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1 Abstract 

Characterizing the functional architecture of neuronal circuits that underly complex 

behavior requires identifying active neuronal ensembles during behavioral expressions of 

interest. The recent development of light-induced, activity-dependent labeling enables to 

capture active neuronal ensembles dependent on ongoing behavior, effectively allowing 

the behavior-dependent, causal identification of relevant structures for subsequent 

investigation.  

However, the behavior-dependent labeling of active neuronal ensembles was limited so 

far by a lack of dynamic closed-loop feedback systems that reliably detect unconstrained 

behavioral expressions. To solve this, I developed DeepLabStream (DLStream). DLStream 

is a versatile closed-loop toolkit providing real-time pose estimation of animals and 

conducting behavior-dependent experiments. DLStream has a temporal resolution in the 

millisecond range, is published open-source, and integrates other open-source projects 

such as deep learning-based pose estimation networks (DLC, SLEAP, DeepPoseKit), GPIO 

control (Arduino, Raspberry Pi), and machine learning-based behavior classification (B-

SoiD, SimBA). To demonstrate DLStream's capabilities, I used the toolkit to label neuronal 

ensembles active during specific head directions utilizing Cal-Light, a light-induced, 

activity-dependent biomolecular labeling system. Behavior-dependent light stimulation 

resulted in labeling of neuronal ensembles active during specific episodes of head 

direction. Importantly, this experimental strategy has the potential to untangle previously 

unknown causal relationships. This can be achieved by combining connectomic analysis 

of the captured ensembles and consecutive manipulation of their neuronal activity. 

Additionally, I established the Tetbow system, a virus-mediated, multicolor labeling 

system that can eventually be combined with behavior-dependent labeling to allow the 

anatomic analysis of large-scale tissue samples with behavior-dependent, uniquely 

labeled neuronal ensembles. Here, the focus lay in the effective use of Tetbow labeled 

samples in a collaborative attempt to develop an automatic segmentation tool to segment 

uniquely colored neurons in large tissue samples. Notably, some of the results of this 

thesis were published, including additional experiments using DLStream 1.  
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2 Introduction 

 A fundamental goal in neuroscience is to explain how structured neuronal activity 

gives rise to behavior 2–6. The initial approach is often to investigate how behavior 

manipulation affects neural activity. However, techniques that directly manipulate 

neuronal activity enable modulating the source of behavior and investigate their causal 

relationship 7. For this, functional neuronal circuits are often represented as mechanistic 

models in which components interact in a causal, often linear way. This mechanistic 

perspective allows probing presumed functions by manipulating components and 

measure their effect on the overarching network, including their behavioral output 8. 

Therefore, by probing how neuronal activity patterns contribute to behavior, mechanistic 

models of the causal relationship of behavior and neuronal activity can be generated and 

used to explain the roles of distinct circuit elements 8. 

However, the active neuronal ensembles, or functional ensembles, need to be identified 

and selectively targeted for measurement and manipulation. Unfortunately, the search 

for these functional ensembles is currently limited by the typically inferior temporal 

precision of methods dissecting behavior. Optimally, the respective behavioral 

expressions and corresponding neuronal ensembles should be characterized with a 

temporal resolution that allows probing the causal links during ongoing behavior 5–7.  

In this line, available labeling and manipulation of functionally active ensembles are 

currently limited by the lack of dynamic solutions that allow behavior-dependent 

feedback. Thus, two main requirements arise to identify active neurons during specific 

behavioral expressions and label them for future selective manipulation, imaging, and 

connectomic analysis.  

2.1 Labeling of functionally active ensembles 

 The first requirement concerns the method of selectively labeling active neurons.  

Classic manipulations of larger-scale neuronal activity such as lesions, transgenic 

alterations, and pharmacological injections cannot identify neuronal ensembles 

selectively. Additionally, they result in long-lasting and sometimes chronic changes in the 
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investigated animals, making it challenging to interpret behavioral effects and potential 

side effects on local network structures 7–9. In contrast, optogenetic manipulation 10–12 

offers high temporal precision for fast, short-lived manipulation of neuronal activity 7,8 

and has been applied in several fields, such as investigating mechanisms of learning and 

memory 13–15, perception16,17, motor control 18,19, and epilepsy 20–23. Such techniques offer 

a temporal resolution precise enough that the triggered effect can match the timescale of 

either behavioral expression or neuronal computation 24,25. For the analysis of functional 

ensembles, recently developed optogenetic tools enable the labeling of active neuronal 

ensembles during episodes of behavior 26–29. Cal-Light 26,27, for example, allows to virtually 

time-lock activity connected to behavioral expressions by utilizing a light-induced, activity-

dependent expression of reporters (see chapter 3.1).  

However, while the system has the molecular contrast and coincidence detection 

necessary to identify active ensembles during ongoing behavior, the effective use of Cal-

Light is currently limited by the lack of dynamic closed-loop feedback systems that detect 

unconstrained behavior. 

2.2 Detection of behavioral expressions in real-time 

 Therefore, the second requirement to label active neurons during specific 

behavior is the reliable detection of relevant behavioral episodes in real-time. Preexisting 

systems that allow behavior-dependent feedback often rely on specialized, on-purpose 

setups, including intricate beam brake designs, treadmills, levers, and virtual reality setups 

to approximate the movement of the investigated animal in a given environment and then 

react accordingly 30–38. However, the identification of truly unconstrained behavior would 

facilitate a combination of dynamic behavior-dependent light stimulation and activity-

dependent labeling techniques to study neuronal ensembles active during selected 

behavioral expressions in a previously unmatched level of detail and range. 

Fortunately, recent developments in neuroethology have made pose estimation of several 

species possible using robust deep-learning-based markerless tracking 39–46. DeepLabCut 

(DLC) 39,45–48, for example, uses trained deep neural networks to track the position of user-

defined body parts and provides motion tracking of freely moving animals (see chapter 

3.2). Most interesting, post hoc analysis using deep learning-based pose estimation was 
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recently shown to outperform previous go-to commercial solutions 49. Additionally, 

sophisticated machine learning approaches have allowed for disentangling the complex 

behavioral expressions of animals into patterns of reoccurring modules 50–56 (see chapter 

3.3). Many of these techniques involve the initial estimation of pose information utilizing 

toolkits like DLC. However, the leap to behavior-dependent closed-loop experiments using 

online pose estimation has begun only recently.  

2.3 Imaging functional ensembles 

 Finally, the connectomic analysis of active ensembles, labeled by a combination of 

Cal-Light and a behavior-dependent closed-loop solution, would benefit from imaging 

critical elements from mesoscopic (large scale networks) to nanoscopic scale (synaptic 

level). Thus, allowing a complete characterization of functional ensembles, including the 

individual connectivity and morphology of neurons. A recently developed, virtual super-

resolution imaging technique enables further insight into anatomical details on a small to 

larger scale at a feasible speed 57,58. Light sheet Fluorescence Expansion Microscopy 

(LSFEM, see chapter 3.4) allows studying partial synaptomes with simultaneous ability to 

zoom out and look at the functional projectome of large-scale networks.  

Here, the available resolution of LSFEM will be beneficial in the investigation of large-scale 

effects by small-scale morphology changes. For example, in brain disorders associated 

with abnormal dendritic spines 59–61. However, the efficient identification and tracing of 

multiple individual neurons within a population is limited by the ability to distinguish 

between closely neighboring cells. This limitation is severe in regions where the densely 

layered neuronal architecture results in bundled axonal projections or heavily entangled 

dendritic trees such as the hippocampus.  

Countering these challenges, a biomolecular technique called Tetbow uses the 

stochastically distributed expression of multiple, differently colored fluorescent 

proteins 62–65 (see chapter 3.5). However, its effective use with expanded tissue has not 

been shown yet. 
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2.4 Goals 

 Investigating causal links between behavioral expressions and their active 

neuronal correlates in the brain requires novel techniques with high temporal 

resolution 2–6. The development of behavior-dependent circuit labeling will allow novel 

insights into structure/function relationships within the rodent brain. It promises to 

bridge connectomics and physiology with the potential to reveal how functional 

architectures control neuronal computations and behavioral output.  

In this thesis, an AI-based, real-time closed-loop system was developed to further 

investigate neuronal networks correlated to behavioral episodes of interest and used to 

label neuronal ensembles that were active during ongoing, selected behavior. The 

software developed during this thesis was designed and published as an open-source 

Figure 1 - A visual representation of DLStream.  

Visual representation of workflow in DLStream. Initially, an experimental protocol is designed using a 
sequence of modules (puzzle pieces), and a trained pose estimation network is integrated into 
DLStream. Afterward, DLStream provides three different outputs for every experiment. 1. Experiments 
can be monitored on a live stream. 2. The experimental protocol is run based on posture detection. 
3. Recorded video and experimental data are exported after the experiment is done. 
A version of this figure was also published in Schweihoff, et al. 2021. 
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toolkit to facilitate a long-term, sustainable software solution 1,66. Thus, it will continue to 

benefit from community-driven improvements and extensions.  

DeepLabStream (DLStream, Figure 1) is a multi-purpose software solution that enables 

markerless, real-time tracking and behavior-dependent manipulation of freely moving 

animals during ongoing experiments. Its core capability is the orchestration of closed-loop 

experimental protocols, incorporating real-time feedback to facilitate dynamic 

experimental paradigms. DLStream utilizes state-of-the-art pose estimation such as 

DLC 39,46–48 to track the postures of mice in real-time and supervises behavior-dependent 

feedback to input and output devices. It can be combined with biomolecular tools such as 

Cal-Light to map active neuronal circuits selectively. DLStream's capabilities are 

demonstrated in a head direction-dependent optogenetic stimulation experiment 

labeling neurons active during specific head direction. To further establish DLStream as a 

sustainable software solution, this thesis will elaborate on the versatility of DLStream to 

adapt to different experimental conditions and hardware configurations and introduce 

the design of DLStream controlled experiments and triggers. An extensive guide on using 

and customizing DLStream with several examples is also published alongside the software 

repository 66. 

Additionally, this thesis will give an outlook on the ongoing developments that combine 

the powerful imaging technique LSFEM with the high-contrast biomolecular tool Tetbow 

in a collaborative effort to advance the automatic segmentation of large-scale tissue. For 

this, Tetbow-based multicolor labeling was optimized for use with tissue expansion 

protocols to lay the foundation for advanced connectomic analysis, eventually combining 

automatic segmentation of large-scale tissue with behavior-dependent, multicolor 

activity labeling.  

3 Theoretical background 

3.1 Translating neural activity into gene expression 

 In vivo single-unit recording 67, along with recent advances in in vivo voltage 

imaging 68 and miniaturized calcium imaging techniques 69–71, facilitate real-time 

measurements of neuronal activity in freely moving mice. These techniques provide a 
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wide-ranging foundation for the correlation of recorded neuronal activity and complex 

behavior. With the development of activity-dependent labeling techniques 26–28, the 

integration of behavior-dependent circuit labeling is imminent.  

The activity-dependent, light-induced labeling technique Cal-Light allows to label neurons 

active during episodes of behaviors of interest 26. Cal-Light utilizes a combination of 

specialized proteins to obtain its coincidence detection (see Figure 2). Its core function is 

the light-induced translation of cytosolic Ca2+ events into gene expression. To accomplish 

Figure 2 - Schematic representation of Cal-Light 

a-b, Schematic representation of the biomolecular mechanism of Cal-Light. Upon Ca2+-dependent 
binding of Calmodulin and M13, the split TEVp units TEV-C and TEV-N regain function. Simultaneous 
stimulation by blue light mediates the release of the TEVseq site and enables the release of tTA upon 
cleavage by TEVp. tTA-dependent eGFP expression is then initiated, labeling the cell green (eGFP) in 
addition to red (tdTomato).  
c, Schematic representation of the experimental progression with Cal-Light. First, mice are injected with 
a viral mixture (AAV-TRE-EGFP, AAV-M13-TEV-C-P2A-TdTomato, AAV-TM-CaM-NES-TEV-N-AsLOV2-
TEVseq-tTA). After infection, neurons are labeled with tdTomato (left panel; red cells). During blue light 
stimulation (middle panel; blue circle), active neurons (Ca2+, black arrow up) are labeled with eGFP 
(green), resulting in yellow labeled neurons (right panel), effectively labeling neuronal ensembles active 
during light stimulation. 
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this, a tetracycline-controlled transcriptional activator (tTA) is tethered to the outer 

cellular membrane and fused with a tobacco etch virus protease (TEVp) cleavage 

sequence (TEVseq). Cal-Light's light sensitivity is achieved by light-induced TEVseq 

cleavage and resulting tTA release. By masking the sequence within the C terminus of the 

Jα-helix of Avena sativa phototropin 1 light-oxygen-voltage 2 domains (AsLOV2) 16, the 

cleavage site is only available for TEVp activity after a blue light-induced conformation 

change. Activity dependency is realized by splitting the corresponding protease TEVp into 

N- and C-terminal fragments (TEV-N and TEV-C) that regain proteolytic function upon 

binding of a Ca2+ sensor pair (CaM and M13), which bind upon cytosolic Ca2+ rise (see 

Figure 2 a, b). In its basic configuration, Cal-Light can be combined with tTA-dependent 

vectors such as rAAV-TRE-eGFP to facilitate the expression of reporter genes (e.g., eGFP). 

In a behavior experiment, mice injected with Cal-Light can be stimulated with blue light 

through an implanted light fiber, depending on their behavior (e.g., pulling a lever). 

Infected neurons in the light-stimulated brain region will express the reporter protein 

(eGFP) if active during the detected behavioral episode. Infected but inactive neurons 

remain only labeled with tdTomato (see Figure 2 c). For high molecular contrast, the Cal-

Light system needs to be activated repetitively. While this lowers the probability to label 

behavioral episodes with a low frequency of occurrence effectively, it also increases the 

contrast between truly correlated and sporadically active neurons. Neurons that are 

randomly active during the behavioral episode are likely filtered out by the repetitive 

activation threshold. Cal-Light thereby effectively enables the labeling of active neuronal 

ensembles during behavioral episodes of interest. 

However, the system can also be used to express optogenetic tools to enable behavior-

dependent manipulation of neuronal activity 26. For example, a combination of Tetbow 

(see chapter 3.5) and Cal-Light would allow to behavior-dependently capture neuronal 

ensembles with simultaneous multicolor labeling of individual neurons for advanced 

segmentation. For a more detailed description of the expression system (Tet-O), please 

refer to chapter 3.5. 

As previously stated, for the effective, transient expression of reporter genes, Cal-Light 

must be reliably activated. Neuronal activity and light stimulation need to coincide, 

repetitively, with high temporal precision 26. This requirement renders the technique 
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dependent on external trigger systems to detect behavioral expressions and give 

instantaneous feedback. In other words, while Cal-Light's ability to detect neuronal 

activity is remarkable, a major limitation for the effective application of the technique is 

identifying reoccurring episodes and reliably trigger light stimulation.  

3.2 Markerless pose estimation 

 Markerless pose estimation is one of the recent additions of machine learning-

based approaches in ethology and neuroscience 4,39–41,43. Its core achievement is the 

reliable, autonomous extraction of positional data of user-defined key points (e.g., body 

parts; Figure 3) from a video without the need for physical markers (e.g., reflective 

markers applied to the subject). This form of motion tracking has several advantages over 

Figure 3 – Pose estimation using Deep Neural Networks  

a, Schematic representation of an experimental setup. A camera, mounted above the arena at a 90° 
angle, is used to record example videos of a mouse during behavior.  
b, A characteristic set of example frames recorded in a is labeled with key points (e.g., nose, neck, and 
tail base) and used to train a deep neural network (DNN; c).  
c, The DNN extracts relevant image features and learns an abstract definition of the user-defined key 
points.  
d, The trained network can then be used to estimate the position of previously learned key points in 
novel video frames. The resulting pose estimation is exported and can be used for complex behavior 
analysis. This figure was inspired by Mathis, Mamidanna et al. 2018. 



 

  17 of 99 

classic videography, which is often a time-consuming and error-prone process. It allows 

additional degrees of freedom compared to marker-based tracking 72–74: Primarily 

because markers do not need to be preset or predefined before the recording. 

Consequently, videos can be reanalyzed with different sets of key points depending on 

the analysis requirements. Previously recorded data can be revisited even if markerless 

pose estimation was not established in the laboratory during their recording. This 

advantage increases the likelihood of implementing markerless pose estimation in 

ongoing research projects successfully. 

For deep learning-based pose estimation, a trained machine learning algorithm (model) 

identifies reoccurring features in a video frame and reliably extracts positional 

information with high accuracy (Figure 3). As a result of the growing interest from 

researchers across ethological fields in recent years, several implementations of this 

method are available for animal tracking 20,21,35,36. Most recent popular models (e.g., 

DeepLabCut 39,47,48) are based on deep learning architectures, such as DeeperCut75, a 

model previously developed for human pose estimation. Deep neural networks (DNNs, 

Figure 3 c) utilize the inherent ability of artificial neural networks to learn how to extract 

high-level features from raw input, such as coordinates from video frames, based on 

previously seen labeled data (Figure 3 a-b). This ability allows researchers to quickly train 

a robust machine learning algorithm to identify body parts of interest in their 

experimental paradigm and track the movement of each key point across multiple 

sessions and individuals. Pose estimation data can then be analyzed in several ways, 

including machine learning-based approaches for behavioral classification 49,54,76. The 

resulting behavioral classification can then be used to extract highly detailed information 

about the specific behavioral changes in each session (see chapter 3.3).  

However, to study the activity and connectivity of neuronal networks underlying behavior, 

the respective behavioral expressions and corresponding neuronal ensembles need to be 

identified and labeled in real-time. This endeavor requires fast, reliable pose estimation 

and an advanced closed-loop system to identify behavioral expressions and administer 

real-time feedback. 
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3.3 AI-based behavioral analysis 

 With the rise of machine learning-based pose estimation of animals, the amount 

of readily available, highly detailed data on animal behavior is growing steadily. The 

demand for unbiased, high-throughput analysis resulted in several open-source 

applications that enable non-expert researchers to start analyzing their complex 

behavioral data 49,53–56,76,77. Approaches range from classifying previously defined 

behavioral expressions 49,76 to finding novel patterns in the hidden dynamics of complex 

behavior 52–56,77. These approaches often incorporate sequential analysis protocols for 

automatic parameter quantification 49,76 that previously required human expert 

annotation over hours of video data. Consequently, researchers who successfully 

established these toolkits benefit from the increased time efficiency, inherently low bias, 

and increased spectrum of complex behavioral expressions 49,53,54,76. 

Considering closed-loop experiments, where behavior detection is often required to be 

autonomous and faster than humanly possible with minimal inter-event variability, a 

machine learning-based behavior analysis would increase the detection spectrum 

considerably. However, the practical benefit of using machine learning-based behavior 

detection should be considered on a case-by-case basis. Simple behavioral expressions 

can often be easily defined by relative feature changes and do not require the elaborate 

training of a classifier. 

3.4 Light sheet fluorescence expansion microscopy 

 The ability to volumetrically image highly detailed molecular information in 

subcellular resolution across whole brain areas is critical in establishing meaningful, time-

efficient studies of functional ensembles across the brain. With optical and electron 

microscopy, researchers established methods that have the potential to untangle the 

complexity of the brain's functional architecture. These neuronal architectures are 

composed of structures spanning several orders of magnitude across the brain. 

Unfortunately, optical microscopy is often insufficient to reveal subcellular details in high 

resolution, and electron microscopy lacks the molecular contrast to phenotype and 

investigate in rich detail over a larger scale. 
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A solution built to combine super-resolution, high throughput, and high molecular 

contrast imaging of large brain samples is light sheet fluorescent expansion microscopy 

(LSFEM). Combining two optical microscopy techniques enables imaging from mesoscopic 

to nanoscopic scale 57,58. 

Standard expansion microscopy virtually enhances the potential resolution of optical 

microscopy by increasing tissue sample size rather than optimizing microscopy techniques 

and equipment 57,58,78–80. The tissue is permeated with a hygroscopic polymer and 

isotropically expanded after enzymatical treatment (see Figure 4). For this, proteins of 

interest are labeled with antibodies, nanobodies, or fluorescent tags (e.g., GFP), which are 

covalently attached to the polymer matrix before isotropic expansion with water-based 

solutions (Figure 4 a-b). After expansion, fluorescent labels initially spaced closer than the 

optical diffraction limit (~250nm) can be optically resolved, resulting in effective "super-

resolution" images of the sample (Figure 4 c). Due to the high water content of the 

expanded sample, the tissue is rendered fully transparent, comparable to the results of 

chemical tissue clearing 81–85 but without the need for complex and potentially 

fluorescence damaging clearing protocols. Additionally, unlike chemical clearing, the 

tissue can now also be resolved in much greater detail. Notably, the increased size of the 

Figure 4 - Tissue expansion 

a, Processing steps of tissue 
expansion for samples with 
fluorescent labels (XFP 1 and 2). 
First, a polymer matrix is formed 
by incubating the tissue in a 
gelling solution (see Methods), 
and fluorescent labels are 
covalently bound to the matrix 
(Linking). Digestion: the tissue is 
enzymatically cleared before 
expansion. 
b-c, After expansion with water 
(b), fluorescent labels initially 
spaced closer than the optical 
diffraction limit (~250nm) can be 
optically resolved (c) 
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sample restricts the accessibility of deep structures with conventional super-resolution 

microscopy techniques.  

The technique was recently combined with light sheet fluorescence microscopy (LSFM). 

In standard LSFM, samples are illuminated with a thin sheet of light, and emitted signals 

are detected orthogonally to the light sheet by wide-field detection 86 with a CMOS 

camera in a confocal line detection scheme 87,88. LSFM is conventionally used for 

volumetric imaging of large, cleared samples at high speed but lacks the high resolution 

of other microscopy techniques 85,87,89–91. As the synergetic combination of both 

techniques, LSFEM allows high-detail, large-scale volumetric imaging of synaptic 

connectivity maps in intact brain samples with high throughput 57,58.  

