

Ai-based, behavior-dependent approaches

for connectomic reconstruction of

neuronal circuits

Dissertation

zur

Erlangung des Doktorgrades (Dr. rer. nat.)

der

Mathematisch-Naturwissenschaftlichen Fakultät

der

Rheinischen Friedrich-Wilhelms-Universität Bonn

Vorgelegt von

Jens Florian Schweihoff

aus Essen

Bonn, September 2021

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen

Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn

1. Gutachter: Prof. Dr. Heinz Beck 1,

2. Gutachter: Prof. Dr. Ulrich Kubitscheck 2

1 Institut für Experimentelle Epileptologie and Kognitionsforschung, Medizinische

Fakultät, Rheinische Friedrich-Wilhelms-Universität Bonn.

2 Biophysikalische Chemie, Mathematisch-Naturwissenschaftliche Fakultät, Rheinische

Friedrich-Wilhelms-Universität Bonn

Tag der Promotion: 09.02.2022

Erscheinungsjahr: 2022

"Progress in science depends on new techniques, new discoveries and new ideas,

probably in that order"

Sydney Brenner

CONTENTS

1 ABSTRACT 7

2 INTRODUCTION 9

2.1 Labeling of functionally active ensembles 9

2.2 Detection of behavioral expressions in real-time 10

2.3 Imaging functional ensembles 11

2.4 Goals 12

3 THEORETICAL BACKGROUND 13

3.1 Translating neural activity into gene expression 13

3.2 Markerless pose estimation 16

3.3 AI-based behavioral analysis 18

3.4 Light sheet fluorescence expansion microscopy 18

3.5 Multicolor neuron labeling for circuit tracing 20

3.6 Vector-based delivery of expression systems 22

4 RESULTS 25

4.1 Real-time, closed-loop experiments 25
4.1.1 Real-time tracking and manipulation of animals during ongoing experiments 25
4.1.2 DLStream output 27
4.1.3 DLStream GUI 27
4.1.4 Adaptability of DLStream 29
4.1.5 DLStream hardware compatibility 30
4.1.6 Optogenetic, head direction-dependent labeling of neurons using DLStream 30
4.1.7 Computational performance of DLStream 35

4.2 Multicolor labeling for neuronal tracing 38

5 DISCUSSION 43

5.1 Real-time, closed-loop experiments 44
5.1.1 Head direction-dependent labeling of active neuronal ensembles 44
5.1.2 From behavior-dependent labeling to causality 45
5.1.3 Performance of DLStream 47
5.1.4 Real-time machine learning-based behavior classification in DLStream 48
5.1.5 Performance of real-time classification in DLStream 49
5.1.6 Reliable multiple animal tracking in DLStream 50
5.1.7 Available open-source, pose estimation-based closed-loop systems 51

5.2 Multicolor light sheet fluorescence expansion microscopy 52

5.2.1 Hue-based analysis of expanded tissue 53

5.3 Future directions 54
5.3.1 Limitations of Cal-Light in capturing behavioral expressions 54
5.3.2 Limitations of Cal-Light in connectomic analysis 55
5.3.3 Improvements to DLStream behavior detection 56

5.4 Conclusion 58

6 REFERENCES 59

7 METHODS 66

7.1 Mice 66

7.2 AAV production 66

7.3 Surgical procedure 67

7.4 Perfusion 68

7.5 Expansion of tissue samples 68

7.6 Imaging of brain sections 69

7.7 Head direction-dependent optogenetic stimulation 69

7.8 Head direction analysis 70

7.9 Experimental setup 71

7.10 Hardware latency and detection accuracy during optogenetic stimulation 71

7.11 Pose estimation using DLC 72

7.12 Behavior detection in DLStream 72

7.13 Machine learning-based classification in DLStream 73

7.14 Statistics and reproducibility 74

8 ACKNOWLEDGMENTS 75

9 SUPPLEMENTARY INFORMATION I

9.1 Tables I

9.2 Figures IV

9.3 DLStream Code and examples V
9.3.1 DLStream package structure V
9.3.2 Experiment module for the optogenetic experiment VI
9.3.3 Example trigger module IX
9.3.4 Example stimulation module XI
9.3.5 Adapting an existing experiment XII
9.3.6 Feature extraction and classification in DLStream XV

FIGURES

FIGURE 1 - A VISUAL REPRESENTATION OF DLSTREAM. 12
FIGURE 2 - SCHEMATIC REPRESENTATION OF CAL-LIGHT 14
FIGURE 3 – POSE ESTIMATION USING DEEP NEURAL NETWORKS 16
FIGURE 4 - TISSUE EXPANSION 19
FIGURE 5 - SCHEMATIC REPRESENTATION OF TETBOW 21
FIGURE 6 - EXPERIMENTAL SETUP 26
FIGURE 7 - DLSTREAM GRAPHICAL USER INTERFACE 28
FIGURE 8 - OPTOGENETIC LABELING OF HEAD DIRECTION-DEPENDENT NEURONAL ACTIVITY 32
FIGURE 9 - QUANTIFICATION OF OPTOGENETIC LABELING OF HEAD DIRECTION-DEPENDENT ACTIVITY IN

NEURONS. 34
FIGURE 10 - ESTIMATION OF ACCURACY OF HEAD DIRECTION TRIGGERS WITH DIFFERENT ANGLE WINDOW

SIZES. 37
FIGURE 11 – HIGH CONTRAST, MULTICOLOR LABELING WITH TETBOW AND TISSUE EXPANSION FOR NEURONAL

TRACING 41
SUPPLEMENTARY FIGURE A - EXAMPLES OF HEAD DIRECTION ANGLES DURING OPTOGENETIC LIGHT

STIMULATION. IV
SUPPLEMENTARY FIGURE B - FOLDERSTRUCTUR OF DLSTREAM PACKAGE V
SUPPLEMENTARY FIGURE C - REAL-TIME CLASSIFICATION IN DLSTREAM XV

TABLES

TABLE 1 - PERFORMANCE OF DIFFERENT NETWORK ARCHITECTURES IN DLSTREAM IN RELATION TO THE
NUMBER OF ESTIMATED BODY PARTS AND IMAGE RESOLUTION. 38

SUPPLEMENTARY TABLE A – AVAILABLE MODULES IN THE OPEN-SOURCE VERSION OF DLSTREAM I
SUPPLEMENTARY TABLE B – AVAILABLE EXPERIMENT MODULES IN THE OPEN-SOURCE VERSION OF DLSTREAM

 II
SUPPLEMENTARY TABLE C – EXAMPLE OF DLSTREAM OUTPUT III
SUPPLEMENTARY TABLE D –TETBOW INJECTION SCHEME III
SUPPLEMENTARY TABLE E - CLASSIFICATION AND FEATURE EXTRACTION PERFORMANCE XVII

file:///C:/Users/schwa/Desktop/PROMOTION/Dissertation_JensSchweihoff_v3_fig.docx%23_Toc83366378
file:///C:/Users/schwa/Desktop/PROMOTION/Dissertation_JensSchweihoff_v3_fig.docx%23_Toc83366379
file:///C:/Users/schwa/Desktop/PROMOTION/Dissertation_JensSchweihoff_v3_fig.docx%23_Toc83366380
file:///C:/Users/schwa/Desktop/PROMOTION/Dissertation_JensSchweihoff_v3_fig.docx%23_Toc83366381
file:///C:/Users/schwa/Desktop/PROMOTION/Dissertation_JensSchweihoff_v3_fig.docx%23_Toc83366382
file:///C:/Users/schwa/Desktop/PROMOTION/Dissertation_JensSchweihoff_v3_fig.docx%23_Toc83366383
file:///C:/Users/schwa/Desktop/PROMOTION/Dissertation_JensSchweihoff_v3_fig.docx%23_Toc83366384
file:///C:/Users/schwa/Desktop/PROMOTION/Dissertation_JensSchweihoff_v3_fig.docx%23_Toc83366385
file:///C:/Users/schwa/Desktop/PROMOTION/Dissertation_JensSchweihoff_v3_fig.docx%23_Toc83366386
file:///C:/Users/schwa/Desktop/PROMOTION/Dissertation_JensSchweihoff_v3_fig.docx%23_Toc83366386
file:///C:/Users/schwa/Desktop/PROMOTION/Dissertation_JensSchweihoff_v3_fig.docx%23_Toc83366387
file:///C:/Users/schwa/Desktop/PROMOTION/Dissertation_JensSchweihoff_v3_fig.docx%23_Toc83366387
file:///C:/Users/schwa/Desktop/PROMOTION/Dissertation_JensSchweihoff_v3_fig.docx%23_Toc83366462
file:///C:/Users/schwa/Desktop/PROMOTION/Dissertation_JensSchweihoff_v3_fig.docx%23_Toc83366462

LIST OF ABREVIATIONS

ABBREVIATION EXPLANATION

AAV Adeno-associated virus

ADN Anterodorsal thalamic nucleus; a brain region containing head direction cells

AI Artificial Intelligence; field of informatics in which algorithms are developed that

display/simulate intelligence and learning

APS Ammonium persulfate; Chemical compound used in polymerisation reactions

CAG Strong synthetic promotor used in gene engineering

CAL-LIGHT Optogenetic system to activity-dependently label neurons after light-induction

CAM Calmodulin; a calcium-binding protein

CL Classifier; used in machine learning algorithms to describe classification algorithms

CMOS Complementary metal–oxide–semiconductor; semiconductor used in image sensors

for photodetection

CRE Cre-Recombinase; Enzyme used in the Cre-loxP expression system

CSV Comma-separated values; a file format

DAPI 4′,6-diamidino-2-phenylindole; fluorescent dye used to visualize DANN

DAQ Digital Acquisition Board; Device that converts analogue to digital signals and vice

versa

DG Dentate Gyrus; a region in the hippocampus

DLC DeepLabCut; a software solution for pose estimation of animals

DLC-LIVE Real-time pose estimation solution of DLC

DLSTREAM DeepLabStream; a software solution for closed-loop behavior-experiments

EDTA Ethylenediaminetetraacetic acid; Chemical compound binding iron/calcium that is

commonly used in molecular biology

EGFP Enhanced Green Fluorescent Protein; an enhanced version of GFP

EXM Expansion Microscopy; a tissue preparation technique (tissue expansion) that is

utilized for light microscopy

EXP Experimental Group

EYFP Enhanced Yellow Fluorescent Protein; an enhanced version of YFP

FLARE Optogenetic system to activity-dependently label neurons after light-induction

GPIO General Purpose Input Output; a digital signal pin on circuit boards

GPU Graphical Processing Unit

GUI Graphical User Interface

IP Internet Protocol address

LEAP Single animal solution of SLEAP

LOXP Locus of X-over P1; site used in Cre-loxP expression system

LSFEM Light Sheet Fluorescence Expansion Microscopy; a combination of LSFM and ExM

LSFM Light Sheet Fluorescence Microscopy; a microscopy technique

ABBREVIATION EXPLANATION

MIP Maximum Intensity Projection; a method for visualization of microscopy data

ML Machine Learning; see AI

MTURQUOISE2 Blue/turquoise fluorescent protein

NA Numerical Aperture

OS Operating System (e.g., Windows)

PBS Phosphate buffered solution; a common buffer solution in biochemistry

PCR Polymerase chain reaction; method to quantify/amplify DNA samples

PFA Paraformaldehyde; Chemical compound used in tissue fixation

RAAV Recombinant Adeno-associated Virus; a common virus construct used in genome

engineering

RAM Random-access memory; working memory of computers

RGB Color-space described as values in the red, green, and blue channels

ROI Region of Interest; descriptive term for region-based analysis

SCFLARE Optogenetic system to activity-dependently label neurons after light-induction

SDS Sodium dodecyl sulfate; organic detergent commonly used in molecular biology

SLEAP Social LEAP Estimates Animal Poses; a software solution for pose estimation of

animals

SYN1 Synapsin promotor; commonly used in viral constructs to target neurons

TDTOMATO Red fluorescent protein

TEMED Tetramethylethylenediamine; Chemical compound used in polymerisation reactions

TEMPO (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl; Chemical compound used in polymerisation

reactions

TEV Tobacco etch virus

TRE Tetracycline Response Element; a component of the Tet-On/Off expression system

TTA Tetracycline transactivator; a component of the Tet-On/Off expression system

TTL Transistor-transistor logic; form of digital signal (0 or 1)

USB Universal Serial Bus; industry standard for cables/connectors

WPRE Woodchuck Hepatitis Virus Posttranscriptional Regulatory Element; a DNA sequence

that is used in viral constructs to enhance expression levels

XFP X Fluorescent Protein; X as a placeholder for a color e.g., Green

 7 of 99

1 Abstract

Characterizing the functional architecture of neuronal circuits that underly complex

behavior requires identifying active neuronal ensembles during behavioral expressions of

interest. The recent development of light-induced, activity-dependent labeling enables to

capture active neuronal ensembles dependent on ongoing behavior, effectively allowing

the behavior-dependent, causal identification of relevant structures for subsequent

investigation.

However, the behavior-dependent labeling of active neuronal ensembles was limited so

far by a lack of dynamic closed-loop feedback systems that reliably detect unconstrained

behavioral expressions. To solve this, I developed DeepLabStream (DLStream). DLStream

is a versatile closed-loop toolkit providing real-time pose estimation of animals and

conducting behavior-dependent experiments. DLStream has a temporal resolution in the

millisecond range, is published open-source, and integrates other open-source projects

such as deep learning-based pose estimation networks (DLC, SLEAP, DeepPoseKit), GPIO

control (Arduino, Raspberry Pi), and machine learning-based behavior classification (B-

SoiD, SimBA). To demonstrate DLStream's capabilities, I used the toolkit to label neuronal

ensembles active during specific head directions utilizing Cal-Light, a light-induced,

activity-dependent biomolecular labeling system. Behavior-dependent light stimulation

resulted in labeling of neuronal ensembles active during specific episodes of head

direction. Importantly, this experimental strategy has the potential to untangle previously

unknown causal relationships. This can be achieved by combining connectomic analysis

of the captured ensembles and consecutive manipulation of their neuronal activity.

Additionally, I established the Tetbow system, a virus-mediated, multicolor labeling

system that can eventually be combined with behavior-dependent labeling to allow the

anatomic analysis of large-scale tissue samples with behavior-dependent, uniquely

labeled neuronal ensembles. Here, the focus lay in the effective use of Tetbow labeled

samples in a collaborative attempt to develop an automatic segmentation tool to segment

uniquely colored neurons in large tissue samples. Notably, some of the results of this

thesis were published, including additional experiments using DLStream 1.

8 of 99

 9 of 99

2 Introduction

 A fundamental goal in neuroscience is to explain how structured neuronal activity

gives rise to behavior 2–6. The initial approach is often to investigate how behavior

manipulation affects neural activity. However, techniques that directly manipulate

neuronal activity enable modulating the source of behavior and investigate their causal

relationship 7. For this, functional neuronal circuits are often represented as mechanistic

models in which components interact in a causal, often linear way. This mechanistic

perspective allows probing presumed functions by manipulating components and

measure their effect on the overarching network, including their behavioral output 8.

Therefore, by probing how neuronal activity patterns contribute to behavior, mechanistic

models of the causal relationship of behavior and neuronal activity can be generated and

used to explain the roles of distinct circuit elements 8.

However, the active neuronal ensembles, or functional ensembles, need to be identified

and selectively targeted for measurement and manipulation. Unfortunately, the search

for these functional ensembles is currently limited by the typically inferior temporal

precision of methods dissecting behavior. Optimally, the respective behavioral

expressions and corresponding neuronal ensembles should be characterized with a

temporal resolution that allows probing the causal links during ongoing behavior 5–7.

In this line, available labeling and manipulation of functionally active ensembles are

currently limited by the lack of dynamic solutions that allow behavior-dependent

feedback. Thus, two main requirements arise to identify active neurons during specific

behavioral expressions and label them for future selective manipulation, imaging, and

connectomic analysis.

2.1 Labeling of functionally active ensembles

 The first requirement concerns the method of selectively labeling active neurons.

Classic manipulations of larger-scale neuronal activity such as lesions, transgenic

alterations, and pharmacological injections cannot identify neuronal ensembles

selectively. Additionally, they result in long-lasting and sometimes chronic changes in the

10 of 99

investigated animals, making it challenging to interpret behavioral effects and potential

side effects on local network structures 7–9. In contrast, optogenetic manipulation 10–12

offers high temporal precision for fast, short-lived manipulation of neuronal activity 7,8

and has been applied in several fields, such as investigating mechanisms of learning and

memory 13–15, perception16,17, motor control 18,19, and epilepsy 20–23. Such techniques offer

a temporal resolution precise enough that the triggered effect can match the timescale of

either behavioral expression or neuronal computation 24,25. For the analysis of functional

ensembles, recently developed optogenetic tools enable the labeling of active neuronal

ensembles during episodes of behavior 26–29. Cal-Light 26,27, for example, allows to virtually

time-lock activity connected to behavioral expressions by utilizing a light-induced, activity-

dependent expression of reporters (see chapter 3.1).

However, while the system has the molecular contrast and coincidence detection

necessary to identify active ensembles during ongoing behavior, the effective use of Cal-

Light is currently limited by the lack of dynamic closed-loop feedback systems that detect

unconstrained behavior.

2.2 Detection of behavioral expressions in real-time

 Therefore, the second requirement to label active neurons during specific

behavior is the reliable detection of relevant behavioral episodes in real-time. Preexisting

systems that allow behavior-dependent feedback often rely on specialized, on-purpose

setups, including intricate beam brake designs, treadmills, levers, and virtual reality setups

to approximate the movement of the investigated animal in a given environment and then

react accordingly 30–38. However, the identification of truly unconstrained behavior would

facilitate a combination of dynamic behavior-dependent light stimulation and activity-

dependent labeling techniques to study neuronal ensembles active during selected

behavioral expressions in a previously unmatched level of detail and range.

Fortunately, recent developments in neuroethology have made pose estimation of several

species possible using robust deep-learning-based markerless tracking 39–46. DeepLabCut

(DLC) 39,45–48, for example, uses trained deep neural networks to track the position of user-

defined body parts and provides motion tracking of freely moving animals (see chapter

3.2). Most interesting, post hoc analysis using deep learning-based pose estimation was

 11 of 99

recently shown to outperform previous go-to commercial solutions 49. Additionally,

sophisticated machine learning approaches have allowed for disentangling the complex

behavioral expressions of animals into patterns of reoccurring modules 50–56 (see chapter

3.3). Many of these techniques involve the initial estimation of pose information utilizing

toolkits like DLC. However, the leap to behavior-dependent closed-loop experiments using

online pose estimation has begun only recently.

2.3 Imaging functional ensembles

 Finally, the connectomic analysis of active ensembles, labeled by a combination of

Cal-Light and a behavior-dependent closed-loop solution, would benefit from imaging

critical elements from mesoscopic (large scale networks) to nanoscopic scale (synaptic

level). Thus, allowing a complete characterization of functional ensembles, including the

individual connectivity and morphology of neurons. A recently developed, virtual super-

resolution imaging technique enables further insight into anatomical details on a small to

larger scale at a feasible speed 57,58. Light sheet Fluorescence Expansion Microscopy

(LSFEM, see chapter 3.4) allows studying partial synaptomes with simultaneous ability to

zoom out and look at the functional projectome of large-scale networks.

Here, the available resolution of LSFEM will be beneficial in the investigation of large-scale

effects by small-scale morphology changes. For example, in brain disorders associated

with abnormal dendritic spines 59–61. However, the efficient identification and tracing of

multiple individual neurons within a population is limited by the ability to distinguish

between closely neighboring cells. This limitation is severe in regions where the densely

layered neuronal architecture results in bundled axonal projections or heavily entangled

dendritic trees such as the hippocampus.

Countering these challenges, a biomolecular technique called Tetbow uses the

stochastically distributed expression of multiple, differently colored fluorescent

proteins 62–65 (see chapter 3.5). However, its effective use with expanded tissue has not

been shown yet.

12 of 99

2.4 Goals

 Investigating causal links between behavioral expressions and their active

neuronal correlates in the brain requires novel techniques with high temporal

resolution 2–6. The development of behavior-dependent circuit labeling will allow novel

insights into structure/function relationships within the rodent brain. It promises to

bridge connectomics and physiology with the potential to reveal how functional

architectures control neuronal computations and behavioral output.

In this thesis, an AI-based, real-time closed-loop system was developed to further

investigate neuronal networks correlated to behavioral episodes of interest and used to

label neuronal ensembles that were active during ongoing, selected behavior. The

software developed during this thesis was designed and published as an open-source

Figure 1 - A visual representation of DLStream.

Visual representation of workflow in DLStream. Initially, an experimental protocol is designed using a
sequence of modules (puzzle pieces), and a trained pose estimation network is integrated into
DLStream. Afterward, DLStream provides three different outputs for every experiment. 1. Experiments
can be monitored on a live stream. 2. The experimental protocol is run based on posture detection.
3. Recorded video and experimental data are exported after the experiment is done.
A version of this figure was also published in Schweihoff, et al. 2021.

 13 of 99

toolkit to facilitate a long-term, sustainable software solution 1,66. Thus, it will continue to

benefit from community-driven improvements and extensions.

DeepLabStream (DLStream, Figure 1) is a multi-purpose software solution that enables

markerless, real-time tracking and behavior-dependent manipulation of freely moving

animals during ongoing experiments. Its core capability is the orchestration of closed-loop

experimental protocols, incorporating real-time feedback to facilitate dynamic

experimental paradigms. DLStream utilizes state-of-the-art pose estimation such as

DLC 39,46–48 to track the postures of mice in real-time and supervises behavior-dependent

feedback to input and output devices. It can be combined with biomolecular tools such as

Cal-Light to map active neuronal circuits selectively. DLStream's capabilities are

demonstrated in a head direction-dependent optogenetic stimulation experiment

labeling neurons active during specific head direction. To further establish DLStream as a

sustainable software solution, this thesis will elaborate on the versatility of DLStream to

adapt to different experimental conditions and hardware configurations and introduce

the design of DLStream controlled experiments and triggers. An extensive guide on using

and customizing DLStream with several examples is also published alongside the software

repository 66.

Additionally, this thesis will give an outlook on the ongoing developments that combine

the powerful imaging technique LSFEM with the high-contrast biomolecular tool Tetbow

in a collaborative effort to advance the automatic segmentation of large-scale tissue. For

this, Tetbow-based multicolor labeling was optimized for use with tissue expansion

protocols to lay the foundation for advanced connectomic analysis, eventually combining

automatic segmentation of large-scale tissue with behavior-dependent, multicolor

activity labeling.

3 Theoretical background

3.1 Translating neural activity into gene expression

 In vivo single-unit recording 67, along with recent advances in in vivo voltage

imaging 68 and miniaturized calcium imaging techniques 69–71, facilitate real-time

measurements of neuronal activity in freely moving mice. These techniques provide a

14 of 99

wide-ranging foundation for the correlation of recorded neuronal activity and complex

behavior. With the development of activity-dependent labeling techniques 26–28, the

integration of behavior-dependent circuit labeling is imminent.

