
1o (reme(u) 3 S |ls = MUK = Z2(veme(w))) |17+ |1 (reme(u)) ||

< 1
N /\/O WHUsX?H%fwI\Zﬁ(reme(U))l\%4d8+/\HX<3>H%+IIUH%

™

< A +[Xle)* + [ Zoo(reme(w))IEs + [JullZ
S A +IXle)* + (1 Zoo(w)l12a + [lul|Z-
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Since also | A\J(U<X? = Z!(rem.(u)))|l% depends continuously on (X, u) (both in the weak and
strong topology on L) we obtain the statement. g

LEMMA 2.37. For any p € X such that Foo(u) < o0 there exists a sequence of measures ji, € X such
that
1. For any p < oo,
By, [llullZ] + B 177 () [[7] < oo, (2.50)

. pr— p weakly on & x L and Law,, ({°°(u)) — Law,,(I°°(u)) weakly on H,
Lli_)mooﬁw(llll) = EXJ(M)’
w. For any py, there exists a sequence puy, 1, € X such that

sup (B, ,[lullz] + Ep, [I1(w)]l7]) < oo, (2.51)

n

pin, L — pr, weakly on & x Ly, and Law,, ,(1°°(u)) — Law, (I°°(u)) weakly on H.,.
Proof. By Lemma 2.34 there exists a sequence p; — p weakly on & x L such that
Ey 1 Zr()lL] = Bull Zr()lza,  Eulllwllz] = EulllulZ],

and p; is supported on & x B(0, E) C 6 x L. Now set uf := (remg).p;. Then pi — p:=(reme).p
on & x L and by the bounds from Lemma 2.36 also E#eﬁ[HZT(u)Hﬂ] — E,e[|| Z7(u)||f4] and
]Eui[||l°°(u)|\3{] — E,[||lI°°(u)||3]. The bounds from Lemma 2.36 imply also E,[||Z7(u)|}4] —
Eull|Zr(w)llZa), Epe[l11° ()3 — B[l (u)][3], and furthermore

Epg [llullZ] S By (XN + lull2) S E,, (X&) + L7,
and similarly
By (122 () [12] S By (IXN& + ull2) S B (1XN1&) + LF,

and by continuity of F,, and domination using (2.39) we are also able to deduce that we can
find ¢ small enough and L large enough depending on e such that |Fao (1) — Fao(p)| < 1/2L and
|Foo(15) — Foo(pf)| <1/2L. Choosing iz, = ps we obtain the first three points of the Lemma. For
the fourth point recall that from Lemma 2.34 we have sequences j,, ; — puj weakly on & x L.,
and p,, ; € X', which have support in & x B(0, L) and since rem, is continuous on & x £,, setting

I (rege)«tt,, ; We obtain the desired sequence. O

LEMMA 2.38. If T'= o0 we have

.fﬁ‘oo _
Jnf, (1) i

Proof. One can now proceed very similarly to the proof of Lemma 2.35. Let u € X such that
Foo(p) < 00. By Lemma 2.37, for any L, u € X, there exists a yi, such that |Fio () — Fao(pur)| <1/ L,
and a sequence (fin 1)n such that p, r € X, pupn 1 — pr weakly on & x L, and such that (2.51)
is satisfied. Define ui’i := Law(X, rem.(reg,., .(u))), and observe that now uffL — 15 on
S x L, Lawui,i(X, 1°°(u)) — Law, 5(X, 1°°(u)) on & x H, and that we have sup, (]EuiaL[HuHﬁ] +
]Eui’i[”loo(u)H%]) < 00. Then for some y € C(R,R), x=10nB(0,1) supported on B(0,2), for any

N €N, the function

(Lot e IR0l ) (52 20, B (0) + M Zoll s+ =01 )

= 06, 0) el Z00) K (0) 4 A Zo ()l + 3101 )
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is bounded and continuous on & x £, and so by weak convergence

lim | Fo(p ) = Foo(py)

n— oo ’

lim ‘E“EQ{XN(X,U)<®m(X7Z(U)7K(U))+>\|Zoo(u)|f‘i4+%||l°°(u)|$1

n—oo K

N

n

(1- m(x,u))(%(X,Z(u),K(u))+A|Z W+ 1<) )H

JrEui"{

2
(1= 06,0 B, 200, K() 4 M (w4 31101 |
1

N

QSPPEM;";[H{IXHGJF|u||£+|1w<u)|H>N}‘¢M(X,Z(U),K(U))+>\|Z (W)lzs+ 511w 15

sup (p (1K e + e+ 1122 ()l > N)E e.a (11K + ull2 + 1% (u)]13])

|

A

A

sup<N pes X e + [l e+ [11%°(u )IH]E#m[llxl%+IUI%+|1°°(U)II%])
— 0 as N—oo

As we can find ¢, such that |Fao(5°) — Fiao(puz)| <1/ L we conclude. O

2.7. LARGE DEVIATIONS

In this section we want to discuss a Laplace principle for the ®3 measure in the “small noise limit”.
We introduce the family % of measures given by

E[g(hwWT) oV <ﬁ”2WT>}
[ atowiao - S , (2:52)

T

where simililarly to above
V)= [ (01 - ablp@P +ohde 2Ztim [P en(dg)

for any bounded measurable g: .#/(A) — R. In this section we will take all integrals to be non-
normalized for simplicity since we wish to derive a large deviations principle for fixed volume.
This corresponds (modulo renormalization) to the measure heuristically defined by

—%I/\w(i)4+sﬂ(£)2+\Vw(i)lzdid(p

Our goal is now to show that v” given as the weak limit of v/} satisfies a Laplace principle according
to the following definition.

DEFINITION 2.39. A sequence of measures pr on #'(A) satisfies the Laplace principle with rate
function I if for any continuous bounded function f: #'(A)—R

rlbi—>mo — hlog/e_%f(w)dpn(l/)) = inf {f(¥)+1(¢)}

PYeESL(A)

Our goal for the rest of this section will be to prove the following theorem:
THEOREM 2.40. The sequence of measures v} converges to a unique limit v™ as T — co. Further-
more V" satisfies a Laplace principle with rate function

w):A/w4+/w2+/|w|2 (2.53)

as h— 0.
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We will have to analyze the quantity
W%(f) = —hlog]E[e_%(f(ﬁl/QWT).g.Vjﬁ(hl/2WT))}

First we have to choose Vi appropriatly. Set Wi = h'/2Wr. Again we choose a/, b% so that
Vi) = [0V = ok [ [0V + 3%,

where now the Wick product is taken with respect to law of W and not Wy, and ~", 6" will be
fixed below. Now most of the analysis from sections 2.4, 2.5, 2.6 carries over into this situation for

fixed A. By the BD formula we have
WH(f) = inf F(u)
ueH,
with

Flu)= ]E[ F(RY 2 W+ B 2 Ip () + VE(WE + Y 2 1p(u / |u5|L2]

And by the change h'/?u— u of variables we get
Wi(f)= inf F}(u),
ueH,
with

B\ — 1/2 ol L T
FT(U) E|:f(h WT+IT(U>) + VT (WT +IT(’U,)) + 2/0 ||U5||L2].

LEMMA 2.41. Define | =1T"(u) € H,, Z=Z(u) €C([0,00], H/?7%), K = K"(u) € C([0,00], H'~*)
such that

Zy(u) := I(u),
1T w) i=up 4+ AR 21 oW+ ALy (W2 = Z2(u)), t>0. (2.54)
Kf(u) = I, (w"(u)), with w?(u) = —Ah]lthJt(Wf - Ztt’(u)) + ltT’h(u),

Then the functional Fr(u) takes the form

Ff(u) = E f(ﬁWT+ZT)+¢?(W’Z(U)’K(U))+A][(ZT(U))‘“r%IIlT’h(U)H% ,

where .
(W, Z, K" =3 1",
1=1
T = D ha (W, K, )+ hf<wT<KT>KT W/Q][(“N%W%K%,

@ )\h/(w%>-(ZT*ZbT))K%’
) T .
TEE .~ / / (W7 - Z3)Kdt

TR = 4R/ / WrK3 — 12\2h2 / WrWE (K3)2 + 120307/2 / Wr(WEN2KE,

TP = —2A2h2/7TZbT(ZT—Z%) —/\QHQ/VT(ZT Z%)? >\252/ /%thtdt
O —)\2715/2/W%°[3]K§2 hQ/ /w 2zt -5 h2/ Rs,1(W7, WE, 27, Z})at.
0

Moreover we have chosen Y= h2vyp and the renormalization constant 6% to be

oh = rp”E / / )2 4 A h41E / W2 (W2
(2.55)
+2>\3h2fy§«1E / WrWE — aNRE / Wr(WEh3,



58 A VARIATIONAL APPROACH TO &%

The proof of Lemma 2.41 is analogous to the proof of Lemma 2.15.

Now for fixed & reasoning analogous to Theorem 2.23 we can conclude that
Tlim WE(f)
WH(f)

: 1
= jof B F(R2Wao + Loo(w)) + DE(W?, Z (u), K1) + M| Zocllz () + 5 11 () Z2(r )

where

() = g+ AR 2W 4+ AT, (W2 = Z2(u)).

and ® (W, 7, K"):=30  r{"

TN = SRR, KL K +5h [ (Wh < KRR /2 [ (W < WL,
Tg)’h =0
" = Ah/ /(W$>Z’E)det,

0

YO = 4t/ / Wao(KR)? — 12)2h2 / Wae W (KT)2 4 12030772 / Wao(WEN2KE
oo .

TO" = 222 / / WZiZ1dt,
0

2 [ee)
Tég)’h — 7A2h5/2/W§§[3]K§of%h2/o /Wt(2><><2>(ztb>2dt
)\2

o0
—752 / R3(W2, W2, 22, Z2)dt.
0

Now it remains to prove

HmWH(f)= inf {f()+I(x)}

A0 YeF(A)

with I defined by (2.53). For this in analogy with Section 2.6 we introduce
> 1
Fh(p) = ]Eu[ PR 2 Woo + Too(w) + D% (X, Z(w), K"(w)) + M| Zoo [0+ 5 117 () |3

where the functional is again defined on the space A and
Wh(f) = inf F"(u)
pnex

and and in the same way as for Lemma 2.38 we can show that
Wh(f) = inf F"(p)
Next we claim that taking nex
PO = | FZoe(w) + M| Zolw s+
we have the following statements
LEMMA 2.42. The family Fh(u) is equicoercive on X

Proof. In analogy with Section 2.4 it is not hard to see that
9 1 1
F() > ~C + 3E| A2l + 510

and also that B, [||u]|2] < C +2AE,[|| Zoo(w)||£4] + EL[[|I"(u) 3], Define the set
K= {1 Byl Zoo(w)[24] + E,[[l1"(w) 3] < K}
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note that /C is compact from Lemma 2.28 . Now we can prove in the same way as in Section 2.5 that

sup inf F™(u) < co.
B HEX

So choosing K large enough we have that

inf F"(p)>cK —C >sup inf F7(y)
pnEK h UEX
which implies
inf F"(p) = inf F™(p)
peX nek

LEMMA 2.43. F"(u) T-converges to FO(u) on X

Proof.
Step 1. First we prove the liminf inequality. Consider a sequence pp— p in X, our aim is to
prove that
liminfﬁ'h(uh) > ﬁ'o(u).
h—0

As before it is enough to prove the statement for a subsequence of u". W.l.o.g we can assume that

Sup (Bl Zoo(w) 4] + Epunl[|I"(w)|]) < oo. (2.56)

Now from the estimates in Section 2.8 and the definition of ®% we observe that for any uj€ X
Eunl|P%|] <1V 2(Epun[| Zoo(w)l| 2] + Epun [l (w) [174),
so for for any sequence satisfying (2.56) EMH‘I)ZOH — 0. By the Portmanteau Lemma we have
i | Zoo () [ Byl Zo ) £
We claim that also
(w) ]3] = Epllull?].

liminfIE ,»
ninfE|

For this we find a subsequence of pp, (not relabeled) and a sequence of random variables (X® u/) on
a probability space (€2, P) such that Law (X", u") = ps and X" — X in & and v — u° in £,,, where
Law(X, u%) = y. Then from eq. (2.56) we can pick a further subsequence such that I"(u") — I* in
H. The definition of I implies

B(u) = ue+ MNBPXPP 4 \T(XP" = Z2 ()

and testing and taking limits this implies
I*=u,

which implies our claim. Now from weak convergence it follows that provided that f is bounded
and continuous on H~(A).

Tim I, [ (1% X+ Zoc ()] = By (Zoc()]
which completes Step 1.
Step 2. Now we construct the recovery sequence , more precisely we prove that for every u
there exists p — u such that

limsup () < FO().
h—0
By Lemma 2.34 for any p such that Fo(u) < oo (otherwise there is nothing to prove) we have a
sequence u" such that ||ul|z < n p"-almost surely and lim,, o F(u") = FO(u). By a diagonal
argument it is enough to find sequences ™" such that

limsup F( ™) < FO(u™).
h—0
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For this consider " to be the solution to
up = ul+ AKX L ART(X2 - Z2(uh)).

This can be proven to exist by a standart fixpoint and Gronwall argument. Applying J and
integrating we obtain

t
Zy(uh) = Zy(u) — MA2XE AR / J2A(X2 5 72 (uh))ds (2.57)
0

so by Gronwall’s lemma

ds

t,\—(2—6 2
e)‘h.[0<‘5> @ )”Xsuagflfé(A)

1Ze(uM)llpaa) < zgg(Hzt(u)Hm+Ah3/2||x£3]||L4<A)>

ezxn}‘(j(s) TN —1-5 4 ds

< sup ([Jull2 + 332X 2 0)) + (2.58)
s<t

This together with the definition of " implies that
1Z(u") = Ze(w)| 1

) h<Ah3/ 2||X£3]H;€4sup(lul%+Ah3/2l\X£3]I|§4<A>)+es*h-f3<s>(z”lel«glaA)dS)
s<t

SEis D[P

So by dominated convergence
By || Ze(u") = Zo(u)||La— 0

since |lullz < n p™ almost surely. Now set u™" = Law,~(X, u”). Clearly "(u") = u, so
]E#n,n[th(u)H%.l] = E,»[||u|%] and we have already established that E#n,,h[HZOO(u)”%AL(A)] —

Epn[[| Zoo (w)l|La(a)-
Now together with the fact that

Byl | (WP, Z (), K ()] <A 2Byl Zoo(0) ) + By 17w} [3) — 0
we can conclude. O
L 2.44. inf FO(p)= inf F(u)= inf I
EMMA inf, (w)= inf F(u) we};}/(A){f(dJ)Jr (¥)}
where

Fu) =E| f(Zoo(u)) +)‘HZ00(U)H%4+%HU”%{

Proof. The first equality can easily be proven in the same fashion as Lemma 2.38. We only prove
the second equality.
Step 1. First we prove

inf F(u)< _inf  {f(¢)+1(¥)}.

u€H, Yes (A)
Restricting the infimum to processes of the form
us = J5 (V)
with ¢ € H2(A), we see that
Zoo(u) :/ Jsusds :/ J2V)2pds =1
0 0

we also compute
ull3 = / / Wds= / T2V, (V)20 pagyds = (0, (V)20 gy = | |2

inf Fw)< il F)= inf {f)+1)}= inf {70)+1()

ueH, us=Js (V)2 PpeS(A)
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where the last equality follows from approximation of ¢ € H(A) with H?(A) functions, and
() + I(1)) is understood to be =oo if 1 & H(A).
Step 2.We now prove the converse inequality

P> int () +1(0)

Recall that from the proof of Lemma 2.6 ||u|| = || Zoo(w)]| g1 sO

inf F(u) > inf B f(Zoo(w) + A Zoo(w)llfa + 5| Zoo(w)

ueH, ueH,
>t () + 1)),
[l

2.8. ANALYTIC ESTIMATES

In this section we collect a series of analytic estimates which together allow to establish the point
wise bounds (2.38) and (2.39) and the continuity required for Lemma 2.22. First of all note that

t t
1
1l 5 3 [ s W2 s I Zrer [ 1nads

t 9 .
/\3<[) —<t>1+5lwﬁ|%zmds) +)\HZTHj‘34+/O 12132,

which implies that quadratic functions of the norm || K| g1-+~ with small coefficients can always be
controlled, uniformly in [0, 0o], by the coercive term

a1 [0
A][ZT+§/ 1, 2dls.
0

LEMMA 2.45. For any small € >0 there exists 6 >0 such that

(2.59)

A

T < Cle, 6) BN Qr +e | Kr || -5+ M| Zr ||
Proof. By Proposition A.14,
2 2 2 2 2
N Ro(WE, Kor, K1) S AWl 1K la00 < AW |1 Krllgss
10/7 4/7
S AWR os [1Kr Il R (2.60)
S MWL oss + I K lss + A K s

By Proposition A.10,

~

A][(WYQ“<KT)KT

S AH“N%”B;%SHKTH;%;GZ
which can be estimated in the same way, and finally

S NIWRl 1072 IWE | 17272 K llggasass

~

v][ (W2 < W) Ky

< 2
< CENM(IWR 372 [WE /2072 )+ el Kl v
(]

LEMMA 2.46. For any small € >0 there exists 6 >0 such that
Y] < T(0( HENQr +ellK s+ X Zrlz)
Proof. Using the spectral support properties of the various terms we observe that

”WYQ“HB;’};M S/ ”WYQ“HB;};MT%;
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and
25 1/2-35

T\ Zr — Zt |2 S Zr = Zrlluzs S1Zr — 22 i s 2 = 23|I 4™

25 1/2-35
SIZrllnt sl Ze 477

where we used also interpolation and the L? bound || Z%||z2 < || Z7||z2. We recall also that
Zr=Kp+ AWE. (2.61)
Therefore we estimate as follows
MW (20 = 28) K = A (W (K= KK K+ 3 (W o (WP = W) )

For the second term we can estimate

v]/(w%(wq[?hw?”))KT < Wl ol W W) o 1K s

A

_ 3
NT =W 1o [WE g | K s,
while for the first term we get

7/3, 2||KT||B%§ZS

MW = (K7 = KK S AIWRl ool Erlg
S/ )\||W72HB77;?<5T1/2T_1/2_5HKTHE;//?;(S
S >‘T75||W7%||B;’éo*5”KTHE;;;Z%
which we can again estimate like in Lemma 2.45. O

LEMMA 2.47. For any small h >0 there exists 6 >0 such that

TP < Cle ) ENQr+e sup [KillFs+eA] Zr .

gt\

Proof. First note that for ¢>11 we have 0,(D)=((D) /t2)5(<D) /). In particular Z; is spectrally
supported in an annulus with inner radius ¢ /4 and outer radius ¢ /3. Then for any 5 € [0, 1]

SR FTAiORYS) (D)) (D)8 12 ls;.,
|Zt||B;,+fH9<T)t—22T S AN et P

pate ™ ()0
The same estimate holds trivially for ¢ < 11.

By Proposition A.10, for any € >0 there exists § > 0 such that

T . T .
\A / f(W#ﬂ)&dt\ N[ WPl 001 2l st
0 |

dt
/ W2 51 MHZTHB%HKA\HI o
< dt
SMZr g, sup [ Killm-s ||wvt|\B e
S0<t<T <t>
1/2 1/2 dt
SMZr e sl| Ze |l sup HKtHHlfs/ W2l gy 10 s
0<t<T SN0

1/2 3/2 dt
<A Ze |2 sup |\Kt||H/1,(,/ (L
0<t<T (t)

1/2 3 1/2 d
322 sup Kol (WIS [ W2l 00

<t<
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and again
1/2 3/2 dt
AIZel2 sup G [ IR s
dt
<O [ IWRI, syt e s il eI Zel
While

dt

1/2 3]1/2
NENZrN" sup 1Kol W1 / IWells; 1 o7mvrs

8/3 8/6
< o / IR ol WIS + sup G+ A Zr
0<t<T

{t)
O
LEMMA 2.48. For any small € >0 there exists 6 >0 such that
[TH] < Ce. ) EQ)Qr +el| Krllf—s + X Zr | e
Proof. Using Lemma 2.9 we establish that

’ A ][ WK,

Next, we can write,

SEWIWr g -1/2-c.0 + (1K [[F1-< + M K7 |[£9)-

[3] 2KT )KT +)\3HWTHB 1/2 5”Wq§]”3 1/2 6||KT||H1 e.

which can be easily estimated by Young’s inequality. Decomposing
Wr(WE > WY = W > (W = Wi + Wi < (WE - W) + Wi o (W - W)

We can estimate the first two terms by

N 7[WT o (W W) K| S MWl 1o WEY| 2 1B,
and Y
2 ][WT < W) Kr| S X Wl /ool W 2 1Kl

Young’s inequality gives then the appropriate result. For the final term we use Proposition A.13
to get

X8 ][WT o (Wil - WE])KT’
fwﬁw}" By

< A3|\WE1||BUH|\W}°[3]HB;gHKTHHH+A3||WT||B,1/2,5||W¥’1|\ga/HHKTHHH

<X

3
+)‘BHWTHBgic/f*ﬁ*HW?[“]”;;;/?*“”KT”H“J

3 10[3 3 2
<XSC(5, e [|\WT1|\31/2 W g+ W 12 WY 1||]23;;/2,5} +e|| Kr|Zn-s.
For the last term we estimate
f(W W) K3
which can be estimated like in Lemma 2.45 after we observe that

W W e < 7 WY

< WIWrWE | posy-s IKT By,
g2 W Wil syt [ W < W o

SVl 2-o [ W g

N 0,

+ W s

and use Lemma 2.52 to bound W%o 131, O
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LEMMA 2.49. For any small € >0 there exists 6 >0 such that

|yz| +/T|%|dt
<T>1/4 0 <t>5/4

2

7] <C.E() +ellZrlli s+ Xl Zr

Proof. We can estimate

e 21t = 2)| <Rl 2l 2 2l S0 Al 2 Zelss (262
and
e (2~ 2P| Rl 2 = 2SR 2= 2o 2 Zeln (269

For the last term we can apply the estimate

2 r b r7b 2 r b 7b 2 T|7t| dt
A VZi Zydt| KN [ ll| Zi||e2 (|1 2 || 2dt S N Z7 |2 | Z1 (| grasa :
0 0 0

<t>5/4
Collecting these bounds we get
el [Pl ]
10| < CxT <T7>T1/4+/0 <Z;5/4 || Zr |[Ea+ el Zr) 2o s 0

Remark 2.50. Note that

sup
T

T
g S
provided yr does not grow too fast in 7" which is indeed guaranteed by the choice of renormalization
made in Lemma 2.52.
LEMMA 2.51. For any small € >0 there exists a § >0 such that
T < Cle, ) ENQr+el|Kr|[F-s+eX| Zrllfa.

Proof. We start by observing that

X2 SN W oo ol K[y 2

][(Y\N% oW + 247Wp ) K

and using Lemma 2.52 and eq. (2.59) we have this term under control. Next split

%QE [)T][ [(T(WE = 22))* + 2%(2,?)2](115‘

[ fuir-eizpal
0
Recall that ¢'/2J; is a Fourier multiplier with symbol

(k)1 (=2p'((K) /) p((k) /) (k) /)2 = (k) "'n((k) /1),

where 7 is a smooth function supported in an annulus of radius 1. From this we prove that t'/2.J,
satisfies the assumptions of Proposition A.12 with m = —1. Therefore

2
<A
~2

T
| e 2z - g thfxz,?)?dt] e
0

b b — b
oW = 22) = (FOWE) = 22l o205 0) ™ 2T WE o122 iy,
and by Proposition A.7,

1Te(WE = Z0) 25 + | Te(WE = Z7) |25 S (8) 7272 W i 122 g -
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Therefore

2
A/ fjtwt>zb ))2dt — /][thvt ) > Z5)2dt

2 b b at
<A fgg[lthIBg,e,”Zt'Bé/f‘*}/ Wl =yt

dt

b b
SA?sup (127 4] 22 ”Hl/?*‘i]/ W25 TSR

t<T
which can be easily estimated by Young’s inequality. From Proposition A.14 and Proposition A.4

)\2

5 SNNIWEG 15 128 po1ya-s (1 22 g,

][((tht >'Zt *—][ JtWt >'Zt)OJtWt Zt

and by interpolation
N TWRIZ s 12} | 22 o

The integrability of this term in time follows from the inequality
W 10 S (622 WP

12 .
BG,oo

Using again Proposition A.7 for t'/2J, gives the estimate. Applying Proposition A.13 and Propo-
sition A.4 we get

NI (JeWE = Z7) 0 JoWE = (JoWE o JoWE)(Z0)llsg,, S N FWE IG5 122

and after using duality and interpolation we obtain

2 T

% / ][((JtW3>Z?))2(JtY\NEthWE)(Z?)th’
0

<\2 b b de

SATsup (124 el Ze llgera=d] | ||WtHB Ty
t<T

1 de \*
<e( sup 2t s+ M Zr +c<s,6w( JLG
o g

dt

1
<e <§|ZT|12L[1/26+)\|ZT|%4>+C(E,5))\7/ W7 ||B ST

Finally we have

)\2

/ fw(Q)O(Q 2dt‘ <)\2|:/ ||W<2 2>||L4dt]|ZT|HE|ZT|L4

<C(E)A [ / W u«ﬂ el Zolba+ el Zr B s

Using eq. (2.61) to control ||Z7||1/2-5 in terms of K7 we obtain the claim. O

2.9. STOCHASTIC ESTIMATES

In this section we close our argument proving the following lemmas which give uniform estimates
as T'— oo of some of the stochastic terms appearing in our analytic estimates.

LEMMA 2.52. For anye>0 and any p>1,r<o0,q€[1,00], there exists a constant C(e,p, q) which
does not depend on A such that

sgplE[”WTo wil|s } Cle,p,q). (2.64)
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Moreover there exists a function v, € CY(Ry,R) such that for any e >0 and any p>1,

sup B[ || (Who W~ 200W)] |5 _ya-. | < Ce.p.0), (2.65)

[ee) P
E[( / |th3thw3—wt||Bsdt) ]<c<e,p,q>. (2.66)
O T,q

sup E[ || J;W7 o J W7 — 2%”3 } C(e,p,q)
and K

[vel + ()9 S1+1og(t),  t=0. (2.67)
Furthermore ~y is independent of A. By Besov embedding, the Besov-Hdlder norms of these objects

are also uniformly bounded in T (but not uniformly in A).

Proof. We will concentrate in proving the bounds on the renormalized terms in egs. (2.65) and
(2.66) and leave to the reader to fill the details for the easier term in eq. (2.64). Recall the
representation of (W;); in terms of the family of Brownian motions (Bf'): , in eq. (2.4). Wick’s
products of the Gaussian field W can be represented as iterated stochastic integrals wrt. (B{")s n.
In particular, if we let dws(k) = (k) 'o,(k)dBE, we have

Wi (z) = 12[WE](x) =24 ) eilkrtha) // dws, (k1)dws, (k2),

k1,k2

(k
3] —94 Z zk(lzz) x/ / / / Uu (123))d dwsl(kl)deQ(kz)dws3(k3),
k1 k2, ks s (ka2)®

where we denote k(j...,) := k1 + --- + k,, for any n > 2. Now products of iterated integrals can be
decomposed in sums of iterated integrals and we get
AW (@) = Ay (WEo WS — 29707 (2)
= Z / Gl (5, k) 1..5)duws, () s, (k)

.....

+ Z GQO 3]((87k)13)dw51(k1)dwsg(ki‘))
k‘l, ,k3 AT

5 [ e

where A} :={0< 1< <8, <T}C[0,7T]™ and where the deterministic kernels are given by

G(Q)igs]((s,k)l...5) = (24 )Qq(k‘(l 5) (k(l “’) Z Z X

oc€Sh(2,3) i~y

Tau(k 03040 )2
X Qi(k(UIUQ))Qj(k(0304U5))(/ (+45)2du ,

(2.68)

S0 <k(030405)>
G (5, 1) 1= (24D gy(hrg)e e 3 /
a'ESh 1,2) 'LNJ

T Uu(k(a o3) _p)2
X 0i(koy + P) 0j(K(ra0s) — / ———du |,

( p) ]( (020) p)< SeaVT <k(0203)_p>2
2

oA iki-x g J
Gyt (s, k)1) == (242)gg(kn)e™ 3" 3 / drl/ dr ’"lplpl 22155?

i~j p1,p2

T . kj _ _ 2
XQz‘(Pl-l—pz)Qj(/ﬁ—Pl—m)(/ Tulks—p1—p2) du>,

1VraVsy <k1 - pl - p2>2

G (s, k) = G (5, k)1) — 2970, (k) €1,
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where Sh(k,[) is the set of permutations o of {1,...,k+ 1} keeping the orders o(1) <--- <o (k) and
o(k+1)<--<o(k+!) and where, for any symbol z, we denote with expression of the form z;...,
the vector (z1, ..., 2,). Estimation of Aq(W%oWB])( ) reduces then to estimate each of the three
iterated integrals using BDG inequalities to get, for any p > 2,

2p 1/p

loq=qE

Z /GQQM((S,k)l...5)dws1(k1)'"deS(k5)
Fimo ks /AR

Z / |G203] '5)|205<1k:(1]§12) US@(SE’Q) dsy---dss.

The kernel GQO[B]((S, k)1..5) being a symmetric function of its argument, we can simplify this
expression into an integral over [0, 775

s, (k )2 Os (ks)z
1 < GQO[B] S k)q.. 20 1( 1 .. 5 dsq---ds=.
e zﬁ;;% /[0 T]5 | h 5)| (k1)? (k52 ' >

Under the measure U?i(r]z‘r;)zdss, we have
/TJu(k(gga4a5))2du < 1 ‘
Sog <k(030'405)>2 ~ <k05>2

Therefore with some standard estimates we can reduce this to

Q‘Z(k(l"'5))2 0'51(]61)2 055(k5)2
IO,q S Z /[0 T]5Wﬂk(n)~k(3%) <k‘1>2 . <l€5>2 dSl"'dS5
K1, ks Y 105

Qq(kf(l...g)))? s (k‘1)2 Usr(ki5)2
< T J1..\4 1 e 2 .
Nkl A /[O 75 (ks)* Lk1o)~ksas) (k1) (ks)? dsq---dss

< Z (ka5 R

Tppy~
e <k.5>4 k(12) k(345)<k,1>2 <k‘5>2

1 1 1
S I L D o (e
P1,P2 k1,...,ks 5 5

S Lt 4 PP rr S 0P S el S2°

P1,P2 p1,7r
Now by similar reasoning we also have

i k01+ k 020
|G20[3] (s k)13)|§ Z |0g(Kk(1...3) |Z Z/ pled )2 (kf)ij(p; 2= Pl

aGSh(l 2 i~ g

< Z |Qq(k(1~..3))|

o €Sh(1,2) <k"1>

SO
2p 1/p
Lo=SE(| S [ GFF(s,k)15)dys, (kr)-dye,(ks)
Keyyo kg VAT
2
<y b )| alh? onthoy, o
ki, ks 7 0T 6 eSn(1,2) (ko) (k1)? (ks)?