3.5 Multicolor neuron labeling for circuit tracing 

 To fully characterize the functional architecture of neuronal circuits, it is essential 

to trace the connections of individual neurons within entire populations. However, most 

tracing techniques utilize methods that label neuronal populations in a single color 

resulting in considerable segmentation problems. While beneficial when studying general 

connectivity between brain regions, such an approach limits the ability to characterize the 

connectivity maps of neurons on an individual level. For example, in regions such as the 

hippocampal formation, neuronal populations have recurrent, widely distributed 

connections within a dense structure of layered neurons. To characterize such 

connections in great detail, the neuronal density needs to be countered with techniques 

that simultaneously minimize the potential loss of information. A famous example 

countering the segmentation problem in dense regions is sparse labeling 92, also utilized 

in the Golgi method 93,94. However, while greatly reducing the overlapping of labeled 

neurons, connectomic analysis using this technique generally assume the stereometric 

homogeneity of neurons within a population and therefore likely neglect more complex 

differences within investigated populations.  

A technique that utilizes stochastically distributed expression of multiple, differently 

colored XFPs, known as Brainbow 63–65, elegantly solves this challenge using a Cre/loxP-

System 95–97. In principle, Brainbow enables XFP expression in different levels across 

infected neurons. The resulting distribution of XFPs in different concentrations per cell 
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results in a spectrum of color hues, effectively labeling neurons uniquely. However, 

resulting expression levels were often inadequate to detect axons and dendrites in large-

scale tissue samples (e.g., using tissue clearing). Consequently, detailed connectomic 

analysis was often limited to the time-consuming, error-prone segmentation of thin serial 

sections. Recent advancement in multicolor labeling, Tetbow 62, raises expression levels 

high enough to allow whole-brain tracing in cleared samples and presumably expanded 

tissue (see chapter 3.4).  

Tetbow achieves high expression levels and wide-ranging color hues by utilizing the Tet-

Off expression system 98–100. Tet-Off is derived from the tetracycline resistance operon in 

E. coli. Originally, the Tet repressor protein (TetR) inhibits transcription in the absence of 

tetracycline (an antibiotic) by binding to the tetO sequences in the promotor region. 

However, a eukaryotic transcriptional activator (tTA) was generated by fusion with a 

Herpes simplex virus VP16 trans-activator and combined with eukaryotic minimal 

promoters (TRE). The resulting expression system (Tet-Off) enables highly specific 

expression in the presence of tTA, while tetracycline addition results in strong inhibition 

of gene transcription. An additional advantage of the Tet-Off system lies in its wide use 

and the availability of a wide range of vectors that can be easily exchanged. 

Figure 5 - Schematic representation of Tetbow 

a, A virus mixture (AAV-Syn1-tTA, AAV-TRE-tdTomato-WPRE, AAV-TRE-EYFP-WPRE, AAV-TRE-
mTurquoise2-WPRE) is injected into the target brain region containing expression vectors for the 
fluorescent proteins tdTomato (red), EYFP (yellow/green), and mTurquoise2 (blue).  
b, The stochastic distribution during infection results in different copy numbers per infected cell, which 
will result in different color hues in RGB color space.  
c, Neurons can be identified, and their extensions traced by their distinct color hue. The resulting color 
diversity is dependent on the total number of copies per infected cell.  
d, Maximum intensity projection of a sample stack with Tetbow expression in the DG of the 
hippocampus after digestion treatment (see Methods 7.5). 4-tile stack acquired with the confocal Zeiss 
LSM880. Courtesy of Juan E. Rodriguez Gatica  
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The original Tetbow system (see Figure 5 a) consists of a set of viral vectors with three 

different XFPs (TRE-tdTomato, red; TRE-EYFP, yellow/green; TRE-mTurquoise2, blue), 

which are expressed in the presence of the fourth vector (Syn1-tTA) in infected neurons. 

The resulting color hues (similar to the RGB color space, Figure 5 b-c) are spread across 

the visible spectrum by combining different fluorescent intensity levels based on the 

stochastic distribution of vector copies within each infected neuron 62. Thus, the color 

diversity is directly linked to the distribution of XFP gene copies and tTA expression 

following a Poisson distribution 62,101. However, it is important to note that the color 

diversity reduces as the number of introduced gene copies increases 62.  

The resulting color diversity can also be used in a computational approach that segments 

neurons based on their unique color hue. A hue-based segmentation algorithm would 

increase tracing efficiency for automatized large-scale connectomics. Especially in 

combination with LSFEM, the ability to dissect individual neurons and resolve both long-

range projections and highly detailed morphology across scales has the potential to fill 

the gap between wholesome but small-scale electron microscopy and large-scale tissue 

clearing in connectomics. 

3.6 Vector-based delivery of expression systems 

 Stereotaxic delivery of recombinant adeno-associated viruses (rAAVs) is the go-to 

strategy for exogenic gene delivery in the postnatal rodent brain 102. Its high precision and 

moderate invasiveness allow the temporally precise manipulation of gene expression in 

virtually any brain region and cell type, given the right combination of rAAVs. The 

technique is easily reproducible once the conditions for the desired gene expression are 

found. However, the initial adjustment of all parameters requires careful testing. With 

every new vector and brain region, the necessary amount of virus, the expression time 

until sacrifice, and optimal coordinates need to be considered.  

The complexity grows accordingly when gene deliveries simultaneously require multiple 

rAAVs or vectors, as is the case for Cal-Light 26 and Tetbow 62 (see chapters 3.1 and 3.5). 

Specifically, the individual expression levels can vary drastically when using systems 

expressing multiple fluorescent proteins (XFPs) such as Tetbow with separate vectors in 

the same cell. Consequently, the resulting fluorescent intensity values render imaging all 
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colors at equivalent levels a matter of careful fine-tuning for connectomic studies. Here, 

considering a range of mixtures is essential to finding the optimal combination of 

expression strength, viral spread, and cell toxicity. 

For large-scale brain tissue, the injection volume and stereotactic coordinates are 

dependent on the targeted brain region and can be based on previous successful studies. 

However, the optimal mixture of different vectors is more complicated, especially when 

considering automatic segmentation, where the variability between samples should be 

minimal. With Tetbow specifically, there are four vectors to consider (see chapter 3.5). 

Briefly, the first vector acts as a general conductor for gene expression levels of the other 

AAVs, namely XFP expression. Notably, high expression levels increase the cell toxicity of 

viral delivery systems, so the overall viral load and expression levels need to be carefully 

adjusted. The other three vectors each express different XFPs (tdTomato, eYFP, 

mTurquoise) with individual fluorescent intensities and expression efficiency. Depending 

on the desired effect, the relative concentration of each vector needs to be adjusted. In 

the Tetbow-based approach for automatic segmentation, the ultimate goal is the unique 

labeling of neurons within a dense population. Consequently, the sufficient expression of 

all XFPs is required for a maximum range of available color hues 62. This requires careful 

adjustments of all parameters – i.e., multiple surgeries - with the repeated evaluation of 

post mortem sections to find the right combination if an optimal expression profile is 

desired. 
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4 Results 

4.1 Real-time, closed-loop experiments 

4.1.1 Real-time tracking and manipulation of animals during ongoing experiments 

 During the development of DeepLabStream (DLStream), the main goal was to 

create a software solution that enables closed-loop stimulations directly dependent on 

behavioral expressions. The resulting software is able to conduct behavior-dependent 

experiments fully autonomous and requires no additional tracking-, trigger-, or timing-

devices. Primarily, experiments orchestrated by DLStream can be conducted without 

restriction to the animal's movement due to the optimized integration of real-time, 

markerless pose estimation. Additionally, DLStream was built so that input and output 

devices can be integrated freely into the hardware design of experiments (Figure 1). 

For the conducted experiments, a pose estimation network was trained offline using DLC 

and was then integrated into DLStream (see 7.11 and 7.12). Briefly, frames of previous 

recordings of a mouse exploring the arena were taken and labeled as ground truth (Figure 

6 a-b). The ground truth dataset was then used to train a deep neural network to 

recognize and estimate the positions of user-defined key points (neck, nose, and tail base). 

In DLStream, frames taken from a camera stream positioned above the arena were 

analyzed using the integrated pose estimation network. The resulting pose information 

was converted into postures and transferred to an additional process. This process 

supervises the ongoing experiment and outputs feedback to connected devices (Figure 6 

c-d). In principle, experiments run by DLStream comprise a sequence of modules 

depending on the underlying experimental protocol (Figure 6 d, Supplementary 

Information 9.3.2, Supplementary Table A, Supplementary Table B). Basic modules, such 

as timers and stimulations, are behavior-independent and control essential aspects of the 

experiments. Timer modules track time-dependent stages and act as a gate for behavior-

dependent stimulation events (e.g., inter-stimulus timers). Stimulation modules specify 

which external devices are triggered and how each device is controlled once activated 

(e.g., optogenetic light stimulation; Figure 6 d). Behavior-dependent feedback is triggered 

by trigger modules that detect specified behavioral expressions. Trigger modules consist 
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of sets of defined postures (e.g., position, head direction) or are connected to behavior 

classifiers and initialize a predefined cascade (stimulation) once a behavioral expression 

was detected during an experiment (Figure 6 c-d, Supplementary Table A). 

Figure 6 - Experimental setup 

a, Schematic representation of a setup run with DLStream. A camera, mounted above the arena at a 90° 
angle, is used to record example videos of the arena, including a mouse with a fiber cord.  
b, A set of example frames recorded in a is labeled and used to train a pose estimation network that can 
be integrated into DLStream.  
c, Using the pose estimation of body parts (red dots), a behavior-dependent experiment is conducted with 
DLStream. Whenever DLStream detects a relevant behavioral expression (blue bars), the mouse is 
stimulated with light (blue cord).  
d, Schematic representation of the underlying architecture for an optogenetic stimulation task. The 
sequence for behavior-dependent stimulation in c is highlighted in blue. Experiments run by DLStream 
typically incorporate time-dependent aspects controlled by timer modules (red) and consist of several logic 
gates (and, or, xor) to orchestrate essential aspects of the experiment. Any DLStream experiment is run as 
a loop on a frame-by-frame basis until a preset condition ends the experiment (e.g., the maximum number 
of stimulations or maximum duration). 
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While experiments are conducted autonomously, ongoing experiments can be directly 

monitored on a live video stream visualizing pose estimation and experimental 

parameters (Figure 7). In DLStream, real-time pose estimation data, including relevant 

experimental parameters such as status, response latency, and event-onset, is exported 

as a table-based file (see chapter 4.1.2, Supplementary Table C). Additionally, the raw 

video camera stream during experiments is timestamped and recorded for post hoc 

analysis.  

4.1.2 DLStream output 

 DLStream stores pose estimation data and information from experiments in a 

table-based file (Supplementary Table C). The table is saved as a CSV file that allows easy 

import into several software applications (e.g., Microsoft Excel®, MatLab®, Text editors, 

and Python-based analysis) across multiple operational systems.  

The animal's position is linked to each frame by a frame-based index, additionally 

imprinted on the recorded video. In total, the output table provides information on the 

estimated position of all tracked body parts, the experiment's status, and a trial column 

used to give event/trial-specific information during experiments. Event-specific 

information can include different trials during conditioning or stimulation onset. The table 

also includes a time column where experimenters can see the exact inference time 

between each frame and the actual time passed during the experiment.  

Like the raw pose estimation output from open-source solutions like DLC, the pose 

estimation and experimental data can be used for post hoc analysis. 

4.1.3 DLStream GUI 

 DLStream was developed so that non-expert users can conduct predesigned 

experiments without interacting with the underlying code architecture (see 

Supplementary Information 9.3.1). For this, DLStream has a graphical user interface (GUI) 

that can initialize, cancel, or finish up experiments (Figure 7).  

In a typical DLStream experiment, the video stream is started first (Start Stream, Figure 7 

c1). The initialized live stream is then used to finalize the experimental setup (e.g., arena 

position, focus, and lighting conditions; Figure 7 a). Then, the pose estimation network is 
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initialized (Start Analysis, Figure 7 c2), and its output is visualized on the live stream by 

colored dots (Figure 7 a-b). If desired, the live stream can be recorded (Start Recording, 

Figure 7 c3) and pose estimation data exported without an ongoing experiment.  

However, starting the experiment will result in both automatically (Start Experiment, 

Figure 7 c4). During ongoing experiments, experimental information can be monitored on 

the live stream window (Figure 7 a-b) and console. At any point, users can stop DLStream, 

and collected data will be exported (Stop …, Figure 7 c1-5).  

Figure 7 - DLStream Graphical User Interface 

a, Example of a video live stream during DLStream conducted behavior experiment. The pose estimation 
on the nose, neck, and tail base are shown as colored points (red, green, and yellow). The results of two 
region of interest (ROI)-based trigger modules are visualized by the corresponding ROIs (colored circles). 
A positive detection is visualized in green (right, green circle), while a negative detection (mouse not in 
ROI) is visualized in red (left, red circle). The frame number since the beginning of the stream is imprinted 
on the video (top left, red), while the time since the beginning of the pose estimation (Time) and current 
latency (FPS) is shown as an overlay (bottom right, cyan).  
b, Different example of the live stream shown in a. In this example, the mouse’s locomotion was 
detected, indicated by the green text (“running”) positioned at its nose. At the same time, an LED was 
activated by DLStream during the behavioral expression (green circle). A complete video version of this 
was published as a supplementary video in Schweihoff et al. 2021 1.  
c, Image of the graphical user interface of DLStream. Users can directly control DLStream using the 
buttons depicted.  
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4.1.4 Adaptability of DLStream 

 As with the development of a GUI, the goal for DLStream was to develop a software 

solution that can easily be customized and fitted to the experimental needs of several 

researchers. For this, DLStream's underlying code architecture was primarily built with 

modules that can be readily interchanged. The stimulation, trigger, and timer modules are 

encapsulated in an experiment module accessed by the main DLStream process (Figure 6 

d). Briefly, any experiment running in DLStream follows the same logic (see 

Supplementary Information 9.3.2 and 9.3.5). Postural data is extracted from the incoming 

video frame by DLStream using a pose estimation network and passed to the experiment. 

Depending on the experiment's configuration, the posture will be passed to a trigger 

module that detects if the behavioral expression of interest was present. Independent of 

the type of trigger module, the output is a binary classification (True or False) typically 

used as an activation or deactivation signal for a stimulation module. Consequently, 

trigger modules are interchangeable by design and can be easily exchanged to customize 

existing experiments.  

Typically, experiments are governed by behavior-independent parameters such as inter-

stimulus times and fixed overarching paradigms (e.g., the maximum duration of an 

experiment and minimum stimulation time). Timer modules control such parameters and, 

similar to trigger modules, output binary information about ongoing timing. While trigger 

modules are typically designed for specific behavioral expressions, timer modules can be 

set, reset, started, and stopped as necessary within an experiment (Figure 6 d, 

Supplementary Information 9.3.2). 

Preexisting experiments can be adapted by changing the underlying configuration or 

specific modules to create custom experiments. To facilitate the customization of 

experiments, the open-source published version 66 of DLStream includes step-by-step 

tutorials, several example experiments, and trigger as well as stimulation modules (see 

Supplementary Information 9.3, Supplementary Table A, Supplementary Table B). 

Notably, DLStream experiments are not limited to a specific set of key points (body parts). 

They can utilize any combination of pose estimated body parts, even multiple animals in 

the same environment, independent of species. DLStream's posture data is stored as a 
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skeletal representation (skeleton; a set of named body parts). Individual and sets of body 

parts can be selected to design experiments and triggers (Supplementary Information 

9.3.5). 

4.1.5 DLStream hardware compatibility 

 DLStream was successfully installed and tested on Windows 10 and Ubuntu 

18.04.05 OS. The software was developed in the open-source programming language 

Python that includes open-source libraries for most available devices and desired 

functions. Consequently, DLStream can utilize and control a wide range of devices. 

Virtually any webcam/camera can be used with various framerates and resolutions, 

considering hardware requirements and pose estimation performance (see chapter 

4.1.7). The current version of DLStream 66 can integrate cameras using the OpenCV library 

(generic cameras), pypylon (Basler cameras), pyrealsense2 (Intel RealSense® cameras), 

and pyzmq (IP webcams). Notably, DLStream is also able to run with prerecorded videos. 

Using a simulated real-time video feed can be helpful to set up and design experiments 

and reduces unnecessary preliminary live sessions with animals to set up behavior 

detection. 

Additionally, DLStream includes libraries that allow the general-purpose input/output 

(GPIO) control through three different device types: Dataaquisition boards from National 

Instruments (nidaqmx), Raspberry Pi boards (pigpio, gpiozero), and Arduino boards 

(pyserial). However, all devices are conveniently interfaced in DLStream, so that, 

independent of the device, the design of an experiment remains the same. 

4.1.6 Optogenetic, head direction-dependent labeling of neurons using DLStream 

 The results of this experiment were also published in Schweihoff et al. 2021 1. 

The development of DLStream allowed the design of an experiment that would 

incorporate the possibility to label active neurons optogenetically depending on the 

behavior of mice. For this, an experiment was designed to label active neurons in the 

anterior dorsal nucleus of thalamus (ADN) dependent on the mouse's head direction using 

the neuronal activity-dependent labeling system Cal-Light26. 
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To label ADN ensembles, light stimuli were delivered within precisely defined head 

direction angles (target window) (Figure 8 a-b). Using DLStream, the onset and offset of 

light stimulation was controlled with timer, stimulation, and trigger modules as previously 

described (Figure 6 c, Figure 8 b; Supplementary Information 9.3.2). Mice were placed in 

a circular white arena with a single black cue at one side. The arena was kept in the same 

orientation throughout the whole experiment to ensure stable angular tuning. During the 

experiment, mice investigated the arena in one 30-minute session per day for four 

consecutive days (Figure 8 b). During each session, the mice were stimulated via a 

chronically implanted optical fiber with blue light (488 nm) depending on their head 

direction angle. The head movement of the mice was not restricted, and mice moved their 

head freely in all directions (Figure 8 a-c, Supplementary Figure A). During each session, 

mice explored the entire arena without restriction (Figure 8 e-f). However, light 

stimulation was limited to periods when they oriented their head to the target head 

direction window (60° to reference point; Figure 8 b-c, Supplementary Figure A). Each 

stimulation lasted 1-5 sec depending on the time spent orienting to the target window 

with a minimum inter-stimulus time of 15 seconds. During inter-stimulus periods, a timer 

module blocked the link between the trigger and stimulation module, disabling behavior-

dependent stimulation for its designated duration (Figure 6 c, Figure 8 b).  

The average light stimulation per session was 48 ± 10 seconds and occurred selectively in 

the target angle window across all experimental animals (Figure 8 h). Notably, light 

stimulation outside of the target head direction window can result from the preset 

stimulation conditions. Each stimulation was set to a minimum duration of 1 second, in 

which mice were able to sweep their head out of the target window. Nevertheless, the 

average total stimulation time across all four sessions was 357 ± 53 sec (n = 10 mice) with 

a significantly higher stimulation in the target window (Figure 8 h). Analogously, head 

direction-specific light stimulation could not have been achieved by random stimulation 

during the session. A random sampling of observed head direction angles equal to the 

number of stimulation events in individual sessions revealed a nonspecific distribution of 

covered angles – i.e., mice oriented in all directions (Figure 8 d, left). 
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Figure 8 - Optogenetic labeling of head direction-dependent neuronal activity 

a, Left: Stereotactic delivery of Cal-Light viruses into the ADN and fiber ferrule placement. Middle: 
Infected neurons (red) are stimulated with blue light (488 nm) controlled by DLStream. Right: infected 
neurons are only labeled (yellow) when they are active (black arrow up) during light stimulation (middle). 
b, Example images of head direction-dependent light stimulation. The mouse’s pose estimation (orange 
dots) is used to calculate its head direction angle (orange arrow) related to a reference point (red line). 
Light stimulation is triggered if the head direction angle is within the target window (blue arc). A 
schematic representation of the sequence of modules (puzzle pieces) used in the design of this 
experiment is shown beneath the images (see also Figure 6 c). Timer modules are used as a minimum 
stimulation timer (left) and an inter-stimulus timer (right). 
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Note that for each mouse, the mean resultant length for stimulated angles was 

significantly larger than would be expected by random sampling (see Methods, n = 1000 

samples, p < 0.01) (Figure 8 d, right).  