The activity-dependent, light-induced labeling technique Cal-Light allows to label neurons

active during episodes of behaviors of interest 26. Cal-Light utilizes a combination of

specialized proteins to obtain its coincidence detection (see Figure 2). Its core function is

the light-induced translation of cytosolic Ca2+ events into gene expression. To accomplish

Figure 2 - Schematic representation of Cal-Light

a-b, Schematic representation of the biomolecular mechanism of Cal-Light. Upon Ca2+-dependent
binding of Calmodulin and M13, the split TEVp units TEV-C and TEV-N regain function. Simultaneous
stimulation by blue light mediates the release of the TEVseq site and enables the release of tTA upon
cleavage by TEVp. tTA-dependent eGFP expression is then initiated, labeling the cell green (eGFP) in
addition to red (tdTomato).
c, Schematic representation of the experimental progression with Cal-Light. First, mice are injected with
a viral mixture (AAV-TRE-EGFP, AAV-M13-TEV-C-P2A-TdTomato, AAV-TM-CaM-NES-TEV-N-AsLOV2-
TEVseq-tTA). After infection, neurons are labeled with tdTomato (left panel; red cells). During blue light
stimulation (middle panel; blue circle), active neurons (Ca2+, black arrow up) are labeled with eGFP
(green), resulting in yellow labeled neurons (right panel), effectively labeling neuronal ensembles active
during light stimulation.

 15 of 99

this, a tetracycline-controlled transcriptional activator (tTA) is tethered to the outer

cellular membrane and fused with a tobacco etch virus protease (TEVp) cleavage

sequence (TEVseq). Cal-Light's light sensitivity is achieved by light-induced TEVseq

cleavage and resulting tTA release. By masking the sequence within the C terminus of the

Jα-helix of Avena sativa phototropin 1 light-oxygen-voltage 2 domains (AsLOV2) 16, the

cleavage site is only available for TEVp activity after a blue light-induced conformation

change. Activity dependency is realized by splitting the corresponding protease TEVp into

N- and C-terminal fragments (TEV-N and TEV-C) that regain proteolytic function upon

binding of a Ca2+ sensor pair (CaM and M13), which bind upon cytosolic Ca2+ rise (see

Figure 2 a, b). In its basic configuration, Cal-Light can be combined with tTA-dependent

vectors such as rAAV-TRE-eGFP to facilitate the expression of reporter genes (e.g., eGFP).

In a behavior experiment, mice injected with Cal-Light can be stimulated with blue light

through an implanted light fiber, depending on their behavior (e.g., pulling a lever).

Infected neurons in the light-stimulated brain region will express the reporter protein

(eGFP) if active during the detected behavioral episode. Infected but inactive neurons

remain only labeled with tdTomato (see Figure 2 c). For high molecular contrast, the Cal-

Light system needs to be activated repetitively. While this lowers the probability to label

behavioral episodes with a low frequency of occurrence effectively, it also increases the

contrast between truly correlated and sporadically active neurons. Neurons that are

randomly active during the behavioral episode are likely filtered out by the repetitive

activation threshold. Cal-Light thereby effectively enables the labeling of active neuronal

ensembles during behavioral episodes of interest.

However, the system can also be used to express optogenetic tools to enable behavior-

dependent manipulation of neuronal activity 26. For example, a combination of Tetbow

(see chapter 3.5) and Cal-Light would allow to behavior-dependently capture neuronal

ensembles with simultaneous multicolor labeling of individual neurons for advanced

segmentation. For a more detailed description of the expression system (Tet-O), please

refer to chapter 3.5.

As previously stated, for the effective, transient expression of reporter genes, Cal-Light

must be reliably activated. Neuronal activity and light stimulation need to coincide,

repetitively, with high temporal precision 26. This requirement renders the technique

16 of 99

dependent on external trigger systems to detect behavioral expressions and give

instantaneous feedback. In other words, while Cal-Light's ability to detect neuronal

activity is remarkable, a major limitation for the effective application of the technique is

identifying reoccurring episodes and reliably trigger light stimulation.

3.2 Markerless pose estimation

 Markerless pose estimation is one of the recent additions of machine learning-

based approaches in ethology and neuroscience 4,39–41,43. Its core achievement is the

reliable, autonomous extraction of positional data of user-defined key points (e.g., body

parts; Figure 3) from a video without the need for physical markers (e.g., reflective

markers applied to the subject). This form of motion tracking has several advantages over

Figure 3 – Pose estimation using Deep Neural Networks

a, Schematic representation of an experimental setup. A camera, mounted above the arena at a 90°
angle, is used to record example videos of a mouse during behavior.
b, A characteristic set of example frames recorded in a is labeled with key points (e.g., nose, neck, and
tail base) and used to train a deep neural network (DNN; c).
c, The DNN extracts relevant image features and learns an abstract definition of the user-defined key
points.
d, The trained network can then be used to estimate the position of previously learned key points in
novel video frames. The resulting pose estimation is exported and can be used for complex behavior
analysis. This figure was inspired by Mathis, Mamidanna et al. 2018.

 17 of 99

classic videography, which is often a time-consuming and error-prone process. It allows

additional degrees of freedom compared to marker-based tracking 72–74: Primarily

because markers do not need to be preset or predefined before the recording.

Consequently, videos can be reanalyzed with different sets of key points depending on

the analysis requirements. Previously recorded data can be revisited even if markerless

pose estimation was not established in the laboratory during their recording. This

advantage increases the likelihood of implementing markerless pose estimation in

ongoing research projects successfully.

For deep learning-based pose estimation, a trained machine learning algorithm (model)

identifies reoccurring features in a video frame and reliably extracts positional

information with high accuracy (Figure 3). As a result of the growing interest from

researchers across ethological fields in recent years, several implementations of this

method are available for animal tracking 20,21,35,36. Most recent popular models (e.g.,

DeepLabCut 39,47,48) are based on deep learning architectures, such as DeeperCut75, a

model previously developed for human pose estimation. Deep neural networks (DNNs,

Figure 3 c) utilize the inherent ability of artificial neural networks to learn how to extract

high-level features from raw input, such as coordinates from video frames, based on

previously seen labeled data (Figure 3 a-b). This ability allows researchers to quickly train

a robust machine learning algorithm to identify body parts of interest in their

experimental paradigm and track the movement of each key point across multiple

sessions and individuals. Pose estimation data can then be analyzed in several ways,

including machine learning-based approaches for behavioral classification 49,54,76. The

resulting behavioral classification can then be used to extract highly detailed information

about the specific behavioral changes in each session (see chapter 3.3).

However, to study the activity and connectivity of neuronal networks underlying behavior,

the respective behavioral expressions and corresponding neuronal ensembles need to be

identified and labeled in real-time. This endeavor requires fast, reliable pose estimation

and an advanced closed-loop system to identify behavioral expressions and administer

real-time feedback.

18 of 99

3.3 AI-based behavioral analysis

 With the rise of machine learning-based pose estimation of animals, the amount

of readily available, highly detailed data on animal behavior is growing steadily. The

demand for unbiased, high-throughput analysis resulted in several open-source

applications that enable non-expert researchers to start analyzing their complex

behavioral data 49,53–56,76,77. Approaches range from classifying previously defined

behavioral expressions 49,76 to finding novel patterns in the hidden dynamics of complex

behavior 52–56,77. These approaches often incorporate sequential analysis protocols for

automatic parameter quantification 49,76 that previously required human expert

annotation over hours of video data. Consequently, researchers who successfully

established these toolkits benefit from the increased time efficiency, inherently low bias,

and increased spectrum of complex behavioral expressions 49,53,54,76.

Considering closed-loop experiments, where behavior detection is often required to be

autonomous and faster than humanly possible with minimal inter-event variability, a

machine learning-based behavior analysis would increase the detection spectrum

considerably. However, the practical benefit of using machine learning-based behavior

detection should be considered on a case-by-case basis. Simple behavioral expressions

can often be easily defined by relative feature changes and do not require the elaborate

training of a classifier.

3.4 Light sheet fluorescence expansion microscopy

 The ability to volumetrically image highly detailed molecular information in

subcellular resolution across whole brain areas is critical in establishing meaningful, time-

efficient studies of functional ensembles across the brain. With optical and electron

microscopy, researchers established methods that have the potential to untangle the

complexity of the brain's functional architecture. These neuronal architectures are

composed of structures spanning several orders of magnitude across the brain.

Unfortunately, optical microscopy is often insufficient to reveal subcellular details in high

resolution, and electron microscopy lacks the molecular contrast to phenotype and

investigate in rich detail over a larger scale.

 19 of 99

A solution built to combine super-resolution, high throughput, and high molecular

contrast imaging of large brain samples is light sheet fluorescent expansion microscopy

(LSFEM). Combining two optical microscopy techniques enables imaging from mesoscopic

to nanoscopic scale 57,58.

Standard expansion microscopy virtually enhances the potential resolution of optical

microscopy by increasing tissue sample size rather than optimizing microscopy techniques

and equipment 57,58,78–80. The tissue is permeated with a hygroscopic polymer and

isotropically expanded after enzymatical treatment (see Figure 4). For this, proteins of

interest are labeled with antibodies, nanobodies, or fluorescent tags (e.g., GFP), which are

covalently attached to the polymer matrix before isotropic expansion with water-based

solutions (Figure 4 a-b). After expansion, fluorescent labels initially spaced closer than the

optical diffraction limit (~250nm) can be optically resolved, resulting in effective "super-

resolution" images of the sample (Figure 4 c). Due to the high water content of the

expanded sample, the tissue is rendered fully transparent, comparable to the results of

chemical tissue clearing 81–85 but without the need for complex and potentially

fluorescence damaging clearing protocols. Additionally, unlike chemical clearing, the

tissue can now also be resolved in much greater detail. Notably, the increased size of the

Figure 4 - Tissue expansion

a, Processing steps of tissue
expansion for samples with
fluorescent labels (XFP 1 and 2).
First, a polymer matrix is formed
by incubating the tissue in a
gelling solution (see Methods),
and fluorescent labels are
covalently bound to the matrix
(Linking). Digestion: the tissue is
enzymatically cleared before
expansion.
b-c, After expansion with water
(b), fluorescent labels initially
spaced closer than the optical
diffraction limit (~250nm) can be
optically resolved (c)

20 of 99

sample restricts the accessibility of deep structures with conventional super-resolution

microscopy techniques.

The technique was recently combined with light sheet fluorescence microscopy (LSFM).

In standard LSFM, samples are illuminated with a thin sheet of light, and emitted signals

are detected orthogonally to the light sheet by wide-field detection 86 with a CMOS

camera in a confocal line detection scheme 87,88. LSFM is conventionally used for

volumetric imaging of large, cleared samples at high speed but lacks the high resolution

of other microscopy techniques 85,87,89–91. As the synergetic combination of both

techniques, LSFEM allows high-detail, large-scale volumetric imaging of synaptic

connectivity maps in intact brain samples with high throughput 57,58.

3.5 Multicolor neuron labeling for circuit tracing

 To fully characterize the functional architecture of neuronal circuits, it is essential

to trace the connections of individual neurons within entire populations. However, most

tracing techniques utilize methods that label neuronal populations in a single color

resulting in considerable segmentation problems. While beneficial when studying general

connectivity between brain regions, such an approach limits the ability to characterize the

connectivity maps of neurons on an individual level. For example, in regions such as the

hippocampal formation, neuronal populations have recurrent, widely distributed

connections within a dense structure of layered neurons. To characterize such

connections in great detail, the neuronal density needs to be countered with techniques

that simultaneously minimize the potential loss of information. A famous example

countering the segmentation problem in dense regions is sparse labeling 92, also utilized

in the Golgi method 93,94. However, while greatly reducing the overlapping of labeled

neurons, connectomic analysis using this technique generally assume the stereometric

homogeneity of neurons within a population and therefore likely neglect more complex

differences within investigated populations.

A technique that utilizes stochastically distributed expression of multiple, differently

colored XFPs, known as Brainbow 63–65, elegantly solves this challenge using a Cre/loxP-

System 95–97. In principle, Brainbow enables XFP expression in different levels across

infected neurons. The resulting distribution of XFPs in different concentrations per cell

 21 of 99

results in a spectrum of color hues, effectively labeling neurons uniquely. However,

resulting expression levels were often inadequate to detect axons and dendrites in large-

scale tissue samples (e.g., using tissue clearing). Consequently, detailed connectomic

analysis was often limited to the time-consuming, error-prone segmentation of thin serial

sections. Recent advancement in multicolor labeling, Tetbow 62, raises expression levels

high enough to allow whole-brain tracing in cleared samples and presumably expanded

tissue (see chapter 3.4).

Tetbow achieves high expression levels and wide-ranging color hues by utilizing the Tet-

Off expression system 98–100. Tet-Off is derived from the tetracycline resistance operon in

E. coli. Originally, the Tet repressor protein (TetR) inhibits transcription in the absence of

tetracycline (an antibiotic) by binding to the tetO sequences in the promotor region.

However, a eukaryotic transcriptional activator (tTA) was generated by fusion with a

Herpes simplex virus VP16 trans-activator and combined with eukaryotic minimal

promoters (TRE). The resulting expression system (Tet-Off) enables highly specific

expression in the presence of tTA, while tetracycline addition results in strong inhibition

of gene transcription. An additional advantage of the Tet-Off system lies in its wide use

and the availability of a wide range of vectors that can be easily exchanged.

Figure 5 - Schematic representation of Tetbow

a, A virus mixture (AAV-Syn1-tTA, AAV-TRE-tdTomato-WPRE, AAV-TRE-EYFP-WPRE, AAV-TRE-
mTurquoise2-WPRE) is injected into the target brain region containing expression vectors for the
fluorescent proteins tdTomato (red), EYFP (yellow/green), and mTurquoise2 (blue).
b, The stochastic distribution during infection results in different copy numbers per infected cell, which
will result in different color hues in RGB color space.
c, Neurons can be identified, and their extensions traced by their distinct color hue. The resulting color
diversity is dependent on the total number of copies per infected cell.
d, Maximum intensity projection of a sample stack with Tetbow expression in the DG of the
hippocampus after digestion treatment (see Methods 7.5). 4-tile stack acquired with the confocal Zeiss
LSM880. Courtesy of Juan E. Rodriguez Gatica

22 of 99

The original Tetbow system (see Figure 5 a) consists of a set of viral vectors with three

different XFPs (TRE-tdTomato, red; TRE-EYFP, yellow/green; TRE-mTurquoise2, blue),

which are expressed in the presence of the fourth vector (Syn1-tTA) in infected neurons.

The resulting color hues (similar to the RGB color space, Figure 5 b-c) are spread across

the visible spectrum by combining different fluorescent intensity levels based on the

stochastic distribution of vector copies within each infected neuron 62. Thus, the color

diversity is directly linked to the distribution of XFP gene copies and tTA expression

following a Poisson distribution 62,101. However, it is important to note that the color

diversity reduces as the number of introduced gene copies increases 62.

The resulting color diversity can also be used in a computational approach that segments

neurons based on their unique color hue. A hue-based segmentation algorithm would

increase tracing efficiency for automatized large-scale connectomics. Especially in

combination with LSFEM, the ability to dissect individual neurons and resolve both long-

range projections and highly detailed morphology across scales has the potential to fill

the gap between wholesome but small-scale electron microscopy and large-scale tissue

clearing in connectomics.

3.6 Vector-based delivery of expression systems

 Stereotaxic delivery of recombinant adeno-associated viruses (rAAVs) is the go-to

strategy for exogenic gene delivery in the postnatal rodent brain 102. Its high precision and

moderate invasiveness allow the temporally precise manipulation of gene expression in

virtually any brain region and cell type, given the right combination of rAAVs. The

technique is easily reproducible once the conditions for the desired gene expression are

found. However, the initial adjustment of all parameters requires careful testing. With

every new vector and brain region, the necessary amount of virus, the expression time

until sacrifice, and optimal coordinates need to be considered.

The complexity grows accordingly when gene deliveries simultaneously require multiple

rAAVs or vectors, as is the case for Cal-Light 26 and Tetbow 62 (see chapters 3.1 and 3.5).

Specifically, the individual expression levels can vary drastically when using systems

expressing multiple fluorescent proteins (XFPs) such as Tetbow with separate vectors in

the same cell. Consequently, the resulting fluorescent intensity values render imaging all

 23 of 99

colors at equivalent levels a matter of careful fine-tuning for connectomic studies. Here,

considering a range of mixtures is essential to finding the optimal combination of

expression strength, viral spread, and cell toxicity.

For large-scale brain tissue, the injection volume and stereotactic coordinates are

dependent on the targeted brain region and can be based on previous successful studies.

However, the optimal mixture of different vectors is more complicated, especially when

considering automatic segmentation, where the variability between samples should be

minimal. With Tetbow specifically, there are four vectors to consider (see chapter 3.5).

Briefly, the first vector acts as a general conductor for gene expression levels of the other

AAVs, namely XFP expression. Notably, high expression levels increase the cell toxicity of

viral delivery systems, so the overall viral load and expression levels need to be carefully

adjusted. The other three vectors each express different XFPs (tdTomato, eYFP,

mTurquoise) with individual fluorescent intensities and expression efficiency. Depending

on the desired effect, the relative concentration of each vector needs to be adjusted. In

the Tetbow-based approach for automatic segmentation, the ultimate goal is the unique

labeling of neurons within a dense population. Consequently, the sufficient expression of

all XFPs is required for a maximum range of available color hues 62. This requires careful

adjustments of all parameters – i.e., multiple surgeries - with the repeated evaluation of

post mortem sections to find the right combination if an optimal expression profile is

desired.

24 of 99

 25 of 99

4 Results

4.1 Real-time, closed-loop experiments

4.1.1 Real-time tracking and manipulation of animals during ongoing experiments

 During the development of DeepLabStream (DLStream), the main goal was to

create a software solution that enables closed-loop stimulations directly dependent on

behavioral expressions. The resulting software is able to conduct behavior-dependent

experiments fully autonomous and requires no additional tracking-, trigger-, or timing-

devices. Primarily, experiments orchestrated by DLStream can be conducted without

restriction to the animal's movement due to the optimized integration of real-time,

markerless pose estimation. Additionally, DLStream was built so that input and output

devices can be integrated freely into the hardware design of experiments (Figure 1).

For the conducted experiments, a pose estimation network was trained offline using DLC

and was then integrated into DLStream (see 7.11 and 7.12). Briefly, frames of previous

recordings of a mouse exploring the arena were taken and labeled as ground truth (Figure

6 a-b). The ground truth dataset was then used to train a deep neural network to

recognize and estimate the positions of user-defined key points (neck, nose, and tail base).

In DLStream, frames taken from a camera stream positioned above the arena were

analyzed using the integrated pose estimation network. The resulting pose information

was converted into postures and transferred to an additional process. This process

supervises the ongoing experiment and outputs feedback to connected devices (Figure 6

c-d). In principle, experiments run by DLStream comprise a sequence of modules

depending on the underlying experimental protocol (Figure 6 d, Supplementary

Information 9.3.2, Supplementary Table A, Supplementary Table B). Basic modules, such

as timers and stimulations, are behavior-independent and control essential aspects of the

experiments. Timer modules track time-dependent stages and act as a gate for behavior-

dependent stimulation events (e.g., inter-stimulus timers). Stimulation modules specify

which external devices are triggered and how each device is controlled once activated

(e.g., optogenetic light stimulation; Figure 6 d). Behavior-dependent feedback is triggered

by trigger modules that detect specified behavioral expressions. Trigger modules consist

26 of 99

of sets of defined postures (e.g., position, head direction) or are connected to behavior

classifiers and initialize a predefined cascade (stimulation) once a behavioral expression

was detected during an experiment (Figure 6 c-d, Supplementary Table A).

Figure 6 - Experimental setup

a, Schematic representation of a setup run with DLStream. A camera, mounted above the arena at a 90°
angle, is used to record example videos of the arena, including a mouse with a fiber cord.
b, A set of example frames recorded in a is labeled and used to train a pose estimation network that can
be integrated into DLStream.
c, Using the pose estimation of body parts (red dots), a behavior-dependent experiment is conducted with
DLStream. Whenever DLStream detects a relevant behavioral expression (blue bars), the mouse is
stimulated with light (blue cord).
d, Schematic representation of the underlying architecture for an optogenetic stimulation task. The
sequence for behavior-dependent stimulation in c is highlighted in blue. Experiments run by DLStream
typically incorporate time-dependent aspects controlled by timer modules (red) and consist of several logic
gates (and, or, xor) to orchestrate essential aspects of the experiment. Any DLStream experiment is run as
a loop on a frame-by-frame basis until a preset condition ends the experiment (e.g., the maximum number
of stimulations or maximum duration).

 27 of 99

While experiments are conducted autonomously, ongoing experiments can be directly

monitored on a live video stream visualizing pose estimation and experimental

parameters (Figure 7). In DLStream, real-time pose estimation data, including relevant

experimental parameters such as status, response latency, and event-onset, is exported

as a table-based file (see chapter 4.1.2, Supplementary Table C). Additionally, the raw

video camera stream during experiments is timestamped and recorded for post hoc

analysis.

4.1.2 DLStream output

 DLStream stores pose estimation data and information from experiments in a

table-based file (Supplementary Table C). The table is saved as a CSV file that allows easy

import into several software applications (e.g., Microsoft Excel®, MatLab®, Text editors,

and Python-based analysis) across multiple operational systems.

The animal's position is linked to each frame by a frame-based index, additionally

imprinted on the recorded video. In total, the output table provides information on the

estimated position of all tracked body parts, the experiment's status, and a trial column

used to give event/trial-specific information during experiments. Event-specific

information can include different trials during conditioning or stimulation onset. The table

also includes a time column where experimenters can see the exact inference time

between each frame and the actual time passed during the experiment.

Like the raw pose estimation output from open-source solutions like DLC, the pose

estimation and experimental data can be used for post hoc analysis.

4.1.3 DLStream GUI

 DLStream was developed so that non-expert users can conduct predesigned

experiments without interacting with the underlying code architecture (see

Supplementary Information 9.3.1). For this, DLStream has a graphical user interface (GUI)

that can initialize, cancel, or finish up experiments (Figure 7).

In a typical DLStream experiment, the video stream is started first (Start Stream, Figure 7

c1). The initialized live stream is then used to finalize the experimental setup (e.g., arena

position, focus, and lighting conditions; Figure 7 a). Then, the pose estimation network is

28 of 99

initialized (Start Analysis, Figure 7 c2), and its output is visualized on the live stream by

colored dots (Figure 7 a-b). If desired, the live stream can be recorded (Start Recording,

Figure 7 c3) and pose estimation data exported without an ongoing experiment.

However, starting the experiment will result in both automatically (Start Experiment,

Figure 7 c4). During ongoing experiments, experimental information can be monitored on

the live stream window (Figure 7 a-b) and console. At any point, users can stop DLStream,

and collected data will be exported (Stop …, Figure 7 c1-5).

