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Abstract

Modern numerical weather prediction models can simulate atmospheric
processes at a resolution of single kilometers. With growing complexity,
the realism of these simulations becomes increasingly di�cult to quan-
tify. Simply put, more details also leave more room for diverse kinds
of errors, especially in the hardly predictable locations of small-scaled
features. Traditional scores that compare forecast and observation grid-
point by grid-point tend to prefer smoother, less detailed predictions and
fail to appraise the realism of the simulated spatial structure. This thesis
explores novel veri�cation methods based on image �lters, which isolate
components at individual spatial scales and locations. These so-called
wavelets are widely used in image processing and computer vision. In
the context of meteorological forecast veri�cation, wavelets were previ-
ously employed to remove noise, or split up the overall error into small-
and large-scale contributions. Pursuing a di�erent direction, this study
demonstrates how wavelets can extract speci�c information about the
scale-structure, directedness and preferred orientation of the �elds to be
compared. The result is a series of scores which translate the abstract
information resulting from the wavelet transform into robust, easily in-
terpretable statements about the realism of the simulated correlation
structure. Directional aspects in particular � predicted features being
too linear, too round or oriented at the wrong angle � are not explicitly
treated by most existing veri�cation tools. In addition, it is shown how
the wavelets' localized nature can be exploited to visualize the local cor-
relation structure on a map, quantify spatially varying displacements, or
correct structural errors in a simple post-processing algorithm. Unlike
other popular approaches in the literature, the new techniques are not
limited to the special case of precipitation veri�cation. Provided that ob-
servations on a regular grid exist, wavelet-based scores can, in principle,
be applied to any meteorological �eld of interest.
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Chapter 1

Introduction

1.1 Motivation: The need for spatial veri�cation

When Charney, Fjörtoft and von Neumann performed the �rst successful numeri-
cal weather prediction in 1950, they modeled the upper level �ow over the entire
North American continent on a 15 × 18 grid. Their one-day simulation of a single
variable on a single vertical level at a horizontal resolution of 736 km was computed
in approximately 24 hours, allowing them to �just [...] keep pace with the weather�
(Charney et al., 1950). Seventy years later, the US National Centers for Environ-
mental Prediction (NCEP) currently operate a regional model for a similar domain
centered on the United States, which uses no fewer than 954 × 835 grid boxes on
51 vertical levels. The dynamical core of this �Rapid Refresh� system (RAP) simu-
lates the evolution of pressure, temperature, wind velocity and moisture without the
barotropic, quasi-geostrophic or hydrostatic approximations of its predecessors (Ben-
jamin et al., 2016). Physical processes which occur on scales smaller than the 13 km
grid spacing are represented by empirical algorithms, the so-called parametrizations.
Similar models are operated by many weather services around the world.

It is undisputed that the progress in scienti�c understanding and raw computa-
tional resources has tremendously improved the realism of our simulations and the
quality of our forecasts. But will this trend continue inde�nitely into the future?
Beyond RAP, NCEP employs an even higher resolved system called HRRR (high
resolution rapid refresh), covering the contiguous United States with a 3 km grid.
At this resolution, processes related to atmospheric convection, i.e., rapid buoyancy-
driven vertical exchange in thunderstorms, leave the realm of parametrization and
begin to be simulated explicitly by the dynamical core of the model. The ability to
resolve such high-impact weather events is a main incentive for the development of
so-called Meso-Scale models like HRRR. Has their goal been achieved? How much
better are these computationally expensive ultra high-resolution models?

In the atmospheric sciences, the process of quantitatively evaluating a model
against observations is called veri�cation. To check that their experiment had suc-
ceeded, Charney et al. (1950) simply plotted the 24 h forecast beside the real, ob-
served weather map and compared them by eye. This simple veri�cation technique,
while still popular today, is di�cult to quantify or reproduce. On a complicated
weather map, di�erent experts will focus on di�erent aspects of the forecast and
may even change their mind when presented with the same veri�cation task again.
To address the need for an objective, repeatable veri�cation procedure, researchers
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difference

Figure 1.1: Point-wise veri�cation of a precipitation forecast. Left: Pre-
dicted and observed hourly rain accumulation on 2007-07-21
16UTC (MesoVICT case 2). Right: Di�erence image.

have developed numerous so-called scores, i.e., functions that quantify the di�erence
between the predicted and observed values of one or more variables. The theoretical
foundation of modern veri�cation methods, based on the joint probability distribu-
tion of forecast and observation, was laid out by Murphy & Winkler (1987).

When the bene�ts of highly resolved modeling systems like HRRR are under
review, veri�cation studies often focus on precipitation forecasts for several reasons:
Firstly, rain and snowfall events have a high impact on human activities including
agriculture and aviation, as well as the safety and comfort of the general public.
Secondly, precipitation location and intensity continue to be di�cult to predict cor-
rectly. Many atmospheric processes from largest to smallest scales are involved in
its simulation, making precipitation a good test of model performance as a whole.
Lastly, rainfall is routinely observed as a highly resolved spatial �eld using weather
radars � a big advantage over variables like wind and pressure which are mostly ob-
served as point-wise measurements from weather stations, balloons and commercial
airplanes.

Figure 1.1 schematically shows the veri�cation of a high-resolution model fore-
cast against an objective precipitation analysis. At a glance, the prediction looks
mediocre: While the precipitation regions were mostly placed correctly, the forecast
contains a spurious rain system over Germany and generally fails to reproduce the
shape and extent of the observed features. When we take the di�erence of the two
�elds to compute an objective score, however, the forecast appears to be a complete
failure. Almost none of the rain �elds were placed exactly right, the mean absolute
error is larger than the mean observed intensity. In this example, we would have
improved our score by forecasting no rain at all. The reason for this disagreement
between subjective and objective evaluation is the so-called double penalty e�ect:
Any mis-placed precipitation system is punished by large di�erence values both in



1. Introduction 3

the location where it should have been predicted and in the location where the
forecast placed it instead. Smoother, coarsely resolved forecasts are less prone to
double penalties and therefore tend to receive better marks compared to the more
realistic-looking competition.

When the �rst highly resolved mesoscale forecasting systems appeared, researchers
quickly realized that the double penalty e�ect, while mostly harmless for smooth
�elds and at lower resolutions, dominates the objective scores in this regime. In
an early survey of such experiments, Mass et al. (2002) state that �Decreasing grid
spacing to less than 10-15 km generally improves the realism of the results but does
not necessarily [...] improve the objectively scored accuracy of the forecasts.� Their
assessment, mirrored by Done et al. (2004), encapsulates the frustration of model
developers and forecasters who could not quantify the perceived gain in realism using
traditional, gridpoint-by-gridpoint scores. In response to this issue, new veri�cation
scores were developed with the aim of avoiding double penalties and allowing for a
fair assessment of highly resolved forecast �elds. A detailed overview of the di�erent
strategies employed for this task will be given in chapter 3. Their common idea is
to transform the observed and predicted �elds from grid-point space to some other,
abstract representation, for example via spatial �lters, a change of basis function or
segmentation into discrete objects. Some of these approaches aim to imitate the de-
cision process of a human expert evaluating the forecast; many of them separate the
overall error into di�erent components like location, intensity and internal structure.

By 2007, the growing interest in spatial veri�cation, as well as the large number
of competing approaches, lead to the initiation of the �rst Spatial Forecast Veri�ca-
tion Methods Intercomparison Project (Gilleland et al., 2009, ICP). The developers
of various new techniques were invited to apply their methods to a standardized
set of common test cases, ranging from simple geometric shapes via arti�cially per-
turbed observations, to realistic case studies. A main achievement of the project
was the systematic classi�cation of all new techniques into four categories, accord-
ing to the kind of spatial transformation used: Neighborhood methods based on
spatial smoothing �lters (section 3.1.1), scale-separation methods based on spectral
basis functions (3.1.2), feature-based methods using image-segmentation algorithms
(3.1.3), and �eld deformation approaches which compute and optimize a cost function
for the transformation from one �eld into the other (3.1.4).

The second phase of ICP launched in 2013 under the title �Mesoscale Veri�cation
Intercomparison over Complex Terrain� (Dorninger et al., 2018, MesoVICT). Besides
updating the classi�cation to include a newly identi�ed �fth class (binary distance
measures based on the distance transform, section 3.1.5), MesoVICT provided a
range of new test cases centered on the European Alps and encouraged participants to
consider probabilistic forecasts, as well as uncertain observations and model variables
other than precipitation. The research collected in this thesis contributes to the
MesoVICT project, as well as the overall e�ort to develop useful veri�cation measures
for state-of-the art forecast models, by introducing a novel veri�cation technique
based on wavelet transforms.



4 1.2. Research Plan: Wavelets

1.2 Research Plan: Wavelets

One of the earliest proposed solutions to the double penalty and related issues was
the separation of the overall error into components corresponding to di�erent spatial
scales (Briggs & Levine, 1997). If, for example, a forecast simulates the motion of
a cold front with high precision but fails to correctly locate individual storm cells
in its wake, we should be able to evaluate the overall performance separately for
those two spatial scales. In principle, this could be achieved via a two-dimensional
Fourier transform which represents the meteorological �eld under consideration by a
superposition of plane waves. Intuitively, we can see that this approach is not ideal
by the simple fact that rain �elds, like those shown in �gure 1.1, do not resemble
plane waves: Instead of a smooth, periodically repeating pattern, we typically �nd
a limited number of discrete features with sharp edges, surrounded by uniform zero
values. In addition, radar composites and regional model forecasts do not necessarily
exhibit periodic boundary conditions. All of these aspects (edges, empty regions,
aperiodic boundaries) are represented in Fourier space by a superposition of many
di�erent frequencies, thereby leaving the result di�cult to interpret.

Wavelet transforms are an alternative to Fourier, which is better equipped to
analyze images like those in �gure 1.1. Instead of plane waves, the data is represented
by a superposition of localized waveforms, which vary not only in frequency but also
in location. To obtain a set of these small, localized waves (hence the diminutive
wavelets), we select an appropriate function as the �mother�-wavelet and obtain her
�daughters� by shifting and re-scaling. If, for example, the mother is ψ(t), one of
her daughters would be ψ(t/s − t0/s)/

√
s. A more precise de�nition, as well as an

introduction to all relevant aspects of wavelet transforms, is given in chapter 2. With
wavelets, we can represent large, smooth regions in one part of the image by a few
large daughter wavelets (large values of s) and capture localized features by a few
smaller-scaled daughters at the appropriate locations t0.

The basic wavelet-idea described above goes back to Haar (1910) and Gabor
(1946). In geoscience, such functions were �rst popularized under the name �wavelets�
by Goupillaud et al. (1984). The development of orthogonal wavelet bases, together
with highly e�cient algorithms for their computation (Mallat, 1989) lead to an ex-
plosion in wavelet applications across numerous �elds of science and technology.
Two-dimensional wavelet transforms were particularly successful in image processing
and computer vision, i.e., in the automatic analysis, interpretation and enhancement
of digital images. In their review of meteorological veri�cation methods based on
wavelets, Weniger et al. (2017) list image compression, segmentation, registration
and fusion, as well as facial recognition and texture analysis among the ways in
which the �eld of image processing has pro�ted from wavelets. In contrast, fore-
cast veri�cation studies have almost exclusively focused on the wavelet's ability to
decompose a single error into its components for di�erent scales.

The overarching goal of this thesis is to explore the unused potential of wavelets
for spatial forecast veri�cation. More speci�cally, previous studies essentially use
wavelets as a more convenient kind of Fourier transform but do not truly exploit the
fact that wavelets are localized in space. We will investigate the unique opportunities
granted by the local basis functions. It is demonstrated how wavelets can extract
very speci�c kinds of structural forecast errors, allowing us to draw conclusions like
�the spatial scale of the predicted rain �eld was too small� or �the simulated cold
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front was too linearly organized and rotated by an angle of 10◦�. In addition, we
de�ne a novel measure of displacement errors based on complex wavelets. A common
advantage of these new scores is their potential applicability to variables other than
precipitation.

The formulation of speci�c research objectives is postponed to section 3.4. First,
we present a complete introduction to the relevant wavelet theory in chapter 2. We
review the existing veri�cation methods in section 3.1, elaborate on the various kinds
of forecast errors (3.2) and survey ways in which the merits of a new veri�cation tool
can be assessed (3.3). Based on Weniger et al. (2017), section 3.4 describes the
existing wavelet-based veri�cation approaches and �nally speci�es �ve open research
questions. In chapter 4, we brie�y summarize the results published in Buschow
et al. (2019), Buschow & Friederichs (2020), Buschow & Friederichs (2021a), as well
as Buschow & Friederichs (2021b) (under review at time of writing) and Buschow
(2021b) (manuscript in preparation), and explain how each of the research questions
has been addressed. The full publications and drafts are attached in appendix A-
E. The thesis ends with concluding remarks and suggestions for future research in
chapter 5.

1.3 List of publications

The core results of this study have previously appeared in the following peer-reviewed
publications:

Buschow, S., Pidstrigach, J., & Friederichs, P. (2019). Assessment of wavelet-
based spatial veri�cation by means of a stochastic precipitation model (wv_verif
v0.1.0). Geoscienti�c Model Development , 12 (8), 3401�3418

Buschow, S., & Friederichs, P. (2020). Using wavelets to verify the scale struc-
ture of precipitation forecasts. Advances in Statistical Climatology, Meteorology

and Oceanography , 6 (1), 13�30

Buschow, S., & Friederichs, P. (2021a). SAD: Verifying the scale, anisotropy
and direction of precipitation forecasts. Quarterly Journal of the Royal Mete-

orological Society

The basic ideas for all three of these studies were jointly developed with my supervisor
Petra Friederichs, who also contributed to the revision and improvement of the �nal
drafts. The design of the speci�c experiments, as well as all programming and
most of the writing and visualization was carried out by me. Jakiw Pidstrigach
independently worked on the wavelet selection procedure in Buschow et al. (2019) and
lead the programming and writing for this part of the paper. A further publication
is currently under review at Geoscienti�c Model Development, the preprint has been
published as

Buschow, S., & Friederichs, P. (2021b). Veri�cation of Near Surface Wind
Patterns in Germany using Clear Air Radar Echoes. Geoscienti�c Model De-

velopment Discussions

The original idea for this study was my own, Petra Friederichs contributed to the
quality of the draft at later stages in the process.



6 1.3. List of publications

A �nal manuscript, so far with no major contributions from other authors, is in
preparation for future publication:

Buschow, S. (2021b). Measuring Displacement Errors with Complex Wavelets.
In preparation

Chapter 4 gives short summaries, the full articles are reproduced in appendix
A-E. Appendix D di�ers from the archived pre-print in that the erroneously missing
�gure 4 is included. In addition, the software needed to perform the underlying
wavelet transformation and the SAD veri�cation method have been published as
open source packages on the o�cial CRAN archive:

Buschow, S., Kingsbury, N., & Wareham, R. (2020). dualtrees: Decimated and

Undecimated 2D Complex Dual-Tree Wavelet Transform. R package version
0.1.4

Buschow, S. (2020). sad: Verify the Scale, Anisotropy and Direction of Weather

Forecasts. R package version 0.1.3

The complete software needed for the reproduction of Buschow et al. (2019) and
Buschow & Friederichs (2021b) has been permanently archived in a citable form:

https://doi.org/10.5281/zenodo.3257511 (Buschow, 2019)

https://doi.org/10.5281/zenodo.5036447 (Buschow, 2021a)



Chapter 2

Wavelets

This chapter is intended as a mostly self-contained introduction to the world of
wavelets. As such, sections 2.1 and 2.2 introduce two of the most widely used
wavelet-transforms from scratch, broadly following the �rst chapters of Ten lec-

tures on wavelets (Daubechies, 1992). The more specialized techniques used in our
veri�cation-approach follow in 2.3 and 2.4, drawing mainly on Eckley et al. (2010)
and Selesnick et al. (2005), respectively.

2.1 Continuous wavelets

The basic concepts of wavelet transforms are most easily understood using the exam-
ple of one-dimensional time-series analysis. In this application, wavelets can analyze
the frequencies in a signal at any given point in time. As an everyday example, we
consider a piece of music, wherein the pitch of a note corresponds to the frequency of
the sound wave. Figure 2.1 (a) shows the waveform associated with the main theme
from Gabriel Fauré's Pavane, Op.50, played here by solo �ute. From the amplitude
A(t) of the signal, we can see the volume changing over time as the musician (the au-
thor) attempts to emphasize the musical phrases and eventually runs out of breath.
To observe the changes in pitch, we must zoom in on di�erent parts of the signal
(blue lines).

We can isolate the individual frequencies by applying the Fourier transform to
the signal

Â(ω) = F{A}(ω) =
∫ ∞

−∞
A(t) e−2πiωt

︸ ︷︷ ︸
:=eω(t)

dt := ⟨A(t), eω(t)⟩ , (2.1)

where we have introduced the notation

� X̂ for the Fourier transform of a function X,

� X for the complex conjugate of X,

� eω(t) = e2πiωt for the Fourier basis functions and

� ⟨X,Y ⟩ =
∫
RX(t)Y (t)dt for the scalar product between two (complex) functions

on the real line.1

1A vector space (here the vector space of complex functions with the usual addition and scalar
multiplication), together with such a scalar product, is called a Hilbert space if it ful�lls an additional
completeness requirement.

7
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Figure 2.1: Theme from Gabriel Fauré's Pavane, Op.50 represented as
waveform (a, blue lines are zoomed sections of the signal),
Fourier spectrum (b, power in arbitrary units on the x-
axis), windowed Fourier transform (c) and continuous Mor-
let wavelet transform (d). Dark colors in (c,d) indicate high
power.
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For a discretely sampled signal of length n, equation 2.1 is replaced by the corre-
sponding discrete Fourier transform, wherein the integral becomes a sum over a �nite
set of basis functions {eω(t)|ω ∈ {0, 1n , . . . , n−1

n }}. Figure 2.1 (b) shows the resulting
frequency spectrum |Â|2 for our piece of music. The presence of certain notes is re-
�ected by thin lines at the corresponding frequencies. The global maximum is close
to 440Hz which corresponds to the concert pitch a, i.e., the �rst note of the piece.

While Â gives us some idea about the di�erent frequencies in the signal (con-
�rming, for example, that the �ute was properly tuned to 440Hz), it contains no
information on the timing of the individual notes. A natural idea to obtain such in-
formation is to apply the Fourier transform to short parts of the signal individually.
This can be realized in the form of a windowed Fourier transform

WF{A}(ω, t0) = ⟨A(t), w(t0 − t) · eω(t)⟩ := ((A · eω) ∗ w)(t0) , (2.2)

where w(x) is a real-valued window function with values close to zero everywhere
except for a small neighborhood around x = 0. Here, we have introduced the notation

⟨x(t), y(t0 − t)⟩ := (x ∗ y)(t0)

which denotes so-called convolutions: Intuitively, the function y, in our case the
window w, is shifted to each time step; the result of the convolution is the product
of the signal x with every shifted version of y. One useful property of convolutions
is the fact that they become multiplications in Fourier space:

F{(x ∗ y)(t0)}(ω) = F{x}(ω)F{y}(ω) (2.3)

Thanks to e�cient Fourier algorithms, the quickest way to compute a convolution is
often to transform to Fourier space, multiply and then transform back. Equation 2.3,
and especially its counterpart in two dimensions, is therefore the key to acceptably
fast implementation of not only the windowed Fourier transform, but also many of
the wavelet methods described below.

Figure 2.1 (c) demonstrates that WF works as intended: Starting at 440Hz, the
maximum of the coe�cients nicely traces the various changes of pitch throughout
the piece. In addition to the main maximum, we recognize a range of weaker local
maxima at discrete intervals above it: These are the overtones (880Hz, 1320Hz,
1760Hz, 2200Hz for a), the relative presence of which determines the characteristic
sound of the instrument.

Comparing panels (b) and (c), we observe that the lines at speci�c frequencies are
much broader in the windowed transform. This is a classic example of Heisenberg's
uncertainty principle (sometimes called Heisenberg-Gabor limit in signal processing),
which states that a function cannot be perfectly localized in both the time and
frequency domain. A more narrow window w improves the time localization at the
cost of a lower resolution in frequency: The limit of an in�nitely narrow window
recovers �gure 2.1 (a) (no frequency resolution), an in�nitely wide window is the
same as the regular Fourier transform (panel b, no time resolution).

To arrive at a useful analysis, w must therefore be chosen appropriately. Intu-
itively, we need larger windows to sample low frequencies while a smaller window
would be more appropriate for high frequencies. Equation 2.2 with its �xed window
for all ω is therefore generally not ideal to represent signals with multiple high and
low pitches. To construct a more �exible alternative, we begin with a windowed
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waveform ψ(t) = w(t)eσ(t) and then simultaneously adapt frequency and location
via the transform t→ (t− t0)/s. This is the basic idea of wavelet transforms: Select
a wave-function ψ as the so-called mother wavelet and generate a set of analyzing
functions, her so-called daughter wavelets:

ψ(t|s, t0) =
1√
s
ψ

(
t− t0
s

)
,

where the factor 1/
√
s re-scales all daughter wavelets to the same total energy

⟨ψ(.|s, t0), ψ(.|s, t0)⟩ = ⟨ψ,ψ⟩. The parameter s > 0, called the wavelet scale, is
closely related but not identical to the Fourier frequency ω. In analogy to F and
WF , we thus de�ne the wavelet transform as

W{A}(s, t0) = ⟨A(t), ψ(t|s, t0)⟩

A popular example of a mother with close relations to the Fourier transform is
the Morlet wavelet (Mallat, 1999), given by

ψ(t) = C · e−t2/2(eiσt − e−σ
2/2) , (2.4)

where C is a normalization constant. We recognize that ψ is just the Fourier basis
function eσ/(2π) minus a constant, localized by a Gaussian window. The scale s can be
related to an approximately equivalent Fourier frequency ω by �nding the frequency
where F{ψ(.|s, t0)} is maximized (Torrence & Compo, 1998). For the Morlet wavelet,
one can thus show that ω ≈ (σ +

√
2 + σ2)/2s. The resulting spectrum (�gure 2.1)

looks very similar to the windowed Fourier transform, albeit with a slightly better
time- and slightly worse frequency resolution.

To re-capitulate the di�erent signal representation from �gure 2.1, consider the
corresponding basis functions in �gure 2.2:

(a) Time series: single time steps, all frequencies

(b) Fourier basis: single frequency, all time steps

(c) Windowed Fourier: �xed time-window for all frequencies

(d) Wavelets: A single mother function, scaled and shifted

In the next section, we will see how the adaptive nature of wavelets can be
exploited to generate e�cient representations of complicated signals by appropriately
sampling the locations t0 and scales s. Before moving on, one more fundamental point
must be addressed, namely which functions ψ are appropriate as mother wavelets.
The basic idea here is that we require the existence of an inverse wavelet transform,
such that all information on A can be recovered from W{A}. For simplicity, we
assume here that A has zero mean. In practice, the mean value has to be treated
separately. It can be shown (see for example Kaiser 2010) that an inverse transform
is given by

A(t) =

∫ ∞

0

∫

R

1

s2
ψ(t|s, t0)W{A}(s, t0)dsdt0 ,
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as long as the following two conditions hold:

∫

R
|ψ(t)|2dt <∞ (2.5)

0 <

∫ ∞

0

|ψ̂(ω)|2
|ω| dω <∞ (2.6)

Condition 2.5 states that ψ must be square integrable and therefore has to decay
to zero as t→ ±∞. The Hilbert-space of square integrable functions (with the scalar
product de�ned above), will be referred to as L2(R). 2.6 is the so-called admissibility

condition, which can only be ful�lled if ψ̂(0) = 0 (otherwise the integrand would
diverge at the origin). Since the zero frequency component is just the signal mean,
it follows that

ψ̂(0) =

∫

R
ψ(t)dt = 0 . (2.7)

It can be shown that 2.7 is a su�cient condition for admissibility if ψ̂ is also contin-
uously di�erentiable (Mallat, 1999). For the Morlet wavelet, equation 2.7 is ensured
by subtracting the constant e−σ

2/2. By these de�nitions, wavelets are therefore in-
deed little waves that oscillate around zero (by 2.7) within some localized part of
the real axis (by 2.5). Note that neither of the two conditions impose particularly
strong constraints that would guarantee good localization in either time or frequency
� they merely broadly de�ne the realm of functions from which wavelets with useful
properties can be selected.
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Figure 2.2: Real parts of the basis functions corresponding to the dif-
ferent signal representations in �gure 2.1: Time series (a),
Fourier (b), windowed Fourier (c) and Morlet wavelet (d).
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2.2 Multi-Resolution Analysis

2.2.1 One Dimension

In the previous section, we have seen that both the continuous wavelet transform2 W
and the windowed Fourier transform WF represent our signal in a highly redundant
way: A one-dimensional vector (�gure 2.1 a) is transformed into a two-dimensional
array of coe�cients (�gure 2.1 c, d). Furthermore, using equation 2.3, we need to
compute three Fourier transforms for each scale of interest. The algorithm is thus
far from computationally e�cient.

We have already alluded to the idea that high frequencies need to be sampled
more often from smaller sections of the signal, whereas a few long intervals should
be su�cient to sample the low-frequency components. Formalization of this idea
leads to the so-called Multi-Resolution Analysis (MRA). In his landmark paper that
introduced the MRA, Mallat (1989) demonstrates that

� wavelets ψ(.|s, t0) can form an orthogonal basis of L2(R), if we allow only scales
s = 2j for integers j and scale-dependent shifts t0 = 2jn

� orthogonal wavelet transforms can be implemented in an e�cient recursive
algorithm by repeated application of a special pair of �lters

� the transform can be generalized to two dimensions by applying the �lters to
the rows and columns of a matrix in an alternating fashion

Here, a �lter is an operator F which performs the convolution of a discrete signal
A1,...,n with a set of �lter coe�cients f1,...,n:

(FA)k =

n∑

i=1

Ai−kfi (2.8)

The boundary conditions are treated periodically, i.e., An+i = Ai and A−i = An−i.
A simple example �lter would be f1 = f2 = 1/2, fi>2 = 0, which corresponds to a
moving average.

To see how �lters are related to e�cient, orthogonal wavelet bases, we now in-
troduce the Haar wavelet, which is given by

ψ(t) =





1 if 0 ≤ t < 1/2

−1 if 1/2 ≤ t < 1

0 otherwise .