As an additional control, a yoked group of mice was run such that each mouse, regardless 

of its actual head direction, received the exact same temporal stimulus as a paired 

experimental mouse. Therefore, in the yoked group, light stimuli were decoupled from 

the individual head direction (Figure 8 j). Thus, in theory, if neurons are inconsistently 

c, Left: Representative example (see also Supplementary Figure A) radial histogram of all head directions 
during stimulation (red) within one session (normalized to the maximum value). Mean resultant vector 
length is indicated by r. Right: Radial histogram of all head directions during the whole session (grey) and 
stimulation (red) The values were normalized to the maximum value of the entire session. Rings 
represent quantiles in 20 % steps.  
d, Left: Representative random sample of covered angles during the whole session simulating random 
stimulation. Simulated stimulations are triggered without DLStream control at random time points 
during the session (normalized to the maximum value). The mean resultant vector length is indicated by 
r. For each session, random distributions were calculated 1000 times. Right: The distribution of mean 
resultant vector lengths generated by random sampling (n = 1000) of a single session. The red line 
denotes the actual mean resultant vector length during stimulation in the same session. The dotted black 
line represents the p<0.01 cutoff.  
e, Representative example of the mouse’s position (grey) over time during the first 5 minutes of the 
session in c. The stimulation events are shown in blue. 
f, Heatmaps representing the relative occupancy of the mouse within the arena during the whole session 
(top) and only during stimulation events (bottom) in c. The cue and target window are shown in their 
relative position.  
g, Example of Cal-Light expression in a mouse from the experimental group. Left: tdTomato expression 
(red) indicating expression of Cal-Light viruses with nucleus staining (DAPI, blue). Right: Activity-
dependent and light-induced eGFP expression (green) in the same section. The white box represents the 
zoomed-in region in h. The bar represents 200 µm.  
h, Close up from g vs. a similar region in an animal not stimulated with light (No Light group) and in the 
yoked control group. Left: tdTomato expression (red). Right: Activity-dependent and light-induced eGFP 
expression (green). The bar represents 50 µm. Note that control mice show no eGFP expression in 
tdTomato+ neurons. In the yoked group, light stimulation of the same duration as in the experimental 
group but not the same head direction specificity did not result in sufficient Cal-Light labeling.  
i, Average light stimulation during each session (40 total) corresponding to head direction (60° bins) with 
target window (blue wedge) indicating the DLStream triggered stimulation onset in the experimental 
group. Paired student’s t-test: p < 0.001. n = 10 mice. Error bars represent standard deviation.  
j, Average light stimulation in both experimental and yoked groups during each session as a function of 
head direction (60° bins) similar to i. Exp: n = 10 mice, black bars; Yoked: n = 8 mice, grey bars. Error bars 
represent standard deviation. Experimental and yoked groups have the same total stimulation time, but 
the distribution differs such that the yoked group has approximately equal stimulation times across 
varying head direction angles.  
k, Ratio between infected neurons (tdTom+) and activity-dependent labelled neurons (eGFP+/tdTom+) in 
mice matching selection criteria (see Methods). n = 2 mice.  
l, Ratio between infected neurons (tdTom+) and activity-dependent labeled neurons (eGFP+/tdTom+) in 
mice matching selection criteria (see Methods) in the yoked group. n = 2 mice. 
A modified version of this figure was also published in Schweihoff et al. 20211. 
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active during all stimulations, the head direction independent stimulation should result in 

insufficient Cal-Light labeling of head direction correlated activity.  

The percentage of Cal-Light labeled ADN neurons was quantified in the three different 

groups (experimental, no-light, and yoked). Initially, a group of 20 animals was injected 

with Cal-Light, implanted with a light fiber, and used for the experiment. However, after 

confirmation during post mortem analysis, only mice that showed correct fiber and 

injection placement were considered for labeling quantification (see Methods and Figure 

9 for details). Mice excluded from the quantification were still included in the evaluation 

of DLStream performance.  

Cal-Light infected neurons showed a 46 % conversion within the ADN (Figure 8 k, n = 2 

mice), while mice receiving no light stimulation but underwent the same sessions had no 

Figure 9 - Quantification of optogenetic labeling of head direction-dependent activity in neurons. 

a, Table of all injected and implanted animals divided into experimental groups and success categories. 
‘Match’ occurred when the viral injection was successfully targeted to the ADN and optic fiber was placed 
above the ADN. Tissue processed from the ‘match’ case was used for the quantification of labeled neurons. 
‘Mismatch’ occurs either when the viral injection or fiber placement missed the ADN.  
b, Schematic representation of injection sites. When the ADN was missed, injections were too lateral, 
hitting either the BSTS or AVVL. The blue ferrule represents optimal placement of the light fiber.  
c, Close up (similar region of interest as shown in Fig. 4g) of representative expression in mice with incorrect 
fiber placement. Left: tdTomato expression (red) indicating expression of Cal-Light viruses. Right: Activity-
dependent and light-induced eGFP expression (green). The bar represents 50 µm. 
BSTS: bed nucleus of stria terminalis, supracapsular part; AVVL: anteroventral thalamic nucleus, 
ventrolateral part; ADN: anterodorsal thalamic nucleus; AVN: anteroventral thalamic nucleus; PT: 
paratenial thalamic nucleus; PVA: paraventricular thalamic nucleus, anterior part. 
A version of this figure was also published in Schweihoff et al. 2021 1 as Supplementary Material. 



 

  35 of 99 

light-induced labeling present (Figure 8 g-l). Furthermore, within the yoked group, only a 

very low percentage (~4 %, n = 2 mice) labeling was observed (Figure 8 j, l). This indicates 

that light stimulation of the same duration as in the experimental group but not the same 

head direction specificity was insufficient to activate the Cal-Light labeling system reliably.  

4.1.7 Computational performance of DLStream 

 The results of this evaluation were also published in Schweihoff et al. 2021 1. 

A reality of any closed-loop system is that there are temporal delays between real-time 

detection of behavioral expressions and stimulus output resulting in potential 

inaccuracies that need to be within acceptable margins.  

Fundamentally, the variance of extracted behavioral parameters is dependent on reliable 

pose estimation. The pose estimation error of the applied model and the correlated 

parameter changes between frames need to be compared to estimate the spatiotemporal 

resolution of detectable postures. Due to the inherent individual model performances, 

DLStream's effective accuracy in posture detection is heavily influenced by the previous 

training of utilized pose estimation networks. Nevertheless, if performance is not 

sufficient for the executed experiment, deep neural networks can consistently be 

retrained using the respective open-source tools. The trained DLC model used during 

optogenetic experiments had an average pose estimation error of 4 ± 12 pixels (px) for 

the neck point, 3.3 ± 4.4 px for nose, and 3.3 ± 2.0 px for the tail base (n = 597 images) 

when compared to a human annotator labeling the same data set. For reference, mice 

without tails were ca. 60 px long in 848x480 px video recordings. Consequently, body part 

estimation resulted in an average head direction variance of 3.6 ± 9.6° (tested in 80 

sessions for 1000 frames per session) between consecutive frames with an estimated 

average error of 7.7 ± 15.1° compared to human annotation (n = 597, ground truth) per 

frame. The frame-by-frame variance is a product of performance errors and the 

inhomogeneous movement of the animal during experiments. At the same time, the 

difference between network pose estimation and human annotation is most likely a result 

of inaccurate tracking, which can be reduced by additional training and more extensive 

training sets. Note that this variance might change depending on the mixture of episodes 

of fast movements and slow movements during sessions. While DLStream's effective 



 

36 of 99 

implementation depends on the integrated model's accuracy, the general suitability of 

the software should primarily be evaluated independently of the pose estimation 

accuracy as researchers deploying DLStream will have to train their own pose estimation 

network.  

Manual evaluation of behavior detection accuracy during optogenetic experiments 

showed a false-positive rate of 11.8 % – i.e., activating a light stimulation without the 

mouse's head direction being in the target window. In the evaluated sessions, most false-

positive events were anomalies in mouse behavior prone to pose estimation errors, such 

as spontaneous jumping. Inaccuracies like this can be further reduced by additional model 

training if necessary. Additionally, similar results were achieved based on a human-

labeled data set (n = 597). The estimated general false-positive/false-negative rate for the 

configured head direction trigger was 11.1 ± 4.1 % (false-negative) and 11.6 ± 4.8 % (false-

positive; Figure 10).  

During the optogenetic experiment (n = 80), DLStream reached an average performance 

time of 33.32 ± 0.19 milliseconds per frame, matching the average camera framerate of 

30 Hz (33.33 milliseconds). The performance time includes pose estimation, behavior 

detection, and computation of experimental protocols up to the final output. Additionally, 

hardware latency was measured to estimate the time between behavior detection and 

triggered stimulation during optogenetic sessions from three different mice (n = 164 

stimulation events). The resulting light stimulation occurred within five frames (4.8 ± 1.1 

frames at 30 fps; ≈ 150 ms). Notably, the total latency critically depends on the individual 

setup and the intrinsic parameters of connected components. In experiments requiring 

faster output, the setup can be further optimized to reduce hardware latency.  
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Different hardware configurations were tested to evaluate the limits of DLStream, 

including performance levels and response time. First, average performance was 

measured during 10000 frames in two different configurations with two different camera 

settings (30 fps and 60 fps with 848x480 px resolution) using the same camera used in the 

optogenetic experiment. With the standard 30 fps camera setting, the advanced 

configuration (Intel Core i7-9700K @ 3.60 GHz, 64 GB DDR4 RAM, and NVidia GeForce RTX 

2080 Ti (12 GB) GPU) achieved reliable 30 fps (33.33 ms per frame) real-time tracking with 

30 ± 7 ms inference time. The other system (Intel Core i7-7700K CPU @ 4.20 GHz, 32 GB 

DDR4 RAM, and NVidia GeForce GTX 1050 (2 GB) GPU) only reached an average analysis 

time of 91 ± 10 ms. Using a higher framerate input from the camera (60 fps; 16.66 ms per 

frame), the overall performance did not change drastically (24 ± 9 ms and 90 ± 9 ms, 

respectively). To address camera-specific limitations, a different camera was tested 

a 

b  

Window size 

[°] 

False positive detection 

 [%] 

False negative 

detection 

 [%] 

60 11.6 ± 4.8 11.1 ± 4.1 

50 13.2 ± 5.3 13.7 ± 5.4 

40 14.7 ± 5.8 14.7 ± 5.9 

30 20.1 ± 11.2 19.8 ± 10.5 

20 29.0 ± 20.7 28.2 ± 18.7 

10 72.8 ± 75.6 75.8 ± 89.0 

Figure 10 - Estimation of accuracy of head direction triggers with different angle window sizes. 

a, Histograms (10° bins between 0-360°) of the distribution of the labeled dataset (n = 597), with human 
annotation (right) and head direction angle based on network pose estimation (right) using the network 
trained for the optogenetic stimulation task.  
b, Table showing the network pose estimation's false-positive and false-negative detection rate against 
human annotation in several differently sized angle windows (simulated triggers). The window was 
moved around in steps to counter any effects of non-uniform distribution. The average, as well as the 
standard deviation, were taken from all detected events. An event was counted as false-positive if the 
pose estimation resulted in a head direction within the window, while the human annotation did not 
(and vice versa for false-negative).  
A version of this figure was also published in Schweihoff et al. 2021 1 as Supplementary Material. 
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(Basler acA1300 – 200 um), which lacks the depth capabilities of the Intel RealSense 

camera but comes with an increased framerate. DLStream's upper-performance limits 

were benchmarked with more standardized resolutions (ranging from 1280x1014 to 

320x256 px) on the advanced configuration using the new camera. The initially trained 

DLC model used in the optogenetic experiment was based on the ResNet50 75,103 

architecture. However, several configurations and models were tested as well to get an 

overview of the other available models (ResNet101 75,103, MobileNetv2 104) and a higher 

number of body parts (3, 9, and 13). During this benchmark, DLStream's latency reached 

a maximum of 130 ± 6 Hz (ca. 8 ms) with the MobileNetv2 architecture at 320x256 px 

resolution. In contrast, the ResNet50 network reached its upper limit at 94 ± 6 fps (ca. 

10 ms) at the same resolution (see Table 1 for more details).  

4.2 Multicolor labeling for neuronal tracing  

Combining powerful imaging techniques such as confocal imaging and LSFEM with 

high-contrast biomolecular tools paves the way for scale-bridging connectomics. With 

conventional methods, the efficient identification and tracing of multiple individual 

  3 Body parts 9 Body parts 13 Body parts 

Network Resolution Average fps Average fps Average fps 

MobileNetv2 

320x256 164.04 +/- 7.28 130.55 +/- 6.51 79.29 +/- 19.18 

416x341 119.73 +/- 8.42 86.64 +/- 3.43 67.50 +/- 10.95 

640x512 60.51 +/- 2.01 54.24 +/- 0.94 46.76 +/- 2.91 

1280x1024 16.61 +/- 0.26 16.19 +/- 0.20 14.99 +/- 1.14 

ResNet50 

320x256 107.58 +/- 8.68 94.30 +/- 6.21 67.01 +/- 10.36 

416x341 79.52 +/- 3.00 66.70 +/- 1.83 55.49 +/- 4.99 

640x512 44.92 +/- 1.44 41.03 +/- 0.52 36.50 +/- 1.88 

1280x1024 13.61 +/- 0.35 13.25 +/- 0.12 12.32 +/- 0.86 

ResNet101 

320x256 68.29 +/- 2.23 64.72 +/- 1.86 60.35 +/- 6.13 

416x341 54.85 +/- 1.51 49.99 +/- 0.94 48.34 +/- 3.01 

640x512 32.05 +/- 0.51 30.47 +/- 0.33 30.18 +/- 1.88 

1280x1024 9.80 +/- 0.28 10.33 +/- 0.34 9.92 +/- 0.76 

Table 1 - Performance of different network architectures in DLStream in relation to the number of 

estimated body parts and image resolution. 
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neurons within a population is limited by the ability to distinguish between closely 

neighboring cells. A limitation that is especially important to consider in a brain region 

such as the hippocampal formation, where the densely layered neuronal architecture 

results in bundled axonal projections and heavily entangled dendritic trees. Here the 

power of high contrast, multicolor labeling using Tetbow 62 allows the distinction of closely 

neighboring neurons.  

However, Tetbow was not yet shown to work with tissue expansion protocols and virtual 

super-resolution imaging. In close collaboration with the Institute for Theoretical and 

Physical Chemistry at the University of Bonn, the following preliminary study was 

conducted to implement this type of analysis for the automatic segmentation of large-

scale connectomic studies bridging population-level analysis and single neuron tracing. 

To facilitate the high contrast, high-resolution imaging of Tetbow-labeled samples, mice 

were injected with the Tetbow vector in different concentrations to evaluate the effective 

expression and resulting color variations in the selected region (see Supplementary Table 

D). For this, the parameters for optimal color variation and volumetric spread needed to 

be adjusted. A sample series was produced covering the most reasonable combinations 

following repeated post mortem evaluation of resulting XFP expression levels between 

each new batch of surgeries (see Supplementary Table D).  

The resulting XFP expression was evaluated based on the signal intensity in all three 

channels (eYFP, tdTomato, and mTurquoise) and the observed color variation (see 

Supplementary Table D). Selected samples were then expanded and imaged with a 

custom build LSFM 105 (Imaging: Dr. Jana Heysel; Expansion and Imaging: Juan E. 

Rodríguez) in the collaborating laboratory of Prof. Dr. Ulrich Kubitscheck (Figure 11 i, see 

Methods 7.6). The custom LSFM allowed the high-speed, virtual super-resolution imaging 

of expanded samples multicolor-labeled with Tetbow. Imaged samples were evaluated 

before and after digestion to evaluate the effectiveness of Tetbow in combination with 

expansion microscopy and LSFEM (see Methods 7.5). Digestion and expansion of tissue 

samples resulted in minimal to no observable fluorescence intensity loss, allowing the 

direct imaging of samples using high-resolution imaging techniques (Figure 11 b-d). 

Notably, individual neurons can be identified by the naked eye by their unique color hue  
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Figure 11 – High contrast, multicolor labeling with Tetbow and tissue expansion for neuronal tracing 

a, A virus mixture (AAV-Syn1-tTA, AAV-TRE-tdTomato-WPRE, AAV-TRE-EYFP-WPRE, AAV-TRE-mTurquoise2-
WPRE) is injected into the target brain region containing expression vectors for the fluorescent proteins 
tdTomato (red), EYFP (yellow/green), and mTurquoise2 (blue). 
b, Maximum intensity projection (MIP) of the CA3 area in the hippocampal region, injected with Tetbow 
vector. Imaged with LSM Zeiss 880 40x/NA 1.1. Courtesy of Juan E. Rodriguez Gatica.  
c, Zoom in of region in b (yellow square) showing two closely neighboring neurons that can be discriminated 
by their distinct color hue. The hue results from the stochastic distribution of viral vectors and different 
expression levels of the XFPs. 
d, MIP of same sample and region as in b after digestion (see Methods 7.5). The fluorescent intensity is 
conserved, and neurons, as well as neurites, remain distinct. Imaged with LSM Zeiss 880 40x/NA 1.1. 
Courtesy of Juan E. Rodriguez Gatica. 
e, MIP of an image stack of the DG area in the hippocampal region after digestion. The white box represents 
the regions shown in f-g. The yellow box represents the region shown in h. Imaged with LSM Zeiss 880 
40x/NA 1.1. Courtesy of Juan E. Rodriguez Gatica. 
f, 3D view of a 4-tile image stack shown in e. Neurites running closely along other neurons can be 
discriminated by their color hue (white box, g). At the same time, the imaging resolution allows the 
discrimination of small details such as neuronal protrusions (arrow). The image stack has a size of 595.35 x 
403.84 x 402.48 µm3. 
g, Zoom in of region in f (white box). The achievable broad hue spectrum allows to differentiate neurites 
running closely along neighboring neurons, including spine-like protrusions (arrows). 
h, Zoomed in 3D view of a 4-tile image stack shown in e (yellow box). Tetbow expression is strong enough 
to allow consistent volumetric labeling across neurites. The unique hue allows tracing multiple neurites 
across the entire field of view (colored arrows) in a densely bundled region.  
i, 3D view of an image stack acquired with a LSFM (see Methods 7.6) of a similar sample as b after digestion. 
Courtesy of Dr. Jana Heysel 105. 
j, Representative example of hue-based tracing with Tetbow. Individual neurons can be identified and 
segmented based on their unique color hue. Courtesy of Dr. Jana Heysel 105. 
 

(Figure 11b-e, i), and automatic segmentation allows the highly detailed analysis of 

individual neurons. 

Slight expansion of treated samples with PBS (1.2-1.5 expansion factor; approx. 400 µm 

sample thickness) facilitates the distinction of closely neighboring neurons, including 

neurites and spine-like neuronal protrusions (Figure 11 e-g), while still allowing high-

resolution imaging with conventional confocal microscopes. Here, the preserving nature 

of enzymatic clearing utilized in tissue expansion increases the available imaging depth 

considerably.  

Additionally, the high expression of XFPs using the Tetbow system facilitates volumetric 

labeling of long-range connections. Thus, neurites within fiber bundles can be traced 

individually by their unique color hue across the entire field of view (approx. 600 µm; 

Figure 11 e, h).  
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Imaging data was then used to develop an algorithm to segment neurons based on their 

unique color hue 105 (developed by Dr. Jana Heysel). An example of the segmentation can 

be found in Figure 11 j. The results of this segmentation are published elsewhere 105. 
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5 Discussion 

 The primary goal of this thesis was the establishment of neuroscientific tools that 

allow the disentanglement of the complex relationships between neuronal ensembles and 

correlated behavioral expressions. For this, I utilized the biomolecular labeling system Cal-

Light 26, which allows the light-induced, activity-dependent labeling of neurons in the 

rodent brain. To elevate the system's functionality to capture the behavior-dependent 

activity of freely moving mice, I developed an open-source, closed-loop experimental 

toolkit, DLStream, that enables the real-time detection of behavioral expressions and 

consequent orchestration of behavioral experiments. As such, DLStream enables the 

behavior-dependent light stimulation of animals in optogenetic experiments. As a proof-

of-concept, I combined both tools in an optogenetic experiment to label neuronal 

ensembles active during specific head directions. The results of this experiment were also 

published alongside another experiment show-casing DLStream's capabilities elsewhere 1. 

The toolkit was developed with sustainability in mind and was published open-source to 

facilitate closed-loop experiments in the neuroscientific community 66.  

Finally, this thesis elaborates on the collaborative approach to increase the capabilities of 

the currently established connectomic analysis. For this, I established the biomolecular, 

multicolor labeling system Tetbow 62, which allows the unique labeling of individual 

neurons within a dense population of labeled cells. However, the effective use of Tetbow 

requires accurate tuning of several parameters due to its expression dynamics. After 

extensive testing, produced samples were subsequently expanded and imaged using 

LSFEM, enabling fast, super-resolution imaging of large-scale tissue 57. The combination 

of Tetbow and LSFEM enables the identification of large-scale structures with a 

concurrent resolution to study individual connections on a synaptic level. To facilitate the 

large-scale connectomic analysis, the imaged data was then used to develop an automatic 

segmentation algorithm that utilizes the unique labels provided by the Tetbow approach 

to segment neurons in large tissue samples 105. Representative examples of this 

collaboration are shown in the result section (chapter 4.2). 
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5.1 Real-time, closed-loop experiments 

 To investigate the neuronal correlates of complex behavior, it is necessary to 

identify and manipulate actively participating neuronal ensembles 5,7,8,106. Therefore, 

techniques that bridge connectomics, electrophysiology, and ethology hold the potential 

to reveal how computations are realized in the brain and subsequently implemented to 

form behavioral expressions. For instance, by utilizing neuronal activity-dependent 

labeling systems such as Cal-Light 26, Flare 28,29, or CaMPARI 107, it is possible to capture 

neurons active during selected behavioral expressions. However, a lack of dynamic closed-

loop systems restricts the reliable detection of reoccurring behavioral expressions and 

subsequent real-time feedback.  

With the development of DLStream, the range of detectable behaviors increases 

substantially, and applications for behavior-dependent labeling and subsequent 

manipulation of different freely moving species are wide-ranging. 

5.1.1 Head direction-dependent labeling of active neuronal ensembles 

 In this thesis, DLStream was used to orchestrate behavior-dependent light stimuli 

to the ADN and label neural ensembles active during specific head directions. Notably, the 

ADN was selected because it fulfilled two requirements. First, activity within ADN neurons 

is known to be modulated by the head direction angle 108–111. Thus, the angular tuning 

curve of these neurons remains constant in stable environments – i.e., the same neurons 

will be active within the same head direction angles if the mouse is put in the same 

environment. This stability facilitates experimental designs that span several days 108, 

including the repeated stimulations necessary for high-contrast labeling with Cal-Light. 

Second, the ADN's structure is convenient for optogenetic applications. Due to its 

compactness, viral solutions injected into the ADN can spread through a large portion of 

the nucleus. At the same time, illumination through an implanted light fiber will evenly 

cover most of the infected region.  

Head direction offers several advantages as a showcase for behavior-dependent, 

optogenetic labeling. Foremost, a causal relationship between head direction and 

neuronal activity within the ADN was established 108,110–112. Thus, labeling active neuronal 

ensembles will most likely capture head direction cells, while Cal-Light's labeling 
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requirements are likely to filter out head direction-independent activity. Additionally, the 

behavior can be easily tracked with pose estimation but is too fast for a human observer 

to identify in real-time reliably.  