< Z |Qq k(l 3)k3 zwz Qq
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Finally, we note that the same strategy cannot be applied to the first chaos, since the kernel G2°[3]

cannot be uniformly bounded. We let

2
Ar(s1, k1) = 2422 Z / dm/ dr Unqql 022(](2%22)

1
i~J oq1,92

T 2k — a1 —
x0i(q1+ q2) 0(k1 — q1 — Q2)</ %iq—@du),

_ 2
r1VraVsy q2>

SO
G2 (5, k)1) = og(k1)e™ o[ Ar(s1, k1) — 2v7).
Observe that

2
Ar(0,0) = 122 Z/ d7’1/ dr Uﬁq‘h 022(522) %

1
q1,q2

T
g1+
X/ Lq:;)duz 0i(q1+ q2) 0j(—q1 — q2)-

1Vra <‘h+q2> inoj

We choose vy as

2 2
T T u +q2)
A7(0,0) = (1222 E:/du/dr/drglql ory(22)” ol 2.69
7= Ar( — ! (@)?  (q2)* (@14 q)? (2.69)

where we used the fact that for all ¢ € R? we have ZWJ 0i(q)0j(q) =1, since [ fog= [ fg. Note
that, as claimed,

Lg:),lgal,lq1+ g2l ST
|'YT|§ Z < la1],] g2, |q1+g2| < 2§1+10g<T>.

= (01)*(a2)*(01 + a2)
Now
2
Ory Ory
Arp(si, k1) —2yr=(24%-6 Z / dridry <q(1q>12) <q(2q>22) Z 0i(q1+ q2)
q1,92 i~ j

T 2 T 9
HL 2+
(otn-n-a) [ Tty [1 At

s1V1ri1Vrs <k1 q > r1V7re <q1+ q2>2

so there existst a constatn C' such that, when |¢1 + ¢o| = C|k1|, the quantity in round brackets can
be estimated by |k1|(q1 + g2) ~* while when |q; + go| < C|k1| it is estimated by (q1 + g2) ~2. We have

1 1 1
q1)*(@2)* (a1 + q2

<14 log(ky).

[Ar(s1 k) =7l £ 3 1

|k
>2<1|q1+q2|<cm+1q1+q2>C|k1|—< 5
q1,q2

a1+ q2)

20(3]

And then with this choice of y7 the kernel G5, stays uniformly bounded as T'— oo and satisfies

1G22B((5, k)1)| S 0g(k1)log (k).

2p1Y 1/p

From this we easily deduce that

A

All together these estimates imply that

/ GZB((5, k)1)dye, ()
k1

EHA W2<>[3]H 2p < 2!1/2)2207 q=—1.

Standard argument allows to deduce eq. (2.65). The analysis of the other renormalized product
proceeds similarly. Let

V() : =W = W20 JW2 —25,,  t>0.
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First note that by definition of Besov spaces we have

P

0 p 0 1/r
E[(/ |V(t)||Bgd/rdt) }SE / (Z 2—qT(a+d/T)|AqV(t)||Lr> dt
0 T 0

q

By Minkowski’s integral inequality this is bounded by

e’} p/r
S| [ aE| (X e Ay ol
0 q

When r > p Jensen’s inequality and Fubini’s theorem give

1/r
< / dt{Z? ar(ed/n) || E[| AV (t)(x >|]}

Finally hypercontractivity and stationarity allow to reduce this to bound

1/p\ P
p

p

</ mdt{; g-ar(e+d/r) (EHAW@)(O)F}W?}W

Letting I,(¢t) =E[|A,V (¢)(0)|?] we have
P

[} p o 1/r
E[(/ ||Wt<2>°<2>|35d/rdt> } < / dt{z g—ar(e+d/r) (Iq(t))’“/Q}
0 0
q

Now we decompose the random field Aq(Wt<2>o<2>)(x) into homogeneous stochastic integral as above
and obtain

Ag (W) () = 2 LGé?;“”((s,k>1...4>dwsl<k1>---dw84<k4>
k1,....k

+> / G102 (s, k) 12)dws, (k1 ) dws, (ko) (2.70)

kl k‘g
+GP
with
PPN (5,k)1a) = (24%) 0g(K(1y)e FO-9) 7

0t(k(0105)) Tt(K(0504))
Z Z Qi(k(alaQ))Qj(k(a3a4)) <k (o1 2>) <k‘ (o3 4>)
0 €Sh(2,2) i~j (0102) (0304)

G§?<>1°<2>((37k>12) = ( ) (k(12) 1(k(12))x Z ZZ "

oc€Sh(1,1) i~y

o [ g (b Ut(kal+q)0t(kaz—q)
/d (q)? ok, + D0k, q)< (kov+4q) (ko —q) )

q = 24 q__lz Z /d’l‘l/ d7“2><

i~j q1,92

or,(q1)? 07,(g2)? ai(q1 + g2)?
XWW&(QHHD)Q;( T *QQ)W

Q

o~

- N
~
<
S
N
~
|

— 24y 1.
Using our choice of 7 in eq. (2.69) we have that

122 Z / d?”l/ d’I”AO-T1 (Z1 UTz(q2) Ut(CJ1+(J2)

= (@)*  (@2)? (©+gq2)?’
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which implies also that

.~ L4log(t)
< oV
and |7t| ~ <t> .

as claimed. We pass now to estimate the other two chaoses. The technique is the same we used
above. Consider first
2]

ot [

{2002) (g 2051(k1)2.. 0s4(ka)? s1--ds
<)) IG Y((s,k)1...4)| g

)

Z / GS1°®) (5, k)1...a)dws, (ky)-+-dwg, ()

ki,....k

2 2
< Z (2)0(2) 205, (k1)*  os,(ka)® o
~ /[O,t]4|G07q ((87 k)14)| <k1>2 <k'4>2 dsl d84

k1,...,ka

P(ka2) 0t (k) 06, (k1) 0s,(ka)?
< o 2/ oi(ka2)) 0i(k@a) 0s,(k1)*  0s4(ka dseds
”Z bl | Tk (o (k2 (k2 O

2(k(12)) oF (k@) 1 1
< ki gfft( (12)) Ot \K(34) y
N]ﬁ;m 04( (1 4)) (k(12)>2 (k:(34)>2 (k)2 (ka)?

Toagy 0q(k(1...4))? Laagt 4y,
S 2, TP R S @8 2

where we used that |oy(x)| <t ~/?1,;. Now taking € 4 d/r >0 we have

0o 1/r 0o
at) S~ g-arteram (g, a2l < / at
/ {Z (To.qft)) o >

q:29<t

A
~ 0 <t>1+€+d/r”"

Taking into account that |k1|, |ke| St we can estimate

2q7‘(27€7d/r) L
<t>3r

(2)0(2) Lip|<t ( ou(k1 + p) (k2 — p) -
G| Sl 2 T R HER ) Slathani

from which we deduce that

2
I q(t) Z/ G (5, k)12)dws, (k) dwg, (k)
k1,ko
2 2
< 205, (k1)” 0s,(k2)
kzk RN g1

61 k S92 k
Z |Qq k(12) | / o 1 204 (2>22) dsidss

k1,ka

]lk <t Lpo<t _
Z | 0q( k(12) 1> <k2)2 < (t) 422(112%“
k1 ke 2

and then, as for Iy 4, we have

S 1/r oo ¢ 1/r
/ dt(Z 9—qr(e+d/r) (Il,q(t))'f/2> 5/ W Z 2qr(1—6—d/r)12qst S 1,
0 q 0

q
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as claimed. From these estimates standard arguments give eq. (2.66). g

LEMMA 2.53. We have
E[|[WE|2,]1/? ST3/2.

This implies that W3 e C’([O o], B;L/ka") N Lz(R+, 1/2 ) for any p < oo uniformly in the

volume and W EC([O ], %71/27”)0L2(]R g2 /{).

Proof. Observe that
Wh(z) =12[Wf](x) =24 Y eilbrthatha)- 3”// / dws, (k1)dws, (k2)dws, (k3).
k1,k2,k3

By space homogeneity, we get for any p,

E(|WE(2)[2:] = B[|W

E / / / duws, (k1) dw52(/€2)dw53(/€3)
k1,k2,k3
/ / / duws, (k1) dw52<k2>dw53<k3>
kl k‘g k‘g
) p/2
// / Ts( kl . kgké) dsy---dss3
kl k2 kg < 3>

< (T3/2p.

klkzzk3 /OTASQASIU?k(lk;z)Q.“023}6(332)2d81---d53
) klkzks/// & kl kgkg)dsl -dss3
B @/O Uf;ff;ﬁ ds) <79,

Now the remaining properties follow by the fact that o, is supported in an annulus of radius ¢, so

p/2

AN

Since

at(D) 1xr3
oy

and the Holder estimates follow by Besov embedding (but with constants which depends on the
volume). O

W - =

Soe(DYW | g=sro—e S (8) 71275 (8) 73/ % W v
B;;/Qfm D, P






CHAPTER 3

&3 viIA GIRSANOV TRANSFORM

3.1. INTRODUCTION

The ®§ measure on the three dimensional torus A =T3= (R /277Z)? is the probability measure v
on distributions .#/(A) corresponding to the formal functional integral

via) = {Fesp| A [ (¢ = oo |utap) } (3.1)

where p is the law of the Gaussian free field with covariance (1 — A)~! on A, Z a normalization
constant and A the coupling constant. The oo appearing in this expression reminds us that many
things are wrong with this recipe. The key difficulty can be traced to the fact that the measure we
are looking for is not absolutely continuous wrt. the reference measure p. This fact seems part of
the folklore even if we could not find a rigorous proof for it in the available literature apart from
a work of Albeverio and Liang [3] which however refers to the Euclidean fields at time zero.

As already motioned in section 1.2.1 in recent years the rigorous study of the ®3 model has
been pursued from the point of view of stochastic quantization. In the original formulation of
Parisi-Wu [106], stochastic quantization is a way to introduce additional degrees of freedom (in
particular a dependence on a fictious time) in order to obtain an equation whose solutions describe a
measure of interest, in this case the ®3 measure on A as in (3.1) or its counterpart in the full space.

A conceptual advantage of stochastic quantization is that it is insensitive to questions of
absolute continuity wrt. to a reference measure. This, on the other hand, is the main difficulty
of the Gibbsian point of view as expressed in eq. (3.1). In order to explore further the tradeoffs
of different approaches we have developed in Chapter 2 a variational method for the construc-
tion and description of ®3. We were able to provide an explicit formula for the Laplace transform
of ®} in terms of a stochastic control problem in which the controlled process represents the
scale-by-scale evolution of the interacting random field.

This chapter is the occasion to explore further this point of view by constructing a novel measure
via a random translation of the Gaussian free field and by proving that the ®3 measure can be
obtained as an absolutely continuous perturbation thereof. Without entering into technical details
now, let us give the broad outline of this construction. We consider a Brownian martingale (W;):>0
with values in ./(A) and such that W; is a regularization of the Gaussian free field p at (Fourier)
scale t. Let us denote PP its law and [E the corresponding expectation. In particular, W; — W, in
law as t — 0o and Wx, has law p. We can identify the ®3 measure v as the weak limit »7 — v as
T — oo of the family of probability measures (v1)r>0 on .#/(A) defined as

vI()=PT(Wre.),
where P7' is the measure on paths (W}):>o with density

dPT 1 _ve(wi)
dP Zr ’
and

Va(p) == /A (0(2)* - arp(x)? +br)dz,

73
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is a quartic polynomial in the field ¢ with (a7, br)r a family of (suitably diverging) renormalization
constants. The presence of the scale parameter ¢t € R allows to introduce a filtration and a family
of measures Q" defined as the Girsanov transformation

dQv
dP

1, o ("
:eXp( %—§<L“>T>, L} :/ (vs, AWa)p2(a) (3.2)
Fr 0

where ((LV)+)¢>0 is the quadratic variation of the (scalar) local martingale (L{);>0 and (v¢)¢>0 is
an adapted process with values in L?(A). Let

L v ARV -
Dri=7¢ ap )

be the density of PT wrt. QY. We will show that it is possible to choose v in such a way that the
family (Dr)r>0 is uniformly integrable under Q¥ and that Dy — Do, weakly in L'(QY). With
particular choice of v we call Qv the drift measure: it is the central object of this paper. By
Girsanov’s theorem the canonical process (W;);>¢ satisfies the equation

AW, = vydt + dW,, t>0,

where (I/T/t)tgo is a Gaussian martingale under QY (and has law equal to that of (W;);>¢ under
P, that is is a regularized Gaussian free field). We will show also that the drift v; can be written
as a (polynomial) function of (I/f/;)se[o,t], that is vy = ‘Z((I/f/;)se[07t]). Therefore we have an explicit
description of the process (W;);>o under the drift measure Q" as the unique solution of the path-

dependent SDE
AW, = Vi((Ws)seqo,g)dt + AW, t>0. (3.3)

2

Let us note that this formula expresses the “interacting” random field (1}); as a function of the “free’
field (W});. In this respect it shares very similar technical merits with the stochastic quantization
approach.

Intuitively this new measure QQV is half way between the variational description in 2 and the
(formal) Gibbsian description of eq. (3.1). It constitutes a measure which is relatively explicit, easy
to construct and analyze and which can be used as reference measure for ®4, very much like the
Gaussian free field can be used as reference measure for ®3 [68].

As an application we provide a self-contained proof of the singularity of the ®3 measure v wrt.
the Gaussian free field p. As we already remarked the singularity of ®§ seems to belongs to the
folklore and we were not able to trace any written proof of that. However, M. Hairer, during a
conference at Imperial College in 2019, showed us an unpublished proof of him of singularity using
the stochastic quantization equation. Our proof and his are very similar and we do not claim any
essential novelty in this respect. Albeit the proof is quite straightforward we wrote down all the
details in order to provide a reference for this fact. The main contribution of the present paper
remains that of describing the drift measure as a novel object in the context of ®3 and similar
measures.

Our proof of singularity, in particular also shows that the drift measure Q" is singular wrt. P.
The intuitive reason is that the drift (V;);>0 in the SDE (3.3) is not regular enough (as ¢t — o)
to be along Cameron—Martin directions for the law P of the process (W;);>0 and therefore the
Girsanov transform (3.2) gives a singular measure when extended all the way to T'= 4oc.

Notations. Let us fix some notations and objects.

e ForacR%welet (a):=(1+]a|?)'/2 B(z,r) CR denotes the open ball of center 2 € R and
radius r > 0.

e The constant € > 0 represents a small positive number which can be different from line to
line.
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e Denote with .#(A) the space of Schwartz functions on A and with .#"/(A) the dual space of
tempered distributions. The notation f or .% f stands for the space Fourier transform of f
and we will write g(D) to denote the Fourier multiplier operator with symbol g: R" — IR,

ie. #(g(D)f)=gFF.

e By, = By ,A) denotes the Besov spaces of regularity o and integrability indices p, ¢
as usual. €“ = €*(A) is the Holder-Besov space By, o, WP = W*P(A) denote the
standard fractional Sobolev spaces defined by the norm || f||ws.e := [[(D)*f||r« and H* =
W2, The symbols <, =, o denotes spatial paraproducts wrt. a standard Littlewood—Paley
decomposition. The reader is referred to Appendix A for an overview of the functional spaces
and paraproducts.

3.2. THE SETTING

The setting of this chapter is the same of that of Chapter 2. In this section we will briefly recall
it and also state some results from that chapter which will be needed below. They concern the
Boué-Dupuis formula and certain estimates which are relevant to our analysis of absolute conti-
nuity.

Let Q := C(Ry; €73/27¢(A)) and .# be the Borel o-algebra of Q. On (2, .%) consider the
probability measure IP which makes the canonical process (X¢);>0 a cylindrical Brownian motion
on L?(A) and let (%;):>0 the associated filtration. In the following E without any qualifiers will
denote expectations wrt. IP and Eq will denote expectations wrt. some other measure Q.

On the probability space (€2, .7, P) there exists a collection (B}'),¢(z)s of complex (2-dimen-
sional) Brownian motions, such that B = B; ™, B}, Bf"* independent for m # +n and X; =
Y onezs e’ ) BP . for example in .#/(A).

Fix some decreasing p € CZ°(R4,R+) such that p=1 on B(0,9/10) and supp p C B(0,1). For
r€R? let py(z) :=p({z)/t) and
1/2

o(a) = (R ) = (-2l 0otla 00 )21

Denote J;=05(D)(D) ! and consider the process (W;):>0 defined by

t t
Wii= / JdX,= 3 et / 2 ggn 1o, (3.4)
0 0

n
nezs < >
It is a centered Gaussian process with covariance

p?nin(s,t)(n) 7

E(We o) (W w)] = ) == —@(m)d(n),

nez3
for any ¢, 1 €.7(A) and t,s >0, by Fubini theorem and Ito isometry. By dominated convergence
limy— o B[(W2, ) (W, )] =37 s (n)~2p(n)y(n) for any o, v € LA(A). For any finite “time” T
the random field Wy on A has a bounded spectral support and the stopped process W, = W1
for any fixed T > 0, is in C(R, C°°(A)). Furthermore (W;'); only depends on a finite subset of
the Brownian motions (B™),czs.

Observe that J; satisfies the following bound

17ef -0 S 6272 £]

s
BPuP

for any function f € B, , with p&[1,00] and s € R and for any o € R.
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We will denote by [W;"], n=1,2,3, the n-th Wick-power of the Gaussian random variable W}
(under P) and recall the convenient notations W7 := 12[W;?], W7 := 4[W;*]. Furthermore we will
write [((D)™/2W;)"],n €N for the n-th Wick-power of (D) ~/2W, . It exists for any 0 < ¢ < co and
any n > 1 since it is easy to see that (D)~'/2¥; has a covariance with a diagonal behavior which

can be controlled by log(t). These Wick powers converge as T'— oo in spaces of distributions with
regularities given in the following table:

W W2 s J W2 [((D)~2W)"]
Ce~Yi 0e'- Ce Vi nLre YA CeO-

Table 3.1. Regularities of the various stochastic objects. The domain of the time variable is understood
to be [0, 00], CE* = C([0, 00]; €%) and L?E = L?(Ry; €%). Estimates in these norms holds a.s. and in
LP(P) for all p>1 (see Chapter 2).

We denote by H, the space of (.%#;);>o-progressively measurable processes which are P-almost
surely in H:= L?(IRy x A). We say that an element v of H, is a drift. Below we will need also drifts
belonging to H*:= L?(R4; H*(A)) for some o € R where H*(A) is the Sobolev space of regularity

a € R and we will denote the corresponding space with Hg. For any v € H, define the measure

Q" on Q by
ool [ o=z i
=exp vsd Xs— = lvs||72ds |-
dP 0 2 /o L

Denote with H. C H, the set of drifts v € H, for which QV(2) =1, and set W?:=W — I(v), where

t
I(v) :/ Jsvgds.
0

We will need also the following objects. For all ¢ >0 let §;: R — [0, 1] be a smooth function such that

0:(&)os(&) = 0 for s>t
0:(¢) 1 for [£] <t/2 provided that t > Ty

for some Tj) > 0. For example one can fix smooth functions 6, 7: R® — R such that 9~(§) =1if

€] <1/2and 6(€)=0if |£]>2/3, n(€)=1if |£| <1 and (&) =0if || >2. Then let 0,(&):=0(&/t)
and define

(3.5)

0,(€) := (1= n(€))0:(€) + C(£)n(€)0:($),

where ((t): Ry — R is a smooth function such that ((¢) =0 for t <10 and ((¢) =1 for ¢ > 3. Then
eq. (3.5) holds with Tp=3. Let

f*:=0(D)f (3.6)
for any fe.7'(A).
Our aim here to study the measures v defined on ¢ ~1/2—¢ 55
M — e~ Vr(Wr)
dP
with
Vip)i= [ (¢ —arg? +br)de, peCX() (3.7)
A

and suitable ar, by — 0o. For convenience the measure vr is not normalized and, wrt. to the
notations in the introduction we have

dP? 1

dVT a VT(Q) '

Recall the following results of Chapter 2.
THEOREM 3.1. For any ap,br€R, and f:€~'/?275(A) =R with linear growth let

Vi () = f(0) + Vr(o),
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where Vi is given by (3.7). Then the variational formula

T
ucHg 0

holds for any finite T.
This is a consequence of the more general Boué-Dupuis formula.

THEOREM 3.2. (BD FORMULA) Assume F:C([0,T],C>®(A)) — R, be Borel measurable and such
that there exist p, q € (1,00), with 1/p+1/q=1, E[|F(W)|?] < 0o and E[le=FW)|9] < 0o (where
we can regard W as an element of C([0,T], C*(A)) by restricting to [0,T)). Then

T
—log E[feFW)] = inﬂfI E|F(W +I(u)) +%/ |us|%2(/\):|. (3.9)
uel, 0

We will use several times below eq. (3.9) in order to control exponential integrability of var-
ious functionals. By a suitable choice of renormalization and a change of variables in the control
problem (3.8) we were able in Chapter 2 to control the functional in Theorem 3.1 uniformly up to
infinity.

THEOREM 3.3. There exist a sequence (ar,br)r with ar,br — o0 as T — oo, such that

1 T
E[VJ(WT-I—IT(U))—Fa/ |ut|L2(A)dt:|
0

— B[ W07 1)+ ) [ ()t + Tl
where (recall that I} (u) = 0(D)Iy(u) by (3.6))
1T (u) :=us + ANy < W+ My pJo (W2 = I2(u)) (3.10)

and the functionals Wh: C([0,T], C>®(A)) x C([0,T], C®(A)) — R satisfy the following bound

[UH(W, I(w))| < Qr(W) +i(|UT(U)|If4 + 1 (u) 1)
where Qr(W) is a function of W independent of u and such that supr E[|Qr(W)|] < co.
As a consequence we obtain the following corollary (cfr. Corollary 2.2 in Chapter 2)
COROLLARY 3.4. For f:€~'/275(A) = R with linear growth the bound
~C<E,rlef]<C,

holds, with a constant C independent of T. In particular vy is tight on € ~'/2~¢.

3.3. CONSTRUCTION OF THE DRIFT MEASURE

We start now to implement the strategy discussed in the introduction: identify a translated measure
sufficiently similar to ®3. Intuitively the ®3 measure should give rise to a canonical process which
is a shift of the Gaussian Free Field with a drift of the form given by eq. (3.10). Indeed this drift
u should be the optimal drift in the variational formula. A small twist is given by the fact that
the relevant Gaussian Free Field entering these considerations is not the process W =W (X) but
that obtained from the shifted canonical process X = X; — f; usds which we denote by

We =W (X% =W — I(u).

Moreover, to prevent explosion at finite time, we have to modify the drift in large scales and add
a coercive term.This will also allow later to prove some useful estimates. As a consequence, we
define the functional

ES(W,u)::—Aszf—An{sﬁ}Js(wa:(u))+Js<D>*1/2([[(<D>*1/2m)nﬂ), s=>0, (3.11)



78 <I>‘§ viIA GIRSANOV TRANSFORM

where T > 0, n € N are constants which will be fixed later on and where we understand all the
Wick renormalizations to be given functions of W, i.e. polynomials in W where the constants are
determined according to the law of W under P. We look now for the solution u of the equation

u=E(W* u)=E(W —I(u),u). (3.12)
Expanding the Wick polynomials appearing in Z(W — I(u), u) we obtain the equation

us = Z2(W —1I(u),u)
= —AJ[W2 — W2I,(u) + 12Ws(Is(u))? — 4(15(u))?]
M (57 J[ (W2 = 24WaI(u) + 12(1a(u))?)) = I (w)] (3.13)

— (n - - i - n—i
+3° (7)) (DY AW (D)2 ()
i=0
for all s > 0. This is an integral equation for ¢+ u; with smooth coefficients depending smoothly

on W and can be solved via standard methods. Since the coefficients are of polynomial growth the
solution could explode in finite time. Note that for any finite time the process (us)s>o has bounded

spectral support. As a consequence we can solve the equation in L? and as long as fé l|lw||?2ds is
finite we can see from the equation that sups<; ||us||?= is finite. By the existence of local solutions
we have that, for all N >0, the stopping time

¢
Tn = inf {t > O’/ l|us||2ds > N},
0

is strictly positive P-almost surely and u exists up to the (explosion) time Toyxp:=supnyen7nv. The
following lemma will help show that IP-almost surely Toxp =400 and will also be very useful below.

LEMMA 3.5. Let

n
Ao (W, w)i= 3 (] )o(D) ™ 20D~ AW (D) 21, w))" ),
=0
then we have
¢ t
E [ fulads +sup BIL@)G e $14 [ CElus+ gl + 4Bl g — Aux, (W, w) 2
0 s<t 0

uniformly in t >0, for any pair of adapted processes w, g € L*>(P, H) such that

t
]E/ llgs — Aqu(W,w)H%Q ds < 0.
0

Proof. Take ¢, =inf{t>0: fot |lws||?2ds > N'}. By Ito’s formula we have

tALN -
/ /Auxs(W, w)wsds = Auxip, (W, w) + martingale
0 A

where
n

AW )= 32 o () 000~y 3(0) 21w ),

P n+1—2\12

Integrating over the probability space and using Cauchy—Schwarz inequality, we obtain

d tALN
aE(/ ||w5||%zds+4AuXMLN(W,w))
0

= ]E{/]l{tgLN}(wf+4Auxt(W,w)wt)}
A

N

E[ﬂ{tw(2|wt+gt||%z+4 [0 w) - g - ||wt||%z)]
A

2EL < ontllwe + gell7e + AEL fr<uny | 96 — Auxe (W, w) |7 .

N
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where ¢; is an arbitrary function. By Lemma 3.11 below, we have constants ¢, C' and a random
variable Q7(W) such that

sup sup E[| Q. (W)]] < 00,
) ) teRNEN
and for any stopping time 7

/stHdes+c||I( M= /2ims1 = Qe (W /HwS”L2d3+AuXT(W w)

<O|L(w >||"+%/2,n+1+c/0 les|2adds + Q- ().

As a consequence, we deduce
t
E/o L(s<onlwsllF2ds + B[ Ly (w) |5 2,041
t
Sl Jr/ (QEﬂ{sgLN}”ws + gs”/%2 + 41{S<LN} Ellgs — Auxs(W, w) ||,%2)ds
0

t
<1 +/ (2E|ws + 22 + 4F]| gs — Auxo (W, w)|22)ds
0
And we can conclude by sending N — oo and using Fatou’s Lemma. g

In particular, taking w = —1;<-u and g=—w, we have

t t
E / Loyt [22dls + SUPE| Lu( L o) [ s S 14 / B (L ry s — A (W, —u)|[2)ds
0 s<t 0
for all t < T, where, using (3.13),
—Aux, (W, —u) = —AJ[W2 - W2I,(u) + 12W,(Is(u))? — 4(1s(u))?] (3.14)
Loy J[(W2 — 24WT, (1) + 12(L(0))?) > I2(w)]. |

Then, for any s <7T we have

E(Ls<ry [lus — Auxy(W, —u)[|22) < O + Bl (Lo mt) 52041,

provided n is chosen sufficiently large. Using Gronwall’s inequality this gives IE [ OT | Lo crwtts||72ds <
C7, and we can let N — oo to obtain

T
E / Jug[22dds < Cr
0

which implies Ttxp, = 4+00. In addition and by construction, the process ul = 1 (1< ryyus satisfies
Novikov’s condition, so it is in H, and Girsanov’s transformation allows us to define the probability
measure Q*" on C(Ry, % ~1/27¢(A)) given by

oo, N oo\ N2 )
dQ [ ug dXs —5[0 |l “Lz(A)dédIP,

. N t . . . . . N
under which X = X; — fo ulNds is a cylindrical Brownian motion. Moreover, under Q*" the

process (W := fotJSdX;“N)@o has the same law as (W;);>o under IP. We observe also that
W;“N =W, for 0 < s <7y and that u satisfies the equation

= AW = MLy 3y (W2 D) 4+ J(D) “V2([(D) 2wy ), sefoym], (3.15)

where we introduced the notations W***:=4[(W*)3] and W2 :=12[(W,*)?]. Note that here the
Wick powers are still taken to be given functlons of W, i.e we are still taklng the Wick ordering

with respect to the law of W under P (or, equivalently, the law of W" under Q“N).
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If we think of the terms containing W* as given (that is, we ignore their dependence on u),
eq. (3.15) is a linear integral equation in w which can be estimated via Gronwall-type arguments.
In order to do so, let us denote by U: H — @ the solution map of the equation

a=Z(H, ). (3.16)

This last equation is linear and therefore has nice global solutions (let’s say in C'(R4, L?)) and by
uniqueness and eq. (3.15) we have u,= U (W) for t € [0, Texp). From this perspective the residual
dependence on u will not play any role since under the shifted measure the law of the process W*
does not depend on u. By standard paraproduct estimates (see Appendix A) we have

~ t
)~ < Hi+ / 1oy | TAWE2 5 12 () | edls

~ — t .
S Hie T [ (s W o2 0) s,
0

~

where we have crucially exploited the presence of the cutoff 1,57y to introduce the small factor
T—¢ and we have employed the notation

M= /otHJfo’glLoo +{17:4D) 2D 2w <) ds

t t
1 w,3 1 —1/2717w\
R T L v | (RS ) (PR
By Gronwall’s lemma,
- , ™ ds
sup [[Ii(u)llze < HTNGXP<CT_8/ (W ’Ql%le—Hg)' (3.17)
t<TN 0 <S>

Under Q“N, the terms in ﬁTN are in all the LP spaces by hypercontractivity and moreover for any
p =1 one can choose T large enough so that also the exponential term is in LP. Using eq. (3.15)
it is then not difficult to show that EQuwl[HuNQHf{,l/z,g] < oo for any p > 1 (again provided we

take T large enough depending on p) as long as N; > No. By the spectral properties of J and the
equation for u, the process ¢ — 1;<7)uy is spectrally supported in a ball of radius T', so we get in
particular that

TN2/\T 5
Boo] [ hulaas| 57

uniformly for any choice of Ny > Ny >0.

LEMMA 3.6. The family (Q“N)N weakly converges to a limit Q" on C(Ry, € 3/?7¢). Under Q*
it holds Toxp =00 almost surely and Lawgu(X") =Lawp(X). Moreover for any finite T

dQulgTi T . 1 T 2
M—exp o usts 5 o H'LLSHLZdS .

Proof. Consider the filtration (%y = .%,)n and observe that (Q“" |4, )y is a consistent family
of inner regular probability distributions and therefore there exists a unique extension Q" to
Yoo = VNYn. Next observe that {Texp <00} = Jpen {Texp <T} CUpen Nyen {7v <T'} and that
for any N,T < oo, we have

TNAT T~AT
EQu[/ |us|%zds} EQuNU ||us||g2ds} <Tlte
0 0

On the event {7y <T'} we have
TNAT
[ s =n,
0
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and therefore we also have QU({7y <T}) < CT***N~! which in turn implies Q*(Tex, < T) = 0.
This proves that Texp, = +00 under Q¥, almost surely. As a consequence we can extend Q" to all
of % =Vrp.%r since for any A € %1 we can set

Q"(4) = QAN {Texp = +00}) =lim Q"(AN{Texp =00, 7w > T} =lim Q" (AN {7 > T}).