(2.9)

The function ψ(t) is square integrable and integrates to zero. It can furthermore
be shown that its Fourier transform ψ̂(ω) decays quickly enough to ful�ll Eq. 2.6,
making this the simplest (and oldest, see Haar 1910) of all mother wavelets.3 Her
daughters are

ψ(t|s, t0) =





1/
√
s if t0 ≤ t < s/2 + t0

−1/
√
s if s/2 + t0 ≤ t < s+ t0

0 otherwise .

(2.10)

2continuous in the sense that all shifts t0 and scales s are allowed
3In chapter 3 we will see that she is also the most popular choice for forecast veri�cation.
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Following Mallat's suggestion, we now allow only those daughters whose scale
and shift are s = 2j , t0 = 2jn and denote them as

ψ(t|2j , 2jn) := ψj,n(t) = 2−j/2ψ
(
t/2j − n

)
. (2.11)

Since both scale and location are thus discretized, the resulting transformation is
also called discrete wavelet transform (DWT). It is easy to see that two daughters
with the same j but di�erent n are orthogonal to each other since their support does
not overlap:

supp(ψj,n) = {t ∈ R|ψj,n(t) ̸= 0} = [2jn, 2jn+ 2j) ⇒ ⟨ψj,n, ψj,n′ ̸=n⟩ = 0

Similarly, we can see from Eq. 2.10 that the positive and negative part of ψj+1,0

exactly cover the support of ψj,0 and ψj,1, respectively. The smaller daughters are
thus supported on the constant parts of the next larger daughters which implies that
ψj,n and ψj′ ̸=j,n′ are orthogonal as well (their scalar products are a constant times
the integral over the smaller daughter, i.e., zero).

We have thus seen that Mallat's choice of (s, t0) generates an orthogonal set of
Haar-wavelets which can therefore represent a signal of length 2J (J ∈ N) by exactly
2J coe�cients. A formal proof that the Haar-wavelets form a complete basis of L2(R)
is given, for example, in Daubechies (1992). Here we are mainly interested in the
e�cient algorithm for the Haar-decomposition based on �lters. To this end, consider
a discretely sampled signal A1, A2, A3, . . ., which can be understood as a piece-wise
constant function A on the real line. Apart from the scaling by

√
2, 2, 2

√
2, ..., the

products of such a signal with the �rst few Haar daughters are given by

j = 1 : (A1)− (A2), (A3)− (A4), (A5)− (A6), (A7)− (A8), . . .

j = 2 : (A1 + A2)−(A3 + A4), (A5 + A6)−(A7 + A8), . . .

j = 3 : (A1 + A2 + A3 + A4)−(A5 + A6 + A7 + A8), . . .

. . .

We notice that each bracket expression is the sum of two bracket expressions from
the previous scale. The coe�cients can thus e�ciently be calculated by algorithm 1.

Algorithm 1 Haar Multi Resolution Analysis (MRA) of Mallat (1989)

Input: signal A⃗ = (A1, . . . , A2J )
Output: wavelet coe�cients and signal mean

1: for j = 1 to J do

2: split A⃗ into pairs (A1, A2), (A3, A4), etc.
3: compute the wavelet coe�cients at scale j as the scaled di�erences of the pairs
4: replace A⃗ by the scaled sums of the pairs
5: end for

By re-using the results from the previous scale, we have to compute half as
many additions for scale 2, a quarter of the additions for scale three and so on.
This recursive algorithm can be understood as a sequence of �lters. Let G be the
di�erencing �lter with coe�cients g1 = 1/

√
2, g2 = −1/

√
2 and H a moving average
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... previous level

g 2↓ 〈A,ψj 〉

h 2↓
g 2↓ 〈A,ψj+1 〉

h 2↓ ... next level ...

Figure 2.3: Schematic representation of the one-dimensional fast discrete
wavelet transform: �g� and �h� mark the application of the
high- and low-pass �lter, �2 ↓� represents a down-sampling
step where only every second sample is retained.

... previous level 2× +

g 2↑ 〈A,ψj 〉

h 2↑ 2× +

g 2↑ 〈A,ψj+1 〉

h 2↑ ... next level ...

Figure 2.4: Inverse discrete wavelet transform: `+� denotes addition of
the two inputs, �2×� is a multiplication by two and 2 ↑ in-
dicates up-sampling of the inputs by a factor of two, i.e.,
inserting a zero after every sample.

�lter with h1 = h2 = 1/
√
2. Algorithm 1 can thus also be represented by the diagram

in �gure 2.3.
The inverse transform can be realized in a similar fashion by inverting the direction
of the diagram and replacing the downsampling by an upsampling step which in-
serts a zero after every value. This procedure is shown in �gure 2.4: The wavelet
coe�cients are successively up-sampled and added up to reconstruct the original
signal. This completes Mallat's multi-resolution analysis � a fast, orthogonal de-
composition into a set of wavelet basis functions which are localized in both time
and frequency. One strength of this approach lies in the possible generalization to
other mother wavelets: Start by de�ning an appropriate averaging �lter H by its
non-zero coe�cients h1, . . . , hN , then generate the corresponding di�erencing �lter
via the relationship

gi = (−1)ihN−1−i . (2.12)

H corresponds to a low-pass �lter while G, which is just an inverted version of
H where every second sign is �ipped, constitutes a high-pass �lter. Applying H
j − 1 times, followed by one application of G (and downsampling after every �lter
as in �gure 2.3) is equivalent to the projection onto a set of daughter wavelets ψj,n.
Similarly, j-fold application of H corresponds to projection onto a scaling function

ϕj,n which is itself a scaled, shifted version of some function ϕ, i.e.,

ϕj,n(t) ∼ ϕ(t/2j − n) . (2.13)

ϕ is sometimes called the father wavelet, even though it integrates to a �nite non-zero
value and is thus not a wavelet in the sense described above.
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Mathematically, the MRA is described as the nested Hilbert-spaces Vj , which are
spanned by the ϕj,n. We require that

(i) the spaces are nested in the sense that Vj ⊃ Vj+1 and
f(t) ∈ Vj ⇔ f(t/2) ∈ Vj+1

(ii) the shifts of ϕj(t) := ϕ(2−jt) are an orthogonal basis for Vj

(iii) the union of all Vj is a dense subspace of L
2(R)

(iv) the intersect of all Vj contains only f(t) = 0.

Condition three demands that every function in L2(R) is either in the union of the
Vj or can be arbitrarily well approximated by a member of that union. The fourth
condition puts a limit on how redundant the representation in terms of the ϕj,n can be
by forbidding non-trivial functions from living in all subspaces. From conditions one
and two, it follows that ϕj+1(t) = ϕj(t/2) can be represented as a linear combination
of the shifts of ϕj(t), i.e,

ϕ(t/2) =

∫

R
h̃(n′)ϕ(t− n′)dn′ = (h̃ ∗ ϕ)(t) | ⟨ϕ(t− n), . . .⟩

⇔ ⟨ϕ(t− n), ϕ(t/2)⟩ = h̃(n) ,

where we have used the orthogonality of the shifted ϕ to obtain the second line. The
convolution of a signal A with a father wavelet at scale j can thus be written as the
repeated convolution with h̃, i.e.,

(A ∗ ϕj)(t) = (A ∗ (h̃ ∗ ϕj−1))(t) = (A ∗ (h̃ ∗ h̃ ∗ . . . ∗ ϕ0))(t)
= ((. . . ((A ∗ h̃) ∗ h̃) ∗ . . .) ∗ ϕ0)(t) .

We can thus completely de�ne the father wavelet by setting ϕ0 := h̃ = h which shows
that the convolution with the scaled ϕ can indeed be realized by iteratively applying
a �lter h as in the algorithm described above. If all four conditions above hold,
an orthogonal wavelet basis of L2(R) can then be created from ϕ via equation 2.12.
This recipe has been used to design numerous wavelet bases with di�erent properties.
Filters with few non-zero coe�cients (like the Haar) have good localization in time
whereas longer �lters can achieve better localization in frequency. To quantify this
trade-o�, we introduce the notion of vanishing moments: A function ψ(t) has n
vanishing moments if

∀ 0 ≤ q < n :

∫

R
tqψ(t)dt = 0 .

All wavelets satisfy this condition for n = 0 by de�nition. More vanishing moments
indicate better frequency localization: It can easily be shown that multiplication
by a polynomial in time becomes a derivative with respect to frequency in Fourier
space, i.e., F{tX(t)} = i

2π
∂
∂ω X̂. A larger number of vanishing moments therefore

corresponds to a �atter X̂ near the origin (higher-order root), thereby limiting the
bandwidth from below. Furthermore, if a signal A behaves like a polynomial of
degree q < n within an interval of length 2j , then all wavelet coe�cients for scales
< j vanish in this interval if ψ has n vanishing moments. ψ thus gives a very sparse
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Figure 2.5: Daubechies wavelets with 1, 2, 4 and 8 vanishing moments.
Shown are the daughters at scale j = 6 for a signal of length
256. Each daughter was shifted so that its maximum is near
the center of the plot.

representation of signals which locally behave like smooth polynomials. Daubechies
(1988) proved that the smallest possible support length for a wavelet with n vanishing
moments is 2n, and constructed a family of wavelets with optimally short support.
We will refer to the nth Daubechies wavelet (n vanishing moments) as Dn.

Figure 2.5 shows a few examples from this family. D1 is identical to the Haar
wavelet from before (h1 = h2 = 1/

√
2, see equation 2.9), which has one vanishing

moment. Higher-order wavelets become increasingly smooth with a greater number
of sign changes while increasing the length of their support.

2.2.2 Two Dimensions

E�cient algorithms are desirable in time series analysis, but almost indispensable in
higher dimensions. An important application is the �eld of image processing which
is concerned with the analysis and e�cient representation of two-dimensional arrays
� the grey-scale intensities in a photograph or, in our case, values of a meteorological
variable on a regular grid.

To extend the MRA algorithm to two dimensions, we simply apply one of the
two �lters along the rows of the matrix and then another �lter along the columns of
the result. This decomposition, schematically shown in �gure 2.6, thus projects an
image onto three directional daughter wavelets at each scale:

ψj,90◦ = ϕj(x)ψj(y) (vertical)

ψj,0◦ = ψj(x)ϕj(y) (horizontal)

ψj,45◦ = ψj(x)ψj(y) (diagonal)

Figure 2.7 shows that ϕj(x)ψj(y) (panel a) and ψj(x)ϕj(y) (b) are mirrored ver-
sions of each other and act similar to directional derivatives in the x- and y-direction.4

The diagonal daughter ψj(x)ψj(y) (c) di�ers form her sisters in several ways. Being
the product of two high-pass �lters, these basis functions clearly represent an overall
smaller scale than their sisters with the same j (count the number of wave-crests).
In addition, their orientation is not unique, the �checkerboard� pattern is equally
aligned along either of the two image diagonals. We will discuss the consequences of
these properties in section 2.4.

4For the Haar wavelet in panel (a), they are exactly that: Finite di�erence approximations of
∂x and ∂y, calculated after some level of spatial averaging.
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... previous level

g 2↓

g 2↓ 〈A,ψj(x)ψj(y) 〉

h 2↓ 〈A,ψj(x)φj(y) 〉

h 2↓

g 2↓ 〈A, φj(x)ψj(y) 〉

h 2↓

g 2↓

g 2↓ 〈A,ψj+1(x)ψj+1(y) 〉

h 2↓ 〈A,ψj+1(x)φj+1(y) 〉

h 2↓

g 2↓ 〈A, φj+1(x)ψj+1(y) 〉

h 2↓ ... next level ...

rows

columns

rows

columns

Figure 2.6: Two-dimensional discrete wavelet transform.

D1

(a)

(b)

(c)

D2 D4 D8

Figure 2.7: Vertical (a), horizontal (b) and diagonal (c) daughters corre-
sponding to the Daubechies wavelets from �gure 2.5. Nega-
tive values are shown in blue, positive in red.
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Figure 2.8: Haar-MRA applied to a photo of a butter�y: Horizontal, di-
agonal and vertical coe�cients for j = 1 shown in the top-left,
top-right and bottom-right quadrant. The bottom left quad-
rant likewise contains those coe�cients for j = 2 and so on.
Blue and red colors indicate positive and negative values, all
coe�cients were scaled by x → sign(x) 4

√
x for clearer visual-

ization.

The 2D MRA represents an input image of size 512 × 512 by three 256 × 256
images at scale j = 1, three 128 × 128 images at scale j = 2 and so on. Figure 2.8
visualizes the decomposition in the style of Mallat (1989) such that all coe�cients
appear in one plot; the value of the father wavelet at j = 9 is represented by the pixel
in the bottom left corner. Note that both images in this �gure consist of 512× 512
pixels � the decomposition is orthogonal and thus contains no redundant information.
Comparing the bottom-right to the top-left quadrants, we observe increased positive
and negative coe�cients along the vertical and horizontal edges of the pattern inside
the wing. Increased absolute values within the featureless background of the image
appear only on large scales, i.e., near the bottom left of the plot. We furthermore
notice that the diagonal coe�cients appear to be weaker overall.

To conclude this introduction to the widely used methods of continuous and dis-
crete wavelet transforms, we give an example for the power of wavelet transforms. A
further noteworthy feature of �gure 2.8 is that most coe�cients are close to zero (we
applied a forth-root transform to render more of them visible) � the representation
in wavelet space is sparse. In �gure 2.9, we have implemented a naive image com-
pression algorithm by simply setting the smallest p% of all coe�cients to zero before
transforming back. For p = 75%, 90%, we can hardly discern any di�erences be-
tween the original and compressed image; only at very strong compression, artifacts
begin to emerge. If we simply store the indices of the retained coe�cients along with
their values, the representation in the bottom left panel (90% compression) requires
only one �fth of the original image size; the reconstruction procedure is quick thanks
to the recursive MRA algorithm.
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0% 75%

90% 98%

Figure 2.9: Butter�y image reconstructed from all coe�cients (top left)
and after removing the smallest 75%, 90% or 98%. The
dashed square represents the number of retained coe�cients
as the equivalent pixel area.
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2.3 The redundant discrete wavelet transform

As discussed in chapter 1, our goal is to analyze, and later verify, the structure of an
image. Before formalizing this idea in terms of spatial auto-covariances, we can intu-
itively see how the discrete wavelet transform might allow us to distinguish between
images with small- large-scaled patterns: For a smooth image with large features, the
coe�cients of the larger daughter wavelets are big and those corresponding to smaller
daughters become negligible; the reverse is true for images with a very �ne-grained
texture. Similarly, the separation into the directions could be used to di�erentiate
linear from isotropic structures.

A simple MRA-based veri�cation strategy would be to 1) perform the two-
dimensional DWT of forecast and observation 2) compute the total �energy�, i.e.
the sum over all coe�cients squared, for each combination of scale and direction and
3) compare the two resulting 3 × J matrices. It is, however, easy to see that the
resulting score would be sensitive not only to di�erences in spatial scale and orien-
tation, but also to di�erences in the locations of the features: If, for example, the
edge of a particular feature happens to be aligned with the sign-change of a Haar
daughter wavelet, it will contribute strongly to that daughter's coe�cient; shifting
that edge across the support of the wavelet will decrease the coe�cient.

Figure 2.10 demonstrates that these e�ects can have a substantial magnitude for
the kinds of images we want to study: As we shift the rain �eld from �gure 1.1 across
the grid of the daughter wavelets at scale j, the corresponding energy oscillates with
a period of 2j . The impact is limited for those daughters which are much smaller
than the dominant features in our example (j < 3). The large scales, however, vary
strongly: Initially j = 5 is almost tied with j = 4 in terms of total energy; after a
shift by 20 pixels, it drops almost to the level of j = 2. Which scales dominate to
what extend thus heavily depends on the location of the features.
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Δ x

Figure 2.10: Impact of shifts in the input image on the 2D MRA: Rain
�eld from �gure 1.1 (a) and resulting sum over squared
wavelet coe�cients (b) for the horizontally aligned Haar
daughter wavelets at scale j = 1, ..., 5 as a function of the
shift ∆x applied to the image in (a).
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... previous level

gj 〈A,ψj 〉

hj

gj+1 〈A,ψj+1 〉

hj+1 ... next level ...

gj ↑ gj+1 ...

hj ↑ hj+1 ...

Figure 2.11: Redundant discrete wavelet transform in one dimension, re-
alized as an algorithme à trous: Filter coe�cients are up-
sampled before each level of the decomposition, the signal
is not down-sampled.

A natural, albeit computationally costly, solution to this problem is to repeat the
analysis for every possible shift and average over the results. This is equivalent to
dropping the restriction to shifts t0 = 2jn (equation 2.11) and instead allowing all
integer displacements in both directions. This is the so-called redundant discrete

wavelet transform (henceforth RDWT) which represents an input image of size 2J ×
2J by 3× J × 2J × 2J coe�cients.

Recall, however, that the wavelets associated with the MRA are not generally
given by continuous functions ψ but only in terms of their �lter coe�cients hi.

5 How,
then, can the redundant transform be implemented? The answer was �rst given by
Holschneider et al. (1990) who introduced the algorithme à trous (French for �hole-
algorithm�) which is shown in �gure 2.11: Instead of down-sampling the signal, both
�lters are up-sampled by inserting additional zeros (�holes�) before each convolution.
The resulting wavelet transform is more well-behaved under shifts: A displacement
of the input signal simply results in an equal shift of all coe�cient �elds. As a
consequence, the spatial mean over the coe�cients is invariant under shifts.

Besides removing the problem shift-variance, the RDWT is attractive for our
purposes because it can be linked to the spatial structure of the image in a mathe-
matically well-de�ned framework. This is the theory of the locally stationary wavelet
process (henceforth LSW) developed by Nason et al. (2000) and Eckley et al. (2010).
To describe the ideas behind the LSW, we must �rst introduce some basic concepts
from spatial statistics. Let Z(r) denote a stochastic �eld of real-valued random vari-
ables on a regular discrete grid r = (x, y)T ∈ Z2. The probability of observing a
certain subset of the state space S ⊂ R at some location r1 is given by

Prob(Z(r1) ∈ S) =

∫

S
dµr1(z) ,

where µr1 is the probability measure associated with the process at r1. The expec-

5With the exception of the Haar wavelet, none of the Daubechies wavelets have an explicit
functional representation.
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tation value is de�ned as

E[Z(r1)] =

∫

R
z dµr1(z) ,

provided that this integral exists. The relationship between the values at two loca-
tions r1, r2 can be described by the autocovariance function

Cov(Z(r1), Z(r2)) = E [(Z(r1)− E[Z(r1)]) · (Z(r2)− E[Z(r2)])] .

How strongly the values at two di�erent parts of the grid correlate with each other
shapes the pattern of the resulting images. Cov thus formally describes the spatial
structure of the process.

We will call Z a stationary process if E[Z] is the same at every location r, and
the covariance depends only on the distance r1 − r2 := τ . Under this assumption,
information on the covariance structure can be obtained from a single image since
several pairs of locations belong to the same τ . We will refer to the stationary
covariance function as

c(τ ) = Cov(Z(r), Z(r− τ )) . (2.14)

For a su�ciently well-behaved process, we can equivalently study c's Fourier trans-
form, the so-called spectrum

Γ(ω) = F{c}(ω) ,

which describes the distribution of the total variance across frequencies. Here, F
denotes the two-dimensional Fourier transform and ω the vector of frequencies. Ac-
cording to equation 2.14, an estimate of c(τ ) is given by a convolution of some
realization Z1 onto itself. By equation 2.3, the squared Fourier transform |Ẑ1(ω)|2
can therefore serve as an estimate of Γ.

Assuming global stationarity, the structure of a spatial �eld can thus conve-
niently and e�ciently be studied based on the Fourier transform. For meteorological
�elds, this fully stationary setting is likely too restrictive, for example when multi-
ple weather systems create di�erent precipitation patterns throughout the domain.
Nason et al. (2000) lift the strong stationarity assumption by replacing the waves
of Fourier by wavelets and demanding that stationarity only holds locally. Here, we
directly introduce the two-dimensional version of their theory, which was developed
by Eckley et al. (2010). Assume that Z(r) lives on some �nite-sized regular grid, i.e.,

r ∈ R = {0, 1, ..., Nx − 1} × {0, 1, ..., Ny − 1} ⊂ Z2

and can be written as a random superposition of two-dimensional Daubechies daugh-
ter wavelets:

Z(r) =
∞∑

j=1

3∑

d=1

∑

u∈R
ψj,d,u(r) · wj,d,u · ξj,d,u (2.15)

Here, we have adopted the notation u = (ux, uy)
T ∈ R for the shift vector and d =

1, 2, 3 for the orientation (horizontal, vertical or diagonal) of the daughter wavelets
at scale j. Each daughter has an associated �xed weight w and is multiplied by
a normally distributed random variable ξ with zero mean and unit variance. We
further assume that all of the ξ for di�erent scales, locations and orientations are
uncorrelated.
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We call Z a locally stationary wavelet process (LSW) if the following two conditions
hold:

(i) Every wj,d,u has an associated Lipschitz continuous6 functionWj,d(x, y) de�ned
on (x, y) ∈ (0, 1) × (0, 1) which it approaches in the limit Nx, Ny → ∞ in the
following sense:

sup
u

|wj,d,u −Wj,d(ux/Nx, uy/Ny)| ≤ Cj,d/max(Nx, Ny)

where the sum over all Cj,d is �nite.

(ii) The Lipschitz constants Lj,d for Wj,d satisfy

∃K ∈ R : ∀j, d : Lj,d ≤ K

∞∑

j=1

3∑

d=1

22jLj,d <∞

To understand the idea behind this de�nition, imagine that Z generates the image
of the butter�y in �gure 2.8 at increasingly high resolutions as Nx, Ny → ∞. The
further we zoom in, i.e., the greater the resolution, the closer the coe�cients wj,d,u
have to approach the continuous functionsWj,d whose variation in space must vanish
across in�nitely small intervals � the process approaches stationarity in small regions
if we zoom in far enough.

The locally stationarity counterpart to the classic relationship between the sta-
tionary auto-covariance and the Fourier transform is then given by

∑

d

∞∑

j=1

|Wj,d(r)|2Ψj,l(τ ) = lim
Nx,Ny→∞

Cov(Z (r ◦N) , Z (r ◦N+ τ )) , (2.16)

where r ◦N is the element-wise product (xNx, yNy)
T and Ψj,l denotes the so-called

autocorrelation wavelet

Ψj,l(τ ) =
∑

u∈Z2

ψj,d,u(0)ψj,d,u(τ ) , (2.17)

i.e., the spatial autocorrelation of the redundant discrete daughter wavelets them-
selves. Eckley et al. (2010) prove that this representation is unique, meaning that
the process is uniquely de�ned by the local covariances or the limiting functions
W . In analogy to the Fourier case, the set of these squared coe�cients |Wj,d(r)|2
is called the local wavelet spectrum. We can obtain an estimator of this spectrum
by computing the RDWT of a realization Z1 and squaring the wavelet coe�cients,
i.e., Ij,d,u = ⟨Z1, ψj,d,u⟩2. The expectation value of Ij,d,u is asymptotically biased.
Uniting the indices (j, d) into a single index η for simpler notation, this result can
be written as

E [Iη,u] =
∑

η′
⟨Ψη,Ψη′⟩︸ ︷︷ ︸

:=Aηη′

|Wη′(ux/Nx, uy/Ny)|2 +O(min(Nx, Ny)
−1) .

6f(r) is Lipschitz if there is a non-negative Lipschitz constant L such that
|f(r1)− f(r2)| ≤ L||r1 − r2||



24 2.3. The redundant discrete wavelet transform

-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6

1 3 5 1 3 5 1 3 5
1
3
5
1
3
5
1
3
5

HH

HV

HD

VH

VV

VD

DH

DV

DD

(a)

-0.4

-0.2

0.0

0.2

0.4

1 3 5 1 3 5 1 3 5
1
3
5
1
3
5
1
3
5

HH

HV

HD

VH

VV

VD

DH

DV

DD

(b)

-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3

1 3 5 1 3 5 1 3 5
1
3
5
1
3
5
1
3
5

HH

HV

HD

VH

VV

VD

DH

DV

DD

(c)

-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3

1 3 5 1 3 5 1 3 5
1
3
5
1
3
5
1
3
5

HH

HV

HD

VH

VV

VD

DH

DV

DD

(d)

Figure 2.12: Bias correction matrices A−1 for the Haar wavelet (a), D2

(b), D4 (c) and D8 (d) on a domain of size 64× 64

Our naive estimator of the coe�cient for scale j and direction d thus contains in-
formation from the true limit coe�cients at all (j, d). How much information is
�leaking� from one pair of coe�cients to another is determined by the matrix A,
containing the scalar products of all pairs of autocorrelation wavelets. The bias can
be removed multiplying Iη at every location by the inverse matrix A−1:

E
[
(A−1Iη)u

]
= |Wη(ux/Nx, uy/Ny)|2 +O(min(Nx, Ny)

−1)

Figure 2.12 shows some examples of the bias correction operator A−1 which depends
on the choice of mother wavelet ψ and resolution (Nx, Ny). The values on the main
diagonal of A−1 are all positive and decrease with increasing scale. The correction
thus mainly decreases the large-scale coe�cients relative to the smaller scales, thereby
compensating for the greater degree of redundancy of the larger daughter wavelets.
This e�ect decreases as we move from coarse wavelets with short support (�gure
2.12 a) to larger smoother basis functions (d). As a secondary e�ect, the �rst side
diagonals corresponding to the horizontal and vertical daughters contain negative
values, indicting that information is leaking between neighboring scales. Conversely,
for the diagonal direction, these entries are closer to zero but some of the cross-terms
between the diagonal daughters and their horizontal and vertical sisters are negative.
This re�ects the special role of the diagonal direction which is not a rotation of the
other two (cf. �gure 2.7).
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Figure 2.13: Example rain �eld from �gure 2.10 (a), corresponding un-
corrected spatial mean Haar-wavelet spectrum (b) and the
result after bias correction with A−1 (c).