In practice, head direction-dependent light stimulation of active neurons was successful 

and resulted in eGFP expression in a subset of Cal-Light infected cells in experimental mice 

(ca. 46 %, Figure 8 g-h, k-l). In contrast, mice that received the same amount of light 

stimulation (yoked group), but independent of their behavior, only showed a very low 

activity-dependent labeling (ca. 4 %, Figure 8 g-h, k-l). As expected, mice receiving no light 

stimulation had no visible reporter expression.  

The results indicate that the repeated pairing between light stimulation and head 

direction-dependent activity was essential for Cal-Light mediated labeling, and neurons 

that were inconsistently active during periods of light stimulation were filtered out. In 

fact, Cal-Light labeling was reported to depend on the number of repetitive 

stimulations 26, so that a threshold of minimum light stimulations during simultaneous 

neuronal activity seems likely. Consequently, the resulting coincidence between the 

individual neuronal activity during light stimulation would not have been high enough to 

result in a sufficient number of stimulations in the yoked group, as the head direction 

dependency was not given. Interestingly, a labeling system that would not require 

multiple stimulations to reach sufficient expression would not be able to filter out 

unspecific from behavior-specific activity in this way. Thus, using such a system would 

have resulted in the unspecific labeling of a majority of neurons rather than the low eGFP 

expression found in yoked mice. However, the number of mice that satisfied the inclusion 

criteria was too low (n= 5; 2 EXP, 2 Yoke, 1 NoLight) to quantify the resulting labeling of 

neuronal ensembles more in detail. 

5.1.2 From behavior-dependent labeling to causality 

 Regardless of its potential, behavior-dependent labeling of functional ensembles 

cannot be the sole solution to investigate causality between behavior and underlying 

neuronal activity. Instead, it can serve as a starting point to assign neuronal ensembles to 

correlated behavioral expressions. Selected ensembles can then be probed further to 
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investigate how their activity contributes to behavior. Here, the sophisticated array of 

tools available in neurophysiology and neuroanatomy will be instrumental 5,8,106.   

For example, the neuronal ensembles that were active during specific head direction and 

subsequently labeled with Cal-Light were not identified as head direction cells by 

conventional means. I.e., their activity was not measured during the task 108,109,112. 

However, their head direction specificity was indirectly deduced by the combination of 

experimental and yoke groups and the fact that the ADN was previously described to 

contain head direction cells 108. Here, a direct measurement of head direction tuned 

activity during the task, e.g., with Ca2+ imaging, would clarify ambiguities concerning the 

label selectivity of the detected behavior and coincidental neuronal activity.  

A straightforward solution would be to simultaneously express Ca2+ indicators and Cal-

Light in the same neurons and measure the activity during behavioral expressions of 

interest. Here, the identification of active cells during imaging can be compared to the 

emerging behavior-dependent labels in a two-channel setup. Once labeled, the behavior 

specificity can be further investigated. If the neuronal ensemble is stable, the same type 

of behavioral expression should envoke the same neurons under the same conditions – 

i.e., Cal-Light labeled neurons should be prominently active.  

As Cal-Light is a relatively new system, it will be necessary to characterize the exact 

parameters accompanying behavior-induced, activity-dependent labeling to understand 

the accuracy and limits of this approach 26,27,29. Thus, especially in more complex 

investigations of neuronal activity underlying behavior, it will be beneficial to directly 

measure the correlation between neuronal activity and expressed behavior with multi-

dimensional data – i.e., ethology, connectomics, and physiology. 

Finally, to understand a potential causal link between a labeled neuronal ensemble and 

the investigated behavioral expression, it would be essential to manipulate the neuronal 

activity and investigate its effect on the behavior 8. Here, it would be beneficial if the 

closed-loop solution would detect a behavioral onset as fast as possible – i.e., by 

predicting the behavioral expression before its onset rather than reacting to it – and then 

allow the acute manipulation of a selected neuronal ensemble. In this case, a causal 

relationship would be implied if the disruption of the neuronal ensemble's activity pattern 
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results in a terminated or inhibited behavior. Complementary to this, direct, behavior-

dependent optogenetic excitation and inhibition 24,113–115 of neuronal activity is possible 

using DLStream. However, in the employed setup, the delay between detection and 

stimulation was ca. 150 ms, which might prove too slow for some experiments but was 

fast enough to target activity-triggered calcium dynamics with Cal-Light 26,27. Optimizing 

the setup might allow faster feedback times as our hardware limited the effective use of 

the underlying software performance of DLStream. 

5.1.3 Performance of DLStream 

 Regarding the limits of DLStream, it is essential to note that all real-time 

applications are limited by the system's latency and sample rate. While the latency – i.e., 

the time until a system reacts to a given input – ideally should be as low as possible but is 

limited by the computational complexity of the required detection and processing, the 

required sample rate depends on several factors.  

As observers, experimenters often record and interpret an animal's behavior by taking its 

movement to approximate the underlying intention or state of mind. Building on this 

generalization, behavior can be defined, categorized, and even sequenced by examining 

estimations of the animal's movement 51,52,55,116. However, a researcher might only need 

the broadest category of movements, or behavioral states, to understand an animal's 

principle behavior. In contrast, to correlate behavior with neuronal computations, it might 

be necessary to obtain fast, accurate posture sequences to classify behavioral expressions 

on a sub-second scale 52,54,106. 

The standard temporal resolution (30 Hz) employed in the optogenetic experiment 

enables behavior-dependent manipulation of a wide range of activities a rodent might 

perform during a task (see chapter 4.1.7). Swift movements, however, like whisker 

movement 117,118 and pupil contraction 119,120, might not be fully detected in this 

configuration. However, by lowering the image resolution and utilizing different network 

architectures, fast behavioral expressions can be fully captured with DLStream (up to 

130 Hz; Table 1). Notably, the limiting factor of DLStream's performance can be traced 

back to the pose estimation inference time 39–41,43,47. However, with the rise of real-time, 

closed-loop toolkits 1,37,38, including DLStream, the providers of open-source pose 
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estimation models have integrated optimized architectures for low inference time 43,46,47. 

From a pure performance perspective, the use of faster neural network architectures 

(e.g., MobilNetV2 104) already increases the available framerate by a factor of four (30 to 

130 fps, Table 1). This improvement is consistent with the recent large-scale benchmark 

tests run by DLC 46,47. Such fast inference times lay the foundation for implementing 

machine learning-based classification of complex behavior (see chapter 3.3). The use of 

machine learning increases the range and speed of detection considerably (see chapter 

5.1.4 for further details), which will be crucial in disentangling causal relationships 

between behavioral expressions and coincidental neuronal activity.  

5.1.4 Real-time machine learning-based behavior classification in DLStream 

 Complex behavior analysis tools based on machine learning (ML) classification are 

actively developed using pose estimation as input 53,54,76,77. Notably, the usefulness in 

closed-loop experiments is dependent on the complexity of the behavioral expressions of 

interest. For example, behavioral expressions that can be described by a few feature 

changes (e.g., angular changes in head movement) can be calculated without the need for 

further ML integration. Such behavioral expression can be integrated into DLStream as 

triggers based on single posture or sequential postural information 1 (Supplementary 

Information 9.3.3). However, complex behavioral expressions (e.g., grooming or social 

behavior, Supplementary Figure C a-b) would likely require a more sophisticated ML 

approach to achieve reliable detection 37,38,49,50,52–54,76,77,106.  

Fortunately, DLStream was developed as a sustainable, open-source toolkit to facilitate a 

wide range of experiments across research groups independent of the in-domain 

knowledge researchers might need to develop their own custom solution. Therefore, the 

architecture, GUI, and documentation were built such that new users could design their 

own experiments from the start (see also Supplementary Information 9.3). This includes 

the publication of several example modules that facilitate the integration of closed-loop 

experiments (Supplementary Information 9.3.5; Supplementary Table A). 

Since the initial publication of DLStream 1, several updates have increased the spectrum 

of available experimental designs (Supplementary Table A, Supplementary Table B) and 

pose estimation models. A fundamental development was integrating ML classification of 
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complex behavior based on available open-source solutions 54,76. An additional set of 

modules was designed that allows the integration of ML classifiers into DLStream. 

Fundamentally, ML classification can serve as a foundation to explore novel behavioral 

patterns and correlated neuronal activity 50,52,54,56. Specifically, in combination with 

behavior-dependent labeling (DLStream + Cal-Light), ML classifiers could be used first to 

identify functional ensembles related to complex behavioral expressions and second to 

manipulate them selectively to probe causal relationships. 

In principle, ML classification based on pose estimation requires three steps to integrate 

efficiently into closed-loop experiments. First, pose estimation needs to be collected 

within a classifier-specific time window, and a set of features need to be extracted that 

match the classifier's specifications. In B-SoiD 54, an unsupervised behavior classification 

approach, behavioral episodes of 100 ms are captured and analyzed. Briefly, in DLStream, 

an experiment consists of a behavior-dependent trigger, the dynamic control of 

stimulation devices, and an experimental protocol that orchestrates the basic structure of 

the experiment (see chapter 4.1.4 and Supplementary Information 9.3.2). With ML 

classification, an additional FeatureExtraction module collects sequences of pose 

estimation, extracts the relevant features, and passes them to the Classifier module (see 

Supplementary Information 9.3.1, 9.3.6). The Classifier module acts as an interface for the 

specific classifier type (e.g., RandomForest) and origin (e.g., B-SoiD or SimBA). It provides 

a consistent way to integrate machine learning classifiers into trigger modules. However, 

because ML classification is a time- and resource-intensive process, the effective 

integration into DLStream relies on real-time optimization with parallel processing (see 

Supplementary Information 9.3.6, Supplementary Figure C, Supplementary Table E). 

5.1.5 Performance of real-time classification in DLStream 

 In addition, both feature extraction and classification time can be further 

optimized by specialization (see Supplementary Information 9.3.6). Non-optimized 

SiMBA-classifiers reach a computation time of 114.04 ±5.98 ms (n = 1000) per cycle. In 

contrast, optimizing the classifiers before their implementation for real-time use 

(Supplementary Table E) reduces the classification time by more than tenfold to 

9.44 ± 2.19 ms (n = 1000). In principle, a more compact architecture of the classifier would 

further reduce the classification time. However, it will cost prediction accuracy – e.g., by 
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reducing the number of decision trees in a random forest classifier. The same principle 

applies to feature extraction. Depending on the number of features needed for the 

classification, the computational demand increases substantially (standard SiMBA feature 

extraction with 14 body parts, 490 features: 235.56 ± 4.72 ms). However, with speed-

optimized extraction algorithms, the feature extraction time can be reduced to 

insubstantial durations (optimized SiMBA feature extraction with 14 bp, 55 features: 

0.09 ± 0.69 ms; see Supplementary Information 9.3.6, Supplementary Table E).  

In comparison, the standard B-SoiD classification reaches 22.88 ± 4.36 ms (standard 

feature extraction: 38.25 ± 3.20 ms) without any optimization in DLStream 

(Supplementary Table E). Notably, SiMBA-based classifiers are binary classifiers that only 

predict the occurrence of a single behavior, although they are usually used in batteries of 

multiple classifiers offline 76. In contrast, B-SoiD classifiers predict multiple behavioral 

expressions simultaneously 54. Both classifiers seem promising for future use in behavior-

dependent experiments. However, optimization steps will be crucial for the effective use 

of real-time classification and allow higher framerate, real-time pose estimation without 

additional delays added by the classification (see Supplementary Figure C).  

5.1.6 Reliable multiple animal tracking in DLStream 

 DLStream was initially developed for single animal experiments using DLC 1.11 

(Nature Neuroscience Version, 39). However, the current version of DLStream 66 can utilize 

pose estimation models from several toolkits, including the latest DLC version 39,46. 

Therefore, models from SLEAP 40,43, DLC-LIVE 46, and DLC 39,48 can be fully integrated into 

DLStream. Additionally, experimental implementations of models exported by 

DeepPoseKit 41 (LEAP 40, StackedHourglass 121, StackedDenseNet 41) as well as multiple 

animal DLC 45 (maDLC) are available.  

Specifically, maDLC and SLEAP allow the pose estimation of multiple animals, which was 

only possible in edge cases before. In multiple animal tracking, the frequent interactions 

of individuals cause occlusions, complicating the pose estimation of a complete set of key 

points. Further, multiple animal pose estimation requires predicting and keeping an 

animal’s identity across frames, which was previously only possible in real-time for 

individuals with distinctive features (e.g., different fur colors) 39,41,43,76. For offline 
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solutions, the identity is often referred to with reference to both future and past 

frames 43,122–124, a solution that is not applicable in real-time settings. However, future 

developments in both SLEAP 43 and maDLC 45 are supposed to include inbuilt identity 

tracking that only requires data of past occurrences of the same individual.  

In this regard, establishing reliable multiple animal tracking will open up closed-loop 

experiments dependent on social behavior. Here, the challenge will most likely be the 

precise definition of social triggers and the design of relevant experiments using closed-

loop stimulation. ML behavior classification already enables users of SimBA to analyze 

social behavior in offline settings 76. Therefore, the leap to real-time, social behavior-

dependent experiments seems imminent. The pure classification speed available with 

DLStream seems promising (see Supplementary Information 9.3.6). However, the 

performance and accuracy of such applications need to be carefully evaluated before 

designing experiments. Here, the main challenge will lie in training personalized, accurate 

machine learning-based classifiers.  

5.1.7 Available open-source, pose estimation-based closed-loop systems 

 Since the initial development of DLStream and the publication of the preprint 125, 

the use of pose estimation as a basis for real-time tracking of animals in behavior 

experiments has become more popular. The original authors of DLC 39,47 released a real-

time-optimized version of DLC, DLC-Live 46, in collaboration with Bonsai (bonsai-rx.org) 

and AutoPilot 126. Two toolkits that allow users to process data streams from several 

devices and automatize experiments similar to LabVIEW (National Instruments) 127. 

However, an actual neuroscientific experiment using DLC-Live has yet to come. So far, the 

publication of DLC-Live enabled an easier integration of DLC models into DLStream, and 

their extensive benchmarks are helpful to establish the setup requirements for new 

user 46,47. A similar approach by Forys et al. 2020 38 used the original DLC toolkit to realize 

a closed-loop experiment with head-fixed mice. Although their implementation reached 

a low latency and high framerate 38, the published toolkit lacks the complexity and 

flexibility to be easily integrated into other labs and experiments.  

As a more sophisticated example of the DLC-derived closed-loop systems, EthoLoop 37 

specialized in the detection of behavior in naturalistic environments. Using 3D object 
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detection, pose estimation, and a sophisticated array of cameras, EthoLoop allows the 

tracking and stimulation of freely roaming animals in real-time. Unfortunately, the system 

is built for large-scale setups and requires specialized hardware to be established. 

However, its use in 3D environments is unprecedented and will likely facilitate the 

investigation of primates, birds, and other highly agile animals.  

Notably, DLStream could also be upgraded to use 3D posture detection as implemented 

recently by EthoLoop 37 or DANNCE 42. The use of multiple camera angles to triangulate 

the animal's position was already shown for DLC-based pose estimation 37,48. However, 

multiple camera streams would increase the computational resource demand and most 

likely increase the available latency. 

5.2 Multicolor light sheet fluorescence expansion microscopy 

 With real-time, closed-loop experiments around the corner, the focus will shift to 

the biomolecular tools available to capture, manipulate, and measure the complex 

relationships between behavioral expressions and neuronal activity. Especially concerning 

the investigation of functional ensembles, the unambiguous characterization of captured 

neurons will become a central challenge. Here, the disadvantage of classic labeling 

strategies – i.e., single-color labeling – lies in identifying individual neurons, especially in 

dense areas (see chapter 3.6). However, it will be crucial to characterize neurons in great 

detail across large scales to sufficiently understand functional ensembles of behavior. 

Here, techniques that expand on conventional labeling strategies combined with fast, 

high-resolution imaging serve as an excellent way to disentangle the underlying 

complexity.  

Therefore, in close collaboration with the Institute for Theoretical and Physical Chemistry 

at the University of Bonn, a study was conducted to integrate multicolor-based 

segmentation within the previously established virtual super-resolution LSFEM 

workflow 57,128. My main focus was establishing strategies for effective Tetbow-based 

labeling for tissue expansion and automatic hue-based segmentation (see chapters 3.5 

and 3.6). The study's initial focus was to investigate the relationships between CA3 

pyramidal neurons and their connected DG counterparts. As the hippocampus consists of 

multiple densely populated layers and connections are both short and long-range, it 
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provides a well-studied basis for establishing this advanced connectomic analysis. 

However, the technique's potential in the context of behavior-dependent labeling is 

remarkable (see chapter 5.3.1). 

Notably, the algorithm and its quantitative results are published separately 105 and were 

not part of this thesis.  

5.2.1 Hue-based analysis of expanded tissue 

 In principle, the power of high contrast, multicolor labeling using Tetbow allows 

the distinction of closely neighboring neurons in densely layered regions such as the 

hippocampal formation 62. Additionally, combining Tetbow with powerful imaging 

techniques such as LSFEM paves the way for scale-bridging connectomics. However, so 

far, the system was not demonstrated to work with tissue expansion protocols and virtual 

super-resolution imaging.  

The Tetbow system requires careful evaluation of expression ratios between all viral 

components for practical use. Notably, the XFP expression needs to be fine-tuned to 

compensate for any fluorescent loss during tissue expansion (see Supplementary Table 

D), even if it is minimal 57,58, mainly because the retained fluorescence can be different 

across XFPs 129. Interestingly, during experiments, it could not be confirmed that Tetbow’s 

expression levels increase with decreasing tTA vector ratios but rather the other way 

around 62 (see Supplementary Table D). This stands in contrast to initial reports by the 

original authors 62 but makes sense considering the expression system (see chapter 3.5). 

With optimized expression ratios, Tetbow-based LSFEM will allow the classification of a 

large number of neurons on an individual level across large-scale tissues with remarkable 

detail (Figure 11 i). For this, the developed algorithm utilizes both spatial- and color-

derived information to segment individual neurons 105 (Figure 11 j) and trace them across 

imaging volumes.  

The immediate advantage lies in the broad-range classification of individual neurons 

identified and segmented by their unique hue using the inherent large-scale capabilities 

of LSFEM. Thus, individual neurons can be characterized by their morphology 130–132 and 

their connectivity investigated with short-to-long-range tracing in dense regions 

automatically (Figure 11 h). Notably, the possibility to identify large-scale structures with 
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a simultaneous resolution to study spike-like protrusions (Figure 11 f-g) or even 

synapses 57 will be most relevant in the investigation of large-scale effects by small-scale 

morphology changes. For example, in numerous brain disorders associated with abnormal 

dendritic spines 59–61. 

5.3 Future directions 

 The roadmap to investigate behavior-relevant circuits based on the tools at hand 

seems straightforward. First, the behavior-dependent labeling and consecutive 

manipulation of neuronal ensembles underlying behavior can be achieved by using 

closed-loop feedback systems (e.g., DLStream) in combination with biomolecular tools 

such as Cal-Light. For connectomic analysis, the captured ensembles are then imaged with 

high resolution at a large scale. Here, techniques such as LSFEM are preferable as they 

bridge both meso- and nanoscopic scales at fast imaging speed. The imaging data can then 

be integrated into automatic cell counting and segmentation pipelines that characterize 

the functional ensembles. Second, the causal relationships between captured ensembles 

and correlated behavioral expressions can be further probed with closed-loop 

optogenetic experiments – i.e., by utilizing the Cal-Light system with exchanged reporter 

proteins. However, the intricate relationships between behavioral expressions and 

neuronal activity raise several requirements that need to be carefully investigated and 

optimized along the way. 

5.3.1 Limitations of Cal-Light in capturing behavioral expressions 

 For instance, given the need to stimulate on multiple occasions, a disadvantage of 

a behavior-dependent labeling approach with the Cal-Light system is the necessity to 

select behavioral expressions performed regularly by the animal. Rare behavioral 

expressions that cannot be induced during experimental sessions – i.e., a behavior only 

expressed once every session and that cannot be evoked by reward or paradigm changes - 

will most likely not satisfy the stimulation threshold. Here, Cal-Light's transient expression 

of reporter genes comes into play. Spreading the same number of stimulations out over 

an extended period will most likely not be effective because the low expression level per 

event and the transient lifetime of reporter proteins will limit Cal-Lights effectiveness, 

even if some sessions rise above the stimulation threshold. However, a more sensitive or 
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more label-efficient approach might be a viable solution to capture rare behavioral 

expressions.  

The Supernova system 133, for example, uses a tTA/TRE-Cre/loxP enhancing system that 

boosts low levels of tTA/TRE activation by a Cre/loxP-controlled feedback loop. First, tTA-

mediated expression of TRE-Cre results in Cre-recombinase expression. Second, the Cre-

mediated recombination of CAG-loxP-stop-loxP-XFP-tTA results in the expression of XFP-

tTA, initiating a feedback loop enhancing XFP expression for high molecular contrast. 

Thus, a supernova-like Cal-Light adaptation would only need very few behavior-

dependent light stimulations to activate the enhanced expression system and constantly 

express the reporter afterward.  

In theory, such a system could be generated by combining Cal-Light 26 and Supernova 133 

components directly. Cal-Light utilizes the activity-dependent, light-induced release of tTA 

to express TRE-controlled reporter genes. Thus, rather than driving XFP expression 

directly, Cal-Light could be used to trigger the TRE-Cre expression and subsequent 

feedback loop of Supernova 133. The main advantage being the longer lifetime of the 

behavior-dependent label and the shorter stimulation requirements. A system like this 

would be especially beneficial to express functionally active reporters utilized afterward 

– e.g., ChR/NpHR for optogenetic manipulation or calcium indicators for Ca2+ imaging of 

behavior-dependently labeled neurons. However, a supernova-like Cal-Light approach 

would require careful verification of the causal relationship between neuronal activity and 

behavior-dependent labeling due to its increased sensitivity. 