Figure 7 - DLStream Graphical User Interface

a, Example of a video live stream during DLStream conducted behavior experiment. The pose estimation
on the nose, neck, and tail base are shown as colored points (red, green, and yellow). The results of two
region of interest (ROI)-based trigger modules are visualized by the corresponding ROIs (colored circles).
A positive detection is visualized in green (right, green circle), while a negative detection (mouse not in
ROI) is visualized in red (left, red circle). The frame number since the beginning of the stream is imprinted
on the video (top left, red), while the time since the beginning of the pose estimation (Time) and current
latency (FPS) is shown as an overlay (bottom right, cyan).
b, Different example of the live stream shown in a. In this example, the mouse’s locomotion was
detected, indicated by the green text (“running”) positioned at its nose. At the same time, an LED was
activated by DLStream during the behavioral expression (green circle). A complete video version of this
was published as a supplementary video in Schweihoff et al. 2021 1.
c, Image of the graphical user interface of DLStream. Users can directly control DLStream using the
buttons depicted.

 29 of 99

4.1.4 Adaptability of DLStream

 As with the development of a GUI, the goal for DLStream was to develop a software

solution that can easily be customized and fitted to the experimental needs of several

researchers. For this, DLStream's underlying code architecture was primarily built with

modules that can be readily interchanged. The stimulation, trigger, and timer modules are

encapsulated in an experiment module accessed by the main DLStream process (Figure 6

d). Briefly, any experiment running in DLStream follows the same logic (see

Supplementary Information 9.3.2 and 9.3.5). Postural data is extracted from the incoming

video frame by DLStream using a pose estimation network and passed to the experiment.

Depending on the experiment's configuration, the posture will be passed to a trigger

module that detects if the behavioral expression of interest was present. Independent of

the type of trigger module, the output is a binary classification (True or False) typically

used as an activation or deactivation signal for a stimulation module. Consequently,

trigger modules are interchangeable by design and can be easily exchanged to customize

existing experiments.

Typically, experiments are governed by behavior-independent parameters such as inter-

stimulus times and fixed overarching paradigms (e.g., the maximum duration of an

experiment and minimum stimulation time). Timer modules control such parameters and,

similar to trigger modules, output binary information about ongoing timing. While trigger

modules are typically designed for specific behavioral expressions, timer modules can be

set, reset, started, and stopped as necessary within an experiment (Figure 6 d,

Supplementary Information 9.3.2).

Preexisting experiments can be adapted by changing the underlying configuration or

specific modules to create custom experiments. To facilitate the customization of

experiments, the open-source published version 66 of DLStream includes step-by-step

tutorials, several example experiments, and trigger as well as stimulation modules (see

Supplementary Information 9.3, Supplementary Table A, Supplementary Table B).

Notably, DLStream experiments are not limited to a specific set of key points (body parts).

They can utilize any combination of pose estimated body parts, even multiple animals in

the same environment, independent of species. DLStream's posture data is stored as a

30 of 99

skeletal representation (skeleton; a set of named body parts). Individual and sets of body

parts can be selected to design experiments and triggers (Supplementary Information

9.3.5).

4.1.5 DLStream hardware compatibility

 DLStream was successfully installed and tested on Windows 10 and Ubuntu

18.04.05 OS. The software was developed in the open-source programming language

Python that includes open-source libraries for most available devices and desired

functions. Consequently, DLStream can utilize and control a wide range of devices.

Virtually any webcam/camera can be used with various framerates and resolutions,

considering hardware requirements and pose estimation performance (see chapter

4.1.7). The current version of DLStream 66 can integrate cameras using the OpenCV library

(generic cameras), pypylon (Basler cameras), pyrealsense2 (Intel RealSense® cameras),

and pyzmq (IP webcams). Notably, DLStream is also able to run with prerecorded videos.

Using a simulated real-time video feed can be helpful to set up and design experiments

and reduces unnecessary preliminary live sessions with animals to set up behavior

detection.

Additionally, DLStream includes libraries that allow the general-purpose input/output

(GPIO) control through three different device types: Dataaquisition boards from National

Instruments (nidaqmx), Raspberry Pi boards (pigpio, gpiozero), and Arduino boards

(pyserial). However, all devices are conveniently interfaced in DLStream, so that,

independent of the device, the design of an experiment remains the same.

4.1.6 Optogenetic, head direction-dependent labeling of neurons using DLStream

 The results of this experiment were also published in Schweihoff et al. 2021 1.

The development of DLStream allowed the design of an experiment that would

incorporate the possibility to label active neurons optogenetically depending on the

behavior of mice. For this, an experiment was designed to label active neurons in the

anterior dorsal nucleus of thalamus (ADN) dependent on the mouse's head direction using

the neuronal activity-dependent labeling system Cal-Light26.

 31 of 99

To label ADN ensembles, light stimuli were delivered within precisely defined head

direction angles (target window) (Figure 8 a-b). Using DLStream, the onset and offset of

light stimulation was controlled with timer, stimulation, and trigger modules as previously

described (Figure 6 c, Figure 8 b; Supplementary Information 9.3.2). Mice were placed in

a circular white arena with a single black cue at one side. The arena was kept in the same

orientation throughout the whole experiment to ensure stable angular tuning. During the

experiment, mice investigated the arena in one 30-minute session per day for four

consecutive days (Figure 8 b). During each session, the mice were stimulated via a

chronically implanted optical fiber with blue light (488 nm) depending on their head

direction angle. The head movement of the mice was not restricted, and mice moved their

head freely in all directions (Figure 8 a-c, Supplementary Figure A). During each session,

mice explored the entire arena without restriction (Figure 8 e-f). However, light

stimulation was limited to periods when they oriented their head to the target head

direction window (60° to reference point; Figure 8 b-c, Supplementary Figure A). Each

stimulation lasted 1-5 sec depending on the time spent orienting to the target window

with a minimum inter-stimulus time of 15 seconds. During inter-stimulus periods, a timer

module blocked the link between the trigger and stimulation module, disabling behavior-

dependent stimulation for its designated duration (Figure 6 c, Figure 8 b).

The average light stimulation per session was 48 ± 10 seconds and occurred selectively in

the target angle window across all experimental animals (Figure 8 h). Notably, light

stimulation outside of the target head direction window can result from the preset

stimulation conditions. Each stimulation was set to a minimum duration of 1 second, in

which mice were able to sweep their head out of the target window. Nevertheless, the

average total stimulation time across all four sessions was 357 ± 53 sec (n = 10 mice) with

a significantly higher stimulation in the target window (Figure 8 h). Analogously, head

direction-specific light stimulation could not have been achieved by random stimulation

during the session. A random sampling of observed head direction angles equal to the

number of stimulation events in individual sessions revealed a nonspecific distribution of

covered angles – i.e., mice oriented in all directions (Figure 8 d, left).

32 of 99

Figure 8 - Optogenetic labeling of head direction-dependent neuronal activity

a, Left: Stereotactic delivery of Cal-Light viruses into the ADN and fiber ferrule placement. Middle:
Infected neurons (red) are stimulated with blue light (488 nm) controlled by DLStream. Right: infected
neurons are only labeled (yellow) when they are active (black arrow up) during light stimulation (middle).
b, Example images of head direction-dependent light stimulation. The mouse’s pose estimation (orange
dots) is used to calculate its head direction angle (orange arrow) related to a reference point (red line).
Light stimulation is triggered if the head direction angle is within the target window (blue arc). A
schematic representation of the sequence of modules (puzzle pieces) used in the design of this
experiment is shown beneath the images (see also Figure 6 c). Timer modules are used as a minimum
stimulation timer (left) and an inter-stimulus timer (right).

 33 of 99

Note that for each mouse, the mean resultant length for stimulated angles was

significantly larger than would be expected by random sampling (see Methods, n = 1000

samples, p < 0.01) (Figure 8 d, right).

As an additional control, a yoked group of mice was run such that each mouse, regardless

of its actual head direction, received the exact same temporal stimulus as a paired

experimental mouse. Therefore, in the yoked group, light stimuli were decoupled from

the individual head direction (Figure 8 j). Thus, in theory, if neurons are inconsistently

c, Left: Representative example (see also Supplementary Figure A) radial histogram of all head directions
during stimulation (red) within one session (normalized to the maximum value). Mean resultant vector
length is indicated by r. Right: Radial histogram of all head directions during the whole session (grey) and
stimulation (red) The values were normalized to the maximum value of the entire session. Rings
represent quantiles in 20 % steps.
d, Left: Representative random sample of covered angles during the whole session simulating random
stimulation. Simulated stimulations are triggered without DLStream control at random time points
during the session (normalized to the maximum value). The mean resultant vector length is indicated by
r. For each session, random distributions were calculated 1000 times. Right: The distribution of mean
resultant vector lengths generated by random sampling (n = 1000) of a single session. The red line
denotes the actual mean resultant vector length during stimulation in the same session. The dotted black
line represents the p<0.01 cutoff.
e, Representative example of the mouse’s position (grey) over time during the first 5 minutes of the
session in c. The stimulation events are shown in blue.
f, Heatmaps representing the relative occupancy of the mouse within the arena during the whole session
(top) and only during stimulation events (bottom) in c. The cue and target window are shown in their
relative position.
g, Example of Cal-Light expression in a mouse from the experimental group. Left: tdTomato expression
(red) indicating expression of Cal-Light viruses with nucleus staining (DAPI, blue). Right: Activity-
dependent and light-induced eGFP expression (green) in the same section. The white box represents the
zoomed-in region in h. The bar represents 200 µm.
h, Close up from g vs. a similar region in an animal not stimulated with light (No Light group) and in the
yoked control group. Left: tdTomato expression (red). Right: Activity-dependent and light-induced eGFP
expression (green). The bar represents 50 µm. Note that control mice show no eGFP expression in
tdTomato+ neurons. In the yoked group, light stimulation of the same duration as in the experimental
group but not the same head direction specificity did not result in sufficient Cal-Light labeling.
i, Average light stimulation during each session (40 total) corresponding to head direction (60° bins) with
target window (blue wedge) indicating the DLStream triggered stimulation onset in the experimental
group. Paired student’s t-test: p < 0.001. n = 10 mice. Error bars represent standard deviation.
j, Average light stimulation in both experimental and yoked groups during each session as a function of
head direction (60° bins) similar to i. Exp: n = 10 mice, black bars; Yoked: n = 8 mice, grey bars. Error bars
represent standard deviation. Experimental and yoked groups have the same total stimulation time, but
the distribution differs such that the yoked group has approximately equal stimulation times across
varying head direction angles.
k, Ratio between infected neurons (tdTom+) and activity-dependent labelled neurons (eGFP+/tdTom+) in
mice matching selection criteria (see Methods). n = 2 mice.
l, Ratio between infected neurons (tdTom+) and activity-dependent labeled neurons (eGFP+/tdTom+) in
mice matching selection criteria (see Methods) in the yoked group. n = 2 mice.
A modified version of this figure was also published in Schweihoff et al. 20211.

34 of 99

active during all stimulations, the head direction independent stimulation should result in

insufficient Cal-Light labeling of head direction correlated activity.

The percentage of Cal-Light labeled ADN neurons was quantified in the three different

groups (experimental, no-light, and yoked). Initially, a group of 20 animals was injected

with Cal-Light, implanted with a light fiber, and used for the experiment. However, after

confirmation during post mortem analysis, only mice that showed correct fiber and

injection placement were considered for labeling quantification (see Methods and Figure

9 for details). Mice excluded from the quantification were still included in the evaluation

of DLStream performance.

Cal-Light infected neurons showed a 46 % conversion within the ADN (Figure 8 k, n = 2

mice), while mice receiving no light stimulation but underwent the same sessions had no

Figure 9 - Quantification of optogenetic labeling of head direction-dependent activity in neurons.

a, Table of all injected and implanted animals divided into experimental groups and success categories.
‘Match’ occurred when the viral injection was successfully targeted to the ADN and optic fiber was placed
above the ADN. Tissue processed from the ‘match’ case was used for the quantification of labeled neurons.
‘Mismatch’ occurs either when the viral injection or fiber placement missed the ADN.
b, Schematic representation of injection sites. When the ADN was missed, injections were too lateral,
hitting either the BSTS or AVVL. The blue ferrule represents optimal placement of the light fiber.
c, Close up (similar region of interest as shown in Fig. 4g) of representative expression in mice with incorrect
fiber placement. Left: tdTomato expression (red) indicating expression of Cal-Light viruses. Right: Activity-
dependent and light-induced eGFP expression (green). The bar represents 50 µm.
BSTS: bed nucleus of stria terminalis, supracapsular part; AVVL: anteroventral thalamic nucleus,
ventrolateral part; ADN: anterodorsal thalamic nucleus; AVN: anteroventral thalamic nucleus; PT:
paratenial thalamic nucleus; PVA: paraventricular thalamic nucleus, anterior part.
A version of this figure was also published in Schweihoff et al. 2021 1 as Supplementary Material.

 35 of 99

light-induced labeling present (Figure 8 g-l). Furthermore, within the yoked group, only a

very low percentage (~4 %, n = 2 mice) labeling was observed (Figure 8 j, l). This indicates

that light stimulation of the same duration as in the experimental group but not the same

head direction specificity was insufficient to activate the Cal-Light labeling system reliably.

4.1.7 Computational performance of DLStream

 The results of this evaluation were also published in Schweihoff et al. 2021 1.

A reality of any closed-loop system is that there are temporal delays between real-time

detection of behavioral expressions and stimulus output resulting in potential

inaccuracies that need to be within acceptable margins.

Fundamentally, the variance of extracted behavioral parameters is dependent on reliable

pose estimation. The pose estimation error of the applied model and the correlated

parameter changes between frames need to be compared to estimate the spatiotemporal

resolution of detectable postures. Due to the inherent individual model performances,

DLStream's effective accuracy in posture detection is heavily influenced by the previous

training of utilized pose estimation networks. Nevertheless, if performance is not

sufficient for the executed experiment, deep neural networks can consistently be

retrained using the respective open-source tools. The trained DLC model used during

optogenetic experiments had an average pose estimation error of 4 ± 12 pixels (px) for

the neck point, 3.3 ± 4.4 px for nose, and 3.3 ± 2.0 px for the tail base (n = 597 images)

when compared to a human annotator labeling the same data set. For reference, mice

without tails were ca. 60 px long in 848x480 px video recordings. Consequently, body part

estimation resulted in an average head direction variance of 3.6 ± 9.6° (tested in 80

sessions for 1000 frames per session) between consecutive frames with an estimated

average error of 7.7 ± 15.1° compared to human annotation (n = 597, ground truth) per

frame. The frame-by-frame variance is a product of performance errors and the

inhomogeneous movement of the animal during experiments. At the same time, the

difference between network pose estimation and human annotation is most likely a result

of inaccurate tracking, which can be reduced by additional training and more extensive

training sets. Note that this variance might change depending on the mixture of episodes

of fast movements and slow movements during sessions. While DLStream's effective

36 of 99

implementation depends on the integrated model's accuracy, the general suitability of

the software should primarily be evaluated independently of the pose estimation

accuracy as researchers deploying DLStream will have to train their own pose estimation

network.

Manual evaluation of behavior detection accuracy during optogenetic experiments

showed a false-positive rate of 11.8 % – i.e., activating a light stimulation without the

mouse's head direction being in the target window. In the evaluated sessions, most false-

positive events were anomalies in mouse behavior prone to pose estimation errors, such

as spontaneous jumping. Inaccuracies like this can be further reduced by additional model

training if necessary. Additionally, similar results were achieved based on a human-

labeled data set (n = 597). The estimated general false-positive/false-negative rate for the

configured head direction trigger was 11.1 ± 4.1 % (false-negative) and 11.6 ± 4.8 % (false-

positive; Figure 10).

During the optogenetic experiment (n = 80), DLStream reached an average performance

time of 33.32 ± 0.19 milliseconds per frame, matching the average camera framerate of

30 Hz (33.33 milliseconds). The performance time includes pose estimation, behavior

detection, and computation of experimental protocols up to the final output. Additionally,

hardware latency was measured to estimate the time between behavior detection and

triggered stimulation during optogenetic sessions from three different mice (n = 164

stimulation events). The resulting light stimulation occurred within five frames (4.8 ± 1.1

frames at 30 fps; ≈ 150 ms). Notably, the total latency critically depends on the individual

setup and the intrinsic parameters of connected components. In experiments requiring

faster output, the setup can be further optimized to reduce hardware latency.

 37 of 99

Different hardware configurations were tested to evaluate the limits of DLStream,

including performance levels and response time. First, average performance was

measured during 10000 frames in two different configurations with two different camera

settings (30 fps and 60 fps with 848x480 px resolution) using the same camera used in the

optogenetic experiment. With the standard 30 fps camera setting, the advanced

configuration (Intel Core i7-9700K @ 3.60 GHz, 64 GB DDR4 RAM, and NVidia GeForce RTX

2080 Ti (12 GB) GPU) achieved reliable 30 fps (33.33 ms per frame) real-time tracking with

30 ± 7 ms inference time. The other system (Intel Core i7-7700K CPU @ 4.20 GHz, 32 GB

DDR4 RAM, and NVidia GeForce GTX 1050 (2 GB) GPU) only reached an average analysis

time of 91 ± 10 ms. Using a higher framerate input from the camera (60 fps; 16.66 ms per

frame), the overall performance did not change drastically (24 ± 9 ms and 90 ± 9 ms,

respectively). To address camera-specific limitations, a different camera was tested

a

b

Window size

[°]

False positive detection

 [%]

False negative

detection

 [%]

60 11.6 ± 4.8 11.1 ± 4.1

50 13.2 ± 5.3 13.7 ± 5.4

40 14.7 ± 5.8 14.7 ± 5.9

30 20.1 ± 11.2 19.8 ± 10.5

20 29.0 ± 20.7 28.2 ± 18.7

10 72.8 ± 75.6 75.8 ± 89.0

Figure 10 - Estimation of accuracy of head direction triggers with different angle window sizes.

a, Histograms (10° bins between 0-360°) of the distribution of the labeled dataset (n = 597), with human
annotation (right) and head direction angle based on network pose estimation (right) using the network
trained for the optogenetic stimulation task.
b, Table showing the network pose estimation's false-positive and false-negative detection rate against
human annotation in several differently sized angle windows (simulated triggers). The window was
moved around in steps to counter any effects of non-uniform distribution. The average, as well as the
standard deviation, were taken from all detected events. An event was counted as false-positive if the
pose estimation resulted in a head direction within the window, while the human annotation did not
(and vice versa for false-negative).
A version of this figure was also published in Schweihoff et al. 2021 1 as Supplementary Material.

38 of 99

(Basler acA1300 – 200 um), which lacks the depth capabilities of the Intel RealSense

camera but comes with an increased framerate. DLStream's upper-performance limits

were benchmarked with more standardized resolutions (ranging from 1280x1014 to

320x256 px) on the advanced configuration using the new camera. The initially trained

DLC model used in the optogenetic experiment was based on the ResNet50 75,103

architecture. However, several configurations and models were tested as well to get an

overview of the other available models (ResNet101 75,103, MobileNetv2 104) and a higher

number of body parts (3, 9, and 13). During this benchmark, DLStream's latency reached

a maximum of 130 ± 6 Hz (ca. 8 ms) with the MobileNetv2 architecture at 320x256 px

resolution. In contrast, the ResNet50 network reached its upper limit at 94 ± 6 fps (ca.

10 ms) at the same resolution (see Table 1 for more details).

4.2 Multicolor labeling for neuronal tracing

Combining powerful imaging techniques such as confocal imaging and LSFEM with

high-contrast biomolecular tools paves the way for scale-bridging connectomics. With

conventional methods, the efficient identification and tracing of multiple individual

 3 Body parts 9 Body parts 13 Body parts

Network Resolution Average fps Average fps Average fps

MobileNetv2

320x256 164.04 +/- 7.28 130.55 +/- 6.51 79.29 +/- 19.18

416x341 119.73 +/- 8.42 86.64 +/- 3.43 67.50 +/- 10.95

640x512 60.51 +/- 2.01 54.24 +/- 0.94 46.76 +/- 2.91

1280x1024 16.61 +/- 0.26 16.19 +/- 0.20 14.99 +/- 1.14

ResNet50

320x256 107.58 +/- 8.68 94.30 +/- 6.21 67.01 +/- 10.36

416x341 79.52 +/- 3.00 66.70 +/- 1.83 55.49 +/- 4.99

640x512 44.92 +/- 1.44 41.03 +/- 0.52 36.50 +/- 1.88

1280x1024 13.61 +/- 0.35 13.25 +/- 0.12 12.32 +/- 0.86

ResNet101

320x256 68.29 +/- 2.23 64.72 +/- 1.86 60.35 +/- 6.13

416x341 54.85 +/- 1.51 49.99 +/- 0.94 48.34 +/- 3.01

640x512 32.05 +/- 0.51 30.47 +/- 0.33 30.18 +/- 1.88

1280x1024 9.80 +/- 0.28 10.33 +/- 0.34 9.92 +/- 0.76

Table 1 - Performance of different network architectures in DLStream in relation to the number of

estimated body parts and image resolution.

 39 of 99

neurons within a population is limited by the ability to distinguish between closely

neighboring cells. A limitation that is especially important to consider in a brain region

such as the hippocampal formation, where the densely layered neuronal architecture

results in bundled axonal projections and heavily entangled dendritic trees. Here the

power of high contrast, multicolor labeling using Tetbow 62 allows the distinction of closely

neighboring neurons.

However, Tetbow was not yet shown to work with tissue expansion protocols and virtual

super-resolution imaging. In close collaboration with the Institute for Theoretical and

Physical Chemistry at the University of Bonn, the following preliminary study was

conducted to implement this type of analysis for the automatic segmentation of large-

scale connectomic studies bridging population-level analysis and single neuron tracing.

To facilitate the high contrast, high-resolution imaging of Tetbow-labeled samples, mice

were injected with the Tetbow vector in different concentrations to evaluate the effective

expression and resulting color variations in the selected region (see Supplementary Table

D). For this, the parameters for optimal color variation and volumetric spread needed to

be adjusted. A sample series was produced covering the most reasonable combinations

following repeated post mortem evaluation of resulting XFP expression levels between

each new batch of surgeries (see Supplementary Table D).

The resulting XFP expression was evaluated based on the signal intensity in all three

channels (eYFP, tdTomato, and mTurquoise) and the observed color variation (see

Supplementary Table D). Selected samples were then expanded and imaged with a

custom build LSFM 105 (Imaging: Dr. Jana Heysel; Expansion and Imaging: Juan E.

Rodríguez) in the collaborating laboratory of Prof. Dr. Ulrich Kubitscheck (Figure 11 i, see

Methods 7.6). The custom LSFM allowed the high-speed, virtual super-resolution imaging

of expanded samples multicolor-labeled with Tetbow. Imaged samples were evaluated

before and after digestion to evaluate the effectiveness of Tetbow in combination with

expansion microscopy and LSFEM (see Methods 7.5). Digestion and expansion of tissue

samples resulted in minimal to no observable fluorescence intensity loss, allowing the

direct imaging of samples using high-resolution imaging techniques (Figure 11 b-d).