If A€ %1 then by monotone convergence

Equ[La(X")] = NlijlooEQu[]lAm{Tsm}(X“)]:NliglooEQuN[ﬂAm{Tgm}(X“N)]

= NlimooE]p[ﬂAm{TgTN}(X)] = ]E]P[JIA(X)]

This establishes that Lawg«(X") = Lawp(X). On the other hand if A € % we have, using the
martingale property of the Girsanov density,

Equla]= lim Bqulanir<myyl = lim Eguv{lanir<m]

[oNusdXo—5 [N uusuizds}

= lim ]E[]lAﬁ{TgTN}e'
N—o00

= lim IE[]lAm{T<T }ef()TustS*%foT||“S“i2d5}
TN *

N — o0

- T T
10X Tl

by monotone convergence and the fact that Tty, = oo IP-almost surely. Therefore

dQ"| 7y _ 3 usdXom g lusll32ds
- )
dP|z,

as claimed. O

The following lemma will also be useful in the sequel and it is a consequence of the above
discussion:

LEMMA 3.7. For any p > 1 there exists a suitable choice of T such that

EQU[SUP |It(u)|foo} < o0.
20

Proof. This follows from the bound (3.17), after choosing 1" large enough. O

3.3.1. Proof of absolute continuity

In this section we prove that the measure pr is absolutely continuous with respect to the measure
Q™ we constructed in Lemma 3.6. First recall that the measures vy defined on € as

dvr _vi(wr)
ap

can be described, using Lemma 3.6, as a perturbation of Q" with density Dr given by

dP
7, AR

_ dl/T

= 30"

_ dl/T

= Ve(Wr) = [Jud X 4 [T |u||22dt
- b)
7z, dP

Fr

DTZ

at least on Zr.
LEMMA 3.8. There exists a p>1, such that for any K >0,
Sl;p]EQ“[|DT|pﬂ{I|WmH%71/275<K}} < 0.

in particular, the family (Dr)r is uniformly integrable under Q.
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Proof. The proof of the first claim is given in Section 3.3.2 below. For the second claim fix € > 0.
Our aim is to show that there there exists § >0 such that Q*(A) < ¢ implies fADTd(Q“ <e. From
corollary 3.4 for any € > 0 there exists a K > 0 such that

/25 vr({Waellg - > KD = [ Dra~.
{HWOOH%—1/2752K}

Then for any A €.% such that Q¥(A)P~1/P < 5/(QSUPTEQ“[|DT|p]l{\|WOO||Cg,1/2,E<K}])

A DrdQ

[4”{||Woo||{1/252K}
¢/ 2+ supEe DT Py, o -ocrct ] RUA) PP

DrdQ" + / DrdQe

AN{|Wocll -1 /2- <K}

N

N

€
(]

COROLLARY 3.9. The family of measures (vr)r>o is sequentially compact w.r.t. strong convergence
on (Q, F). Furthermore any accumulation point is absolutely continuous with respect to Q.

Proof. We choose a sub-sequence (not relabeled) such that Dr— Do, weakly in L!(Q%), for some
Do € LYHQY). Tt always exists by uniform integrability. We now claim that for any A € .#

lim I/T(A):/Doonu.
T— o0 A

It is enough to check this for A € #g for any S € Ry since these generate .. But there we have
for T > S,

vr(4) = / DrdQ¥ — / Dod@"
A A
by weak L' convergence. O

Recall that the ®3 measure can be defined as a weak limit of the measures v* on € ~/2~¢ given

by
/f(SQ)IJT(dsp):/f(@)e—VT(‘P)ﬁT(dgp):E]P[f(WT)e—VT(WT)]

where 97 is the gaussian measure with covariance p7(D)(D)~2. From this together with the above
considerations we see that any accumulation point v>° of v7 satisfies

7oe(A) = Bgu[1(Woc) D] (318)
for some Do, € LY(QY).

3.3.2. LP bounds

Now we will prove local LP-bounds on the density Dp. In the sequel we will denote W =W, with

u satisfying (3.13), namely u = U(W). Before we proceed let us study how the functional U (W)
behaves under shifts of W, since later we will want to apply the Boué-Dupuis formula and this
kind of behavior will be crucial. Let w € L?([0,00) x A) and denote

u?:=U(W+1(w)) and h:=UW+I(w))+w=u"+w.

The process h" satisfies

WY — = = Z(W + I(w), u®).
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More explicitly, for all s >0 we have

hY —ws = —ANJ[WE] — 12T W2 L (w) — 12T W, (Ls(w))? — ANTs(Io(w))?
120 5 7y o (W2 = 12(u™)) = 2401 (5 7y (Js(Was(w) > 2 (u™)))
— 1201 (o5 7y Js((Ls(w))? = I3 (u™))

+3° () ALD) A TP 21 (w))
i=0

Decomposing
W2 Ls(w) = [W] = O Ls(w) + W] = (1 = 05) L(w) + W] © Ly(w) + [W] < Ls(w),

we can write

u? =U(W + I(w)) = —4NJ[W3] — 120 ([W2] = I5(h™)) + Y, (3.19)
with

“z

= —12AJ W3] = (1 — 05) Iy(w) — 12X J([W2] o Iy(w)) — 12AJ[W2] < Ls(w)
—12AT W (Is(w))? = ANTo(Ts(w))? = 24M1 (o5 7y (Jo(Wals(w) = 0512 (u)))
120 o 7y Jo((Ts(w))? == L (™)) + 1271 o7y Jo([WE] - 2 (u™)) (3.20)

37 (")) ALY AW T(D) L w)
=0

The first two terms in (3.19) will be used for renormalization while the remainder r* contains
terms of higher regularity which will have to be estimated in the sequel.

Proof of Lemma 3.8. Observe that

L Waely 1 /2 <K} SK o0 OXP(=[[Woollg-1/2-c) = exp(—||Woo + Ina(U(W)) |2 —1/2--)
and

\DrlP = P VR IO V) + [T 5[ 0P 2|

Combining these two facts we have

Equ[IDr[PLw /o .<k}]

§K,nEQu|:eXp<p (VT(WT +Ip(U(W))) + /OTUt(W)dX’t + %/OT |U(W) ||%2dt)
||Woo+foo<U<W>>||;m)]

E{exp(p (vT(WT LI (UW)) + /OTUt(W)dXt 4 %/OT |U(W) ||g2dt>

—[[Weo +IOO(U(W))||%1/25)].
The Boué-Dupuis formula (3.9) provides the variational bound

—log Bqu[|Dr "Ly, .<x}]

T
> inf E[p(vT<WT+IT<hw)>+1 / |hw|%zdt)
weH, 2 0

1—p T 2 w\ || 1 o0 2
t—g | NwdllLadt + [[Woo + Lo (W) -1/2-c 45 | [[wil|L=de
0 T
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where we have set h =w + U (W +I(w)) as above. Recall now that from Theorem 3.3 there exists
a constant C, independent of T' , such that for each h",

IR 1 : r ,
[ p (Ve 1r(h) + 5 [ 1t )| > -0+ Jme Mmoo+ [ o]
0 0
where
17 (h) = hi + A< W7 + A< o (WE = I (R™)).
Using eq. (3.19) we compute

Ll (hY) = Licrh + A<y WP + AL <o (W2 = 12 (hY))
= Licr(ul +w) + AW + ALy <7 Jy(WE = I (W)

= Licr(ry +wy).

At this point we need a lower bound for

1 T 1_ T
B[ (Mt [+ il )+ 252 [l
0 0
w)||n 1 * 2
+HWoo+Ioo(h )H(€71/2—5+5 ||’U),5||L2dt - C.
T

Given that we need to take p > 1, estimating this expression presents a difficulty in the fact that
the term fOT l|lwe||22dt appears with a negative coefficient. Note that this term cannot easily be

controlled via [ OT [|7# 4 w;||22dt since the contribution 7, see eq. (3.20), contains factors which are
homogeneous in w of order up to 3. This is the reason we had to localize the estimate, introduce
the “good” term [[We + Ioo(h®)||%~1/2--, and introduce the term J.(D)~Y2([((D)~Y2W,)"]) in
(3.11) which will help us to control the growth of 7. Indeed in Lemma 3.10 below, a Gronwall

argument will allow us to show that | OT |lwe||?2dt can be bounded by a combination of the other
“good” terms as

T T
E[/ |’w||%2dt]SE[|I%(h)|f4+|I%(h)|%1/25+/ [we + i |Z2dt + 1.
0 0
This implies that for 1 < p <2,
—logBEqu[|DrPLyyw_ 0 .<r)]

. 1 T
> int B{E M ter [ e
weH, 4 0

T
+(1—p)0[|1%(h'w)||}54+||1£‘r(hw)l%1/2s+/) Ilf(h'“’)lédt]
+||Wm+1m(hw)||%l/zg}c

>-C

which gives the claim. Note that here we used the bound

T P 17 RS A 7 L
SO+ B[ Woo + Loo(h?) 2172
as well as the fact that ||17(h®)||,-1/2-< < [Too(h™) |l —1/2—< to conclude. O
The following lemmas complete the proof.

LEMMA 3.10. For n €N odd and large enough

T T
E/ I\wsl\%2d8§1E/ lws + 7 |Pds + B[ L)l 2 o+ 1R (R™) |2+ 1.
0 0
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Proof. Let us recall the notation

AuXS(W,’LU) ::Z (7;)JS<D>—1/2([[(<D>—1/2VVS)1'H(<D>—1/2ls(w)>n—i>.

i=0
Write r’ = 7§ + Auxs(W,w) and observe that by Lemma 3.5 we with g =7 we have

t

t
||ws||L2dS+Sup1EHI( e, n+1N1+/ (2E|ws + 7572+ 4E[|7[|72)ds
s<t 0

Now by Lemma 3.12 below

Welrelz: < /||w5||L2dS+|IIt( Wz + I 2o+ [T () [+ Qu(W)

for a random variable Q+(W) such that sup:crE[Q+(W)] < co. Now Gronwalls inequality allows
us to conclude. O

LEMMA 3.11. There exists constants ¢,C and a random variable Qr(W') such that for any stopping
time T
SupE[|Q-nr(W)]] < oo,

T

and

—Q.W +c/ sl Zadls + el I (@) s

< / l|ws||Z2ds + Aux, (W, w)
0
< Ol(w)|3emn+C ; s | 2ds + Q-(W)
Proof. We recall that
o R 1 n —1/21i7 \i ~1/2 ntl—i
R w) = 3 () AUy 2wy D)2 ) )

1 n _1/2 ; —1/2 n+l—i
S N D)~ V2w, (D) ~1/2r1 *
> () [y 2wy )2 )
1

g M (@) 1
and since E[supr<oo |\[[(<D)*1/2WT)i]]|\%,E] < oo for any p < oo and any ¢ > 0 it is enough to
bound ||((D)’1/21}(10))"+lfl'Hj%i1 for some ¢ > 1 by the terms || (w )Hn+11/2 war and || Io(w) || <
foT ||lws||?2ds. By interpolation we can estimate, for i > 1,

(D) 2L (w)™ ps, S KDY 2 Lo (w) B, +C

1

- 1 1
S M)y Tl () [ +C (tet e =)

Choosing g=n/ (n -

)) > 1, we have

1 1 \¢
(II( w)|y - <$22+1||17(w)||}}11> = L (W)l -1/2m | I (w) [ 7 27 e,

n

Now for n large enough CES <o

and using Young’s inequality we can estimate

L= () 5 <2 2na L ()l 2 T g (1 (w) Iy~ 1/2,n+1(|\1( )II"“ )
S MM ()lI5 = 2+ [ L (w) [F + 1
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O
LEMMA 3.12. Let
F o= —12XAJ[W2] = (1 — 05) Is(w) + 12\ T ([Wi2] o Is(w)) + 12X Js[W2] < Is(w)
CIDALW(T(w))2 — AN, (I (w))* — 24N (T, (Wal () = I2(u™))
1AL ()% = L2(u)) + My oy (W2 L),
Setting h" =u+ w, there exists a random variable Q«(W) such that supE[|Q(W)|] < oo and
<t>”€|ff’l%/otllwsllﬁdﬁ 1 Ze(@) [ 2 + NI 5 2+ T2 (R) [+ Qu(W).
Proof. Note that
11 o ey Js(WE = B (u®)) |22 Sz #HWSH%,HHQ@“})H@
S oUW 1)),
Moreover h" = u™ + w implies
12 () 555 2 S I ()15 2+ I T (R 55 2
and [|12(u)][£4 S |12 (A®) 42+ |1 72(w)[4« . From Lemma 3.19 we get
III?(w)|i4§C+/()t|ws||%2d8 + ()5 2
The estimation for the other terms is easy but technical and postponed until Section 3.5. g

3.4. SINGULARITY OF ®5 W.R.T. THE FREE FIELD

The goal of this section is to prove that the ®4 measure is singular with respect to the Gaussian free
field. For this we have to find a set S €% ~'/275(A) such that P(W,, €5) =1 and Q*(Wx, €.5) =0.
Together with (3.18), this will imply singularity. We claim that setting

S:= {f € ‘5‘1/2_8(/\)1#[\[[(9%,1")4]} - 0}

for some suitable sub-sequence T, and a small > 0, does the job. Here

[O7f)"] = (02f)* = 6E[(07Woc(0))?) (01 )* + BE[(07Was (0)) )

denotes the Wick ordering with respect to the Gaussian free field. Let us prove first that indeed
P(Ws € S) =1 for some T,,. For later use we define

W,T2 = 4(6:W3)° — 12E[(07W(0))?) (0:1W7)
and
W72 = 12((6:W)2 — B[(07W(0))2)).

LEMMA 3.13. For any § >0
. 1 )2
i 2| (ot [ 1) | =0

Proof. Wick products correspond to iterated Ito integrals. Introducing the notation

dw¥™ =077, X,
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we can verify by Ito formula that

/ [07W2] = / / W3 dewdT = / / 07T, WIT3d X,
A 0 A 0 A

Since 07J; =0 for t > T, Ito isometry gives
T
=E / / (O, WET3)24t,
0 JA

Then, again by Ito formula the expectation on the r.h.s. can be estimated as

]E[ /A (wfﬂ)ﬂ - | 3 / / / def (ky)de?T (ka)de? (k)

_ uE / / / 07( kl Usl (k1) 0F(ka)o3, (ka) 9T(k3)053(k3)d81d82d83
ks (k2)? (ks)?

o2 (k1) o2 k‘2) o2 (k3)
< 1 2 3
< 24E / / / (k)2 (ka2 dsidsadss
k‘l k‘g ks

S

O7J W™
A

2

Now recall that || J.f [|r2a) S (8) 7%/2| fllz2(a) to conclude:
1 [T 07,3\2 1 ("1 07,3y |2
B~ . A(HTJtWt ) dt| < s . BEOrW T )|L2(n)]dE— 0 0

[(67W)?] — 0 in L?3(IP). So there exists a sub-sequence T;,

The lemma implies that W N

such that [(61,Wao)*] — 0 almost surely.

1
T7§1+5)/2 fA

The next step of the proof is to check that Q“(W. € S) =0. More concretely we will show that
for a sub-sequence of T;, (not relabeled)

o ACUSIEE

Q" almost surely. Observe that
Jrenvon -
A

I,
= / / O W 3d X + / / O W™ 30, dt
STA

07 WiT3d X,
A

oTJtW)T»st,;tA / / (OpJ WIT3) g, W3dt
/GTJANQT’ )T (W2 = 12 (u))dt

/ - / (O W), (D) ~1/2[((D) =Y/ 2 W) dt.

oo
/ / (0T WIT3) T, W 3dt
0 A

to go to infinity faster than 71—, Q%-almost surely. To actually prove it, we start by a computation
in average.

We expect the term

LEMMA 3.14. It holds

Jm [/ / (O WI™3) Wit | =
— 00
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Proof. Recall that dwf T =0rJ:dX;. With a slight abuse of notation we can write

/ / (OpJ WIT3) T, WRdt
0 A

= 16/002 9ﬂk}ia§(k)< Z / / / dw? (k1) dw?? (k) dw?™ (k3)

ki+ka+ks=k

// / duws, (k1) dwsz(b)dwég(ks))dt

k1+k2+ks k

and by Ito isometry

/ / / Aw? (k1) dw?? (ko) dw?” (ks)
k1+kz+ks k

/ / / dws, (k1) dw52(k2)dw53(kzg)]
k1+k2+ks k

. 6291’ k'l 051 kl) QT(kQ)O—sz(kQ) QT(ks)USS(ks) s1dsods
- L (LR (A

k1+k2+ks k

For T large enough and since o2 and 6 are positive, we have

/ Z 9T(]<f)>2 / / /829T (k1) Usl (k1) 07 (ks)o2, (ks) O (ks)oz, (k) dsydsydssdt
k

k1 +k2+k =k {(k2)? {ks)?

T/2 o? (k) T/8 262 (k1) o2 k‘2)0‘ 2 (ks)
i ‘52 = dsidsadssdt
/ — (K)? / / / 2 (ka2 (kg2 R

k1+k2+ks k

Introduce the notation Z3 = {n € Z3:n = (n1,ne, n3) withn; >0}. After restricting the sum to (%Z3)3
we get the bound

T/2 2(): T/8
> > 2 o1 (k) / / / 03, (k1) 03, (k) 053(k3)d31d32d53dt
/8 o (k) s €Z3 srys2)srys2)sryse (k)2 (k2)? (ks)?
ki1+kotks=k
T/8 2 (k1) 02, (k2) o2, (k
> 22 pr2(k) — pr/s(k)) / / / 01 ;‘72(>2)“<2(>3>d51d52d33
Kezd Ko ko Fn €Z3 s7/32.) 3732/ 37 /32 2 3

kitkotks= k

Now, for large enough T if k1 + ko + ks=Fk and (k;) <T/8 then (k) <T/2x0.9. Furthermore if
T large enough and ki, ko, k3 € Z3 and ky + ko + ks = k, while (k;) > (3T /32) x 0.9 (recall that if
(ki) < (3T/32) x 0.9 and s>3T/32 then o4(k1) =0) we have (k)>T/8. So for any k for which
the integral is nonzero we have pr/2(k) — pr/s(k) =1 (recall that p=1 on B(0,9/10) and p=0
outside of B(0,1)). This implies

r/s 02 (k1) 02, (k2) o2, (k
TQZ pr/2(k) — pr/s(k)) / / / 611 ) 62(2>2) <;€i>3)dsld52d33
Kezd Ky ko Fn €Z3 3T/32.J 3T /32 3T/32
ky+ko+ks= i
T/8

= LQ Z / / / 0-51 kl 052(k2) Uéa(ks)dsldSQdSS

T k1,k2 ksEZd 3T/32J 3T /32 3T/32 kl k2> <k3>
=T

|

Next we upgrade this bound to almost sure divergence.
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LEMMA 3.15. There exists a 00> 0 such that for any 6= >0, ,there exists a sequence (1},), such
that P — almost surely

1 o 01,3 4
F[) A(QTthWtTn ) JeWidt — oo.

Proof. Define
Gr:= Ti— 5/ /9TJtW9T’ ) JyWEdt + sup ”chg 1/2-e

t<oo

We will show that e =7 — 0 in L'(IP), which implies that there exists a sub-sequence 7,, such that
e~GTn — (0 almost surely. From this our statement follows. By the Boué-Dupuis formula

“logE[e-C1] — inf E{%w /O - /A O[O (Ws + L)) JL(Ws + To(v))]dt +

veH,

1 o0
s Wk L)oot [ ol
0

t<oo

— inf ]E{ — 5/ /GTJtW9T3JtW dt +

veEH,
+ =5 Tl e > / /AlBﬂdt
(i,5)€{0,1,2,3}2\(0,0)

+sup ||m+[t(’l})”<§71/275+§/ |’Ut||%2dt:|
0

t<oo

WV

inf IE{ — / / (O W, ™%) T Widt
1 iBi
+T1 6 tdt
(i.5)€{0.1 ,3}2\<o 0)

1 1 [
+—Sup HIt(’U)Héfl/zfg - C sup H [/[/tHglégfl/Z—s +§/ |'Ut||%2dt:|
0

2t<c>o t<oo

where where have used that 61.J; =0 for t > T and introduced the notations, for 0 <7< 3,

b= 4( )10 ([0~ ) Oxl(v))),

and
Bii= () I 1 ().

Our aim now to prove that the last three terms are bounded below uniformly as T'— oo (while we
already know that the first one diverges). For i € {1, 2, 3}

AU + 1 BEZ2 < (6) 7 () 1§12 + o)l + Qe(W))

by Lemmas 3.21 and 3.23. Here Q:(WW) is a random variable only depending on W such that
supE[|Q+(W)|?] < oo for any p < oo. Then

1 i

(4,7)€{0,1 73} \(0 0)

1 i
< g [ i+ 18
(@, J)G{l 2,3}?
1
o [ e Bt s [ Al Bl

i€{1,2,3} 16{123}
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Now for the first term we obtain

1 T _
Bl > [ Ml Bl
(4,5)e{1,2,3}2 70
1 T « ,
=E T1-6 Z / )OS 12—+ He(v) [ F + Qe(W))dt
(i,5)€{1,2,3}2 0

C C
= B (O o+ ) |+

For the second term we use that || A2 < Q+(W) so

1 T ,
g / ||A9||Lz||Bz||det}

r T T
< pieB| [ A [ e it
LJO 0
1 r T
S | [ 0 At
LJO
1 T —1/2+6 K 2
timgB| [ O S et )+ Q)

C C
S mE{Sgp (||It(v)||§*1/2fe + |It(v)||?{1)] +m

Since sup; || I+(v)||H: < fooo||vt|\,%2dt in total we obtain for 7' large enough. The third term is
estimated analogously.

—logE[e~97]

. L[~ 01,3 3 1 ¢ K
> UIEH]EI.QE[W/O [\(HTJtWtT )JtWtdt-F(E—m tS3£|‘It(U)|‘%71/275

1 C e C
—C sup |[Wil| B 1joee+ <§m>/0 ||’Ut|%2dtm}

t<oo

1 o0 .
0 A

Next we prove an estimate which will help with the proof of the main theorem.

LEMMA 3.16. We have
sup EQU[/ /%(HTJthT’?’th} < 00.
T o Jal

Furthermore, there exists a (deterministic) sub-sequence (Tp,)n such that

) o3 "
07, J W34 X,
0 A

Proof. Recall that under Q" we have W; = W* + I;(u) where u is defined above by (3.13) and
Lawgu(W*") = Lawp (). With this in mind we compute

T T
1 07,3124 — L gigi
/O /Atua(eTJtWtT ) dt_i;B/O [\tHéAtAtdt,

N e (A}

—0

1
T1/2+8
Q™ almost surely. "

where, as above,
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3

By Lemmas 3.21 and 3.23 we have that Equ[||A}|72] < C so the Cauchy-Schwartz inequality gives
the result. 0

THEOREM 3.17. There exists a sequence (1,,), such that, Q" almost surely,

s 10 W) ] = —oc.

n
[ee]
/ [(6:7Wo)] = / / 07T, WIT3d X,
A o Ja
Now since dX; =dX{ + u,dt we have

oo
/ / 07T WIT3d X,
Ooo A

1 [ ,
- m[) /AHTJth X+ /O /A 07T W, T Pudt
1

o0 o0
07,3 1 vu A 07,3 u,3
= _T1_6/0 [\HTJtWtT dX/{ —m/o AQTJtWtT JeW,°dt
A o0 . w
= / /A 0T W, T2 T (W2 = I (w))dt
T

1 > é - - u\N
s [ om0y (D)
0

Proof. We have

1
T1-6
1

+

The first term goes to 0 Q"-almost surely by Lemma 3.16. To analyze the third term we estimate

1 o . u
m/f AeTJthT’3Jt(Wt 2o I2(u))dt

T
= s [ [ e n)ar

1 (T "
S T176/7 07T W, T3 | Lol | Jo (W2 = T2 (w)) || padt
T
1 T ers)e 07,3 w2 (3:21)
S Tl,g/, t= 202 0T WL T2 2 (W2 g -1 s 2| To(w) || 2t
T

N

T 1/2
T_1/2_25</ ||9TJthT’3|%2dt>
T
T 1
s R (i PRIt Y
T
By the computation from Lemma 3.16 we have
T 1/2
EQ“[T_1/2_25< /T ||9TthfT’3|%zdt> }Ho,

and sup;Equ[(||W, %[l —1-s/2]| Is(u) | £2)?] < 00, s0 (3.21) converges to 0 in L'(Q"). For the fourth
term we proceed in the same way:

/O°° /AQTJthTvth<D>—1/2[[<<D>-”2W>”ﬂdt‘

/2

[ [ty oy mweya

N

T
AH9TJthT"“”IIL2IIJt<D>‘1/2[[(<D>‘1/2W4“)”]]||L2dt

AN

12)t P [(D) 2 ] g -aclt

T 01,3
/ (1627 W0
0

T ) 1/2/ ¢T 1/2
( / t2<15><|9TthfT=3||L2>2) ( / t2<15>|[[<<D>1/2W>nﬂ|za)
0 0

N
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which is bounded in expectation uniformly in T, so the fourth term goes to 0 in L'(Q") as well.
It remains to analyze the second term. Again introducing the notation

i=4(3) 20O 1L (),

WEr S = A0,

we have

% /0 /A 0T Wy 2 T W, dt

1 T/ 0r,u,3 w,3 1 /T/ ; 3
= — OrJ W, T%° W °dt + — ALJ,WHde.
TH/O N 2 715 ), JAW

1<i<3

Now observe that

1 T . . 1 T
m/ /HTJthT’ BIWS3dt quep m/ /9TJtWt€T’3JtWt3dta
0 Ja o Ja

so the limsup of this is co almost surely. To estimate the sum we again observe that for ¢ > 3
Equ[]|A})72] < (t)~'+9 and by Young’s inequality

T T
//AthWf’3dt < //|\Ai||Lz||Jth’3HL2dt
0 A 0 A

T
S//@WMMWWMW%M
0 A

T T
< [ [z [ @2
o Ja 0 Ja
Taking expectation we obtain

1 E{/T/Aijwu’?’dt]

T1=% o Ja tt ¥
< 1 g ’ 2/3) 41|12 I & T ~2/3) 7 W5 3)|2.d
S P |, A<t> 14FZ2 | + 7= ; A<t> (| Je W72t

1 r 1/346 1 r 2/3
< Yy~ + — Yy */°dt —
We have deduced that

1 1 T 0r,u,3 w,3
m[\[[(HTWooVﬂ :_W/O AGTJtWtT' J W 3dt + Ry,

where Ry — 0 in L'(Q“). We can conclude by selecting a sub-sequence (7,),, such that
! /Tn/e T3 W
i s TJt Wy t Wy —
T, %Jo Ja

Q"-almost surely and Ry, — 0, Q"-almost surely. O

3.5. SOME ANALYTIC ESTIMATES
We collect in this final section various technical estimates needed to complete the proof of
Lemma 3.12.
11 1

PROPOSITION 3.18. Let 1 < p<oo and p1, p2, pi, ph > 1 such that i+E:F+F:%. Then for
every s, =0 ' ’

D) (f)ller < DY ez (D) ~glles + DY gll ot D) =f s
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Proof. See [75]. O

LEMMA 3.19. There exists € >0,n € N such that for any § >0 there exists C5 < oo for which the
following inequality holds for any ¢ € H'(A)

I6lIZE° < CllolI5 s zmr + 0 6llEm + Cs.

Proof.
/ ¢ptdr < (D)2 15| (DY 26| o v
< (D) ~2 15| (DY 20 s3]l 0| 2
< (DY 20 ]| 6| 12N 11342
So

(I6]£)2/20 < [(DY~2/26| 23| o [|7 *|| o || 122 *°

and applying Young’s inequality with the exponents (32,32/9,32/22), we obtain

21/20 21/40 104/40 168/5 16/9 208/55
D) 26178 % 17! Nl 5" < Cs)1(D)~ ”%H Pl + ol ol;e
< DY 20138+ 8]0l + 6(|| o123/ 20+ C;
and subtracting 6(||¢||%4)2}/2° on both sides of the inequality gives the result. O

LEMMA 3.20. The following estimates hold with € >0 small enough

(W] - (1 — 9tﬂt(ﬂ)))l%2§#<[) [[wsll?ds + [|Te(w) [y —1/2m 41+ II[[WtQ]]II%ls)

1 ! n n
e [ O A T R A [ [Py

1 ¢ n n
102 < 1) S ([ 12+ LGy s+ N1 )

Proof. We observe that since [I#;%] is spectrally supported in a ball or radius ~t

TN -1e S D> NNl -2 -

For the first estimate we know that (1 — 6;)I;(w) is supported in an annulus of radius ~t,
so [[(1 — 0) L (w)||pz < (¢) 1| L(w)||g1-- and furthermore by interpolation ||I4(w)|g1-- <

Ie(w) |52 € [T ()52 S || Te(w) || 12 €| T (w) || £.4. By definition (¢)1/2.]; is a uniformly bounded Fourier
multiplier regularizing by 1, and putting everything together, by paraproduct estimates

Je(IWE) = (1= 0 Te(w))lIZ2 < ()71 ()2 () 2 IW2NI% < | Te(w) |7y -
S (07N () TN IR <2 (w) 7777 | o) |5
(e=2/7) < O UG <+ 1 e(w) I + [ Te(w)]22)
< (/ lwllPds + || Ze(w) [y —1/2. 000+ | [WED € )

For the second term in addition observe that the function (t)l/ 2J, is spectrally supported in an
annulus of radius ~t, and regularizes by 1 so again by estimates for the resonant product

17 ([We] o T(w))llF2 < () 2N IWEDI% o2 | () 7~
S OO -1 - N Le(w) |-

For the third estimate again applying paraproduct estimates and the properties of J,
[Je([W2D < Lo(w)) 122 S (8) >4 IW2DN% -~ | Le(w) [ 7~
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Now, the claim follows from interpolation and Young’s inequality

W - o) 7 -
W - [17e () 72 | 2 (w0 | 5
W11« + [ Ze(w) 7 + (12 (w) [ 24

t
< (/0 ||ws|%2d8+|1t(’tU)|’JV1/2,n+1+||[[m2]]||<1§1e)~

(e=2/7)

O

LEMMA 3.21. Let f € C([0,00],4 ~'/%7%) and g€ C([0,00], H") such that fi, g, have spectral support
in a ball of radius proportional to t. There exists n € N such that the following estimates hold:

1T feg?)lIZ2 < ()21 fell% -1 /2=l gell s,

1T frgi) 72 S ) 732 fillip-r2-s + N gellzr + Lgel - 1/2.0),
and

17e(a)Z2 < ()~ 2Nl gellEn + 1 gellfy -1/2.)-
Proof. By the spectral properties of Jg,
16 Fegi)IZ2 S ) 2N fellZoell gl S () 2 2 foll - 1/2-s | gell 2.