5.3.2 Limitations of Cal-Light in connectomic analysis 

 Another challenge concerns the highly detailed connectomic analysis of captured 

ensembles. As previously mentioned, the single-color labeling of large quantities of closely 

neighboring neurons restricts the level of connectomic analysis considerably. Therefore, 

multicolor, activity-dependent labeling would facilitate a holistic segmentation of 

individual neurons that form functional ensembles. However, the current version of Cal-

Light can only express single XFPs. 

A potential solution could be realized by combining the light-induced, activity-dependent 

release of tTA using Cal-Light 26 (see chapter 3.1) with the tTA/TRE-dependent expression 
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of Tetbow directly. However, it is questionable whether the short-term expression by Cal-

Light’s tTA release is enough to drive the expression levels required to resolve Tetbow 

into a wide range of different color hues. Here, an enhancement system or a system that 

is activated only once would likely be more promising. The original approach, 

Brainbow 63,64, is Cre-dependent, meaning that the activation of reporter gene expression 

is initially required but is continuous from that point on. However, it lacks an additional 

enhancement strategy and was reported to result in low contrast expression 62, which is 

one of the main reasons Tetbow was developed as its successor. 

In contrast, a system enhancing expression levels after initial activation with Cal-Light 

would facilitate the expression of Tetbow-like color diversity. Here, the Supernova 133 

approach comes into mind again. However, the sheer amount of different viral vectors 

necessary to allow a fully functional version of a Cal-Light/Tetbow/Supernova approach 

reduces the likelihood of a successful implementation. First, the high viral load could be 

toxic to neurons. Second, the likelihood of simultaneous effective infection with several 

vectors is reduced with increasing numbers of components.  

A step in the right direction might be scFLARE 29. The FLARE system works very similar to 

Cal-Light – i.e., it allows the light-induced, activity-dependent labeling of neurons and 

utilizes the tTA/TRE system 28. However, FLARE suffers from the same multi-vector 

requirement that Cal-Light has. With scFLARE, the original authors generated a derivative 

of FLARE 28 that reduces the number of vectors necessary to a single vector. Interestingly, 

the new version was also reported to have greater dynamic range and robustness than 

the original version 29.  

In this regard, the rise of multi-color ensemble labeling consequently will result in an 

increased need for the integration of automatic quantification to tackle the highly 

complex imaging data. Here, developments like the hue-based segmentation algorithm 105 

and AI-based whole brain cell counting 134 will be crucial in analyzing captured ensembles' 

projections, morphologies, and local architectures. 

5.3.3 Improvements to DLStream behavior detection 

 High-throughput connectomic analysis aside, the next step to disentangle the 

causal relationship between complex behavioral expressions and neuronal activity relies 
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on the fast, robust identification of behavioral expressions. Here, the complete 

integration of fast, reliable real-time behavior classification into closed-loop experiments 

will be essential. Current offline solutions use two distinctly different approaches to tackle 

an animal's behavioral repertoire during any observed session. However, in principle, 

independent of the solution, a machine learning algorithm – i.e., a classifier – is trained to 

classify data into previously learned categories. 

Supervised classification 76 directly takes input from user-defined annotations and trains 

a classifier to detect the previously defined behavioral expressions based on features 

extracted from pose estimation (see Supplementary Figure C a-b). The main advantage of 

this is the direct control a user has over the initial definition of the behavioral expression. 

This you-get-what-you-label approach is advantageous if researchers are only interested 

in a limited number of behavioral expressions. However, fully annotating training sets for 

each behavior of interest is a time-consuming disadvantage that results in rigid categorical 

definitions that can be prone to inherent biases and rater fatigue. Additionally, this 

approach is not easily scalable, especially in more generalized investigations to untangle 

the complete behavioral repertoire of animals. Inherently, a supervised algorithm is 

unable to give new insights into previously unknown structures. 

In contrast, unsupervised classification 52–56,77 limits the researcher's influence on the 

definition of hyper-parameters and includes an additional analytical stage that reveals 

underlying structures in the observed behavior. Existing solutions use different 

approaches to expose predominant structures. However, independent of the particular 

method, the resulting data can be used to train classifiers similar to the supervised 

approach directly. While unsupervised behavior analysis can reveal behavioral structures 

in a previously unmatched level of detail, the vast amount of extracted data needs to be 

heavily curated to align identified structures to preexisting behavioral stereotypes.  

For solutions like DLStream, the key advantage will lie in the collaboration with and 

integration of open-source toolkits such as BSoID 54, SimBA 76, and others 52,53,56,77,106. For 

example, the DLStream integration of SimBA-based classification, a fully supervised 

classification tool, combined with multiple animal tracking, showed promising results in 

recent internal tests (see Supplementary Information 9.3.6). At the same time, pure-

predict 135 optimized classification speed seems to be particularly well suited for real-time 
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requirements (see Methods 7.13; Supplementary Table E) and will facilitate the 

integration of solutions that are not real-time optimized by design. In addition, ML 

analysis yields the prospect of predicting behavior, for example, by matching initial 

elements of a uniquely arranged behavioral sequence, further reducing the latency to 

react to a behavioral expression. Predicting behavioral expressions will be especially 

relevant to investigate the causal relationship of neuronal computations that evoke 

behavioral expressions. Here, the main disadvantage of current behavior detection 

strategies is the reactive detection based on complete expressions – i.e., the behavioral 

expression must be observed in full before it is recognized. Any underlying neuronal 

activity partially preceding the behavioral expression or happening only during the very 

beginning will likely not be captured using this approach. Therefore, the future direction 

will be the generation of predictive detection strategies that can identify behavioral 

expressions based on incomplete expressions – i.e., detecting them before they are 

completed. In this regard, the combination of pose estimation with alternative, non-

video-based tracking (e.g., eye-tracking; 136) or additional behavioral dimensions such as 

vocalization 137–139 might lead to a solution for researchers interested in capturing truly 

holistic behavioral data. 

5.4 Conclusion 

 The combination of DLStream and Cal-Light allows to capture neuronal ensembles 

active during selected, unconstrained behavioral expressions in real-time. In this thesis, 

DLStream specifically was used to optogenetically label active neurons during selected 

episodes head direction in mice. Unlike previous implementations of Cal-Light-like 

systems 26,28, the light induction with DLStream is not dependent on the interaction with 

a lever or other device but captures unconstrained behavioral expressions in a freely 

moving setup. As such, DLStream elevates the potential use of light-induced, activity-

dependent labeling systems to unrestricted behavior-dependency. Notably, the toolkit 

has no apparent limitations for the use with different organisms and other experimental 

paradigms 1. Its capabilities can be directly translated to a wide range of organisms 

utilizing the generalizability of pose estimation models across different species 41,43,48. 
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Additionally, detailed documentation and several example modules were published to 

further facilitate its use along with DLStream as an open-source software package 66. 

I believe that the use of DLStream will facilitate the characterization of causal relationships 

between behavioral expressions and underlying neuronal activity, especially if activity-

dependent labeling can be combined with multicolor approaches like Tetbow. 

 

6 References 

1. Schweihoff, J. F. et al. DeepLabStream 
enables closed-loop behavioral experiments 
using deep learning-based markerless, real-
time posture detection. Communications 
biology 4, 130; 10.1038/s42003-021-01654-
9 (2021). 

2. Abbott, L. F. et al. The Mind of a Mouse. Cell 
182, 1372–1376; 10.1016/j.cell.2020.08.010 
(2020). 

3. Berman, G. J. Measuring behavior across 
scales. BMC biology 16, 23; 10.1186/s12915-
018-0494-7 (2018). 

4. Anderson, D. J. & Perona, P. Toward a 
science of computational ethology. Neuron 
84, 18–31; 10.1016/j.neuron.2014.09.005 
(2014). 

5. Krakauer, J. W., Ghazanfar, A. A., Gomez-
Marin, A., MacIver, M. A. & Poeppel, D. 
Neuroscience Needs Behavior: Correcting a 
Reductionist Bias. Neuron 93, 480–490; 
10.1016/j.neuron.2016.12.041 (2017). 

6. Gomez-Marin, A., Paton, J. J., Kampff, A. R., 
Costa, R. M. & Mainen, Z. F. Big behavioral 
data: psychology, ethology and the 
foundations of neuroscience. Nature 
Neuroscience 17, 1455 EP -; 
10.1038/nn.3812 (2014). 

7. Silvanto, J. & Pascual-Leone, A. Why the 
assessment of causality in brain-behavior 
relations requires brain stimulation. Journal 
of cognitive neuroscience 24, 775–777; 
10.1162/jocn_a_00193 (2012). 

8. Wolff, S. B. & Ölveczky, B. P. The promise 
and perils of causal circuit manipulations. 
Current opinion in neurobiology 49, 84–94; 
10.1016/j.conb.2018.01.004 (2018). 

9. Otchy, T. M. et al. Acute off-target effects of 
neural circuit manipulations. Nature 528, 
358–363; 10.1038/nature16442 (2015). 

10. Boyden, E. S. Optogenetics and the future of 
neuroscience. Nature Neuroscience 18, 
1200–1201; 10.1038/nn.4094 (2015). 

11. Rajasethupathy, P., Ferenczi, E. & 
Deisseroth, K. Targeting Neural Circuits. Cell 
165, 524–534; 10.1016/j.cell.2016.03.047 
(2016). 

12. Deisseroth, K. Optogenetics: 10 years of 
microbial opsins in neuroscience. Nature 
Neuroscience 18, 1213–1225; 
10.1038/nn.4091 (2015). 

13. Kwon, J.-T. et al. Optogenetic activation of 
presynaptic inputs in lateral amygdala forms 
associative fear memory. Learning & 
memory (Cold Spring Harbor, N.Y.) 21, 627–
633; 10.1101/lm.035816.114 (2014). 

14. Sousa, A. F. de et al. Optogenetic 
reactivation of memory ensembles in the 
retrosplenial cortex induces systems 
consolidation. Proceedings of the National 
Academy of Sciences of the United States of 
America 116, 8576–8581; 
10.1073/pnas.1818432116 (2019). 

15. Oishi, N. et al. Artificial association of 
memory events by optogenetic stimulation 
of hippocampal CA3 cell ensembles. 
Molecular Brain 12, 2; 10.1186/s13041-018-
0424-1 (2019). 

16. Marshel, J. H. et al. Cortical layer-specific 
critical dynamics triggering perception. 
Science (New York, N.Y.) 365; 
10.1126/science.aaw5202 (2019). 

17. Carrillo-Reid, L., Han, S., Yang, W., Akrouh, 
A. & Yuste, R. Controlling Visually Guided 
Behavior by Holographic Recalling of Cortical 
Ensembles. Cell 178, 447-457.e5; 
10.1016/j.cell.2019.05.045 (2019). 



 

60 of 99 

18. Magno, L. A. V. et al. Optogenetic 
Stimulation of the M2 Cortex Reverts Motor 
Dysfunction in a Mouse Model of 
Parkinson's Disease. The Journal of 
neuroscience : the official journal of the 
Society for Neuroscience 39, 3234–3248; 
10.1523/JNEUROSCI.2277-18.2019 (2019). 

19. Ebina, T. et al. Arm movements induced by 
noninvasive optogenetic stimulation of the 
motor cortex in the common marmoset. 
Proceedings of the National Academy of 
Sciences of the United States of America; 
10.1073/pnas.1903445116 (2019). 

20. Baumgartner, C., Koren, J. P. & Rothmayer, 
M. Automatic Computer-Based Detection of 
Epileptic Seizures. Frontiers in neurology 9, 
639; 10.3389/fneur.2018.00639 (2018). 

21. Krook-Magnuson, E., Armstrong, C., Oijala, 
M. & Soltesz, I. On-demand optogenetic 
control of spontaneous seizures in temporal 
lobe epilepsy. Nature communications 4, 
1376; 10.1038/ncomms2376 (2013). 

22. Paz, J. T. et al. Closed-loop optogenetic 
control of thalamus as a tool for interrupting 
seizures after cortical injury. Nature 
Neuroscience 16, 64–70; 10.1038/nn.3269 
(2013). 

23. Chen, R. et al. Deep brain optogenetics 
without intracranial surgery. Nature 
biotechnology 39, 161–164; 
10.1038/s41587-020-0679-9 (2021). 

24. Boyden, E. S., Zhang, F., Bamberg, E., Nagel, 
G. & Deisseroth, K. Millisecond-timescale, 
genetically targeted optical control of neural 
activity. Nature Neuroscience 8, 1263–1268; 
10.1038/nn1525 (2005). 

25. Grosenick, L., Marshel, J. H. & Deisseroth, K. 
Closed-loop and activity-guided optogenetic 
control. Neuron 86, 106–139; 
10.1016/j.neuron.2015.03.034 (2015). 

26. Lee, D., Hyun, J. H., Jung, K., Hannan, P. & 
Kwon, H.-B. A calcium- and light-gated 
switch to induce gene expression in 
activated neurons. Nature biotechnology 35, 
858 EP -; 10.1038/nbt.3902 (2017). 

27. Ebner, C. et al. Optically Induced Calcium-
Dependent Gene Activation and Labeling of 
Active Neurons Using CaMPARI and Cal-
Light. Frontiers in synaptic neuroscience 11, 
16; 10.3389/fnsyn.2019.00016 (2019). 

28. Wang, W. et al. A light- and calcium-gated 
transcription factor for imaging and 

manipulating activated neurons. Nature 
biotechnology 35, 864 EP -; 
10.1038/nbt.3909 (2017). 

29. Sanchez, M. I., Nguyen, Q.-A., Wang, W., 
Soltesz, I. & Ting, A. Y. Transcriptional 
readout of neuronal activity via an 
engineered Ca2+-activated protease. 
Proceedings of the National Academy of 
Sciences of the United States of America; 
10.1073/pnas.2006521117 (2020). 

30. Paulk, A. C., Kirszenblat, L., Zhou, Y. & van 
Swinderen, B. Closed-Loop Behavioral 
Control Increases Coherence in the Fly 
Brain. The Journal of neuroscience : the 
official journal of the Society for 
Neuroscience 35, 10304–10315; 
10.1523/JNEUROSCI.0691-15.2015 (2015). 

31. Solari, N., Sviatkó, K., Laszlovszky, T., 
Hegedüs, P. & Hangya, B. Open Source Tools 
for Temporally Controlled Rodent Behavior 
Suitable for Electrophysiology and 
Optogenetic Manipulations. Frontiers in 
systems neuroscience 12, 18; 
10.3389/fnsys.2018.00018 (2018). 

32. Thurley, K. & Ayaz, A. Virtual reality systems 
for rodents. Current zoology 63, 109–119; 
10.1093/cz/zow070 (2017). 

33. Bourboulou, R. et al. Dynamic control of 
hippocampal spatial coding resolution by 
local visual cues. eLife 8; 
10.7554/eLife.44487 (2019). 

34. Fuhrmann, F. et al. Locomotion, Theta 
Oscillations, and the Speed-Correlated Firing 
of Hippocampal Neurons Are Controlled by a 
Medial Septal Glutamatergic Circuit. Neuron 
86, 1253–1264; 
10.1016/j.neuron.2015.05.001 (2015). 

35. Musso, P.-Y. et al. Closed-loop optogenetic 
activation of peripheral or central neurons 
modulates feeding in freely moving 
Drosophila. eLife 8; 10.7554/eLife.45636 
(2019). 

36. Štih, V., Petrucco, L., Kist, A. M. & Portugues, 
R. Stytra: An open-source, integrated system 
for stimulation, tracking and closed-loop 
behavioral experiments. PLoS computational 
biology 15, e1006699; 
10.1371/journal.pcbi.1006699 (2019). 

37. Nourizonoz, A. et al. EthoLoop: automated 
closed-loop neuroethology in naturalistic 
environments. Nature methods 17, 1052–
1059; 10.1038/s41592-020-0961-2 (2020). 



 

  61 of 99 

38. Forys, B. J., Xiao, D., Gupta, P. & Murphy, T. 
H. Real-Time Selective Markerless Tracking 
of Forepaws of Head Fixed Mice Using Deep 
Neural Networks. eNeuro 7; 
10.1523/ENEURO.0096-20.2020 (2020). 

39. Mathis, A. et al. DeepLabCut: markerless 
pose estimation of user-defined body parts 
with deep learning. Nature Neuroscience 21, 
1281–1289; 10.1038/s41593-018-0209-y 
(2018). 

40. Pereira, T. D. et al. Fast animal pose 
estimation using deep neural networks. 
Nature methods 16, 117–125; 
10.1038/s41592-018-0234-5 (2019). 

41. Graving, J. M. et al. DeepPoseKit, a software 
toolkit for fast and robust animal pose 
estimation using deep learning. eLife 8, 
e47994; 10.7554/eLife.47994 (2019). 

42. Dunn, T. W. et al. Geometric deep learning 
enables 3D kinematic profiling across 
species and environments. Nature methods; 
10.1038/s41592-021-01106-6 (2021). 

43. Pereira, T. D. et al. SLEAP: Multi-animal pose 
tracking. BioRxiv; 
10.1101/2020.08.31.276246 (2020). 

44. Hebert, L., Ahamed, T., Costa, A. C., 
O'Shaughnessy, L. & Stephens, G. J. 
WormPose: Image synthesis and 
convolutional networks for pose estimation 
in C. elegans. PLoS computational biology 
17, e1008914; 
10.1371/journal.pcbi.1008914 (2021). 

45. Lauer, J. et al. Multi-animal pose estimation 
and tracking with DeepLabCut. BioRxiv; 
10.1101/2021.04.30.442096 (2021). 

46. Kane, G. A., Lopes, G., Saunders, J. L., 
Mathis, A. & Mathis, M. W. Real-time, low-
latency closed-loop feedback using 
markerless posture tracking. eLife 9; 
10.7554/eLife.61909 (2020). 

47. Mathis, A. & Warren, R. On the inference 
speed and video-compression robustness of 
DeepLabCut. BioRxiv; 10.1101/457242 
(2018). 

48. Nath, T. et al. Using DeepLabCut for 3D 
markerless pose estimation across species 
and behaviors. Nature Protocols 14, 2152–
2176; 10.1038/s41596-019-0176-0 (2019). 

49. Sturman, O. et al. Deep learning-based 
behavioral analysis reaches human accuracy 
and is capable of outperforming commercial 

solutions. Neuropsychopharmacology : 
official publication of the American College 
of Neuropsychopharmacology 45, 1942–
1952; 10.1038/s41386-020-0776-y (2020). 

50. Markowitz, J. E. et al. The Striatum 
Organizes 3D Behavior via Moment-to-
Moment Action Selection. Cell 174, 44-
58.e17; 10.1016/j.cell.2018.04.019 (2018). 

51. Wang, Z., Mirbozorgi, S. A. & Ghovanloo, M. 
An automated behavior analysis system for 
freely moving rodents using depth image. 
Medical & biological engineering & 
computing 56, 1807–1821; 10.1007/s11517-
018-1816-1 (2018). 

52. Wiltschko, A. B. et al. Mapping Sub-Second 
Structure in Mouse Behavior. Neuron 88, 
1121–1135; 10.1016/j.neuron.2015.11.031 
(2015). 

53. Luxem, K., Fuhrmann, F., Kürsch, J., Remy, S. 
& Bauer, P. Identifying Behavioral Structure 
from Deep Variational Embeddings of 
Animal Motion. BioRxiv; 
10.1101/2020.05.14.095430 (2020). 

54. Hsu, A. I. & Yttri, E. A. B-SOiD, an open-
source unsupervised algorithm for 
identification and fast prediction of 
behaviors. Nature communications 12, 
5188; 10.1038/s41467-021-25420-x (2021). 

55. Berman, G. J., Choi, D. M., Bialek, W. & 
Shaevitz, J. W. Mapping the stereotyped 
behaviour of freely moving fruit flies. 
Journal of the Royal Society, Interface 11; 
10.1098/rsif.2014.0672 (2014). 

56. Klibaite, U., Berman, G. J., Cande, J., Stern, 
D. L. & Shaevitz, J. W. An unsupervised 
method for quantifying the behavior of 
paired animals. Physical biology 14, 15006; 
10.1088/1478-3975/aa5c50 (2017). 

57. Bürgers, J. et al. Light-sheet fluorescence 
expansion microscopy: fast mapping of 
neural circuits at super resolution. 
Neurophotonics 6, 15005; 
10.1117/1.NPh.6.1.015005 (2019). 

58. Gao, R. et al. Cortical column and whole-
brain imaging with molecular contrast and 
nanoscale resolution. Science (New York, 
N.Y.) 363; 10.1126/science.aau8302 (2019). 

59. Benson, C. A. et al. Dendritic Spine Dynamics 
after Peripheral Nerve Injury: An Intravital 
Structural Study. The Journal of 
neuroscience : the official journal of the 



 

62 of 99 

Society for Neuroscience 40, 4297–4308; 
10.1523/JNEUROSCI.2858-19.2020 (2020). 

60. Krueppel, R., Remy, S. & Beck, H. Dendritic 
integration in hippocampal dentate granule 
cells. Neuron 71, 512–528; 
10.1016/j.neuron.2011.05.043 (2011). 

61. Penzes, P., Cahill, M. E., Jones, K. A., 
VanLeeuwen, J.-E. & Woolfrey, K. M. 
Dendritic spine pathology in 
neuropsychiatric disorders. Nature 
Neuroscience 14, 285–293; 10.1038/nn.2741 
(2011). 

62. Sakaguchi, R., Leiwe, M. N. & Imai, T. Bright 
multicolor labeling of neuronal circuits with 
fluorescent proteins and chemical tags. eLife 
7; 10.7554/eLife.40350 (2018). 

63. Weissman, T. A. & Pan, Y. A. Brainbow: new 
resources and emerging biological 
applications for multicolor genetic labeling 
and analysis. Genetics 199, 293–306; 
10.1534/genetics.114.172510 (2015). 

64. Cai, D., Cohen, K. B., Luo, T., Lichtman, J. W. 
& Sanes, J. R. Improved tools for the 
Brainbow toolbox. Nature methods 10, 540–
547; 10.1038/nmeth.2450 (2013). 