Notably, individual neurons can be identified by the naked eye by their unique color hue

40 of 99

 41 of 99

Figure 11 – High contrast, multicolor labeling with Tetbow and tissue expansion for neuronal tracing

a, A virus mixture (AAV-Syn1-tTA, AAV-TRE-tdTomato-WPRE, AAV-TRE-EYFP-WPRE, AAV-TRE-mTurquoise2-
WPRE) is injected into the target brain region containing expression vectors for the fluorescent proteins
tdTomato (red), EYFP (yellow/green), and mTurquoise2 (blue).
b, Maximum intensity projection (MIP) of the CA3 area in the hippocampal region, injected with Tetbow
vector. Imaged with LSM Zeiss 880 40x/NA 1.1. Courtesy of Juan E. Rodriguez Gatica.
c, Zoom in of region in b (yellow square) showing two closely neighboring neurons that can be discriminated
by their distinct color hue. The hue results from the stochastic distribution of viral vectors and different
expression levels of the XFPs.
d, MIP of same sample and region as in b after digestion (see Methods 7.5). The fluorescent intensity is
conserved, and neurons, as well as neurites, remain distinct. Imaged with LSM Zeiss 880 40x/NA 1.1.
Courtesy of Juan E. Rodriguez Gatica.
e, MIP of an image stack of the DG area in the hippocampal region after digestion. The white box represents
the regions shown in f-g. The yellow box represents the region shown in h. Imaged with LSM Zeiss 880
40x/NA 1.1. Courtesy of Juan E. Rodriguez Gatica.
f, 3D view of a 4-tile image stack shown in e. Neurites running closely along other neurons can be
discriminated by their color hue (white box, g). At the same time, the imaging resolution allows the
discrimination of small details such as neuronal protrusions (arrow). The image stack has a size of 595.35 x
403.84 x 402.48 µm3.
g, Zoom in of region in f (white box). The achievable broad hue spectrum allows to differentiate neurites
running closely along neighboring neurons, including spine-like protrusions (arrows).
h, Zoomed in 3D view of a 4-tile image stack shown in e (yellow box). Tetbow expression is strong enough
to allow consistent volumetric labeling across neurites. The unique hue allows tracing multiple neurites
across the entire field of view (colored arrows) in a densely bundled region.
i, 3D view of an image stack acquired with a LSFM (see Methods 7.6) of a similar sample as b after digestion.
Courtesy of Dr. Jana Heysel 105.
j, Representative example of hue-based tracing with Tetbow. Individual neurons can be identified and
segmented based on their unique color hue. Courtesy of Dr. Jana Heysel 105.

(Figure 11b-e, i), and automatic segmentation allows the highly detailed analysis of

individual neurons.

Slight expansion of treated samples with PBS (1.2-1.5 expansion factor; approx. 400 µm

sample thickness) facilitates the distinction of closely neighboring neurons, including

neurites and spine-like neuronal protrusions (Figure 11 e-g), while still allowing high-

resolution imaging with conventional confocal microscopes. Here, the preserving nature

of enzymatic clearing utilized in tissue expansion increases the available imaging depth

considerably.

Additionally, the high expression of XFPs using the Tetbow system facilitates volumetric

labeling of long-range connections. Thus, neurites within fiber bundles can be traced

individually by their unique color hue across the entire field of view (approx. 600 µm;

Figure 11 e, h).

42 of 99

Imaging data was then used to develop an algorithm to segment neurons based on their

unique color hue 105 (developed by Dr. Jana Heysel). An example of the segmentation can

be found in Figure 11 j. The results of this segmentation are published elsewhere 105.

 43 of 99

5 Discussion

 The primary goal of this thesis was the establishment of neuroscientific tools that

allow the disentanglement of the complex relationships between neuronal ensembles and

correlated behavioral expressions. For this, I utilized the biomolecular labeling system Cal-

Light 26, which allows the light-induced, activity-dependent labeling of neurons in the

rodent brain. To elevate the system's functionality to capture the behavior-dependent

activity of freely moving mice, I developed an open-source, closed-loop experimental

toolkit, DLStream, that enables the real-time detection of behavioral expressions and

consequent orchestration of behavioral experiments. As such, DLStream enables the

behavior-dependent light stimulation of animals in optogenetic experiments. As a proof-

of-concept, I combined both tools in an optogenetic experiment to label neuronal

ensembles active during specific head directions. The results of this experiment were also

published alongside another experiment show-casing DLStream's capabilities elsewhere 1.

The toolkit was developed with sustainability in mind and was published open-source to

facilitate closed-loop experiments in the neuroscientific community 66.

Finally, this thesis elaborates on the collaborative approach to increase the capabilities of

the currently established connectomic analysis. For this, I established the biomolecular,

multicolor labeling system Tetbow 62, which allows the unique labeling of individual

neurons within a dense population of labeled cells. However, the effective use of Tetbow

requires accurate tuning of several parameters due to its expression dynamics. After

extensive testing, produced samples were subsequently expanded and imaged using

LSFEM, enabling fast, super-resolution imaging of large-scale tissue 57. The combination

of Tetbow and LSFEM enables the identification of large-scale structures with a

concurrent resolution to study individual connections on a synaptic level. To facilitate the

large-scale connectomic analysis, the imaged data was then used to develop an automatic

segmentation algorithm that utilizes the unique labels provided by the Tetbow approach

to segment neurons in large tissue samples 105. Representative examples of this

collaboration are shown in the result section (chapter 4.2).

44 of 99

5.1 Real-time, closed-loop experiments

 To investigate the neuronal correlates of complex behavior, it is necessary to

identify and manipulate actively participating neuronal ensembles 5,7,8,106. Therefore,

techniques that bridge connectomics, electrophysiology, and ethology hold the potential

to reveal how computations are realized in the brain and subsequently implemented to

form behavioral expressions. For instance, by utilizing neuronal activity-dependent

labeling systems such as Cal-Light 26, Flare 28,29, or CaMPARI 107, it is possible to capture

neurons active during selected behavioral expressions. However, a lack of dynamic closed-

loop systems restricts the reliable detection of reoccurring behavioral expressions and

subsequent real-time feedback.

With the development of DLStream, the range of detectable behaviors increases

substantially, and applications for behavior-dependent labeling and subsequent

manipulation of different freely moving species are wide-ranging.

5.1.1 Head direction-dependent labeling of active neuronal ensembles

 In this thesis, DLStream was used to orchestrate behavior-dependent light stimuli

to the ADN and label neural ensembles active during specific head directions. Notably, the

ADN was selected because it fulfilled two requirements. First, activity within ADN neurons

is known to be modulated by the head direction angle 108–111. Thus, the angular tuning

curve of these neurons remains constant in stable environments – i.e., the same neurons

will be active within the same head direction angles if the mouse is put in the same

environment. This stability facilitates experimental designs that span several days 108,

including the repeated stimulations necessary for high-contrast labeling with Cal-Light.

Second, the ADN's structure is convenient for optogenetic applications. Due to its

compactness, viral solutions injected into the ADN can spread through a large portion of

the nucleus. At the same time, illumination through an implanted light fiber will evenly

cover most of the infected region.

Head direction offers several advantages as a showcase for behavior-dependent,

optogenetic labeling. Foremost, a causal relationship between head direction and

neuronal activity within the ADN was established 108,110–112. Thus, labeling active neuronal

ensembles will most likely capture head direction cells, while Cal-Light's labeling

 45 of 99

requirements are likely to filter out head direction-independent activity. Additionally, the

behavior can be easily tracked with pose estimation but is too fast for a human observer

to identify in real-time reliably.

In practice, head direction-dependent light stimulation of active neurons was successful

and resulted in eGFP expression in a subset of Cal-Light infected cells in experimental mice

(ca. 46 %, Figure 8 g-h, k-l). In contrast, mice that received the same amount of light

stimulation (yoked group), but independent of their behavior, only showed a very low

activity-dependent labeling (ca. 4 %, Figure 8 g-h, k-l). As expected, mice receiving no light

stimulation had no visible reporter expression.

The results indicate that the repeated pairing between light stimulation and head

direction-dependent activity was essential for Cal-Light mediated labeling, and neurons

that were inconsistently active during periods of light stimulation were filtered out. In

fact, Cal-Light labeling was reported to depend on the number of repetitive

stimulations 26, so that a threshold of minimum light stimulations during simultaneous

neuronal activity seems likely. Consequently, the resulting coincidence between the

individual neuronal activity during light stimulation would not have been high enough to

result in a sufficient number of stimulations in the yoked group, as the head direction

dependency was not given. Interestingly, a labeling system that would not require

multiple stimulations to reach sufficient expression would not be able to filter out

unspecific from behavior-specific activity in this way. Thus, using such a system would

have resulted in the unspecific labeling of a majority of neurons rather than the low eGFP

expression found in yoked mice. However, the number of mice that satisfied the inclusion

criteria was too low (n= 5; 2 EXP, 2 Yoke, 1 NoLight) to quantify the resulting labeling of

neuronal ensembles more in detail.

5.1.2 From behavior-dependent labeling to causality

 Regardless of its potential, behavior-dependent labeling of functional ensembles

cannot be the sole solution to investigate causality between behavior and underlying

neuronal activity. Instead, it can serve as a starting point to assign neuronal ensembles to

correlated behavioral expressions. Selected ensembles can then be probed further to

46 of 99

investigate how their activity contributes to behavior. Here, the sophisticated array of

tools available in neurophysiology and neuroanatomy will be instrumental 5,8,106.

For example, the neuronal ensembles that were active during specific head direction and

subsequently labeled with Cal-Light were not identified as head direction cells by

conventional means. I.e., their activity was not measured during the task 108,109,112.

However, their head direction specificity was indirectly deduced by the combination of

experimental and yoke groups and the fact that the ADN was previously described to

contain head direction cells 108. Here, a direct measurement of head direction tuned

activity during the task, e.g., with Ca2+ imaging, would clarify ambiguities concerning the

label selectivity of the detected behavior and coincidental neuronal activity.

A straightforward solution would be to simultaneously express Ca2+ indicators and Cal-

Light in the same neurons and measure the activity during behavioral expressions of

interest. Here, the identification of active cells during imaging can be compared to the

emerging behavior-dependent labels in a two-channel setup. Once labeled, the behavior

specificity can be further investigated. If the neuronal ensemble is stable, the same type

of behavioral expression should envoke the same neurons under the same conditions –

i.e., Cal-Light labeled neurons should be prominently active.

As Cal-Light is a relatively new system, it will be necessary to characterize the exact

parameters accompanying behavior-induced, activity-dependent labeling to understand

the accuracy and limits of this approach 26,27,29. Thus, especially in more complex

investigations of neuronal activity underlying behavior, it will be beneficial to directly

measure the correlation between neuronal activity and expressed behavior with multi-

dimensional data – i.e., ethology, connectomics, and physiology.

Finally, to understand a potential causal link between a labeled neuronal ensemble and

the investigated behavioral expression, it would be essential to manipulate the neuronal

activity and investigate its effect on the behavior 8. Here, it would be beneficial if the

closed-loop solution would detect a behavioral onset as fast as possible – i.e., by

predicting the behavioral expression before its onset rather than reacting to it – and then

allow the acute manipulation of a selected neuronal ensemble. In this case, a causal

relationship would be implied if the disruption of the neuronal ensemble's activity pattern

 47 of 99

results in a terminated or inhibited behavior. Complementary to this, direct, behavior-

dependent optogenetic excitation and inhibition 24,113–115 of neuronal activity is possible

using DLStream. However, in the employed setup, the delay between detection and

stimulation was ca. 150 ms, which might prove too slow for some experiments but was

fast enough to target activity-triggered calcium dynamics with Cal-Light 26,27. Optimizing

the setup might allow faster feedback times as our hardware limited the effective use of

the underlying software performance of DLStream.

5.1.3 Performance of DLStream

 Regarding the limits of DLStream, it is essential to note that all real-time

applications are limited by the system's latency and sample rate. While the latency – i.e.,

the time until a system reacts to a given input – ideally should be as low as possible but is

limited by the computational complexity of the required detection and processing, the

required sample rate depends on several factors.

As observers, experimenters often record and interpret an animal's behavior by taking its

movement to approximate the underlying intention or state of mind. Building on this

generalization, behavior can be defined, categorized, and even sequenced by examining

estimations of the animal's movement 51,52,55,116. However, a researcher might only need

the broadest category of movements, or behavioral states, to understand an animal's

principle behavior. In contrast, to correlate behavior with neuronal computations, it might

be necessary to obtain fast, accurate posture sequences to classify behavioral expressions

on a sub-second scale 52,54,106.

The standard temporal resolution (30 Hz) employed in the optogenetic experiment

enables behavior-dependent manipulation of a wide range of activities a rodent might

perform during a task (see chapter 4.1.7). Swift movements, however, like whisker

movement 117,118 and pupil contraction 119,120, might not be fully detected in this

configuration. However, by lowering the image resolution and utilizing different network

architectures, fast behavioral expressions can be fully captured with DLStream (up to

130 Hz; Table 1). Notably, the limiting factor of DLStream's performance can be traced

back to the pose estimation inference time 39–41,43,47. However, with the rise of real-time,

closed-loop toolkits 1,37,38, including DLStream, the providers of open-source pose

48 of 99

estimation models have integrated optimized architectures for low inference time 43,46,47.

From a pure performance perspective, the use of faster neural network architectures

(e.g., MobilNetV2 104) already increases the available framerate by a factor of four (30 to

130 fps, Table 1). This improvement is consistent with the recent large-scale benchmark

tests run by DLC 46,47. Such fast inference times lay the foundation for implementing

machine learning-based classification of complex behavior (see chapter 3.3). The use of

machine learning increases the range and speed of detection considerably (see chapter

5.1.4 for further details), which will be crucial in disentangling causal relationships

between behavioral expressions and coincidental neuronal activity.

5.1.4 Real-time machine learning-based behavior classification in DLStream

 Complex behavior analysis tools based on machine learning (ML) classification are

actively developed using pose estimation as input 53,54,76,77. Notably, the usefulness in

closed-loop experiments is dependent on the complexity of the behavioral expressions of

interest. For example, behavioral expressions that can be described by a few feature

changes (e.g., angular changes in head movement) can be calculated without the need for

further ML integration. Such behavioral expression can be integrated into DLStream as

triggers based on single posture or sequential postural information 1 (Supplementary

Information 9.3.3). However, complex behavioral expressions (e.g., grooming or social

behavior, Supplementary Figure C a-b) would likely require a more sophisticated ML

approach to achieve reliable detection 37,38,49,50,52–54,76,77,106.

Fortunately, DLStream was developed as a sustainable, open-source toolkit to facilitate a

wide range of experiments across research groups independent of the in-domain

knowledge researchers might need to develop their own custom solution. Therefore, the

architecture, GUI, and documentation were built such that new users could design their

own experiments from the start (see also Supplementary Information 9.3). This includes

the publication of several example modules that facilitate the integration of closed-loop

experiments (Supplementary Information 9.3.5; Supplementary Table A).

Since the initial publication of DLStream 1, several updates have increased the spectrum

of available experimental designs (Supplementary Table A, Supplementary Table B) and

pose estimation models. A fundamental development was integrating ML classification of

 49 of 99

complex behavior based on available open-source solutions 54,76. An additional set of

modules was designed that allows the integration of ML classifiers into DLStream.

Fundamentally, ML classification can serve as a foundation to explore novel behavioral

patterns and correlated neuronal activity 50,52,54,56. Specifically, in combination with

behavior-dependent labeling (DLStream + Cal-Light), ML classifiers could be used first to

identify functional ensembles related to complex behavioral expressions and second to

manipulate them selectively to probe causal relationships.

In principle, ML classification based on pose estimation requires three steps to integrate

efficiently into closed-loop experiments. First, pose estimation needs to be collected

within a classifier-specific time window, and a set of features need to be extracted that

match the classifier's specifications. In B-SoiD 54, an unsupervised behavior classification

approach, behavioral episodes of 100 ms are captured and analyzed. Briefly, in DLStream,

an experiment consists of a behavior-dependent trigger, the dynamic control of

stimulation devices, and an experimental protocol that orchestrates the basic structure of

the experiment (see chapter 4.1.4 and Supplementary Information 9.3.2). With ML

classification, an additional FeatureExtraction module collects sequences of pose

estimation, extracts the relevant features, and passes them to the Classifier module (see

Supplementary Information 9.3.1, 9.3.6). The Classifier module acts as an interface for the

specific classifier type (e.g., RandomForest) and origin (e.g., B-SoiD or SimBA). It provides

a consistent way to integrate machine learning classifiers into trigger modules. However,

because ML classification is a time- and resource-intensive process, the effective

integration into DLStream relies on real-time optimization with parallel processing (see

Supplementary Information 9.3.6, Supplementary Figure C, Supplementary Table E).

5.1.5 Performance of real-time classification in DLStream

 In addition, both feature extraction and classification time can be further

optimized by specialization (see Supplementary Information 9.3.6). Non-optimized

SiMBA-classifiers reach a computation time of 114.04 ±5.98 ms (n = 1000) per cycle. In

contrast, optimizing the classifiers before their implementation for real-time use

(Supplementary Table E) reduces the classification time by more than tenfold to

9.44 ± 2.19 ms (n = 1000). In principle, a more compact architecture of the classifier would

further reduce the classification time. However, it will cost prediction accuracy – e.g., by

50 of 99

reducing the number of decision trees in a random forest classifier. The same principle

applies to feature extraction. Depending on the number of features needed for the

classification, the computational demand increases substantially (standard SiMBA feature

extraction with 14 body parts, 490 features: 235.56 ± 4.72 ms). However, with speed-

optimized extraction algorithms, the feature extraction time can be reduced to

insubstantial durations (optimized SiMBA feature extraction with 14 bp, 55 features:

0.09 ± 0.69 ms; see Supplementary Information 9.3.6, Supplementary Table E).

In comparison, the standard B-SoiD classification reaches 22.88 ± 4.36 ms (standard

feature extraction: 38.25 ± 3.20 ms) without any optimization in DLStream

(Supplementary Table E). Notably, SiMBA-based classifiers are binary classifiers that only

predict the occurrence of a single behavior, although they are usually used in batteries of

multiple classifiers offline 76. In contrast, B-SoiD classifiers predict multiple behavioral

expressions simultaneously 54. Both classifiers seem promising for future use in behavior-

dependent experiments. However, optimization steps will be crucial for the effective use

of real-time classification and allow higher framerate, real-time pose estimation without

additional delays added by the classification (see Supplementary Figure C).

5.1.6 Reliable multiple animal tracking in DLStream

 DLStream was initially developed for single animal experiments using DLC 1.11

(Nature Neuroscience Version, 39). However, the current version of DLStream 66 can utilize

pose estimation models from several toolkits, including the latest DLC version 39,46.

Therefore, models from SLEAP 40,43, DLC-LIVE 46, and DLC 39,48 can be fully integrated into

DLStream. Additionally, experimental implementations of models exported by

DeepPoseKit 41 (LEAP 40, StackedHourglass 121, StackedDenseNet 41) as well as multiple

animal DLC 45 (maDLC) are available.

Specifically, maDLC and SLEAP allow the pose estimation of multiple animals, which was

only possible in edge cases before. In multiple animal tracking, the frequent interactions

of individuals cause occlusions, complicating the pose estimation of a complete set of key

points. Further, multiple animal pose estimation requires predicting and keeping an

animal’s identity across frames, which was previously only possible in real-time for

individuals with distinctive features (e.g., different fur colors) 39,41,43,76. For offline

 51 of 99

solutions, the identity is often referred to with reference to both future and past

frames 43,122–124, a solution that is not applicable in real-time settings. However, future

developments in both SLEAP 43 and maDLC 45 are supposed to include inbuilt identity

tracking that only requires data of past occurrences of the same individual.

In this regard, establishing reliable multiple animal tracking will open up closed-loop

experiments dependent on social behavior. Here, the challenge will most likely be the

precise definition of social triggers and the design of relevant experiments using closed-

loop stimulation. ML behavior classification already enables users of SimBA to analyze

social behavior in offline settings 76. Therefore, the leap to real-time, social behavior-

dependent experiments seems imminent. The pure classification speed available with

DLStream seems promising (see Supplementary Information 9.3.6). However, the

performance and accuracy of such applications need to be carefully evaluated before

designing experiments. Here, the main challenge will lie in training personalized, accurate

machine learning-based classifiers.

5.1.7 Available open-source, pose estimation-based closed-loop systems

 Since the initial development of DLStream and the publication of the preprint 125,

the use of pose estimation as a basis for real-time tracking of animals in behavior

experiments has become more popular. The original authors of DLC 39,47 released a real-

time-optimized version of DLC, DLC-Live 46, in collaboration with Bonsai (bonsai-rx.org)

and AutoPilot 126. Two toolkits that allow users to process data streams from several

devices and automatize experiments similar to LabVIEW (National Instruments) 127.

However, an actual neuroscientific experiment using DLC-Live has yet to come. So far, the

publication of DLC-Live enabled an easier integration of DLC models into DLStream, and

their extensive benchmarks are helpful to establish the setup requirements for new

user 46,47. A similar approach by Forys et al. 2020 38 used the original DLC toolkit to realize

a closed-loop experiment with head-fixed mice. Although their implementation reached

a low latency and high framerate 38, the published toolkit lacks the complexity and

flexibility to be easily integrated into other labs and experiments.

As a more sophisticated example of the DLC-derived closed-loop systems, EthoLoop 37

specialized in the detection of behavior in naturalistic environments. Using 3D object

52 of 99

detection, pose estimation, and a sophisticated array of cameras, EthoLoop allows the

tracking and stimulation of freely roaming animals in real-time. Unfortunately, the system

is built for large-scale setups and requires specialized hardware to be established.

However, its use in 3D environments is unprecedented and will likely facilitate the

investigation of primates, birds, and other highly agile animals.

Notably, DLStream could also be upgraded to use 3D posture detection as implemented

recently by EthoLoop 37 or DANNCE 42. The use of multiple camera angles to triangulate

the animal's position was already shown for DLC-based pose estimation 37,48. However,

multiple camera streams would increase the computational resource demand and most

likely increase the available latency.

5.2 Multicolor light sheet fluorescence expansion microscopy

 With real-time, closed-loop experiments around the corner, the focus will shift to

the biomolecular tools available to capture, manipulate, and measure the complex

relationships between behavioral expressions and neuronal activity. Especially concerning

the investigation of functional ensembles, the unambiguous characterization of captured

neurons will become a central challenge. Here, the disadvantage of classic labeling

strategies – i.e., single-color labeling – lies in identifying individual neurons, especially in

dense areas (see chapter 3.6). However, it will be crucial to characterize neurons in great

detail across large scales to sufficiently understand functional ensembles of behavior.