Applying Young’s inequality with exponents (%, #/31)) with n such that % <4+ ¢ where
€ is chosen as in Lemma 3.19 we have

(&) fel Gmrrasllgelie < ()21 felp-rra—s + [l gellL3)
< O fillig -5+ gellfyr—120 + N gelEre)

Now the second estimate follows from chosing n large enough (depending on §) and using Besov
embedding after taking f=g. O

LEMMA 3.22. The following estimates hold
()T T(Wal(w) = I () |22 S I e(w) 175 + 112 (w) [ s + (| Wall -1 /2,
()T T(Lo(w))? = L)) 122 S I e(w) 1775 + 12 () [ -1 /2---

Proof. For the first estimate we again use the spectral properties of W, I, and J and obtain by
paraproduct estimate

1 Ts(Wele(w) = L)) IF2 S () IWellZoel [ Ze(w) |2 17 (w) | 24

<
S (OO ENWALZ e | T (w) | Ell 17 (w) 1
and the claim follows by Young’s inequality. For the second

1Ts((Zs(w))® = L)) lIF2 < ()72 (L(w) 24| 27 (@) 121 /2,

and the claim follows again by Young’s inequality. O

LEMMA 3.23. Let f; € C([0, 0], ‘571/2*5) and g; € C([0, <], H') such that fi, g; have spectral
support in a ball of radius proportional to t. Then the following estimates hold

(T frg) 22 < (82 full -5l 9ol
(T feg)liZ= < &) 20 fell %15+ Ngelli -+ Nl gell )

Proof.
I(Te(frge) 72 S (8 2 fell sl gellZ2 S ()20 fell % —1-s | gil| 7
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This proves the first estimate. For the second we continue

&) NSl sllgellze < (6T 2N FNZ sl gellrll gl
S OG5+ Ngellz— + lgellfr-)-

LEMMA 3.24. It holds

/OT/A(Jt(WE - If(w)))QST“(sgp |Wt2|<2g16><slip |It(w)|%2>,

an

d
T b T
[) / (Jt<wf>ft<w>>>2sT36(sup|It<w>|;31+ / |wt|%zdt+sup|w3|%w)-
t t

Proof. This follows in the same fashion as Lemma 3.23 . O






CHAPTER 4

A STOCHASTIC CONTROL APPROACH TO SINE-GORDON

4.1. INTRODUCTION
In this chapter we will consider the Sine-Gordon measure formally given by
1 _ )
vsa(de) =—e M (dyp) (4.1)

where y is the Gaussian free field on R? with mass m , that is the Gaussian measure with covariance
(m? — A)~! and Z is a normalization factor. Again we run into small scale divergencies as in
Chapter 2 and Chapter 3, however this time we also have to deal with large scale divergencies (since
we work on IR? instead of a bounded domain). These are essentially due to the fact that realizations
of the GFF do not exhibit decay in space. As a first step we approximate with (4.1) with

Vil (d9) = —e DI o5 d ) (12)
P

where as in the previous chapters ur will be a family of Gaussian measures on spaces of smooth
functions such that as T — oo pur — p and p € C°(R?, [0, 1]) is a spatial cutoff while Zr , is a
normalization factor. Note also that we have introduced the constant «(7T) — oo as T'— oco. This
is necessary to prevent the measure from becoming trivial in the T'— oo limit, and plays the same
role as Wick ordering for ®3. We then want to achieve the following goals

1. Prove that a weak limit of (4.2) exists as T'— oo, p— 1.
2. Characterize it via a variational formula and as a random shift of the GFF.
3. Prove that it satisfies the Osterwalder Schrader axioms

The main difficulty in implementing this program compared to Chapter 2 is the aforementioned
infrared divergence. Let us briefly sketch our strategy for dealing with this: We will study the
Laplace transform

/ IO (dg)

for f(¢) depending only on the value of ¢ in a bounded region. Then the Boué-Dupuis (Theorem
2.4 above or Corollary 4.14 below) formula will give

“log / e~ 1O (dg)

~inf ]E[f(WT—f—IT(u))+)\a(T)/pcos(ﬁWT+ﬁIT(u))—f—%/o ||u|gz(R2)]

uweH,

ueH,

T
— inf E{Aa(T)/pcos(ﬁWT+ﬂIT(u))+%/0 ||U|%2(]R2):|

where Ip(u) is a linear map behaving similarly to (m?— A)~'/2 as in Chapter 2 and Chapter 3.
Denoting by «/ a minimizer of

T
E| JWr-+ 11(0) 4 3a(7) [ poos(51¥s + 8120 + 5 [l |

97
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provided it exists (which we will show) we end up with

“log / e~ IO (dg)

= E[f(WT+IT(Uf))+/\a(T)/ﬂ(COS(5WT+BIT(uf))COS(ﬁWTJr Blr(u’)))

LT e LT o
+§ [|lu HL?(RZ)*§ 1w llZ2(r2)
0 0

and we want to control this quantity in the T'— oo, p— 1 limit. Since after we send p— 1 we will
have an integral over R2, we will need to have some decay of uf — u® to be able to control the
limit. In fact we will show that uf —u decay’s exponentially fast away from the support of f or
more precisely

T
/ / exp(ya)|uf (2) — ud(z)|2dzdt < 0o (4.3)
0

for some v > 0. So one could say that the main contribution of this chapter is controlling the
dependence of the minimizer on perturbations in bounded regions. A related issue is the problem
of controlling the dependence of u° on p as p— 1 and showing that it has a unique limit, which is
needed for proving rotation invariance of the measure.

We will carry our our analysis of the Sine-Gordon model in the case 32 < 47. However it is known
that the measure can be (and has been) constructed for the range 3% < 8, [48, 89, 49].For 3% > 4~
the Sine Gordon measure becomes singular with respect to the free field, even in finite volume,
similarly to ®3, as shown in Chapter 3. At the thresholds 42> 87(1 —1/2n) n € N the partition
function acquires more and more divergent contributions which require renormalization, however
contrary to ®3 it is sufficient to subtract constant terms from the potential to make the measure
convergent, in particular no “mass renormalization” is necessary. It would be very interesting to
extend our analysis to the range (32 < 87 (or even any other threshold beyond 47). Before we move
on to the main results of this chapter let us make some conventions.

Convention 4.1.

e ForacR%welet (a):=(1+]al®)'/% B(z,r) CR denotes the open ball of center 2 € R and
radius r > 0.

e Denote with .#(A) the space of Schwartz functions on A and with .#/(A) the dual space of
tempered distributions. The notation f or .% f stands for the space Fourier transform of f
and we will write g(D) to denote the Fourier multiplier operator with symbol ¢: R* — R,

ie. Z(g(D)f)= g7 /.

o B, = Bg,q(IP@) denotes the Besov spaces of regularity o and integrability indices p,
q as usual. By Bp ,((x)~™) we denote the weighted Besov space with weight (-)~™ see
Appendix A for details . ¢“=%(R?) is the Holder-Besov space B, o, W*?=W*P(R?)
denote the standard fractional Sobolev spaces defined by the norm || f||ws.a : = ||(D)*f||Lq
and H® = W2, The reader is referred to Appendix A for an overview of the functional

spaces and paraproducts.

Convention 4.2. In the sequel C will be a large constant which changes from line to line and
can depend on 32, but non on A, p,T. § will be a small constant which changes from line to line.
Furthermore for 32 € [0, 3], 3 < 4, C will always be uniformly bounded from above, § will be
uniformly bounded above and away from 0.

Convention 4.3. Throughout the chapter we will frequently compute Gradients and Hessian of
functionals on f: L2(R?) — R. We will always interpret V f(¢), to be an element L?(IR?) by the
Riesz representation theorem. Similarly we will always interpret Hess f(®) to be an operator on
L*(R).
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Convention 4.4. We will say that family of spacial cutoffs p™ € C°(IR? [0, 1]) converges to 1 or
pN — 1 if for any K >0 there exists No € N such that p™(z) =1 for any z € B(0, K) and N > Nj.
Often we will drop the index N and simply write p— 1 in this case.

Let us now state the results we will prove in this chapter.

4.1.1. Overview of the results

4.1.1.1. Descriptions of the measure

In Chapter 2 we obtained a variational description of the Laplace transform of ®3 in finite volume.
The importance of this result lies in fact that ®4 is not absolutely continuous with respect to the free
field and so it is hard to describe explicitly. Similarly to ®3 the Sine Gordon measure for 5% < 4
on the other hand is absolutely continuous with respect to the free field in finite volume. However
this property is lost once one removes the infrared cutoff. For this reason it is still interesting to
obtain a description of the Laplace transform of the Sine Gordon measure in infinite volume. Our
first result will indeed be such a description (we adapt the notation for weighted spaces introduced
in the appendix):

THEOREM 4.5. IJST(’;p weakly converges as T — oo, p— 1 to a measure vsg on .#'(R?). Furthermore
vsg satisfies

. 1 [>

—log/e_f("a)VSG(dCP): 1n]]£f1E f(%_yooJrIo_roo(u)+Ioﬁoo(uoo))+\11(u)+§/ |ut||%2dt:|
ue 0

where similarly to Chapter 2:

e W is a gaussian process and a martingale, and Law(Wr) = ur, H, C L?(P, L*(R4 x R2))
is the space of square integrable processes adapted to the filtration generated by W.

o u*ec L®(P, LRy x R?))N L3P, L*(R4, L*({(x)™™))) where by L*({x)~™) we denote the
space equipped with the norm ||f||]2—42(<w>7n) = [re(@) " f(x)dz. u> does not depend on f.

e [ is a linear map improving regularity by 1, see eq. (4.1.2.1) below for details.

e  U(u) is a functional of u which also depends on u™ and W, but not on f, it will be specified
below.

o D7 is a subspace of H, containing drifts with exponential decay in space, it will also be
specified below.

We will also obtain a description of the Sine Gordon measure as a random shift of a Gaussian
measure, similarly to how we described the drift measure in Chapter 3.

THEOREM 4.6. There exists a random variable I € L>°(P, W1>°(IR?)) such that
vsg = Law]p(Woo + I).

Furthermore the Law of (Wxo, I) is invariant under the action of the Fuclidean group.
From this we immediately obtain that vsg has gaussian tails:

COROLLARY 4.7. For any € there exists an a >0 such that

+alle 2 —E( (=T
/e ol = (e )drgg < 0.

The estimates we will prove for this will be strong enough to partially recover the results of [62].
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THEOREM 4.8. vgq satisfies the Osterwalder-Schrader azioms. Furthermore the clustering is expo-
nential and vsg 1s non-Gaussian.

Proof. Euclidean invariance follows from Theorem 4.6. Corollary 4.7 implies that the measure is
exponentially integrable. Reflection Positivity is proved in Section 4.8.1 and exponential clustering
is proved in section 4.8.2 while non Gaussianity is shown in Section 4.8.3. g

4.1.1.2. Large deviations

As in Section 2.7 we will discuss large deviations for vgg in a semi-classical limit. For this we have
to introduce Planck’s constant into the measure. Indeed we want to look at the measure formally
given by

ds0,n= Zineigf Acos(Bp(@)) +gme(e) 3 V(o) dey

This can be rewritten as
1 -2 1/2
VSG,h(dCP) :Ze = [ cos(h ﬁ‘/’)u(d@).

where Zj is normalization constant and we are interested in the limit A — 0. These measure can
be made sense of in the same way as vgg. We will prove

THEOREM 4.9. vsg p satisfies a large deviations principle with rate function

I(p)= )\/(cos(cp(x)) ~1)dz +%m2/ 2(z)de +%/ Vo(a)?da.

or equivalently

1
lim —hlog/e_gf(wdl/sc;,h: inf fle)+1(p)}
lim 9DGHJ(@)%){ (0)+1(e)}

Similar results were obtained by Lacoin Rhodes and Vargas for the Liouville measure on a
compact surface [88, 90|, however to our knowledge this is the first such result in infinite volume.

4.1.2. Strategy

In order to achieve (4.3) we would like to use the convexity of
L
Aa(T) | pcos(BWr + BIr(u)) + 3 |lwe||z=de
0
in u. However it is quite obvious that even if X is small this functional is not convex for large T'
since a(T") — 00 as T — oo. To remedy this we will make use of the stochastic control structure of

the problem.

4.1.2.1. Polchinski equation and stochastic control

Let X; be a cylindrical Brownian motion on L?(IR?) and let

t
Wit = / QudX;
S
with Q= (%e*(mQ*A)/t)lﬂ. We use here the heat kernel instead of a decomposition with compact
support in Fourier space, because it has exponential decay in space. This will be useful in proving

exponential clustering. One can check that Law (W 7) — p by computing the covariance. Let us
introduce the effective potential for ¢ € L?(IR?)

ViEr() = togi] o~ (Wir + ) = 2aT) [ peos(Mr-+ 3) )]

with f being a sufficiently nice functional (to be made more precise below).
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We will show below following [15] that V;fT(go) satisfies the Polchinski equation [108§]

0 1

. 1
EU@T(@) + §Tr(Ct Hess v, () — §|| QiV vy, 7(0)||F2(r2) =0

By the BD formula we will also have writing V5! () = f(p) — Aa(T) [ pcos(Gyp)

. 1 [T
Vir(p)= inf ]E[VTf(Wt,T+It,T(U)+SD)+§ / |us|%zds],
u a t

where I, is as in the previous chapters the space of square integrable adapted processes, W; 7 will
be a Gaussian process described more precisely below and

I p(u) = /Tqusds.

Now by dynamic programming (see Proposition 4.12 below) we have

: 1!
V()= ing B[yt L)+ 90+ 5 [ |
u a S

What allows use convexity to control the minimizer is the following:

e Fort>T/2and A small enough Aa(T) [ pcos(SWs, 7 + Iy, v(u) + By) + %f; ||t || 7 2dw is
convex in u.

o VP =xa(t)[ pcos(Bp) + R, 1(y) where supyer2(rz) |Hess Ry 7(¢)| is bounded uniformly
int,T.

. V(Vt{T(cp) — V% (p)) is small away from the support of f, where we interpret VVJT
according to Convention 4.3.

The first fact is quite obvious. The second and the third fact are nontrivial and will be discussed
in Section 4.4 and Section 4.3 respectivly.

4.1.2.2. Outline of the chapter

In Section 4.2 we will recall the derivation of the Polchinski equation for v; 7, and recall some
notions from stochastic optimal control and some properties of the renormalized cosine, establishing
that it converges to a well defined random distribution. In Section 4.3 we will derive (4.3) provided
that the value function satisfies some properties. In Section 4.4 we will establish the necessary
control on the Hessian to apply the result of Section 4.3 and obtain (4.3). In Section 4.5 we
will refine our estimates to understand the dependence of minimizer u® on the spacial cutoff p.
Section 4.6 will be used to derive Theorem 4.5 from the preceeding analysis. In Section 4.7 we
will show how to express expectations under the Sine Gordon measure in terms of the minimizer
in the variational problem and prove Theorem 4.6. In the final two sections of the chapter we will
establish the Osterwalder-Schrader Axioms and the Large Deviations Principle (Theorems 4.8 and
4.9) respectively.

4.2. SETUP

4.2.1. Stochastic optimal control

We consider the decomposition (with L= (m?— A))

L—lz/ Q7dt
0

Qt:<t—2€ L/t) .

where
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We denote by
t
Ct:/ Q2ds=L1e L/t (4.4)
0

and by Ky(x,y) the kernel of C;. From the definitions one can see that

K ( ) k —m?2/s 1 s —4s|z—yl|? d k —m?2/s? 1 —4s|z—y|? d
T = € —-——¢€ S= € —€ S
el 0 s24r 0 47s

t
Ki(x,x) :/ em2/52<i)ds = ]l@lilogt +C(t)
0 4T

SO

4rs

where supier,C(t) < 0o. Let 0 < s <t and u € L*([s, ], L*(IR?)). For later use we introduce the
notation

t
Isyt(u) :/ Qluldl.
We are interested in studying the quantities
vy, () = —logE[exp(—=Vr(p + Wi, 1))]

where W, r = ftTQsts,with X being a cylindrical Brownian motion on L?(IR?), and Zyr =
exp(—vs 1), for ¢ € L?(IR?).

For the rest of this chapter we will denote by C™(L?*(IR?)) functions L?*(R?) — R which are n
times continuously Fréchet differntiable with bounded derivatives. Next we can derive a Hamilton-
Jacobi-Bellmann equation for v; 7, known in the physics literature as the Polchinski equation.

PROPOSITION 4.10. Assume that Vi € C2(L?(R?)). Then v, 1 satisfies

0 1 B 1
avt,T(@) +5Tr(CrHess v, 7(9) = 51 QiVvr, r(9) [|22(r2) =0

vr,1(p) =Vr(p).
Furthermore if Vp € C*(L*(R?)) then ve,r € C([0,T], C*(L*(R?))) NCL([0,T], C(L*(IR?))).

Proof. Write Z; r = exp(—v., 1) = Elexp(—Vr(¢ + Wi r))]. Noting that W, r has covariance
Cr — C; it is not hard to see that

0 0
EZLT = EE[QXP(—VT(S@‘FM,T))]

= —B[(Wi,1,(Cr —Co) 2CWi 1) r2m2yexp(— V(o + War)))-

Now using Gaussian integration by parts (see [17] Exercise 2.1.3)

~E[(Wy,r, (Cr — C)"2CiWo r)rawnexp(=Ve(o + Wi )]
_ —Tr(Ct Hess Z; ().

Applying chain rule we get

) 0
Evt"T = 7EIOth’T
_ _%Zt,T
Zs T
Tr(Cy Hess Zi 7(¢))

A%
= ¢"""Tr(C; Hess e~ "+T)
= —Tl“(ct Hess 'Ut,T) + <vvt,TaCtVUt,T>L2(]R2)
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For the second statement differentiating under the expectation we obtain Z; 7(¢) € C?(L?*(R?)),
so using our first computation we can deduce from this that also Z; € C1([0,T], C(L*(IR?))). Now
observing that if V€ C?(L?(IR?)) then inf; ,Z; () >0, and using chain rule we can conclude. [J

DEFINITION 4.11. Let T >0, H be a Hilbert space and Vr: H— R measurable,bounded below. Let
X: be a cylindrical process on some Hilbert space E. Let A be a Polish space and u:[0,T] — A be
a process adapted to X;. Let Y5 (¢, u) be a solution to the equation

d}g,t(ua 90) = ﬂ(tﬂ Y;,t(u; @)ﬂ ut)dt + U(ta Y;,t(“, 90)7 ut)dXt (45)
Yi(u, o) = ¢.

Where 3:[0,T) x H x A — H and 0:[0,T] x H x A — L(Z, H) are measurable. Then we say that
Vi1 is the value function on the stochastic control problem if

T

Ver(e) :ueAi?[f,T])E[VT(Y;’T(u’ ©)) +/S (Y5t ut)dt:|a

with 1: [0, T] x H x A — R measurable, bounded below and we denote by A([s,t]) the space of all
processes u: [s,t] — A which are adapted to X;.

PROPOSITION 4.12. (DYNAMIC PROGRAMMING) V; 1 as defined above satisfies for any S <T

s
Vir(p)= inf E VS,T(Yt,S(UaSD))‘f‘/ Ls(Yi,s,ug)dt |.
uwe A([t,S]) t

For a proof see [52] Theorem 2.24.

Now assume that o(t, Y3, us) is self adjoint.We can associate a HJB equation to the control
problem from Definition 4.11 . It is:

Dot 9) + % it [Tr(o?(t, 9, a)Hess oft, 9)) + (o, B, 0, ) +1(t, 0,0)] =0. (4.6)

acA
o(T, ) =Vr(p)

We have the following theorem relating (4.6) to the solution of the control problem:

PROPOSITION 4.13. (VERIFICATION) Assume that v € C([0, T], C*!°¢(H)) N C*°<([0, T, C(H))
and v solves (4.6) with v(T', ¢)=Vr(yp). Furthermore assume that there exists u € A([t,T]) and Y
such that w,Y satisfy (4.5) and

uy € argming e o[ Tr(o2(¢, Yz, ug) Hess v(t, Y3)) + (Vo(t, Yy), B(t, Vi, a))u + U(t, Yy, a)]. (4.7)
Then v(t, ¢) =Vi r(v) and the pair u,Y is optimal.
For a proof see [52] Theorem 2.36. Now consider the case H = A = L?(R?) and

B(ta (Paa) = Qta
U(t; QD,Q) = Qt
1
l(t7th,a) = §||GH%2(R2)

Then (4.7) becomes a minimization problem for a quadratic functional and reduces to
ur=—Q¢Vu(t,Ys 1)
This means if we can solve the equation

d}/;,t: 7Qtvv(tan,t)dt+ Qtht7 (48)
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we can apply the verification theorem. Furthermore in this case (4.6) takes the form

i) 1, 1
50 9) + 5T (CiHess v(t, ¢)) = 5| Qi Vu(t, )[E2me) =0. (4.9)

since

alg\ [Tr(o(t, v, a)Hessv(t, ©)) +(Vov, B(t, p,a)yg+1(t, ¢,a)]

. 1
= 125\ TY(Q%HGSS v(t, )+ (Vo, Qta>L2(]R2) +5||G|%2<R2)]

1 ; 1
= 5Tr(CtHess v(t, p)) — §|\Qth(t, <p)||}2;z(R2)

COROLLARY 4.14.

T
710gE[€—VT(‘P+Wt,T)]: inHEI E VT(Y;T(U,CP))ﬁ’%/ |ut|%2dt]
uweld, s

where H, is the space of processes adapted to X; such that E[fOOOHutH,%zdt] and Yi(u, p) satisfies
dYs ¢(u, ) = = Quedt + Qe dW;

Yo s(u, @) = .
Note that Ys r(u, ¢) = o+ Wy v+ I v(u). Furthermore the infimum on the r.h.s is attained

Proof. As already noted v, 7 = —logE[e™V7(#+We.7)] gatisfies the HJB equation (4.9) and is in
C([0,T],C*(L*(R?))), so Vu; 7 is Lipschitz continuous uniformly in 7" and bounded. By a standard
fix-point argument we can then solve (4.8), and so applying the verification theorem we obtain

. 1 /T
710gE[e*VT(4P+VVt,T)] - eAlﬁf T])E Vr(Ys r(u, ) +§/ |ut||%2dt].

Since Vi is bounded below we can clearly restrict the infimum on the right hand side to u € H,. O

This proof of the Boue-Dupuis formula is very similar to the one that can be found in [37]
Chapters 8.1.3 and 8.1.4.

4.2.2. Martingale cutoff and renormalized cosine
We recall the definition of the regularized GFF as

t
I/Vt = %,t = / Qsts
0

where X is a cylindrical Brownian motion on L?. We can calculate:
EWi(z)Wi(y)] = Ki(z, y).

Now it is not hard to see from Ito’s formula that the quantity

6%2“””*%05( BWi(z)) =: au(t)cos( BWi(z)) (4.10)
is a martingale. We will write
[cos(BW)](z) = a(t)cos(BWi(x))
[sin(8W)](z) = a(t)sin(BWi(z))
[P ](z) = a(t)e™ )

We claim that is [cos(8W;)] bounded in L?(IP, H~'*9({x)~™)) uniformly in ¢, g. Since it is also a
martingale it converges almost surely. To prove this the following lemma will be helpful:
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LEMMA 4.15.

[E{eos(8We)] () [cos(BWA) ()] — 1] < W

52 62

Proof. Recall that e 7 ") =a(t) < C'(t)5* . By Ito’s formula
dleos(M)] () = — Ba(t)sin( BW(x))AWi(a),
s0 by Tto’s isometry:
IE{feos(BW1 () feos( B (9)] — 1
= 5718 [ a(Osin ) s W)L )

t
< 52/0 a?(t)[E[sin(SWs())sin(BWa())]| Qs(x, y)ds
¢
< 0 [ @0Qu )t
0
< Cp? t<3>%2re—m2/s2 L@—%‘Iﬂv—yl2
= 0 d7s
o0 672 2/.2 1 2
< 2 i ,—m2/s?[ L —ds|lz—y]|
< Cp /0 (s)ime (47736 )
1
< O —rr
o —y| 2
where in the last line we have used the change of variables s'=s|z — y|2. O

LEMMA 4.16. Let N; be a family of random functions in L* such that
[E[Ne(z)Ne()l| < Clz —y |77
with v <2. Then for any 6 >0 small enough

Slip]E[ ||Nt|‘?{77/275(<x>7n)] < C

Proof. Recall the devinition of the Littlewood-Palye blocks A;N; = ¢; * N;. Using the Littlewood-
Paley characterization we can estimate

B[Nl -/2-5(0) -]
= > 27O IE[| AN Z 2y -]

< Csup 27 B[ ANy Fa((ay )

Now ; satisfies,by interpolation

SHill2S st N @illZA 2y my-
Lk(dydz) L (<$) ) L (<$> )

H/<l‘—y>n§0i(l‘—y)<x—y>”(pi($_z)dx

since

< il Zagaym)

H/@y>”l%-<xy>|<xy>”|sai<zz>|dx

Sl

< @il 1y

H/@_y>_n|%($_y)|<x_y>_"|<ﬂi($—z)|dx .

Recall that
sup [[@illLr(@ym <C and | @illL2((@ymy < C2°
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Using thsi we get:

| [y,

= B| [ [ oia = Nitway [ e - s
c//x— e =l = )" oia - 2o LLELE dydz]

N

N

C

/<x7y>“|soz-<xfy>|<xfy>”|soi<mfz>|dx

< C(22i)171/k‘

Lk(dydz) Li(dydz)

where we have chosen [ such that v/(2+0) <li<~/2,1/k+1/l=1, so

1

and
(22i)1—1/k < (22i)7/(2+5),

“™My) "

- < 0o we deduce

Li(dydz)

so all together, since H @)

B[ AiNel|Z2( gy -my)? < (28)27/+9)
and choosing ¢ small enough such that 2v/(2+§) < v+ we can conclude. 0

LEMMA 4.17.
Sup [ [[[cos( TWI? s oo -] < o0

t<oo

Proof.
p
Bl feos( WA 220 o
= 3 2 SEA feos(SWA)]IE
< Csup 2*p52/2“(1+J)E[HAi[[COS(ﬁVVt)]]Hf?]

Using this we can estimate using Fubini’s theorem and BDG inequality

C'sup 2777 /27 (ATOE(| A, [cos(BW)] || 5]

_ csupz—vﬁ2/2w<1+6>m[ / pl(Aileos(BWID)|

%

_ CSQPQ-mzwum[ [ PRI Leos(@mDI
—pB2/2x(1+6) o |7
< Csup2? / PE|(Adfcos(BW])|

%

< CE[leos(8Wh)]|2 i

2
H=P/4m=5(p)

and now the statement follows from Lemma 4.15 and Lemma 4.16. O

DEFINITION 4.18. Since [cos(W:)] is a martingale and

SUDE] {08V s ae-sa | <
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it converges in Lp(PaB;§2/4W_25(<x>_”)) to a limit. We will denote this limit by [cos(Ws)] (and

analogously for a(t)sin(W;) and a(t)e?™?).

Remark 4.19. From Lemma 4.15 we see that as § — 0 E[||A;([cos(8Wy)] — 1)”%2(«6)771)] — 0.
Together with Lemma 4.17 we can easily deduce from this that

B | (feos(BWDT = DIZ_s/aese )| = QB[ BmWIDIZ 0z ] =0

At this point we are ready to define the approximate measures VgéT in a precise way.

DEFINITION 4.20. A Let pr be a Gaussian measure with covariance Cr(m? — A)~! and p € C°(R?
[0,1]). Then we define

ugéT(d(b): = exp(—a(T)AQp(x)COS(B¢(x))ds)uT(d(b)

T,p

and Zt ., is the normalization constant

Zr= [exp( ~a() [ plalcos(ota))ds )urtao).

4.2.3. Weighted estimates

In this section we collect some estimates on @, I which will be important in the sequel. We invite
the reader to read this section only superficially and to return to it once the estimates discussed
here become important.

LEMMA 4.21.
o0
(m2 = A)Y2H oo () 22 < / s 2
0
Proof.

(m? = A)Y 21y oo(u))?dz

2

—EE

_ (m? + |k |2)(F Iy, 00(u) (k))2dE
2
= [ m2elkp (/ SR Fu ()t ) dk
R2 0
< [ e (/ o (m? +k2)/tdt)/ (Fuy(k))2dsdk
0 0

= / / us(k))2dsdk
RQ

- / g 22dls
0

DEFINITION 4.22. Let ACR?, r € R, We define the weight
WA () = exp(rd(z, A))

O

where d(x, A) =infyca |z — y|.

DEFINITION 4.23. For a set ACIR?,r € R we define the weighted LP spaces

£ llzrray = ( / (wA’T(x))pf”(x)dx)l/ v
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And
N 1/p
1 sty = i+ ([ e @9 s )
We will also set HV"(A) =W127(A). Furthermore we will set

I fllLer=1flLe-r(B(0,1))s I fllwror =1 llwierso,1))-

It is not hard to see that denoting A;={y:i —1<d(y, A) <i} there exist ¢,C >0 such that

i=1 i=1

o 1/2 0 1/2
C(Z eXP(QM)|]1Aif|J%2> < fllpzray < C(Z eXP@”)”ﬂAiin%A)) :

LEMMA 4.24. Letr>0. Then for f € L*"(A), g€ L>"(B)
/ foda < exp(—(r1 Ara)d(A, BYI|fllz2rs a9 ll2racz

where d(A, B) =infyca,yeB |z — Y|.

/ fodz

/exp(r1 d(xz, A))exp(red(z, B))exp(—r1 Arad(A, B)) f(x) g(x)dx

Proof.

N

= exp(—riAry d(A,B))/exp(m d(xz,A)) fexp(red(z, B))gdx
< exp(—(r1Ar2)d(A, B))| fllpzriayllgllpz (s

where we have used that by triangle inequality

rid(z,A)+rad(z,B)—ri1Ared(A, B) > 0.

LEMMA 4.25. For any v>0,n<0
122y —m) < C’(d(O,A))—"/2Hf||LM(A)
Proof.
[ P s
_ /fQ(l,)e2d(x,A)e—2d(x,A)<x>—ndx
< / fA@)e @D d(x, A) " (z) " "dw

< Cd(0, A)" / FA(z)e2de A dy
O

LEMMA 4.26. Let s€{0,1} »>0 and f € W,,>" is supported on B(0,N)¢, N>1. Then

1 o= SN TFF llwzer
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Proof.
(/ srexpttr = mipleiya )

</|I>preXp((T — k) plz |)d:r>1/p
Nn</fpexp(rp|x|>dx>1/p

= N7 flleer
This proves the claim with s=0. Applying this inequality also to V f we obtain the full statment. [

N

LEMMA 4.27.
1Q:ef L <t fllpee

Proof. This follows directly from Young’s inequality. ]

LEMMA 4.28. Assume that t/2<s<t, or 0<t <1 then
([ 25, ¢(u)[| Lo < CH“HLO@([s,t]sz)-

Proof.

sup

t 1o 1
Fm?/1 —2l|z—y|?
/A{Ze z —47rll/26 w(y)dldy
S SUP/A@ 47r11/2672l‘Ifylzdldy|\ul|m°([s,t]xR2)
—7m 2/1,_1
< / e ™ A1 e o )
S
Now in the case t/2<s<t
t t
/e_im /ll 1dl||u|L°°([s,t]><]R2)g/t/Ql_ldl”U”L‘”([s,t]xR?)<10g2|U”L‘”([s,t]x]R?)
S

and in the case 0 <t <1

t —1mn2 ! —im2/
/6 2 /ll_lleuHLw([s,t]xW)</0 e 2 /leU||Loo([s,t]xR2)<C|\u||Loo([s,t]><R2)-

O
LEMMA 4.29.
s (w) 1.0 < C I 2w Lo 5,00 m2)
Proof.
t 15 1
m?/l —2l|z—y|?
sup /S[vaze p —\/Ell/Qe w(y)didy
1
— sp| [ [ el g 2 ettty (y)aiay
]RZ
m2/12(z —y){1) ~° y)<l>_6 o—2lle—y[2(\1/2+5
< yit(l did
sup /[W — (1) w(y)didy
_ 7—m2 Q:Efy) _ 2
< l ) B /1 2l|lz—y]| dudlll 1/2+44 ol
[ [ e 2 ey ) e
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1 12 2(x —
S /@JA{;Q " /l%e_m_ylzdydlh<l>1/2+5u1||Lf°([s,t]x1R2)
S
t s —lmz/l2(x*y> —2l|z—y|? 1/2+6
| [ [ emsm AL sty () e
1
< /<l>_6/32€_’”x‘y'lfc—yldydl‘||<l>1/2+6w|L?([s,t]xW)
S
t “1n22(x —
[ <l>_6[;{2e " /l%e_m_ylzdydlh<l>1/2+‘5uz||L?°([s,t]xR2>
< OOV oul|pgegs,0 < me)
t 71m2 -~ _
+/ Wﬂ%f et yZdydl‘||<l>1/2+5ul|L;’°<{s¢]xR2>
1
< OOV ullpe s 0 xre)

O

DEFINITION 4.30. For A CR? we say that u € L*([0,00) x R?), is in D"(A) if

oo 1/2
||U|DT(A)1</0 |ut|%2,rdt> < o0.