65. Livet, J. et al. Transgenic strategies for 
combinatorial expression of fluorescent 
proteins in the nervous system. Nature 450, 
56–62; 10.1038/nature06293 (2007). 

66. Schweihoff, J., Matvey Loshakov & Schwarz 
Lab. SchwarzNeuroconLab/DeepLabStream 
v1.4 (Zenodo, 2021). 

67. O'Keefe, J. Place units in the hippocampus of 
the freely moving rat. Experimental 
Neurology 51, 78–109; 10.1016/0014-
4886(76)90055-8 (1976). 

68. Abdelfattah, A. S. et al. Bright and 
photostable chemigenetic indicators for 
extended in vivo voltage imaging. Science 
(New York, N.Y.) 365, 699–704; 
10.1126/science.aav6416 (2019). 

69. Skocek, O. et al. High-speed volumetric 
imaging of neuronal activity in freely moving 
rodents. Nature methods 15, 429–432; 
10.1038/s41592-018-0008-0 (2018). 

70. Ghosh, K. K. et al. Miniaturized integration 
of a fluorescence microscope. Nature 
methods 8, 871–878; 10.1038/nmeth.1694 
(2011). 

71. Szabo, V., Ventalon, C., Sars, V. de, Bradley, 
J. & Emiliani, V. Spatially selective 

holographic photoactivation and functional 
fluorescence imaging in freely behaving 
mice with a fiberscope. Neuron 84, 1157–
1169; 10.1016/j.neuron.2014.11.005 (2014). 

72. Winter, D. A. Biomechanics and motor 
control of human movement. 4th ed. (Wiley; 
Chichester :  John Wiley [distributor], 
Hoboken, N.J., 2009). 

73. Vargas-Irwin, C. E. et al. Decoding complete 
reach and grasp actions from local primary 
motor cortex populations. The Journal of 
neuroscience : the official journal of the 
Society for Neuroscience 30, 9659–9669; 
10.1523/JNEUROSCI.5443-09.2010 (2010). 

74. Maghsoudi, O. H., Tabrizi, A. V., Robertson, 
B. & Spence, A. Superpixels based marker 
tracking vs. hue thresholding in rodent 
biomechanics application. In 2017 51st 
Asilomar Conference on Signals, Systems, 
and Computers (IEEE102017), pp. 209–213. 

75. Insafutdinov, E., Pishchulin, L., Andres, B., 
Andriluka, M. & Schiele, B. DeeperCut: A 
Deeper, Stronger, and Faster Multi-person 
Pose Estimation Model. In Computer Vision 
– ECCV 2016, edited by B. Leibe, J. Matas, N. 
Sebe & M. Welling (Springer International 
Publishing, Cham, 2016), Vol. 9910, pp. 34–
50. 

76. Nilsson, S. R. O. et al. Simple Behavioral 
Analysis (SimBA) – an open source toolkit for 
computer classification of complex social 
behaviors in experimental animals. BioRxiv; 
10.1101/2020.04.19.049452 (2020). 

77. Graving, J. M. & Couzin, I. D. VAE-SNE: a 
deep generative model for simultaneous 
dimensionality reduction and clustering. 
BioRxiv; 10.1101/2020.07.17.207993 (2020). 

78. Chang, J.-B. et al. Iterative expansion 
microscopy. Nat Methods 14, 593–599; 
10.1038/nmeth.4261 (2017). 

79. Chen, F., Tillberg, P. W. & Boyden, E. S. 
Optical imaging. Expansion microscopy. 
Science (New York, N.Y.) 347, 543–548; 
10.1126/science.1260088 (2015). 

80. Chozinski, T. J. et al. Expansion microscopy 
with conventional antibodies and 
fluorescent proteins. Nature methods 13, 
485–488; 10.1038/nmeth.3833 (2016). 

81. Zhu, D., Larin, K. V., Luo, Q. & Tuchin, V. V. 
Recent progress in tissue optical clearing. 
Laser & photonics reviews 7, 732–757; 
10.1002/lpor.201200056 (2013). 



 

  63 of 99 

82. Vigouroux, R. J., Belle, M. & Chédotal, A. 
Neuroscience in the third dimension: 
shedding new light on the brain with tissue 
clearing. Molecular Brain 10, 33; 
10.1186/s13041-017-0314-y (2017). 

83. Tainaka, K., Kuno, A., Kubota, S. I., 
Murakami, T. & Ueda, H. R. Chemical 
Principles in Tissue Clearing and Staining 
Protocols for Whole-Body Cell Profiling. 
Annual review of cell and developmental 
biology 32, 713–741; 10.1146/annurev-
cellbio-111315-125001 (2016). 

84. Richardson, D. S. & Lichtman, J. W. Clarifying 
Tissue Clearing. Cell 162, 246–257; 
10.1016/j.cell.2015.06.067 (2015). 

85. Schwarz, M. K. et al. Fluorescent-protein 
stabilization and high-resolution imaging of 
cleared, intact mouse brains. PloS one 10, 
e0124650; 10.1371/journal.pone.0124650 
(2015). 

86. Voie, A. H., Burns, D. H. & Spelman, F. A. 
Orthogonal-plane fluorescence optical 
sectioning: three-dimensional imaging of 
macroscopic biological specimens. Journal of 
microscopy 170, 229–236; 10.1111/j.1365-
2818.1993.tb03346.x (1993). 

87. Silvestri, L., Bria, A., Sacconi, L., Iannello, G. 
& Pavone, F. S. Confocal light sheet 
microscopy: micron-scale neuroanatomy of 
the entire mouse brain. Optics express 20, 
20582–20598; 10.1364/OE.20.020582 
(2012). 

88. Baumgart, E. & Kubitscheck, U. Scanned 
light sheet microscopy with confocal slit 
detection. Optics express 20, 21805–21814; 
10.1364/OE.20.021805 (2012). 

89. Doerr, J. et al. Whole-brain 3D mapping of 
human neural transplant innervation. 
Nature communications 8, 14162; 
10.1038/ncomms14162 (2017). 

90. Niedworok, C. J. et al. Charting 
monosynaptic connectivity maps by two-
color light-sheet fluorescence microscopy. 
Cell reports 2, 1375–1386; 
10.1016/j.celrep.2012.10.008 (2012). 

91. Dodt, H.-U. et al. Ultramicroscopy: three-
dimensional visualization of neuronal 
networks in the whole mouse brain. Nature 
methods 4, 331–336; 10.1038/nmeth1036 
(2007). 

92. Jefferis, G. S. X. E. & Livet, J. Sparse and 
combinatorial neuron labelling. Current 

opinion in neurobiology 22, 101–110; 
10.1016/j.conb.2011.09.010 (2012). 

93. Pasternak, J. F. & Woolsey, T. A. On the 
"selectivity" of the Golgi-Cox method. The 
Journal of comparative neurology 160, 307–
312; 10.1002/cne.901600304 (1975). 

94. Valverde, F. The Golgi Method. A Tool for 
Comparative Structural Analyses. In 
Contemporary Research Methods in 
Neuroanatomy, edited by W. J. H. Nauta & 
S. O. E. Ebbesson (Springer Berlin 
Heidelberg, Berlin, Heidelberg, 1970), pp. 
12–31. 

95. Lee, G. & Saito, I. Role of nucleotide 
sequences of loxP spacer region in Cre-
mediated recombination. Gene 216, 55–65; 
10.1016/S0378-1119(98)00325-4 (1998). 

96. Stark, W. M., Boocock, M. R. & Sherratt, D. J. 
Catalysis by site-specific recombinases. 
Trends in genetics : TIG 8, 432–439 (1992). 

97. Branda, C. S. & Dymecki, S. M. Talking about 
a Revolution. Developmental Cell 6, 7–28; 
10.1016/S1534-5807(03)00399-X (2004). 

98. Deuschle, U., Meyer, W. K. & Thiesen, H. J. 
Tetracycline-reversible silencing of 
eukaryotic promoters. Molecular and 
cellular biology 15, 1907–1914; 
10.1128/mcb.15.4.1907 (1995). 

99. Gossen, M. & Bujard, H. Tight control of 
gene expression in mammalian cells by 
tetracycline-responsive promoters. 
Proceedings of the National Academy of 
Sciences of the United States of America 89, 
5547–5551 (1992). 

100. Hillen, W. & Berens, C. Mechanisms 
underlying expression of Tn10 encoded 
tetracycline resistance. Annual review of 
microbiology 48, 345–369; 
10.1146/annurev.mi.48.100194.002021 
(1994). 

101. Kobiler, O., Lipman, Y., Therkelsen, K., 
Daubechies, I. & Enquist, L. W. 
Herpesviruses carrying a Brainbow cassette 
reveal replication and expression of limited 
numbers of incoming genomes. Nature 
communications 1, 146; 
10.1038/ncomms1145 (2010). 

102. Cetin, A., Komai, S., Eliava, M., Seeburg, 
P. H. & Osten, P. Stereotaxic gene delivery in 
the rodent brain. Nature Protocols 1, 3166–
3173; 10.1038/nprot.2006.450 (2006). 



 

64 of 99 

103. He, K., Zhang, X., Ren, S. & Sun, J. Deep 
Residual Learning for Image Recognition. In 
2016 IEEE Conference on Computer Vision 
and Pattern Recognition (CVPR) 
(IEEEMonday, June 27, 2016 - Thursday, 
June 30, 2016), pp. 770–778. 

104. Sandler, M., Howard, A., Zhu, M., 
Zhmoginov, A. & Chen, L.-C. MobileNetV2: 
Inverted Residuals and Linear Bottlenecks. In 
2018 IEEE/CVF Conference on Computer 
2018, pp. 4510–4520. 

105. Heysel, J. L. Abbildung und 
farbtonbasierte Analyse ausgedehnter 
neuronaler Strukturen. Dissertation. 
Rheinische Friedrich-Wilhelms-Universität 
Bonn, 2021. 

106. Datta, S. R., Anderson, D. J., Branson, K., 
Perona, P. & Leifer, A. Computational 
Neuroethology: A Call to Action. Neuron 
104, 11–24; 10.1016/j.neuron.2019.09.038 
(2019). 

107. Fosque, B. F. et al. Neural circuits. 
Labeling of active neural circuits in vivo with 
designed calcium integrators. Science (New 
York, N.Y.) 347, 755–760; 
10.1126/science.1260922 (2015). 

108. Taube, J. S. Head direction cells 
recorded in the anterior thalamic nuclei of 
freely moving rats. The Journal of 
neuroscience : the official journal of the 
Society for Neuroscience 15, 70–86; 
10.1523/JNEUROSCI.15-01-00070.1995 
(1995). 

109. Taube, J. S., Muller, R. U. & Ranck, J. B. 
Head-direction cells recorded from the 
postsubiculum in freely moving rats. II. 
Effects of environmental manipulations. The 
Journal of neuroscience : the official journal 
of the Society for Neuroscience 10, 436–447 
(1990). 

110. Yoder, R. M. & Taube, J. S. Head 
Direction Cell Activity in Mice: Robust 
Directional Signal Depends on Intact Otolith 
Organs. The Journal of neuroscience : the 
official journal of the Society for 
Neuroscience 29, 1061–1076; 
10.1523/JNEUROSCI.1679-08.2009 (2009). 

111. Valerio, S. & Taube, J. S. Head Direction 
Cell Activity Is Absent in Mice without the 
Horizontal Semicircular Canals. The Journal 
of neuroscience : the official journal of the 
Society for Neuroscience 36, 741–754; 
10.1523/JNEUROSCI.3790-14.2016 (2016). 

112. Sharp, P. E. Neural Representations of 
Direction (Head Direction Cells). In 
Encyclopedia of Behavioral Neuroscience 
(Elsevier2010), pp. 348–355. 

113. Josselyn, S. A. The past, present and 
future of light-gated ion channels and 
optogenetics. eLife 7; 10.7554/eLife.42367 
(2018). 

114. Nagel, G. et al. Channelrhodopsin-1: a 
light-gated proton channel in green algae. 
Science (New York, N.Y.) 296, 2395–2398; 
10.1126/science.1072068 (2002). 

115. Han, X. & Boyden, E. S. Multiple-color 
optical activation, silencing, and 
desynchronization of neural activity, with 
single-spike temporal resolution. PloS one 2, 
e299; 10.1371/journal.pone.0000299 
(2007). 

116. Stacher Hörndli, C. N. et al. Complex 
Economic Behavior Patterns Are 
Constructed from Finite, Genetically 
Controlled Modules of Behavior. Cell reports 
28, 1814-1829.e6; 
10.1016/j.celrep.2019.07.038 (2019). 

117. Knutsen, P. M., Derdikman, D. & 
Ahissar, E. Tracking whisker and head 
movements in unrestrained behaving 
rodents. Journal of neurophysiology 93, 
2294–2301; 10.1152/jn.00718.2004 (2005). 

118. Sofroniew, N. J., Cohen, J. D., Lee, A. K. 
& Svoboda, K. Natural whisker-guided 
behavior by head-fixed mice in tactile virtual 
reality. The Journal of neuroscience : the 
official journal of the Society for 
Neuroscience 34, 9537–9550; 
10.1523/JNEUROSCI.0712-14.2014 (2014). 

119. Kretschmer, F., Tariq, M., Chatila, W., 
Wu, B. & Badea, T. C. Comparison of 
optomotor and optokinetic reflexes in mice. 
Journal of neurophysiology 118, 300–316; 
10.1152/jn.00055.2017 (2017). 

120. Mitchiner, J. C., Pinto, L. H. & Vanable, 
J. W. Visually evoked eye movements in the 
mouse (Mus musculus). Vision Research 16, 
1169-IN7; 10.1016/0042-6989(76)90258-3 
(1976). 

121. Newell, A., Yang, K. & Deng, J. Stacked 
Hourglass Networks for Human Pose 
Estimation. In Computer Vision – ECCV 2016, 
edited by B. Leibe, J. Matas, N. Sebe & M. 
Welling (Springer International Publishing, 
Cham, 2016), Vol. 9912, pp. 483–499. 



 

  65 of 99 

122. Pérez-Escudero, A., Vicente-Page, J., 
Hinz, R. C., Arganda, S. & Polavieja, G. G. de. 
idTracker: tracking individuals in a group by 
automatic identification of unmarked 
animals. Nature methods 11, 743–748; 
10.1038/nmeth.2994 (2014). 

123. Romero-Ferrero, F., Bergomi, M. G., 
Hinz, R. C., Heras, F. J. H. & Polavieja, G. G. 
de. idtracker.ai: tracking all individuals in 
small or large collectives of unmarked 
animals. Nature methods 16, 179–182; 
10.1038/s41592-018-0295-5 (2019). 

124. Wu, X., Sahoo, D. & Hoi, S. C. H. Recent 
Advances in Deep Learning for Object 
Detection, 10/08/2019. 

125. Schweihoff, J. F. et al. DeepLabStream: 
Closing the loop using deep learning-based 
markerless, real-time posture detection. 
BioRxiv; 10.1101/2019.12.20.884478 (2019). 

126. Saunders, J. L. & Wehr, M. Autopilot: 
Automating behavioral experiments with 
lots of Raspberry Pis. BioRxiv; 
10.1101/807693 (2019). 

127. Travis, J. & Kring, J. LabVIEW for 
everyone. Graphical programming made 
easy and fun. 3rd ed. (Prentice Hall, Upper 
Saddle River, N.J., London, 2006, 2007). 

128. Stockhausen, A. et al. Hard-wired lattice 
light-sheet microscopy for imaging of 
expanded samples. Optics express 28, 
15587–15600; 10.1364/OE.393728 (2020). 

129. Wassie, A. T., Zhao, Y. & Boyden, E. S. 
Expansion microscopy: principles and uses in 
biological research. Nat Methods 16, 33–41; 
10.1038/s41592-018-0219-4 (2019). 

130. Parekh, R. & Ascoli, G. A. Neuronal 
Morphology goes Digital: A Research Hub 
for Cellular and System Neuroscience. 
Neuron 77, 1017–1038; 
10.1016/j.neuron.2013.03.008 (2013). 

131. Ferrante, M., Migliore, M. & Ascoli, G. 
A. Functional impact of dendritic branch-
point morphology. The Journal of 
neuroscience : the official journal of the 
Society for Neuroscience 33, 2156–2165; 
10.1523/JNEUROSCI.3495-12.2013 (2013). 

132. Yi, G.-S., Wang, J., Deng, B. & Wei, X.-L. 
Morphology controls how hippocampal CA1 
pyramidal neuron responds to uniform 
electric fields: a biophysical modeling study. 
Scientific reports 7, 3210; 10.1038/s41598-
017-03547-6 (2017). 

133. Luo, W. et al. Supernova: A Versatile 
Vector System for Single-Cell Labeling and 
Gene Function Studies in vivo. Scientific 
reports 6, 35747; 10.1038/srep35747 
(2016). 

134. Tyson, A. L. et al. A deep learning 
algorithm for 3D cell detection in whole 
mouse brain image datasets. PLoS 
computational biology 17, e1009074; 
10.1371/journal.pcbi.1009074 (2021). 

135. Ibotta ML. pure-predict. Machine 
learning prediction in pure Python (Ibotta 
Inc., Denver, CO, USA, 2020). 

136. Payne, H. L. & Raymond, J. L. Magnetic 
eye tracking in mice. eLife 6; 
10.7554/eLife.29222 (2017). 

137. Coffey, K. R., Marx, R. G. & Neumaier, J. 
F. DeepSqueak: a deep learning-based 
system for detection and analysis of 
ultrasonic vocalizations. 
Neuropsychopharmacology : official 
publication of the American College of 
Neuropsychopharmacology 44, 859–868; 
10.1038/s41386-018-0303-6 (2019). 

138. van Segbroeck, M., Knoll, A. T., Levitt, P. 
& Narayanan, S. MUPET-Mouse Ultrasonic 
Profile ExTraction: A Signal Processing Tool 
for Rapid and Unsupervised Analysis of 
Ultrasonic Vocalizations. Neuron 94, 465-
485.e5; 10.1016/j.neuron.2017.04.005 
(2017). 

139. Zala, S. M., Reitschmidt, D., Noll, A., 
Balazs, P. & Penn, D. J. Automatic mouse 
ultrasound detector (A-MUD): A new tool 
for processing rodent vocalizations. PloS one 
12, e0181200; 
10.1371/journal.pone.0181200 (2017). 

140. Kügler, S., Lingor, P., Schöll, U., 
Zolotukhin, S. & Bähr, M. Differential 
transgene expression in brain cells in vivo 
and in vitro from AAV-2 vectors with small 
transcriptional control units. Virology 311, 
89–95; 10.1016/S0042-6822(03)00162-4 
(2003). 

141. Shevtsova, Z., Malik, J. M. I., Michel, U., 
Bähr, M. & Kügler, S. Promoters and 
serotypes: targeting of adeno-associated 
virus vectors for gene transfer in the rat 
central nervous system in vitro and in vivo. 
Experimental physiology 90, 53–59; 
10.1113/expphysiol.2004.028159 (2005). 



 

66 of 99 

142. During, M. J., Young, D., Baer, K., 
Lawlor, P. & Klugmann, M. Development 
and optimization of adeno-associated virus 
vector transfer into the central nervous 
system. Methods in molecular medicine 76, 
221–236; 10.1385/1-59259-304-6:221 
(2003). 

143. Schindelin, J. et al. Fiji: an open-source 
platform for biological-image analysis. 
Nature methods 9, 676–682; 
10.1038/nmeth.2019 (2012). 

144. Siu Kwan Lam et al. numba/numba: 
Version 0.53.1 (Zenodo, 2021). 

145. Fabian Pedregosa et al. Scikit-learn: 
Machine Learning in Python. Journal of 
Machine Learning Research 12, 2825–2830 
(2011). 

146. Harris, C. R. et al. Array programming 
with NumPy. Nature 585, 357–362; 
10.1038/s41586-020-2649-2 (2020). 

147. Reback, J. et al. pandas-dev/pandas: 
Pandas 1.2.5 (Zenodo, 2021). 

148. McKinney, W. Data Structures for 
Statistical Computing in Python. In 
Proceedings of the 9th Python in Science 
Conference (SciPy2010), pp. 56–61. 

7 Methods 

7.1 Mice 

 C57BL/6 mice were purchased from Charles River (Sulzfeld, Germany) and 

maintained on a 12-h light/12-h dark cycle with food and water always available. All 

experiments were carried out in accordance with the German animal protection law 

(TierSCHG), FELASA, and were approved by the animal welfare committee of the 

University of Bonn. 

7.2 AAV production 

 AAV pseudotyped vectors (virions containing a 1:1 ratio of AAV1 and AAV2 capsid 

proteins with AAV2 ITRs) were generated as described 140,141. Briefly, human embryonic 

kidney 293 (HEK293) cells were transfected with the AAV cis plasmid and the helper 

plasmids by standard calcium phosphate transfection. Forty-eight hours after 

transfection, the cells were harvested and the virus purified using heparin affinity columns 

(Sigma, St. Louis, MO) 142. Purification and integrity of the viral capsid proteins (VP1-3) 

were monitored on a Coomassie-stained SDS/protein gel. The genomic titers were 

determined using the ABI 7700 real-time PCR cycler (Applied Biosystems) with primers 

designed for WPRE. 
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7.3 Surgical procedure 

 Viral injections were performed under aseptic conditions in two months old 

C57BL/6 mice. 