Here, techniques that expand on conventional labeling strategies combined with fast,

high-resolution imaging serve as an excellent way to disentangle the underlying

complexity.

Therefore, in close collaboration with the Institute for Theoretical and Physical Chemistry

at the University of Bonn, a study was conducted to integrate multicolor-based

segmentation within the previously established virtual super-resolution LSFEM

workflow 57,128. My main focus was establishing strategies for effective Tetbow-based

labeling for tissue expansion and automatic hue-based segmentation (see chapters 3.5

and 3.6). The study's initial focus was to investigate the relationships between CA3

pyramidal neurons and their connected DG counterparts. As the hippocampus consists of

multiple densely populated layers and connections are both short and long-range, it

 53 of 99

provides a well-studied basis for establishing this advanced connectomic analysis.

However, the technique's potential in the context of behavior-dependent labeling is

remarkable (see chapter 5.3.1).

Notably, the algorithm and its quantitative results are published separately 105 and were

not part of this thesis.

5.2.1 Hue-based analysis of expanded tissue

 In principle, the power of high contrast, multicolor labeling using Tetbow allows

the distinction of closely neighboring neurons in densely layered regions such as the

hippocampal formation 62. Additionally, combining Tetbow with powerful imaging

techniques such as LSFEM paves the way for scale-bridging connectomics. However, so

far, the system was not demonstrated to work with tissue expansion protocols and virtual

super-resolution imaging.

The Tetbow system requires careful evaluation of expression ratios between all viral

components for practical use. Notably, the XFP expression needs to be fine-tuned to

compensate for any fluorescent loss during tissue expansion (see Supplementary Table

D), even if it is minimal 57,58, mainly because the retained fluorescence can be different

across XFPs 129. Interestingly, during experiments, it could not be confirmed that Tetbow’s

expression levels increase with decreasing tTA vector ratios but rather the other way

around 62 (see Supplementary Table D). This stands in contrast to initial reports by the

original authors 62 but makes sense considering the expression system (see chapter 3.5).

With optimized expression ratios, Tetbow-based LSFEM will allow the classification of a

large number of neurons on an individual level across large-scale tissues with remarkable

detail (Figure 11 i). For this, the developed algorithm utilizes both spatial- and color-

derived information to segment individual neurons 105 (Figure 11 j) and trace them across

imaging volumes.

The immediate advantage lies in the broad-range classification of individual neurons

identified and segmented by their unique hue using the inherent large-scale capabilities

of LSFEM. Thus, individual neurons can be characterized by their morphology 130–132 and

their connectivity investigated with short-to-long-range tracing in dense regions

automatically (Figure 11 h). Notably, the possibility to identify large-scale structures with

54 of 99

a simultaneous resolution to study spike-like protrusions (Figure 11 f-g) or even

synapses 57 will be most relevant in the investigation of large-scale effects by small-scale

morphology changes. For example, in numerous brain disorders associated with abnormal

dendritic spines 59–61.

5.3 Future directions

 The roadmap to investigate behavior-relevant circuits based on the tools at hand

seems straightforward. First, the behavior-dependent labeling and consecutive

manipulation of neuronal ensembles underlying behavior can be achieved by using

closed-loop feedback systems (e.g., DLStream) in combination with biomolecular tools

such as Cal-Light. For connectomic analysis, the captured ensembles are then imaged with

high resolution at a large scale. Here, techniques such as LSFEM are preferable as they

bridge both meso- and nanoscopic scales at fast imaging speed. The imaging data can then

be integrated into automatic cell counting and segmentation pipelines that characterize

the functional ensembles. Second, the causal relationships between captured ensembles

and correlated behavioral expressions can be further probed with closed-loop

optogenetic experiments – i.e., by utilizing the Cal-Light system with exchanged reporter

proteins. However, the intricate relationships between behavioral expressions and

neuronal activity raise several requirements that need to be carefully investigated and

optimized along the way.

5.3.1 Limitations of Cal-Light in capturing behavioral expressions

 For instance, given the need to stimulate on multiple occasions, a disadvantage of

a behavior-dependent labeling approach with the Cal-Light system is the necessity to

select behavioral expressions performed regularly by the animal. Rare behavioral

expressions that cannot be induced during experimental sessions – i.e., a behavior only

expressed once every session and that cannot be evoked by reward or paradigm changes -

will most likely not satisfy the stimulation threshold. Here, Cal-Light's transient expression

of reporter genes comes into play. Spreading the same number of stimulations out over

an extended period will most likely not be effective because the low expression level per

event and the transient lifetime of reporter proteins will limit Cal-Lights effectiveness,

even if some sessions rise above the stimulation threshold. However, a more sensitive or

 55 of 99

more label-efficient approach might be a viable solution to capture rare behavioral

expressions.

The Supernova system 133, for example, uses a tTA/TRE-Cre/loxP enhancing system that

boosts low levels of tTA/TRE activation by a Cre/loxP-controlled feedback loop. First, tTA-

mediated expression of TRE-Cre results in Cre-recombinase expression. Second, the Cre-

mediated recombination of CAG-loxP-stop-loxP-XFP-tTA results in the expression of XFP-

tTA, initiating a feedback loop enhancing XFP expression for high molecular contrast.

Thus, a supernova-like Cal-Light adaptation would only need very few behavior-

dependent light stimulations to activate the enhanced expression system and constantly

express the reporter afterward.

In theory, such a system could be generated by combining Cal-Light 26 and Supernova 133

components directly. Cal-Light utilizes the activity-dependent, light-induced release of tTA

to express TRE-controlled reporter genes. Thus, rather than driving XFP expression

directly, Cal-Light could be used to trigger the TRE-Cre expression and subsequent

feedback loop of Supernova 133. The main advantage being the longer lifetime of the

behavior-dependent label and the shorter stimulation requirements. A system like this

would be especially beneficial to express functionally active reporters utilized afterward

– e.g., ChR/NpHR for optogenetic manipulation or calcium indicators for Ca2+ imaging of

behavior-dependently labeled neurons. However, a supernova-like Cal-Light approach

would require careful verification of the causal relationship between neuronal activity and

behavior-dependent labeling due to its increased sensitivity.

5.3.2 Limitations of Cal-Light in connectomic analysis

 Another challenge concerns the highly detailed connectomic analysis of captured

ensembles. As previously mentioned, the single-color labeling of large quantities of closely

neighboring neurons restricts the level of connectomic analysis considerably. Therefore,

multicolor, activity-dependent labeling would facilitate a holistic segmentation of

individual neurons that form functional ensembles. However, the current version of Cal-

Light can only express single XFPs.

A potential solution could be realized by combining the light-induced, activity-dependent

release of tTA using Cal-Light 26 (see chapter 3.1) with the tTA/TRE-dependent expression

56 of 99

of Tetbow directly. However, it is questionable whether the short-term expression by Cal-

Light’s tTA release is enough to drive the expression levels required to resolve Tetbow

into a wide range of different color hues. Here, an enhancement system or a system that

is activated only once would likely be more promising. The original approach,

Brainbow 63,64, is Cre-dependent, meaning that the activation of reporter gene expression

is initially required but is continuous from that point on. However, it lacks an additional

enhancement strategy and was reported to result in low contrast expression 62, which is

one of the main reasons Tetbow was developed as its successor.

In contrast, a system enhancing expression levels after initial activation with Cal-Light

would facilitate the expression of Tetbow-like color diversity. Here, the Supernova 133

approach comes into mind again. However, the sheer amount of different viral vectors

necessary to allow a fully functional version of a Cal-Light/Tetbow/Supernova approach

reduces the likelihood of a successful implementation. First, the high viral load could be

toxic to neurons. Second, the likelihood of simultaneous effective infection with several

vectors is reduced with increasing numbers of components.

A step in the right direction might be scFLARE 29. The FLARE system works very similar to

Cal-Light – i.e., it allows the light-induced, activity-dependent labeling of neurons and

utilizes the tTA/TRE system 28. However, FLARE suffers from the same multi-vector

requirement that Cal-Light has. With scFLARE, the original authors generated a derivative

of FLARE 28 that reduces the number of vectors necessary to a single vector. Interestingly,

the new version was also reported to have greater dynamic range and robustness than

the original version 29.

In this regard, the rise of multi-color ensemble labeling consequently will result in an

increased need for the integration of automatic quantification to tackle the highly

complex imaging data. Here, developments like the hue-based segmentation algorithm 105

and AI-based whole brain cell counting 134 will be crucial in analyzing captured ensembles'

projections, morphologies, and local architectures.

5.3.3 Improvements to DLStream behavior detection

 High-throughput connectomic analysis aside, the next step to disentangle the

causal relationship between complex behavioral expressions and neuronal activity relies

 57 of 99

on the fast, robust identification of behavioral expressions. Here, the complete

integration of fast, reliable real-time behavior classification into closed-loop experiments

will be essential. Current offline solutions use two distinctly different approaches to tackle

an animal's behavioral repertoire during any observed session. However, in principle,

independent of the solution, a machine learning algorithm – i.e., a classifier – is trained to

classify data into previously learned categories.

Supervised classification 76 directly takes input from user-defined annotations and trains

a classifier to detect the previously defined behavioral expressions based on features

extracted from pose estimation (see Supplementary Figure C a-b). The main advantage of

this is the direct control a user has over the initial definition of the behavioral expression.

This you-get-what-you-label approach is advantageous if researchers are only interested

in a limited number of behavioral expressions. However, fully annotating training sets for

each behavior of interest is a time-consuming disadvantage that results in rigid categorical

definitions that can be prone to inherent biases and rater fatigue. Additionally, this

approach is not easily scalable, especially in more generalized investigations to untangle

the complete behavioral repertoire of animals. Inherently, a supervised algorithm is

unable to give new insights into previously unknown structures.

In contrast, unsupervised classification 52–56,77 limits the researcher's influence on the

definition of hyper-parameters and includes an additional analytical stage that reveals

underlying structures in the observed behavior. Existing solutions use different

approaches to expose predominant structures. However, independent of the particular

method, the resulting data can be used to train classifiers similar to the supervised

approach directly. While unsupervised behavior analysis can reveal behavioral structures

in a previously unmatched level of detail, the vast amount of extracted data needs to be

heavily curated to align identified structures to preexisting behavioral stereotypes.

For solutions like DLStream, the key advantage will lie in the collaboration with and

integration of open-source toolkits such as BSoID 54, SimBA 76, and others 52,53,56,77,106. For

example, the DLStream integration of SimBA-based classification, a fully supervised

classification tool, combined with multiple animal tracking, showed promising results in

recent internal tests (see Supplementary Information 9.3.6). At the same time, pure-

predict 135 optimized classification speed seems to be particularly well suited for real-time

58 of 99

requirements (see Methods 7.13; Supplementary Table E) and will facilitate the

integration of solutions that are not real-time optimized by design. In addition, ML

analysis yields the prospect of predicting behavior, for example, by matching initial

elements of a uniquely arranged behavioral sequence, further reducing the latency to

react to a behavioral expression. Predicting behavioral expressions will be especially

relevant to investigate the causal relationship of neuronal computations that evoke

behavioral expressions. Here, the main disadvantage of current behavior detection

strategies is the reactive detection based on complete expressions – i.e., the behavioral

expression must be observed in full before it is recognized. Any underlying neuronal

activity partially preceding the behavioral expression or happening only during the very

beginning will likely not be captured using this approach. Therefore, the future direction

will be the generation of predictive detection strategies that can identify behavioral

expressions based on incomplete expressions – i.e., detecting them before they are

completed. In this regard, the combination of pose estimation with alternative, non-

video-based tracking (e.g., eye-tracking; 136) or additional behavioral dimensions such as

vocalization 137–139 might lead to a solution for researchers interested in capturing truly

holistic behavioral data.

5.4 Conclusion

 The combination of DLStream and Cal-Light allows to capture neuronal ensembles

active during selected, unconstrained behavioral expressions in real-time. In this thesis,

DLStream specifically was used to optogenetically label active neurons during selected

episodes head direction in mice. Unlike previous implementations of Cal-Light-like

systems 26,28, the light induction with DLStream is not dependent on the interaction with

a lever or other device but captures unconstrained behavioral expressions in a freely

moving setup. As such, DLStream elevates the potential use of light-induced, activity-

dependent labeling systems to unrestricted behavior-dependency. Notably, the toolkit

has no apparent limitations for the use with different organisms and other experimental

paradigms 1. Its capabilities can be directly translated to a wide range of organisms

utilizing the generalizability of pose estimation models across different species 41,43,48.

 59 of 99

Additionally, detailed documentation and several example modules were published to

further facilitate its use along with DLStream as an open-source software package 66.

I believe that the use of DLStream will facilitate the characterization of causal relationships

between behavioral expressions and underlying neuronal activity, especially if activity-

dependent labeling can be combined with multicolor approaches like Tetbow.

6 References

1. Schweihoff, J. F. et al. DeepLabStream
enables closed-loop behavioral experiments
using deep learning-based markerless, real-
time posture detection. Communications
biology 4, 130; 10.1038/s42003-021-01654-
9 (2021).

2. Abbott, L. F. et al. The Mind of a Mouse. Cell
182, 1372–1376; 10.1016/j.cell.2020.08.010
(2020).

3. Berman, G. J. Measuring behavior across
scales. BMC biology 16, 23; 10.1186/s12915-
018-0494-7 (2018).

4. Anderson, D. J. & Perona, P. Toward a
science of computational ethology. Neuron
84, 18–31; 10.1016/j.neuron.2014.09.005
(2014).

5. Krakauer, J. W., Ghazanfar, A. A., Gomez-
Marin, A., MacIver, M. A. & Poeppel, D.
Neuroscience Needs Behavior: Correcting a
Reductionist Bias. Neuron 93, 480–490;
10.1016/j.neuron.2016.12.041 (2017).

6. Gomez-Marin, A., Paton, J. J., Kampff, A. R.,
Costa, R. M. & Mainen, Z. F. Big behavioral
data: psychology, ethology and the
foundations of neuroscience. Nature
Neuroscience 17, 1455 EP -;
10.1038/nn.3812 (2014).

7. Silvanto, J. & Pascual-Leone, A. Why the
assessment of causality in brain-behavior
relations requires brain stimulation. Journal
of cognitive neuroscience 24, 775–777;
10.1162/jocn_a_00193 (2012).

8. Wolff, S. B. & Ölveczky, B. P. The promise
and perils of causal circuit manipulations.
Current opinion in neurobiology 49, 84–94;
10.1016/j.conb.2018.01.004 (2018).

9. Otchy, T. M. et al. Acute off-target effects of
neural circuit manipulations. Nature 528,
358–363; 10.1038/nature16442 (2015).

10. Boyden, E. S. Optogenetics and the future of
neuroscience. Nature Neuroscience 18,
1200–1201; 10.1038/nn.4094 (2015).

11. Rajasethupathy, P., Ferenczi, E. &
Deisseroth, K. Targeting Neural Circuits. Cell
165, 524–534; 10.1016/j.cell.2016.03.047
(2016).

12. Deisseroth, K. Optogenetics: 10 years of
microbial opsins in neuroscience. Nature
Neuroscience 18, 1213–1225;
10.1038/nn.4091 (2015).

13. Kwon, J.-T. et al. Optogenetic activation of
presynaptic inputs in lateral amygdala forms
associative fear memory. Learning &
memory (Cold Spring Harbor, N.Y.) 21, 627–
633; 10.1101/lm.035816.114 (2014).

14. Sousa, A. F. de et al. Optogenetic
reactivation of memory ensembles in the
retrosplenial cortex induces systems
consolidation. Proceedings of the National
Academy of Sciences of the United States of
America 116, 8576–8581;
10.1073/pnas.1818432116 (2019).

15. Oishi, N. et al. Artificial association of
memory events by optogenetic stimulation
of hippocampal CA3 cell ensembles.
Molecular Brain 12, 2; 10.1186/s13041-018-
0424-1 (2019).

16. Marshel, J. H. et al. Cortical layer-specific
critical dynamics triggering perception.
Science (New York, N.Y.) 365;
10.1126/science.aaw5202 (2019).

17. Carrillo-Reid, L., Han, S., Yang, W., Akrouh,
A. & Yuste, R. Controlling Visually Guided
Behavior by Holographic Recalling of Cortical
Ensembles. Cell 178, 447-457.e5;
10.1016/j.cell.2019.05.045 (2019).

60 of 99

18. Magno, L. A. V. et al. Optogenetic
Stimulation of the M2 Cortex Reverts Motor
Dysfunction in a Mouse Model of
Parkinson's Disease. The Journal of
neuroscience : the official journal of the
Society for Neuroscience 39, 3234–3248;
10.1523/JNEUROSCI.2277-18.2019 (2019).

19. Ebina, T. et al. Arm movements induced by
noninvasive optogenetic stimulation of the
motor cortex in the common marmoset.
Proceedings of the National Academy of
Sciences of the United States of America;
10.1073/pnas.1903445116 (2019).

20. Baumgartner, C., Koren, J. P. & Rothmayer,
M. Automatic Computer-Based Detection of
Epileptic Seizures. Frontiers in neurology 9,
639; 10.3389/fneur.2018.00639 (2018).

21. Krook-Magnuson, E., Armstrong, C., Oijala,
M. & Soltesz, I. On-demand optogenetic
control of spontaneous seizures in temporal
lobe epilepsy. Nature communications 4,
1376; 10.1038/ncomms2376 (2013).

22. Paz, J. T. et al. Closed-loop optogenetic
control of thalamus as a tool for interrupting
seizures after cortical injury. Nature
Neuroscience 16, 64–70; 10.1038/nn.3269
(2013).

23. Chen, R. et al. Deep brain optogenetics
without intracranial surgery. Nature
biotechnology 39, 161–164;
10.1038/s41587-020-0679-9 (2021).

24. Boyden, E. S., Zhang, F., Bamberg, E., Nagel,
G. & Deisseroth, K. Millisecond-timescale,
genetically targeted optical control of neural
activity. Nature Neuroscience 8, 1263–1268;
10.1038/nn1525 (2005).

25. Grosenick, L., Marshel, J. H. & Deisseroth, K.
Closed-loop and activity-guided optogenetic
control. Neuron 86, 106–139;
10.1016/j.neuron.2015.03.034 (2015).

26. Lee, D., Hyun, J. H., Jung, K., Hannan, P. &
Kwon, H.-B. A calcium- and light-gated
switch to induce gene expression in
activated neurons. Nature biotechnology 35,
858 EP -; 10.1038/nbt.3902 (2017).

27. Ebner, C. et al. Optically Induced Calcium-
Dependent Gene Activation and Labeling of
Active Neurons Using CaMPARI and Cal-
Light. Frontiers in synaptic neuroscience 11,
16; 10.3389/fnsyn.2019.00016 (2019).

28. Wang, W. et al. A light- and calcium-gated
transcription factor for imaging and

manipulating activated neurons. Nature
biotechnology 35, 864 EP -;
10.1038/nbt.3909 (2017).

29. Sanchez, M. I., Nguyen, Q.-A., Wang, W.,
Soltesz, I. & Ting, A. Y. Transcriptional
readout of neuronal activity via an
engineered Ca2+-activated protease.
Proceedings of the National Academy of
Sciences of the United States of America;
10.1073/pnas.2006521117 (2020).

30. Paulk, A. C., Kirszenblat, L., Zhou, Y. & van
Swinderen, B. Closed-Loop Behavioral
Control Increases Coherence in the Fly
Brain. The Journal of neuroscience : the
official journal of the Society for
Neuroscience 35, 10304–10315;
10.1523/JNEUROSCI.0691-15.2015 (2015).

31. Solari, N., Sviatkó, K., Laszlovszky, T.,
Hegedüs, P. & Hangya, B. Open Source Tools
for Temporally Controlled Rodent Behavior
Suitable for Electrophysiology and
Optogenetic Manipulations. Frontiers in
systems neuroscience 12, 18;
10.3389/fnsys.2018.00018 (2018).

32. Thurley, K. & Ayaz, A. Virtual reality systems
for rodents. Current zoology 63, 109–119;
10.1093/cz/zow070 (2017).

33. Bourboulou, R. et al. Dynamic control of
hippocampal spatial coding resolution by
local visual cues. eLife 8;
10.7554/eLife.44487 (2019).

34. Fuhrmann, F. et al. Locomotion, Theta
Oscillations, and the Speed-Correlated Firing
of Hippocampal Neurons Are Controlled by a
Medial Septal Glutamatergic Circuit. Neuron
86, 1253–1264;
10.1016/j.neuron.2015.05.001 (2015).

35. Musso, P.-Y. et al. Closed-loop optogenetic
activation of peripheral or central neurons
modulates feeding in freely moving
Drosophila. eLife 8; 10.7554/eLife.45636
(2019).

36. Štih, V., Petrucco, L., Kist, A. M. & Portugues,
R. Stytra: An open-source, integrated system
for stimulation, tracking and closed-loop
behavioral experiments. PLoS computational
biology 15, e1006699;
10.1371/journal.pcbi.1006699 (2019).

37. Nourizonoz, A. et al. EthoLoop: automated
closed-loop neuroethology in naturalistic
environments. Nature methods 17, 1052–
1059; 10.1038/s41592-020-0961-2 (2020).

 61 of 99

38. Forys, B. J., Xiao, D., Gupta, P. & Murphy, T.
H. Real-Time Selective Markerless Tracking
of Forepaws of Head Fixed Mice Using Deep
Neural Networks. eNeuro 7;
10.1523/ENEURO.0096-20.2020 (2020).

39. Mathis, A. et al. DeepLabCut: markerless
pose estimation of user-defined body parts
with deep learning. Nature Neuroscience 21,
1281–1289; 10.1038/s41593-018-0209-y
(2018).

40. Pereira, T. D. et al. Fast animal pose
estimation using deep neural networks.
Nature methods 16, 117–125;
10.1038/s41592-018-0234-5 (2019).

41. Graving, J. M. et al. DeepPoseKit, a software
toolkit for fast and robust animal pose
estimation using deep learning. eLife 8,
e47994; 10.7554/eLife.47994 (2019).

42. Dunn, T. W. et al. Geometric deep learning
enables 3D kinematic profiling across
species and environments. Nature methods;
10.1038/s41592-021-01106-6 (2021).

43. Pereira, T. D. et al. SLEAP: Multi-animal pose
tracking. BioRxiv;
10.1101/2020.08.31.276246 (2020).

44. Hebert, L., Ahamed, T., Costa, A. C.,
O'Shaughnessy, L. & Stephens, G. J.
WormPose: Image synthesis and
convolutional networks for pose estimation
in C. elegans. PLoS computational biology
17, e1008914;
10.1371/journal.pcbi.1008914 (2021).

45. Lauer, J. et al. Multi-animal pose estimation
and tracking with DeepLabCut. BioRxiv;
10.1101/2021.04.30.442096 (2021).

46. Kane, G. A., Lopes, G., Saunders, J. L.,
Mathis, A. & Mathis, M. W. Real-time, low-
latency closed-loop feedback using
markerless posture tracking. eLife 9;
10.7554/eLife.61909 (2020).