LEMMA 4.31. Let ACR? , and assume that —m+k<r<m—k, s<{t,

s () |2y S O ()~ 2[[ullpray

where the constant depends on k.

Proof. It is enough to prove the inequality for s, ¢ <1 and s, ¢ > 1, then the general case will
follow from I +(u) = I, 1(u) 4+ I1 +(v). In the proof we will use several times that

d(z,A),— — d(y,A
erd(@ A =lrlle—yl  prd(y.A)

For s,t>1

2

t _1 9 1 2
/ e'rd(w,A)e Zm /1—6_2”;8_1}‘ ’u,l(y)dldy dx
R2 Z / \/47751/2

t 1/2/ pt 1/2 2
([ o)
s S
1/2 2 2
s / / i) L sy} / )y ) 4
R2 R2 |:c—y|2 s
t 1/2 2
Cs‘l/ /e”l(z"“);e’zs‘z7y‘2 /U%(Q)dl dy | dz
R2 R?2 |x—y| s
-1 1 —sle—y|? ' 2rd(y,A),,2 1 ’
Cs e e up(y)dl dy | dzx
r2\.JR2|T — V] s

CS?lH“H%WA)a

N

N

N

N

N

where in the last line we have used Young’s inequality. We now treat the s,t¢ <1 case.
2
45, e(u)l|Z27 4y

< C/exp(Qrd(x,A))Lt

2

/ e_5m2/l 1 —2l\x—y|2ul(y)dy dzdl
]R2

\/47111/26
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1

Note that e_%mz/l
VaATIL/?

— —ul2 _ _ _ . . .
e 2e=ylP < Ce=(m=mlz=yl g0 using Jensen’s inequality

s () [ F2.r

¢ rd(z,A) —am?/l 1 —2l|z—yl|?
- Rze He 2 T —— ¢ w(y)dy

VATIH?
t
C/ [Rz [Rze—m—“/”lw—yle’"d@»f‘)ul(y)dy

“f

c / erdw Ay (3) | Zaclyl
Cullullrca

2
dadl

N

2
dazdl

N

2
dadl

N

o= (m=r/2=n)lz=ylrd(y, A) () dy
RZ

N

N

as long as m —r — k > 0 and we have used Young’s inequality.

LEMMA 4.32. Let ACR? , and assume that —m /2 <r<m/2, s<t,Then for any § >0

s, e()llerrrca) < Cllullpreay

Proof. We first discuss the case s,t >m. We calculate

IV L o(u) |24
2
—m?2 1 12
= exp(2rd(z, A)) m/l —e_ml“_y‘u dldy| dz
Jewerae.ay| [ [ vt (ady
212012 (2 — ) 2
_ /exp (2rd(z, A)) // 2z —y) (”” Y) =2l vly(y)didy| da
R2 ’/T
2l1/2|x— | ?
< /exp (2rd(z, A)) // e 2=yl |y (y)|didy | da
RQ
2ll/zlﬂcaul ’
< / // o= (rd(v: )y () )didy | da
RQ
1/2/ rt 1/2 2
</ ( /. |x—y|( / e~2la=v] dZ) ( / <e2*d<yvA>|uz<y>|>2dZ) dy) da

Now integrating by parts

t
(/ 2—16_21”_y|2dl)
s T

1 —2llz—y|? _ 4 —2tlz—y|? 1 b o ala—y?
R —t y - le—y1®q;
27r|a:fy|2(Se ‘ )+27T|=’73*y|2 s ‘

1 1

- - - —2s|lz—y|? _ —2t|lz—y|?
2m|x — y|? 27T|35_y|46 ‘

— —yl2 _ a2
(se Ale=yl® _pe=2tle—yl®) 4

So taking square root

t 1/2
(/ 2_16—21|w—y|2dl) /
s T

81/2675\z7y|2+t1/26*t‘xfy|2)+ 1

<1 1
T V2rlz -y V2r|z —y|?

—slz—y|? 4 ,—tlz—y|?
(e +e )
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Now plugging the first term back in our original computation we get

t 1/2 2
/(/ (81/2eszy|2t1/2etmy|2)</ (erd(m,A)|ul(y)|)2dl> / dy) dz
R2 s
5 t 2
<2f ( [ e | <efd<z=A>|ul<y>|>2dzdy) da
R?2 R?2 s
t
2 [ [ (et D)) didy = fulprca

by Young’s inequality, since HS€_2s‘y‘2”L1(R2) < C uniformly in s. Pluggin the second term we get

1 e—2s\x—y\2 N e—2t|ar:—y\2 t(erd(x,A)|u ( )|)2dl 1/2d 2d:}j
ra\ | 200 =] . Y /
<

||U|\12DT(A)

by Young’s inequality since

L (2slul _ g-2tlyl? )
sup ||{ =—(e —e
e | )

2
Nle=2lz—yl* ¢ g=mlz—y|

<C
LI(RQ)

for s,t >m. For s,t<m we compute using e —3m

IV Ig ()12 a)

2
= /eXpZdeA

2/1251/2(36—9) —2l|ac—y\2
w(y)dldy| dz
/ A{ VT )

e’(m””“”z’y‘ul(y)dldy

2
dx

< /exp(Zrd(ac,A)) e

¢ /2 \2
< /(exp(rd(z,A))(/ e’Q(mf")‘zfy‘/ u?(y)dl) dy) dx
R?2 s
¢ 2
< C’/(/ e_(m_”)lx_y‘/ e’"d(y’A)ulQ(y)dldy> dz
R?2 s

< Cllulp-

again by Young’s inequality. In the case s <m,t >m we write I, ¢(u) = I5 m(u) + Iy 1(v) and we
can reduce the problem to the previous two cases. O

4.3. LOCALITY

The main goal of this section is to prove that the value function satisfies certain locality properties:
If the terminal data is perturbed by a functional whose gradient is supported in a bounded set,
the effect of this perturbation on the value function will be small away from that bounded set. To
encode this we will need the following definition.

DEFINITION 4.33. For a functional G: L*(R?) - R and A CR? we define the quantities

|Gli,o= sup [[VG(@)|lL=(r2)
pEeL?(R?)

Gy, = sup  [[VG(9)|12r(a)
pEeL?(R?)

|G 2= sup HHessG( Mr2r2)— £2(R?)
p€eL*(R

|Gl2,,= sup |HessG(¢ )||L2(R2)_>L2(R2)+supsup sup [[Hess G(¢)|lp2n(a)—r2n—1(a)
peL?(R?) h>1tACR?pe L?(R?)
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where

Hess G()|r = sup LHESS GOVl
veH (kA1

We will also need the following notation.

NOTATION 4.34. In the sequel ¢ >0 will always be a small constant such that

m—4(A+c) > 27 >0
neN

c=A+c) Z 2n9,

n:2n >t

and we will denote

We will be interested in value functions of the form with Vif € C2(L%(R2), R)

ueH,

= inf F%f
ulen]Ha (U)

T
f o . f l 22
‘/;_’T((p) = inf E VT (W57T+15,T(u)+sa)+ 2[ HU’WHL d’U.):| (411)

where Vi = [+ Ve with | fl1,2,-<ooand |Vp|z, +|Vr|1,00 < A with A small enough. We will denote
the minimizer of the r.h.s of (4.11) by uf. In this section we will consider an “abstract” Vp such
that the corresponding value function satisfies the following hypotheses, in the subsequent sections
we will then further specify V() =V{ =a(T) [ pcos(fp) and show that this example satisfies our
hypotheses.

HyYPOTHESIS A. Assume that Vp=V{ satisfies
|VT|2,c<T>*5<)‘<T>1/275'
This hypothesis is only a restriction on the terminal condition and will be easy to verify.

However we will also require the following hypothesis which is more tricky:

HyYPOTHESIS B. Assume that Vp=V{ is such that Vi, given by

. 1 [T
Virle) = inf BV + Trl) )+ [ oo
u a t

satisfies
Vi la,eqy-s S A ()20,
Our goal will be to show the following propositions:

PROPOSITION 4.35. Assume that Vi satisfies Hypothesis B. Then for any 2(A+c){t) 0 <r <m
there exists a C' >0 such that

Ve =Vl 20—e <C|f|1,2,r-
and

PROPOSITION 4.36. Assume that Vp satisfies Hypothesis B. Then for any B C R

T
E|:/ ||Uf — u0||%2,7~26t(3)dt] < C |f|1€2,7-'
0

Our strategy in proving these bounds will be the following: We will prove them for ¢ > T /2
where we can use that the convexity provided by the term

1t 2
3 Tl
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beats the semiconvexity of V. Under these conditions we will be able to show that
V;f]fT = V;&?T +f

with |f|1727,._c<t>7(5 < C|fl1,2,~- Then using the assumption of V;% we will iterate the argument to
obtain the full statement. For technical reasons we will prove very similar statements under weaker
hypotheses:

HypoTHESIS C. Vy=V{ satisfies

|V |a S N(T)/272, (4.12)

HypoTHESIS D. Vi =V{ is such that satisfies Vi, given by

. 17
Vir(e) = ing B/ VAWt Dp()+ )+ [ o adu)
u a t

satisfies
Verla SA()/270

We then have

PROPOSITION 4.37. Assume that Vi satisfies Hypothesis D. Then

|Vt],cT* Vorl1,2<Clf|12

The proof is again analogous to the proof of Proposition 4.35.

PROPOSITION 4.38. Assume that Vp satisfies Hypothesis D. Then

E[|[uf — u°|[30] < C| f1,2,0.

4.3.1. Interlude: A formula for the gradient of the value function

Before we proceed with the proof let us discuss a formula to represent the gradient of the value
function which will be useful. It can be considered to be a version of the Envelope Theorem [93],
see also [5]. Take V € C?(L?(R?),R) and consider

Vs, i)

. 1t
00 B ViYL o)+ )+ [ e

= ulenﬂga F(u).
Now denote by
X ={p: p=Law(W,u) withu € H,}
and

X= {M:HM,,L—>MweaklyonC([s,t],‘f‘a(@c)_")) x L2 ([s,t] x R?)s.th. u, € X ,supE,, [|[u|/Bo] <oo}
n

where as usual L2, denotes L? equipped with the weak topology, and it is possible to show that
indeed W € C([s,t],4 ¢((x)~™)) almost surely, see for instance [72], Theorem 3.1.
One can prove analogously Lemma 2.32 in Chapter 2 that

X= {u:ﬂunﬁuweaklyonC([s,t],‘ﬁ5(<x>”)) x L2([s,t] x R?)s.th. g, € X ,supE,, [||u | 7] <oo},

where by abuse of nation we have denoted by (W; ., u) the canonical variables on C([s, t],
€ ~=({x)™™)) x L*([s,t] x R?). We can define

~ 1 t
F(M) = ]Eu V;f(m/;,t + Is,t(u) + (,0) +5/ |Uw||%2d’u}:|
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From now on we will consider F as a functional on X. Note that using continuity and boundedness
of V; we can easily show that

Jnf B\ Vi(Wo, o+ L(w) + ) +% / tlluwllizdw} = inf F= :ggﬁ
With this setup we can prove the following Lemma:
LEMMA 4.39.

(VVaule), ¥)rz= inf B [(VVi(Wei+ L i(u) + ¢), ¥)r2]

pEargmink’
where argminﬁ denotes the set of minimizers of F.
Proof. Define the functional

B[ Vi(Wa i+ Lo a(u) + o +ev) + 5 [ uw|[F2dw] — inf,, ¢ oF
g

Fe(p) =

and observe that
lim inf F*=(VV; (¢), V)L

—0puex
So it is enough to show that e

lim inf F¢= inf E,[(VVi(Wse+ L (w)+ @), )12

e—=0pueXx pE€argminF

We will show F© I'-converges (see Section 2.6) to (F')" where

(F)() =4 Enl(VVeWa e+ L o) + @), e if € argminF
oo otherwise

and furthermore F* is equicoercive on X. To prove equicoercivity set K= {1:[E,,[ fst |t || F2dw] < K}
for K >0 to be chosen later. It is not hard to see that K is compact in X' (see Lemma 2.28 above).
Now
B[ Vi(Wa i+ I (1) + 0+ 20) + 3 [ ||uw||Z2dw] — inf, ¢ 5F

€

Fe(p) =
1 1 [t 5 .=
= = ]Eu W(W/SJ"‘ISJ(U)"’SD)"‘_ ”“w”L?dw — inf F'
€ 2 s HEX
1
B Vi(Wa o+ L ou) + ¢+ 20) = Vi(Wa i+ L o(u) + 0)]
1/~ -
— 2(F-if F)+001
=(F - jntF)+oW

where O(1) denotes functionals which are bounded uniformly in f,e. This implies sup. inf,, F*<C.
On the other hand since V' is bounded we have that

. 1/1 ¢ 2
F ()2~ 5Eu| [ lluw|Zdw | ~C

so infy e Fe(p) > é(K — () so choosing K large enough we obtain
inf F¢(u) = inf F&(p),
pneX neK

which proves equicoercivity. To prove the liminf 1nequahty of I'- -convergence we consider a sequence
pf — g in X and distinguish two cases p € argmin F and p ¢ argmin F. For the first case recall
from above that

Fe() = é(ﬁun—-mfﬁ)

HEX

1
+EEM[Vt(Ws,t + I t(u) + @ +ep) — V(W ¢ + s ¢(u) + ©)]

11E VW I () + @+ €00) — Vi(Wa o+ L o(w) + )]

= Ep[(VVi(Ws,t + L e(u) + ), ) 2] + O(e)

WV
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where in the last line we have used Taylor expansion. Now

Eu[(VViWs i+ L 1(u) + 0), ) 2]
- Eu[<VVt(Ws,t+Is,t( u)+ @), ¥)r2

by continuity and boundedness of VV. For the second case (4 ¢ argmin F ) we consider

liminf F'¢ (1) liminf l(ﬁ'(us) - infﬁ')
e—0 e—0 €& HneEX

it S (VW + Toa(w) + 9+ 20) = Vi(Wayi+ L) + )]

= hminfl<ﬁ(m) infﬁ>+0(1)
e—0 €& pnex
= o0

where in the last line we have used that since F' is lower semincontinuous so

liminf F(p€) > F(p)

e—0

and since p ¢ argmin F there exits ¢ > 0 and ¢ such that for any e < g, F/(u°) — infuegﬁ >c. Now
we can conclude that I'-convergence holds by observing that we can take the recovery sequence
constant. g

LEMMA 4.40. Assume that for small A >0, < 1: and that Vy € C*(L*(R?)).
[Hess V|2 p2 < A(t)2. (4.13)

Then recalling that F#°(u) defined by

F200) =] Vo Wi+ L) +9) 5 [ o]

is strongly convex in u on D°, with constant 1/4. A minimizer of F*#-° exists by Proposition /.13
and is unique. We denote it by u¥®. Furthermore u?® satisfies for any u € Hy,

UVVT(Wt v+ L7 (u?) + @) I r(u / [Rzu‘puéds} =0 (4.14)

Proof. Strong convexity follows from strong convexity of [ tT || ]|72dw, the assumption on Vo and
Lemma 4.31. Existence of the minimizer follows from Proposition 4.14 and uniqueness is implied
by convexity. To prove (4.14) we proceed in the standard way. Since

FeO>u¥ +eu) — F9Ou¥)

- > 0for any ue H,

we can take the limit and obtain

0
@00y, ¢ _ P00y
< lirnF (u?4eu) — F?Ou?®)
e—0 3
.1
= lim —(BVr(We,r + I, r(u? +eu) + @) = Ve(We,r + I, 7(u?) + 9)])
£—

. 1 T @ 2 T w12
+lim —E lugd + cus||72ds — ([ ||Z=ds
e—0¢ t

_ {/VVT(WtT—i—ItT(u“’)—HpItT //u usds]
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This gives the statement since the converse inequality can be obtained by replacing v with —u. O
Remark 4.41. Strong convexity of F¥:° on D°, with constant 1/4 is equivalent to
F&O(ul) = F#0(u?)
> B [ SeWir+ B+ ot -+ [ [ (@l- e L[ ol -l
t
for any u!, u? € H, which together with (4.14) implies

F#O(u) — F#0(u¥)

> B/ / o = s |

for any u € H, and u¥ the minimizer from Lemma 4.40.

LEMMA 4.42. With the assumptions and notation from Lemma 4.40 and we have

VVir() = BIVV (Wor + Lo(u) + ).

Proof. The proof is similar to the proof of Lemma 4.39. Consider the functional

Fered(u) —infyem, FP(u)  FPTe¥(u) — F9(u¥)
€ €

Fe(u)=
And observe that (VV; r(¢), ¥) =lim._,oinf,em, F*(u). Now

Feted(u) =EB[Ve(Wy 7+ I v(u) + ¢ + ) — Ve (Wit + L 7(u) + )] + F9(u)
SO

Fe(u) = 2(F#(u) ~ F#(u#)) +0(1)

where again O(1) is a term uniformly bounded in v and e. This implies that

T
liminf F*(uf) > liminf L(F¢(uf) — Fo(u?)) — O > QLEIE{ / s — uf||2ds] !
t

e—0 e—0 €&

So liminf. _,oF¢(u®) < oo implies that for a subsequence (not relabeled)
T
limIE{/ |u§uf|2ds]0. (4.15)
e—0 t

Now (4.15) implies that, provided that V€ C?(L?(IR?))

lim —IE[VT(W; 1+ L r(uf) + o+ &) = V(W r+ I 7 (u®) + )]

e—0¢&
= ] [ (VWi L) 4o+ ), )0
= E[{(VVe(Wi r+ I 7(u®) + ), ¥)]
w
liminf F(u)

> lim éE[VT(Wt,T + Lp(uf) + @+ ) — Vo(Wor + L 1(uf) + )] + limigf%(F“’(us) — Feu®))
> E[(VVr(We,r+ I, 7(u?) + ¢), )]

which implies

liminf inf F*(u) > BUVVr(Wir+ L r(uf) + ), ).
£— ueld,
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For the converse inequality it is enough to observe that

liminf inf F(u) < lir%Fg(u‘P) =E[(VVr(W, 7+ I r(u®) + @), ¥)]. O

e—0 ueH,

4.3.2. Locality at high frequencies

LEMMA 4.43. Assume that Vp satisfies Hypothesis C. Then F¥-f(u) is defined by
1 /7
Fed(u) =Bl f(Wr+Lr(u) + @) + VoW r + 1 r(u) + 9) +5/ Iuwll%zdw]
t

Assume that u# ¥ is such that F¥/(u%7) <inf,em, F?f(u) +¢e. Let u¥ be the unique minimizer
of F#%(u). Then

E[f|u®f — u?|Bo] <4(t) "2 fl1,2,0+ €. (4.16)

Proof. We prove that if eq (4.16) is violated u%#*/ cannot be a minimizer because
Fef(u?) < Fef(u# ).

Indeed by assumptions on u/>%

€
F«pyf(utpyf) _ qu,f(ugo)
E[f (Wi, o+ I, 0(u?f) + @) = f(Wy,r + 1 p(u?) + ©)]
+F9”’0(u9”7f) — F%O(u“’)
1
—1f 11 2.0B [ r(uF) — I p(u®) || L2(w2)] +ZE[HU"’*LU“’H%0]

- 1
> =) flr 2 oBlllud —uf (o)t + JB[[luf S —uf|p]

WV

WV

which implies the statement. O

Our next aim is to show that if (4.13) holds perturbing V7 by a functional f such that | f|1 2., <

oo amounts to perturbing the value function at time ¢ by an f with similar properties, provided
(t) =T /2. For this we will need the following notations

NOTATION 4.44. Let u€ L?([0,00) x R?) and B CR?2. Define By={x€R?*: N —1<d(x,B)< N},
Btn= UN>nBN and denote by uN =1gn(u —u¥)

ﬂ’”:u“’+g uN,u*”:E ulv

N<n N<n
and

LEMMA 4.45. We consider a random functional f: L?>(R%) — R satisfying

E[(|f[£2,r)%] < o0

for some B CIR?,r>0. Assume also that Vr satisfies Hypothesis A. Now for (t)>T /2 consider
the variational problem

) 1 /7 .
inf E[f(Yt,T(% o)+ ValYir(us )+ [ ||us||%2ds] — inf F#(u)
ueH, 2 t uw€eH,

Then for any u such that F¥7(u) <inf,em,F¥ ¥ (u) +¢, € >0 we have for any r <m —c{T)~°

]E{/tTLBNWS —uf||%2ds}1/2 < () V2] f[2.,]1/2 + exp(rn)e) exp(—(r — 22 (£)-1+) n),

where u? is the unique minimizer of F#:0.
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Proof. F#f(u)<inf,em, F¥f(u)+ e implies that

Fe f( ) Fe f( )
= F¢Ou) = FOu=") + E[f(Wyr+ I, o(w) + ) — fWe,r+ I o(u™") + ¢)]
< ¢

Then from Remark 4.41 we have
F#O(u) — F#O(u=n)

T
_ 1
E / VVT(Wt,TJrIt,T(a*")Jrgo)lt,T(u+")+/ / U "uj"ds+z|u+"||,%o}
R2 R2

WV

r T
= B| [ VWt fra )+ et + [ uunas s b
R2 R2

: 4 1

= B| [ VWt L) + )+ [ usuass gl
LJR2 R2

+E[ [ TV L@ 4 ) = VWi g+ L)+ sa))ft,:r('tﬁ”)]

1
N U / I r(u™") (Hess V(W o+ I m(u?) + 01, 7(u™ >+so)It,T(u+”)>d9+leu+”l%"]
]RZ

where in the last line we have used (4.14) and the fundamental theorem of calculus. Now using
Lemma 4.24 ,with y=m — ¢(T') =%, denoting

Vo=Hess Vp (W, v+ I 7(u?) + 01, p(u™") + ¢)

we get:

1
E[ [ [ pat veth<u+n>>de+—|u+”||Do}
0 R2

1
> - Y / [ a0Vl 210 |+ Bl b
Ngn 0 R2 4
1 ,
> —E| Y exp(=(n = M) ()lmssuplVolo o (w) o | + Bl 1B

N<n
_ 1
> AT Y exp(=y(n— N)E([[u [pocp] *Bllut B gem] 2+ Bllut B
N<£n
> AT ()Y exp(*v(n*N))E[IIUNH%n]l/QE[IIW”H%o]W+%E[Hu+"|\f>o]~
N<n

Now

[ELf(Wer+ 1 0(u) + ) = f(Wer+ Ter(u™) + 0)]
< ()7 2exp(=rn)E[(| £ |P2,0)°) 2 B llut | pmpm]

Now recall that from our assumption on u we must have F¥:%(u) — F?9%(u~") <e, so

0 > —AT(t)~" Y exp(—ry(n— N)E[|u o]/ *E[|lu’||Bo]"/2
n<N

_ 1 ,
— () 2exp(=rn)E[(| f [£2,,) 2 El|Ju"Ho]'/? + 5 Blllu "Bl —e,
which implies that
E[|[u|B0]'/?
E[|ut|Bo]'/2
)\Ta<t>—1 Z exp(—fy(n_N)) [Hu ”2 ]1/2 < >_1/2GXP(—T71)E[(|f|]19_,2_,r)2]1/2+5-

N<n

<
<
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Setting a,, = E[[|Ju™||%0]!/2 we have the inequality

an < MDY exp(—y(n— N))ax + (6) VB[ F|P,) 3 2exp(—rn) + &

N<n—1

ATt Y exp(=r(n—N))ay + (&) VPE[(| f|F2,.)%" ?exp(—rn) + ¢,
N<n—1

and introducing a, =exp(rn)a, this is equivalent to

dn < AT 70N an + (| f182,,)%Y2 ()7 + exp(rn)e
N<n

< 22X ()2 52 an +E[(| f|Pa.) A2 ()2 +exp(rn)e.
N<n

With this in mind discrete Gronwall lemma [42] gives

En < (B[(|£1£2,)7"/2(t) 7/ + cexp(rn) Jexp(2A (t) /> ),

which in turn implies

< (B [(|f|1 2,7) ]1/2<t>71/2+Eexp(rn))exp(2)\ <t>*1/2+5n —rn). 0

DEFINITION 4.46. We write Y = {u: pu = Law(W, u, u¥) with u¥ minimizer of F¥-°, w € H,} and
take Y to the closure of Y under weak convergence on € ~*((x)~") x L*(R4 x R?) x L*(R4 x R?).
Observe that X = P*Y, X = P*) where P is the projection on the first two components.

LEMMA 4.47. Assume Vi satisfies Hypothesis A. We consider f (deterministic) satisfying

|f|1?,2,r < o,

for some BCR2,0<r<m—c(t)~° and (t)>T/2. Define

) 1 /7 ) .=
Vin(o) = inf E[f(Yt,T(%<P))+VT(3€,T(u,<p))+— / ||us||%2ds]=: inf Ff(u) = inf Fof(p1)
’ u€H, 2 t u€H, pnEX

and let u¥ € H, be the unique minimizer of F#9u). Then for any u € Y such that P*u €
argminF'%f (1) we have

[P <cw1e) iy,

By llu =012, v ori-572
In particular if ul>% € H, is a minimizer of F¥f then

B uf s <OWTH I Dy

1/2
Dr—(2xte)(e)~ “/2(3)}

Proof. It is not hard to see that for pu such that P*u € argminﬁ""*f(u) we have u® such that
Law (W, u®,u¥) — p and F#f(u®) <inf,ep, F?/(u) +e. Now from Lemma 4.45 we know

/2
[/ II(w |L2ds} <(C ) ~Y2 4 eexp(rn))exp(2A ()10 —rn),

B3 [ luritaas|

1/2
< hmmf]E{ / (ug) ||L2ds}
t

recall Notation 4.44. So

e—0

< C<t>_1/2|f|172?rexp(2)\ (ty=1ton —rn).
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Now for any x>0

T
2
E,u|:ﬂ ”U’S7ufHLz,rfn(t)*1/2*57%3)(‘18

T ©0
< C’IE#/ > exp(Q(r2)\<t>1/25/i)N)]lBNHuSuﬂ%zds]
t N=0
T OO
_ CE, / S exp(2(r — 20 (£) /20 N)exp(—26N ), |y — u?|Fads (4.17)
t N=0
C —1/2—6 T 2
< %supexp(Z(r—Z)\(t) )N)E gy |lus — u?|z2
N s
C .\ _1/2-
< ﬂ<t> V20 fIE s,
if we choose x = c(t) ™% we obtain the statement. O

LEMMA 4.48. Assume Vr satisfies Hypothesis A. We consider f (deterministic) satisfying
| FIE 2, <00
for some BCR?*0<r<m—¢ and (t)>T/2 Then

V(@)= fer+Viir(p)
where f; T satisfies for any ¢>0

| fer P ainreyy-s < (L+C () 240 £|5 0

Proof. By Lemma 4.39 we have

<VV;{T(‘P)> V)L
= inf  EL(VVI(Wer+ I r(w) + ¢), )1

He argminﬁ'“’* !

= inf E (VW r+ 1 r(uw)+ @), Y)2+ (VVe(We,r + I r(u) + ), ¥) 2]

ne argminﬁ""’ f

and so by Lemmas 4.39 and 4.42 with u¥ being the minimzer of

1 T
IE|:VT(VV;5,T+L§,T(U)+QD)+§/ |uw|%2dw],
t

we can compute
|<V‘/XT(@)’ V)2 — (V27 (9), ¥) 12|
= ‘ ( inf  EVfW,r+Lir(u)+ @), )2+ (VVr(We,r+ L, r(u) + ¢), Z/J>L2])

pCargminF ¢ f

— E(V V(W + It 1 (u®) + @), )12

N

sup B, [(VfW, 04 I, 7(uw) + @), ¢) 2]

pre argminﬁ‘f

+  sup  |E[VVe(Wi o+ L 7(u) + @), )z — (VVE (Wi, + L 7 (u?) + 9), ¥) 2|

Meargminﬁ'f
|F IRl 2 -r () + [VErla,eqry -5

N

X sup E, ||Is,t(u’7uw)||L2,r—(2)\+c)(t)7‘570(T)76(B):|||1/)||L2,77‘+(2)\+c)(t)76+c(T)7‘5(B)
p€argminFf

118219 ey MO ™ Vel B s =09 s 1 cv2r 055
12,1 2.y + OO L B2 [0 acnerco -
| f1P2(14+CA(E)~0)||9 ||L2,—r+2(>\+6)<i>75(3)’

and we can conclude by duality. O

N

NN
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Analogously we also have:

LEMMA 4.49. Assume Vp satisfies Hypothesis C. We consider f (deterministic) satisfying

[ fl1,2,0 <00
Then for (t) =T /2
V;:{T(SD) = fi.r+ Vilr(p),
where fy T satisfies
| ferli2.0<(L+C )"V fl1 20

The proof is analogous to the proof of Lemma 4.48.

4.3.3. Dependence on the initial condition

LEMMA 4.50. With the assumptions and notations from Lemma 4.45 we have

1/2
E [[u®*% — u?| } /

2 —0 2 1/2
D7~—2(>\+c)<t)*6(A) SC)\T ]E[”w”DT(A)] / .

Proof. We can set

PR =Valo+ ) Vi) = [ (Vi 4 M), ) .
Then

1
V() = /O Hess V(i + M)

SO
E[IV£¥(@)llz2.rca)) < [Velo, B llp2rca) KATYZ B[4 |20 a)-

Now applying Lemma 4.47 we with f= f¥ and e =0, and estimating like in (4.47) we obtain:

B, Jlu ¥~ u?]

2
DT-7L72(A+C)<1>*5(B)dS}

T oo

< Eu/ > eXp(Q(T_2(/\+C)<t>_6_C<t>_6)N)ﬂBN||U‘p+w—u‘/’||%2ds‘|
t N=0

= ]Euf/ Z exp(2(r — 2\ {t) 7% — c(t) ") N)exp(—2c <t>_6)ﬂBN|U¢+w—u‘p||12;2d81 (4.18)
t N=0

T
< Csupexp(Q(r2A<t)5c<t)5)N)1E{/ ]lBN||u‘P+¢u“’|%zdt}
N t

N

OXTE[[[¢[|Z2.r()) />
O

4.3.4. Proofs of Propositions 4.35 and 4.36

For the remainder of this section we will denote by u° the minimizer of

1 T
E| Vel r( o)+ [ s
0

and by «/ the minimizer of

T
]E|:VT(}/O,T(U, ©) + f(Yo,r(u, ¥)) —l—%/o ||us||%2ds].