For optogenetic closed-loop experiments, mice were initially anesthetized with an 

oxygen/isoflurane mixture (2 %–2.5 % in 95 % O2). Afterwards, mice were fixed on a 

stereotactic frame and kept under a constant stream of isoflurane (1.5 %–2 % in 95 % O2) 

to maintain anesthesia. Analgesia (0.05 mg/kg of buprenorphine; Buprenovet, Bayer, 

Germany) was administered intraperitoneal before the surgery, and Xylocaine 

(AstraZeneca, Germany) was used for local anesthesia. Stereotactic injections and 

implantations of light fiber ferrules were performed using a stereotactic frame (WPI 

Benchmark/Kopf) and a microprocessor-controlled minipump (World Precision 

Instruments, Sarasota, Florida). The viral solution (1:1:2; AAV-TRE-EGFP, Addgene #89875; 

AAV-M13-TEV-C-P2A-TdTomato, Addgene #92391; AAV-TM-CaM-NES-TEV-N-AsLOV2-

TEVseq-tTA, Addgene plasmid # 92392) was injected unilaterally into the ADN. Viruses 

were produced as previously described. Animals were given Dexamethasone (0.2 mg/kg) 

to reduce swelling. For implantation, the skin on the top of the scalp was removed and 

the skull was cleared of soft tissue. Light fiber ferrules (Ø200 µm, 0.5 NA, Thorlabs) were 

implanted and fixed with a socket of dental cement. Loose skin around the socket was 

fixed to the socket using tissue glue (3M Vetbond). Directly after the surgery, animals were 

administered 1 ml 5 % Glucosteril solution. To prevent the wound pain, analgesia was 

administered on the three following days. Animals were left to rest for at least one week 

before starting handling. Experiments were conducted three weeks after surgery. 

For Tetbow tracing experiments, mice were anesthetized with a mixture of Fentanyl 

(Rotexmedica, Germany), Midazolam (Rotexmedica, Germany), and Domitor (Orion 

Pharma, Finland) via intraperitoneal injection (i.p.; 0.05/5.0/0.5mg/kg). Analgesia was 

administered as mentioned above. Stereotactic injections of a viral solution (600 nl; 

1:2:1:3; AAV-TRE-tdTomato-WPRE, Addgene #104112; AAV-TRE-EYFP-WPRE, Addgene 

#104111; AAV-TRE-mTurquoise2-WPRE, Addgene plasmid # 104110, AAV-Syn1-tTA, 

Addgene #104109; see also Supplementary Table D for a full injection scheme) was 

injected unilaterally into the CA3 Region of the hippocampus (r/c -2.1; l 2.5; d/v -2.25). 
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Viruses were produced as previously described. After the injection, the scalp was sutured 

(PERMA-HAND Silk Suture, Ethicon), and an antibacterial ointment (Refobacin, Almirall, 

Germany) was applied. Finally, a mixture of Naloxone (B.Brain, Germany), Flumazenil 

(B.Braun, Germany), and Antisedan (Orion Pharma, Finland) (1.2/0.5/2.5 mg/kg) was 

injected i.p. to end anesthesia. To prevent wound pain, analgesia was administered in the 

following three days. Mice were perfused, and brain samples were collected after 14 days. 

7.4 Perfusion 

 Mice were anesthetized with a mixture of Xylazine (10  mg/kg; Bayer Vital, 

Germany) and ketamine (100 mg/kg; Bela-pharm GmbH & Co. KG, Germany). Using a 

peristaltic pump (Laborschlauchpumpe PLP33, Mercateo, Germany), the mice were 

transcardially perfused with 1× PBS followed by 4 % paraformaldehyde (PFA) in PBS. 

Brains were removed from the skull and post-fixed in 4 % PFA overnight (ON) at +4°C. 

After fixation, the brains were moved into PBS containing 0.01 % sodium azide and stored 

at +4°C until sectioning. Fixed brains were coronally sectioned using a vibratome (Leica 

VT1000 S) and stored at +4°C in PBS containing 0.01 % sodium azide. 

7.5 Expansion of tissue samples 

 The expansion of tissue samples was adopted from protocols previously described 

57,79,80. Briefly, sections were incubated in 1 mM methyl-acrylic acid-NHS (Sigma Aldrich, 

Germany) linker. After washing (PBS), the sections were incubated in monomer solution 

(8.6 % sodium acrylate, 2.5 % acrylamide, 0.15 % N,N’-methylenebisacrylamide, and 

11.7 % NaCl in PBS) for 1h, followed by 2h incubation at 37°C in gelling solution (monomer 

solution with addition of 4-hydroxy-TEMPO, TEMED and APS; resulting concentration: 

0.01 %, 0.2 %, and 0.2 % respectively). After full gelation, the samples were then digested 

overnight at 37°C with Proteinase K in buffer solution (50 mM Tris, 1 mM EDTA, 0.5 % 

Triton-X100, 0.8M guanidine HCl, and 16U/ml of proteinase K; pH 8.0). After additional 

washing (PBS), the samples were either stored in PBS until imaging or expanded by 

additional washing with deionized water for three hours. 
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7.6 Imaging of brain sections  

 For optogenetic experiments, brain sections (70 µm) were labeled with DAPI 

(0.2 µg/ml). Overview images were acquired using a wide-field microscope (Zeiss 

AxioScan.Z1). Based on the overall expression and fiber placement, selected sections were 

imaged with a spinning disk microscope (VisiScope CSU-W1). Acquired z-stacks were used 

for quantification using FIJI 143. Selection criteria for the quantification of Cal-Light labeling 

included the correct placement of the fiber ferrule above the target region as well as 

injection (Figure 9). Mice that did not match the criteria were only included in the 

evaluation and quantification of DLStream performance. 

For Tetbow tracing experiments, the expanded samples were fixed on the bottom of a 

coverslip with poly-L-lysine to avoid displacement. To ensure stable expansion, the 

imaging chamber was filled with deionized water or PBS during imaging, depending on 

the imaging requirements. Imaging was performed with a custom light sheet fluorescence 

microscope as previously described 57. However, because the samples were labeled with 

three different fluorescent proteins (tdTomato, EYFP, and mTurquoise2), the detection 

was further adapted. For this, the detection was conducted in two steps. First, EYFP and 

tdTomato were excited (488 nm and 561 nm, respectively), and emitted light was split 

onto two separate cameras. Second, mTurquoise2 was excited (405 nm) and detected by 

a camera. Each camera was preceded by an emission filter specific to the emitted light 

spectrum. This setup was necessary to refocus the light sheet due to a focus shift of the 

405 nm laser and avoid displacement between color channels. Volumetric image 

acquisition was then realized by imaging in a mosaic fashion, where multiple image stacks 

were taken from each channel and stitched in postprocessing. Each image stack had a 

10 % overlap with its neighboring image stacks to allow successful stitching. The axial 

stepsize was 0.5 µm, and the typical exposure time was 20 ms, while the field of view was 

330µm with a pixel size of 0,163 µm. 

7.7 Head direction-dependent optogenetic stimulation 

 Mice were put in a cylindrical white arena with a single cue (a black vertical bar, 

Figure 8 b). A black curtain enclosed the arena. A random point was chosen to reference 
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head direction (0°, Figure 8 b red tape). The reference point was kept constant between 

experimental sessions and mice but was not visible to the mouse. To habituate the mice 

to the arena, each mouse was put into the arena for 30 min for two consecutive days, and 

reward pellets were placed randomly inside the arena at the 0, 10, and 20 min mark. 

Experimental Group: During the experiment, light stimulation (488 nm, 15 mW; Laser 

OBIS LX/LS, controlled by OBIS LX/LS Single Laser Remote, Coherent Inc., Santa Clara, CA 

USA) was initiated whenever the mouse’s head direction was within a 60° window around 

the reference point (± 30°). Light stimulation lasted at least 1 second or as long as the 

correct head direction was maintained, up to a maximum of 5 seconds. After each 

stimulus, further stimulation was discontinued for at least 15 seconds to avoid 

overheating brain tissue and in line with the originally published Cal-Light experiments 26. 

Mice were allowed to investigate the arena over four consecutive days for 30 min sessions 

each day, during which the mice were stimulated with light depending on their head 

direction. Mice were perfused one day after the last session.  

Yoked Group: In the yoked control group, mice were previously paired with another 

mouse from the experimental group. Each control animal received the exact same 

temporal stimulus as the paired experimental animal, decoupled from its own head 

direction. Mice were treated and ran the experiment in the same way as the experimental 

group in all other aspects. 

No-Light Group: In the No-light control group, mice ran the experiment as all other groups 

but received no light stimulation. 

7.8 Head direction analysis 

 Analysis was performed using custom python scripts. To determine whether light 

stimulation was precisely targeted to a particular window of angles, we calculated the 

mean resultant vector length for the distribution of stimulated angles, which measures 

the concentration of angles in a distribution. Lengths vary between 0 (the underlying 

distribution is uniform) to 1 (all angles in the underlying distribution are precisely 

identical). Thus, for stimulated angles, non-zero lengths close to 1 are expected. Notably, 

the distribution of stimulated angles may be biased by the mice’s behavior – i.e., when 
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the mouse, by chance, constantly faces the target head direction. To test against this 

possibility, null distributions were generated by randomly sampling angles from the entire 

distribution of angles explored by the animal. The number of samples was set to equal the 

number of stimulation angles. Angles were randomly sampled in this way 1000 times, and 

each time a mean resultant vector length was calculated. The null distribution comprised 

the 1000 means (note that null distributions were centered near 0). For each session, the 

resultant mean vector length was well above a 99  % cut-off of the null distribution, 

indicating that stimulation angle precision resulted from accurate posture detection 

rather than a bias in animal behavior. 

7.9 Experimental setup 

 The corresponding arena was placed in a closable compartment with isolation 

from external light sources. A light source was placed next to the setup so that the arena 

was evenly lit. The camera was placed directly above the arena (Figure 6 a). During 

experiments, the compartment was closed to minimize any disrupting influences from 

outside. All devices were triggered using a NI 6341 data-acquisition board (National 

Instruments Germany GmbH, Munich) combined with the Python nidaqxm library. The 

board was connected via USB 3.0 to a PC (Intel Core i7-9700K @ 3.60GHz, 64 GB DDR4 

RAM and NVidia GeForce RTX 2080 Ti(12GB) GPU). For the optogenetic experiment, an 

Intel Realsense Depth Camera D435 (Intel Corp., Santa Clara, CA, USA) was used at 848 x 

480 and 30 Hz to enable reliable streaming at all times.  

7.10 Hardware latency and detection accuracy during optogenetic 

stimulation 

 The latency between behavior detection and optogenetic stimulation was 

estimated by manually annotating videos of sessions from three different mice. For this, 

the recorded video was analyzed frame-by-frame. The frames between the event start 

(behavior-detection leading to stimulation onset) taken from the table-based output file 

and the visible onset of the Laser in the video were counted. All stimulation events during 

the above sessions were manually annotated to evaluate the false-positive detection rate 

during experiments (Figure 10). A detection was counted as false-positive when the 
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annotator judged the mouse’s posture (head direction) not inside the head direction 

window at the exact time of detection. Note that the accuracy of the pose estimation 

model is a major source of false detection; however, inaccurate event definitions can also 

lead to unintended stimulation events. Additional training of the network can increase 

the accuracy of the triggered stimulation. 

7.11 Pose estimation using DLC 

 A 3-point tracking was used to estimate the mouse’s position, direction, and angle 

using the nose, neck, and tail base as body parts of interest (Figure 3 b). Pose estimation 

models were trained using the DLC 1.11 framework 39. First, 300 images of relevant 

behavior in the corresponding arena were annotated, and 95 % were used as a training 

set, with 5 % held back as a test set. Note that for some cases, a small number of test 

images (5 %, 15) might require further evaluation of the trained model to guarantee 

sufficient accuracy and generalization. Second, a ResNet-50-based neural network 75,103 

with default parameters was trained for 500k iterations, and its performance was 

evaluated.  

The same approach was used to benchmark DLStream’s upper-performance limits, but 

images were labeled with either 9 or 13 body parts. The same training set was used to 

train several neural networks based on different architectures or depths (ResNet50, 

ResNet101 75,103, MobileNetv2 104). Models were available through the DLC 2 framework 

with default parameters and trained for 500k iterations. After training, the networks were 

benchmarked within DLStream using a DLStream function (python deeplabstream.py --

dlc-enabled --benchmark-enabled) with 3000 consecutive frames. Data were collected, 

and the average framerate and standard deviation were calculated for four different 

image resolutions (1280x1024, 640x512, 416x341, 320x256) available to the Basler 

acA1300-200um camera (Basler AG, Germany), which acquired frames at a rate of 172 Hz. 

7.12 Behavior detection in DLStream 

 For behavior detection in the optogenetic experiment, the raw score maps were 

extracted from the deep neural network output, and the position of key points was 

calculated with custom scripts. First, body part estimation, similar to the approach utilized 



 

  73 of 99 

in DLC 39, was conducted by local maxima detection using custom image analysis scripts. 

The resulting pose estimation was then transferred into postures (skeletons). For this, 

each possible combination of body parts was investigated and filtered using a closest 

distance approach. DLStream detects estimated postures and compares them to relevant 

trigger modules for closed-loop control of experiments. Next, the pose estimation error 

was measured and compared to a human-labeled dataset (labeled by a single human 

annotator) to evaluate the pose estimation model. For this, a new image set was extracted 

from our optogenetic experiment sessions (n = 597). The average difference (Euclidean 

distance) between human annotation and pose estimation for each pose and resulting 

head direction angle were calculated. 

Additionally, the false-positive/false-negative rate of hypothetical head direction triggers 

with differently sized angle windows (60, 50, 40, 30, 20, 10) was analyzed. To counter any 

non-uniform distribution of head direction angles, we averaged the rates for multiple 

ranges per bin (e.g., 0-60°, 60-120°, 120-180°) and calculated the standard deviation. See 

Figure 10 for details. 

7.13 Machine learning-based classification in DLStream 

 The corresponding software toolkits were used to generate classifiers to evaluate 

machine learning classifiers based on B-SoiD 54 and SiMBA 76. Example classifiers were 

integrated into DLStream and used as trigger modules in a simulated real-time video 

stream to evaluate their computation time, including feature extraction. A classifier pool 

of 3 parallel running classifier instances was used in combination with a simulated 30 Hz 

video stream using a prerecorded video. For real-time pose estimation during the 

measurement, DLC-based models were generated that matched the toolkit-specific 

requirements – e.g., number of tracked body parts. The pose estimation networks were 

trained in the same way as mentioned above. 

To integrate and test SiMBA 76 classifiers in DLStream (see Supplementary Figure C a-b), 

an example pose estimation network, video, and a classifier were kindly provided by the 

original SiMBA authors 76. In addition, the specific feature extraction script 66 was speed-

optimized in collaboration with Simon Nilsson using the numba just-in-time compiler 144 

that allows the translation of slow python algorithms into fast machine code. Finally, the 
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classifier was then real-time optimized using pure-predict 135. This open-source tool allows 

the translation of slow scikit-learn-based machine learning algorithms 145 to fast pure 

python code. Both variants of the classifier were used to estimate computation times. 

To integrate and test B-SoiD 54 classifiers in DLStream, an example pose estimation 

network was trained according to the recommended body part configuration of B-SoiD. 

For this, animals were recorded in an open field arena from below, and example videos of 

their behavior extracted. Using the B-SoiD toolkit, the observed behavior was clustered, 

and a classifier was trained. Then, in collaboration with the original B-SoiD authors 54, the 

feature extraction script was integrated into DLStream 66. Finally, the classifier and feature 

extraction script were used to estimate computation times. 

Both feature extraction and classification computation time were measured for 1000 

classification cycles to evaluate real-time capabilities. The resulting average time, 

including standard deviation, was then calculated (see Supplementary Table E). 

7.14 Statistics and reproducibility  

 Paired t-tests were used for statistical comparisons of data. All data presented in 

the text are shown as the mean ± standard deviation. Uncorrected alpha (desired 

significance level) was set to 0.05 (* < 0.05, ** < 0.01, *** < 0.001). Sample sizes and 

numbers are indicated in detail in each figure caption and main text. Exclusion criteria, if 

applied, are specified in each corresponding method section. 
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9 Supplementary Information 

9.1 Tables 

Supplementary Table A – Available modules in the open-source version of DLStream 

Type Module Use Used in 

Ti
m

e
r 

 Any time-dependent parameters All experiments 

St
im

u
la

ti
o

n
 

NI – DAQ Board control 
TTL controlled devices (e.g., Laser ON/OFF, Reward 
dispenser) 
Analog modulation of devices (e.g., Laser power) 

Optogenetic 
experiment 1 

GPIO control (Raspberry 
Pi) 

TTL controlled devices (e.g., Laser ON/OFF, Reward 
dispenser) 

Low budget 
setups 

GPIO control (Arduino) 
TTL controlled devices (e.g., Laser ON/OFF, Reward 
dispenser) 

Low budget 
setups 

Monitor/Screen display 
Display visual stimulus (e.g., picture or video) on a 
screen 

Conditioning 
experiment 1 

Tr
ig

ge
r 

ROI-based 
If a body part or set of body parts is in or out of the 
region of interest (ROI) 

Conditioning 
experiment 1 

Direction-based 
(allocentric) 

If a user-defined vector between body parts angle is 
within the defined window in relation to the 
reference point. 

Published as an 
archetype 

Direction-based 
(Headdirection – 
allocentric) 

If the head direction angle is within a defined 
window in relation to the reference point. 

Optogenetic 
experiment 1 

Direction-based 
(Screen) 

Similar to allocentric direction trigger, but checks if 
the animal faces north, south, east, or west in the 
frame. 

Conditioning 
experiment 1 

Direction-based 
(Headdirection – 
egocentric) 

If the egocentric head direction angle is within a 
defined window. 

Published as an 
archetype 

Movement-based 
If the animal (measured by a body part of choice) 
moves faster or slower than the threshold within a 
set time window. 

Supplementary 
Material 1 

Combinatio 
(Headdirection + ROI) 

Example of a combination of multiple trigger 
modules. Checks whether the position and head 
direction of an animal are within the definition. 

Published as an 
archetype 

ML-Classification 
Set of machine learning-based behavior 
classification (SimBA 76, B-SOiD 54) 

Published as an 
archetype 

Multiple Animals 
Example of social behavior-based trigger module 
using multiple animal pose estimation. 

Published as an 
archetype 
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Supplementary Table B – Available experiment modules in the open-source version of DLStream  

Experiment 

Type 
Use Used in 

Cal-Light  
Head direction-dependent optogenetic stimulation of animals 

during Cal-Light paradigm. 

Used in this thesis 

and published in 

Schweihoff et al. 

2021  

Conditional 

A versatile experiment specifically created to allow conditional 

stimulation. It can be used with any trigger and can automatize 

behavior-dependent stimulation such as reward 

delivery/withdrawal for conditioning experiments. 

Published as an 

archetype 

Optogenetic 

Experiment specifically designed for optogenetic paradigms. It 

holds additional parameters such as minimum/maximum 

stimulation time per event and maximum stimulation time in 

total. 

Published as an 

archetype 

Trial 

Specifically designed to allow trial/task-based experiments. A 

primary trigger is used to initiate trials/task events in which an 

animal is presented with a stimulation. A secondary trigger checks 

if the animal succeeds in a pre-set time after/during the event 

(e.g., going to a reward location). 

Published as an 

archetype 

Classic 

Conditioning 

Set of experiments for second-order conditioning paradigm 

including habituation to reward delivery, first conditioning, and 

transfer task. 

Published in 

Schweihoff et al. 

2021  

Multiple 

Animal 
Example experiment utilizing multiple animal pose estimation 

Published as an 

archetype 

Classification-

based 

(supervised) 

Example experiment incorporating machine learning-based, 

supervised behavior classification (SimBA 76) 

Published as an 

archetype in 

collaboration with 

SimBA 76 

Classification-

based 

(unsupervised) 

Example experiment incorporating machine learning-based, 

unsupervised behavior classification (B-SOiD 54) 

Published as an 

archetype in 

collaboration with B-

SOiD 54 
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Supplementary Table C – Example of DLStream output 

The table is indexed by the frame ID used for pose estimation (neck, nose, tail base x+y). The experiment column 
holds information about the experiment. Status indicates whether the experiment was started (True), while Trial 
indicates whether a trial or stimulation was active during the frame (True, bold). The time column logs the 
inference time between frames. The CSV format uses a semicolon (“;”) as a delimiter to avoid confusion between 
German and American separation of decimals (“1,2” And “1.2”) when importing the file. 

1.1 Frames 

Animal 1 Experiment 

Time Neck Nose Tail_base 
Status Trial 

x y x y x y 

1 48.45 43.89 45.45 43.89 51.45 29.89 False False 0.0 

2 45.45 43.89 51.45 45.79 55.35 32.91 True False 0.033 

3 44.13 46.91 49.45 41.11 57.65 35.79 True True 0.066 

4 45.25 42.11 45.55 42.77 55.45 29.49 True True 0.099 

5 49.26 44.89 48.25 43.99 50.33 29.89 True False 0.132 

 

Supplementary Table D –Tetbow injection scheme 

Tetbow parameters optimized during development for hue-based segmentation of hippocampal neurons. The 
ratio of virus components and injection volume were evaluated on the resulting color diversity and label density 
by visual inspection based on confocal images of the predigested and digested samples. *Final mixture 

Ratio Injection 

Volume [nl] 

Color 

Diversity 

Label 

Density 

Number 

of mice tTA mTurq eYFP tdTom 

1:500 1 1 1 300 + --- 1 

1:100 1 1 1 300 + -- 2 

1:50 1 1 1 300 + - 2 

1:10 

1 1 1 300 ++ + 2 

2 1 3 

300 +++ + 3 

1000 +++ ++ 3 

600 +++ ++ 1 

1:1 2 1 3 600 +++ ++ 2* 
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9.2 Figures 

Supplementary Figure A - Examples of head direction angles during optogenetic light stimulation. 

a-b, Left: Example radial histogram of all head directions (5° bins) during stimulation (red) within one session 
(normalized to the maximum value). Right: Radial histogram of all head directions during the whole session (grey) 
and during stimulation (red; normalized to the maximum value of the entire session). Rings represent quantiles 
in 20 % steps. Each panel shows a session from a different mouse.  
c, Example radial histogram of all head directions (same representation as in a-b) from the same mouse shown 
in a in the next session. Note that the mouse is showing different distributions of head direction between sessions 
in both the stimulation events and the overall session, while the stimulation is mainly limited to the target 
window (thick blue arc) 

  



 

 V 

9.3 DLStream Code and examples 

9.3.1 DLStream package structure 

Supplementary Figure B - Folderstructur of DLStream package 

a, the Folder structure of the DLStream package available on GitHub. The package includes several scrips (text 
icon with “Py”; *.py) and text files (text icon with “TXT”; *.txt, *.md, or *.ini). Folders that include scripts are 
labeled with an orange circle. Scripts and files not relevant for the general structure and function of DLStream 
are not displayed. 
b, Extract of the content of Settings.ini. The file contains all information that is used to start individual 
experiments when running the script app.py. The section [Streaming] configures camera-specific parameters 
such as resolution and framerate. The section [Pose Estimation] is used to select and load a pose estimation 
model from the available architectures (DLC 39,45,46, SLEAP 40,43, DeepPoseKit 41). The section [Experiment] is used 
to select an experiment module from experiments/custom/experiments.py or experiments/base/experiments.py 
that contain custom or predefined experiments. 
 