We can thus summarize the overall covariance structure of an image by comput-
ing the RDWT, applying the bias correction and averaging the squared coe�cients
over space to obtain one value for each combination of scale and direction. These
coe�cients can be interpreted as a measure of the variability represented by each
pair (j, d). This analysis is shown for our example rain �eld in �gure 2.13. Before
the bias correction, the coe�cients grow monotonically with scale due to the in-
creasing degree of redundancy (panel b). A−1 transfers much of that energy to the
intermediate scales (3-5) and strongly increases the small-scale diagonal entries at
the expense of the other two directions. The resulting spectrum (panel c) has a peak
in the vertical direction at scale four (roughly 16 pixels for the Haar wavelet). The
diagonal variance component has increased values on larger scales, corresponding to
the fact that the rain features are elongated most strongly along the diagonal. Both
the horizontal and vertical spectrum contain substantial negative values which pose
a challenge to our interpretation in terms of �variability� which should intuitively be
greater than zero. Such questions are addressed in chapter 4.
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2.4 The dual-tree complex wavelet transform

Besides the distribution of an image's variance across a range of spatial scales, direc-
tional aspects are an important part of the spatial structure. Is the pattern round or
linear? Are there sharp edges? What are the preferred directions? Figure 2.14 (b)
demonstrates that the orthogonal DWT from section 2.2 is not very well suited to
answer such questions: If we rotate the input image, one would intuitively expect
that each group of directional daughter wavelets becomes dominant at some angle
where the pattern is perfectly aligned with the horizontal, vertical or diagonal di-
rection. In reality, the diagonal daughters always capture less variability than their
vertical and horizontal sisters who, as a result, each dominate across a broad range
of angles. From this analysis, one would conclude that the original image was fairly
anisotropic, whereas the same image rotated by 70◦ is nearly isotropic (all three
directions have roughly the same energy).

The issue is partly remedied if we use the bias corrected RDWT (�gure 2.14 c)
instead. Thanks to the improved behavior under shifts, all curves look considerably
smoother. As discussed above, the bias correction moves energy from the horizontal
and vertical to the diagonal direction, which is now almost on par with the others.
Notice, however, that 45◦ is the dominant direction for two shorter intervals while
the other two directions appear only once for a larger range of angles. This e�ect
is due to the �checkerboard� pattern of the diagonal daughters (�gure 2.7) whose
direction is both +45◦ and −45◦. Using this transform, it is therefore impossible
to decide between the two distinct diagonal orientations. In addition, the overall
degree to which one direction dominates, i.e., the analyzed anisotropy, still depends
considerably on the orientation of the image.
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Figure 2.14: Wavelet spectra averaged over all locations and scales as a
function of the angle by which the image in (a) is rotated.
Panel (b) corresponds to the orthogonal Haar DWT, (c)
shows the corresponding bias corrected RDWT.
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The poor directional properties of the classic DWT were one of the key motivations
behind the Dual-Tree Complex Wavelet Transform (henceforth DTCWT) of Kings-
bury (1999)7. The following overview of their approach is primarily based on the
tutorial paper by Selesnick et al. (2005). As implied in the name, the basic idea of
the DTCWT is to replace the real-valued mother and father wavelets ψ and ϕ by
complex functions

ψ(x) = ψr(x) + iψi(x)

ϕ(x) = ϕr(x) + iϕi(x) ,

where (ψr, ψi) and (ϕr, ϕi) are pairs of real-valued wavelets and scaling functions,
respectively, which are out of phase by 90◦8. This phase-shift is analogous to the
Fourier basis functions whose real and imaginary part are sine and cosine-waves. It
can be shown that the resulting complex parent functions then have only positive
frequency components, which will be the key to overcoming the poor directionality.

In practice, the projection onto the real and imaginary parts of the wavelet can
be realized by two separate MRAs with mother and father �lters gr, gi, hr, hi which
are designed such that the two resulting functions satisfy the phase-shift condition.
The corresponding diagram is identical to two copies of �gure 2.3 � hence the �Dual-
Tree� part of the name. The double redundancy of this transform (twice as many
coe�cients as input values) ameliorates the shift-sensitivity of the classic DWT: Each
support contains two wavelets which are out of phase with each other. A small shift
of the input will result in a transfer of energy from the imaginary to the real part
(or vice versa). The phase of ⟨A,ψ⟩ changes while the amplitude remains nearly
constant.

As in the real-valued DWT, we can create a two-dimensional transform by ap-
plying one �lter to the rows and another to the columns of and image. One complex
diagonal daughter is then given by

ψ(x)ψ(y) = (ψr(x) + iψi(x)) · (ψr(y) + iψi(y))

= ψr(x)ψr(y)− ψi(x)ψi(y) + i(ψr(x)ψi(y) + ψi(x)ψr(y)) .
(2.18)

To see how the phase-shift impacts the direction of the resulting wavelet, let us
imagine, for now, that ψ is simply a Haar wavelet with support length 4 and a
phase-shift by 90◦ corresponds to a shift of the wavelet by one unit9. According to
equation 2.18, the real part of ψ(x)ψ(y) then schematically looks like this:




− − + +
− − + +
+ + − −
+ + − −




ψr(x)ψr(y)

−




− − + +
− − + +
+ + − −
+ + − −




ψi(x)ψi(y)

=




+ + − −
− + −
− − + +
+ − +
+ + − −




ℜ(ψ(x)ψ(y))

For better visibility, we have marked positive values by + and negative values by −.
We note that the orientation of ψr(x)ψr(y) and ψi(x)ψi(y) is ambivalent while their

7Notably, lacking shift invariance is also among the issues that the DTCWT is meant to address.
8More precisely, they are a Hilbert pair, i.e., ψi = H(ψr) = ( 1

πt
∗ ψr).

9This is not the Hilbert transform, just a simpli�ed example!
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di�erence is uniquely oriented at 45◦ to the left of the vertical. For the imaginary
part, we �nd




− − + +
− − + +
+ + − −
+ + − −




ψr(x)ψi(y)

+




− − + +
− − + +
+ + − −
+ + − −




ψi(x)ψr(y)

=




− − + +
− − + +
+ − +
+ + − −

+ + − −




ℑ(ψ(x)ψ(y))

The imaginary part thus has the same orientation and is phase shifted with respect
to the real part (notice how empty the diagonal in ℜ(ψ(x)ψ(y)) is �lled with negative
values in ℑ(ψ(x)ψ(y))). A daughter wavelet for the other diagonal is given by

ψ(x)ψ(y) = (ψr(x) + iψi(x)) · (ψr(y)− iψi(y))

= ψr(x)ψr(y) + ψi(x)ψi(y) + i(ψi(x)ψr(y)− ψr(x)ψi(y)) .
(2.19)

Following the same scheme as equations 2.18 and 2.19, we obtain a total of six
complex daughter wavelets with six distinct orientations:

ψ(x)ψ(y) = ψrψr − ψiψi + i(ψiψr + ψrψi)

ψ(x)ψ(y) = ψrψr + ψiψi + i(ψiψr − ψrψi)

ψ(x)ϕ(y) = ψrϕr − ψiϕi + i(ψiϕr + ψrϕi)

ψ(x)ϕ(y) = ψrϕr + ψiϕi + i(ψiϕr − ψrϕi)

ϕ(x)ψ(y) = ϕrψr − ϕiψi + i(ϕiψr + ϕrψi)

ϕ(x)ψ(y) = ϕrψr + ϕiψi + i(ϕiψr − ϕrψi)

(2.20)

Here, we have dropped the arguments of the functions on the right hand sides in
the interest of shorter notation, the �rst function is always implicitly of x and the
second of y. The complex conjugates of these wavelets (ψ(x)ψ(y) etc.) would add no
new directions since the imaginary parts are merely inverted. The two-dimensional
DTCWT can be realized as four separate DWTs with the four di�erent combinations
of real and imaginary �lters applied to the rows and columns. This procedure,
including the re-combination into the six daughters according to equation 2.20, is
shown in �gure 2.15. Despite the seemingly complicated diagram, the algorithm is
actually easy to understand and implement as it merely consists of four completely
independent DWTs, the results of which can simply be added and subtracted at the
very end.

Instead of the Haar wavelet from our crude example above, other �lters with
better frequency localization are used in practice. For an overview of di�erent �lter-
design approaches for the DTCWT, we refer to Selesnick et al. (2005) and references
therein. As a further technical detail, it must be mentioned that the �rst stage of the
DTCWT is usually treated by a di�erent set of �lters than all others. This is related
to the fact that the desired 90◦ phase-shift can only approximately be realized for a
�nite-sized �lter. In particular, it is violated for the �rst stages where the daughter
wavelets are short. This e�ect can be compensated by using a di�erent set of �lters
for the �rst level, chosen such that gi is equal to gr, shifted by one sample (and
likewise for hr and hi).
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Figure 2.15: One level of the two-dimensional DTCWT. gr, gi, hr, hi are
the �lters corresponding to ψr, ψi, ϕr, ϕi. The split, followed
by + and −, indicates that the two inputs are added or
subtracted.
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15° 45° 75° 105° 135° 165°

Figure 2.16: DTCWT daughter wavelets corresponding to the q_shift_b
and near_sym_b �lters from the dualtrees R-package. Top
row: Real and imaginary part as colors and contours. Bot-
tom: Modulus squared.

Figure 2.16 shows the resulting daughter wavelets at scale j = 5 using a nearly
symmetrical biorthogonal wavelet with 19 wavelet �lter coe�cients for the �rst level
and �quarter-shift� wavelet �lters with 14 coe�cients on all other levels. As desired,
the real and imaginary part are shifted by 90◦. The overall amplitude |ψ|2, shown
the bottom row, follows a smooth bell-shape without oscillating. This is another
advantage of the DTCWT as it allows for an unambiguous localization of features.

The horizontal and vertical direction are replaced by 15◦, 165◦, 75◦ and 105◦. As
in our simple example above, the two diagonals are now distinctly oriented at 45◦

and 135◦. Notice, however, that these two daughters still di�er qualitatively from
the other four (compare the number of wave-crests) because they are still generated
from two high-pass �lters. Kingsbury (2006) address this by applying special �lters
gdiagr , gdiagi in the diagonal branches of the transform. In the resulting DTCWT,
all directions are (nearly) equal. As a caveat, the inverse transform can no longer
perfectly re-construct the input image.

To demonstrate the bene�ts of the DTCWT, we repeat our experiments on shifted
and rotated images (�gures 2.14 and 2.10, respectively). Figure 2.17 a) demonstrates
that the shift invariance is nearly perfect. The RDWT achieves the same result
at the cost of a 3 × J-fold redundancy (for an input image of size 2J × 2J) � the
DTCWT is redundant by a factor of only four. The directional behavior (panel b) is
also clearly improved compared to the DWT (�gure 2.14 b), each direction has one
distinct maximum. The outsider role of the diagonal daughters, however, remains
clearly visible. Using the corrected diagonal �lters of Kingsbury (2006) (panel d), we
can achieve a near-perfect balance between the six orientations. A bias-correction as
in �gure 2.14 (c) is not needed. Due to the increased number of sampled directions,
we can also expect that measures of anisotropy derived from this transform should
not depend strongly on the orientation. More details are given in chapter 4, as well
as Buschow & Friederichs (2021a) (in appendix C), where such a measure is explicitly
de�ned.

Despite the already nearly perfect shift-invariance of the DTCWT, a fully re-
dundant version of this transform is nonetheless needed when we want to quantify
the spatial structure at every individual location. The redundant DTCWT can
be realized by replacing each of the four DWTs by the corresponding RDWT, i.e.,
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Figure 2.17: Shift- and rotation sensitivity of the DTCWT. (a) and (c)
correspond to the shift-experiment from �gure 2.10, (b) and
(d) to the rotations from �gure 2.14. The top row (a,b)
shows results for the wavelets shown in �gure 2.16, the
diagonal-corrected wavelets following Kingsbury (2006) are
shown below (c,d).

removing the downsampling step and upsampling the �lters instead. Nelson et al.
(2018) present the extension of the LSW framework to the case of DTCWT wavelets.
Their de�nition is identical to equation 2.15, except that ψ and w are both complex
valued. The stationarity conditions and the need for a bias correction matrix A−1

are unchanged as well. There is, at the time of writing, no proof that A is invertible
for any wavelets other than the Daubechies family used by Nason et al. (2000) and
Eckley et al. (2010). Nelson et al. (2018) report that, in practice, A−1 can be com-
puted for the DTCWT case. This can be achieved by (1) numerically calculating the
autocorrelation wavelets via the complex counterpart to equation 2.17 (taking the
complex conjugate of the �rst wavelet in the expression), (2) calculating the matrix
of their inner products A and (3) numerically inverting it, if possible.

As an example, �gure 2.18 shows how the bias-corrected redundant DTCWT can
be used to locally analyze the preferred orientations in an image. By marking the
regions where the directional components are largest, we have essentially performed
a crude multi-scale edge detection algorithm: The legs and antennae are very slim
and show up only on the smallest scales. Fine horizontal and diagonal lines in the
bottom half of the wing show up on this scales as well. At j = 2, 3, the left edge of
the wing is traced by large values for various directions following the shape of the
edge; for the two largest scales, the broad light spots in the upper half of the wing
become the main feature. Only the highest contrast along the left side of the wing
is intense enough to show up in the top 1% of coe�cients at scale 5.
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j=2 j=3

j=4 j=5

Figure 2.18: Redundant DTCWT analysis of the butter�y test image:
Contours contain pixels where the squared coe�cients for
a particular direction are in the top 1% of all values for a
particular scale j = 2, 3, 4, 5.



Chapter 3

Spatial Veri�cation

This chapter introduces the main approaches to the problem of spatial forecast ver-
i�cation found in the literature. We begin with the canonical classi�cation of ver-
i�cation techniques (Gilleland et al., 2009; Dorninger et al., 2018) based on their
technical implementation. For each of the �ve classes, one popular example is de-
scribed in some detail. Next, we survey the various kinds of forecast errors and see
the reactions of the existing scores. The penultimate section of this chapter discusses
di�erent ways of assessing the merits of a veri�cation technique. In the �nal section,
we revisit the current state of the art in wavelet-based forecast veri�cation in light
of the preceding discussions and identify open research questions.

3.1 The �ve styles of spatial veri�cation

One main result of the ICP project was the successful categorization of the nu-
merous existing spatial veri�cation techniques into four classes (Gilleland et al.,
2009), namely neighborhood, feature-based, �eld-deformation and scale-separation
methods. Binary distance metrics, originally seen as a type of �eld-deformation
method, were later re-classi�ed into their own, �fth category (Dorninger et al., 2018).
This already hints at the imperfections of the system (as is rightfully acknowledged
Dorninger et al. 2018): Some approaches combine multiple styles (Lack et al., 2010;
Yano & Jakubiak, 2016; Yu et al., 2020), others are hard to classify at all (Marzban
& Sandgathe, 2009; Hou & Wang, 2019). The �ve-class framework is nonetheless
widely used and very helpful to get an overview of the many di�erent ways in which
the spatial veri�cation problem has been tackled. The subsequent sections therefore
describe each class in turn and introduce one example score in detail. These �ve
scores will serve as illustrative examples for sections 3.2 and 3.3, and help put the
new veri�cation strategy introduced in chapter 4 into context.

3.1.1 Neighborhood methods: FSS

A very straightforward solution to the double-penalty problem is to relax the re-
quirement that forecast and observation should agree at each individual grid-point.
Instead, we may consider a neighborhood around each grid-point and ask whether
the mean properties in this neighborhood are in agreement. If the data are given as
gridded �elds, this is equivalent to applying some form of smoothing �lter.

33
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observation

forecast

Figure 3.1: Example of the neighborhood veri�cation approach: Forecast
and observation are thresholded, the result is smoothed via a
moving average.

Figure 3.1 shows why this approach is sometimes called fuzzy veri�cation: The
information whether it rained at any particular pixel is smeared out across a neigh-
borhood of size L, such that displacement errors smaller than L are not punished.
Here, the smoothing was not applied to the original intensities, but to the thresh-
olded �elds of ones and zeros, indicating whether some threshold T was exceeded at
each point. This is the approach of the Fractions Skill Score (FSS) introduced by
Roberts & Lean (2008), which is summarized in algorithm 2.

Algorithm 2 Fractions Skill Score of Roberts & Lean (2008)

Input: forecast Y , reference X, thresholds T , neighborhood sizes L
Output: FSS as a function of T and L

1: for all T ,L do

2: calculate the fraction of X and Y exceeding T in a square neighborhood of
size L around each grid-point.

3: calculate the mean-square error (MSE) between the two �elds of fractions
4: calculate the reference MSEref as the maximum possible MSE in the case where

forecast and observation are uncorrelated in space
5: calculate FSST (L) = 1− MSE

MSEref

6: end for

The result of the FSS-analysis is a group of curves FSST (L) indicating, for each
threshold, the forecasts skill as a function of the spatial scale below which errors are
neglected. The limit value FSS(L→ ∞) is equal to one if the frequency fo(T ) with
which T is exceeded in the observations was predicted correctly. Positive (negative)
values of the asymptotic FSS indicate a positive (negative) frequency bias. To aid
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the interpretation of the FSS, Roberts & Lean (2008) furthermore introduce the
concept of a minimum skillful scale lmin, de�ned as the smallest neighborhood size
with FSST (l) > 0.5+fo(T ). The threshold 0.5+fo(T ) is the value of FSS one would
obtain at L = 1 if the predicted fraction at every grid-point were fo(T ). This serves
as a baseline skill which a useful forecast should ideally exceed. The ability to make
statements like �forecast X can skillfully predict precipitation locations within a range

of lmin ≈ ... km� has contributed to FSS's considerable popularity. For an overview
of several other neighborhood techniques, we refer to Ebert (2008).

3.1.2 Scale-separation methods: ISS

It is interesting to note that Ebert (2008) includes the wavelet-based Intensity Scale
Skill-Score (ISS) of Casati et al. (2004) in their review of fuzzy methods. This tech-
nique was only later re-classi�ed into the scale-separation category. The similarity
and possible confusion between the two classes is also evidenced by the full title
of Roberts & Lean (2008) which describes FSS as �scale selective�. The canoni-
cal distinction between neighborhood and scale-separation is that methods in the
former category apply some form of low-pass �lter (i.e. smoothing) to remove all
variability below a certain spatial scale, while the latter class of techniques relies on
high-pass �lters to split the total variability up into a spectrum of scales. To see the
fundamentally di�erent kinds of information that are generated by such a spectral
decomposition, we consider the aforementioned ISS, given by algorithm 3.

Algorithm 3 Intensity-Scale Skill-Score of Casati et al. (2004)

Input: forecast Y , reference X, thresholds T
Output: ISS as a function of T and and scale j

1: apply noise to all rainy pixels in Y and X to avoid discretization errors
2: replace non-zero values in both �elds by their binary logarithm (set zero values

to −6) to render the distribution more nearly normal
3: re-calibrate Y to the marginal distribution FX(x) via Y

′ := F−1
X (FY (Y ))

4: for all T do

5: convert X and Y ′ into binary images by thresholding at T
6: compute the di�erence X − Y ′

7: compute the observed fraction of threshold exceedances fo(T )
8: decompose X−Y ′ into components Zj at scales j = 1, . . . , J via a Haar-MRA
9: for all scales j do
10: compute the spatial mean Z2

j

11: compute ISS(j, T ) = 1− Z2
j / (2 · fo(T ) · (1− fo(T )) · J)

12: end for

13: end for

The reference score in the ISS (step 11) corresponds to a Poisson process. Due to

the orthogonality of the MRA, the individual Z2
j add up to the overall MSE between

the thresholded �elds. An example of this error decomposition is shown in �gure 3.2.
The key di�erence to fuzzy methods is that the information on di�erent scales does
not overlap: Consider an observed feature of size 2j which was completely missed
by the forecast. In this case, ISS will indicate decreased skill at scale j but not at
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observation

forecast

Figure 3.2: Illustration of the ISS: Separation of the binary di�erence
between forecast and observation into di�erent scales via a
Haar-MRA.

j+1, j− 1, etc.1 In contrast, all FSS values are lowered by the missing feature until
L is large enough to both contain the missing observed object and an equal amount
of predicted precipitation. The observation that this L may well be much larger
than j further indicates that scale and neighborhood size relate to di�erent length
scales: The former is more closely related to the size of the erroneous objects while
the latter can be seen as a measure of their spatial displacement2.

Other scale-separation techniques need not aim to decompose error-images into
scales, but they all share the technical basis of isolating individual scales of variability;
examples include Willeit et al. (2015) and Wong & Skamarock (2016) who rely on
Fourier transforms and the variogram-based approaches of Marzban & Sandgathe
(2009), Scheuerer & Hamill (2015) and Ekström (2016). An overview of other
wavelet-based techniques is given at the end of this chapter.

3.1.3 Feature-based methods: SAL

The basic idea of feature-based spatial veri�cation techniques is that a human expert,
tasked with visually evaluating the forecast shown in �gure 3.3, might analyze the
images in terms of discrete objects: The observation may be decomposed into two
large, elongated precipitation regions in the western half of the domain. In the
forecast, the eastern feature looks similar to the observed one, only displaced to the
North-East while the other object is nearly at the right location but has a completely
di�erent shape.

In terms of image processing, this corresponds neither to a high- nor low-pass
�lter but rather an image segmentation algorithm, as shown in the right part of
�gure 3.3: Forecast and observation are thresholded at some value T which may be

1This is only exactly true if the precipitation errors are shaped like Haar wavelets.
2Skok & Roberts (2018) exploit this fact to measure displacement errors using FSS
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observation

forecast

Figure 3.3: Example of an object decomposition procedure.

the same or di�erent for the two images. In the resulting binary image, connected
regions of ones are identi�ed as discrete objects. To obtain fewer, more reasonable-
looking objects, the segmentation is typically preceded by a spatial smoothing step
(Davis et al., 2006). Depending on the speci�c method, a number of properties like
location, shape, orientation or intensity are calculated for each resulting object.

As a relatively simple and popular example, we consider the Scale, Amplitude and
Location method (Wernli et al., 2008, SAL) which records only the total rain intensity
Ri, centroid location ri and the ratio Vi between total and maximum intensity in
each object i. We let ⟨.⟩ denote the average over all objects in a �eld, weighted by
their intensities Ri. SAL then computes two object based characteristics for forecast
and observation separately: The �peakedness� Vobs, for = ⟨Vi⟩ and the scattering of
objects robs, for = ⟨|ri − ⟨ri⟩|⟩, which result in two object-based scores:

S = 2 · Vfor − Vobs
Vfor + Vobs

L2 =
2

dmax
· |rfor − robs| ,

where dmax is the maximum distance between two points in the domain. These are
combined with two non-object scores,

A = 2 · Rfor −Robs

Rfor +Robs

L1 = |⟨ri⟩for − ⟨ri⟩obs|/dmax ,

to obtain the full SAL analysis. Here, Robs, for denotes the total observed and forecast
intensity. A is thus a simple relative intensity error, S compares the forecast and
observed structure in terms of number and peakedness of objects, and L = L1 + L2

quanti�es location errors.
Note that SAL uses the object-decomposition to calculate the properties of the

two �elds but does not compare individual features to each other. Other popular
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observation

forecast

Figure 3.4: Schematic representation of a �eld deformation method. Top
right: Optical �ow of the observed into the forecast �eld.
Bottom right: vice versa. Arrows go from the original grid
points to the corresponding locations in the morphed image
(pale colors).

techniques like CRA (Ebert & McBride, 2000) and MODE (Davis et al., 2006, 2009)
emulate the human reasoning described in the beginning of this section more closely
by attempting to match predicted to observed features. If successful, this step allows
for a very precise quanti�cation of displacement and other errors. Unfortunately, the
question which parts of the two �elds are supposed to represent the same feature
is often di�cult to answer objectively and may sometimes be entirely ill-posed (see
discussion in section 3.2). CRA therefore often requires a human expert to inspect
individual veri�cation results (Mariani & Casaioli, 2018) while MODE calculates a
total interest function by comparing every forecast object to each observed object,
thereby largely circumventing the need to �nd individual matches.

3.1.4 Field-deformation methods: DAS

Another strategy to derive meaningful error measures between two images is to �nd
an algorithm which explicitly corrects the errors and then quantify the amount of
change made by that algorithm. This is the basic idea of �eld-deformation methods,
which compute a vector �eld that transforms one image into the other (�gure 3.4).
In the �eld of computer vision, this type of vector �eld is known as an optical �ow

(Lucas & Kanade, 1981; Horn & Schunck, 1981). Our example for this class of
veri�cation scores is the Displacement and Amplitude Score (Keil & Craig, 2007,
2009, DAS), which employs the pyramid-matching scheme in algorithm 4.

Displacement errors are quanti�ed by the mean absolute value of the estimated
vector �eld, the point-wise error after application of the �ow can be seen as an
amplitude error. In order to properly treat false alarms and misses, Keil & Craig
(2009) proposed to consider the �ow separately at pixels with predicted precipitation
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Algorithm 4 Pyramid matching optical �ow of Keil & Craig (2007)

Input: forecast Y , reference X, maximum averaging length 2N

Output: vector �eld approximately transforming Y into X

1: set n = N
2: while n > 0 do
3: coarse-grain X and Y by averaging over 2n pixels to obtain X ′, Y ′

4: shift Y ′ by ±2 pixels in each direction
5: apply a Gaussian smoothing kernel to X ′ − Y ′

shifted

6: for each coarse-grained pixel, select the shift which minimizes the local error
7: interpolate the optimal shifts to the resolution of Y
8: apply the optimal shifts to Y
9: set n = n− 1
10: end while

11: compute the sum over all intermediate shift vector �elds

(�ow from the forecast into the observations, top row of �gure 3.4) and at pixels
with observed precipitation (from the observation into the forecast, bottom row of
the �gure).

Han & Szunyogh (2016, 2018) developed several adjustments to the original DAS-
approach, including a separation of the error after morphing into an amplitude and
a residual structure component. Other �eld-deformation studies include the optical
�ow implementations of Gilleland et al. (2010b), Marzban & Sandgathe (2010). More
recently, Farchi et al. (2016) and Stucki et al. (2020) have applied the earth mover's
distance (Rubner et al., 2000) to compute the minimum cost of transforming one
�eld into the other exactly.