Proof of Proposition 4.35. We prove by induction that for any ¢ such that (t) >27"T.

|V;‘.fT(SD) - W?T(cp)hﬂ,rfctfbg Ct|f|1,2,r7
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where ¢; =4(A+¢)Y, 505,27 and Cy =[], 5us, (14+C27°). Note that

SHPCtSeXp<Z 10g((1+02—"5))>gexp<cz 2—n5><oo_

t>0 neN neN

Assume the statement has been proven for ¢t >¢ =2~("~UT. By Proposition 4.12 we have

1 {
Vo) =B| Vor Vst o) + F . 0) + 5 [ |uw|%2dw]

with f= VJT(QD) — ‘/%?T(gp). Now by Lemma 4.48 we know that

|V;{T(‘P) - W?T(W)|1,2,r—ct

|V;5fT(SD) - ‘/t?T(CP)|1,2,r—c;+c(t>’5+2(2)\+C)<t)"5
(1 + C<t>_5)|f|1,2,r—65

(1+C{t)°)Cilf 12,

Celfli2,r

VAV AN/ANV/A

O

We now prove Proposition 4.36.

Proof of Proposition 4.36. For the purposes of this argument we fix C' (it can depend on the
constants from the previous statment but cannot change from line to line). We may assume C' < A™!
choosing A small enough. We show that for n>0,r,=r—cy—c,

oN+1

/ ||u<p7f —u#0|
2N

1 ; o 1/2 B
E{/o uf! —uf ||L2vrn(B):| <C|flf2,r

E

1/2
%2%(3)] <027 fIP,,

and

From this the statement will follow. To prove the second inequality we observe that by Proposition
4.12, uf,u° are the minimizers for

E

i
Vi (Ve g0, Yo () + £l o Yo )) + |uw||%2dw]

and

E

1 E
VO (Vg Yo00) + |uw||%zdw]
t
respectively. Denote f;= v/ — VO . Now by our assumptions on V° we have by Lemma 4.47
t t,T t, T

1
o =0 sy SO,

Now we proceed by induction. Assume we have proved the inequality N < n, now want to prove
it for n + 1.Note that by Lemma 4.50 we get for any v with m —cg >y > 0:

on+1
Ln

Here @ minimizes

E

1/2
||u? o at||}2;2,w<m+c)2"5(3)dt] < C)‘Q_(S]E[”YOJ"(“O) - YO,2"(Uf)HJ%2ﬂ(B)]1/2-

on+1

1
Bl Vo 20 (0 o)) + 5 [
271

|uw|%zdw].
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Since by the induction assumption we have

E[[|Y0,27(u®) = Yo,20(uf)||F2.5] /2
< S Ellln 1o (00— ud) |25, ]1/2
N<n
g 20|f|1142r Z 27N5
N<n
And by Lemma 4.47 we have

1/2

gnt1
E /2 Hu{ - at”iQ,'r'n(2)\+c)2n6(3)dt‘| < 02_n6|f|17277“

and so by triangle inequality

277,+1
, 2
/Qn uf ! uf|L2,rn+l(B)dt]

on+1

/ g = G )220 gy
2n

g 027n6|f|13i2,r+02)‘27n5 |f1|1€2,7" Z 27N5
N<n

1/2
E

1/2
+E

on+1 1/2

L = it

on

< E

< C|f|§2,r Z 27N5

N<n+1

where in the last line we have used A < C~1.This proves the statement. O

4.4. BOUNDS ON THE HESSIAN

In this section we will consider the case
V() =2a() [ p@os(p(w)da+ ()
where (32 <4, is defined by (4.10) and R € C?(L?(IR?)) satisfies
[R(9)]1,00 <A, [R(#)]2,c ()5 <ON. (4.19)

The reason we denote the perturbation by R and not f as in the previous section is to emphasize
the different properties. By f we usually denote a functional satisfying | f|1 2,» < oo for some r > 2,
while R usually satisfies (4.19). Again we are interested in the value function

. 1 (7
Vi () = inf E{VT’J’R(Yt,T(u, ) +5/ Ius|%2d8] (4.20)
u a t

Our goal is to show that th ’TR satisfies the assumptions of Proposition 4.35, or more precisely
Hypothesis B.

THEOREM 4.51. \/;f’TR defined by (4.20) can be written as

V() = M) / peos(B) + Re.r(9),

where Ry T satisfies

|Ri 7l1,00 + | R T2, e ) -5 < CN2.

C is independent of R,t, T, X, p. In particular ‘QT’TR satisfied Hypothesis B for X\ small enough.
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Theorem 4.51 will be established in Section 4.4.1 below. This might seem hopeless at first
since for this Vt’&R has to be smaller then the terminal data V. However what saves us is the
martingale property of the renormalized cosine and the fact that we can expect I(u) to be small.
Indeed we have the following lemma.

LEMMA 4.52. Assume that (t) >T /2. There exists a unique u® € H, such that
T

ucMH,

17 1
it B\ Vol 90) + 5 [ uliads | =B Vet 0) + 5 [ luflas]
t t

and
||ULPHL°°([t,T] xR2) < 4>\ﬂ<t>_1/2_5.

Proof. Note that the assumptions of Lemma 4.42 are satisfied and so u¥ exists and is unique.
Furthermore

YV () =BIVVE (W r + Lr(u?) + 9)]
In particular |V 7|1,00 < |Vr|1,00 < /\Ba( ). Now by the Verification Principle
= —QVV/i (Yis),
where Y is the solution to the equation
A= - Q,VV/ A (Y, s)ds + QudX,, Y=g
So by Lemma 4.27, provided (¢) > T /2:

[uf oo me) < ()7 SLgFRZ)IIVV;‘,”TR(sD)I\Lw(Ra = Vw100 2M{1) () SANB() V270 O
pe

We also introduce the map

RE#(R)(2) = Vi) = Xa(t) [ p(aeos(Bp(a))da (a.21)
Let us discuss some properties of R

LEMMA 4.53. If R € C*(L*(R?)) then so is R (R) for any s,t > 0. Furthermore R has the
following semi-group property:

Rg,t(Rtp,T(R)) = Rg,T(R)'

Proof. For the first statement observe that by Proposition 4.10 and Corollary 4.14 we have that

: 1"
Vi (o) = it B[ Aa(T) [ peos(8¥ir(u, 9) + ROV o)+ [ s
u a t
is in C?(L?(IR?)). Since Aa(t) [ pcos(fBp) is clearly in C?(L?*(IR?)) the definition of Rf, implies the

statement. For the second statement we see that by Proposition 4.12

REA(R)(p) = inf E[Aa(T) [ peos( ¥t o) + RO, / |us|L2ds]

ueH,

—da(s) [ peos(3e)

_ ulen]gl ]E{V{JTR / |ué|L2ds} - (S)/pCOS(ﬁsD)

= ulenﬂfI ]E{/\oz pCOS (BYs,(u, ))+Rtp,T(R)(Y9,t(“"P))+%/St|uS”%ZdS]
—da(s) [ poos(Be)da

= R{(RY p(R))(9).
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4.4.1. Bounds on the remainder

LEMMA 4.54. Assume that (t)>T /2. Then for any R with |R(¢)1,00 <A and ¢ >0:

RY (R0 < |R|1,00 + ON(t) 0
IRE 2 (R)l2t(ageyy—s < Rl +CN(E)~°
RY p(R)l2 < |R[2+ CAX(t) 9

and for any ACIR2,m —1—2(A+c)(t) " =7 >0 there exists a constant C, dependent on p such that
R 2(R) 2, < |RIE 2, +Cpt)™°

IRY 2 (R) = RE (G2t —2asyy—+ < 1+ Co(t) 2+ Cp(t) R, ) (IR = Glflr).  (4.22)
Proof. Denote by u?'f the minimizer of

]E[)\a(T)/p(ac)cos(ﬁY}j( 2)dz + ROV r(u, 0)) / |ué|L2ds}
By Lemma 4.42 we have

VL ()

E[VVE Wz + I (u?B) + )]

E[-ABa(T) p(a)sin( B(We, v + I, 7(u® ) + ) + VR(Wy, 1 + I 7(u? ) + )]

~ “EDSa(T)in(3(Wi 1+ )] (423
E{Aﬂa(T) /0 peos(B(Wor + o+ eft,T(uW»R>>)It,T(U‘”’R)d4

E[VRW,. 1+ L 7(u?®) + ¢)]

and recall that E[NSa(T) p(z)sin(B(Wr, T+ ¢))] = E[ABa(t) p(x)sin(Gp)]. We now write

B 1
R(p)= E{Aﬂa(T)/ pcos(B(Wy,r+ 50JrHILT(UV”R)))It_’T(u‘PvR)dG].

0
and the previous computation gives VR 1(R)(¢) = E[VR(Wi, 1 + It p(u? ) + ¢)] + R(yp). Since
by Lemma 4.52 [|1;, 7(u?)||Loe < [[u®||poo (e, 71 x R2) < ANB(t)~1/279 we have for 42 /87 <1/2—6 and
1) > 12

sup | R() e <4ANF 0.

€L2(R2
Furthermore ’ )

HE(W) - é(w)HL2,r72()\+c)<t)’5

= HE[/\ﬁa(T)/OlpSin(B(m,T‘F (P+9[,57T(UGD»R)))It,T(ucp,R)de]

_E[Aﬁa(T) / psin(B(Wor + 0+ Hlt,T(uw’R))ﬂth(“w’R)de]
0

L2 =20 +e)(t) =9

N

A1) [ [ s B0 -+ - 01 (0 ) 005 ) — BP0

L2 =20 +e)(t) =9

+

/0 p(sin(B(We,r + ¢ + 01y p(u?"1)))

—sin(B(Wy,r+ ¢+ GILT(’LW*R))))ItyT(uw*R)dG]

2 —2(+e)(t) =9

N

AB(T)E[ L, (u? ) = T ()| o —anier o] + ABa(T)E[[[ e, r(w? )|
x([le = "/’HLz,r—z(Hc)(t)*“ + || Lo, 7 (u? ) — It.,T(uw’R)||L2,r72(x+c)<t>*f5)]
CXt) [l = 2

N
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where in the last line we have used Lemmas 4.50 and 4.31. Analogously we obtain

IR(¢) = R() |2 < CX*(t) = |lp — | 2.
Clearly
IEVR(W:, 7+ It 7(u? ") + 9)] | < sup [[VR(E)|=,
while setr
IE[VR(W:, 7+ It 7(u?R) + )] = EIVRW, 1+ L 7(u ) + )] 20—y o
IR(©)|2, Bl (¢ = ) 2r—2xcey-s + [ 1o, m(u® = u? F)|| o, —aney -]
|R(9)l2,.(1+CX(E) ) (o = ) [L2.m,

combining these bounds gives (4.54). To prove the second statement clearly

<
<

sup [E[VR(W,,r+ L. r(u? ") + )l 2
[}

< sup [[R(9)[27a),
©
while

ABa(T) /Op(x)sin(ﬁ(W%,T+ga+/\It,T(u%R)))It,T(u%R)d,\

L27(A)

< ABa(T)|| pLe,r(u®B)|| L2y
< CAa(T)|[ I, r(u? F)||Le
< Gy(t)~°

On the other hand we can write G=R — R+ G and so applying Lemma 4.47 we obtain

E[[| e, 7(u®® = u® )| 2 —any o]
< C{)TPE[Ju? B —uf | any -]
< CU)"V2IR-Glaw,

where we recall that D" was introduced in definition 4.30. With this in mind we estimate
VR r(B)(9) = VRe2(C) (@) 2o—sr -5
1
S ]E{H)\ﬁO‘(T)/ psin(B(Wy v+ @+ 01, p(u? ) I, (u?7)do
0

1
—AB(T) / psin(B(Wa,r + @ + 01 7(u? ) I p(u?F)do

L2,T2)\<t>JL(A)‘|

0
+E[ [VRWi, 7+ L r(? ) + ) = VGWiz + Lo (@99 + @)l oo -5-. )]
< (DB 0w B = )| o anis ]
FAa(D)E| 10w ) el 2 (@ R =) ars )]
+51;p HV(R - G)(‘P)||L2,7~72A<t>*5(14) + |R|2,LE|:HIt,T(U/[P,R - uw,G)|‘L2,7~72A(t)75(A):|

< A+ NR=C)@)T2r—arqy-—s+C ) [Rl2. [(R = G) (@) {2,
O

We can now iterativly apply this lemma to obtain:

LEMMA 4.55. Assume that |R|1,00 <A/2. Let t=>0. Then for X\ small enough

V() = A1) / peos(Bp) + Ruli)
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where Ry satisfies, with Cy defined by C’t:CZNQN”Q";N,

|Rt|2,b+(/\+c)ct < >‘2Ct+|R|27L
|Ril2 < N2Cy+|Ry|2
|R|1,00 < MNCi+|R|1,00-

Proof. First we prove the statement for (t) > 27NT . Assume the statement holds for ¢:
(t) >2=N+IT. Then by dynamic programming

Vi (o)

. 1 t
= inf E )\a(t)/pcos(BYt,g(u,<p))+Rg(Yt,g(u,<p))+§/t ||u6||]2;2ds]

u€eMH,

where |Ri(¢)]2,04+¢; < N?Ci 4 |Rlz2,, [R7(#)]1,00 < ACi + |R|1,00. Choosing A small enough we get
|Rz|1,00 < A. Then we can apply Lemma 4.54 and deduce that

|Rel2,i4 (At e)er < Ril2,04 (At eye; T CAX(E) 70 K N2C7+ A2 (t) ~° + | R|2,, = NCy + |R]2,.,
and analogously for the bound on |Ry|2, |R|1,0- O

Finally we prove another lemma about R which will be useful when removing the UV cutoff.

LEMMA 4.56. Assume that |R|y (xyeyry-s<A. Then for anyt>0:
IR} 7(R) = R{ 7(G) o 30, SO(IR—Gfy.,).

Proof. In Lemma 4.54 the statement has been proven for (t) > T /2, furthermore Lemma
4.55 gives, for A small enough [RY 7(R)|2, (xteymy -0+ (o) ity -2 < Rl onseymy—s +CN{E) O <A
Define Cp 1 =1],,.9n5, (1 +(Cp+ A\)27"%) with C, being the constant from (4.22) Now assume we
have proven the statement for (t) > =2"""YT. By Lemma 4.53 and the induction assumptions
IRY 7(R) = R{ (G2, —e,

= |Rf,2t(R§t,T(R)) - Rf,u(Rgt,T(G)) 14,2,7“—2()\+c)<t>’5—(k+c)(t>’5—czt
L+ (Co+ X)) )(RE, 1(R)) — (RS, 7(G))[L2,r— 262,
(1+Cp(t) ") Cp 2| R~ G2,y
= C,|R-Glia-

NN

O

4.5. DEPENDENCE ON THE SPATIAL CUTOFF

LEMMA 4.57. Let u%®? be the minimizer for
1 T
E| xa(t) [ peos(abirtu o)+ [ s
0

in H,. Assume that p', p>:R?*—= R, —1< p*< 1. Then there exists a v >0 such that

T 1 2
]E|:/O ||uf,p - uf?ﬂ ||22"V(supp(p1p2))dt:| < C( 1+ |Supp(p1 - p2)|)7

where |supp(p! — p?)| denotes the measure of the support of p' — p? and C does not depend on T.

Proof. To prove this observe that form eq. (4.22) we have

1

VOa(0) = V() + i) + Aa(t) / (p1 — p2)cos(B) (4.24)

with |ft|?f§3ﬂ(plfp2) < C(1+ |supp(p! — p?)|) with r=m — ¢ and C does not depend on ¢,T. Note
also that

la(t)(p* = p?)cos(Bp)|1,2,» < cu(t)[supp(p — p?)|'/2.
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By Proposition 4.12 with 4 € {1,2} u#*" restricted to [t1, %] is a minimizer in H, for
g i 1 bz 2
E{ V10 s Yors 09 )+ [ s |
t1
Now we again prove by induction that

E <C2—nd

o w,pt ©,p%|| 2
/2n ”ut UL ||L2""(supp(plff72))dt

for some C' independent of N, T and r, =7 —co—c> ., 27N% (recall Notation 4.34). The proof

is analogous to the proof of Proposition 4.36: Note that u?**" minimizes

i 1 1
E{Vl’fﬂya,l(u,go))w/o |us||g2ds].

Since

Wb () = (o) = )+ o)) [ (1= po)eos(By)
with | f]1,2.» < C|supp(p' — p?)|*/? we obtain by applying Lemma 4.47 and using eq. (4.24)
1 1 2
E[/O |uf P —up” ||§2,Ml(supp(p1_p2))dt] < C(1+ |supp(p* — p?))).

Now by dynamic programming u?-*" restricted to [27, 27 1] minimizes the functional

El/\a@"“)/PiCOS(ﬂan,znﬂ(u’ Yo,20(u??")) + Risr 1(0)(Yan gns1(u, Yoon(u? ) +

1 2n+1
: / ||us||%2ds].
2TL

Now setting @ € H, to be the minimizer of the functional

IEl)\a(2”+1)/pl(cos(ﬁYQn’Qnu(u, Yo.00(u® %)) + R§;+17T<0>(1/2n’2n+1(u, Yo on(u?P%))) +

1 2n+1
5| ||us||%2ds]

we have that

on+1 1/2

An ”’U,f’pl_at”izmn—c27"+1(supp(pl—Pz))dt

< 27E[[[ 0,20 (u?") = Yo,2n(u? )| 2.

E

1/2
supp(plfﬂz))] /

from Lemma 4.50, and analogolously to the proof of Proposition 4.36 we can show that from the
induction assumption it follows that for A small enough

5,20 (4%7") — Yo,00 (0% ) 22, aupipr iy 2 < 2L+ [supp(p! — p2)) 3 275,
N<n
Applying Lemma 4.47 and using eq. (4.24) we know that

1/2

2n+1 R
E / [uf " = ul| oo 1 eyt | S2C(1+ [supp(p! = p?)[/2)277,

Adding things up we deduce the claim by induction. O
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LEMMA 4.58. Let u®* be a minimizer for

T
E{Aa(T)/pcos(ﬁYQT(u,<p)—|—%/0 ||us||]2;2ds].

Assume that pt, p>: R?— R, —1< p'<1 and for any |x| <N p*(z) = p?(z)=1.Let a>3 Then

T 1/2 )
B [l =t o] <O M),
0

from which it trivially follows that for any v >0

T 1 2 1/2
IE[/ |uf P —ug” ”ilvdt] <C(N)~(@=3),
0
and C does not depend on N, T or the p'(provided they satisfy the assumptions).

Proof. Write p" = p' +14,(p* — p*) with Ay ={z:k —1<|z|<k}. Then >, " = p*. Now we
estimate using Lemma 4.57 and Lemma 4.25:

T 1/2
| [ ur —umnm a>dt]

/2

A1 ]

k>N

. 1/2

< GE[/ g~ up? ||iz,7<A>dt}

k>N "
< Y (n)|A,l

k>N

< C(N)~(@=3),

O

LEMMA 4.59. Assume that R satisfies |R|1,00 <A, |R|2,, <\ with A sufficiently small and let v such
that log(t — Tt <m — c;.
IRY(R) — REH (R[S G < Clsupp(p' — p?)[V/2(t)~°

m— logg(t T)—cy

In particular if 1 <(T)~° then for T large enough

u 1_p? _
[RE(R) = RER(R)TEN 00, < Clsupp(p' — p?)[/2(t)

and
IRE(0) — REZ(0) 82" -7 < Clsupp(pt — p?)[ /().

Proof. Recall from eq. (4.23) that

V(Rf,lT(R)(‘P) - Rf,zT(R)(SD))
= E[VR(Wir+ I 1(u®?")+ ) = VR(Wi r + I 7(u? ") + )]

1
(B [ (O 1-+ i+ 0107 ()
0
1
*/ psin(B(Wi,r + 50+Mt,T(U‘p”JZ)))It,T(u“"'pz)dG].
0

We first prove the statement for (t) >7T /2. Denote by A=supp(p' — p?) now we can estimate the
first term by applying Lemma 4.47, we have

1/2
[/ [ ds] <SOME) T AM2,
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So

IE[VR(W; 1+ It,T(U[’D’pl) + @) = VR(W; r+ It,T(U%pz) + (ID)]||L2,m7L7c<t)76
}1/2

(4)
g |R|2 |:||ULP P 7ULP P HDm c(t)y™ S(A)
< IRz, ()70 |A]V2.

and furthermore we can decompose

plsin(ﬁ(I/Vt 7+ 01, T(U@"p )+ ), T(U@'pl)
—p*sin(B(W,p + ¢ + 01, p(uP) I, T(Uw 7)

= p'sin(B(Wi, 1+ o+ 0L 7(u?P)) I p(u? P — u#r%)
pH(sin(B(Wer+ 01 m(u ") + ¢)) = sin( B(We, 7 + 0L 7(u? ") + ) o o (u®?)
+(p? = psin(B(Wer + @ + Ay p(w? ) I p(u? ")

and we can estimate

)\BO((T)]E[ | ptsin(B(We, T+ ¢+ GI,g,T(u‘/””l)))1,57T(1ﬁ””)1 — u”’pz)HLQ,mfcurﬁ(A)

T 1 212 1/2
< M| [ s ue P
< ON(t) 0|4
similarly
Aﬁa(T)E[le(:c)(sin(ﬁ(VVt’T + 0L, r(u? ) + @) — sin(B(Wir + 0L, 7(u®?") +
LR (s | N

< Aﬁa(T)]E[le(:r)It r(u# P’ — u“"*"z)ItT(U”"pz)||Lz,mfc<t>*f5(A)}

< WE[ / [t A )dsutyT(uMan}

< ON(t)~1 /2| A2
and for the last term
ABa(T)E[[(p3(x) = p*(@))sin(B(We,r + @ + Mo (w0 ) I 7 (w9 ) [ 2o )
NBa(DE(| L, (u? ) L]l (@) = p' ()12 ()

<
< ON() 0119 (x) = pM(@) || L2m(a)
< ON(t) = |supp(p! — p?)|/2

Q

Putting things together implies the statement for (¢) > T /2. Define a,, = nt — can. Now for the
general statement we proceed by induction: We claim that for (¢) >T /2"

(RE7(R) = R (R)TEN, ) < ClA[/2 Y 270

1,2,m—a
m>=n

where Cy =CT]J, .o, (1+ 2(i=1)d)

Assume the statement is proven for (t) > T =T /2"~ '. By choosing A small enough we can
assume that [R{'(R)[1,00 + [RY7(R)|2,, < A from Lemma 4.55. Then triangle inequality we can
write

RET (R)—Rp,2 (R)[{2,m—a,
= |Rt 2t( 2t, T(R)) Rt 2t( 2t T(R))|1,2,m—an,1—c<t)*J—L
(R)) - )

|Rt 2t( 2t T Rt 2t( 2t, T(R |1,2,m—an,1—c<t)*f5—b
+RE%H(RS bir(R)) — Ri%(R5: T(R))|i4,2,mfan,1fc(t>"st
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now by our previous considerations
|Rf,12t(R§tl,T(R)) Rt 2t(R2t T( ))|f2,m—an,1—c(t>*5—b
< ClAP2(t)=S
and by Lemma 4.54
|Rt 2t( 2t, ir(R)) — Rt 2t(R2t (R ))|142 m—an_1—c{t) " 9—1

1+ + IREL 7 (R)2,04 ) [REE 7(R) — R} (R )2 m—an_s
(14 () 72+ (t) °| Rl2,) [R5 7(R) — RS} 1(R)| 1 2,m—a,

so putting thing together
IR (R) *RffT(R)If‘,z,m on

<
<

< ClAME) =0+ (1+ ()™ <> °|Rl2,0)|RE; +(R) = R r(R)[f.2,m —a,
< CLA[Y2() 0+ Cop(142() 0) A2y 27md
m>=n
< Ct|A|1/2 Z 27m5+C|A|1/2<t>75
m=2n+1
< Ct|A|1/QZ 27m5.
m>2n

O

4.6. VARIATIONAL DESCRIPTION

The purpose of this section is to establish Theorem 4.5. We restate it here in a more precise form.
First we need the following definition.

DEFINITION 4.60. Take r=m — 2¢o (recall that m is the “bare mass of the theory”,more precisely
our base Gaussian measure has covariance m? — A ) with ¢y defined in Notation 4.34. Take a C
sufficiently large (to be fized below) but independent of f. We define the set

)
Df = {’U,GHLLE[/ |Ut|%r(A)dt:| < C|f|1727m}.
0

THEOREM 4.61.

flog/e Fopel(do)

= — lim <10g]E|:eXp<f(I/Vt,T)Of(T)/pCOS(ﬁI/Vt,T)>:|

T—oco,p—1

- togE|exp( ~a(1) [ poos(ami) ) | )

= inf G (u)
uE]Df

where
G/Lf(u)
_ E[ﬂwo,oouo,m(u)+Io.,oo<u00)>

+ A/[[COS(ﬁWo,oo)l](COS((ﬁIo,oo(U) + B0, 00(u)) = cos(Bo,00(u))))
+ A/[[Sin(ﬁWo,oo)]](Sin(ﬂ(fo,oo(U) + Lo,00(u))) = sin(Slo,00(u>)))

1 o0 oo
+—/ ||ut|\%2dt+/ /utu?"dt}
2 0 0
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and [|(t)"/2F0ug®|| oo, Li=(R 1. Lo (R2))) < 00

Proof. By Corollary 4.14

it 1OgE{eXID<]"(W%,T) - Q(T)/pCOS(BI/IQT))] :uienﬂgaFf,p(u)

T
P ) =] £0a(T) [ poos M+ 0100+ 5 [ s |

By Theorem 4.62 below
lim inf FA(u)= inf FZ(u)

. T—ooueH, u€eH,
with

FL(u)
1

_ E[A | leos(31 o BT e(w)) + A [ plsin( 30, e sin 30 () + 5 | °°||us||%zds}

By Corollary 4.63 below if C' in Definition 4.60 is chosen suffiently large

lim inf FLP(u) — F@P(u)= inf G7TP(u).
ruet, - T (u) = Fp’(u) uegf(u) (u)
Here

f.p

Q

u)

(
= E| f(Wo,00 + Loo(t) + Lo (u™"))

+

A [ () [cos(BWo,00)] (cos(B(1o,00(w) + To,00(u™7))) = cOs( B0, 00(u>")))

i A/P(ﬂﬂ)[[Silﬂ(ﬁWo,oo)ﬂ (sin( (10,00 () + 0,00 () = sin(Blo,c0(u7))))

+l/ ||ut|\%zdt+/ /utut‘x”pdt}
2 0 0

and ©°? is the minimizer of FY, it satisfies ||<t>1/2+6u?07pHLoo(]P_’LtOO(R+7Loo(]R2))) < o0.

Now by Lemma 4.65 below as p— 1, u?**converges in L?(P, L3(R., L?((x)~%))), for k large
enough, to a u® € L®(P, L=(R, x R?)) which satisfies ||(£)"/?uy||po(p, n2o(r., L(R2))) < C-
Furthermore by Proposition 4.66

GI P (u) — G (u)

uniformly on D7 which proves the statement. O

4.6.1. Removing the UV cutoff
In this section we fix p € C°(IR?), ¢ € L*(R?). We denote by u?>? € H, a minimizer of

T
Fp(u) = ]E{/\a(T) / peos(B1Wh 7+ Blo () + = /0 ||us||%zds}.

THEOREM 4.62. u™>? converges in H, to some u™* € H, and u™* minimizes the functional
FL(u)

- E[A [ pleos(8W, ) Teos(3(70 s (w))) + A / pLsin(5Wo o) lsin (8(To,oe (1)) + 5 / °°|us|%zds}

in Hy,. Furthermore H<t>1/2+5uoo"p||Loo(]P><[07T]X]R2) <O

Proof. By Lemma 4.55 we know that V;; given by

ueH,

o . 1 (T
Vi’r(p) = inf ]E[)\a(T)/pcos(BYt,T(u,<p))dac+§/t ||us||des}
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satisfies

Vir(9) = alt) / peos(Bo) + Rez(p)

with |Ri 7]1.00 + |Re.7]2,. < CA? and for some ¢ < CA\2. Furthermore |R; 7|1,2.0 < C,. This implies
that the equation

AV, = —Q:VVr(Y2) + Qud Xy
has a unique solution in C([0,77], L>(R?)) by a standard fix-point argument and
ui P ==QiVV/r(Y)

by Proposition 4.13 . By definition of R (see eq. (4.21)) we have for T3 < T5:

Vi (9)=alt) / peos(Bp) + RE 7(0)(¢)

and

Vi (0) =alt) / peos(Bp) + RE 4R 72(0))(9).
By Lemma 4.54

IRt,7:(0) = Ri. (R, 72(0))]1,2,0 < C| Ry, 1,(0) ] 1,2,0 < Cp (T1) ° (4.25)

so by Proposition 4.36 we have

Ty
E[ / |u?“’—u?=ﬂ||%2dt} < ()~
0

Furthermore from we have
[Vierl1,2 <IRY (01,24 a(t) | psin(B- )12 < Cy ()1 /270

so , for any ¢ € L?(IR?)

o

1/2
1TV (D) a1y <0p( / <t-1/2<t>1/2-5>2dt) < T,

Ty

This implies that u"? is a Cauchy sequence in L%(IP x [0, 0o] x R?) so it converges to some u?,

which in turn implies Itj(uTV") — I, #(u*?) in HY(R?) for any T € [0, 0o] by Lemma 4.32. We

are now going to prove that that indeed u>” € H,, for which we have to prove that it is adapted.
From (4.25) we have also for any T < co

P P
sup |V’ — Vifpl1,2,0 = 0.
t<T

So VV,/r — VV/ locally uniformly on Ry x L*(R?) and from the fact that |R; 7(p)|2 < C we
deduce that

sup |V, |2 < C(T)P*/5 < o0,
t<T

So VV; o is Lipschitz in L?(IR2?). Putting things together we obtain that as T — oo, IP-almost surely
u = Qi r(Wo i+ Io,o(u”?)) = QiV VLo (Wo, + Io,(u™*)) in L*(IR?),

which implies that 4>* is adapted since u”"# is adapted. Now to prove that «°* minimizes F? (u)
we observe that

B = BAa(r) [ peos(B¥oatu, o)+ [ s

]E{/\a(T)/pcos(ﬁ%7T)cos(ﬁ(Io,T(u) +¢))

T
+ )\a(T)/psin(ﬁI/VO,T)sin(B(Io,T(u) +¢)) +%/0 ||us||]2;zds}.
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Now from Definition 4.18 (T )cos(Wo, 1) — [[cos(Wh, )] and a(T)sin( Wy, ) — [sin(Wh, )] in
L3P, H~'19). Note also that Ip7(uT) = Iy co(u”) — Iy 0o(u>) in H'~% which implies

&] [ par)cos( M rheos Bt ) + ) |

— E[ [ plleos(h.leos( (I u) + so»}

and the same holds for the term with sinus. By Fatou’s lemma we also know that

o0
nmmﬂEU T ||L2ds] > JEU |u§°|§2ds]
T—o00 0 0

so we can deduce liminfr_o, FL(u?"*) > F2(u°*), which also implies liminfr_, ., inf Ff >
F? (u®>*). Now observe that analogously we can show that limr_, oo Ff(u) = F2 (u) for any u € H,
which implies that liminfr_, o inf, epm, FA(u) <infyem, F2(u) so

F(u “p)—l%rglilofulenﬂﬁan( )—ulenﬂi FL Ou.