47. Mathis, A. & Warren, R. On the inference
speed and video-compression robustness of
DeepLabCut. BioRxiv; 10.1101/457242
(2018).

48. Nath, T. et al. Using DeepLabCut for 3D
markerless pose estimation across species
and behaviors. Nature Protocols 14, 2152–
2176; 10.1038/s41596-019-0176-0 (2019).

49. Sturman, O. et al. Deep learning-based
behavioral analysis reaches human accuracy
and is capable of outperforming commercial

solutions. Neuropsychopharmacology :
official publication of the American College
of Neuropsychopharmacology 45, 1942–
1952; 10.1038/s41386-020-0776-y (2020).

50. Markowitz, J. E. et al. The Striatum
Organizes 3D Behavior via Moment-to-
Moment Action Selection. Cell 174, 44-
58.e17; 10.1016/j.cell.2018.04.019 (2018).

51. Wang, Z., Mirbozorgi, S. A. & Ghovanloo, M.
An automated behavior analysis system for
freely moving rodents using depth image.
Medical & biological engineering &
computing 56, 1807–1821; 10.1007/s11517-
018-1816-1 (2018).

52. Wiltschko, A. B. et al. Mapping Sub-Second
Structure in Mouse Behavior. Neuron 88,
1121–1135; 10.1016/j.neuron.2015.11.031
(2015).

53. Luxem, K., Fuhrmann, F., Kürsch, J., Remy, S.
& Bauer, P. Identifying Behavioral Structure
from Deep Variational Embeddings of
Animal Motion. BioRxiv;
10.1101/2020.05.14.095430 (2020).

54. Hsu, A. I. & Yttri, E. A. B-SOiD, an open-
source unsupervised algorithm for
identification and fast prediction of
behaviors. Nature communications 12,
5188; 10.1038/s41467-021-25420-x (2021).

55. Berman, G. J., Choi, D. M., Bialek, W. &
Shaevitz, J. W. Mapping the stereotyped
behaviour of freely moving fruit flies.
Journal of the Royal Society, Interface 11;
10.1098/rsif.2014.0672 (2014).

56. Klibaite, U., Berman, G. J., Cande, J., Stern,
D. L. & Shaevitz, J. W. An unsupervised
method for quantifying the behavior of
paired animals. Physical biology 14, 15006;
10.1088/1478-3975/aa5c50 (2017).

57. Bürgers, J. et al. Light-sheet fluorescence
expansion microscopy: fast mapping of
neural circuits at super resolution.
Neurophotonics 6, 15005;
10.1117/1.NPh.6.1.015005 (2019).

58. Gao, R. et al. Cortical column and whole-
brain imaging with molecular contrast and
nanoscale resolution. Science (New York,
N.Y.) 363; 10.1126/science.aau8302 (2019).

59. Benson, C. A. et al. Dendritic Spine Dynamics
after Peripheral Nerve Injury: An Intravital
Structural Study. The Journal of
neuroscience : the official journal of the

62 of 99

Society for Neuroscience 40, 4297–4308;
10.1523/JNEUROSCI.2858-19.2020 (2020).

60. Krueppel, R., Remy, S. & Beck, H. Dendritic
integration in hippocampal dentate granule
cells. Neuron 71, 512–528;
10.1016/j.neuron.2011.05.043 (2011).

61. Penzes, P., Cahill, M. E., Jones, K. A.,
VanLeeuwen, J.-E. & Woolfrey, K. M.
Dendritic spine pathology in
neuropsychiatric disorders. Nature
Neuroscience 14, 285–293; 10.1038/nn.2741
(2011).

62. Sakaguchi, R., Leiwe, M. N. & Imai, T. Bright
multicolor labeling of neuronal circuits with
fluorescent proteins and chemical tags. eLife
7; 10.7554/eLife.40350 (2018).

63. Weissman, T. A. & Pan, Y. A. Brainbow: new
resources and emerging biological
applications for multicolor genetic labeling
and analysis. Genetics 199, 293–306;
10.1534/genetics.114.172510 (2015).

64. Cai, D., Cohen, K. B., Luo, T., Lichtman, J. W.
& Sanes, J. R. Improved tools for the
Brainbow toolbox. Nature methods 10, 540–
547; 10.1038/nmeth.2450 (2013).

65. Livet, J. et al. Transgenic strategies for
combinatorial expression of fluorescent
proteins in the nervous system. Nature 450,
56–62; 10.1038/nature06293 (2007).

66. Schweihoff, J., Matvey Loshakov & Schwarz
Lab. SchwarzNeuroconLab/DeepLabStream
v1.4 (Zenodo, 2021).

67. O'Keefe, J. Place units in the hippocampus of
the freely moving rat. Experimental
Neurology 51, 78–109; 10.1016/0014-
4886(76)90055-8 (1976).

68. Abdelfattah, A. S. et al. Bright and
photostable chemigenetic indicators for
extended in vivo voltage imaging. Science
(New York, N.Y.) 365, 699–704;
10.1126/science.aav6416 (2019).

69. Skocek, O. et al. High-speed volumetric
imaging of neuronal activity in freely moving
rodents. Nature methods 15, 429–432;
10.1038/s41592-018-0008-0 (2018).

70. Ghosh, K. K. et al. Miniaturized integration
of a fluorescence microscope. Nature
methods 8, 871–878; 10.1038/nmeth.1694
(2011).

71. Szabo, V., Ventalon, C., Sars, V. de, Bradley,
J. & Emiliani, V. Spatially selective

holographic photoactivation and functional
fluorescence imaging in freely behaving
mice with a fiberscope. Neuron 84, 1157–
1169; 10.1016/j.neuron.2014.11.005 (2014).

72. Winter, D. A. Biomechanics and motor
control of human movement. 4th ed. (Wiley;
Chichester : John Wiley [distributor],
Hoboken, N.J., 2009).

73. Vargas-Irwin, C. E. et al. Decoding complete
reach and grasp actions from local primary
motor cortex populations. The Journal of
neuroscience : the official journal of the
Society for Neuroscience 30, 9659–9669;
10.1523/JNEUROSCI.5443-09.2010 (2010).

74. Maghsoudi, O. H., Tabrizi, A. V., Robertson,
B. & Spence, A. Superpixels based marker
tracking vs. hue thresholding in rodent
biomechanics application. In 2017 51st
Asilomar Conference on Signals, Systems,
and Computers (IEEE102017), pp. 209–213.

75. Insafutdinov, E., Pishchulin, L., Andres, B.,
Andriluka, M. & Schiele, B. DeeperCut: A
Deeper, Stronger, and Faster Multi-person
Pose Estimation Model. In Computer Vision
– ECCV 2016, edited by B. Leibe, J. Matas, N.
Sebe & M. Welling (Springer International
Publishing, Cham, 2016), Vol. 9910, pp. 34–
50.

76. Nilsson, S. R. O. et al. Simple Behavioral
Analysis (SimBA) – an open source toolkit for
computer classification of complex social
behaviors in experimental animals. BioRxiv;
10.1101/2020.04.19.049452 (2020).

77. Graving, J. M. & Couzin, I. D. VAE-SNE: a
deep generative model for simultaneous
dimensionality reduction and clustering.
BioRxiv; 10.1101/2020.07.17.207993 (2020).

78. Chang, J.-B. et al. Iterative expansion
microscopy. Nat Methods 14, 593–599;
10.1038/nmeth.4261 (2017).

79. Chen, F., Tillberg, P. W. & Boyden, E. S.
Optical imaging. Expansion microscopy.
Science (New York, N.Y.) 347, 543–548;
10.1126/science.1260088 (2015).

80. Chozinski, T. J. et al. Expansion microscopy
with conventional antibodies and
fluorescent proteins. Nature methods 13,
485–488; 10.1038/nmeth.3833 (2016).

81. Zhu, D., Larin, K. V., Luo, Q. & Tuchin, V. V.
Recent progress in tissue optical clearing.
Laser & photonics reviews 7, 732–757;
10.1002/lpor.201200056 (2013).

 63 of 99

82. Vigouroux, R. J., Belle, M. & Chédotal, A.
Neuroscience in the third dimension:
shedding new light on the brain with tissue
clearing. Molecular Brain 10, 33;
10.1186/s13041-017-0314-y (2017).

83. Tainaka, K., Kuno, A., Kubota, S. I.,
Murakami, T. & Ueda, H. R. Chemical
Principles in Tissue Clearing and Staining
Protocols for Whole-Body Cell Profiling.
Annual review of cell and developmental
biology 32, 713–741; 10.1146/annurev-
cellbio-111315-125001 (2016).

84. Richardson, D. S. & Lichtman, J. W. Clarifying
Tissue Clearing. Cell 162, 246–257;
10.1016/j.cell.2015.06.067 (2015).

85. Schwarz, M. K. et al. Fluorescent-protein
stabilization and high-resolution imaging of
cleared, intact mouse brains. PloS one 10,
e0124650; 10.1371/journal.pone.0124650
(2015).

86. Voie, A. H., Burns, D. H. & Spelman, F. A.
Orthogonal-plane fluorescence optical
sectioning: three-dimensional imaging of
macroscopic biological specimens. Journal of
microscopy 170, 229–236; 10.1111/j.1365-
2818.1993.tb03346.x (1993).

87. Silvestri, L., Bria, A., Sacconi, L., Iannello, G.
& Pavone, F. S. Confocal light sheet
microscopy: micron-scale neuroanatomy of
the entire mouse brain. Optics express 20,
20582–20598; 10.1364/OE.20.020582
(2012).

88. Baumgart, E. & Kubitscheck, U. Scanned
light sheet microscopy with confocal slit
detection. Optics express 20, 21805–21814;
10.1364/OE.20.021805 (2012).

89. Doerr, J. et al. Whole-brain 3D mapping of
human neural transplant innervation.
Nature communications 8, 14162;
10.1038/ncomms14162 (2017).

90. Niedworok, C. J. et al. Charting
monosynaptic connectivity maps by two-
color light-sheet fluorescence microscopy.
Cell reports 2, 1375–1386;
10.1016/j.celrep.2012.10.008 (2012).

91. Dodt, H.-U. et al. Ultramicroscopy: three-
dimensional visualization of neuronal
networks in the whole mouse brain. Nature
methods 4, 331–336; 10.1038/nmeth1036
(2007).

92. Jefferis, G. S. X. E. & Livet, J. Sparse and
combinatorial neuron labelling. Current

opinion in neurobiology 22, 101–110;
10.1016/j.conb.2011.09.010 (2012).

93. Pasternak, J. F. & Woolsey, T. A. On the
"selectivity" of the Golgi-Cox method. The
Journal of comparative neurology 160, 307–
312; 10.1002/cne.901600304 (1975).

94. Valverde, F. The Golgi Method. A Tool for
Comparative Structural Analyses. In
Contemporary Research Methods in
Neuroanatomy, edited by W. J. H. Nauta &
S. O. E. Ebbesson (Springer Berlin
Heidelberg, Berlin, Heidelberg, 1970), pp.
12–31.

95. Lee, G. & Saito, I. Role of nucleotide
sequences of loxP spacer region in Cre-
mediated recombination. Gene 216, 55–65;
10.1016/S0378-1119(98)00325-4 (1998).

96. Stark, W. M., Boocock, M. R. & Sherratt, D. J.
Catalysis by site-specific recombinases.
Trends in genetics : TIG 8, 432–439 (1992).

97. Branda, C. S. & Dymecki, S. M. Talking about
a Revolution. Developmental Cell 6, 7–28;
10.1016/S1534-5807(03)00399-X (2004).

98. Deuschle, U., Meyer, W. K. & Thiesen, H. J.
Tetracycline-reversible silencing of
eukaryotic promoters. Molecular and
cellular biology 15, 1907–1914;
10.1128/mcb.15.4.1907 (1995).

99. Gossen, M. & Bujard, H. Tight control of
gene expression in mammalian cells by
tetracycline-responsive promoters.
Proceedings of the National Academy of
Sciences of the United States of America 89,
5547–5551 (1992).

100. Hillen, W. & Berens, C. Mechanisms
underlying expression of Tn10 encoded
tetracycline resistance. Annual review of
microbiology 48, 345–369;
10.1146/annurev.mi.48.100194.002021
(1994).

101. Kobiler, O., Lipman, Y., Therkelsen, K.,
Daubechies, I. & Enquist, L. W.
Herpesviruses carrying a Brainbow cassette
reveal replication and expression of limited
numbers of incoming genomes. Nature
communications 1, 146;
10.1038/ncomms1145 (2010).

102. Cetin, A., Komai, S., Eliava, M., Seeburg,
P. H. & Osten, P. Stereotaxic gene delivery in
the rodent brain. Nature Protocols 1, 3166–
3173; 10.1038/nprot.2006.450 (2006).

64 of 99

103. He, K., Zhang, X., Ren, S. & Sun, J. Deep
Residual Learning for Image Recognition. In
2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR)
(IEEEMonday, June 27, 2016 - Thursday,
June 30, 2016), pp. 770–778.

104. Sandler, M., Howard, A., Zhu, M.,
Zhmoginov, A. & Chen, L.-C. MobileNetV2:
Inverted Residuals and Linear Bottlenecks. In
2018 IEEE/CVF Conference on Computer
2018, pp. 4510–4520.

105. Heysel, J. L. Abbildung und
farbtonbasierte Analyse ausgedehnter
neuronaler Strukturen. Dissertation.
Rheinische Friedrich-Wilhelms-Universität
Bonn, 2021.

106. Datta, S. R., Anderson, D. J., Branson, K.,
Perona, P. & Leifer, A. Computational
Neuroethology: A Call to Action. Neuron
104, 11–24; 10.1016/j.neuron.2019.09.038
(2019).

107. Fosque, B. F. et al. Neural circuits.
Labeling of active neural circuits in vivo with
designed calcium integrators. Science (New
York, N.Y.) 347, 755–760;
10.1126/science.1260922 (2015).

108. Taube, J. S. Head direction cells
recorded in the anterior thalamic nuclei of
freely moving rats. The Journal of
neuroscience : the official journal of the
Society for Neuroscience 15, 70–86;
10.1523/JNEUROSCI.15-01-00070.1995
(1995).

109. Taube, J. S., Muller, R. U. & Ranck, J. B.
Head-direction cells recorded from the
postsubiculum in freely moving rats. II.
Effects of environmental manipulations. The
Journal of neuroscience : the official journal
of the Society for Neuroscience 10, 436–447
(1990).

110. Yoder, R. M. & Taube, J. S. Head
Direction Cell Activity in Mice: Robust
Directional Signal Depends on Intact Otolith
Organs. The Journal of neuroscience : the
official journal of the Society for
Neuroscience 29, 1061–1076;
10.1523/JNEUROSCI.1679-08.2009 (2009).

111. Valerio, S. & Taube, J. S. Head Direction
Cell Activity Is Absent in Mice without the
Horizontal Semicircular Canals. The Journal
of neuroscience : the official journal of the
Society for Neuroscience 36, 741–754;
10.1523/JNEUROSCI.3790-14.2016 (2016).

112. Sharp, P. E. Neural Representations of
Direction (Head Direction Cells). In
Encyclopedia of Behavioral Neuroscience
(Elsevier2010), pp. 348–355.

113. Josselyn, S. A. The past, present and
future of light-gated ion channels and
optogenetics. eLife 7; 10.7554/eLife.42367
(2018).

114. Nagel, G. et al. Channelrhodopsin-1: a
light-gated proton channel in green algae.
Science (New York, N.Y.) 296, 2395–2398;
10.1126/science.1072068 (2002).

115. Han, X. & Boyden, E. S. Multiple-color
optical activation, silencing, and
desynchronization of neural activity, with
single-spike temporal resolution. PloS one 2,
e299; 10.1371/journal.pone.0000299
(2007).

116. Stacher Hörndli, C. N. et al. Complex
Economic Behavior Patterns Are
Constructed from Finite, Genetically
Controlled Modules of Behavior. Cell reports
28, 1814-1829.e6;
10.1016/j.celrep.2019.07.038 (2019).

117. Knutsen, P. M., Derdikman, D. &
Ahissar, E. Tracking whisker and head
movements in unrestrained behaving
rodents. Journal of neurophysiology 93,
2294–2301; 10.1152/jn.00718.2004 (2005).

118. Sofroniew, N. J., Cohen, J. D., Lee, A. K.
& Svoboda, K. Natural whisker-guided
behavior by head-fixed mice in tactile virtual
reality. The Journal of neuroscience : the
official journal of the Society for
Neuroscience 34, 9537–9550;
10.1523/JNEUROSCI.0712-14.2014 (2014).

119. Kretschmer, F., Tariq, M., Chatila, W.,
Wu, B. & Badea, T. C. Comparison of
optomotor and optokinetic reflexes in mice.
Journal of neurophysiology 118, 300–316;
10.1152/jn.00055.2017 (2017).

120. Mitchiner, J. C., Pinto, L. H. & Vanable,
J. W. Visually evoked eye movements in the
mouse (Mus musculus). Vision Research 16,
1169-IN7; 10.1016/0042-6989(76)90258-3
(1976).

121. Newell, A., Yang, K. & Deng, J. Stacked
Hourglass Networks for Human Pose
Estimation. In Computer Vision – ECCV 2016,
edited by B. Leibe, J. Matas, N. Sebe & M.
Welling (Springer International Publishing,
Cham, 2016), Vol. 9912, pp. 483–499.

 65 of 99

122. Pérez-Escudero, A., Vicente-Page, J.,
Hinz, R. C., Arganda, S. & Polavieja, G. G. de.
idTracker: tracking individuals in a group by
automatic identification of unmarked
animals. Nature methods 11, 743–748;
10.1038/nmeth.2994 (2014).

123. Romero-Ferrero, F., Bergomi, M. G.,
Hinz, R. C., Heras, F. J. H. & Polavieja, G. G.
de. idtracker.ai: tracking all individuals in
small or large collectives of unmarked
animals. Nature methods 16, 179–182;
10.1038/s41592-018-0295-5 (2019).

124. Wu, X., Sahoo, D. & Hoi, S. C. H. Recent
Advances in Deep Learning for Object
Detection, 10/08/2019.

125. Schweihoff, J. F. et al. DeepLabStream:
Closing the loop using deep learning-based
markerless, real-time posture detection.
BioRxiv; 10.1101/2019.12.20.884478 (2019).

126. Saunders, J. L. & Wehr, M. Autopilot:
Automating behavioral experiments with
lots of Raspberry Pis. BioRxiv;
10.1101/807693 (2019).

127. Travis, J. & Kring, J. LabVIEW for
everyone. Graphical programming made
easy and fun. 3rd ed. (Prentice Hall, Upper
Saddle River, N.J., London, 2006, 2007).

128. Stockhausen, A. et al. Hard-wired lattice
light-sheet microscopy for imaging of
expanded samples. Optics express 28,
15587–15600; 10.1364/OE.393728 (2020).

129. Wassie, A. T., Zhao, Y. & Boyden, E. S.
Expansion microscopy: principles and uses in
biological research. Nat Methods 16, 33–41;
10.1038/s41592-018-0219-4 (2019).

130. Parekh, R. & Ascoli, G. A. Neuronal
Morphology goes Digital: A Research Hub
for Cellular and System Neuroscience.
Neuron 77, 1017–1038;
10.1016/j.neuron.2013.03.008 (2013).

131. Ferrante, M., Migliore, M. & Ascoli, G.
A. Functional impact of dendritic branch-
point morphology. The Journal of
neuroscience : the official journal of the
Society for Neuroscience 33, 2156–2165;
10.1523/JNEUROSCI.3495-12.2013 (2013).

132. Yi, G.-S., Wang, J., Deng, B. & Wei, X.-L.
Morphology controls how hippocampal CA1
pyramidal neuron responds to uniform
electric fields: a biophysical modeling study.
Scientific reports 7, 3210; 10.1038/s41598-
017-03547-6 (2017).

133. Luo, W. et al. Supernova: A Versatile
Vector System for Single-Cell Labeling and
Gene Function Studies in vivo. Scientific
reports 6, 35747; 10.1038/srep35747
(2016).

134. Tyson, A. L. et al. A deep learning
algorithm for 3D cell detection in whole
mouse brain image datasets. PLoS
computational biology 17, e1009074;
10.1371/journal.pcbi.1009074 (2021).

135. Ibotta ML. pure-predict. Machine
learning prediction in pure Python (Ibotta
Inc., Denver, CO, USA, 2020).

136. Payne, H. L. & Raymond, J. L. Magnetic
eye tracking in mice. eLife 6;
10.7554/eLife.29222 (2017).

137. Coffey, K. R., Marx, R. G. & Neumaier, J.
F. DeepSqueak: a deep learning-based
system for detection and analysis of
ultrasonic vocalizations.
Neuropsychopharmacology : official
publication of the American College of
Neuropsychopharmacology 44, 859–868;
10.1038/s41386-018-0303-6 (2019).

138. van Segbroeck, M., Knoll, A. T., Levitt, P.
& Narayanan, S. MUPET-Mouse Ultrasonic
Profile ExTraction: A Signal Processing Tool
for Rapid and Unsupervised Analysis of
Ultrasonic Vocalizations. Neuron 94, 465-
485.e5; 10.1016/j.neuron.2017.04.005
(2017).

139. Zala, S. M., Reitschmidt, D., Noll, A.,
Balazs, P. & Penn, D. J. Automatic mouse
ultrasound detector (A-MUD): A new tool
for processing rodent vocalizations. PloS one
12, e0181200;
10.1371/journal.pone.0181200 (2017).

140. Kügler, S., Lingor, P., Schöll, U.,
Zolotukhin, S. & Bähr, M. Differential
transgene expression in brain cells in vivo
and in vitro from AAV-2 vectors with small
transcriptional control units. Virology 311,
89–95; 10.1016/S0042-6822(03)00162-4
(2003).

141. Shevtsova, Z., Malik, J. M. I., Michel, U.,
Bähr, M. & Kügler, S. Promoters and
serotypes: targeting of adeno-associated
virus vectors for gene transfer in the rat
central nervous system in vitro and in vivo.
Experimental physiology 90, 53–59;
10.1113/expphysiol.2004.028159 (2005).

66 of 99

142. During, M. J., Young, D., Baer, K.,
Lawlor, P. & Klugmann, M. Development
and optimization of adeno-associated virus
vector transfer into the central nervous
system. Methods in molecular medicine 76,
221–236; 10.1385/1-59259-304-6:221
(2003).

143. Schindelin, J. et al. Fiji: an open-source
platform for biological-image analysis.
Nature methods 9, 676–682;
10.1038/nmeth.2019 (2012).

144. Siu Kwan Lam et al. numba/numba:
Version 0.53.1 (Zenodo, 2021).

145. Fabian Pedregosa et al. Scikit-learn:
Machine Learning in Python. Journal of
Machine Learning Research 12, 2825–2830
(2011).