3.1.5 Distance Measures: Baddeley's ∆

Like the optical �ow algorithms, wavelets and image segmentation, the �nal class of
spatial veri�cation techniques comes from the realm of image processing / computer
vision. The basic idea of this approach is to compare two binary images by computing
how far the non-zero pixels in one image are to the nearest non-zero pixel in the other.
This is realized by thresholding forecast and observation and applying a distance
transform (�gure 3.5). One example score based on this so-called distance map is
Baddeley's ∆ (Baddeley, 1992). Let A and B denote the sets of locations r where
forecast and observation have non-zero values (after thresholding) and let d(r, X) be
the distance from location r to the next element of of the set X, i.e., the distance
map shown in �gure 3.5. Then Baddeley's ∆ is given by

∆p,w(A,B) =

[
1

N

N∑

i=1

|w(d(ri, A))− w(d(ri, B))|p
]1/p

, (3.1)

where the sum runs over all pixels i in the domain and w is a weighting function that
can be used to weaken the in�uence of small outlying objects. Intuitively, we compare
the distance to the nearest predicted rain pixel to the distance to the nearest observed
rain pixel, thereby measuring the average displacement between non-zero regions in
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observation

forecast

Figure 3.5: Distance transform of forecast and observations: Colors in
the right panels indicate the distance to the nearest non-zero
pixel in the respective image on the left (zero in white, darker
colors correspond to greater distance).

the two binary images. It can be shown that ∆ is a metric in the mathematical
sense (positive, symmetric, triangle inequality), which is a desirable property since
it guarantees that forecasts can be consistently ordered by their ∆-score. It was �rst
applied to meteorological veri�cation problems by Gilleland (2011). Other scores
derived form the distance maps can be asymmetrical with respect to forecast and
observation, thereby potentially di�erentiating misses from false alarms. For a recent
review and inter-comparison of several distance measures, we refer to Gilleland et al.
(2020). Further new developments, including a combined measure of distance and
intensity errors, are described by Gilleland (2021).
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shift rotation bias margin autocor.

FSS 3 3 3 3 1
ISS 2 2 1 1 3
S 1 1 2 2 4
A 1 1 4 1 1
L 4 1 2 2 3
DKC 4 3 1 1 3
AKC 1 1 3 3 3
BD 4 2 2 2 3

1: invariant
2: abrupt change
3: smooth change
4: quanti�ed

Table 3.1: Reaction of our example scores to shifts, rotations, biases,
other changes to the marginal distribution and changes to the
spatial auto-correlation. DKC and AKC denote the displace-
ment and amplitude component of DAS as de�ned by Keil &
Craig (2009).

3.2 Types of errors

In essence, the classi�cation presented in section 3.1 is based on the type of data
transformation used by each score. This approach does not necessarily tell us which
scores can be expected to give similar results: Displacement errors, for example, can
be quanti�ed by FSS (neighborhood), BD (distance metric), SAL (objects) and DAS
(deformation). To identify points of comparison for new wavelet-based techniques,
we therefore now discuss the various kinds of possible forecast errors and how existing
scores react to them. A non-exhaustive list of possible forecast errors includes shifts
in space, rotations, additive and multiplicative biases, other changes to the marginal
distribution and changes to the spatial auto-correlation structure. Scores can either
(1) be invariant under these transformations, (2) react abruptly or (3) smoothly to
them or (4) quantify them explicitly. For visual reference throughout this section,
an arti�cial example of each error type is schematically shown in �gure 3.6.

Table 3.1 roughly categorizes how each of our example scores reacts to the dif-
ferent kinds of errors. A similar overview including some additional scores is given
by table 2 in Gilleland et al. (2009). Table 1 in Gilleland et al. (2010a) attempts to
broadly assign kinds of errors to the di�erent veri�cation styles from the previous
section. As these authors acknowledge, a one to one map between the technical basis
of a score and the errors it quanti�es, is not generally possible. Below, we discuss the
behavior of our example methods under the various kinds of errors in some detail.

Shifts By default, deformation approaches like DAS allow for non-uniform optical
�ow �elds which incorporate shifts of the entire image, shifts of objects within the
image and arbitrary deformations of those objects into one �nal score. The same
is true for BD and other distance measures for which the shape of the objects is as
important as their location. Displacement and structure errors are thus not sepa-
rated. A similar confusion occurs in SAL's location component: One half of this
score is simply given by the distance between the two �elds' centroids, which is in-
variant under any re-arrangement of the individual objects as long as the center of
mass is unchanged. The other half measures the di�erence in scattering of individual
objects around the centroids, which is arguably a matter of spatial correlation struc-
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(a) (b) (c)

(d) (e) (f)

Figure 3.6: Di�erent kinds of errors arti�cially applied to our example
�eld (a): Shift (b), rotation (c), additive bias (d), altered
marginal distribution (e) and erroneous correlation structure
(f). The marginal error in (e) was realized by squaring the
intensities, for the structural error in (f) we used the post-
processing introduced in Buschow & Friederichs (2021a).

ture rather than location. The original formulation of FSS gives no explicit measure
of displacement errors. Instead, its value at neighborhood size L is invariant under
shifts < L. Skok & Roberts (2018) demonstrated that this behavior can be exploited
to derive an explicit measure of displacement errors, but only if the area above the
threshold is nearly the same in both �elds. Our �nal example score ISS does react
strongly to misplaced features but cannot explicitly distinguish between forecasts
with additional, missing, mis-scaled or misplaced objects at a particular scale. Due
to the orthogonal wavelet transform, shifts from one wavelet support to another can
result in abrupt changes of the scores.

Rotations can be seen as a weak point of our �ve metrics as none of them can ex-
plicitly quantify cases where a predicted object has the wrong orientation. SAL, for
example, is invariant under rotations of one or both complete �elds and rotations of
individual features around their center. Even worse, to the MRA used by ISS, diago-
nally oriented patterns look fundamentally di�erent from vertical and horizontal ones
(see section 2.4), resulting in potentially abrupt reactions to rotation. For DAS, rota-
tion errors can lead to unintuitive �ow �elds because the rigid rotation that a human
expert might recognize is not necessarily the optimal solution to the optimization
problem. Marzban & Sandgathe (2010) nonetheless derive information on consistent
directional errors from a similar optical �ow approach. Other methods that can mea-
sure rotations explicitly include the object-based MODE, the 2D-Fourier approach
of Wong & Skamarock (2016) and the very recent variogram-method introduced in
Bellier et al. (2020).
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Biases and other errors in the marginal distribution can easily be studied with uni-
variate veri�cation scores (an example being SAL's A component). It can therefore
often be desirable to separate such errors from the spatial characteristics measured by
multi-variate techniques. Any score that relies on thresholding the �elds (FSS, BD,
ISS, SAL and basically all other object-based approaches) will react non-smoothly
to changes in the marginal distribution as features can shrink, disappear or fracture
into multiple pieces when parts of the image cross the threshold. Wernli et al. (2008)
describe the delightfully named camel e�ect where a feature with two peaks can split
in twain when the threshold (or equivalently the mean of the data) changes. While
these authors suggest that the phenomenon should be rare and harmless (hence
the friendly name), Weniger & Friederichs (2016) demonstrate that this assump-
tion heavily depends on the data to which SAL is applied. Other authors suggest
to remove the forecast's marginal biases by selecting individual thresholds based on
quantiles (Skok & Roberts, 2018) or calibrating the forecast to the observed marginal
distribution (Casati et al., 2004). Besides SAL, the only explicit measure of marginal
errors among our example scores is given by DAS where the point-wise error after
morphing is used.

A further noteworthy aspect of the marginal distribution is the tail behavior. In
a probabilistic, lower-dimensional setting, the issue of verifying extreme events was
discussed in Lerch et al. (2017). None of the spatial methods mentioned above were
designed with such considerations in mind: Thresholding methods like FSS, ISS and
BD completely ignore extreme events, unless they are used in the de�nition of the
threshold value. SAL uses the extreme value within each object in the de�nition
of S, thereby including the marginal extremal behavior in the (spatial) structure
component. How optical �ow algorithms react to individual extremes depends on
the details of the underlying algorithm.

Correlations The �nal class of errors discussed here deals with the spatial corre-
lation structure. In the context of rain �elds, this includes properties like the sizes
of individual rain cells, the presence of linear structures like fronts or squall lines
and the organization of these structures in space. As discussed above, SAL includes
scale aspects in the S-component (together with the marginal tail behavior) while the
spatial organization is part of the location score and the linear or isotropic shape of
the features is ignored. The remaining four examples scores all feel changes to these
properties but do not separate them from other errors. In principle, any number of
structural characteristics can be assessed in a more general feature-based framework
like MODE, but the results are always conditional on the de�nition of the objects:
Depending on the threshold and smoothing �lter, a string of convective cells along
a squall line might constitute a single, large, an-isotropic pattern or many small,
circular features. Spectral approaches like those of Marzban & Sandgathe (2009),
Willeit et al. (2015) and Wong & Skamarock (2016), on the other hand, can study
structures on multiple scales simultaneously. Their theoretical relationship with the
auto-covariance function (under the right assumptions) makes them a natural choice
for structure-veri�cation. Most of our work presented in chapter 4 concerns the
development of useful structure scores based on (wavelet-)spectral techniques.
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3.3 Scoring the scores

The question how one should evaluate the merits of a veri�cation strategy is of central
importance to our investigation. In general, there are two ways of addressing the
issue: Firstly, many desirable properties can be identi�ed a priori from the de�nition
of a particular score. Secondly, scores can be subjected to a number of empirical
tests. In the following sections, we give an overview of both approaches and how
they have been used in the literature.

3.3.1 Intrinsic merits

Mathematical properties This aspect underlies many of the other points dis-
cussed below as it determines our ability to study a score without explicitly cal-
culating it. Besides pleasing anyone with a degree in mathematics, scores with a
mathematically simple de�nition allow users to reason, on paper, about such aspects
as the behavior in limiting cases (empty or full �elds, individual non-zero pixels,
random �elds), the range of possible values (normalizability) and the response to
noisy observations. On one end of the scale, BD is a mathematical metric, the def-
inition of which �ts in a single formula (equation 3.1). The simple form of FSS has
allowed researchers to analytically compute its value for single pixels and idealized
displaced rain-bands (Skok, 2015, 2016) and eventually derive an explicit measure of
displacement errors from it (Skok & Roberts, 2018). Weniger & Friederichs (2016)
exploited the similarly simple de�nition of SAL's L-component to design indicators
of its sensitivity to parameter changes and observational noise. At the high end of
mathematical complexity, �eld deformation techniques like DAS or the approaches of
Gilleland et al. (2010b) or Marzban & Sandgathe (2010) rely on numeric optimization
schemes, leaving their behavior potentially hard to predict a priori.

Sensitivities and invariances In section 3.2, we have already seen the variety
possible forecasts errors. Which of these errors a score does and does not recognize
determines who it may be useful for. Generally, abrupt changes (�2� in table 3.1)
are undesirable. Some users wish to isolate speci�c kinds of errors and seek a score
with a single �4� (explicit quanti�cation) and many invariances (�1�s). Others require
a single summary measure like FSS which smoothly (�3�) incorporates all kinds of
errors.

A related point is the sensitivity to equal changes in both forecast and obser-
vation. This is a potential weakness of the MRA-based ISS where the lacking shift
invariance of the underlying wavelet transform can lead to abrupt changes in the
score when features in both images are shifted from the support of one daughter
wavelet to the next. Casati (2010) recommend repeating the calculation with vari-
ous shifts to assess the issue. Similarly, some of the distance measures discussed in
Gilleland et al. (2020), including BD, can change considerably depending on where
the objects are located with respect to the domain boundary. BD furthermore de-
pends on the size of the veri�cation domain � an issue it shares with CRA (Mariani
& Casaioli, 2018), SAL and any other score that uses the domain size to normalize
the measured location errors.
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Intuitiveness One of the most important factors determining the popularity of a
veri�cation strategy is the ease or di�culty with which one can understand how it
arrives at its judgment. On the one hand, scores can be di�cult to understand due to
the sheer complexity of the underlying algorithm (arguably the case for the �region
trees� of Hou & Wang (2019) and the optical �ow approach of Gilleland et al. 2010b).
One the other hand, scores with very simple de�nitions like the point-wise RMSE can
be nearly uninterpretable due to the many possible, potentially compensating error
sources combined in a single value. Intuitiveness is often mentioned as a strength of
feature-based methods like MODE (Davis et al., 2009) and CRA (Ebert & McBride,
2000): The identi�cation and comparison of objects is easy to visualize and reason
about, without having to understand the technical implementations. This argument
only holds when well-de�ned objects are known to exist in the data. Similarly, the
matching of predicted and observed objects can lead to very intuitive veri�cation
results, as long as the two �elds can be assumed to contain slightly di�erent versions
of the same objects. FSS is another example of a score that owes at least some of its
popularity to the fact that the core concept can be explained and understood easily
without having to delve into the details of its implementation.

Number of free parameters The free parameters associated with a score can
be considered a double-edged sword: Fundamentally, the outcome of a veri�cation
study should depend on the qualities of the forecast veri�ed, not the settings of
the veri�cation procedure. On the other hand, many degrees of freedom allow re-
searchers to focus on very particular attributes of a prediction. MODE is a notorious
example of this: The total interest function is calculated as an arbitrarily weighted
average over the di�erences in any number of attributes selected by the user. In
Davis et al. (2006), the overall score is based on 24% centroid distance separation,
35% minimum distance between object borders, 12% orientation angle di�erence,
17% area ratio and 12% intersection area. While this may be seen as great �exi-
bility, the choice of these percentages requires a lot of care, hinders comparability
between di�erent studies and, in the worst case, opens the door to abusive practices
where the parameters could be tuned to achieve any veri�cation result one desires.
Numerous free parameters are thus overall undesirable. Other popular methods like
FSS, SAL and ISS merely require users to select one or more thresholds and spatial
scales (wavelet scales in ISS, neighborhood sizes in FSS, smoothing �lter in object
decomposition algorithms), both of which may have a simple physical interpretation.

Applicability Our last point concerns the kind of data required to apply a partic-
ular score. For example, forecast and observations must be given as matrices on the
same regular grid in order to apply any of the �ve example methods from section
3.1. Appropriate treatment of missing data is relatively straightforward for FSS but
considerably more troublesome for the wavelet-based ISS or feature-based methods
like SAL. As discussed above, methods based on object decomposition must further-
more assume that the data actually contains at least one well-de�ned object. This
assumption may hold for many rain �elds3 but is questionable for other meteorolog-
ical variables like temperature or wind. ISS and FSS, on the other hand, can always
be computed as long as a sensible choice of thresholds is known.

3not all: what if a small veri�cation domain is completely covered by a single rain band or
uniformly �lled with small convective cells?
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3.3.2 Testing strategies

Throughout the spatial veri�cation literature, the most popular way of demonstrating
the merits of a new veri�cation method consist of applying it to one or more test
cases, where the desired outcome of the veri�cation is known a priori.

Geometric shapes The simplest way of generating a forecast with known error
characteristics is to start with a simple geometric shape (e.g. a circle or oval with
value one inside and value zero outside) as the observation and applying some shift,
rotation, addition, or other type of distortion to create a faulty prediction. A set
of such geometric test cases was created for the �rst phase of the ICP project and
veri�ed by almost all participating scores. A second, more extensive test suite was
developed for MesoVICT (Gilleland et al., 2020), other authors experimented with
di�erent simple shapes appropriate to their methodology (Skok, 2015, 2016; Wernli
et al., 2008; Han & Szunyogh, 2016). Such idealized tests can be very helpful in
identifying a score's basic behavior and detecting fundamental weaknesses. The
covariance structure and marginal distribution of these test images is, however, very
unlike the real case, limiting their applicability and informative value.

Random �elds If a spatial veri�cation method is meant to recognize errors in
the predicted spatial auto-covariance function, simple tests can be constructed by
simulating a random process where the covariance function is prescribed. While
popular in the context of (uni-variate) ensemble veri�cation, this obvious idea has so
far rarely been applied to spatial veri�cation methods (exceptions include Marzban &
Sandgathe (2009), Scheuerer & Hamill (2015) and Jacobson et al. 2020). One obvious
reason is that pre-determined displacement errors are not straightforward to realize
in a random framework. It should, however, be noted that scattered �elds with
small, randomly placed objects are not an uncommon occurrence in precipitation
forecasting. The behavior of spatial veri�cation metrics under such circumstances is
of some interest, especially for those methods which attempt to identify matching
objects in forecast and observation � a problem with no well-de�ned solution in
e�ectively random situations.

Realistic case studies Some papers introducing a new veri�cation technique state
that their goal is to better match the subjective judgment of a human expert (Davis
et al., 2009; Wernli et al., 2008). Many others implicitly assume the same by com-
paring the objective scores to their subjective, visual judgment of a few selected
forecasts (Casati et al., 2004; Keil & Craig, 2007; Roberts & Lean, 2008; Yano &
Jakubiak, 2016; Hou & Wang, 2019). While clearly helpful to illustrate a score's be-
havior in a realistic setting, this is hardly a su�cient proof of usefulness. On the one
hand, the authors of such studies are, consciously or subconsciously, compelled to
cherry-pick cases where their score works as intended. If the automatic veri�cation
result is known before writing the subjective assessment, it is furthermore hard to
arrive at an unbiased, independent judgment. In an e�ort to circumvent at least the
second issue, Ahijevych et al. (2009) compiled the opinions of 26 experts for each of
the realistic test cases used within the ICP project. Their experiment revealed fur-
ther issues with the idea of simulating human expert opinions: When simply asked to
rank forecasts from worst to best, experts with di�erent professional and educational
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backgrounds will value di�erent aspects of forecast performance. Unsurprisingly, no
individual score was found to consistently agree with the panel of experts.

As an intermediate step between real and idealized tests, simple well-de�ned
errors like shifts, additive biases or deletion of features can be applied to an observed
�eld to generate a synthetic forecast with a known error, as shown in �gure 3.6.
Several such perturbed cases were provided and used within the ICP.

An alternative approach consists of comparing all combinations of �elds from
a large data-base, where the members of some groups are known to be, on aver-
age, more similar to each other than to members of the other groups. Weniger
& Friederichs (2016) and Radanovics et al. (2018) applied such tests to the SAL
method. Both of these studies compared the scores obtained by a set of realistic
forecasts veri�ed against the corresponding observations to the sores obtained after
randomly re-arranging the forecasts in time. This is a test of the scores discrimina-
tory ability: If the forecasting system can be assumed to have any skill at all, we can
be sure that individual forecasts are somewhat similar to the observations at the time
for which the forecast is valid, and less similar (on average) to the observations at all
other times. A score which cannot di�erentiate between original and shu�ed data is
clearly not helpful for the data at hand. Kapp et al. (2018) extended this statistical
testing approach by comparing not only forecasts to observations but also individual
predictions to the other members of the same ensemble forecast: Can the score be
used to match a) individual forecasts and b) the observations to the correct forecast
ensemble? This can be seen as a form of the random �eld approach discussed above,
since ensemble members represent, at least conceptually, multiple realizations from
the predicted distribution of possible outcomes.

Score inter-comparison A �nal, very natural test of new veri�cation techniques
consists of systematically comparing their judgment to established scores from the
literature. If certain scores like SAL or FSS are well-tested and generally believed
to give useful results for a certain class of cases, they can partly replace the hu-
man expert as the point of reference. The question which scores give the same or
complementary information is central to ICP and MesoVICT. Both of these projects
have provided freely available standardized test cases, thereby greatly facilitating the
integration of new and old techniques into the spatial veri�cation toolkit.
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3.4 Wavelet-based veri�cation

In preparation for the project that eventually became the present thesis, Weniger
et al. (2017) conducted a review of spatial veri�cation methods based on wavelets.
Their main �ndings can be summarized as follows:

� Spatial wavelet-based veri�cation evolved from initial ideas of Kumar & Foufoula-
Georgiou (1993), via the approach of Briggs & Levine (1997) into the ISS of
Casati et al. (2004) which is by far the most popular scale-separation technique
to date.

� Most studies use wavelets to either remove unwanted �noise� (point-measure
enhancement methods like Briggs & Levine 1997) or decompose the overall
error into multiple scales (classic scale-separation like ISS).

� Almost all spatial veri�cation studies rely on a two-dimensional MRA based
on the Haar wavelet.

For the sake of completeness, it must be mentioned that Yano & Jakubiak (2016)
explored an almost completely di�erent approach to wavelet-based spatial veri�-
cation, which is missing from Weniger et al. (2017): Emphasizing the previously
under-used localization capabilities of wavelets, these authors present an unusual
object-identi�cation procedure in wavelet-space. Unlike all other approaches, these
authors rely on a two-dimensional orthogonal Meyer wavelet decomposition with
separate scales for the x- and y-direction. To the best of our knowledge, their inno-
vative approach has not been tested beyond the single example case presented in the
original publication.

In parallel to Yano & Jakubiak (2016), Weniger et al. (2017) and Kapp et al.
(2018) developed a novel wavelet based veri�cation approach. Based on the liter-
ature review, they realized that none of the existing techniques were designed to
isolate speci�c aspects of forecast performance. In particular, any score based on an

Algorithm 5 Wavelet-based veri�cation of Kapp et al. (2018)

Input: forecast ensemble Y1, . . . , Ym, reference X, largest scale J , number of
LDA-vectors
Output: logarithmic score in reduced wavelet-space

1: Linearly smooth the edges of Yi and X
2: pad all �elds with zeros to obtain square images of size 2J × 2J

3: Compute the two redundant Haar-wavelet transforms.
4: Apply the bias correction matrix.
5: Apply soft wavelet thresholding to the coe�cient �elds to smooth them.
6: Remove the smallest and largest two scales.
7: Average the observed and predicted coe�cient �elds in space.
8: Apply LDA to the ensemble of spectra, reduce the dimension.
9: In LDA-space, estimate the mean and covariance matrix of the ensemble.
10: Assuming multivariate normality, calculate the log-likelihood that the observa-

tion is drawn from the predicted distribution.



3. Spatial Verification 49

MRA will inevitably include displacement errors. Their goal was thus to develop a
pure, shift-invariant structure score which would be similar to SAL's S-component
but without the troublesome aspects of thresholding and object detection found in
Weniger & Friederichs (2016). In addition, no structure-score available at the time
was appropriate for ensemble forecasts.4 To achieve this target, Kapp et al. (2018)
employ the texture classi�cation method of Eckley et al. (2010) which is based on the
redundant discrete wavelet transform and locally stationary wavelet processes intro-
duced in section 2.3. Their �nal methodology, with which they verify hourly rain-
fall accumulations from COSMO-DE-EPS against COSMO-REA2 reanalysis data,
is summarized in algorithm 5.

Based on the discussion in section 3.3, we can identify the strengths, as well as
limitations of this approach. From a mathematical point of view, the framework of
Eckley et al. (2010) is attractive because of the theoretically guaranteed relationship
with the spatial covariance matrix. Fourier- and variogram-transforms enjoy similar
properties only under the strong assumption of global stationary, whereas the LSW
approach is valid as long as the correlations vary slowly in space. The formulation
in terms of continuous operators furthermore avoids the potentially erratic behavior
associated with thresholding operations. Because the method makes no assumptions
about the nature of the underlying �elds aside from local stationarity, its applicability
is not limited to rain �elds or, more generally, �elds with well-de�ned objects. In
terms of a posteriori tests, Kapp et al. (2018) demonstrate that the method has
strong discriminatory abilities, i.e., rain �elds on di�erent days can rather easily be
distinguished from one another based on the spatial structure alone.

Concerning the other points discussed in section 3.3, we recognize several direc-
tions for improvement which serve as the jumping-o� point for the studies summa-
rized in chapter 4. Low intuitiveness likely constitutes the biggest weakness of the
texture-based veri�cation: Both Weniger et al. (2017) and Kapp et al. (2018) recog-
nize that the physical interpretation of the three directional spectra is very di�cult
� a problem which is aggravated by the further data reduction via LDA. In addition,
the bias correction step produces spectra with negative values, the interpretation of
which is unclear. Concerning free parameters, the method has four main degrees of
freedom which need to be addressed systematically: Boundary conditions, wavelet
choice, smoothing procedure and the selection of scales to use. With the exception of
smoothing, Kapp et al. (2018) give some explanation of their chosen settings but real
sensitivity tests are nonetheless needed. One technical issue concerns the use of the
RDWT which, as discussed in section 2.4, has poor directional properties. In terms
of applicability, Kapp et al. (2018) consider only the case of ensemble forecasts; their
method cannot be used in a deterministic setting. A �nal, more general point is
raised in the outlook of Kapp et al. (2018) and, independently, by Yano & Jakubiak
(2016): The true advantage of wavelets over other transformations like Fourier and
variograms is the capability for localization. This property is not really utilized by
a score derived from the spatial mean spectra.

4In the meantime, an ensemble version of SAL has been developed by Radanovics et al. (2018).
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Based on these considerations, we can identify �ve research questions:

Q1 How can the wavelet spectra be interpreted?

Q2 How can the method be adapted to the veri�cation of individual forecasts?

Q3 Can we further exploit the localization capability of the wavelet transform?

Q4 Is the redundant discrete Haar-wavelet transform the best tool for the job?

Q5 How can wavelets be used to verify variables other than precipitation?

In addition to answering these questions, the publications summarized in chapter 4
apply the new and adapted approach to a wide variety of test cases including geo-
metric tests, random �elds, the standardized MesoVICT cases and a complete year of
real ensemble forecasts from COSMO-DE-EPS. The new scores are furthermore com-
pared to other approaches from the literature which measure similar characteristics.
A series of sensitivity experiments assesses the importance of boundary conditions,
smoothing and selection of scales, and establishes best practices.



Chapter 4

Summary of Results

This chapter brie�y summarizes the main results of the publications attached in
appendices A, B and C, as well as the preprint in appendix D and the unpublished
manuscript in appendix E. The notation throughout this section follows Buschow &
Friederichs (2021a).

4.1 First test on a stochastic precipitation model

Published as �Assessment of wavelet-based spatial veri�cation by means of a stochastic

precipitation model (wv_verif v0.1.0)� (Buschow et al. 2019, appendix A).