For the L*° bound

lug Pl < sup [|QiV V()L
©

< (1) M alD)p sin(Bo) [ Rl1 o) < OX (1) 1((1)/270)
< OA(t)~H/278,
which implies the final statement. ]

We now discuss what happens in the f#0 case.

COROLLARY 4.63. Let f € C*(R?) satisfy |f|{'a.m <o0o. Then one can rewrite

£ Ff P
JJnf Fp(u)
. 1 [
— il E| S0+ Ir(w) +a() [ peos(3(War+ Tor)) + [ lul:]
u a 0
= eng,f(A)]E[f(Wo,T+fo,T(u)Jrfo,T(uT”))) +04(T)/pCOS(ﬁ(W0,T+10,T(U)+10,T(UT’p)))
1 o0
+§/ Hut||L2dt+/ /utut Tat+ 2 / ||uf’T|%zdt]
0
= inf FLP(u)
ueDf

Note that here we have made a change of variables and introduced the functional F%’p(u) defined
by the second to last line.

Proof. From Theorem 4.51 we obtain that the assumptions of Proposition 4.36 (Hypothesis B)
are satisfied. Then applying Proposition 4.36 we can deduce the statement. O

PROPOSITION 4.64. With Fi?(u) defined as in /.63 Ff?(u) — F:5*P(u) uniformly on DY, where
o)
- ]E[f(thooﬂLfo,oo(u) + 1o,00(u™")) +)‘/P[[COSWWO,oo)ﬂCOS(ﬁ(Io,oo(U) +10,00(u>7)))

A e s, ) Tsin B0 ) + Do e (022)) 5 [ e+ [ [t

1 [ 00
by [ = 13aae |
0
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Proof. Note that clearly for r >0 ||Io.7(u)||z: < |Ju||po < |[u||pr, so for any u € D7,

E[||fo,r(u)||7] < C.

Now we decompose:

FLP(u) = P (u)

o

- b A/ () ([cos(BVVp,o0)] — [cos( Wo,2)])cos( B(Jo,o0(u) + Io, e (u™7)))

+A [ px

(
@)
A / p(x)
2 [ () [5in 3D, DI (ST, (1) + o (7)) =sin( B 7(0)+ o (1))

FWo,r+ To,r(u) + Lo (uTP)) — F(Wo,00 + Lo,00(w) + Io,00(u™"))

/ /ut uf® —ulT)dt + = / (g \detf—/ [|uf |det]

By Couchy-Schwarz gives:

B [ futur—wrryae] < wf [“putgae] ] [Cir o]

which goes to 0 uniformly on Df. Furthermore

(
[eos(8Wo, 7)) (cos(B(To,00 (1) + To,00(u>*7))) = cos(B(Io,r(u) + To,r(u"))))
( )

_|_

)
(
([sin(BWo,)] — Isin(BVWo, r)])sin( B(Jo, () + To oo (u™7)))
(

E[/p([[COS(ﬁWo,oo)]] — [cos(6Wo,7)])cos(B(1o,00(u) +10700(u°°»’))))}

E[l| p([cos(8Wo,00)] — [cos(BWo, 7)) 171+ s Ell[cos(B(Zo,00 (1) + Lo,00(u>*))) |72 -5]

<
< CE[l|p([cos(8Wo,00)] = [eos(BWo,r)D) -1+ B[l Zo,00(w) + Lo,00(u™?) | 711]

again this goes to 0 uniformly on ID/. And we can proceed analogously for the sinus term. Fur-
thermore

2

E[/P(ﬂCOS(ﬁ%,T)H)(COS(ﬁ(Io,oo(U) + Io,00(u™7))) = cos(B(Lo,r(u) + To,r(u”"7))))

< Elllp([cos(8Wo, )] I7r—1+5 Bl (cos(B(Jo,00(u)  +  To,00(u?))) = cos(B(Lo,r(u) +
Lo (u™?))) 7]

< Elllp([cos(8Wo, )] I —1+5 Bl (cos(B(Jo,00(u)  +  To,00(u?))) = cos(B(Lo,r(u) +
To, (" P)))IZE (cos(B(Lo o0 (1) + Lo,00(u™?))) = cos( (Lo, r(w) + Lo, r(u™?)))) |7 >’]

< Elllp(leos(8Wo. ) DI - 1+a Bl 7 00(w) + To,00(u™? = uT/)E5 [[I7,00(w) + To,c0(u™? —
u ) 7]

N

2E[|| p([[cos(8Wo,r)]) Iz -1+7] [ / IIUIIdeH/ [u>:? — u™>|F2dt
which again goes to 0 uniformly on D/. Again we can proceed analogously for the sinus. Finally

ELf (Wo,r + o, r(u) + To,r(uT#)) = f(Wo,0 + Io,00(tt) + To,00(u™7))]
< CE[|Wr 00 + It 00(u) + Lo, r(u" P = uP) + I, 00 (u™P) [ 1r-1].

which also goes to 0 uniformly on D7. a
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4.6.2. Removing the IR cutoff

Now we consider the functional

Gri(u) = FLow) - inf F()
— BL(u) - B ()
- E[ (Woroo + Loo(t) + Loo(u?™))

+ A [ p(a)[cos(BWo,c0) [ (cos(B(1o,00(t) + 10,00(u7))) — cOS(Blo, 00 (u>7)))

- /\/p(l‘)[[sin(ﬁ%,oo)]](Sin(ﬁ(fo,oo(U) +10,00(u>7)) = sin(Blo, 00 (u>"))))

1 o 9 oo )00
+= | |Juel|fedt + wpudt
2Jo 0

The goal of this section is to establish that G**f(u) has a limit as p— 1. We will always assume
that f: L?(R?) — R is such that |f|1 2, < o0o. In particular f is Lipschitz on L?~™(IR?).

LEMMA 4.65. As p — 1, u”*®converges in L3P, L3Ry, L*((x)~%))),for k large enough, to a
u>® € L*®°(P, L°(R4 x R?)) which satisfies ||<t>1/2+5Ut||Loo(]P7L?O(]R+><]R2)) < C. Furthermore the law
of (W, u®) is invariant under the action of the Euclidean group, where an element of the Euclidean
group G=(R,a) R€O(2),a €R? acts on functions by

(Gf)(x) = f(Rz —a).
Proof. Take p', p? such that p!(z) = p*(x) =1 on B(0, N). By Theorem 4.62 there exists T such

that Z?:l ]E[H’U/TN’pi — Uoo’piHiz(]R%LQ((z)—k))] g Z?:l ]E[H’U/TN’pi —Uu 2 ] < <N>—a for a > 0.

From Lemma 4.58 we know that E[||[u”?" —uT-*||2_,] <C (N)~% uniformly in 7. So by triangle
inequality for some k large enough

E[|[u?" — w22 m, L2y
2
< D E[[e P = uf Fawm, oy i) BT =0T R m, ey -y
=1
< (V)™

which implies our statement. To prove the second statement u> € L>(P, L°(Ry x R?)) follows
from the fact supz<oosup,, || <t>1/2+6uT’p||Loo(IP7Loo(]R+><RZ)) < 00, which was proven in Lemma 4.52.
Now to prove Euclidean invariance we can recall from from Corollary 4.14 we can write

Vin(Gy) = log]E:exp<Oz(T)/PSin(6m,T+ 5G<P))]

—loglE _exp<—a(T)/G_lpSin(ﬁG_lm,T + By) )}

— —togE{exp( ~a(1) [ G- psin( 0+ 59) )|
= VG (©)
Now it is not hard to see that Gu”T is the minimizer of
G Frlu) = Fr(Gu) =E | Xa(T) [ (6 p)eos( iz + ol () +5 | N s
where I/T/O,T: G~ Wy,r and by the Verification Principle Gu?T satisfies

Gup'T = —QVVS P(YVh).
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Here X =G 'X and Y solves the equation
AV, =—QVV,% P(V) + QudX,,  Yo=0.
Now Law(X) = Law(X) implies Law(Y) = Law(Y") where Y is the solution to the equation
dﬁ:*QtV‘é?flp(ﬁ)+Qtht, Yo=0
and Law((G Xy, GuPT)) = Law((G X4, thvm?T’lp(E))). Now observe that by verification
uf 0T = QG (V).
So in total Law((GX,Gu?T)) :Law((X,utcflp’T)). Taking T'— oo we obtain
Law(G X, Gu”*) = Law(X ,uC~ '7:>),

Now sending p — 1 we get Law(G(X, u™)) = lim,_Law((GX, Gu”*°)) = lim,_, Law((X,
uC'P2°)) = Law((X,u*)) by uniqueness. Since Wp, o0 = fooo Q+Xdt this implies the statement. O

PROPOSITION 4.66. As p—1 G/ (u) — Gf(u) uniformly on DS, with

G/(0) = B F(Wo e+ Tol) + I ™)
A [ Teos( 311D )l (cos( (BT ) + BT (%)) = o3(3T0 ()
A T80, ) 5300 ) + T (1) =30 (1))

1 o0 o0
+_/ |\ut||32dt+/ /utugoat]
2 0 0
Proof.

GI (u) — G (u)
= E[f(Wh,00 + Loo(t) + Lso(u™®)) — f(Wo,00 + oo () + Too(uf>>))

A / pleos( BWo,0)](cos(BUo,oo() + To.0a(u™))) — cos(Blo,ea(u™)) — (cos(B(Io o) +
o (19))) = co8( BT, (7))
/ plsin(BWo,o)] (sin(B(To,oe(u) + To.ca(u™))) — sin(Blo,ec(u™))) — (sin(Blo,0c(u) +
oo (U5#))) = sin(Blo oo (u?))

A / (1= ) [cos(BWWo,00)](c08( B o0 1) + To,00 (1)) — c05( B0, o0(u)))

+>\/(1 — ) [sin(BWo,00) [ (sin( B (1o, 00(w) + o,00(u™))) — sin(B10,00(u*)))

/ / up(ug® —uf °7)dt

So by Interpolation with L°; for ¢ close enough to 1:

[[((cos(B(Lo,00(w) + Lo,00(u™))) — cos(Blo,0c(u™))) — cos(B(Lo,00(u) + lo,0c(u>?))) —
cos(B1o, 0o (u™ p)))HB;;}“l((I)k)

< 46/0 I(sin(851o, 00 (w) + Blo,co(u™)) — sin(061o, 00 (u) + Blo,m(uoo’p))lo,oo(u)||%,V7f?i,7d9

< Oo,00(uP) = o o0 (u™®)| 5724 [ To, 00 (w) | 7 2%
) -4 -4
+C [ o,00(u%P) = T,00(u) |55 T, oo (u) [ 50
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where we have applied Lemma 4.67, using that ||1(u®?)||yy1..o < C from Lemma 4.65 and Lemma
4.29. It is clear that

120,00(u™7) = To,00(u™) | 2.~ < [ T0,00 (1) = To,00 (u™) || L= |Ho,00(u™?) = To,00(u™) 2.

We can then use this estimate to obtain for p large enough such that 1/p+1/g=1

AE[ [ pleost o s 1(eos(3(In ) + T () = cos(Blou)) = cos(3ocla) +
Iooc(u9)) — cos(ﬁfo,oomwﬂ)))]

1/ _ _
< CE[[eos(BWo,00)T 5131y 1| B (1Ho.00(u™#) = Tooa(w )12 5  o.co ) 50257 +

[ Zo,00 (% #) — T, o0 (u) ][ 922570 g oo (u) || 2205720 ) ]/ 0

L2
1/p
E[ 1 leos(8Wo.oe I 1250y 1|

3 B[ ([ 0,00 (1%?) = Tp o0 (u™)|[FA5 ) [V 2IE] || To, 0 (w) || 2555 7] /20
+ B[ 1o,00(u?) — I, 00 (u®)| 31, -]/ 4= AR Ty, 0 () || F1.24] 0,

provided that we choose ¢ <1/(1—6;) and d2=2(1—q(1—41))/q(1 —61). Now for u € D7 the last
line is bounded by

C (B[ (|Ho,00(u#) — Io,o0(u)||ZE 5 0) V20 4 B[ 1o 00 (u2) — Lo, o0 ()| |Fa, -] /7~ =00),

which goes to 0. We can proceed analogously for the sinus term. To estimate

\ [0 Plos( M leos 3o o) I ) - cos(ﬁlo,oo(u”)))‘

_ ‘g / 1 / (1= p)[eos( AW, oo)] (sin (1o, oo (u) + Io7oo(u°°))lo7oo(u)d9‘

it is not hard to see that that [|[(1—p) flwr.1(@yx) <N B2 £ iy, 1((z)*/2), SO interpolating between
W17/ and L we have

< B[ llcos(Wo,00) W25y 19|
XE[ (1= p)((sin( (010, 00(0) + Lo, 00 (1)) Io.o0 () (3151

- 1/
N ’7/2]E|:H[[COS(I/VO’OO)]]HE;LJFS( } P

N

(@)~
[ ((sin(B(010,00 (1) + To.00(u™))) o o () g1 4] /.
Now

E[J|((sin(62o,00 (1) + Lo,00 (1u>))Lo,00 () l157:]

can be estimated analogously to the above computations. Finally

{/ /ut —u™)dt <]E[|\u|\%ﬂ]]E[|\u°0—qu°<>||§7,7]—>0
and by definition of f

E[|f (Wo,00 + Too(1) + Too(u™)) = f (Wo,00 + Loo(u) + Loo(u?>)) [ S E[fu —uf ||} - ]'/2

which allows us to conclude. ]
LEMMA 4.67. Assume that || fY|ly1.0+ || f2|lwr~<C. Then

[((cos(f* + g) — cos(f* + g)g) lw.1.+
< CUS = Pl gl + 1 £ = F2l122-+llglF.21)

Proof. Set w(z) =exp(yx). Then with 1/p+1/g+1/2=1 and g close enough to 2 we have
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IV ((cos(f' +g) —cos(f2+ g)g) 11~
< | fgew(@)(cos(f1 4 g) —cos(f2 4 9))Vgda | + | [ w( COS(f1+g)*COS(f2+g))ngd:r|
+ [gaw (@) COS(f1+9)*COS(fQJrg))Vflgd:rlJrIfW COS(flJrg))(Vfl*VfQ)gdxl
< Jpew@)| = fIVgldr + [paw(@)[f! = f2||9||V9|dl‘+fR2 )| 1= IV fHlglda
+ [rew(@)|(V 1 =V )] g]dz

< IVglle2a [V =V 2|2+ 1! = fPllpee—a | gllLallV gllpz.2r +

IV £l £ = ez llgllzzey + IV £ =V £2|lp2 -+l gllr2 2

Now using the Sobolev embedding
lgllwa<llgllar <llglle2

we have

IVglle2 2o [V £ =V 22—+ (11 = folper =gl VgllLaa+

IV fHlzeel £ = 2= llglle22n + IV £ =V ]2+l gl 2.2y

IV 1=V 2=~ (lgllez2n + 1V gllpz20) + IV el ff = 2=l
HI = PPN = Pl Nl

CULS = £l = lglleres + 17 = 2zl glF.20)

where in the last line we have applied the assumption || f1{|yy1.0 + || £2|| 1. < C.
Now using that

[((cos(f*+g) —cos(f2+ Q) @)l < f1 = 22—+l gllp22m
we can conclude. O

4.7. CHARACTERIZATION AS A SHIFTED (GAUSSIAN MEASURE

This section is dedicated to proving Theorem 4.6. The following Lemma will be very useful in this
endeavor

LEMMA 4.68. Let f € C?(L*(R?)) satisfy
|f|'14,2,0< 00,
and g € C%(L?(IR?)) be such that
911,00 + g2 <00

Then there exists an s’ >0 such that for all 0 < s < s’

(/fesgdup T)(/esgdu&f)
—tf—sg,,P: 1
dt( log/ dvég )

= ]E[f(VVO,oo + IO,oo(usg7T7p))]'

Here u®9T:P denotes the minimizer of

E| da(1) [ peos(3%3(0,0) + 39(Ya 1(u,0) / s |

Proof. We set for t >0
Ft(u)E[Aa(T)/pcos(ﬁYoyT(u,O))JrsQ(YO_’T(u,O))thf(Yb 7(u,0)) / |uS|des}

By Verification this has a minimizer in H, which we denote u!/*%9.T-#. By Lemma 4.55 for s small
enough the initial condition V(@) = Aa(T) [ pcos(Bye) + sg(¢) satisfies Hypothesis D in Section
4.3. So we can apply Proposition 4.38 to obtain

]E[||utf+sg,T,p _ usg’T’pH%o] < Ct|f |1_’2703
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from which we can deduce that

ELf (Woz+ To,r(utf 5970 22 B f(Wo 1+ To (w9 T0))].

Now observe that by Corollary 4.14 we have

d Lt
a(‘log/ et “’gdu‘s’cT)

Ft(utf+sg,T,p) _ FO(usg,T,p)

= lim
t—0 t
Furthermore
t(ptf+sg9,T,p\ _ 170(,,59,T,p
liminf F(u 2) F(u )
t—0

— B[ (Wor+ To.r(ut!+59:T-0))] + liminf (FO(utf+s9:T.p) — FO(y59:P))

t—0 t
> E[f(Wo,r+ Lo r(us9T:P))].
On the other hand

t(ytf+sg,T,p\ _ 0(y,89,T,p
limsupF(u )= FO(u )
t—0 t
t(0,59.T.p) _ [0(59:T.p
< limsupF (u ) — F(u )
t—0 t
= E[f(Wo,r+ Lo, r(u?9T7))].
O

We can now prove Theorem 4.6:

Proof of Theorem 4.6. Setting g=0 in Lemma 4.68 we obtain for any f & C?(L?(R?))

/fdl/géT =E[f(Wo,r+ Lo, r(u”*))]

where u”? = 4%T>? and we recognize that in Lemma 4.65 it was established that u”? — u® in
L*(P, L*(Ry, L?((x)~%))) as T — oo, p— 1. This implies that

Io r(uTP) = Iy oo(u®) in L3(P, L2 ({z)~"))

so if f is bounded and continuous on H ~!({z)~") we have

lim lim / FAVET = B[ (Wo o+ To.o0 (u™))]. (4.26)

p— 1T — 00

Recall also that Iy oo(u®®) € L®°(P, L*°(RR?)). So we will have proven our theorem once we have
extended (4.26) to any f which is continuous on H~!({z)~*). To do this we claim that for
any f € C(H '({x)~%)) we can find a sequence f, € C*(L?(R?)) N C(H *({z)~*)) such that
SUDuefr—1(p) |fnl < SUDLem—1((z)-#) [ful and for any ¢ € H™'((z)"%) fu(p) — f(p)Here by
fn € C*(LAR?) N C(H~'({(z)™%)) we mean that f, € C?(L*(R?)) and extends continuous to
a functional in C(H ~!((z)~*)). To do this let P, be a sequence of projections in H ~!({z)~*)
on finite dimensional subspace on H ~!((z)~*) such that P,p— ¢ in H~!(p) as n— oco. Defining
fn=foP, we can find for any f, an f, such that

sup | falp) = fal@)l <1/n
pEH () ")

and f, € C*(L?(R2?))NC(H({x)~*)). Taking a diagonal sequence we can conclude. O

4.8. OSTERWALDER SCHRADER AXIOMS

In this section we complete the proof of Theorem 4.8.
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4.8.1. Reflection Positivity

To prove Reflection Positivity we prove that the measure vgg is a limit of reflection positive
measures which is sufficient by Remark 1.20. We denote by v4q: =limp_oo§ . Since vég — vsa
as p— 1 it is enough to construct a sequence v’ — v such that v is reflection positive. We
can take p being invariant under the time reflection © f(z1, z2) =: f(—x1, x2). To construct vg
we cannot smooth in the “physical time” direction since this would destroy reflection positivity.
Instead define 6 =dp® 7, 0 € .%'(R?) where n € C°(IR?). Also set 65 =e720(- /) = 0o ® 1. where
ne=e"'n(-/¢). Finally we set W =0.% Wy 1, T € [0, 00]. We define

Vil = A P W) g,

We will now proceed in three steps: In Step 1 we show that for the correct choice of o
afcos(WE) — [cos(SWao)]-
In Step 2 we show that for any p>1

sup]E[eiApf paECOS(ﬁWfo)] <

€

Q.

Steps 1 and 2 together imply that v — 6. In Step 3 we prove that vg is indeed reflection
positive.
Step 1.Observe that

[0+ Wo,1,(%) 0 * Wo,1,(y)] = (0= ® 0 * Ky a) (%, ).

Now observe that for T € [0, ], Kr(x,y) = Kr(r — y) with Kp(x) < fﬁlog(T/\ |z|) + g(x) with
g a bounded function. Furthermore

(98 ® 0 * KT)(.Z‘, y) = (98 * 0 * KT)('I - y)
Then it not hard to see that

73 _ _L 1 £
K (x)—ea*Qa*Koo—4ﬂ_log<—|$|v5>+g (x).

with supe ||g%||e < co. From this we can deduce that 6. * W, () is in LE,(IR?) almost surely since
for any bounded U C R?

E{/ (0% Wo,00)(z))2d } =|U|K*4(0).
U
We claim that for any f € C°(IR?)

B2 e e )
/ fTsl:/fGTK (O)ezﬁwoo*)/f[[ezﬁww]]
]RZ

where the convergence is in L2(IP). To prove this we calculate
_ 2
]E[ / e%ﬁzKE(O)eiﬁW;(a:)f(x) _ eéBQKT(O)ewWT(a;)f(x)dx }
RQ

B / / BPR(0) GiBWE ()~ WE W) _ o (Rr(0)+KE0)) iB(Wr(2) - WE(v))
R2JR?

_ S Rr(0)+R(0)) iB(WE ()~ Wi (y)) + P Er(0)giB(Wr(y)=Wr(v) f(z) f(y)dxdy}
_ / / (PR =) | (FRr(e=y) _ 9 PEWr@WEW] £ (2) f(y)dady.
R2JR?

W.lo.g we can take f>0. Now since K*(x —y) < —ﬁlogm —y|+C,Kr(z—y)< —ﬁlog |z —y|+C
we have by dominated convergence and Fatou’s lemma

e—=0T—o0

lim lim / / PR @) 4 (P Rrle—0) _ 9 PEWr@WEW £ (1) f(y)dady.
R2J R?2

=0
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which proves the claim. This clearly implies
[ p" Ocostwz) — [ pleos(am)]

in L?(P). In particular we can select a subsequence (not relabeled) such that this implies that
P—-a.s

l 2e
ei/\fpezﬁ KE(0)

cos(BWE,) N 67/\f pﬂcos(BWoo)]]'
Step 2. Step 1 will imply that v§ — v§ as soon as we have established that

sup]E[ef’\pfpeﬁzka(o)cos(ﬁwf;)} < 00.

From Corollary 4.14 we know

/372[(6(0) . /32 e oo
1ogE[e—kP.fﬂe 2 COS(W“J)] = inﬂg E[Ap/pe2K (O)COS(ﬁ(WO%+I€(U))) Jr%/ ||ut||%zdt}
u€H, 0

with I¢(u) =0°* Iy oo(u). Expanding the cosine we get

o= st + 1)

2

2

= ‘/pe2 KX cos(ﬁWa)cos(ﬂIE

’ / pe TR Osin (WS Jsin( BT ()

N

B | T Orcon(omw) \Hl]Encoswfs(u))ﬁp]

+ 8| e s [Ellsin(srul

N

\Z} —i—E{Hpeng(O)sin(ﬁWoi) \Z] )E[|I‘E(u)|?{1]

ZRe(0) c 2 112
ol E Hpe TR O o5 BWE) ‘H—l E /O g2t
where in the last line we have used Lemma 4.32. This implies by Young’s inequality

inf E{Ap/peﬁ K O)cos(BWE + I7(u )))+%/Oo||ut|%zdt}
0

ueH,

g _C<E{Hpeff<g<o>cos(6w;>

52 €
C’(]E{ H peTK (O)COS(BWOEO)

N

2 82 e
‘H1:| +1E{Hpe2K (O)Sm(ﬁwoz)

‘2} +JEU|pe TR Ogn(awe)

2 1 © 2
| +Z]E/O Jug2adlt |

b
|z — y|7*/2

Now note that from a simple calculation we get

B[ 55 o8 () T eos(oz )| | <0

}<oo,sowe

from which we can conclude by Lemma 4.16 that sup. [Hpe 2 RE(O)COS(BWO%) ‘H*l

can deduce that supglE[ —Apf pelE (U)Cos(ﬁwfo)} < 0.

Step 3. We now show that v§y are reflection positive. We can write
, - . SB2K=(0
=S Op(ae), with 52(0) =" [ peos(30)
where pg =Law(W5,) is the gaussian measure with covariance operator
CE(f)=0°%(m?—A)"Lx0°f.

We claim that uf is reflection positive. Since it is Gaussian by Theorem 6.2.2 in [67] it is enough
to show that

(f T OCTIL f)2>0
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Where I1, is the projection on L*(R4 x R). Since the convolution with §° commutes with I, we
have

([, ILLOCeILLf)
= (IL4(6° f),0(m? — A) "ML (6° % f))

= 0,

where in the last line we have used reflection positivity of (m? — A)~1. Now finally we prove that
vgd is indeed reflection positive. Write

52 <
SeH @) =70 [ peos(s).
]R+><R
Observe that provided p is symmetric

SL(¢) =St (¢)+ ST (09).
Then

[F@OF @ = [Flo)e s @o(p (9)e 5 O)ayi >0
by reflection positivity of u%.

4.8.2. Exponential clustering

In this section we want to study expectations under the Sine Gordon measure of the form
/ H Vi, @) r2wr2)vsa(de).
/(]R2)Z 1

Our goal is to show that there exist constants C' = C({¢;}{=1) and an m, >0 independent of 1,
such that for any a € R?

l
Vi, ) r2(R2) ¢)vsa(de)
ol ot T1

1=l+1
k
/ H (i, ¢ Lz(]RQ)VSG(de)/ H <wia¢>L2(]R2)VSG(d¢)|
/(Rz y,(Rz)i:l-i-l
< Cexp(—mplal).

In this subsection all constants will be allowed to depend on ;. First note that a simple compu-
tation gives, for f, g: H *({x)~") — R continuous,bounded

ii<_10g/ e—tf—sngSG> :/ fogdvsg — / fdl/S(;/ gdrsg.
dt ds Z'(R2) Z/(R2) 7' (R2) Z(R?)

LEMMA 4.69. There exists a~y >0 such that for any f,g: H '((x)~") —R? such that with A, B CR?

|f|i4,2,m<oov |g|lBi,2.,Tn<OO
d d
— | —log e 9dusa | < C|f 1 2.m 9|2, mexp(—1d(A, B)).
dt ds Z/(R2?)

Proof. By weak convergence it is enough to prove the statement for V§C";T with C', « uniform in
p,T. By Lemma 4.68 we have

dd , 1 ,
as dt< ~log / e‘tf“"gdvéf) = lim —(B[f (Wo,00 + o.00(u*%))] = B[S (Wh,00 + .00 (u”7))])-
S '(R?)

s—0 S
Now from Theorem 4.51 and Proposition 4.36 we get

[Zo,7(u*9°) = Io, p(u® )| 2.5y < s|g1T2,m
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so we have by Lemma 4.24

[ELf(Wo,r + Lo, r(uP))] = BLf (Wo,r + Lo, (u”"))]

< N 2mlHo,m (w9 ?) = To,2(u® ) || 2 myexp(—vd(A, B))
< sl f|f2,mlglf2,mexp(—vd(4, B))
which implies the statement. O

Finally we are able to prove the exponential clustering: Take xV € C2°(R, R) with xV(z) =1
if [x| <N and xM(z) =0 if |z| > N +1, supyen || (X)L~ < C. Now define

k

l
H Yis )2V ([0l ¢¥(@) = T (Wi Ore@epx™ (| ¢llr—1.-).

i=l4+1

where we have introduced the norm
@ llr-1.-(ay =l (m? = A) Zexp(—7(d(x, A)) ¢ |2
Note that [[@]lg-1.-v(a) < Ck || @l -1((z)-*) for any k€ N. Furthermore introduce

k

g™ (d) = H (Yi(-+a), d)r2myx(|0llH-1 (A4 a))-

i=l+1

Observe that fV, g™ € C*(L?(R?)). Note that with w(x) =exp(—~v(d(x, A)) by product rule

VN (o)
i
NUoler—-0>" T (Wi o)ty
j=1 i=0
i#]
NN/ 1,—n l
| (x |)|¢EHZ;U?—7 )i_l_[o (Y, @) 2(mey(w(1 — A) " twe)

So since

lw(l = A) " we |z < 11— A) w2 < Cll @l -1

!
|VfN(¢)|114,2,7< CN' H |1/’j|1,2,7

=1

and now by exponential integrability and translation invariance of vgg

vsa(de)

!
(i, ®)L2(R2) H (Wi(-+a), o) — [N (o) g™ ()

!
/f'(RQ) 1;[ i=l41

<cf 10— DI nsaysc(dd)
{‘|¢‘|H71w77(A+a)>Nor||¢HH71W7'Y(A)>N
< 256 (1@l > N2 /ymwnﬁl,W(A)use(dqs) / IOl (4 a5 (do)
< C2usa([[0llzr-1.-v(ay > N)V/2 / 41— (a6 (dg)
S(R?)
< Ce™ N,

And analogous statements hold for

k

(i, ¢) — g™ (0)

i= l+1

!
H (Vi, &) r2m2) — N (9)

/Y/(]Rz) =1

Z/S(;(d(b).

vsa(de), /
Z/(R?)
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Now by Lemma 4.69

[ e omsadn- [ onsataa) [ 5 owsa(as)
'(R2) S '(R?) S (R?)
- ] [ @ ousctao) = [ M(omsalds [ QN’“(¢)VSG(d¢)‘
#1(R2) #/(R2) #/(R2)
< V()i VeV 9)[15 %exp(—va)
= [V ()i2,4VgN(9)|1s,-exp(—7a)
< CNFexp(—va)
Putting things together we have
! k
[ T s odsee ] (i), 6)vsado)
"(R?); =1 i=l+1
! k
- 2 2(R? d i 2(R2 d
/f’(Rz)i—l_{ (i, &) L2(m2)vsal( (b)/f'(Rz)i—ll_L (Wi, &) L2(r2)Vsa(de)
< C(N*exp(—~va) +exp(—N))
N =rla] = C((ya)*exp(—~ |a]) + exp(—~]al))
< Cexp(—(1—6)7lal).