 The DLStream package is structured so that modules are separated into scripts (e.g., 

experiments in experiments.py; Supplementary Figure B a). This structure has the advantage 

that customized modules can be easily implemented and imported between scripts, while the 

main functions of deeplabstream.py remain untouched. Using the file settings.ini 

(Supplementary Figure B b), users can select the name of an experiment module, and the 

experiment will be automatically loaded when app.py is launched. The script app.py opens the 

GUI of DLStream, including the main process of deeplabstream.py (see chapter 4.1.3), and 

gives users a convenient way of interacting with DLStream during experiments. Settings.ini 

also contains configuration parameters for the camera and pose estimation settings. To load 

a specific pose estimation model, users specify the model's origin, the path to the model, and 
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the model name. The model can then be launched using the GUI (see chapter 4.1.3). 

Independent of the model origin, the resulting pose estimation is transformed into a skeleton 

that can be interpreted by any experiment and trigger module in DLStream. 

9.3.2 Experiment module for the optogenetic experiment 

The following is an extract of the code used for the head direction-dependent labeling 

of active neurons. It includes several simplifications and explanations. The original code is fully 

published at https://github.com/SchwarzNeuroconLab/DeepLabStream 66. 

The optogenetic experiment is initialized as a python class and has several initial parameters 

(Code 1 - Initializing). At its core, DLStream calls the experiment with every new pose 

estimation – i.e., every frame – and passes the pose estimation to the experiment. The 

experiment then passes the pose estimation to a trigger module and, if the behavior was 

detected, activates the stimulation module (see Figure 6 d for reference). 

The parameters 𝑠𝑒𝑙𝑓. _𝑝𝑜𝑖𝑛𝑡, 𝑠𝑒𝑙𝑓. _𝑠𝑡𝑎𝑟𝑡_𝑎𝑛𝑔𝑙𝑒, and 𝑠𝑒𝑙𝑓. _𝑒𝑛𝑑_𝑎𝑛𝑔𝑙𝑒 define the target 

window of 60° around the reference point (POINT). Two timer modules are initialized with 15 

sec and 1800 sec duration. The 15-sec timer 𝑠𝑒𝑙𝑓. _𝑖𝑛𝑡𝑒𝑟𝑡𝑟𝑖𝑎𝑙_𝑡𝑖𝑚𝑒𝑟 acts as an inter-stimulus 

timer and inhibits any behavior-dependent stimulation during the inter-stimulus time. The 

𝑠𝑒𝑙𝑓. _𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡_𝑡𝑖𝑚𝑒𝑟 is measuring the duration of the entire session and stops the 

DeepLabStream 
© J.Schweihoff, M. Loshakov 
University Bonn Medical Faculty, Germany 
https://github.com/SchwarzNeuroconLab/DeepLabStream 
Licensed under GNU General Public License v3.0 
 
class OptogenExperiment: 
    def __init__(self): 
        … 
        self._point = POINT 
        self._start_angle, self._end_angle = 30 
        self._intertrial_timer = Timer(15) 
        self._experiment_timer = Timer(1800) 
        … 
        self._max_trial_time = 5 
        self._min_trial_time = 1 
        self._max_total_time = 600 
         … 
 

1 - Initializing 
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experiment after 1800 sec (30 min). The parameters 𝑠𝑒𝑙𝑓. _max⁡ _𝑡𝑟𝑖𝑎𝑙⁡_𝑡𝑖𝑚𝑒 and 

𝑠𝑒𝑙𝑓. _min⁡ _𝑡𝑟𝑖𝑎𝑙_𝑡𝑖𝑚𝑒 control the maximum and minimum duration of light stimulation 

during the experiment while the 𝑠𝑒𝑙𝑓. _max⁡ _𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒 acts as a maximum total stimulation 

threshold. Each time the experiment is passed a set of pose estimated body parts (skeleton) 

using the function check_skeleton(), the skeleton is passed to the trigger module. To simplify 

this, the code example includes the relevant calculations that are integrated into the head 

direction trigger module as plain code (Code 2- Check skeleton). 

First, the experiment checks whether the total duration of the experiment has run out using 

the timer module 𝑠𝑒𝑙𝑓. _𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡_𝑡𝑖𝑚𝑒𝑟. The experiment is stopped when the timer ran 

out. Next, the inter-stimulus timer is checked. If the inter-stimulus time was activated and has 

not yet run out, the experiment is skipping any further operations – i.e., a behavior-dependent 

stimulation is inhibited. Otherwise, the head direction angle is calculated – usually within the 

trigger module, and a preset condition is checked. In this experiment, the output of the trigger 

module is TRUE – i.e., the behavior was detected – when the head direction angle is equal or 

between -30 and +30° (Code 3 - Behavior detection). 

If a stimulation event has not been started yet, the experiment will call the stimulation module. 

In this experiment, it is a simple ON signal to a laser. The function laser_switch() is a high-level 

interface for the NI DAQ-Board Digital output port and sends a TTL signal to a remote control 

for the laser. For more advanced stimulation modules, experiments are equipped with an 

additional process handling only stimulation. This parallel processing step is necessary to 

process both new pose estimation with each frame and continuously run the experiment. 

def check_skeleton(self, frame, skeleton): 
        if self._experiment_timer.check_timer(): 
            if self._total_time >= self._max_total_time: 
                # check if total time to stimulate per experiment is reached 
                print("Ending experiment, total event time ran out") 
                self.stop_experiment() 
            else: 
                # if not continue 
                if not self._intertrial_timer.check_timer(): 
                    # check if there is an intertrial time running right now, if not continue 
                    # check if the headdirection angle is within limits 
                    _ , angle_point = angle_between_vectors( 
                        *skeleton["neck"], *skeleton["nose"], *self._point) 
 

2 - Check skeleton 
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However, in this case, the remote control of the laser and the DAQ boards are handling the 

continuous stimulation downstream. 

With each new event, the inter-stimulus timer 𝑠𝑒𝑙𝑓. _𝑖𝑛𝑡𝑒𝑟𝑡𝑟𝑖𝑎𝑙_𝑡𝑖𝑚𝑒𝑟 is reset, and the start 

of the event is timed to calculated the minimum and maximum stimulation time. 

If the head direction angle is within the target window, but a stimulation event is already 

running, the experiment checks whether the maximum stimulation duration per event was 

reached (Code 4 - Light stimulation I). If the maximum duration was reached, the laser is 

turned OFF, the duration of the stimulation is recorded, and the inter-stimulus timer is started. 

If the maximum duration was not reached, the stimulation continues. Contrary, if the head 

direction angle is not within the target window, but a stimulation event is already running, the 

experiment checks whether the minimum stimulation duration per event was reached (Code 

5 - Light Stimulation I). If the minimum duration was reached, the laser is turned OFF, the 

                    if self._start_angle <= angle_point <= self._end_angle: 
                        if not self._event: 
                            # if a stimulation event wasn't started already, start one 
                            print("Starting Stimulation") 
                            self._event = True 
                            # and activate the laser, start the timer and reset the intertrial timer 
                            laser_switch(True) 
                            self._event_start = time.time() 
                            self._intertrial_timer.reset() 

3 - Behavior detection 
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duration of the stimulation is recorded, and the inter-stimulus timer is started. If the minimum 

duration was not reached, the stimulation continues. The experiment continues until the 

𝑠𝑒𝑙𝑓. _𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡_𝑡𝑖𝑚𝑒𝑟 has run out. 

9.3.3 Example trigger module 

A trigger module is an object that is specifically created to check whether a specific 

predefined condition is true. Its input is the skeleton (pose estimation of all body parts in the 

current frame), and its output is a binary classification (TRUE/FALSE) whether a preset 

                    else: 
                        # if the headdirection is not within the parameters 
                        if self._event: 
                            # but the stimulation is still going 
                            if time.time() - self._event_start < self._min_trial_time: 
                                # check if the minimum event time was not reached, then pass 
                                pass 
                            else: 
                                # if minumum event time has been reached, reset the event, 
                                # turn of the laser and start intertrial time 
                                print("Ending Stimulation, angle not in range") 
                                self._event = False 
                                laser_switch(False) 
                                trial_time = time.time() - self._event_start 
                                self._total_time += trial_time 
                                print("Stimulation duration", trial_time) 
                                self._intertrial_timer.start() 

                        else: 
                            if time.time() - self._event_start <= self._max_trial_time: 
                                # if the total event time has not reached the maximum time per event 
                                pass 
                            else: 
                                # if the maximum event time was reached, reset the event, 
                                # turn off the laser and start intertrial time 
                                print("Ending Stimulation, Stimulation time ran out") 
                                self._event = False 
                                laser_switch(False) 
                                trial_time = time.time() - self._event_start 
                                self._total_time += trial_time  
                                print("Stimulation duration", trial_time) 
                                self._intertrial_timer.start() 

4 - Light stimulation I 

5 - Light stimulation II 
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condition was met. The trigger module can incorporate any calculation, condition, or 

algorithm to classify a single pose estimation or a sequence of pose estimations. A set of 

example trigger modules that were published with DLStream is shown in Supplementary Table 

A. 

The basic architecture of a trigger module is shown in Code 6-7. A region of interest (ROI) 

trigger module comes with a simple set of parameters. The type of region (rectangle, circle, 

or ellipse), a center coordinate, and a radius or length/width parameter for the ROI. Any body 

part specified during the initialization will be tested for the condition when the function 

check_skeleton() is called by the experiment (see Supplementary Information 9.3.2) – i.e., if 

the body part is within the defined ROI. Depending on the result (TRUE or FALSE), a 

response_body is created to visualize the result in the live video stream. For example, with a 

circular ROI, the response body consists of a circle with the radius and center of the ROI. Its 

color is based on result. Red for FALSE and green for TRUE (see Figure 7).  

6 - Region Trigger module I 

class RegionTrigger: 
    def __init__(self, region_type: str, center: tuple, radius: float, bodyparts, 
        debug:  bool = False): 
        self._roi_type = region_type.lower() 
        region_types = {'circle': EllipseROI, 'square': RectangleROI} 
        self._region_of_interest = region_types[self._roi_type](center, radius, radius) 
        self._bodyparts = bodyparts 

7 - Region Trigger module II 

    def check_skeleton(self, skeleton: dict): 
        # check whether bodypart is in ROI 
        bp_x, bp_y = skeleton[self._bodyparts] 
        result = self._region_of_interest.check_point(bp_x, bp_y) 
        # The following creates the response_body that is visualized on the screen 
        color = (0, 255, 0) if result else (0, 0, 255) 
        if self._roi_type == 'circle': 
            response_body = {'plot': {'circle': 
                    dict(center=self._region_of_interest.get_center(), 
                    radius=int(self._region_of_interest.get_x_radius()), 
                    color=color)}} 
        response = (result, response_body) 
        return response 
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The response_body can also take other shapes or plot information as text, depending on the 

individual design of the trigger. 

9.3.4 Example stimulation module 

Stimulation modules, while straightforward to understand, require additional levels of 

code to work as required. Generally, they heavily depend on individual setups and experiment 

design. The following is an explanation of the fundamental basics of any stimulation module 

in DLStream. 

In principle, a stimulation is triggered and activates a predefined cascade of events (see 

Supplementary Information 9.3.2). The core of a stimulation module runs parallel to the 

experiment, so it does not stop or slow down the main process (pose estimation and behavior 

classification). As stimulation cascades might be engaged for a longer time, multi-processing 

is necessary. If all computations were included in a single process, any stimulation event would 

block all further progress until it is completed. 

The underlying architecture is split into separate scripts (refer to Supplementary Information 

9.3.1). The script stimulation.py contains the actual stimulation. show_visual_stim_img(), for 

example, creates a window and displays a preset image on a screen. This function can switch 

between background and stimulation images on a screen visible to the animal from inside the 

arena. The functions turn_on() and turn_off() control a device connected via a control board 

def example_protocol_run(condition_q: mp.Queue): 
  current_trial = None 
  dmod_device = DigitalModDevice('Dev1/PFI0') 
  while True: 
      if condition_q.full(): 
          current_trial = condition_q.get() 
      if current_trial is not None: 
          show_visual_stim_img(img_type=current_trial, name='inside') 
          dmod_device.turn_on() 
      else: 
          show_visual_stim_img(name='inside') 
          dmod_device.turn_off() 
 
      if cv2.waitKey(1) & 0xFF == ord('q'): 
          break 

8 - Stimulation module I 
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(see Supplementary Table A) that sends a digital trigger (TTL) signal. A version of this function 

is used in the optogenetic experiment to toggle a laser (see Supplementary Information 9.3.2).  

The script stimulation_process.py is the multi-process protocol that orchestrates the 

stimulation (Code 8 - Stimulation module I). In principle, a connection (queue) is built between 

the main DLStream process and the experimental protocol, controlling the stimulation event. 

This connection is straightforward and can only contain a single argument at a time. Once the 

trigger module detects a behavioral expression, the experiment passes an activation signal 

through the connection. The stimulation protocol, once started, remains in an endless loop. 

With every iteration of the loop, the protocol checks whether any new input came through 

the connection. If so, the stimulation event is initialized, and a preset cascade will be run. In 

the above example (Code 8 - Stimulation module I), the stimulation event displays a visual 

stimulation (image on a screen visible to the animal). Afterward, it activates a connected 

device (e.g., a reward dispenser). If the stimulation event is over, the protocol will display a 

background image and turn the device off. A similar protocol was used in Schweihoff et al. 

2021 1. 

9.3.5 Adapting an existing experiment 

The following is a short version of the complete instructions and tutorials available at 

https://github.com/SchwarzNeuroconLab/DeepLabStream/wiki. 

As previously stated, DLStream experiments are designed with sequences of modules (timer, 

stimulation, trigger) that enable the autonomous conduction of behavior-dependent 

experiments. Thus, depending on the paradigm, it might be necessary to test several 

behavioral expressions within the same basic experiment. The optogenetic experiment, for 

example, could be used in combination with any behavioral expression to label active neurons 

with Cal-Light.  

To change a trigger module, change the head direction trigger, 𝑠𝑒𝑙𝑓. _𝑡𝑟𝑖𝑔𝑔𝑒𝑟, to the trigger 

module of choice (Code 9 - Changing the trigger module; Supplementary Table A). When 

changing any module, it is essential to verify that all necessary parameters are included in the 

initialization. In this case, the region of interest trigger, RegionTrigger, needs a type of region 

(rectangle, circle, or ellipse), a center, and a radius or length/width parameter (see also 

Supplementary Information 9.3.3).  
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Additionally, it is necessary to specify which body parts should be included in the behavior 

detection. For example, the RegionTrigger module initialized in this experiment (Code 9 - 

Changing the trigger module) would detect whenever the animal’s nose point is within a 30 

px radius from the center.  

As stated in chapter 9.3.2, a typical experiment passes the pose estimation (skeleton) from 

every frame to the trigger module. The generic way of doing this is shown in Code 10 - 

Engaging the trigger module. The trigger module outputs a binary classification (True/False) 

if the behavioral expression of interest was present in the current frame. This Input/Output 

def check_skeleton(self, frame, skeleton): 
 
    if self._experiment_timer.check_timer(): 
        if self._total_time >= self._max_total_time: 
            # check if total time to stimulate per experiment is reached 
        else: 
            # if not continue 
            if not self._intertrial_timer.check_timer(): 
                # check if there is an intertrial time running right now, if not continue 
                # check if the headdirection angle is within limits 
                result, response = self._trigger.check_skeleton(skeleton=skeleton) 
                if result: 
                    # if the trigger returns true 
                else: 
                    # if the trigger returns false 
 

9 - Changing the trigger module 

class OptogenExperiment: 
    def __init__(self): 
        … 
        self._point = POINT 
        self._angle = 30 
        self._trigger = HeaddirectionTrigger(self._angle, self._point) 
        self._trigger = RegionTrigger (region_type = „circle“,center = self._point, radius = 30, 
                                                             bodyparts = [„nose“]) 
        self._intertrial_timer = Timer(15) 
        self._experiment_timer = Timer(1800) 
        self._max_trial_time = 5 
        self._min_trial_time = 1 
        self._max_total_time = 600 
        … 

10 - Engaging the trigger module 
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behavior is fundamental to all trigger modules. It allows the exchange of triggers in the initial 

step (Code 9 - Changing the trigger module) of an experiment – i.e., independent of the type 

of trigger module, the input is always check_skeleton(skeleton), and the output is always TRUE 

or FALSE. Additionally, the trigger module outputs a response body that can be used to 

visualize the output on the live stream. 
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9.3.6 Feature extraction and classification in DLStream 

 

Supplementary Figure C - Real-time classification in DLStream 

a, Cutout of example frame showing anogenital approach behavior classification with SimBA. The pose 
estimation of the two mice (colored dots, left) is used to extract features (middle). The features are fed into the 
classifier (right), and a binary classification is computed (white square, green border around mice) and detects 
the behavioral expression of interest. 
b, Cutout of example frame showing different behavior classified with them the same classifier as in a. The binary 
classification is computed (black square, red border around mice) and does not detect the behavioral expression 
of interest. 
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c, Schematic representation of a trigger module using a single classifier. The pose estimation sequence is updated 
with every new frame in a rolling window approach (Rolling Pose estimation Time Window, top). Time windows 
(stack of mice with red dots) are fed into the classifier module where features are extracted (document symbol, 
“Feat”) and used as input for a ML-classifier (CL). If the classification process takes longer than the pose 
estimation of the next frame (stopwatch with red zone), a computational bottleneck is formed (red funnel). Any 
behavior classification (net representation of mouse, bottom) will have an additional latency (“Waiting”) – i.e., 
the overflow until the classification is done. Alternatively, time windows need to be skipped to keep up with the 
real-time requirement (“Skipping”). 
d, schematic representation of a trigger module using a parallel classifier pool. The pose estimation sequence is 
updated with every new frame in a rolling window approach (Rolling Pose estimation Time Window, top). Time 
windows (stack of mice with red dots) are fed into the next idle classifier module instance where features are 
extracted (document symbol, “Feat”) and used as input for the ML-classifier (CL). If the classification process 
takes longer than the pose estimation of the next frame (stopwatch with red zone), the next idle classifier 
instance is engaged (green funnel). Suppose the pool size exceeds the classification time divided by the pose 
estimation time by at least one. In that case, any additional unexpected computational load can be compensated 
so that an idle instance can readily classify every new time window. The resulting behavior classification (net 
representation of mouse, bottom) is continuous, and unused classifier instances remain idle until necessary. 
 

 DLStream utilizes a multi-process pool of classifiers to work in parallel. A trigger 

module built with a machine learning classifier initializes a pool of classifier instances and 

feeds in a pose estimation sequence (time window; Supplementary Figure C). The time 

window is continuously updated with each new pose estimation so that classification is based 

on a rolling window approach rather than a discrete binning.  

To allow real-time classification with stable output times, multi-processing pools are required 

to compensate for occasional increased computational loads and general slow computation. 

For example, suppose the classification of a single classifier instance has a higher processing 

time than the pose estimation of the next frame. In a single classifier case, the classification 

of the next pose estimation window would be delayed until the classifier is ready. This would 

either increase the latency between pose estimation and behavior-dependent stimulation or 

reduce the detection rate because old, unclassified time windows are skipped in favor of the 

most recent window. 

A solution is the integration of a multi-process pool that works parallel but asynchronous. In 

that case, whenever a new time window is ready, and the previous classifier instance is busy, 

a new classifier instance from the pool is engaged, and classification continues without 

overhang. This way, a trigger module based on ML classification has a maximum latency of 

one classification cycle (including feature extraction), and no additional latency or skipped 

frames are encountered (Supplementary Figure C). 

Additionally, the classifier and feature extraction can be further optimized for real-time 

applications. For this, the feature extraction script, based originally on easy-to-use Python 
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packages like NumPy 146, pandas 147,148, and scikit-learn 145, can be translated into fast 

compilable machine code using numba 144, considerably decreasing computation time (see 

Supplementary Table E). An optimized version of the feature extraction code used in SiMBA 

was developed in collaboration with Simon Nilsson and integrated into DLStream 66. However, 

the same principle can be applied to any feature extraction script. Finally, classifiers based on 

scikit-learn 145, such as SiMBA or B-SoiD, can be real-time optimized using pure-predict 135 to 

translate the classifiers into pure Python-based versions that allow increased performance 

(see Supplementary Table E). With all three optimization steps combined, the effective 

integration of complex behavior classification into DLStream is possible with minimal 

additional latency. 

Supplementary Table E - Classification and feature extraction performance 

The Computation time of different classifiers and feature extraction scripts (FeatEx) as described in Methods 

7.13. 

Classifier Origin FeatEx Origin Extraction [ms] Classification [ms] 

B-SoiD B-SoiD 38.25 ± 3.20 22.88 ± 4.36 

SiMBA SiMBA 235.36 ± 4.87 113.39 ± 5.72 

pure-predict 

SiMBA 
SiMBA 235.56 ± 4.72 33.71 ± 4.79 

Simba 
Numba optimized 

FeatEx 
0.09 ± 0.69 114.04 ± 5.98 

pure-predict 

SiMBA 

Numba optimized 

FeatEx 
0.09 ± 0.69 9.44 ± 2.19 

 

 