The �rst publication contained in this thesis is primarily concerned with the
questions Q1-Q3 listed above. Like Weniger et al. (2017) and Kapp et al. (2018),
we rely on the bias corrected RDWT (see section 2.3), which yields a shift-invariant
measure of the local covariance structure around each location u, in the form of the
local wavelet spectrum ej,d,u. If the input has dimensions 2J × 2J , the transform
yields 3 × J values at every grid point. The greatly in�ated amount of data can
only be interpreted and used for veri�cation after some form of aggregation. Here,
we propose a simple and intuitive approach, which is the nucleus for our structure-
veri�cation strategy: Dropping the explicit dependence on the location u for now,
we denote the direction-averaged spectrum by e1, e2, ..., eJ . Now treat these energies
like point masses, located at position z = 1, ..., J along a line and de�ne the center
of mass of this arrangement as

zc =
1

∑J
j=1 ej

J∑

j=1

j · ej . (4.1)

This central scale of the wavelet spectrum is a value between 1 and J which sum-
marizes the distribution of energy across scales: If the image is dominated by small-
scaled patterns, zc approaches 1. Conversely, when most of the total variance resides
on larger scales, zc is closer to J . This transformation from three directional spectra
to a single easy to interpret number is our �rst answer to Q1. When zc is calculated
from the spatial mean spectrum (ej,d,u averaged over all u), we condense the scale-
structure of each forecast and observation into one scalar quantity. This number can
then be veri�ed by any appropriate uni-variate veri�cation measure. Most simply,

the di�erence dz = z
(for)
c − z

(obs)
c is a deterministic structure score which tells us
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Figure 4.1: Transformation from rain �elds to the map of central scales.
Blue and red curve beside the color bar indicate the distribu-
tion of scales in the observed and predicted �eld, respectively.

whether an individual forecast �eld was too large or too small in scale. We have
thereby addressed Q2.

The second main innovation of Buschow et al. (2019) is the way in which the
newly de�ned scores are objectively tested. Instead of relying on expert opinions in a
limited number carefully selected case studies, we use the physically based stochastic
rain model of Hewer et al. (2017) to generate semi-realistic test cases with pre-de�ned
stationary covariance structure. This allows for an ideal test of our structure scores:
We randomly draw an �observation� from a speci�c model con�guration and compare
it to a number of �forecasts�, only one of which has the correct covariance structure.
Does our score correctly reward the best forecast? The answer is yes, as long as
all errors in the parameters of the covariance model have the same e�ect on the
scale of resulting �elds. If, however, these errors exhibit compensating e�ects, the
simpli�cation to a single number zc is too drastic and the best forecast can no longer
be con�dently determined. To solve this problem and pass the more di�cult test,
we replace dz by the so-called Earth Mover's Distance (EMD, Rubner et al. (2000))
between the forecast and observed mean spectra. This score, henceforth named semd,
measures not only the shift towards smaller or larger scales, but the total amount of
work needed to transform one spectrum into the other. Unlike |dz|, which is a lower
bound on semd, the more complex score can correctly distinguish the best forecast in
a majority of cases throughout all of our experiments. Its performance clearly beats
the object-based S of Wernli et al. (2008) and comes close to that of the stationary
variogram score adapted from Scheuerer & Hamill (2015), which explicitly exploits
the global stationarity of our test data.

Lastly, the central scale also allows us to further study the local correlation
structure (Q3). Instead of averaging the spectra in space, we can also compute zc at
every grid point individually. The resulting map of central scales is shown in �gure
4.1 for our example from before. We have thus visualized one important aspect of
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the 2J × 2J × 3 × J wavelet coe�cients in a single image. The interpretation of
these plots is straightforward: The observed �eld is almost entirely dominated by
two large-scaled features (z > 3.5). The forecast, on the other hand, contains three
regions with intermediate scales z ≈ 3 and a number of smaller, intense precipitation
cells which are correctly recognized as small-scale variability (z ≤ 2.5). For the
purpose of objective veri�cation, we can compare the histograms of observed and
predicted centrals scales (blue and red curve in �gure 4.1) via the EMD. In contrast
to the spatial mean spectrum, which measures how the total variance is distributed
across scales, the histogram of zc determines the fraction of the total area dominated
by each scale. In the synthetic test cases, the resulting score, henceforth called
hemd, performed similarly to semd. Recall, however, that these tests rely on globally
stationary structures, meaning that the probability distribution of central scales does
not vary in space. The true potential of the local approach is discussed in more detail
in the next section.

4.2 The scale structure of precipitation forecasts

Published as �Using wavelets to verify the scale structure of precipitation forecasts�

(Buschow & Friederichs 2020, appendix B).

With the introduction of zc and the scores based on the EMD, we have answered,
at least in part, the �rst three of our �ve research questions. The focus of the second
publication is on applying these new techniques to real numerical weather forecasts
and radar observations. In doing so, we address a number of implementation issues
and investigate the sensitivity to the remaining free parameters of the method.

The basis for these experiments is a set of ensemble precipitation forecasts from
DWD's COSMO-DE-EPS for the complete year 2011. 14 hand selected cases from
this data-set were studied in Kapp et al. (2018). These authors explicitly refrained
from using radar images as validation data in order to avoid missing data. Upon
closer consideration, the issue of gaps in the radar images is just one aspect of the
broader problem of selecting proper boundary conditions for the wavelet transform:
Any �eld which does not cover the entire globe is e�ectively missing data beyond its
outer edge. If the only boundaries are at the edges of a rectangular model domain, we
conclude that re�ective boundaries are likely the most natural and convenient way
of extending the data. Radar images are more challenging because the boundaries
are irregularly shaped and can intersect parts of the image. Here, we follow the
simplest route and replace any grid point with missing radar data by zeros in both
the observation and the forecast. In a sensitivity test, we repeat the veri�cation
without removing radar gaps from the forecast. The impact of the di�erent boundary
conditions turns out to be moderate, the scores obtained in the two experiments
remain highly correlated. A further test reveals that the choice of Daubechies mother
wavelet is even less impactful. Switching from radar to reanalysis as validation data,
on the other hand, does make a signi�cant di�erence.

Beyond these sensitivity analyzes, we con�rm that the wavelet spectra, and thus
the central scales zc, are easily capable of distinguishing between rain �elds gener-
ated by convective and frontal weather situations. To test the scores' discriminatory
abilities, we conduct one of the experiments for realistic case studies discussed in sec-
tion 3.3.2: All scores are computed for each combination of observed and predicted
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Figure 4.2: Transformation from rain �elds to the map of anisotropy
(color, arrow length) and direction (arrow orientation).

�eld from all days in the data-set. A useful score with strong discrimination should
typically give the best ratings to the forecasts that match the day of the observation.
Instead of the radar observations, we furthermore validate all forecasts against each
other, thereby eliminating model errors from the experiment. If the forecast ensemble
is considered as a set of realizations from a daily changing probability distribution,
this test is equivalent to the random �eld experiments from Buschow et al. (2019).
Con�rming the results from the idealized tests, we �nd that semd and hemd are
approximately as discriminatory as the established variogram alternative and sub-
stantially better than S. The two wavelet-based scores are also highly correlated with
each other in these realistic tests. Since plots like �gure 4.1 prove to be quite helpful
in the analysis and veri�cation of individual case studies, we therefore conclude by
recommending the use of hemd as a wavelet based structure score for precipitation
veri�cation.

4.3 Verifying Scale, Anisotropy and Direction (SAD)

Published as �SAD: Verifying the scale, anisotropy and direction of precipitation fore-

casts� (Buschow & Friederichs 2021a, appendix C).

The condensation of the wavelet spectra into a single number zc was the key
to developing a veri�cation method which is intuitively interpretable and allows us
to utilize the local wavelet spectra instead of the spatial mean. Both of the pre-
vious publications mention in their respective outlook that the most important as-
pect neglected in this manner is the directionality. As discussed in detail in section
2.4, the averaging over the three directions is necessary because of the poor direc-
tional properties of the classic RDWT. In the third publication, we address this issue
(and thereby Q4) and replace the Daubechies RDWT by the DTCWT of Kingsbury
(1999). The resulting local spectra have six instead of three directions and allow
us to extend the idea of a central scale to include information on the anisotropy
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Figure 4.3: Structural bias correction. Left: Original observation and
forecast. Right: Observation adjusted to the predicted mean
spectrum and forecast adjusted to the observed mean spec-
trum.

and orientation of the local covariance structure. Instead of averaging the ej,d over
the directions and placing them along a line, we arrange the six directional energies
(d = 1, ..., 6) for each scale at equal distances from each other along a circle in the
x− y-plane. The scale j determines the z-component as before. The center of mass
of this arrangement of point masses, located along the edges of a regular hexagonal
prism (see Fig. 4 in appendix C), has three components. zc is the same as before
and continues to measure the spatial scale. x and y are transformed into polar co-
ordinates (ρ, θ). The radius ρ allows us to measure the degree of anisotropy: When
energy is distributed equally among the six directions, we have ρ = 0 and covariance
is isotropic. Conversely, when ρ is large, one orientation dominates. The dominant
angle of orientation itself can be inferred from θ as φ = 15◦ + θ/2.

In �gure 4.2, we have visualized the local anisotropy and direction via colored ar-
rows. As expected from the discussion and tests in section 2.4, these arrows smoothly
follow along the edges of the individual precipitation features and correctly distin-
guish between linear and round patterns. We observe that the western precipitation
�eld is strongly oriented in the observation and nearly circular in the forecast. The
precipitation region over the western Alps, on the other hand, is forecast only slightly
too isotropic and has nearly the correct orientation.

In analogy to the scale error dz, we can now de�ne the anisotropy error dρ and
the orientation error dφ which have similarly simple interpretations in terms of �too
round� or �too linear� and �rotated by ...◦�. Since dφ is meaningless for very small
values of ρ, we furthermore de�ne the combined error dxy as the euclidean distance
between the centers in the x-y-plane. Lastly, all structural error characteristics can
be combined into a single score semdd which consists of the EMD between the
two directional spectra, arranged at the locations within the hexagonal geometry
described above. The e�ectiveness of the new scores is demonstrated using both
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geometric and real test cases from the MesoVICT project. We �nd that the overall
error semdd can typically be explained as a linear combination of dxy and dz with
di�erent contributions depending on the forecast model and the weather situation.

As hinted in section 2.4, we furthermore show that the decimated DTCWT can
be used in place of the redundant version when only global characteristics are of
interest. Besides massively saving computational costs, the non-redundant transform
has the advantage of being (almost perfectly) invertible. We exploit this property
to de�ne an experimental bias correction algorithm: After transforming forecast
and observation, we apply a multiplicative correction to the predicted local spectra
such that the resulting spatial mean spectrum is identical to the observed one. By
transforming back to image space, we obtain a new precipitation �eld which combines
the spatial placement of the forecast with the structure of the observation. This
procedure is exempli�ed in �gure 4.3, where we apply the correction both ways:
When the predicted structure is imposed on the observed �eld (top right panel),
the large and mostly homogeneous precipitation regions receive additional internal
structure and lose the clear orientation. Conversely, the transformed forecast �eld
(shown on the bottom right of �gure 4.3) is rendered smoother and more coherent
while the intensity of the scattered precipitation cells is reduced. By visualizing
what an improved forecast would look like, the bias correction algorithm can assist
in understanding the verdict of the veri�cation method (Q1) while exploiting the
unique localization properties of the wavelet transform (Q3). As a side-note, we have
already used this technique to produce the forecast with the erroneous correlation
structure in �gure 3.6 f. Another, admittedly narrow, application for our algorithm
is thus the generation of �elds with arti�cially perturbed spatial correlations as test
cases for other veri�cation methods.

4.4 Veri�cation of near surface wind patterns

Under review as �Veri�cation of Near Surface Wind Patterns in Germany using Clear

Air Radar Echoes� (Buschow & Friederichs 2021b, appendix D).

Throughout the three papers summarized above, we have repeatedly mentioned
that the wavelet-approach can be applied to any variable of interest because it re-
quires neither the existence of objects nor meaningful thresholds. Indeed, the under-
lying wavelet algorithms were originally developed for the analysis of photographs
and make no assumptions about the structure of the image at all. While this con-
stitutes a potentially major advantage over the popular object-based veri�cation
measures, the actual usefulness of our approach in this context is an open research
question (Q5).

A series of recent papers including Skinner et al. (2016); Skok & Hladnik (2018);
Zschenderlein et al. (2019); Schlager et al. (2019) documents growing interest in spa-
tially verifying wind forecasts in particular. This is also one of the mission statements
of MesoVICT (Dorninger et al., 2018). The example of wind �elds raises three main
questions concerning the applicability of our approach: What is the spatial struc-
ture of typical wind �elds? How can it be observed? How should the vector nature
of the wind �elds be treated? Here, we address these questions by focusing on a
relatively narrow range of weather phenomena, which can be spatially observed in
an unexpected way: On warm, sunny days, Rayleigh-Bénard-like convective cells
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Figure 4.4: COSMO-REA2 10m divergence (top row in m/(s ×
grid-point)) and RADOLAN-RX re�ectivity in dBz (bottom
row) around the Dresden Radar station on 2009-07-29. Color
scales were chosen such that strong convergence (negative di-
vergence) and increased re�ectivity have the same color.

and rolls are common occurrences throughout the atmospheric boundary layer over
simple terrain. The convergent regions of this circulation attract swarms of insects
which consequently visualize the spatial pattern on radar scans (bottom row in �g-
ure 4.4). Studies like Bangho� et al. (2020) exploit these �clear-air� radar echoes to
examine the development of boundary-layer wind patterns; Thurston et al. (2016)
even qualitatively compare them to model data. With the wavelet-based structure
scores, we can go one step further and quantify the spatial structures in the obser-
vations and model data. Here, we compare clear-air radar echoes from the German
RADOLAN radar composite to 10m divergence �elds from COSMO-REA2. We
have thereby limited the range of expected spatial structures, found a way to observe
them, and limited the vector-valued wind �eld to its scalar, divergent component.
The two quantities, model divergence and concentration of re�ecting insects, are
made comparable by abstracting their spatial structure in terms of scale, anisotropy
and direction.

Comparing over 20000 individual images, we �nd that the scale-structure at rural
radar stations follows a well-de�ned diurnal cycle with a peak of small-scale activity
in the early afternoon. This behavior is surprisingly well reproduced by the model:
Studies including Zhou et al. (2014), Ching et al. (2014) and Poll et al. (2017) suggest
that meso-scale models like COSMO-DE should produce an unrealistically delayed
pattern on too-large scales. Part of the explanation is that our analysis is limited
to scales larger than the 1 km resolution of RADOLAN: For a fair comparison, the
smallest scale is removed from the 1 km resolution radar data. Smaller circulations,
which would initiate earlier in the day, are represented in neither data-set; on the
observed scales, the model fares well, as least as far as z is concerned. The direction
φ of the patterns in both data sets is primarily along the model wind direction, but
the anisotropy ρ does not match: The model is generally more strongly directed and
has a preference for linear features before noon, which is not observed.
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These results are illustrated in �gure 4.4, where several snapshots from an ob-
served and modeled diurnal cycle are shown side by side. Here, no smoothing was
applied to the radar data, which consequently exhibits �ne-scale patterns below the
resolution of COSMO. The timing of the roll-like structures, as well as their overall
linear character and orientation, is nonetheless decently reproduced. We furthermore
see that the stripes are far more regular (and thus anisotropic) in the model than
the real world.

4.5 Measuring displacement errors

Unpublished manuscript, working title �Measuring Displacement Errors with Complex

Wavelets� (Buschow 2021b, appendix E).

Our �fth and �nal study aims to make further use of the wavelet's localized
nature (Q3) to de�ne a measure of displacement errors. With SAD, we have essen-
tially developed a more robust, speci�c and widely applicable alternative to SAL's
S-component. The de�nition of a complementary location score with the same ben-
e�ts of the wavelet approach is thus a natural next step. We achieve this using the
previously neglected phase information of the complex wavelet coe�cients (recall
that SAD is de�ned using the modulus squared). In analogy to the Fourier trans-
form, a shift of the underlying data translates linearly into a scale-dependent change
of phase. The phase di�erence ∆Φ between transformed forecast and observation
can be averaged over directions and locations (weighted by the squared amplitude to
focus on regions with non-zero variance) to obtain a scale-wise measure of location
errors. This idea is schematically shown in �gure 4.5, where the (weighted) phase
di�erences in our example case were plotted at j = 3, 4, 5, 6. Notice how the largest
displacements (shown in dark red) have di�erent locations depending on the scale:
At j = 5, the displaced feature in the South-West corner dominates; the shift of the
other rain �elds is more relevant on the largest scale.

An estimate of the displacement's magnitude in grid-points can be obtained by
multiplying the phase at scale j by 2j . When a single summary score is desired, we
simply take the average over all scales to get the maximum estimated displacement
between the images. In our example, we �nd a displacement of ∆Φ(6) · 26 ≈ 16 grid
points (roughly 128 km), which corresponds to the distance between two dashed lines
in �gure 4.5.

The new location score is mathematically convenient because it uses the same
wavelet transform as SAD and exploits exactly the information discarded in the
structure analysis. A few simple experiments with arti�cially shifted images, as well
as the geometrical tests from Gilleland et al. (2020), con�rm that the new method
can recover the approximately correct shifts even when di�erent features move in
di�erent directions. This is a consequence of the localized basis functions which al-
low us to handle spatially varying shifts appropriately. With the possible exception
of Yano & Jakubiak (2016), who do not explicitly de�ne a score, this is the �rst and
only example of a displacement measure based on scale-separation. From a practical
point of view, this means that, unlike SAL, CRA, BD or MODE, it can be applied to
non-intermittent �elds without well-de�ned objects. As a proof of concept, we verify
forecasts of precipitation, wind speed, potential temperature and equivalent poten-
tial temperature. Our data-set includes one- two- and three-day forecasts from the
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Figure 4.5: Calculation of the phase-based location score: Forecast and
observation (left) are wavelet-transformed, the phase di�er-
ences are weighted and averaged over the six directions to
obtain one map of displacements per scale j. The sum over
each �eld gives the phase error ∆Φ(j).

Italian MOLOCH and BOLAM models which are veri�ed against the station-based
VERA analysis (Bica et al., 2007) during the MesoVICT period. For precipitation,
we �nd a clear decrease in skill with lead-time (which cannot be seen in RMSE or
SAL's L), as well as slight advantages for the higher-resolved MOLOCH model in
convective situations. The other variables show overall better scores, especially at
small scales. This is due to the constant presence of non-zero variance near spa-
tially �xed features such as mountains and coasts. For the two temperatures, the
VERA analysis data includes additional �ne-scale information beyond the resolu-
tion of the station network, resulting in slight systematic advantages for the �ner
model. Lastly, we can average the phase errors over time, rather than space, to
obtain scale-dependent maps of regions with consistently good or bad localization.





Chapter 5

Conclusion and Outlook

5.1 Concluding remarks

When the �rst highly resolved weather prediction models appeared in the early 2000s,
researchers quickly discovered that the perceived improvement in realism failed to
be rewarded by traditional measures of veri�cation. To address the issue, a large
toolkit of more sophisticated, spatial veri�cation techniques has been developed.
The research collected in this thesis has added another useful tool to the box.

Among the �ve well-known examples of spatial methods we discussed in chapter
3, the fractions skill score of Roberts & Lean (2008) is perhaps the most popular
and widely used. One likely reason for the success of FSS is its relative simplicity
� it is easy to understand what is measured and how, without diving deeper into
the underlying mathematics. Chapter 2 has shown that wavelet transforms, which
are the technical heart of our new method, have many useful properties; ease of
understanding is not one of them. Despite harmless-sounding introductory texts
like Wavelets for Kids (Vidakovic & Mueller, 1994), A Friendly Guide to Wavelets

(Kaiser, 2010), or indeed A really friendly guide to wavelets (Valens, 1999), the topic
initially seems daunting to all but the most mathematically inclined readers.

Consequently, a key objective of this work was to condense the information con-
tained in the wavelet transform of meteorological �elds into intuitively understand-
able quantities. While understanding the inner workings of our �nal SAD method
requires some background knowledge on discrete wavelet transforms, the three struc-
tural aspects it measures, namely Scale, Anisotropy and Direction, can easily be
explained to any layperson. Our technique, expanding on the groundwork laid by
Weniger et al. (2017) and Kapp et al. (2018), is not an extension or adaptation of any
existing score, but represents an entirely new way of exploiting the unique properties
of wavelets for the purpose of spatial forecast veri�cation.

Concerning the wish-list of desirable properties laid out in section 3.3, we have
retained some of the mathematical advantages that originally drew Weniger et al.
(2017) to wavelets (no discontinuous operators, connection to covariance matrix),
while greatly increasing the intuitiveness of the resulting scores. In terms of sensi-
tivities and invariances (table 3.1), the SAD structure scores quantify rotations and
changes in correlation-length and -anisotropy separately, while being almost perfectly
invariant under shifts. Conversely, the new location score quanti�es shifts and largely
ignores structure di�erences, as evidenced by the good performance of the �ne-scaled
MOLOCH model compared to coarse observations. Both scores are insensitive to the
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marginal distribution of the data since the wavelet spectra are normalized to unit
energy. To con�rm the practical usefulness of the new approach, all of the di�erent
testing strategies from section 3.3.2 have been employed. In terms of discriminatory
ability, SAD compares favorably to its direct inspiration SAL. The two approaches
tend to agree on the sign of the errors, indicating that (1) SAL's �structure� compo-
nent primarily measures spatial scales and (2) such errors can robustly be identi�ed,
irrespective of the technical implementation of the score.

More generally, we have seen that the classic discrete wavelet transforms, which
were used by practically all previous wavelet-based scores, are not ideal due to their
shift sensitivity and poor directional properties. The observation that the dual-tree
complex wavelet transform avoids these issues at a moderate computational cost,
is relevant not only to the speci�c case of forecast veri�cation, but to any aspect
of meteorological image processing. For example, the wavelet-based organization
index of Brune et al. (2018) originally relied on the RDWT but switched to the
DTCWT (Brune et al., 2021) due to the enhanced directionality. For the same reason,
a switch to dual-trees would improve the method of Kapp et al. (2018) in future
applications as well. Post-processing approaches like the wavelet-based smoothing
described in Theis (2005) could pro�t from the nearly perfect shift invariance of the
decimated transform. In principle, a dual-tree version of the ISS could be de�ned as
well, thereby mostly eliminating the undesirable shift-properties discussed in Casati
(2010). The loss of orthogonality, however, would mean that the result is no longer
a true decomposition of the point-wise MSE. Whether or not this is worthwhile,
may be a topic of future research. To facilitate further applications, a new open
source implementation of the DTCWT in the statistical programming language R
was developed and published on the o�cial CRAN repository (Buschow et al., 2020,
dualtrees).

Recalling the large number of existing veri�cation methods mentioned in chap-
ter 3, critical readers are likely to ask whether it was really necessary to add yet
another technique to the list. In other words, who could actually bene�t from the
new approach? The �rst group that comes to mind are the developers of dynami-
cal or statistical models: Does a new convection parametrization produce too much
or too little small-scale variability? Are cold fronts simulated with the proper de-
gree of orientation and coherence? Is the spatial structure of my post-processed
precipitation �eld accurate? Such questions are closely related to the notion of �real-
ism� which Mass et al. (2002) found themselves unable to validate using point-wise
error measures. The only two widely known scores which explicitly quantify this
aspect of forecast quality are SAL's structure component S and the variogram-score
of Scheuerer & Hamill (2015). Our experiments have shown that, besides the known
pitfalls of thresholding-based object identi�cation (Weniger & Friederichs, 2016), S is
lacking in discriminatory ability. With the correct parameter settings, the method of
Scheuerer & Hamill (2015) can be very good at detecting the best-matching spatial
structure but its judgment is not very speci�c or interpretable � the spatial corre-
lations were either well represented or not. Neither of the two established scores
explicitly quanti�es directional aspects of structure, S ignores them entirely.1

1For the sake of completeness, it should be mentioned that Bellier et al. (2020) have very recently
developed a directional version of the variogram score. In their introduction, they mention the poor
directional properties of classic wavelet transforms as a motivation to use variograms instead. All
of their well-justi�ed criticisms have been addressed by the switch to the DTCWT in Buschow &
Friederichs (2021a).
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Another group with potential interest in the merits of the predicted spatial struc-
tures are researchers attempting to model other components of the climate system
(surface or underground hydrology for example) who rely on precipitation �elds as
input. In such applications, the precise location of rainfall may be less relevant than
the question whether water is introduced in intense, localized bursts or smoothly
across larger regions (see Wernli et al. (2008), Lobligeois et al. (2014), Loritz et al.
(2021) and references therein). Bellier et al. (2020) point out the particular impor-
tance of the rain �eld's �ne-scale directional structure for hydrological modeling.
This could also be a use-case for the structural bias correction described in Buschow
& Friederichs (2021a), which represents another unique advantage of the wavelet-
approach: With the exception of �eld deformation techniques, none of the other spa-
tial veri�cation methods present an obvious opportunity to correct the errors they
have measured. With SAD, we can produce a post-processed �eld which combines
the predicted spatial locations with the correlation structure of the observations.

A further �selling point� of the wavelet-approach is its direct applicability to
variables other than precipitation. Our study of clear-air boundary layer circulations
has showcased that meaningful and interpretable information can be extracted from
spatial observations other than rainfall � whenever we wish to quantify whether the
spatial structures in two images look similar, wavelets can help. Our experiments
have, however, also highlighted the two main di�culties when spatially verifying
non-intermittent �elds like wind. First and foremost, spatial observations are not
widely available for most variables (we had to rely on the help of bugs!), but de�nitely
necessary when the spatial structure is concerned: Typical station networks are both
too localized and too coarse for a reliable estimate of the spatial correlation structure;
model-based analyses largely receive their �ne-scale pattern from the underlying
physical model and do not necessarily represent nature. One possible alternative
is the use of much higher-resolved simulations (such as LES) as reference for NWP
models � an interesting future application for SAD. A second di�culty in verifying
�elds like wind and temperature is the sheer variety of simultaneous processes, some
of which are �xed in space or time, some of which are transient, all of which contribute
to the overall pattern. Structural characteristics like scale and anisotropy can become
much harder to interpret when mountains, land-sea breezes, diurnal cycles, pressure
systems and convection all coincide in the same �eld. We were able to obtain useful
information about a speci�c physical phenomenon by limiting the analysis to small
spatial regions, times of day, weather situation and the divergent component of the
�ow.