4.8.3. Non Gaussianity

In this section we prove that vgq is indeed not a Gaussian measure. Assume vgg would be Gaussian,
we can regard it as a gaussian measure on the Hilbert space H!({z)™™) with n € N sufficiently
large. Then there exists a Banach space H C.7/(R?) and M € H~*({z)~") such that for any ¢ € H

log / eV dusg(de) = |13+ (M, ) 1))

(This follows easily from Lemma 5.1 in [83]). On the other hand we know that with V£ (¢) =

o) [ pla)eos(6(

Recall that since

x))da by the Cameron-Martin theorem for the Gaussian Free Field

log / =9 dusg(dg)
/ e Ay (dg)

/e—<w,¢>>e—wqf<¢>dw

lim log
p—1,T— o0 p, T

lim log
p—1,T—o0 p, T

. 1
lim log
p—1,T— o0 p, T

lim log e<CT¢"(mZ*A)710T¢>L/€*>\VTP(¢+(m2*A)’W)dMT
p—1,T— o0 Zp,T

lim lim ((Crv, (m? — A) 1) + Vi'r((m? — A) 1) — Vi1(0)).

p— 1T — o0

supr [Vyr]1,00 <CA by Theorem 4.51 we have that for ¢ € C°

/ ¢—(¥:Cro) AVEC) g

1913 — (Creb, (m? — A)~Crap)
= log/efw"d))dl/sc;(d@ — (M, ) g-1((zy— — (C1¢p, (m* = A)~'Cryp)

N

liminf log/ei<w7¢>dV§éT(d¢) - (Ma '(/))Hfl((aw*") - <Cle, (m2 - A)_lchp>

p—1,T—o00

N

sup Virl1,0oll (m? = D)1 [lpa = (1M [l oy = 1 2 oy

T'<oo0,p€CE(R?,[0,1])

N

Q.
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So in particular H contains CZ° functions. We now show that lim, . ilimr . V,’p(3) is not a
quadratic functional which will imply that

lim lim (Crep, (m® = A)7'Cqp) + Vp(v) = Vir(0) # 19 I — (M, )b -1 ((a) .

p—1T— o0
giving a contradiction. Observe that

V(1) = Aa(0)sin(vp) + V Ry, (1))

with supy e r2(r2) | VRo,7 ()| < CA?,by Theorem 4.51. Now for a quadratic functional we would
have VV (4) linear in 1 so

lim  VVr(d+ @) + YV — @) — 29Vr(1) = 0. (4.27)

T—o00,p—1

However choosing 1, ¢ such that on ¢, € C:° and for z € B(0,1) v =7 /2 and ¢ =7 /4. Then
for any = € B(0,1)

Aa(0)sin(ip(z) + (2)) + Aa(0)sin((x) — p(x)) — 2Xa(0)sin(w(z)) = A(2yZ/2—2) = A(vZ—2)
and since ||V R; 7(1)| L < C)A? this implies that for A sufficiently small and = € B(0,1)
lim, lim V(4 9)(2) + TV~ ) (&) ~ 29Vin() () > M(VE ~2) /2.

p—1T—

This is clearly a contradiction to (4.27).

4.9. LARGE DEVIATIONS

In this section we want to discuss a Laplace principle for the Sine-Gordon measure in the “semiclass-
sical limit” as described in the introduction. We introduce the family VST(’f 1, of measures given by

JE[ g(h*Wo.r) e

T,p
Zy,

7%VRT”J(51/2W0,T)}
, (4.28)

/ (L p( ) =
#1(R2)

where similarly as above

VP T (p):= )\ozﬁ(T)/ cos(Bp(x))dx ZIr .= ]E[e*Vn”’T(Wo,T)]
RQ

ﬁ2 _
for any bounded measurable g: H ~!((z) ") — R. Here o«"(T) = e 770 anq a(T)cos(h/26Wp 1)

enjoys the same properties as a(T")cos(SWp,r). It will also be convenient to introduce the unnor-
; ~T.p _ 7T,p T,p

malized measures Vg, = Z5, " "vgdy.
Note that this corresponds (modulo a normalization constant) to the measure heuristically

defined by

¢ Hla e (Dcos(Be@) +gmPe(al +3Ve@)dey

Our goal is now to show that v given as the weak limit of ugéf’h as T'— oo, p— 1 satisfies a Laplace
principle as i— 0. We recall the definition of the Laplace principle.

DEFINITION 4.70. A sequence of Borel measures v. on a metric space S satisfies the Laplace
principle with rate function I if for any continuous bounded function f:S— R

—lime log /e_%f(x)ug(dx) = ;Ielg {f(x)+1(x)}.

e—0

DEFINITION 4.71. For a metric space S and let I: S — R be a rate function. A set D C C(S) is
called rate function determining if any exponentially tight sequence v. of measures on S such that

e—0

flimelog/eféfdz/ez infS{f(x)+I(x)},
xE
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for all f € D satisfies a large deviations principle with rate function I.

LEMMA 4.72. Assume that D CC(S) is bounded below, i.e f > —C for any f € D with C independent
of f. Furthermore assume that D isolates points i.e for each compact set K CS,x €S and e >0
there exists f € D such that

o |f(x)<e
L4 1nfy€Kf(y)>0
° infyeKﬁBC(m,s)f(y) > et

Then D is rate function determining.
For a proof see [55] proposition 3.20.

LEMMA 4.73. Let S=H1((z)™") for any v>0 Then
D =C*(L*(R?),R4) N C(H " ((z) ™) N {| f[1,2,m < o0} N{f >0}

s rate function determining.

Proof. We want to verify the assumptions of Lemma 4.72: By translating it is enough to verify
the assumptions for z = 0 € H~!((z)~"). Furthermore we can assume that K C B(0, N) for
some N > 0. Now choose x € C°(R, Ry) such that x(0) =0 and x(y) > et if N2> |y|> > e.
() = x(|l@l|Z-1.-m) satisfies the requirement of Lemma 4.72. Clearly f € C?(L*(R?), Ry) N
C(H~Y({x)~™)), furthermore

Vi) =2x" (el -1 -m) (w1 —A) we)
where w(y) =exp(—my). This implies that | f|1 2,m < 0o since

lw(@ = A) " wellgzm <[|(1 = A) w2 <[l @l -1 -m. O

4.9.1. Finite volume

In this section we will investigate Large Deviations of the the measures v{q p: zlimT_,oous’féT_ﬁ.
The fact that this limit exists can easily be seen as in Section 4.6.1. Let us also denote by 17§G7h:
Hm ey oo P4 .

PROPOSITION 4.74. The measures ﬁé’Gﬁ satisfy a large deviations principle with rate function
= 1 1
I(y) :)\/p(x)cos(ﬁgp(x))dac+§m2/<p2(x)dx+§/|V<p(ac)|2dx.

as h— 0.

Before we proceed with the proof let us observe that the discussion in Section 4.6.1 can be
easily modified to obtain the following lemma.

LEMMA 4.75. Assume that f € C*(L*(R?)) then

1
—hlog/e_?f(“’)ﬁgG p(de)= inf Y (u)= inf FfY(u)
’ u€H, ueDf
with

Fplu) = E[f(hl/QWO,ooHo,oo(u)) 0 llcos(n 2600 o Teos B, (1)

+/\/p[[sin(hl/ZB[/VO,OO)ﬂsin(ﬁIQOO(u)) +%/0 ||us||]2;zdt]

and D7 was introduced in Definition 4.60.
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Proof. From Theorem 2.4 we have

“hlog / e 58, (dy)

= it B F( W, Al () + A / plleos(n/23Wp, o) cos( Bl oo (w))

—|—/\/p[[sin(hl/Qm/Vo,oo)]]sin(BhIQoo(u)) +g/0 ||us||]2;zdt]

= ienﬂg E f(h1/2%7m+10,m(u))+)\/p[[cos(hlpﬂ%m)]]cos(ﬂ]o_yoo(u))

+/\/p[[sin(hl/QBI/VO,Oo)]]sin(ﬁlo,oo(u)) +%/0 ||us|,%zdt].
1/2

where in the last line we have employed the change of variables w — ™"/ “u. Now the statement
follows analogously to Section 4.6.1. O

Proof. (OF PROPOSITION 4.74) One can easily modify the bound from corollary 4.7 to be uniform
in h and conclude that v§q ; is exponentially tight on H~'({z)~"). So it is enough to show the
statement for f € D, D being defined in Lemma 4.73. We have that as 5 — 0 [cos(h'/26Wp,00)] — 1
in H=1((z)™™) so

sup
ueDf

/p[[cos(h1/Qﬁwoym)]]cos(ﬁloyoo(u))/pcos(ﬁ]oyoo(u))‘ —0

and analogously

/p[[sin(hl/QBI/VO,oo)]]sin(ﬁlmoo(u))‘ —0

sup
uweDf
since [[sin(hl/QI/Vo_roo)]] — 0. Since also |f(h1/2W0700+Io_roo(u)) — f(Io,00(u))] gcﬁ1/2||%700||H1(<x>7n)
we have that
Fpf et
uniformly on D7, where

FOP»f(u)IE{f(Io,oo(u)) +A/p(m)cos(ﬁ]07m(u))+%/000||u5||%2dt}

This implies that

inf Ff(u)— inf FY(u).
ueDf ueDf

Now from Lemma 4.84 below inf,, o nsF (u) =inf, em, F§ (v). Finally Lemma 4.76 below shows that

R = b (T +T0)). =

LEMMA 4.76. Assume p € C°(R2,[0,1]). Then

Ff(u)= inf Ff(u)= _inf {f()+I°()}.

inf 0
w:L2(P,L2(R4 x R2)) u€H, peS ' (R?)

Proof. Note that

inf  {f()+I°(Y)}= inf {f(¥)+I°(¥)}.

,wey/(RQ) weHl(R?)

Step 1. First we prove

S FOS  h, U)+ P0)

Restricting the infimum to processes of the form

Us = Qs(m2 - A)"/’
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with ¢ € H%(A), we see that

1o, 00 (1) :/Ooonusds:/OooQi(mQ— A)tpds = 1p.

We also compute

B0 = / / Wlds= /O (Q2(m? — Ay, (m? — A)db)pame = (i, (m? — A)d) L2me

inf Ff/(u) < inf FOlwy=inf  {f()+I°()}= inf  {f(¥)+I°(¢)}

ucH, u=Qs(m?—=A)" 1y YEH?(R?) Y€ H(R?)
where the last equality follows from the density of the H? in H' and continuity of the functional
in H'.
Step 2.We now prove the converse inequality

inf F{lu)> if  {f()+ (4}

w€L?(P,L2(R 4 xR?)) YEH (R?)
First note that from Lemma 4.21 |Ju||r2r, xr2) > ||(m? — A)Y 2o o0 (u) |2, sO

inf FJ f( ) > inf ]E[f([opo(u))+)\/pcos(ﬁlo,oo(u))+%A2((m2—A)Io,oo(u))lo,oo(u)

u€H, u€MH,

inf {f(¢)+17(¢)}.

WV

pEH(IR?)
Now
inf Fll(w)>  inf I°()}y = inf FfT inf Fp7
wel2(P IR, xR2)) O (u) we}{r}(nv){f(w—i_ ()} ulen]H (u)> wel2(P L3R, xR2)) O (u)
which proves the statement. O

From this we can easily deduce the following
COROLLARY 4.77. The measures Vé)G 5 satisfy a Large Deviations Principle with rate function
12(9) = [ pla)cos(Bpta)) = Vi +-gm* [ Ha)do 5 [ V(o) da
as h— 0.
LEMMA 4.78. For \ sufficiently small u=0 is the unique minimizer of Fop’o.
Proof. From Lemma 4.76

inf I°(y)= inf F£O.
weg(ﬁz) (¥)= ulen]H 0

()= / Ap(a)eos(Bp(x)) + sm(p(x)) e + 2 / IV da.

and

Now for A small enough and p<1

2 m2

Apleos(p(@)) = 1) + 2-(p(2))? > - (p(x)?

IP(p)—I7(0 >—/ 2dac+/|V<p|2dac.
s0 =0 is the unique minimizer of I”(y) and

f I - )\ d .
ln]( 2) (SD) /p(x) T
()n lhe ()ther hand

2.0y — _ ; 7P p,0
F} (0)—/\/p(ac)dx—<p611{r}fR2)I (¢ )—ulenﬂfI Fp~.

So u=0 is a minimizer of F{"°(0). Uniqueness follows since for A small enough F¢*°(u) is strongly
convex in u. 0
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LEMMA 4.79. Let u™? be the minimizer of Frf’o(u). Then for \ sufficiently small
i {3 s, ) = O

Proof. We have already established in the proof of Proposition 4.74 above that

lim sup |Ff°(u)— FOu)|=0.
h—0,eps

On the other hand for ™ to be a minimizer we must have
FfO(ulr) — FP0(0) <0.

Now

FPO(ulr) — FLO(0)

FO(ulr) — F{0(0) - sup. |F O (u) = F§(u)]
ueD

VoWV

TB{u |3 ~ o(h)

WV

Where in the last line we have used that F¢° is strongly convex and 0 is a minimizer of F{*°. O

4.9.2. Infinite volume

We now want to discuss large deviations in infinite volume, i.e large deviations for vgg p where
vsG,n=1im, 104 j and the limit is understood in a weak sense on H~!((x)~") for n large enough.
Recall that the variational description of rgg involves the process ©u™ obtained as a limit of u”.
We can modify that construction and obtain the following:

LEMMA 4.80. Let pV € CPsatisfying p™N(z) = 1 for x € B(0, N). Let u? be the minimizer of
Ff°(u). There exist processes u>° such that

lim supE[||lu™? —u>=|%_] < N~!
pN—=1
and

||<t>1/2+5uh’oo||L§°(L°°) < C.
Furthermore
Lim E[||u™>||3-,] =0
tim B3
almost surely, where C is a deterministic constant (not depending on h).

Proof. The first two statement’s are an easy modification of Lemma 4.65. The second follows
from the first and Lemma 4.79. g

One can easily modify Proposition 4.66 to obtain

LEMMA 4.81.
fhlog/efgfdysg_h: inf G;L(u)
' ueDf

where

Ghu) = E{f(hm%,mtlo,oo(u) + I oo (u9))
+A/ [eos(i"/26Wo,o0)] (co (80,00 (1) + BIo,o0(u>)) = cos( Blo,o0(u>))
+ )\/ [sin(h/26Wo, 00)] (sin( Blo,c0 () + Blo. 0o (u°°)) — sin( Bl oo (u>)))

1 o 2 * h,00
+= | |Jue]|fedt + gy dt
2Jo 0

PROPOSITION 4.82. Assume that |f|12.m<oo and f: H1((x)™") — R be Lipschitz continuous.

lim sup |G (u) — Gf(u)] =0
h_)OUE]Df
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where
Gi(u)

Proof. By Lipschitz continuity of f

|f(h1/2VV0<>o+IOOO( )+IOOO( hoo)) f(IOOO( ))|
< WPE(Wo,oollir -1 (@) ~m) + ElllHo,00(w"*) |5 -1(() )]

— 0.

Furthermore
‘/ [sin (A 2800, o0) | (10 B0, 00(w) + B0, (u™ ) = sin( B0, (™))

< HHSin(h1/26%7m)H||Bp’,1p+‘s(<x)*")
x || (sin( BI0,00 (1) + Blo,00 (u>)) = sin(BIo, 00 (")) | g5 (a) -
Now for ¢ close enough to 1 we have for any v >0
[(sin(BIo,00(we) + Blo,00 (u™>)) — sin(Blo,c0(u ”"”)))HBI—S« )=

< [(sin(Blo,00 (1) + Bo,c0(u>)) = sin(Blo,c0(u*))) |1,

< [(cos(Blo,o0(u) + Blo,o0(u">)) = cos(Blo,00(u>>))) V0,00 (u" ) || 15
+BI(cos(BIo,00(w) + Blo,00(u>)) Vo o0 (u) 117
+BII(sin( BIo,00 (1) + Blo,00(u>9)) = sin( Blo,00(u>))) 13

< O(|Ho,o0(w)llp22 1V o 00 (6" >) |2~ + [V To 00 (w) [ 1227 + [[ 10,00 () [ 2:29) 0

SO

E| [ T 250 )68 1)+ 0 () = s Bl ()

< CE||[sin(h"/2Woo0) Ul 0. |
X B[ o 00(t0) 22+ [V To,00 (%) [ 2.+ + 1V Io 0 ()22 + [ o 00 1) [ 23]
< CEB|I[sin(h/28Wo,00) 1y s, | Bl Eo,c0() [F2:22] + B[V o oo ()22, -]

[ | i (22800, 45, [ELIV To o) 1227+ oo ()27

and since by Remark 4.19
B[ | Isin (" 28M0, 0015115y —ry | =0

as h— 0, we have uniform convergence of this term to 0. We now rewrite
o250t )03 (0)+ 3 0 — o3 )
- [ cos(Bto ) - 1)
= /([[COS(hl/Qﬁ%,oo)ﬂ — 1)(co8(BIo,00(t) + By, so(>)) — cos(Blo o0 (u™>)))
+/(COS(ﬁIo,oo(u) + B0, 00(u>)) — cos( B, 00 (u>))) — /(Cos(mm(u)) —1).

The first term can be estimated in the same way as the sinus term, provided we replace
[sin(7/26Wy,o0)] with [cos(h/28Wp. )] — 1 which also satisfies

B eos(h/20W5, )]~ 1y ] 0.
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by Remark 4.19. For the second term by fundamental theorem of calculus we can write
(cos( B0, 00(t) + In oo(u2°)) — cos(Ip, 00 (u°))) — (cos(In, oo(u)) — 1)
1
—ﬁ/ ((cos(0810,00(1) + Blo,c00(u°)) — cos(881p, oo (1)) o, 00 (1) )dO
0

1 1
3 / / (cos(8BT o (12) -+ € BT, oo (1)) oo () Ty oo (1) )AOAE
0 0
and so
1
((cos(081In,00(u) + 5[3]0_’00(1157°°))onoo(uh*c’o)loyoo(u))dﬁdg

< B[|[Ho,00(u™*) |12+ Ho,00(w) |12.-]
< Elllo,00(u”>) |72 El | Lo 00(w) | 22,2/

which implies also that term converges to 0. Finally

E[/o /“t“t dlt]<]E[|UIIWIU’”OID A < E[[lulpo] 2Bl lu"<||E -]t

and we can conclude. |

We now relate G¥ to the rate function.

f .
LEMMA 4.83. ulenﬂng d(uw)= weg}fm{f(w)ﬂ(w}

Proof. By Lemma 4.84 below it is enough to show that
inf Gi(u)= inf o {f()+1()}

eD’ 191l g1~ <CIF]
for some v > 0. “ s b
Step 1. First we prove

inf F(u)< inf {f()+1(¥)}.

ueH, N1l <Clfl1,2,~
Restricting the infimum to processes of the form

s = Qu(m? — A
with ¢ € H*(R?) N HY27 we see that

1o, 00 (1) :/Ooonusds:/OooQi(mQ— A)tpds = 1p.

We also compute
fullo= [~ [ = [T (QimE = Ay, (m® = A b)sacuen = (8, (m2 = A
and with w(x) = exp(yz)
fulr= [~ [ widds== [ " w@2m - A)p, (m2 = A)phrmey = (w, (2~ A)phrey

from which we can deduce that ||u||}~ < C||9||z1.~ and u is in D7. So

inf F(u)
ueDf
< inf F(u)
us=Qs(m2—A)yp
pEH?
||¢HH1 2v<C|fl1,2,m
< inf {f(¥)+1(¥)}
pEH?
||¢HH1 2v<C|fl1,2,m
< inf {f(¥)+1(¥)}

[191l451.24<C fl1,2,m
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where the last equality follows from the density of the H2 in H"27 and continuity of the functional
in H'.
Step 2.We now prove the converse inequality

nf B> nf () +1(0).

Recall that from the proof of Lemma 4.21 |ju|[po > ||(m? — A)Y 21y oo(u)||r2 s0

uienngf F(u) > uienﬂgflE[f(onoo(u)) +)\/pcos(ﬂfo_roo(u)) +%/RQ((m27 A)Ip, oo(u)) o, 00(1)
>t W)+ 1)

which proves the statement.
|

LEMMA 4.84. Assume that 272 + X < m?2. Then for p € C°(R?) and p, |Vp| < 1(note that this
includes the p=1 case.)

inf +I° = inf + 1P
wem(w)f(‘p) (v) uw||H1,7<cwf\1,2,zwf(w) (v)

Proof. By a standard argument we obtain that any minimizer of f(¢)+ I(y) satisfies the Euler
Lagrange equation

V(@) + Apsin(Byp) + m%p — Ap=0. (4.29)

Now multiplying (4.29) with we where w(x) =exp(2v|z|) and integrating we obtain

0 = /wVf(sD)%LA/wpsin(ﬁw)ermQ/wa—/prw
= /pr(cp)s0+A/wpsin(ﬂcp)cp+m2/ws02+/wlvsal2+/<PV’w~Vs0

now observe that Vw = 27%exp(2’y|x|) so |[Vw| < 2yw

/|<,0Vw.V<p|<272/w<p2+%/w|V<p|2

note also that

A/Ipwsin(ﬁw)wlék/ww?
Since m? [ we? + [w|Vp[*>0 we have
0 = /wVf(<p)s0+/\/wpsin(ﬂs0)<P+mQ/ws02+/wIVs0|2+/s0Vw~V<P

> (m2—272+/\—5)/w<p2+%/w|vw|2—C|f|:f,2,m
which implies

1
Juwt+5 [wlVeP <l fam
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APPENDIX A

BESOV SPACES AND PARAPRODUCTS

In this section we will recall some well known results about Besov spaces, embeddings, Fourier
multipliers and paraproducts. The reader can find full details and proofs in [12, 73] and for weighted
spaces in 72, 96]. First recall the definition of Littlewood—Paley blocks. Let y, ¢ be smooth radial
functions R¢ — R such that

e suppyx C B(0, R), suppo C B(0,2R) \ B(0, R);
o 0<x,0<], X(§+X;500(277) =1 for any { €R%
e suppo(277-)Nsupp o274 ) =@ if |i — j| > 1.
Introduce the notations go_1=x, 0;=0(277) for j>0. For any f €.7’(A) we define the operators
Ajf=0,D)f, j=~1.
DEFINITION A.l. Let s€ R, p,q€[l,00]. For a Schwarz distribution f €.'(A) define the norm
11185, = 12718 f l22); > ~1lla

where ||| denotes the normalized LP(A) norm. The space By , is the set of functions f € .7'(\)
such that || f||ps , < oo moreover H®= B3 5 are the usual Sobolev spaces, and we denote by €* the
closure of smooth functions in the B5, o, norm.

DEFINITION A.2. A polynomial weight p is a function p: R — R, of the form p(x) = c{x)~7 for
0,c20. For a polynomial weight p let

1 llemo) = (A{dlf(w)lpp(x) dx>1/p

and by LP(p) the space of functions for which this norm is finite. For function defined on a torus
in R% we consider their periodic extensions on R

DEFINITION A.3. For a polynomial weight p let

£ 1oy = ( A d|f($)|pp(x)dx>l/ ’

and by LP(p) the space of functions for which this norm is finite. For functions defined on the
torus A we consider their periodic extensions on R%. Similarly we define the weighted Besov spaces
B3 .(p) as the set of elements of .'(R?) for which the norm

Pq

1 £ 1Bz, (o) = 1275114 f Lo ()= —1lles
is finite and by €*(p) those such that the norm

£ =0y = N127° 1 02 f o)z —1ll e
18 finite.
PROPOSITION A.4. Let § > 0. We have for any q1, g2 € [1, 0], q1 < q2

151l

o < 1l oy <11 F g

P,q1 —

Furthermore, if we denote by W*P the normalized fractional Sobolev spaces then for any q € [1,00]

1 £l o < Fllwecsn < 1 Fll s

pr,qa —
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PROPOSITION A.5. For any s1,s2 € R such that s1 < s2, any p, q € [1,00] the Besov space B, is
compactly embedded into B,

DEFINITION A.6. A smooth function n is said to be an S™ multiplier if for every multi-index «

there exists a constant C,, such that
o — e d
T e+l gere (A1)

We say that a family n; is a uniformly S™ multiplier if (A.1) is satisfied for every t with Cl,
independent of t.

PROPOSITION A.7. Let n be an S™ multiplier, s€ R, p,q€[l,00], and f € B, 4, then
19(D) £ g S 11

Furthermore the constant depends only on s, p, q,d and the constants Cy, in eq. (A.1).

s .
Bp’q

For a proof see [12] Lemma 2.78.
PROPOSITION A.8. Let 0 p, p1, p2 and s, s1, so be such that %:%Jr 1;29
and assume that f € WLPrNW*2:P2. Then

Lf e < LFWSeronll f llre.ve.

and s =0s1 + (1 —0)sa

For a proof see [25].
DEFINITION A.9. Let f, g€ .7 (A). We define the paraproducts and resonant product

frg=g=f= > Aifldyg, and  fogi= > AifAy.
j<i—1 li—j|<1
Then

fg=f=<g+fog+f=g

PROPOSITION A.10. For any polynomial weight p, 3<0,a € R and p1, p2 €[1, ], p—i—f—i: we

1

have the estimate P
Hf>'9||3;;,+qﬁ(p) S Hf||B31,w(p)|‘9||352’q(p)-

For any a, B €R such that a+ 3 >0 the estimate

HfogHB;}fqﬁ(p) S ||f|‘B31,oo(p)||9||352,q(p)-

For a proof see Theorem 3.17 and Remark 3.18 in [96].
PRrROPOSITION A.11. For any polynomial weights v, p and 8 <0,a € R we have

17> gllpetagmy S 1Fleamllglss o

The proof is an easy modification of the proof of Theorem 3.17 in [96].

PROPOSITION A.12. Assumem<0, a€(0,1), B€R. Letn be an S™ multiplier and q, p1,p2 € [1,00],
i+i:%, fe thoo, g€ By, o Then for any § > 0.

P1 P2
In(D)(F > 9) — (D)= )l so-m-s S 115 _lallsg, -
The constant depends only on «, 3,6 and the constants in (A.1).

For a proof see [12] Lemma 2.99.
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PROPOSITION A.13. Let «€(0,1) 3,7 €R such that 6+~v<0, a+ B+ v>0 and p1,p2, p3, pE[1,0]
such that i—l—p—i—i—p—ld:% Then there exists a trilinear form Ri(f, g, h) such that ,

P3,00

184 9.0+ S N, N 1l
and when f,g,h € .7 it has the form
ﬁl(fagah):(fF.g)oh_g(foh)

Proof. The proof is a slight modification of the one given in [73]. Lemma 2.97 from [12] and an
interpolation imply that [|A;fg — A;(fg)|lLr <279 f|lwe-r1] g ||Lr=. This in turn gives after some
algebraic computation (see [73] for details) that

Aj(f=g9)=(Af) =g+ Ri(f,9),
with [|R;(f, g)ller < 277 f| pa

P1,00

llgllzs . Now to prove the statement of the proposition
P2,
observe that for smooth f, g,h we have
Rulfrgh)= D > A(f-Arg)Aih — ArgAfAh.
Jkz—1 li—j|<1

Now observe that the term f = Apg has Fourier transform outside of 2¥B for some ball B inde-
pendent of k, so choosing N large enough we can rewrite the sum as

flfrgm)= Y D ki N(AFARgAN+ Ri(f, Arg)) — Argdif Aih

Jkz-1 li—jI<1
Z Z Li<i+NR;(f, Arg)Aih — L > it NARGA;F AR,
Gk>—1 li—jI<1
Now we estimate the norm of the two terms separately. First note that for fixed j

Y Le<ienB(f, Avg)

k>—1 |i—j]<1

has a Fourier transform supported in 2/B. By Lemma 2.69 from [12] it is enough to get an estimate
on

sup

, 2(a+ﬁ+v)j Z Z ﬂk<t+NRJ(f7Akg)Ath

iz-1 li—jI<1

Lr

to bound it in Bg;ﬁ +7 so by Hélder inequality,

i+N
> Rj<f, > Akg>Aih
LP

li—j1<1 k>—1

A

Y 27t glsy, I flisg [Ik]s;

. ) q1 P3,492
li—jl<1

< 279 glsg I fllgs,  Ihls;

P3, 492"
For the second term observe that for fixed k£ the Fourier transform of

ST TisirnArgAifAR

jz—1 li—jI<1

is supported in 2¥B. Now we can estimate again by Hélder inequality

Z Z LTz ir NARGA; fAH

jz-1 li—jI<1
k+N

< 2—‘%2 2’(5”)’“1k>i+NHgllBgl,oonHngllhHBgl,m
i>—1

< 2 gl N Fllsg IRl

O

A

LP

Y .
Pr3,492
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PROPOSITION A.14. Assume 8 € (0, 1), a, v € R such that « + v <0, and o + 8 + v = 0,

L1 and L +1=1. Then there exists a trilinear form Ra(f, g,h) for which
P1 P2 p3 q1 g2

8a(f, 9, WIS iz, N alsg IRl

L)
pP3:492
and on smooth functions

ﬁ2<f,g,h)zf[<f>g>h—g<foh>1.

Proof. This is modification of the proof of Lemma A.6 in [70]. Repeating an algebraic computation
given in the proof of that lemma, we get that for smooth f, g, h we have

ﬁz(f,g,h)< Y - )f(AifAngkm,

i<i—1,|i—k|<L  i~k,j<i+L
for some L > 1. Then we estimate
[Ra(frg W) S D A DAL
injnk

S ) Al Agllrral Axh|Lrs

injk

sup (2| Aif [lLr) Y 20058 Agglpral| Axh|zrs

i~k

N

N

11, Nallsp. Il
O

Y .
P3,492

PROPOSITION A.15. There exists a family (R3,+)t>0 of bounded multilinear forms on € ~17% x
E 175 5 HY/2=% x HY/2=% such that for smooth ¢, v, g™, ¢ it holds

Rs.4(p, 1,9V, @) = ][[Jt(cp = g (v = gP) — (Jupo Jup) gV g@],
and

1
[Rs,e(, 0, g, 9@ /SWH90”%*1*"”wHCK*l*"”g(l)”Hl/Zfﬂ||g(2)HH1/2fm
Proof. Note that (t)1/2]; satisfies the assumptions of Proposition A.12 and with m=—1, therefore
using also Proposition A.4

[17:(0 = g) = Jep = gDl gare-an S ()72 @ llg—1- gDl /2.
Therefore

]][[Jt<sa>g<l>) ~ (g gD > g)

1760 = g1 = Jep = gWllggrsa-on | Te(w = 9@ gy -1/
& lllg-1-sllgWllgrre-w )20 g -1-llg® o

and by symmetry also

ARZA

’7[[‘]'5(9” = g Ji(h = P = (Jup = g M) (T - g(2>)]’

S O lelle--<lgPlgrrz—cl¥lle-1-<l 9@ 1 o

Furthermore from Proposition A.14 and for sufficiently small x>0,

][(Jt<P = W) (T > g®) - ][((Jtsa = g0 thg?)\

17Nl =2 1LgPllrasa— 1Tt Nl = g2y /2-
&) el 1w lgWlggrz—r 19 llg=1-5 gl /2-n.

A4
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Applying Proposition-A.13 we get

| (Jtsﬁ(l) - 9(1)) o Jypy — (Jipr 0 Jt"/)t)(g(l))HH*l/?*"
[ Teillee 2w | g0 ggar2— | Tethell g -
)10 @llg-1=w gD grrz—r |9l —1-»

and putting things together gives the required estimate. O

A4