146. Harris, C. R. et al. Array programming
with NumPy. Nature 585, 357–362;
10.1038/s41586-020-2649-2 (2020).

147. Reback, J. et al. pandas-dev/pandas:
Pandas 1.2.5 (Zenodo, 2021).

148. McKinney, W. Data Structures for
Statistical Computing in Python. In
Proceedings of the 9th Python in Science
Conference (SciPy2010), pp. 56–61.

7 Methods

7.1 Mice

 C57BL/6 mice were purchased from Charles River (Sulzfeld, Germany) and

maintained on a 12-h light/12-h dark cycle with food and water always available. All

experiments were carried out in accordance with the German animal protection law

(TierSCHG), FELASA, and were approved by the animal welfare committee of the

University of Bonn.

7.2 AAV production

 AAV pseudotyped vectors (virions containing a 1:1 ratio of AAV1 and AAV2 capsid

proteins with AAV2 ITRs) were generated as described 140,141. Briefly, human embryonic

kidney 293 (HEK293) cells were transfected with the AAV cis plasmid and the helper

plasmids by standard calcium phosphate transfection. Forty-eight hours after

transfection, the cells were harvested and the virus purified using heparin affinity columns

(Sigma, St. Louis, MO) 142. Purification and integrity of the viral capsid proteins (VP1-3)

were monitored on a Coomassie-stained SDS/protein gel. The genomic titers were

determined using the ABI 7700 real-time PCR cycler (Applied Biosystems) with primers

designed for WPRE.

 67 of 99

7.3 Surgical procedure

 Viral injections were performed under aseptic conditions in two months old

C57BL/6 mice.

For optogenetic closed-loop experiments, mice were initially anesthetized with an

oxygen/isoflurane mixture (2 %–2.5 % in 95 % O2). Afterwards, mice were fixed on a

stereotactic frame and kept under a constant stream of isoflurane (1.5 %–2 % in 95 % O2)

to maintain anesthesia. Analgesia (0.05 mg/kg of buprenorphine; Buprenovet, Bayer,

Germany) was administered intraperitoneal before the surgery, and Xylocaine

(AstraZeneca, Germany) was used for local anesthesia. Stereotactic injections and

implantations of light fiber ferrules were performed using a stereotactic frame (WPI

Benchmark/Kopf) and a microprocessor-controlled minipump (World Precision

Instruments, Sarasota, Florida). The viral solution (1:1:2; AAV-TRE-EGFP, Addgene #89875;

AAV-M13-TEV-C-P2A-TdTomato, Addgene #92391; AAV-TM-CaM-NES-TEV-N-AsLOV2-

TEVseq-tTA, Addgene plasmid # 92392) was injected unilaterally into the ADN. Viruses

were produced as previously described. Animals were given Dexamethasone (0.2 mg/kg)

to reduce swelling. For implantation, the skin on the top of the scalp was removed and

the skull was cleared of soft tissue. Light fiber ferrules (Ø200 µm, 0.5 NA, Thorlabs) were

implanted and fixed with a socket of dental cement. Loose skin around the socket was

fixed to the socket using tissue glue (3M Vetbond). Directly after the surgery, animals were

administered 1 ml 5 % Glucosteril solution. To prevent the wound pain, analgesia was

administered on the three following days. Animals were left to rest for at least one week

before starting handling. Experiments were conducted three weeks after surgery.

For Tetbow tracing experiments, mice were anesthetized with a mixture of Fentanyl

(Rotexmedica, Germany), Midazolam (Rotexmedica, Germany), and Domitor (Orion

Pharma, Finland) via intraperitoneal injection (i.p.; 0.05/5.0/0.5mg/kg). Analgesia was

administered as mentioned above. Stereotactic injections of a viral solution (600 nl;

1:2:1:3; AAV-TRE-tdTomato-WPRE, Addgene #104112; AAV-TRE-EYFP-WPRE, Addgene

#104111; AAV-TRE-mTurquoise2-WPRE, Addgene plasmid # 104110, AAV-Syn1-tTA,

Addgene #104109; see also Supplementary Table D for a full injection scheme) was

injected unilaterally into the CA3 Region of the hippocampus (r/c -2.1; l 2.5; d/v -2.25).

68 of 99

Viruses were produced as previously described. After the injection, the scalp was sutured

(PERMA-HAND Silk Suture, Ethicon), and an antibacterial ointment (Refobacin, Almirall,

Germany) was applied. Finally, a mixture of Naloxone (B.Brain, Germany), Flumazenil

(B.Braun, Germany), and Antisedan (Orion Pharma, Finland) (1.2/0.5/2.5 mg/kg) was

injected i.p. to end anesthesia. To prevent wound pain, analgesia was administered in the

following three days. Mice were perfused, and brain samples were collected after 14 days.

7.4 Perfusion

 Mice were anesthetized with a mixture of Xylazine (10  mg/kg; Bayer Vital,

Germany) and ketamine (100 mg/kg; Bela-pharm GmbH & Co. KG, Germany). Using a

peristaltic pump (Laborschlauchpumpe PLP33, Mercateo, Germany), the mice were

transcardially perfused with 1× PBS followed by 4 % paraformaldehyde (PFA) in PBS.

Brains were removed from the skull and post-fixed in 4 % PFA overnight (ON) at +4°C.

After fixation, the brains were moved into PBS containing 0.01 % sodium azide and stored

at +4°C until sectioning. Fixed brains were coronally sectioned using a vibratome (Leica

VT1000 S) and stored at +4°C in PBS containing 0.01 % sodium azide.

7.5 Expansion of tissue samples

 The expansion of tissue samples was adopted from protocols previously described

57,79,80. Briefly, sections were incubated in 1 mM methyl-acrylic acid-NHS (Sigma Aldrich,

Germany) linker. After washing (PBS), the sections were incubated in monomer solution

(8.6 % sodium acrylate, 2.5 % acrylamide, 0.15 % N,N’-methylenebisacrylamide, and

11.7 % NaCl in PBS) for 1h, followed by 2h incubation at 37°C in gelling solution (monomer

solution with addition of 4-hydroxy-TEMPO, TEMED and APS; resulting concentration:

0.01 %, 0.2 %, and 0.2 % respectively). After full gelation, the samples were then digested

overnight at 37°C with Proteinase K in buffer solution (50 mM Tris, 1 mM EDTA, 0.5 %

Triton-X100, 0.8M guanidine HCl, and 16U/ml of proteinase K; pH 8.0). After additional

washing (PBS), the samples were either stored in PBS until imaging or expanded by

additional washing with deionized water for three hours.

 69 of 99

7.6 Imaging of brain sections

 For optogenetic experiments, brain sections (70 µm) were labeled with DAPI

(0.2 µg/ml). Overview images were acquired using a wide-field microscope (Zeiss

AxioScan.Z1). Based on the overall expression and fiber placement, selected sections were

imaged with a spinning disk microscope (VisiScope CSU-W1). Acquired z-stacks were used

for quantification using FIJI 143. Selection criteria for the quantification of Cal-Light labeling

included the correct placement of the fiber ferrule above the target region as well as

injection (Figure 9). Mice that did not match the criteria were only included in the

evaluation and quantification of DLStream performance.

For Tetbow tracing experiments, the expanded samples were fixed on the bottom of a

coverslip with poly-L-lysine to avoid displacement. To ensure stable expansion, the

imaging chamber was filled with deionized water or PBS during imaging, depending on

the imaging requirements. Imaging was performed with a custom light sheet fluorescence

microscope as previously described 57. However, because the samples were labeled with

three different fluorescent proteins (tdTomato, EYFP, and mTurquoise2), the detection

was further adapted. For this, the detection was conducted in two steps. First, EYFP and

tdTomato were excited (488 nm and 561 nm, respectively), and emitted light was split

onto two separate cameras. Second, mTurquoise2 was excited (405 nm) and detected by

a camera. Each camera was preceded by an emission filter specific to the emitted light

spectrum. This setup was necessary to refocus the light sheet due to a focus shift of the

405 nm laser and avoid displacement between color channels. Volumetric image

acquisition was then realized by imaging in a mosaic fashion, where multiple image stacks

were taken from each channel and stitched in postprocessing. Each image stack had a

10 % overlap with its neighboring image stacks to allow successful stitching. The axial

stepsize was 0.5 µm, and the typical exposure time was 20 ms, while the field of view was

330µm with a pixel size of 0,163 µm.

7.7 Head direction-dependent optogenetic stimulation

 Mice were put in a cylindrical white arena with a single cue (a black vertical bar,

Figure 8 b). A black curtain enclosed the arena. A random point was chosen to reference

70 of 99

head direction (0°, Figure 8 b red tape). The reference point was kept constant between

experimental sessions and mice but was not visible to the mouse. To habituate the mice

to the arena, each mouse was put into the arena for 30 min for two consecutive days, and

reward pellets were placed randomly inside the arena at the 0, 10, and 20 min mark.

Experimental Group: During the experiment, light stimulation (488 nm, 15 mW; Laser

OBIS LX/LS, controlled by OBIS LX/LS Single Laser Remote, Coherent Inc., Santa Clara, CA

USA) was initiated whenever the mouse’s head direction was within a 60° window around

the reference point (± 30°). Light stimulation lasted at least 1 second or as long as the

correct head direction was maintained, up to a maximum of 5 seconds. After each

stimulus, further stimulation was discontinued for at least 15 seconds to avoid

overheating brain tissue and in line with the originally published Cal-Light experiments 26.

Mice were allowed to investigate the arena over four consecutive days for 30 min sessions

each day, during which the mice were stimulated with light depending on their head

direction. Mice were perfused one day after the last session.

Yoked Group: In the yoked control group, mice were previously paired with another

mouse from the experimental group. Each control animal received the exact same

temporal stimulus as the paired experimental animal, decoupled from its own head

direction. Mice were treated and ran the experiment in the same way as the experimental

group in all other aspects.

No-Light Group: In the No-light control group, mice ran the experiment as all other groups

but received no light stimulation.

7.8 Head direction analysis

 Analysis was performed using custom python scripts. To determine whether light

stimulation was precisely targeted to a particular window of angles, we calculated the

mean resultant vector length for the distribution of stimulated angles, which measures

the concentration of angles in a distribution. Lengths vary between 0 (the underlying

distribution is uniform) to 1 (all angles in the underlying distribution are precisely

identical). Thus, for stimulated angles, non-zero lengths close to 1 are expected. Notably,

the distribution of stimulated angles may be biased by the mice’s behavior – i.e., when

 71 of 99

the mouse, by chance, constantly faces the target head direction. To test against this

possibility, null distributions were generated by randomly sampling angles from the entire

distribution of angles explored by the animal. The number of samples was set to equal the

number of stimulation angles. Angles were randomly sampled in this way 1000 times, and

each time a mean resultant vector length was calculated. The null distribution comprised

the 1000 means (note that null distributions were centered near 0). For each session, the

resultant mean vector length was well above a 99 % cut-off of the null distribution,

indicating that stimulation angle precision resulted from accurate posture detection

rather than a bias in animal behavior.

7.9 Experimental setup

 The corresponding arena was placed in a closable compartment with isolation

from external light sources. A light source was placed next to the setup so that the arena

was evenly lit. The camera was placed directly above the arena (Figure 6 a). During

experiments, the compartment was closed to minimize any disrupting influences from

outside. All devices were triggered using a NI 6341 data-acquisition board (National

Instruments Germany GmbH, Munich) combined with the Python nidaqxm library. The

board was connected via USB 3.0 to a PC (Intel Core i7-9700K @ 3.60GHz, 64 GB DDR4

RAM and NVidia GeForce RTX 2080 Ti(12GB) GPU). For the optogenetic experiment, an

Intel Realsense Depth Camera D435 (Intel Corp., Santa Clara, CA, USA) was used at 848 x

480 and 30 Hz to enable reliable streaming at all times.

7.10 Hardware latency and detection accuracy during optogenetic

stimulation

 The latency between behavior detection and optogenetic stimulation was

estimated by manually annotating videos of sessions from three different mice. For this,

the recorded video was analyzed frame-by-frame. The frames between the event start

(behavior-detection leading to stimulation onset) taken from the table-based output file

and the visible onset of the Laser in the video were counted. All stimulation events during

the above sessions were manually annotated to evaluate the false-positive detection rate

during experiments (Figure 10). A detection was counted as false-positive when the

72 of 99

annotator judged the mouse’s posture (head direction) not inside the head direction

window at the exact time of detection. Note that the accuracy of the pose estimation

model is a major source of false detection; however, inaccurate event definitions can also

lead to unintended stimulation events. Additional training of the network can increase

the accuracy of the triggered stimulation.

7.11 Pose estimation using DLC

 A 3-point tracking was used to estimate the mouse’s position, direction, and angle

using the nose, neck, and tail base as body parts of interest (Figure 3 b). Pose estimation

models were trained using the DLC 1.11 framework 39. First, 300 images of relevant

behavior in the corresponding arena were annotated, and 95 % were used as a training

set, with 5 % held back as a test set. Note that for some cases, a small number of test

images (5 %, 15) might require further evaluation of the trained model to guarantee

sufficient accuracy and generalization. Second, a ResNet-50-based neural network 75,103

with default parameters was trained for 500k iterations, and its performance was

evaluated.

The same approach was used to benchmark DLStream’s upper-performance limits, but

images were labeled with either 9 or 13 body parts. The same training set was used to

train several neural networks based on different architectures or depths (ResNet50,

ResNet101 75,103, MobileNetv2 104). Models were available through the DLC 2 framework

with default parameters and trained for 500k iterations. After training, the networks were

benchmarked within DLStream using a DLStream function (python deeplabstream.py --

dlc-enabled --benchmark-enabled) with 3000 consecutive frames. Data were collected,

and the average framerate and standard deviation were calculated for four different

image resolutions (1280x1024, 640x512, 416x341, 320x256) available to the Basler

acA1300-200um camera (Basler AG, Germany), which acquired frames at a rate of 172 Hz.

7.12 Behavior detection in DLStream

 For behavior detection in the optogenetic experiment, the raw score maps were

extracted from the deep neural network output, and the position of key points was

calculated with custom scripts. First, body part estimation, similar to the approach utilized

 73 of 99

in DLC 39, was conducted by local maxima detection using custom image analysis scripts.

The resulting pose estimation was then transferred into postures (skeletons). For this,

each possible combination of body parts was investigated and filtered using a closest

distance approach. DLStream detects estimated postures and compares them to relevant

trigger modules for closed-loop control of experiments. Next, the pose estimation error

was measured and compared to a human-labeled dataset (labeled by a single human

annotator) to evaluate the pose estimation model. For this, a new image set was extracted

from our optogenetic experiment sessions (n = 597). The average difference (Euclidean

distance) between human annotation and pose estimation for each pose and resulting

head direction angle were calculated.

Additionally, the false-positive/false-negative rate of hypothetical head direction triggers

with differently sized angle windows (60, 50, 40, 30, 20, 10) was analyzed. To counter any

non-uniform distribution of head direction angles, we averaged the rates for multiple

ranges per bin (e.g., 0-60°, 60-120°, 120-180°) and calculated the standard deviation. See

Figure 10 for details.

7.13 Machine learning-based classification in DLStream

 The corresponding software toolkits were used to generate classifiers to evaluate

machine learning classifiers based on B-SoiD 54 and SiMBA 76. Example classifiers were

integrated into DLStream and used as trigger modules in a simulated real-time video

stream to evaluate their computation time, including feature extraction. A classifier pool

of 3 parallel running classifier instances was used in combination with a simulated 30 Hz

video stream using a prerecorded video. For real-time pose estimation during the

measurement, DLC-based models were generated that matched the toolkit-specific

requirements – e.g., number of tracked body parts. The pose estimation networks were

trained in the same way as mentioned above.

To integrate and test SiMBA 76 classifiers in DLStream (see Supplementary Figure C a-b),

an example pose estimation network, video, and a classifier were kindly provided by the

original SiMBA authors 76. In addition, the specific feature extraction script 66 was speed-

optimized in collaboration with Simon Nilsson using the numba just-in-time compiler 144

that allows the translation of slow python algorithms into fast machine code. Finally, the

74 of 99

classifier was then real-time optimized using pure-predict 135. This open-source tool allows

the translation of slow scikit-learn-based machine learning algorithms 145 to fast pure

python code. Both variants of the classifier were used to estimate computation times.

To integrate and test B-SoiD 54 classifiers in DLStream, an example pose estimation

network was trained according to the recommended body part configuration of B-SoiD.

For this, animals were recorded in an open field arena from below, and example videos of

their behavior extracted. Using the B-SoiD toolkit, the observed behavior was clustered,

and a classifier was trained. Then, in collaboration with the original B-SoiD authors 54, the

feature extraction script was integrated into DLStream 66. Finally, the classifier and feature

extraction script were used to estimate computation times.

Both feature extraction and classification computation time were measured for 1000

classification cycles to evaluate real-time capabilities. The resulting average time,

including standard deviation, was then calculated (see Supplementary Table E).

7.14 Statistics and reproducibility

 Paired t-tests were used for statistical comparisons of data. All data presented in

the text are shown as the mean ± standard deviation. Uncorrected alpha (desired

significance level) was set to 0.05 (* < 0.05, ** < 0.01, *** < 0.001). Sample sizes and

numbers are indicated in detail in each figure caption and main text. Exclusion criteria, if

applied, are specified in each corresponding method section.

 75 of 99

8 Acknowledgments

When I started my doctorate, I was a pure-bred Biochemist with limited behavioral science

and machine learning knowledge. However, in the course of this journey, I was able to grow

beyond my hopes thanks to all the discussions and support that allowed me to develop and

work with this cutting-edge technology.

I would like to thank my supervisor and mentor, Dr. Martin Schwarz, for giving me the

opportunity and freedom to work on this thesis with all my heart. With his support, I tried out

something completely different, and together we succeeded in it.

I would also like to thank my supervisors Prof. Dr. Ulrich Kubitscheck and Prof. Dr. Heinz Beck,

for supervising my thesis and supporting me along the way.

It is essential to mention that this thesis was embedded in multiple collaborations with brilliant

scientists:

Matvey Loshakov spent hours and hours with me coming up with solutions and ideas to design

the initial version of DLStream. DLStream would not have been possible without him.

Dr. Laura Ewell was deeply involved in the design of the Cal-Light experiment and supported

me in many steps along the way.

Laura Kück did the injections and implantations for Cal-Light and learned how to use DLStream

as one of the first non-coding test subjects.

To all of you, I am very grateful that you were part of the DLStream Team. You helped me in

many challenging situations, and I will pay it forward in kind.

The multicolor, hue-based segmentation approach would not have been possible without:

Dr. Jana Heysel, who developed the mentioned segmentation algorithm and imaged expanded

tissue on her custom build LSFM.

Juan Edo Rodríguez Gatica, who did the tissue expansion and significant parts of the imaging.

It was a great experience working with you, and I look forward to future collaborations.

At last, I want to thank Prof. Dr. Sam Golden and Dr. Simon Nilsson from the Golden Lab, who

provided example SimBA classifiers and helpful insights on the integration of SimBA based

classifiers in DLStream.

76 of 99

 I

9 Supplementary Information

9.1 Tables

Supplementary Table A – Available modules in the open-source version of DLStream

Type Module Use Used in

Ti
m

e
r

 Any time-dependent parameters All experiments

St
im

u
la

ti
o

n

NI – DAQ Board control
TTL controlled devices (e.g., Laser ON/OFF, Reward
dispenser)
Analog modulation of devices (e.g., Laser power)

Optogenetic
experiment 1

GPIO control (Raspberry
Pi)

TTL controlled devices (e.g., Laser ON/OFF, Reward
dispenser)

Low budget
setups

GPIO control (Arduino)
TTL controlled devices (e.g., Laser ON/OFF, Reward
dispenser)

Low budget
setups

Monitor/Screen display
Display visual stimulus (e.g., picture or video) on a
screen

Conditioning
experiment 1

Tr
ig

ge
r

ROI-based
If a body part or set of body parts is in or out of the
region of interest (ROI)

Conditioning
experiment 1

Direction-based
(allocentric)

If a user-defined vector between body parts angle is
within the defined window in relation to the
reference point.

Published as an
archetype

Direction-based
(Headdirection –
allocentric)

If the head direction angle is within a defined
window in relation to the reference point.

Optogenetic
experiment 1

Direction-based
(Screen)

Similar to allocentric direction trigger, but checks if
the animal faces north, south, east, or west in the
frame.

Conditioning
experiment 1

Direction-based
(Headdirection –
egocentric)

If the egocentric head direction angle is within a
defined window.

Published as an
archetype

Movement-based
If the animal (measured by a body part of choice)
moves faster or slower than the threshold within a
set time window.

Supplementary
Material 1

Combinatio
(Headdirection + ROI)

Example of a combination of multiple trigger
modules. Checks whether the position and head
direction of an animal are within the definition.

Published as an
archetype

ML-Classification
Set of machine learning-based behavior
classification (SimBA 76, B-SOiD 54)

Published as an
archetype

Multiple Animals
Example of social behavior-based trigger module
using multiple animal pose estimation.

Published as an
archetype

II

Supplementary Table B – Available experiment modules in the open-source version of DLStream

Experiment

Type
Use Used in

Cal-Light
Head direction-dependent optogenetic stimulation of animals

during Cal-Light paradigm.

Used in this thesis

and published in

Schweihoff et al.

2021

Conditional

A versatile experiment specifically created to allow conditional

stimulation. It can be used with any trigger and can automatize

behavior-dependent stimulation such as reward

delivery/withdrawal for conditioning experiments.

Published as an

archetype

Optogenetic

Experiment specifically designed for optogenetic paradigms. It

holds additional parameters such as minimum/maximum

stimulation time per event and maximum stimulation time in

total.

Published as an

archetype

Trial

Specifically designed to allow trial/task-based experiments. A

primary trigger is used to initiate trials/task events in which an

animal is presented with a stimulation. A secondary trigger checks

if the animal succeeds in a pre-set time after/during the event

(e.g., going to a reward location).

Published as an

archetype

Classic

Conditioning

Set of experiments for second-order conditioning paradigm

including habituation to reward delivery, first conditioning, and

transfer task.

Published in

Schweihoff et al.

2021

Multiple

Animal
Example experiment utilizing multiple animal pose estimation

Published as an

archetype

Classification-

based

(supervised)

Example experiment incorporating machine learning-based,

supervised behavior classification (SimBA 76)

Published as an

archetype in

collaboration with

SimBA 76

Classification-

based

(unsupervised)

Example experiment incorporating machine learning-based,

unsupervised behavior classification (B-SOiD 54)

Published as an

archetype in

collaboration with B-

SOiD 54

 III

Supplementary Table C – Example of DLStream output

The table is indexed by the frame ID used for pose estimation (neck, nose, tail base x+y). The experiment column
holds information about the experiment. Status indicates whether the experiment was started (True), while Trial
indicates whether a trial or stimulation was active during the frame (True, bold). The time column logs the
inference time between frames. The CSV format uses a semicolon (“;”) as a delimiter to avoid confusion between
German and American separation of decimals (“1,2” And “1.2”) when importing the file.