Our �nal study capitalized further on the wavelets �exibility, to de�ne a new
location score � our counterpart to SAL's L � based on the phase of the complex
wavelet coe�cients. The bene�t of applicability beyond precipitation is particularly
relevant here because almost all previous location measures share this limitation.
However, the di�culties discussed above must be considered as well. When only
the location is of interest, interpolated station data may be su�cient as a reference,
especially when it is enhanced with additional information from a highly resolved
digital elevation model. However, the multitude of co-occurring processes makes it
particularly hard to determine the origin of estimated errors and interpret them in
terms of an overall �displacement�. The possibility to separate the phase errors by
scale and even spatial location partly remedies these issues.
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5.2 Future research

No three year PhD project can hope to explore the full depth of its topic. This �nal
section is therefore dedicated to some of the research directions that were either not
pursued at all, or simply did not come to fruition in time.

Structural post-processing One natural direction for future research would be
the development of a full post-processing algorithm based on the proof of concept
given in Buschow & Friederichs (2021a). As stated in the conclusions of that paper
(appendix C), the preliminary version of the algorithm mainly serves to further il-
lustrate the ways in which the predicted structure was erroneous: One has to know
the desired mean spectrum of the observations in order to correct the forecast. In
an operational setting, the target spectrum is unknown, but could potentially be
inferred from a weather situation dependent climatology or a rolling training win-
dow. Such an application might prove useful when the underlying forecast model
systematically misrepresents the spatial structure. This is sure to be the case when
the forecast model in question is relatively coarsely resolved compared to the obser-
vations (a regional or even global model). Whether or not our approach can deliver
convincing results in such a setting, where the visual di�erence in spatial structure
is large, remains to be seen. It may be necessary to develop a randomized procedure
which generates an ensemble of post-processed �elds to capture the unpredictable
nature of small-scale variability. In any case, an in-depth study of the existing pre-
cipitation post-processing literature is needed in order to identify the current state of
the art. An important starting point is Bellier et al. (2020), who develop a statistical
down-scaling method which emphasizes the (directional) correlation structure of the
rain �elds. These authors also give an overview of existing approaches from the lit-
erature and de�ne several desirable characteristics for precipitation dis-aggregation
algorithms. Further relevant references include Scovell (2020), who used complex
dual-tree wavelets for a stochastic downscaling application, and Nerini et al. (2017)
who employed a windowed Fourier transform for similar purposes.

Uses outside of veri�cation Besides veri�cation against observations, there are
other use-cases where our distance measures in wavelet space may be useful in the
future. One straightforward extension of our work in Buschow & Friederichs (2020)
would be the comparison between di�erent versions of a model or members in an
ensemble. When the variable of interest is prone to double penalties, it can be
di�cult to decide objectively, which changes have a strong impact and which con�g-
urations produce similar results. Our scores could, for example, be used to identify
groups of members in a forecast ensemble and select a representative subsample for
presentation or further processing.

A similar application would be analogue forecasting, where one or more predic-
tions are generated by searching a data-base for historic examples of similar weather
situations; when the �elds are highly resolved and intermittent, sophisticated mea-
sures of similarity yield better results than classic, point-wise metrics. Keller et al.
(2017) applied a neighborhood approach to search for precipitation analogues; struc-
tural distance measures may �nd di�erent, perhaps complementary analogues.

Another closely related area is the study of recurrence statistics in climatological
data-sets. Based on the theory of chaotic dynamical systems, Faranda et al. (2017)
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propose to estimate the local attractor dimension and persistence in phase space
from the statistics of extremely close recurrences. Their approach, which can be
used to objectively de�ne circulation regimes, identify recurrent patterns (Buschow
& Friederichs, 2018) and potentially asses the predictability of a particular state,
has since been applied to a variety of climate sub-systems. For precipitation data,
the current recommendation (Messori & Faranda, 2021) is to use the point-wise
di�erences between binary �elds as the distance metric. Wavelet-transforms may
produce a more useful projection of the high-dimensional phase space and lead to a
more intuitive idea of precipitation regimes.

Other wavelet transforms Previous wavelet-based veri�cation studies relied pri-
marily on the classic two-dimensional DWT of Mallat (1989). Over the course of the
present investigation, we have seen that the slightly more sophisticated DTCWT
introduced in Kingsbury (1999) is better suited to the task of image analysis in vir-
tually every way. Seeing that this approach was developed over two decades ago,
it is a natural idea to investigate other, possibly more recent developments in the
wavelet literature and consider their bene�ts for spatial veri�cation tasks.

One interesting direction would be wavelet transforms that act in space and time.
Given su�ciently frequent model output and observations, the temporal evolution
of meteorological phenomena could be added to the veri�cation procedure, thereby
explicitly treating timing errors and including the movement of features in the struc-
tural analysis. A possible candidate for this would be the �spatio-temporal wavelet
transform� (Kikuchi & Wang, 2010), which was recently used to compare modeled
and observed convection in the tropical Atlantic by Brune et al. (2020).

One weakness of all wavelet-based veri�cation tools, as well as most other spa-
tial techniques, is the requirement for validation data on a regular grid. In many
cases, the only widely available observations are point measurements at weather sta-
tions, thereby necessitating some form of interpolation, which introduces its own
host of di�culties and possible errors. Such issues can potentially be circumvented
using the so-called �second generation wavelets� of Sweldens (1995), which generalize
the multi-resolution analysis to irregularly sampled data using the �lifting-scheme�.
Whether and how the structural information inferred from point-wise data in this
manner can be compared to model data is an open question for future research. In
principle, lifting schemes could also be an appropriate answer to issues with missing
data (like gaps in radar images) and unknown boundary conditions, as noted by
Sweldens (1995). Furthermore, Sweldens lists data on spherical surfaces as a natural
application of second generation wavelets. In our studies, we have circumvented this
issue by using appropriate map projections and small regional domains; when global
data is to be veri�ed, lifting may provide the necessary treatment of the grid geom-
etry. A two-dimensional lifting scheme is described in Jansen et al. (2009); Shuman
et al. (2013) give a relatively recent overview general signal-processing approaches on
potentially irregular graphs. In a meteorological context, a two-dimensional lifting
implementation of an MRA was used for spatial smoothing of highly resolved model
output by Theis (2005). Lastly, a comprehensive open-source software package for
wavelet-transforms on the sphere, originally developed for astronomical applications,
is provided by the s2let python library (Leistedt et al., 2013).
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Abstract. The quality of precipitation forecasts is difficult
to evaluate objectively because images with disjointed fea-
tures surrounded by zero intensities cannot easily be com-
pared pixel by pixel: any displacement between observed
and predicted fields is punished twice, generally leading to
better marks for coarser models. To answer the question of
whether a highly resolved model truly delivers an improved
representation of precipitation processes, alternative tools are
thus needed. Wavelet transformations can be used to summa-
rize high-dimensional data in a few numbers which charac-
terize the field’s texture. A comparison of the transformed
fields judges models solely based on their ability to predict
spatial structures. The fidelity of the forecast’s overall pat-
tern is thus investigated separately from potential errors in
feature location. This study introduces several new wavelet-
based structure scores for the verification of deterministic as
well as ensemble predictions. Their properties are rigorously
tested in an idealized setting: a recently developed stochastic
model for precipitation extremes generates realistic pairs of
synthetic observations and forecasts with prespecified spatial
correlations. The wavelet scores are found to react sensitively
to differences in structural properties, meaning that the ob-
jectively best forecast can be determined even in cases where
this task is difficult to accomplish by naked eye. Random
rain fields prove to be a useful test bed for any verification
tool that aims for an assessment of structure.

1 Introduction

Typical precipitation fields are characterized by large empty
areas, interspersed with patches of complicated structure.
Forecasts of such intermittent patterns are difficult to ver-

ify because we cannot compare them to the observations in
a grid-point-wise manner: if a given rain feature is forecast
perfectly, but slightly displaced, point-wise verification will
punish the error twice, once at the points where precipitation
is missing and once at the points where it was erroneously
placed. The correctly predicted structure is not rewarded in
any way. Following the advent of high-resolution numeri-
cal weather predictions, this effect, known as double penalty
(Ebert, 2008), has motivated the introduction of numerous
new spatial verification tools.

In a comprehensive review of the field, Gilleland et al.
(2009) identified four main strategies that deal with the dou-
ble penalty problem and supply useful diagnostic informa-
tion on the nature and gravity of forecast errors. The clas-
sification was updated to include an emerging fifth class in
Dorninger et al. (2018). Proponents of the first strategy, the
so-called neighbourhood approach, attempt to ameliorate the
issue via successive application of spatial smoothing filters
(Theis et al., 2005; Roberts and Lean, 2008). A second group
of researchers including Keil and Craig (2009), Gilleland
et al. (2010), and recently Han and Szunyogh (2018) explic-
itly measure and correct displacement errors by continuously
deforming the forecast into the observed field. A third pop-
ular approach consists of automatically identifying discrete
objects in each field and subsequently comparing the prop-
erties of these objects instead of the underlying fields. Ex-
amples from this category include the MODE technique of
Davis et al. (2006) as well as the SAL technique by Wernli
et al. (2008).

The fourth group of spatial verification strategies contains
so-called scale-separation techniques, which employ some
form of high- and low-pass filters to quantify errors on a
hierarchy of scales. A classic example of this family is the
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wavelet-based intensity-scale score of Casati et al. (2004),
which decomposes the difference field between observation
and forecast via thresholding and an orthogonal wavelet
transformation. The final class newly identified by Dorninger
et al. (2018) contains the so-called distance measures, which
exploit mathematical metrics between binary images devel-
oped for image processing applications. One example is Bad-
deley’s delta metric, which was first employed as a verifica-
tion tool in Gilleland (2011).

The basic idea of the method presented in this study, which
can be classified as a scale-separation technique, is that er-
rors, that neither relate to the marginal distribution nor to the
location of individual features, should manifest themselves
in the field’s spatial covariance matrix. Direct estimates of
all covariances would require unrealistically large ensemble
data sets or restrictive distributional assumptions. Following
a similar approach to scale-separated verification, Marzban
and Sandgathe (2009), Scheuerer and Hamill (2015), and Ek-
ström (2016) therefore base their verification on the fields’
variograms. The variogram is directly related to the spatial
auto-correlations (Bachmaier and Backes, 2011) but can be
estimated from a single field under the assumption that pair-
wise differences between values at two grid points only de-
pend on the distance between those locations (the so-called
intrinsic hypothesis of Matheron, 1963). Similarly one could
require stationarity of the spatial correlations themselves,
in which case the desired information is contained within
the field’s Fourier transform. Both of these stationarity as-
sumptions may be inadequate in realistic situations where the
structure of the data varies systematically across the domain;
for example, due to orographic forcing, the distribution of
water bodies or persistent circulation features.

Weniger et al. (2017) have suggested an alternative ap-
proach based on wavelets. The key result in this context
comes from the field of texture analysis, where Eckley et al.
(2010) proved that the output of a two-dimensional discrete
redundant wavelet transform (RDWT) is directly connected
to the spatial covariances. The crucial advantage of their ap-
proach is that it merely requires the spatial variation of co-
variances to be slow, not zero – a property known as local
stationarity. After some initial experiments by Weniger et al.
(2017), this framework has successfully been applied to the
ensemble verification of quantitative precipitation forecasts
by Kapp et al. (2018). Their methodology consists of (1) per-
forming the corrected RDWT, following Eckley et al. (2010),
to obtain an unbiased estimate of the local wavelet spectra at
all grid points, (2) averaging these spectra over space, (3) re-
ducing the dimension of these average spectra via linear dis-
criminant analysis, and (4) verifying the forecast via the log-
arithmic score.

In this study, we aim to expand on their pioneering work in
several ways. Firstly, we argue that the aggregation method
of simple spatial averaging is not the only sensible approach.
An alternative is introduced which incidentally suggests a
compact way of visualizing the results of the RDWT: instead

of aggregating in the spatial domain, we first aggregate in the
scale domain by calculating the dominant scale at each lo-
cation. Secondly, we use both kinds of spatial aggregates to
introduce a series of new wavelet-based scores. In contrast to
Kapp et al. (2018), we consider both the ensemble case and
the deterministic task of comparing individual fields while
avoiding the need for further data reduction. We furthermore
demonstrate how to obtain a well defined sign for the error,
indicating whether forecast fields are scaled too small or too
large. The experiments performed to study the properties of
our scores constitute another main innovation: the recently
developed stochastic rain model of Hewer (2018) allows us
to set up a controlled yet realistic test bed, where the differ-
ences between synthetic forecasts and observations lie solely
in the covariances and can be finely tuned at will. In con-
trast to similar tests performed by Marzban and Sandgathe
(2009) and Scheuerer and Hamill (2015), our data are physi-
cally consistent and thus bear close resemblance to observed
rain fields. Lastly, we consider the choice of mother wavelet
in detail, using the rigorous wavelet-selection procedure of
Goel and Vidakovic (1995). The sensitivity of all newly in-
troduced scores to the wavelet choice is assessed as well.

The remainder of this paper is structured as follows. The
stochastic model of Hewer (2018) is introduced in Sect. 2.
Sections 3 and 4 respectively discuss the wavelet transforma-
tion and spatial aggregation in detail. The general sensitivity
of the wavelet spectra to changes in correlation structure is
experimentally tested in Sect. 5. Based on these results, we
define several possible deterministic and probabilistic scores
in Sect. 6. In a second set of experiments (Sect. 7), we sim-
ulate synthetic sets of observations and predictions and test
our scores’ ability to correctly determine the best forecast. A
comprehensive discussion of all results is given in Sect. 8.

2 Data: stochastic rain fields

In order to test whether our methodology can indeed detect
structural differences between rain fields, we need a reason-
ably large rain-like data set whose structure is, to some ex-
tent, known a priori. Faced with a similar task, Wernli et al.
(2008), Ahijevych et al. (2009), and others have employed
purely geometric test cases. While those experiments are ed-
ucational, we would argue that the simple, regular texture of
such data bears too little resemblance with reality to consti-
tute a sensible test case for our purposes. As an alternative,
Marzban and Sandgathe (2009) considered Gaussian random
fields, which have the advantage that the texture is more in-
teresting and can be changed continuously via the parame-
ters of the correlation model. However, since precipitation
is generally known to follow non-Gaussian distributions, the
realism of this approach is arguably still lacking.

In this study, we generate a more realistic testing envi-
ronment using the work of Hewer (2018), who developed a
physically consistent stochastic model of precipitation fields
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based on the moisture budget:

P =max(E− T − v · ∇q − q∇ · v, 0 ) , (1)

where P denotes precipitation, E is a constant evaporation
rate (in practice set to zero without loss of generality), q
is the absolute humidity, and v = (u,v)T is the horizontal
wind field. The threshold T specifies the percentage of the
field with non-zero values, i.e. the base rate. The velocity
and its divergence are represented via the two-dimensional
Helmholtz decomposition, which reads

v =∇ ×9 +∇χ ⇒ ∇ · v =∇2χ ,

where ∇×9 := (−∂x9,∂y9)T is the rotation of the stream-
function and χ is the velocity potential. The spatial process
of P is thus completely determined by (9,χ,q)T , which
we model as a multivariate Gaussian random field with zero
mean and covariance matrix

Cov
(
(9s,χs,qs)

T , (9t ,χt ,qt )
T
)
=

69,χ,q ·M( ||b(t − s)||, ν ) . (2)

Here, t,s ∈ R2 are two locations within the 2-D domain and
M is the Matérn covariance function. The parameter b gov-
erns the scale of the correlations and the smoothness parame-
ter ν determines the differentiability of the paths. The matrix
69,χ,q is set to unity for our experiments, meaning that the
velocity components and humidity are uncorrelated. Prelim-
inary tests have shown that these parameters have negligible
effects on the structural properties of the resulting rain fields.
The covariances needed to simulate a realization of P via
Eq. (1), i.e.

Cov
([
qs, ∇ · qs, ∇χs − ∇ ×9s, ∇

2χs

]T
[
qt , ∇ · qt , ∇χt − ∇ ×9t , ∇

2χt

]T)
,

follow from Eq. (2) by taking the respective mean-square
derivatives. In the special case where 9, χ , and q are uncor-
related, these three Gaussian fields, as well as the necessary
first and second derivatives, can directly be simulated via the
RMcurlfree model from the R package RandomFields
(Schlather et al., 2013). While the underlying distributions of
9, χ and q are Gaussian, the precipitation process, consist-
ing of non-linear combinations of the derived fields, can ex-
hibit non-Gaussian behaviour. For further details, the reader
is referred to Hewer et al. (2017), Hewer (2018), and refer-
ences therein.

Figure 1 shows several realizations of P . Here, as in the
rest of this study, we have normalized all fields to unit sum,
thereby removing any differences in total intensity and allow-
ing us to concentrate on structure alone. We recognize that
the model produces realistic-looking rain fields, at least for
moderately low smoothness (small ν) and large scales (small

values of b). Two important restrictions imposed by Eq. (2)
become apparent as well. Firstly, the model is isotropic,
meaning that it cannot produce the elongated, linear struc-
tures which are typical of frontal precipitation fields. Sec-
ondly, covariances are stationary, implying the same texture
across the entire domain. An anisotropic extension of this
model is theoretically relatively straightforward (replacing
the scalar parameter b by a rotation matrix), but the technical
implementation remains a non-trivial problem. The search
for a non-stationary version is an open research question in
its own right.

3 The redundant discrete wavelet transform

The technical core of our methodology consists of project-
ing the fields onto a series of so-called daughter wavelets
ψj,l,u(r) : R2

→ R, which are all obtained from a mother
wavelet ψ(r) via scaling by r→ r/j , a shift by r→ r −u

and rotation in the direction denoted by l. Such wavelet trans-
forms, which generate a series of basis functions from a sin-
gle mother ψ that is localized in space and frequency, allow
for an efficient analysis of non-stationary signals on a hierar-
chy of scales and have attained great popularity in numerous
applications. For a general introduction to the field, we rec-
ommend Vidakovic and Mueller (1994) and Addison (2017).

Before we can apply wavelets to our problem, we must
choose a mother ψ and decide which values of {j, l,u} to al-
low. Starting with the latter decision and guided by our desire
to capture the field’s covariance structure, we follow Weniger
et al. (2017) and Kapp et al. (2018) in choosing a redundant
discrete wavelet transform (RDWT). In this framework, the
shift u takes on all possible discrete values, meaning that the
daughters are shifted to all locations on the discrete grid. The
scale j is restricted to powers of 2 and the daughters have
three orientations with l = 1,2,3 denoting the horizontal,
vertical, and diagonal direction, respectively. The projection
onto these daughter wavelets, for which efficient algorithms
are implemented in the R package wavethresh (Nason,
2016), transforms a 2J × 2J field into 3× J × 2J × 2J coef-
ficients, one for each location, scale, and direction. Our deci-
sion in favour of the RDWT is motivated by a relevant result
proven in Eckley et al. (2010). Let

X(r)=
∑

all j,l,u
Wj,l,u︸ ︷︷ ︸
weight

·ψj,l,u(r)︸ ︷︷ ︸
daughter

· ξj,l,u︸︷︷︸
noise

(3)

be the so-called two-dimensional locally stationary wavelet
process (henceforth LS2W). The random increments ξj,l,u
are assumed to be Gaussian white noise. Local stationarity
means that X’s auto-correlation varies infinitely slowly in
the limit of infinitely large domains or, equivalently, infinitely
highly resolved versions of a unit-sized domain. This require-
ment is enforced by certain asymptotic regularity conditions
on the weights Wj,l,u. For all technical details the reader is
referred to Eckley et al. (2010); Kapp et al. (2018) present
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Figure 1. Example realizations of the stochastic rain model on a 128×128 grid for various choices of scale b and smoothness ν. The threshold
T was chosen such that 20 % of the field has non-zero values.

a more condensed summary. The main result of Eckley et al.
(2010) states that in the limit of an infinitely high spatial reso-
lution, the autocovariances ofX can directly be inferred from
the squared weights |W |2. In analogy to the Fourier trans-
form, |W |2 is referred to as the local wavelet spectrum. Eck-
ley et al. (2010) have furthermore proven that the squared
coefficients of X’s RDWT constitute a biased estimator of
this spectrum: due to the redundancy of the transform, the
very large daughter wavelets all contain mostly the same in-
formation, leading to spectra which unduly over-emphasize
the large scales. The bias is corrected via multiplication by
a matrix A−1 which contains the correlations between the
ψj,l,u and thus depends only on the choice of ψ and the
size and resolution of the domain. Away from the asymptotic
limit, this step occasionally introduces negative values to the
spectra, which have no physical interpretation and pose some
practical challenges in the subsequent steps. Preliminary in-
vestigations have shown that the abundance of this negative
energy sharply decreases with the smoothness of the wavelet
ψ and mostly averages out when mean spectra over the com-

plete domain are considered (cf. Appendix, Fig. A3). Apart
from the bias correction, the corrected local spectra also need
to be smoothed spatially in order to obtain a consistent esti-
mate. The complete procedure, including the computation-
ally expensive calculation of A−1, is implemented in the R
package LS2W (Eckley and Nason, 2011).

Having decided on a type of transformation, we must se-
lect a mother wavelet ψ . Our decision is restricted by the
fact that the results of Eckley et al. (2010) have only been
proven for the family of orthogonal Daubechies wavelets.
These widely used functions, henceforth denoted DN , have
compact support in the spatial domain, increasing values of
N indicate larger support sizes as well as greater smooth-
ness. Smoother and hence more wave-like basis functions
with better frequency localization are thus also more spread
out in space. Figure 2 shows a few examples from this fam-
ily. D1 (panel a), the only family member that can be writ-
ten in closed form, is widely known as the Haar wavelet
(Haar, 1910) and has been applied in several previous ver-
ification studies (Casati et al., 2004; Weniger et al., 2017;
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Figure 2. Two-dimensional Daubechies daughter wavelets D1 and D2 (a, b), as well as least asymmetric D4 (c) and D8 (d), vertical
orientation.

Kapp et al., 2018). For N > 3, the constraints on smooth-
ness and support length allow for multiple solutions, two of
which are typically used: the extremal phase solutions are
optimally concentrated near the origin of their support, while
the least asymmetric versions have the greatest symmetry
(Mallat, 1999). D1,2,3 belongs in both sub-families; wher-
ever a distinction is needed, we will label the two branches of
the family as ExP and LeA, respectively. Among these avail-
able mother wavelets, we seek the basis that most closely re-
sembles the data, thus justifying the model given in Eq. (3).
To this end, we follow Goel and Vidakovic (1995) and rank
wavelets by their ability to compress the original data: the
sparser the representation (the more of the coefficients are
negligibly small) in a given wavelet basis, the greater the
similarity between basis functions and data. Relegating all
details concerning this procedure to Appendix A, we merely
note that the structure of the rain field, determined by the pa-
rameters b and ν, has substantially more impact on the effi-
ciency of the compression than the choice of wavelet. Over-
all, the least asymmetric version of D4 (shown in Fig. 2c)
is most frequently selected as the best basis (28 % of cases),
followed byD1 andD2 (21 % each). Unless otherwise noted,
we will therefore employ LeA4 in all subsequent experi-
ments. Considering the relatively small differences between
wavelets, we hypothesize that the basis selection should have
only minor effects on the behaviour of the resulting verifica-
tion measures – a claim which is tested empirically in Sect. 7.

4 Wavelet spectra spatial aggregation

The previous step’s redundant transform inflates the data by
a factor of 3×J , meaning that a radical dimension reduction
is needed before verification can take place. Throughout this
study, we will always begin this process by discarding the
two largest scales, which are mostly determined by boundary
conditions, and averaging over the three directions. The latter
step is unproblematic, at least for our isotropic test cases.
Next, the resulting fields must be spatially aggregated in a
way that eliminates the double-penalty effect.

The straightforward approach to this task consists of sim-
ply averaging the wavelet spectra over all locations. The re-
dundancy of the transform guarantees that this mean spec-

trum is invariant under shifts of the underlying field (Na-
son et al., 2000), thereby allowing us to circumvent double-
penalty effects. Kapp et al. (2018) have already demonstrated
that the spatial mean contains enough information to confi-
dently distinguish between weather situations in a realistic
setting. In particular, the difference between organized large-
scale precipitation and scattered convection has a clear signa-
ture in these spectra – an observation that has recently been
exploited by Brune et al. (2018), who defined a series of
wavelet-based indices of convective organization using this
approach. As mentioned above, we furthermore know that
negative energy, introduced by the correction matrix A−1,
mostly averages out in the spatial mean, provided that we
choose a wavelet smoother than D1 (cf. Appendix, Fig. A3).

In spite of these desirable properties, there are two main
issues which motivate us to consider an alternative way of
aggregation: if we normalize the mean spectrum to unit total
energy, its individual values can be interpreted as the fraction
of total rain intensity associated with a given scale and direc-
tion. It is easy to imagine cases where a very small fraction
of the total precipitation area contains almost all of the total
intensity and therefore dominates the mean spectrum. This is
clearly at odds with the intuitive concept of texture. Further-
more, there is no obvious way of visualizing how individual
parts of the domain contribute to the mean spectrum – if our
visual assessment disagrees with the wavelet-based score, we
can hardly look at all fields of coefficients at once in order to
pinpoint the origin of the dispute. This second point leads us
to introduce the map of central scales C: for every grid point
(x,y) within the domain, we set Cx,y to the centre of mass
of the local wavelet spectrum. The resulting 2J × 2J field of
C ∈ (1,J ) is a straightforward visualization of the redundant
wavelet transform, intuitively showing the dominant scale at
each location. Since the centre of mass is only well defined
for non-negative vectors, all negative values introduced by
the bias correction via A−1 are set to zero before computing
C.

To illustrate the concept, we have calculated the map of
central scales for one of the test cases from the SpatialVx
R package (Fig. 3, these data were originally studied by Ahi-
jevych et al., 2009). Here, the original rain field was replaced
by a logarithmic rain field, adding 2−3 to all grid points
with zero rain in order to normalize the marginal distribu-
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Figure 3. Logarithmic rain field (a) and corresponding map of central scales (b) from the stage II reanalysis on 13 May 2005. The field has
been cut and padded with zeroes to 512× 512, scales were calculated using the least asymmetric D4 wavelet, only locations with non-zero
rain are shown. Panels (c) and (d) show the corresponding mean spectrum and scale histogram, respectively.

tion (Casati et al., 2004) and reduce the impact of single ex-
treme events. We see a clear distinction between the large
frontal structure in the centre of the domain (scales 6–7), the
medium-sized features in the upper-left quadrant (scale 4–
5), and the very small objects on the lower right (scales ≤ 4).
As an alternative to the spatial mean spectrum (Fig. 3c), we
can base our scores on the histogram of C over all locations
pooled together (Fig. 3d). Intuitively, this scale histogram
summarizes which fraction of the total area is associated
with features of various scales. We observe a clear bi-modal
structure which nicely reflects the two dominant features on
scales five and six.

5 Wavelet spectra sensitivity analysis

Before we design verification tools based on the mean
wavelet spectra and histograms of central scales, it is instruc-
tive to study what these curves look like and how they react
to changes in the model parameters b, ν, and T from Eq. (1).
Can we correctly detect subtle differences in scale? What are
the effects of smoothness and precipitation area? To answer
these questions, we begin by simulating 100 realizations of
our stochastic model on a 128× 128 grid, first keeping the
smoothness ν constant at 2.5 and varying the scale b between
0.1 and 0.5 (recall that large values of b indicate small-scaled

features). For a second set of experiments, we simulate 100
fields with constant b = 0.25 and vary ν between 2.5 and 4.
All of these fields are then normalized to unit sum (to elimi-
nate differences in intensity), transformed and aggregated as
described above.

Figure 4a shows the spatial mean spectra, averaged over all
directions and realizations, as a function of the scale parame-
ter b (on the y axis). As expected, an increase in b monotoni-
cally shifts the centre of these spectra towards smaller scales.
Considering the experiment with variable ν (panel c), we find
that an increase in smoothness results in a shift towards larger
scales. This is in good agreement with the visual impression
we get from the example realizations in Fig. 1. The corre-
sponding scale histograms are shown in Fig. 4b and d. We
observe that their centres, corresponding to the expectation
values of the central scales, are shifted in the same directions
(and to a similar extent) as the mean spectra.

In addition to the shift along the scale axis, we observe
that the two model parameters have a secondary effect on the
shapes of the curves: a decrease in b or ν goes along with flat-
ter mean spectra – the energy is more evenly spread across
scales. The histograms react similarly to b, larger scales co-
inciding with greater variance, while changes in ν have only
a minor impact on the histogram’s shape.

The final variable model parameter considered here is the
threshold T , for which the expected reactions of our wavelet
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Figure 4. Mean spectra (a, c, e) and histograms of central scale (b, d, f), as functions of the scale parameter b at ν = 2.5 (a, b), smoothness
parameter ν at b = 0.25 (c, d), and threshold T at b = 0.1 and ν = 2.5 (e, f). Dashed lines in the x–y-plane indicate the respective curve
centres of mass; dotted grey lines (parallel to the y axis) were added for orientation.

characteristics are less clear: are fields with a larger fraction
of precipitating area perceived to be scaled larger or smaller?
To investigate this, we set b = 0.1 and ν = 2.5 and vary the
rain area between 10 % and 100 %. Figure 4e and f shows
that the centres of the spectra and histograms hardly depend
on T at all. The spread slightly increases with the threshold
in both cases, but the changes are far more subtle than for the
other two parameters.

In summary, we note that the two structural parameters
ν and b have clearly visible effects on the mean spectra as
well as the scale histograms. Metrics that compare the com-
plete curves (as opposed to their centres alone) should be able
to distinguish between errors in scale and smoothness since
these characteristics have different effects on their location
and spread. The effect of the threshold T is only moderate in
comparison, but could potentially compensate errors in the
other two parameters, which may occasionally lead to coun-
terintuitive results.

6 Wavelet-based scores

Motivated by the previous section’s results, we now intro-
duce several possible scores, comparing the spectra and his-
tograms of forecast and observed rain fields. Here, we con-
sider the case of a single deterministic prediction, as well as
ensemble forecasts.

6.1 Deterministic setting

From an observed field and a single deterministic forecast,
we obtain the respective mean wavelet spectra and his-
tograms of central scales as described above. If we naively
compare these vectors in an element-wise way, we may fall
victim to a new incarnation of the double-penalty problem
since a small shift in one of the spectra (or histograms) will
indeed be punished twice. Rubner et al. (2000) discuss this
issue in great detail and suggest the earth mover’s distance
(henceforth EMD) as an alternative. The EMD between two
non-negative vectors (histograms or spectra in our case) is
calculated by numerically minimizing the cost of transform-
ing one vector into the other, i.e. moving the dirt from one
arrangement of piles to another while doing the minimal
amount of work. Here, the locations of the piles correspond-
ing to the histograms (spectra) are given by the centres of the
bins (the scales of the spectrum), and the count (energy) de-
termines the mass of the pile. For the simple one-dimensional
case where the piles are regularly spaced, the EMD simpli-
fies to the mean absolute difference between the two cumu-
lative histograms (spectra) (Villani, 2003). This quantity is
a true metric if the two vectors have the same norm, which
is trivially true for the histograms. To achieve the same for
the mean spectra, we normalize them to unit sum, thereby re-
moving any bias in total intensity and concentrating solely on
structure. Our first two deterministic wavelet-based structure
scores are thus given by the EMD between the histograms
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of central scales (henceforth Hemd) and the normalized, spa-
tially and directionally averaged, wavelet spectra (henceforth
Spemd), respectively.

Being a metric, the EMD is positive and semi-definite and
therefore yields no information on the direction of the error.
We can obtain such a judgement by calculating, instead of
the EMD, the difference between the respective centres of
mass. For the histograms, this corresponds to the difference
in expectation value. Rubner et al. (2000) have proven that
the absolute value of this quantity is a lower bound of the
EMD. Its sign indicates the direction in which the forecast
spectrum or histogram is shifted, compared to the observa-
tions. We have thus obtained two additional scores, Hcd and
Spcd, which are conceptually and computationally simpler
than the EMD versions and allow us to decide whether the
scales of the forecast fields are too large or too small.

6.2 Probabilistic setting

When predictions are made in the form of probability dis-
tributions (or samples from such a distribution), verification
is typically performed using proper scoring rules (Gneiting
and Raftery, 2007). Here, we treat scoring rules as cost func-
tions to be minimized, meaning that low values indicate good
forecasts. A function S that maps a probabilistic forecast and
an observed event to the extended real line is then called a
proper score when the predictive distribution F minimizes
the expected value of S as long as the observations are drawn
from F . In this case, there is no incentive to predict any-
thing other than one’s best knowledge of the truth. S is called
strictly proper when F is the only forecast which attains that
minimum. As mentioned above, Kapp et al. (2018) verified
the spatial mean wavelet spectra via the logarithmic score,
which necessitates a further dimension reduction step. In the
interest of simplicity as well as consistency with our other
scores, we employ the energy score (Gneiting and Raftery,
2007) instead, which is given by

En(F,y)= EF |X− y| − 0.5EF |X−X′
| , (4)

where y is the observed vector, EF denotes the expectation
value under the multivariate distribution of the forecast F ,
and X and X′ are independent random vectors with distribu-
tion F . Here, we substitute the observed mean spectrum for y
and estimate F from the ensemble of predicted spectra. The
resulting score, which we will denote as Spen, is proper in
the sense that forecasters are encouraged to quote their true
beliefs about the distribution of the spatial mean spectra.

The two previously introduced scores based on the his-
tograms of central scales can directly be applied to the case
of ensemble verification by estimating the forecast histogram
from all ensemble members pooled together. In this setting
where two distributions are compared directly, proper diver-
gences (Thorarinsdottir et al., 2013) take the place of proper
scores: a divergence, mapping predicted and observed distri-
butions F and G to the real line, is called proper when its

expected minimum lies at F =G. The square of Hcd corre-
sponds to the mean value divergence, which is proper. Hemd
is a special case of the Wasserstein distance, the propriety of
which is only guaranteed in the limit of infinite sample sizes
(Thorarinsdottir et al., 2013). Whether or not these diver-
gences are useful verification tools in the probabilistic case
will be tested empirically in Sect. 7.

All of our newly proposed wavelet-based texture scores
are listed in Table 1.

6.3 Established alternatives

In order to benchmark the performance of our new scores,
we compare them to potential non-wavelet alternatives from
the literature. A first natural choice is the variogram score of
Scheuerer and Hamill (2015), which is given by

V (F,y)=

n∑
a,b=1

wa,b
(
|ya − yb|

p
−EF [|Xa −Xb|

p
]
)2
, (5)

where y, F , and X now correspond to the observed rain
field, the distribution of the predicted rain fields, and a ran-
dom field distributed according to the latter. a and b denote
two grid points within the domain. The weights wa,b can be
used to change the emphasis on pairs with small or large dis-
tances, while the exponent p governs the relative importance
of single, extremely large differences. We include two ver-
sions of this score in our verification experiment: the naive
choice wa,b = 1, p = 2 (denoted V20 below) and the more
robust configuration wa,b = |ra − rb|

−1, p = 0.5 (Vw,5 be-
low), where ra denotes the spatial location corresponding to
the index a. Assuming stationarity of the data, we can effi-
ciently calculate both of these scores by first aggregating the
pairwise differences over all pairs with the same distance in
space up to a pre-selected maximum distance. V20 then sim-
plifies to the mean-square error between the two stationary
variograms. The maximum distance is set to 20, which is a
rough approximation of the range of the typical variograms
of our test cases. Preliminary experiments have shown that
this aggregation greatly improves the performances of Vw,5
and V20 in all of our experiments. It furthermore allows us to
apply these scores to the case of deterministic forecasts.

As a second alternative verification tool, we include the S
component of the well-known SAL (Wernli et al., 2008). This
object-based structure score (1) identifies continuous rain ob-
jects in the observed and predicted rain field, (2) calculates
the ratio between maximum and total precipitation in each
object, (3) calculates averages over these ratios (weighted by
the total precipitation of each object), and (4) compares these
weighted averages of forecast and observation. The sign of S
is chosen such that S > 0 indicates forecasts which are scaled
too large and/or too flat. In this study, we employ the original
object identification algorithm by Wernli et al. (2008), setting
the threshold to the maximum observed value divided by 15.
We have checked that the sensitivity to this parameter is low
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Table 1. Wavelet-based structure scores (top part) and established alternatives (bottom).

Abbreviation Description Probabilistic Deterministic

Spemd EMD of the mean spectra no yes
Spcd distance in mean spectra’s centre of mass no yes
Hemd EMD of the scale histograms yes yes
Hcd distance in the scale histograms’ centre of mass yes yes
Spen energy score of the predicted mean spectra yes no

RMSE root-mean-square error between rain fields no yes
Vw,5 variogram score, wa,b = |ra − rb|

−1, p = 0.5 yes yes
V20 variogram score, wa,b = 1, p = 2 yes yes
S object-based structure score of Wernli et al. (2008) yes yes

Table 2. Varying parameters in Eq. (2) for the four groups of artifi-
cial ensemble forecasts.

Model RL SmL RS SmS

Smoothness ν 2.5 3 2.5 3
Scale b 0.1 0.1 0.2 0.2

in our test cases. For the purposes of ensemble verification,
we employ a recently developed ensemble generalization of
SAL (Radanovics et al., 2018). Here, the ratio between max-
imum and total predicted rain is averaged not only over rain
objects, but also over the ensemble members.

Lastly, the naive root-mean-square error (RMSE) will be
included in our deterministic verification experiment in order
to confirm the necessity for more sophisticated methods of
analysis.

7 Idealized verification experiments

For our first set of randomly drawn forecasts and observa-
tions from the model given by Eq. (1), we keep the threshold
T constant such that 20 % of the fields have non-zero values
and select four combinations of ν and b, listed in Table 2.

The resulting texture is rough and large scaled (RL),
smooth and large scaled (SmL), rough and small scaled (RS),
and smooth small scaled (SmS). One realization for each of
those settings is depicted in Fig. 1. In the following sections,
we interpret random samples of these models as observations
and forecasts, thus allowing us to observe how frequently the
truly best prediction (the one with the same parameters as the
observation) is awarded the best score.

7.1 Ensemble setting

Beginning with the synthetic ensemble verification experi-
ment, we draw 100 realizations each from RL and RS as
our observations. For every observation (200 in total), we is-
sue four ensemble predictions, consisting of 10 realizations
from RL, SmL, RS, and SmS, respectively. Only one of these

10-member ensembles thus represents the correct correla-
tion structure while the other three are wrong in either scale,
smoothness, or both. Observation and ensembles are com-
pared via the three wavelet scores Hcd, Hemd, and Spen as
well as the established alternatives for ensemble forecasts,
i.e. S, V20, and Vw,5.

Figure 5 shows the resulting score distributions. All scores
are best when small, except for the two-sided S and Hcd
where values near zero are optimal. Beginning with the
case where the observations are drawn from RS (top row of
Fig. 5), we observe that the four predictions are ranked quite
similarly by all scores. Here, the correct forecast almost al-
ways receives the best mark, while SmL, which is most dis-
similar from RS, fares worst. S and Hcd furthermore agree
that all three false predictions are scaled too large. The task of
determining the truly best forecast is substantially more com-
plicated when the observations belong to RL (bottom row of
Fig. 5): since SmS is both smoother and scaled smaller, the
effects on the location of the spectra and histograms along the
scale axis (cf. Fig. 4) compensate each other. These curves
can therefore hardly be distinguished by their centres of mass
alone. We recognize that RL and SmS consequently obtain
similar values of Hcd, this score judging solely based on the
centres. The other two wavelet scores achieve better discrim-
ination, as does Vw,5. Concerning the signs of the error, we
note that S and Hcd both consider RS too small and SmL
too large. For SmS, Hcd is only slightly negative, indicating
nearly correct scales. S is less affected by the compensating
effect of increased smoothness and determines more clearly
that SmS is smaller-scaled than RL. Its overall success rate
is, however, not significantly better than that of Hcd.

Figure 6 summarizes the ability of the six tested proba-
bilistic scores to correctly determine the best forecast ensem-
ble. As discussed above, all scores are very successful at de-
termining correct forecasts of RS. In the alternative setting
(observations from RL), SmS is the most frequent wrong an-
swer, receiving the smallest (absolute) values of V20, S, Hcd,
and Hemd in more than a quarter of cases. In contrast to the
other scores, Spen hardly ever erroneously prefers SmS over
RL. Instead, SmL is wrongly selected most frequently, lead-
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Figure 5. Distribution of all probabilistic scores for each of the forecast ensembles corresponding to the four models from Table 2. Top row:
observations drawn from RS. Bottom row: observations drawn from RL. Numbers denote the fraction of cases in which the forecast from the
correct distribution received the best score.

Figure 6. Percentage of cases where each of the four ensembles corresponding to the models in Table 2 was deemed the best forecast,
separated by score and the model of the observation.

ing to the overall lowest error rate (12 %) in this part of the
experiment.

7.2 Deterministic setting

Having investigated the behaviour of our probabilistic scores,
we now consider the deterministic case: how successfully
can we determine the truly best forecast, given only a sin-
gle realization? The set-up for this experiment is the same
as before, only the size of the forecast ensembles is reduced
from 10 to 1. Since the resulting scores naturally have greater
variances than before, we increase the number of observa-
tions to 1000 (500 each from RL and RS) in order to achieve
similarly robust results. In addition to the four appropriate
wavelet scores (Spemd, Spcd, Hemd and Hcd), we again cal-
culate Vw,5 and V20 as well as the S component of the orig-
inal SAL score. To ensure that the verification problem is

sufficiently difficult, the root-mean-square error (RMSE) is
included as a naive alternative as well.

Figure 7 reveals that correct forecasts are again easily
identified by all of the wavelet-based scores when the ob-
served fields belong to RS. As in the ensemble scenario, the
main difficulty lies in the decision between SmS and RL
in cases where the latter model generates the observations.
The two EMD scores, which use the complete curves and
not just their centres, clearly outperform the corresponding
CD versions in this part of the experiment and detect RL
correctly in the majority of cases. Vw,5 is similarly success-
ful as the best wavelet-based score, faring marginally better
than Spemd. The failure rates of V20 and S are again slightly
higher. Unsurprisingly, the RMSE is completely unsuited to
the task at hand, achieving less than 25 % correct verdicts
overall. The inferiority to a random evaluation, which would,
on average, be correct one-fourth of the time, is caused by
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Figure 7. As Fig. 6, but for the deterministic verification experiment.

Table 3. Fraction of cases where the correct forecast received the
best score for a range of extremal phase (ExP) and least asymmetric
(LeA) Daubechies wavelets. LeA4 is the wavelet used for all other
experiments in this study; ExP1 is the well-known Haar wavelet.

Deterministic case Ensemble case

Spemd Spcd Hemd Hcd Spen Hemd Hcd

ExP1 0.76 0.72 0.73 0.72 0.86 0.78 0.78
ExP2 0.83 0.73 0.8 0.77 0.92 0.82 0.83
ExP4 0.87 0.7 0.8 0.75 0.94 0.87 0.78
ExP6 0.87 0.7 0.82 0.73 0.94 0.86 0.74
LeA4 0.84 0.71 0.76 0.73 0.92 0.81 0.78
LeA6 0.86 0.69 0.76 0.69 0.94 0.88 0.8

the fact that the model with the largest, smoothest features
(SmL) has the least potential for double penalties and thus
fares best in a point-wise comparison; in fact, RMSE orders
the four models by their typical features size, irrespective of
the distribution of the observation.

7.3 Wavelet choice and bias correction

One obvious question to ask is whether or not the choice of
the mother wavelet has a significant impact on the success
rates in the two experiments discussed above. To address this
issue, we repeat both the deterministic and the ensemble ver-
ification processes for several Daubechies wavelets. Recall-
ing the results of our objective wavelet selection (Sect. 3 and
Appendix A), we expect no dramatic effects.

Table 3, listing the overall success rates for each tested
wavelet, mostly confirms this expectation: in the determin-
istic case, Spemd and Hemd are really only affected by the
choice between the Haar wavelet, which performs worst, and
any of its smoother cousins. The two centre-based scores
(Spcd and Hcd) show hardly any wavelet dependence at all.
Sensitivities are overall slightly higher in the ensemble case.
While D1 again appears to be the worst choice, there are
some differences between the other options, particularly for
the two histogram scores. Generally speaking, the impacts

Table 4. As Table 3, but without the bias-correction step.

Deterministic case Ensemble case

Spemd Spcd Hemd Hcd Spen Hemd Hcd

ExP1 0.66 0.6 0.63 0.63 0.68 0.76 0.74
ExP2 0.65 0.57 0.65 0.64 0.68 0.74 0.76
ExP4 0.65 0.56 0.61 0.6 0.68 0.72 0.72
ExP6 0.63 0.54 0.59 0.59 0.66 0.7 0.71
LeA4 0.63 0.56 0.64 0.63 0.68 0.7 0.68
LeA6 0.63 0.55 0.62 0.61 0.66 0.69 0.68

of wavelet choice on our verification results are nonetheless
rather limited, as long as the Haar wavelet is avoided.

To confirm that the bias correction following Eckley et al.
(2010) is indeed a necessary part of our methodology, we re-
peat these experiments without applying the correction ma-
trix A−1. Without discussing the details (Table 4), we merely
note that the success rates decrease substantially (depending
on score and wavelet), meaning that bias correction generally
cannot be skipped.

7.4 Perturbed thresholds

Next, we consider the case where forecast and observations
are subject to random perturbations which are not directly re-
lated to the underlying covariance model. One rather natural
way of implementing this scenario consists of randomly per-
turbing the thresholds, i.e. the fractions of the domain cov-
ered by non-zero precipitation. In a realistic context, such
random differences between forecast and observation could
be associated with a displacement error which shifts unduly
large or small parts of a precipitation field into the forecast
domain.

Our experiments in Sect. 5 indicate that the wavelet-based
scores should be relatively robust to small changes in the
threshold T (cf. Fig. 4e and f). For the variogram scores,
one might expect greater sensitivity since the presence of a
fixed fraction of zero values greatly reduces the variance in
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Table 5. Fraction of cases where the correct forecast received the best score. Top two rows: deterministic forecasts with and without perturbed
threshold. Bottom: ensemble forecasts with and without perturbed thresholds.

Spen Spemd Spcd Hemd Hcd Vw,5 V20 S RMSE

det.
constant T – 0.84 0.71 0.76 0.73 0.86 0.57 0.68 0.2
random T – 0.83 0.7 0.78 0.74 0.56 0.35 0.67 0.22

ens.
constant T 0.92 – – 0.81 0.78 0.9 0.62 0.75 –
random T 0.92 – – 0.8 0.75 0.7 0.44 0.74 –

the pairwise distances from which the stationary variogram is
estimated. To test these hypotheses, we again repeat the two
verification experiments, this time randomly varying T such
that the precipitation area, previously fixed at 20 %, is a uni-
form random variable between 15 % and 25 % of complete
domain.

Looking at the resulting success rates (Table 5), we find
our expectations largely confirmed: while variations in the
precipitation coverage hardly influence our wavelet-based
judgement, Vw,5 and V20 seem to strongly depend on this
parameter, thus mostly losing their ability to determine the
correct model. The performances of S and RMSE are only
weakly influenced by variations in T .

8 Summary and discussion

The basic idea of this study is that the structure of precipita-
tion fields can be isolated and subsequently compared using
two-dimensional wavelet transforms. Building on the work
of Eckley et al. (2010) and Kapp et al. (2018), we have ar-
gued that the corrected, smoothed version of the redundant
discrete wavelet transform (RDWT) is an appropriate tool for
this task since it is shift invariant and has a proven asymptotic
connection with the correlation function of the underlying
spatial process. This approach is theoretically more flexible
than Fourier- or variogram-based methods which make some
form of global stationarity assumption, while our method re-
lies on the substantially weaker requirement of local station-
arity.

Before wavelet-transformed forecasts and observations
can be compared to one another, the spatial data must be ag-
gregated in a way that avoids penalizing displacement errors
twice. Besides the proven strategy (Kapp et al., 2018) of av-
eraging the wavelet spectra over all locations, we have newly
introduced the map of central scales as a potentially inter-
esting alternative: by calculating the centre of mass for each
local spectrum, we obtain a matrix of the same dimensions
as the original field, each value quantifying the locally domi-
nant scale. Aside from the possibility of compactly visualiz-
ing the output of the RDWT in a single image, the histogram
of these scales can serve as an alternative basis for verifica-
tion, emphasizing each scale based on the area in which it

dominates, rather than the fraction of total rain intensity it
represents.

In order to rigorously test the sensitivity of these aggre-
gated wavelet transforms to changes in the structure of rain
fields, a controlled but realistic test bed was needed. The
stochastic precipitation model of Hewer (2018) constitutes a
very convenient case study for our purposes: the construction
based on the moisture budget and a Helmholtz-decomposed
wind field allows for non-Gaussian behaviour and guaran-
tees that the simulated data are more realistic than simple
geometric patterns or Gaussian random fields. The model’s
structural properties can nonetheless be determined at will
via the smoothness and scale parameter of the underlying
Matérn fields, allowing us to simulate observations and fore-
casts with known error characteristics. In a realistic context,
errors in scale correspond to misrepresentation of feature
sizes (e.g. smoother representation of small-scale convective
organization), while errors in smoothness correspond to fore-
cast models with a resolution that is too course, which are
incapable of reproducing fine structures.

In a first suite of experiments we found that the wavelet
spectra do indeed react sensitively to changes in both of these
parameters. In particular, errors in smoothness and scale have
different signatures which can potentially be differentiated
from one another. Encouraged by these results, we have de-
fined several possible scores which compare mean spectra
and scale histograms via the difference between their cen-
tres (Hcd and Spcd), their earth mover’s distance (Hemd and
Spemd), and the energy score (Spen). In our idealized verifica-
tion experiments, the performance of the latter three scores,
i.e. their ability to correctly determine the objectively best
forecast, was on par with the best tested variogram score
(Vw,5). The less robust V20, as well as the SAL’s structure
component S and the simplistic RMSE, was clearly outper-
formed.Hcd and Spcd, while less proficient at finding the cor-
rect answer, do yield valuable auxiliary information in the
form of the error’s sign, answering the question of whether
the predicted structure was too coarse or too fine. Keeping in
mind that both spectra and histograms can have multi-modal
structures in realistic non-stationary cases (compare Fig. 3d),
a comparison based on centres alone is likely not sufficient
and the EMD versions of these scores should be preferred. If
a signed structure score is desired, we can simply multiply
the respective EMD by the sign of the difference in centres.
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All five wavelet scores were shown to be robust to small
perturbations of the data, realized here as random changes
to the fraction of non-zero rain. In these experiments, which
essentially test the score’s sensitivity to the sample clima-
tology, the variograms largely lost their ability to determine
the correct forecast. Interpreting this result, it is important
to keep in mind that our wavelet scores were specifically de-
signed to judge based on structure alone while the variogram-
methodology of Scheuerer and Hamill (2015) allows for a
more holistic assessment. Sensitivity to precipitation cover-
age is therefore not necessarily a disadvantage. If the goal is a
pure assessment of structure, this dependence is undesirable.

The two free parameters of the variogram score, namely
the exponent p and the choice of weights wi,j , were found
to have a significant impact on the resulting verification.
We have also tested the sensitivity of the newly introduced
wavelet scores to the choice of the mother wavelet. An ob-
jective wavelet-selection procedure following Goel and Vi-
dakovic (1995) was performed and the verification experi-
ments were repeated for a variety of possible choices. Sum-
marizing both of these steps, we can conclude that the suc-
cess of our wavelet-based verification depends only weakly
on the choice of an appropriate mother wavelet. One some-
what surprising exception is the Haar wavelet, which was
favoured by previous studies (cf. Weniger et al., 2017, and
references therein) but turned out to be a suboptimal choice
for our purposes.

Now that the merits of wavelet-based structure scores have
been demonstrated in a controlled environment, further tests
are needed to study their behaviour in real-world verifica-
tion situations. One important open question concerns the use
of direction information, which was neglected in the present
study but may well be valuable in a more realistic scenario.
It is furthermore worth noting that, in contrast to primarily
rain-specific tools like SAL, our methodology can be applied
to any variable of interest with no major changes besides the
new selection of an appropriate mother wavelet. A simulta-
neous evaluation of, for example, wind components, humid-
ity, and cloud-cover – using the exact same verification tool
to assess structural agreement in each variable – is thus fea-
sible and could answer interesting questions concerning the
origins of specific systematic forecast deficiencies.