1.1 Frames

Animal 1 Experiment

Time Neck Nose Tail_base
Status Trial

x y x y x y

1 48.45 43.89 45.45 43.89 51.45 29.89 False False 0.0

2 45.45 43.89 51.45 45.79 55.35 32.91 True False 0.033

3 44.13 46.91 49.45 41.11 57.65 35.79 True True 0.066

4 45.25 42.11 45.55 42.77 55.45 29.49 True True 0.099

5 49.26 44.89 48.25 43.99 50.33 29.89 True False 0.132

Supplementary Table D –Tetbow injection scheme

Tetbow parameters optimized during development for hue-based segmentation of hippocampal neurons. The
ratio of virus components and injection volume were evaluated on the resulting color diversity and label density
by visual inspection based on confocal images of the predigested and digested samples. *Final mixture

Ratio Injection

Volume [nl]

Color

Diversity

Label

Density

Number

of mice tTA mTurq eYFP tdTom

1:500 1 1 1 300 + --- 1

1:100 1 1 1 300 + -- 2

1:50 1 1 1 300 + - 2

1:10

1 1 1 300 ++ + 2

2 1 3

300 +++ + 3

1000 +++ ++ 3

600 +++ ++ 1

1:1 2 1 3 600 +++ ++ 2*

IV

9.2 Figures

Supplementary Figure A - Examples of head direction angles during optogenetic light stimulation.

a-b, Left: Example radial histogram of all head directions (5° bins) during stimulation (red) within one session
(normalized to the maximum value). Right: Radial histogram of all head directions during the whole session (grey)
and during stimulation (red; normalized to the maximum value of the entire session). Rings represent quantiles
in 20 % steps. Each panel shows a session from a different mouse.
c, Example radial histogram of all head directions (same representation as in a-b) from the same mouse shown
in a in the next session. Note that the mouse is showing different distributions of head direction between sessions
in both the stimulation events and the overall session, while the stimulation is mainly limited to the target
window (thick blue arc)

 V

9.3 DLStream Code and examples

9.3.1 DLStream package structure

Supplementary Figure B - Folderstructur of DLStream package

a, the Folder structure of the DLStream package available on GitHub. The package includes several scrips (text
icon with “Py”; *.py) and text files (text icon with “TXT”; *.txt, *.md, or *.ini). Folders that include scripts are
labeled with an orange circle. Scripts and files not relevant for the general structure and function of DLStream
are not displayed.
b, Extract of the content of Settings.ini. The file contains all information that is used to start individual
experiments when running the script app.py. The section [Streaming] configures camera-specific parameters
such as resolution and framerate. The section [Pose Estimation] is used to select and load a pose estimation
model from the available architectures (DLC 39,45,46, SLEAP 40,43, DeepPoseKit 41). The section [Experiment] is used
to select an experiment module from experiments/custom/experiments.py or experiments/base/experiments.py
that contain custom or predefined experiments.

 The DLStream package is structured so that modules are separated into scripts (e.g.,

experiments in experiments.py; Supplementary Figure B a). This structure has the advantage

that customized modules can be easily implemented and imported between scripts, while the

main functions of deeplabstream.py remain untouched. Using the file settings.ini

(Supplementary Figure B b), users can select the name of an experiment module, and the

experiment will be automatically loaded when app.py is launched. The script app.py opens the

GUI of DLStream, including the main process of deeplabstream.py (see chapter 4.1.3), and

gives users a convenient way of interacting with DLStream during experiments. Settings.ini

also contains configuration parameters for the camera and pose estimation settings. To load

a specific pose estimation model, users specify the model's origin, the path to the model, and

VI

the model name. The model can then be launched using the GUI (see chapter 4.1.3).

Independent of the model origin, the resulting pose estimation is transformed into a skeleton

that can be interpreted by any experiment and trigger module in DLStream.

9.3.2 Experiment module for the optogenetic experiment

The following is an extract of the code used for the head direction-dependent labeling

of active neurons. It includes several simplifications and explanations. The original code is fully

published at https://github.com/SchwarzNeuroconLab/DeepLabStream 66.

The optogenetic experiment is initialized as a python class and has several initial parameters

(Code 1 - Initializing). At its core, DLStream calls the experiment with every new pose

estimation – i.e., every frame – and passes the pose estimation to the experiment. The

experiment then passes the pose estimation to a trigger module and, if the behavior was

detected, activates the stimulation module (see Figure 6 d for reference).

The parameters 𝑠𝑒𝑙𝑓. _𝑝𝑜𝑖𝑛𝑡, 𝑠𝑒𝑙𝑓. _𝑠𝑡𝑎𝑟𝑡_𝑎𝑛𝑔𝑙𝑒, and 𝑠𝑒𝑙𝑓. _𝑒𝑛𝑑_𝑎𝑛𝑔𝑙𝑒 define the target

window of 60° around the reference point (POINT). Two timer modules are initialized with 15

sec and 1800 sec duration. The 15-sec timer 𝑠𝑒𝑙𝑓. _𝑖𝑛𝑡𝑒𝑟𝑡𝑟𝑖𝑎𝑙_𝑡𝑖𝑚𝑒𝑟 acts as an inter-stimulus

timer and inhibits any behavior-dependent stimulation during the inter-stimulus time. The

𝑠𝑒𝑙𝑓. _𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡_𝑡𝑖𝑚𝑒𝑟 is measuring the duration of the entire session and stops the

DeepLabStream
© J.Schweihoff, M. Loshakov
University Bonn Medical Faculty, Germany
https://github.com/SchwarzNeuroconLab/DeepLabStream
Licensed under GNU General Public License v3.0

class OptogenExperiment:
 def __init__(self):
 …
 self._point = POINT
 self._start_angle, self._end_angle = 30
 self._intertrial_timer = Timer(15)
 self._experiment_timer = Timer(1800)
 …
 self._max_trial_time = 5
 self._min_trial_time = 1
 self._max_total_time = 600
 …

1 - Initializing

 VII

experiment after 1800 sec (30 min). The parameters 𝑠𝑒𝑙𝑓. _max⁡ _𝑡𝑟𝑖𝑎𝑙⁡_𝑡𝑖𝑚𝑒 and

𝑠𝑒𝑙𝑓. _min⁡ _𝑡𝑟𝑖𝑎𝑙_𝑡𝑖𝑚𝑒 control the maximum and minimum duration of light stimulation

during the experiment while the 𝑠𝑒𝑙𝑓. _max⁡ _𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒 acts as a maximum total stimulation

threshold. Each time the experiment is passed a set of pose estimated body parts (skeleton)

using the function check_skeleton(), the skeleton is passed to the trigger module. To simplify

this, the code example includes the relevant calculations that are integrated into the head

direction trigger module as plain code (Code 2- Check skeleton).

First, the experiment checks whether the total duration of the experiment has run out using

the timer module 𝑠𝑒𝑙𝑓. _𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡_𝑡𝑖𝑚𝑒𝑟. The experiment is stopped when the timer ran

out. Next, the inter-stimulus timer is checked. If the inter-stimulus time was activated and has

not yet run out, the experiment is skipping any further operations – i.e., a behavior-dependent

stimulation is inhibited. Otherwise, the head direction angle is calculated – usually within the

trigger module, and a preset condition is checked. In this experiment, the output of the trigger

module is TRUE – i.e., the behavior was detected – when the head direction angle is equal or

between -30 and +30° (Code 3 - Behavior detection).

If a stimulation event has not been started yet, the experiment will call the stimulation module.

In this experiment, it is a simple ON signal to a laser. The function laser_switch() is a high-level

interface for the NI DAQ-Board Digital output port and sends a TTL signal to a remote control

for the laser. For more advanced stimulation modules, experiments are equipped with an

additional process handling only stimulation. This parallel processing step is necessary to

process both new pose estimation with each frame and continuously run the experiment.

def check_skeleton(self, frame, skeleton):
 if self._experiment_timer.check_timer():
 if self._total_time >= self._max_total_time:
 # check if total time to stimulate per experiment is reached
 print("Ending experiment, total event time ran out")
 self.stop_experiment()
 else:
 # if not continue
 if not self._intertrial_timer.check_timer():
 # check if there is an intertrial time running right now, if not continue
 # check if the headdirection angle is within limits
 _ , angle_point = angle_between_vectors(
 *skeleton["neck"], *skeleton["nose"], *self._point)

2 - Check skeleton

VIII

However, in this case, the remote control of the laser and the DAQ boards are handling the

continuous stimulation downstream.

With each new event, the inter-stimulus timer 𝑠𝑒𝑙𝑓. _𝑖𝑛𝑡𝑒𝑟𝑡𝑟𝑖𝑎𝑙_𝑡𝑖𝑚𝑒𝑟 is reset, and the start

of the event is timed to calculated the minimum and maximum stimulation time.

If the head direction angle is within the target window, but a stimulation event is already

running, the experiment checks whether the maximum stimulation duration per event was

reached (Code 4 - Light stimulation I). If the maximum duration was reached, the laser is

turned OFF, the duration of the stimulation is recorded, and the inter-stimulus timer is started.

If the maximum duration was not reached, the stimulation continues. Contrary, if the head

direction angle is not within the target window, but a stimulation event is already running, the

experiment checks whether the minimum stimulation duration per event was reached (Code

5 - Light Stimulation I). If the minimum duration was reached, the laser is turned OFF, the

 if self._start_angle <= angle_point <= self._end_angle:
 if not self._event:
 # if a stimulation event wasn't started already, start one
 print("Starting Stimulation")
 self._event = True
 # and activate the laser, start the timer and reset the intertrial timer
 laser_switch(True)
 self._event_start = time.time()
 self._intertrial_timer.reset()

3 - Behavior detection

 IX

duration of the stimulation is recorded, and the inter-stimulus timer is started. If the minimum

duration was not reached, the stimulation continues. The experiment continues until the

𝑠𝑒𝑙𝑓. _𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡_𝑡𝑖𝑚𝑒𝑟 has run out.

9.3.3 Example trigger module

A trigger module is an object that is specifically created to check whether a specific

predefined condition is true. Its input is the skeleton (pose estimation of all body parts in the

current frame), and its output is a binary classification (TRUE/FALSE) whether a preset

 else:
 # if the headdirection is not within the parameters
 if self._event:
 # but the stimulation is still going
 if time.time() - self._event_start < self._min_trial_time:
 # check if the minimum event time was not reached, then pass
 pass
 else:
 # if minumum event time has been reached, reset the event,
 # turn of the laser and start intertrial time
 print("Ending Stimulation, angle not in range")
 self._event = False
 laser_switch(False)
 trial_time = time.time() - self._event_start
 self._total_time += trial_time
 print("Stimulation duration", trial_time)
 self._intertrial_timer.start()

 else:
 if time.time() - self._event_start <= self._max_trial_time:
 # if the total event time has not reached the maximum time per event
 pass
 else:
 # if the maximum event time was reached, reset the event,
 # turn off the laser and start intertrial time
 print("Ending Stimulation, Stimulation time ran out")
 self._event = False
 laser_switch(False)
 trial_time = time.time() - self._event_start
 self._total_time += trial_time
 print("Stimulation duration", trial_time)
 self._intertrial_timer.start()

4 - Light stimulation I

5 - Light stimulation II

X

condition was met. The trigger module can incorporate any calculation, condition, or

algorithm to classify a single pose estimation or a sequence of pose estimations. A set of

example trigger modules that were published with DLStream is shown in Supplementary Table

A.

The basic architecture of a trigger module is shown in Code 6-7. A region of interest (ROI)

trigger module comes with a simple set of parameters. The type of region (rectangle, circle,

or ellipse), a center coordinate, and a radius or length/width parameter for the ROI. Any body

part specified during the initialization will be tested for the condition when the function

check_skeleton() is called by the experiment (see Supplementary Information 9.3.2) – i.e., if

the body part is within the defined ROI. Depending on the result (TRUE or FALSE), a

response_body is created to visualize the result in the live video stream. For example, with a

circular ROI, the response body consists of a circle with the radius and center of the ROI. Its

color is based on result. Red for FALSE and green for TRUE (see Figure 7).

6 - Region Trigger module I

class RegionTrigger:
 def __init__(self, region_type: str, center: tuple, radius: float, bodyparts,
 debug: bool = False):
 self._roi_type = region_type.lower()
 region_types = {'circle': EllipseROI, 'square': RectangleROI}
 self._region_of_interest = region_types[self._roi_type](center, radius, radius)
 self._bodyparts = bodyparts

7 - Region Trigger module II

 def check_skeleton(self, skeleton: dict):
 # check whether bodypart is in ROI
 bp_x, bp_y = skeleton[self._bodyparts]
 result = self._region_of_interest.check_point(bp_x, bp_y)
 # The following creates the response_body that is visualized on the screen
 color = (0, 255, 0) if result else (0, 0, 255)
 if self._roi_type == 'circle':
 response_body = {'plot': {'circle':
 dict(center=self._region_of_interest.get_center(),
 radius=int(self._region_of_interest.get_x_radius()),
 color=color)}}
 response = (result, response_body)
 return response

 XI

The response_body can also take other shapes or plot information as text, depending on the

individual design of the trigger.

9.3.4 Example stimulation module

Stimulation modules, while straightforward to understand, require additional levels of

code to work as required. Generally, they heavily depend on individual setups and experiment

design. The following is an explanation of the fundamental basics of any stimulation module

in DLStream.

In principle, a stimulation is triggered and activates a predefined cascade of events (see

Supplementary Information 9.3.2). The core of a stimulation module runs parallel to the

experiment, so it does not stop or slow down the main process (pose estimation and behavior

classification). As stimulation cascades might be engaged for a longer time, multi-processing

is necessary. If all computations were included in a single process, any stimulation event would

block all further progress until it is completed.

The underlying architecture is split into separate scripts (refer to Supplementary Information

9.3.1). The script stimulation.py contains the actual stimulation. show_visual_stim_img(), for

example, creates a window and displays a preset image on a screen. This function can switch

between background and stimulation images on a screen visible to the animal from inside the

arena. The functions turn_on() and turn_off() control a device connected via a control board

def example_protocol_run(condition_q: mp.Queue):
 current_trial = None
 dmod_device = DigitalModDevice('Dev1/PFI0')
 while True:
 if condition_q.full():
 current_trial = condition_q.get()
 if current_trial is not None:
 show_visual_stim_img(img_type=current_trial, name='inside')
 dmod_device.turn_on()
 else:
 show_visual_stim_img(name='inside')
 dmod_device.turn_off()

 if cv2.waitKey(1) & 0xFF == ord('q'):
 break

8 - Stimulation module I

XII

(see Supplementary Table A) that sends a digital trigger (TTL) signal. A version of this function

is used in the optogenetic experiment to toggle a laser (see Supplementary Information 9.3.2).

The script stimulation_process.py is the multi-process protocol that orchestrates the

stimulation (Code 8 - Stimulation module I). In principle, a connection (queue) is built between

the main DLStream process and the experimental protocol, controlling the stimulation event.

This connection is straightforward and can only contain a single argument at a time. Once the

trigger module detects a behavioral expression, the experiment passes an activation signal

through the connection. The stimulation protocol, once started, remains in an endless loop.

With every iteration of the loop, the protocol checks whether any new input came through

the connection. If so, the stimulation event is initialized, and a preset cascade will be run. In

the above example (Code 8 - Stimulation module I), the stimulation event displays a visual

stimulation (image on a screen visible to the animal). Afterward, it activates a connected

device (e.g., a reward dispenser). If the stimulation event is over, the protocol will display a

background image and turn the device off. A similar protocol was used in Schweihoff et al.

2021 1.

9.3.5 Adapting an existing experiment

The following is a short version of the complete instructions and tutorials available at

https://github.com/SchwarzNeuroconLab/DeepLabStream/wiki.

As previously stated, DLStream experiments are designed with sequences of modules (timer,

stimulation, trigger) that enable the autonomous conduction of behavior-dependent

experiments. Thus, depending on the paradigm, it might be necessary to test several

behavioral expressions within the same basic experiment. The optogenetic experiment, for

example, could be used in combination with any behavioral expression to label active neurons

with Cal-Light.

To change a trigger module, change the head direction trigger, 𝑠𝑒𝑙𝑓. _𝑡𝑟𝑖𝑔𝑔𝑒𝑟, to the trigger

module of choice (Code 9 - Changing the trigger module; Supplementary Table A). When

changing any module, it is essential to verify that all necessary parameters are included in the

initialization. In this case, the region of interest trigger, RegionTrigger, needs a type of region

(rectangle, circle, or ellipse), a center, and a radius or length/width parameter (see also

Supplementary Information 9.3.3).

 XIII

Additionally, it is necessary to specify which body parts should be included in the behavior

detection. For example, the RegionTrigger module initialized in this experiment (Code 9 -

Changing the trigger module) would detect whenever the animal’s nose point is within a 30

px radius from the center.

As stated in chapter 9.3.2, a typical experiment passes the pose estimation (skeleton) from

every frame to the trigger module. The generic way of doing this is shown in Code 10 -

Engaging the trigger module. The trigger module outputs a binary classification (True/False)

if the behavioral expression of interest was present in the current frame. This Input/Output

def check_skeleton(self, frame, skeleton):

 if self._experiment_timer.check_timer():
 if self._total_time >= self._max_total_time:
 # check if total time to stimulate per experiment is reached
 else:
 # if not continue
 if not self._intertrial_timer.check_timer():
 # check if there is an intertrial time running right now, if not continue
 # check if the headdirection angle is within limits
 result, response = self._trigger.check_skeleton(skeleton=skeleton)
 if result:
 # if the trigger returns true
 else:
 # if the trigger returns false

9 - Changing the trigger module

class OptogenExperiment:
 def __init__(self):
 …
 self._point = POINT
 self._angle = 30
 self._trigger = HeaddirectionTrigger(self._angle, self._point)
 self._trigger = RegionTrigger (region_type = „circle“,center = self._point, radius = 30,
 bodyparts = [„nose“])
 self._intertrial_timer = Timer(15)
 self._experiment_timer = Timer(1800)
 self._max_trial_time = 5
 self._min_trial_time = 1
 self._max_total_time = 600
 …

10 - Engaging the trigger module

XIV

behavior is fundamental to all trigger modules. It allows the exchange of triggers in the initial

step (Code 9 - Changing the trigger module) of an experiment – i.e., independent of the type

of trigger module, the input is always check_skeleton(skeleton), and the output is always TRUE

or FALSE. Additionally, the trigger module outputs a response body that can be used to

visualize the output on the live stream.

 XV

9.3.6 Feature extraction and classification in DLStream

Supplementary Figure C - Real-time classification in DLStream

a, Cutout of example frame showing anogenital approach behavior classification with SimBA. The pose
estimation of the two mice (colored dots, left) is used to extract features (middle). The features are fed into the
classifier (right), and a binary classification is computed (white square, green border around mice) and detects
the behavioral expression of interest.
b, Cutout of example frame showing different behavior classified with them the same classifier as in a. The binary
classification is computed (black square, red border around mice) and does not detect the behavioral expression
of interest.

XVI

c, Schematic representation of a trigger module using a single classifier. The pose estimation sequence is updated
with every new frame in a rolling window approach (Rolling Pose estimation Time Window, top). Time windows
(stack of mice with red dots) are fed into the classifier module where features are extracted (document symbol,
“Feat”) and used as input for a ML-classifier (CL). If the classification process takes longer than the pose
estimation of the next frame (stopwatch with red zone), a computational bottleneck is formed (red funnel). Any
behavior classification (net representation of mouse, bottom) will have an additional latency (“Waiting”) – i.e.,
the overflow until the classification is done. Alternatively, time windows need to be skipped to keep up with the
real-time requirement (“Skipping”).
d, schematic representation of a trigger module using a parallel classifier pool. The pose estimation sequence is
updated with every new frame in a rolling window approach (Rolling Pose estimation Time Window, top). Time
windows (stack of mice with red dots) are fed into the next idle classifier module instance where features are
extracted (document symbol, “Feat”) and used as input for the ML-classifier (CL). If the classification process
takes longer than the pose estimation of the next frame (stopwatch with red zone), the next idle classifier
instance is engaged (green funnel). Suppose the pool size exceeds the classification time divided by the pose
estimation time by at least one. In that case, any additional unexpected computational load can be compensated
so that an idle instance can readily classify every new time window. The resulting behavior classification (net
representation of mouse, bottom) is continuous, and unused classifier instances remain idle until necessary.

 DLStream utilizes a multi-process pool of classifiers to work in parallel. A trigger

module built with a machine learning classifier initializes a pool of classifier instances and

feeds in a pose estimation sequence (time window; Supplementary Figure C). The time

window is continuously updated with each new pose estimation so that classification is based

on a rolling window approach rather than a discrete binning.

To allow real-time classification with stable output times, multi-processing pools are required

to compensate for occasional increased computational loads and general slow computation.

For example, suppose the classification of a single classifier instance has a higher processing

time than the pose estimation of the next frame. In a single classifier case, the classification

of the next pose estimation window would be delayed until the classifier is ready. This would

either increase the latency between pose estimation and behavior-dependent stimulation or

reduce the detection rate because old, unclassified time windows are skipped in favor of the

most recent window.

A solution is the integration of a multi-process pool that works parallel but asynchronous. In

that case, whenever a new time window is ready, and the previous classifier instance is busy,

a new classifier instance from the pool is engaged, and classification continues without

overhang. This way, a trigger module based on ML classification has a maximum latency of

one classification cycle (including feature extraction), and no additional latency or skipped

frames are encountered (Supplementary Figure C).

Additionally, the classifier and feature extraction can be further optimized for real-time

applications. For this, the feature extraction script, based originally on easy-to-use Python

 XVII

packages like NumPy 146, pandas 147,148, and scikit-learn 145, can be translated into fast

compilable machine code using numba 144, considerably decreasing computation time (see

Supplementary Table E). An optimized version of the feature extraction code used in SiMBA

was developed in collaboration with Simon Nilsson and integrated into DLStream 66. However,

the same principle can be applied to any feature extraction script. Finally, classifiers based on

scikit-learn 145, such as SiMBA or B-SoiD, can be real-time optimized using pure-predict 135 to

translate the classifiers into pure Python-based versions that allow increased performance

(see Supplementary Table E). With all three optimization steps combined, the effective

integration of complex behavior classification into DLStream is possible with minimal

additional latency.

Supplementary Table E - Classification and feature extraction performance

The Computation time of different classifiers and feature extraction scripts (FeatEx) as described in Methods

7.13.

Classifier Origin FeatEx Origin Extraction [ms] Classification [ms]

B-SoiD B-SoiD 38.25 ± 3.20 22.88 ± 4.36

SiMBA SiMBA 235.36 ± 4.87 113.39 ± 5.72

pure-predict

SiMBA
SiMBA 235.56 ± 4.72 33.71 ± 4.79

Simba
Numba optimized

FeatEx
0.09 ± 0.69 114.04 ± 5.98

pure-predict

SiMBA

Numba optimized

FeatEx
0.09 ± 0.69 9.44 ± 2.19