Code and data availability. All necessary R code for the simulation
of the stochastic rain fields, as well as the wavelet-based forecast
verification, is available from https://github.com/s6sebusc/wv_verif
(last access: 31 July 2019). The specific version used in this pa-
per was also archived at https://doi.org/10.5281/zenodo.3257510
(Buschow, 2019).
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Appendix A: Entropy-based wavelet selection

To find the most appropriate wavelet, we calculate the en-
tropy of the transform’s squared coefficients (representing
the energy of the transformed data) and select the wavelet
with the smallest entropy. Let y = (y1, . . .,yn)

T be a vector
with non-negative entries satisfying

∑
iyi = 1. For our pur-

poses, its entropy is defined as

s(y) := −

n∑
i=1

yi log2 yi ∈ [0, log2(n)] , (A1)

where we set 0 · log2(0)= 0. Following Goel and Vidakovic
(1995), the RDWT is replaced by its corresponding orthog-
onal decomposition, which is obtained by selecting every
second of the finest-scale coefficients, every fourth on the
second-finest scale, and so on. The number of data points is
thus conserved under the transformation and we can compare
the entropy of the transformed data to that of the original rep-
resentation.

The outcome of this procedure depends on the structure of
the data to be transformed, the smoothness of the wavelet,
and the length of its support. To understand how these prop-
erties interact, we quantify smoothness via the number of
vanishing moments: a wavelet ψ is said to have N vanish-
ing moments if

∫
xqψ(x)dx = 0 for q = 0, . . .,N − 1. This

implies that polynomials of order N − 1 have a very sparse
representation in the wavelet basis corresponding to ψ . The
theorem of Deny-Lions (Cohen, 2003) relates this property
to a function’s differentiability: loosely speaking, if f is N
times differentiable, the error made when approximating f
by polynomials of orderN−1 is bounded by a constant times
the energy of f ’s N th derivative f (N). It follows that f is
well represented by wavelets with N vanishing moments, as
long as f (N) is not too large.

Besides more or less smooth regions within the rain fields
(in our test cases governed by the parameter ν) and constant
zero areas outside, the data we wish to transform also con-
tain singularities at the edges of precipitating features. Here,
f (N) is generally not small and wavelets with shorter sup-
port length are superior since fewer coefficients are affected
by any given singularity. Heisenberg’s uncertainty principle
ensures that localization in space and approximation of poly-
nomials (related to the localization in frequency) cannot both
be optimal simultaneously: if a wavelet has N vanishing mo-
ments, then its support size (in one dimension) is at least
2N − 1. In proving this theorem, Daubechies (1988) intro-
duced the DN wavelets, which are optimal in the sense that
they haveN vanishing moments at the smallest possible sup-
port.

To illustrate the competing effects of support size and
smoothness on the efficiency of the wavelet transformation,
we simulate one-dimensional Gaussian random fields with
Matérn covariances (same function M and parameters b and
ν as in Eq. 2, but only one variable and one spatial dimen-
sion). Figure A1 neatly demonstrates the concepts discussed

above: when the time series is uniformly smooth, the higher
order wavelet D4 delivers a far more efficient compression
thanD1 (panels a, c, e). The situation changes when we trun-
cate the data (b, d, f): while D4 continues to be superior
within the smooth regions, D1, due to its shorter support, re-
quires fewer coefficients to represent the regions of constant
zero values. This trade-off between representing smooth in-
ternal structure and intermittency is precisely quantified by
the entropy (defined in Eq. A1, values noted in the captions
of Fig. A1), which measures the total degree of concentration
on a small number of coefficients: while theD4 does better in
both cases, the relative and absolute improvement is worse in
the cut off case, where we introduced artificial singularities.

Figure A2 shows the results of our entropy-based wavelet-
selection procedure for the model given by Eq. (1). We ob-
serve that the model parameters have substantially more im-
pact on the efficiency of the compression than the choice
of wavelet. Fields with greater smoothness and larger scales
(large values of ν and small values of b) are represented far
more compactly than rough small-scale cases, irrespective of
the chosen basis. The differences between wavelets, while
small in comparison, reveal a systematic behaviour: increas-
ing support length leads to monotonously worse compression
and the least asymmetric wavelets tend to fit slightly better
than their “extremal phase” counterparts. The Haar wavelet
constitutes an exception to this pattern, its entropy being fre-
quently larger than that of several of its smoother cousins.

Besides theoretical optimality motivated by Eq. (3), prac-
tical concerns can play an important role in the selection
of an appropriate wavelet as well. Recalling that the bias-
correction following Eckley et al. (2010) can introduce neg-
ative values to the spectra, which have no intuitive interpre-
tation, we are interested in seeing whether the problem can
be circumvented by selecting an appropriate mother wavelet.
Fig. A3 shows the ratio between negative and positive en-
ergy in the mean spectra from the experiments discussed in
Sect. 7.3. For D1, this ratio is typically close to one-tenth.
Such large quantities of negative energy are rare for D2 and
basically never occur in higher-order wavelets. This obser-
vation, while reassuring, does not alter our wavelet selec-
tion since the Haar wavelet was not favoured by the entropy-
based approach either.
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Figure A1. Realization of a one-dimensional Gaussian random vector with covariance M(ν = 3.5,b = 2) (a) and the corresponding values
of the D1 transform and least asymmetric D4 transform (c, e) which are greater than 0.1. Panels (b), (d), and (f) are the corresponding plots
for the cases where the vector is cut off at zero.

Figure A2. Entropy of the wavelet-transformed synthetic rain fields from Fig. 1 as a function of the wavelet’s order N . Empty and filled dots
correspond to the extremal phase version and least asymmetric version of DN , respectively. Lines indicate 1 standard deviation, estimated
from 10 realizations.
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Figure A3. Ratio of negative to positive energy in the mean spectra (data set from Sect. 7.3, all models from Table 2, six selected mother
wavelets as in Table 3).
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Abstract. Recently developed verification tools based on local wavelet spectra can isolate errors in the spatial
structure of quantitative precipitation forecasts, thereby answering the question of whether the predicted rainfall
variability is distributed correctly across a range of spatial scales. This study applies the wavelet-based structure
scores to real numerical weather predictions and radar-derived observations for the first time. After tackling
important practical concerns such as uncertain boundary conditions and missing data, the behaviour of the scores
under realistic conditions is tested in selected case studies and analysed systematically across a large data set.
Among the two tested wavelet scores, the approach based on the so-called map of central scales emerges as a
particularly convenient and useful tool: summarizing the local spectrum at each pixel by its centre of mass results
in a compact and informative visualization of the entire wavelet analysis. The histogram of these scales leads to
a structure score which is straightforward to interpret and insensitive to free parameters like wavelet choice and
boundary conditions. Its judgement is largely the same as that of the alternative approach (based on the spatial
mean wavelet spectrum) and broadly consistent with other, established structural scores.

1 Introduction

The quantitative prediction of precipitation is a central task
of modern weather forecasting. A demand for improved pre-
dictions of localized severe rainfall events, in particular, has
been one of the main drivers behind the development of
forecast models with increasingly fine resolutions (Baldauf
et al., 2011; Seity et al., 2011), sophisticated parametriza-
tions (Seifert and Beheng, 2006; Kuell and Bott, 2008) and
assimilation of novel observation data (Stephan et al., 2008;
Bick et al., 2016).

Whether or not the desired improvement has actually been
achieved, however, is no trivial question. Since rain fields
are inherently intermittent in space and time, a pixel-wise
forecast verification can only reward the correct intensity,
shape and structure of predicted rain patterns if their loca-
tions match exactly with the observed ones. Even a slight
displacement between forecast and observation results in a
double penalty, because the forecast is wrong in both the ob-
served and the predicted location. The naive, grid-point-wise
approach will generally favour coarse models over highly re-
solved ones and can neither assess the structure or intensity

of displaced rain objects nor appropriately judge the sever-
ity of displacement errors. Recent years have seen the de-
velopment of numerous so-called spatial verification tech-
niques, which address the double penalty problem in a vari-
ety of ways (Gilleland et al., 2009; Dorninger et al., 2018).
One strategy espoused by many of these techniques is to
split the total forecast error into a number of (ideally or-
thogonal) components, thereby separating, for example, dis-
placement from other kinds of errors. Following this idea, the
present study uses a shift-invariant wavelet transform (Eck-
ley et al., 2010) to isolate a single aspect of forecast perfor-
mance, namely its structure. Our method, first introduced in
Buschow et al. (2019), transforms a map of rain intensities
into local wavelet spectra that measure the energy (variance)
of the rain field for each combination of location and spa-
tial scale. Under the assumption that auto-correlations vary
only slowly in space, the connection between wavelet spec-
tra and the spatial covariance function can be formalized via
the theory of locally stationary wavelet processes (Eckley
et al., 2010). In order to compare forecast and observation,
we can either average the local spectra in space to obtain
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mean spectra, or calculate the dominant scale at each loca-
tion and then evaluate the histograms of these central scales.
Using a physics-based stochastic rain model (Hewer, 2018)
as a controlled test bed, Buschow et al. (2019) have demon-
strated that both approaches lead to double-penalty free ver-
ification procedures which can detect discrepancies between
the observed and predicted correlation structure with great
accuracy.

In the present study, we apply the wavelet-based structure
scores of Buschow et al. (2019) to real numerical weather
forecasts, focusing on the verification of deterministic pre-
dictions. Besides addressing some of the practical challenges
associated with the non-idealized setting (boundary condi-
tions, missing data, treatment of extremes), one main goal is
to study which kinds of errors are typically evaluated by our
method. Apart from the consideration of selected case stud-
ies, it is therefore instructive to compare the new approach to
established alternatives from the rich literature of verification
techniques.

Although the standard taxonomy of spatial verification
techniques (Dorninger et al., 2018) classifies our method as
a scale-separation approach, this class does not actually con-
tain many useful objects of comparison. The most popular
approach (Casati et al., 2004, ISS), while also relying on
wavelets, studies the scale of the error, whereas our method
assesses the error of the scales. The ISS therefore does not
separate structure from displacement and is no direct “com-
petitor” of our approach. Yano and Jakubiak (2016) employ
a different type of wavelet transform to locate dominant fea-
tures in space and scale before explicitly measuring their
displacement error. Lastly Kapp et al. (2018), who devel-
oped the direct precursor to our method and employ the same
wavelet transform, only consider ensemble forecasts and do
not separate correlation structure from total variance. For our
purposes, it is thus more helpful to group verification meth-
ods by the forecast attributes they aim to assess. In this way,
we can identify the object-based structure error S of (Wernli
et al., 2008) and the variogram-based scoring rules devel-
oped by Scheuerer and Hamill (2015) as two comparable
pure structure scores.

To obtain robust results on the merits and interrelation-
ship of the object-, variogram- and wavelet-based struc-
ture verification, we consider a large set of highly resolved
forecasts from the COSMO-DE ensemble prediction sys-
tem (COSMO-DE-EPS). The hourly adjusted radar prod-
uct RADOLAN, as well as the regional reanalysis COSMO-
REA2 (Wahl et al., 2017), serve as our reference fields. Al-
though we verify each member of COSMO-DE-EPS indi-
vidually, the ensemble nature of this data set is nonetheless
very useful for our purposes. Besides giving us a great num-
ber of individual predictions (20 forecasts on 127 selected
days), we can exploit the fact that each ensemble prediction
consists of 20 realizations from a distribution which changes
from case to case to set up idealized experiments: presented
with a single member from one of the 127 ensembles, can

our scores find the other 19 fields based on their similar cor-
relation structure alone?

The remainder of this paper begins, in Sect. 2, with an
overview of all relevant data sets. Section 3 details all steps
related to the wavelet transform and its spatial aggregation.
To get the first overview of the results of this transform, we
analyse the climatology of observed and predicted spectra in
Sect. 4. The wavelet-based structure scores of Buschow et al.
(2019) are introduced and applied to two selected case stud-
ies in Sect. 5. Section 6 reviews the alternative scores from
the literature before the verification of the full COSMO-DE-
EPS data set in Sect. 7. Here, we study the relationship be-
tween all structure scores (Sect. 7.1), assess their discrimina-
tory abilities (Sect. 7.2) and test the sensitivity of our wavelet
scores to the free parameters of the method (Sect. 7.3). The
paper concludes with a discussion and outlook in Sect. 8.

2 Data

As mentioned in the introduction, this study relies on
COSMO-DE-EPS forecasts and COSMO-REA2 reanalysis
data (Wahl et al., 2017, henceforth REA2), both of which
were previously considered by Kapp et al. (2018). The
COSMO-DE ensemble prediction system (Peralta et al.,
2012), which has been operational at DWD since May
2012, is based on the non-hydrostatic regional NWP-
model COSMO (Baldauf et al., 2011), run at a convection-
permitting resolution of 2.8 km in a domain covering Ger-
many and parts of all neighbouring countries (dashed lines
in Fig. 1). The 20 ensemble members are generated by com-
bining four boundary conditions with five slightly perturbed
physics parametrizations.

The regional reanalysis REA2 is based on a similar ver-
sion of COSMO, albeit run on a slightly larger domain (white
mask in Fig. 1) and at finer resolution of 2 km. As in Kapp
et al. (2018), the slight difference in grid is resolved via sim-
ple nearest neighbour interpolation to the coarser grid. We
have checked that the choice of interpolation scheme has
very little impact on the results of our verification proce-
dure. The reanalysis contains information from conventional
observations, assimilated in a continuous nudging scheme,
as well as radar observations which were included via latent
heat nudging. The latter point in particular makes REA2 an
attractive validation data set for our purposes since it encom-
passes direct measurements of rainfall while avoiding sys-
tematic discrepancies with the model due to measurement
errors or spatial interpolation schemes.

Highly resolved regional reanalyses, while clearly con-
venient, are not available in most parts of the world and
may also contain the same biases as the numerical models
verified against them. It is thus of great interest to know
whether our methodology can also be applied to direct obser-
vational data. In this study, we therefore use DWD’s hourly
RADOLAN-RW (Winterrath et al., 2018) product as our

Adv. Stat. Clim. Meteorol. Oceanogr., 6, 13–30, 2020 www.adv-stat-clim-meteorol-oceanogr.net/6/13/2020/



S. Buschow and P. Friederichs: Using wavelets to verify the scale structure of precipitation forecasts 15

Figure 1. Domain and model orography of COSMO-REA2 in me-
tres. Dashed lines delineate the COSMO-DE-EPS domain, and the
dotted line corresponds to the maximum extent of the RADOLAN-
RW data set used in this study.

main validation data set. Rain gauge adjusted radar prod-
ucts such as RADOLAN are more widely available and addi-
tionally allow us to verify both model and reanalysis against
more direct observation data which is completely indepen-
dent from any dynamical model. Kapp et al. (2018) did not
use radar data in order to avoid issues with missing data.
This study will explore how big such effects actually are. As
for REA2, we bridge the slight difference in nominal resolu-
tion (RADOLAN being available at 1 km×1 km) via nearest
neighbour interpolation to the COSMO-DE-EPS grid. Due
to the adjustment with rain gauge data, the RADOLAN-RW
product is cropped to roughly the German national borders
(dotted line in Fig. 1). For the purposes of verification, values
outside of the RADOLAN domain, as well as the occasional
missing values within, are set to zero. To ensure a fair com-
parison, the same pixels are set to zero in the forecast and
reanalysis fields as well.

Forecasts of hourly rain sums were provided by DWD for
the complete year 2011. Since our focus is on an evaluation
of the rain field’s texture, it stands to reason that the total rain
area has to reach some minimum extent since very small rain
objects leave us with too few data to confidently estimate the
spatial correlations. In this study, we therefore select only
cases where at least 5 % of the pixels in the RADOLAN-
field have non-zero rain. We furthermore consider only the
afternoon hours (16:00–19:00 UTC) in order to ensure com-
parable lead times. For each day which meets our criteria, we
select the hour with the greatest total rain area. This selection
procedure leaves us with 127 cases for which the ensemble
issues a total of 2540 individual predictions.

In order to roughly classify the 127 case studies accord-
ing to the processes which generate precipitation, we have
manually checked the corresponding DWD analysis maps

(freely available from http://www1.wetter3.de/, last access:
February 2020) and the registered lightning events (observed
by the community project http://www.lightningmaps.org, last
access: February 2020). For each day, we note the occurrence
of cold fronts, warm fronts, other fronts (quasi-stationary and
occlusion fronts), convergence lines and deep moist convec-
tion (observed lightning being a proxy for the latter) in the
domain. The auxiliary data set is summarized in Fig. 2. We
observe that the majority of notable afternoon precipitation
episodes in 2011 was associated with lightning (indicating
convective processes), often in combination with occlusion
or quasi-stationary fronts. The considered time span is fur-
thermore long enough to contain several examples of both
purely frontal and purely convective events.

3 Estimation of local wavelet spectra

3.1 Redundant discrete wavelet transforms and local
stationarity

Our first objective is to extract the structural properties of
observed and predicted fields in a shift-invariant manner.
This is achieved by projecting the data, given as a matrix
M of dimension nx × ny , onto an overcomplete set of ba-

sis functions of the form ψj,d,u(r)= s−1/2
j ψd

(
r−u
sj

)
. These

so-called daughter wavelets are obtained from their mother
wavelet ψ(r) via a shift u, scaling sj and change in orien-
tation, here denoted by the index d . The redundant discrete
wavelet transform (RDWT) is defined by scales which are
whole powers of two (sj = 2j , j ∈ {1,2, . . .,J }), includes
three directions (d = 1: vertical, d = 2: horizontal, d = 3: di-
agonal) and allows shifts to all locations on the grid of the
data. The redundancy introduced in this manner ensures that
this transformation is shift invariant in the sense that a shift
of the input field merely leads to a shift of the coefficient
fields. Without this property, the outcome of the verification
would depend on the absolute location of rain features within
the domain. One basic requirement of the transformation is
that the dimensions ofM are exactly nx = ny = 2J – we dis-
cuss solutions to this boundary problem in some detail in
Sect. 3.3.

At this point, we face two natural questions: how are the
wavelet coefficients related to the structure of the underly-
ing field, i.e., its spatial covariance matrix, and how should
we deal with the great redundancy of the transformed field?
Both of these issues can be resolved by assuming that our
data are generated by a locally stationary two-dimensional
wavelet process (henceforth LS2W). This two-dimensional
stochastic process introduced by Eckley et al. (2010) is de-
fined as

X(r)=
J∑
j=1

3∑
d=1

∑
all u
Wj,d,uψj,d,u(r)ξj,d,u, (1)

www.adv-stat-clim-meteorol-oceanogr.net/6/13/2020/ Adv. Stat. Clim. Meteorol. Oceanogr., 6, 13–30, 2020



16 S. Buschow and P. Friederichs: Using wavelets to verify the scale structure of precipitation forecasts

Figure 2. Frequency of weather events and their combinations during the 127 d considered. Data visualized using the UpSetR R package
(Conway et al., 2017).

where the Wj,d,u represent fixed weights associated with
each daughter wavelet and ξj,d,u is a random white-noise in-
crement. We assume that the spatial covariance of X varies
only slowly with r . This requirement of local stationarity is
weaker than global stationarity and can be formalized as con-
straints on the regularity of Wj,d,u (Eckley et al., 2010). If
local stationarity holds, it can be shown that the spatial au-
tocovariances of X in the limit of an infinitely large domain
are completely determined by, and can be inferred from, the
set of all |Wj,d,u|

2. Moreover, the squared wavelet coefficient
corresponding to ψj,d,u(r) is a biased estimator of |Wj,d,u|

2.
The bias, which mostly consists of an over-emphasis on the
very large scales, can be removed by multiplication with a
wavelet-specific matrix A−1

ψ . In analogy to the Fourier spec-
trum, the 3× J bias-corrected squared coefficients at each
grid point are called the local wavelet spectrum. Since any
practical application falls outside the realm of asymptotic
limits, the bias correction is only approximate, occasionally
overshoots its target and introduces negative values to the lo-
cal spectra. We will set such values, which have no useful in-
terpretation as “energy”, to zero before proceeding with our
verification.

The need for a bias correction limits our choice of mother
wavelet ψ to the Daubechies family (Daubechies, 1992) for
which Eckley et al. (2010) derived the corresponding matri-
ces A−1

ψ . We refer to the compactly supported Daubechies
wavelets as Dn. Intuitively, large values of the index n ∈ N
correspond to smooth functions with good localization in fre-
quency, whereas small n means good localization in space,
i.e., a small support size.

The support sizes of the first four Daubechies daughter
wavelets are listed in Table 1. A daughter with support size
greater than 2J is no longer unambiguously localized since
it “wraps around” the domain more than once (some grid
points are sampled multiple times due to the cyclic convolu-
tions of the transform). To avoid this effect, we truncate the
local spectra at the largest scale that fits inside the domain. In
order to avoid spreading the information from these untrust-

worthy daughters to the rest of the spectrum (and incidentally
spreading information from the uncertain boundaries), scales
that are too large are removed prior to bias correction.

For the model given by Eq. (1) to be appropriate, we select
theDn which is most similar to the data using the wavelet se-
lection procedure of Goel and Vidakovic (1995). A few de-
tails concerning this step are given in Appendix A. For the
present data set,D2 emerges as the overall winner and is used
for the rest of this investigation. Consequently, the largest
used scale is j = 7 (see Table 1). The three directional ver-
sions ofD2 are shown in Fig. 3. Observing their complicated
structure, we recognize that the location within the support
of ψj,d,u to which the corresponding spectral value should
be assigned is not obvious. As a heuristic solution, we sim-
ply select the centre of mass of ψ2

j,d,u. Features in the result-
ing local spectra are thus located close to the corresponding
features in the input image.

Concluding this section, we note that our spectrum is not
a consistent estimator of |Wj,d,u|

2 (it has non-vanishing vari-
ance in the limit of infinite domain sizes), which necessitates
a spatial smoothing of the wavelet coefficients (Eckley et al.,
2010). Unless noted otherwise we will omit this step from
our present investigation for several reasons: firstly, smooth-
ing introduces a number of additional free parameters which
are undesirable for a verification procedure. Secondly, in-
formation from the uncertain boundary regions (introduced
by expanding the field to 2J × 2J ) is spread across the do-
main. Lastly, some smoothing algorithms can incur signif-
icant additional computational costs. Asymptotic inconsis-
tency is therefore accepted as the cost of a more streamlined
verification procedure.

3.2 Logarithmic transformation

Before applying the RDWT to our observed and predicted
rain fields, we set all values below 0.1 mm to zero, 0.1 mm
being the smallest non-zero value registered by RADOLAN.
This step is generally advisable as it removes extremely low-
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Figure 3. Vertical (a), horizontal (b) and diagonal (c) daughter wavelet for D2.

Table 1. Side length of the daughter wavelets’ support as a function of the scale j for the first 10 Daubechies wavelets. For each mother
wavelet, the star marks the largest daughter wavelet with support size smaller than 29.

j = 1 2 3 4 5 6 7 8 9 10

D1 2 4 8 16 32 64 128 256∗ 512 1024
D2 4 10 22 46 94 190 382∗ 766 1534 3070
D3 6 16 36 76 156 316∗ 636 1276 2556 5116
D4 8 22 50 106 218 442∗ 890 1786 3578 7162

intensity model noise which cannot be interpreted as an ac-
tual forecast of precipitation. Next, we replace the original
rain fields by their binary logarithm. Casati et al. (2004) ar-
gue that this procedure corresponds to an approximate “nor-
malization” of the data. Schleiss et al. (2014), who studied
the non-stationary structure of rain fields, concur that this
type of variance stabilization facilitates structural analysis.

Thinking visually, the log-transform can be interpreted as
a change in colour scale: very few meteorological publica-
tions visualize precipitation on a linear scale since it fre-
quently over-emphasizes small, intense showers while ren-
dering the boundary between rain and no rain invisible. In
fact, only 5 of the 46 figures depicting rain fields in pub-
lications cited in this paper or Buschow et al. (2019) have
linear colour scales. The typical step-wise alternatives have
many bins near zero and few bins at large values. It is easy
to imagine situations where a human assessor will disagree
with algorithmically calculated scores if the scores are based
on the original data (linear colour scale) while the human is
looking at transformed data. The conflict is resolved by bas-
ing both judgements on the logarithm of the fields: a loga-
rithmic colour scale achieves a similar effect as the step-wise
alternatives mentioned above and can easily be used as the
input for our algorithm. This step furthermore dampens the
potential impact of strongly localized extreme events on our
evaluation: without such precaution, a single high-intensity
rain object could overshadow the rest of the field, shifting
the overall distribution of power to very small scales.

It should be noted that the logarithm introduces one addi-
tional free parameter, namely the new value assigned to pix-
els with zero rain. For this study, it will be set to log2(0.1)≈
−3, i.e., the logarithm of the smallest considered non-zero
intensity. We have checked that moderate changes to this pa-
rameter hardly impact the local wavelet spectra.

3.3 Boundary conditions and missing data

Before our wavelet transformation can be applied, the input
field needs to undergo a transformation Rnx×ny → R2J×2J ,
which (i) continues the input realistically at the domain edge
while (ii) altering the values within the original domain as
little as possible. Ideally, this procedure should (iii) be math-
ematically simple and leave few degrees of freedom. It is fur-
thermore desirable that (iv) the appropriateness of the bound-
ary condition does not depend strongly on the data itself. Af-
ter the wavelet transform, the original domain is cut out of
the fields of wavelet coefficients.

Regarding requirements (ii–iv), the reflective boundary
conditions employed by Brune et al. (2018) are a very at-
tractive option: by simply mirroring the domain at each side
until the result is larger than 2J ×2J and then cutting out the
desired square, the fields can be extended to arbitrary dimen-
sions without altering the original data. This transformation
is furthermore inexpensive and has no free parameters and
the structure outside of the original domain is completely de-
termined by the structure within. We therefore generally rec-
ommend the use of reflective boundaries, as long as the do-
main boundary is a rectangle. In the present case, however,
the effective domain edge is given by the irregularly shaped
RADOLAN region (see Fig. 1), making the mirroring proce-
dure impractical. To ensure a fair comparison of forecasts,
reanalysis and observations, we resort to zero boundaries,
meaning that all pixels for which no RADOLAN data are
available are set to zero.

We note that a large fraction of the RADOLAN-fields
used contain further missing data due to failure of individ-
ual radars, thus creating even longer and more complicated
boundaries. Any rain object which touches these boundaries
generates an artificially sharp edge which might, in general,
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affect the resulting wavelet spectra in unexpected ways. The
importance of such effects is tested empirically in Sects. 4
and 7.

3.4 Aggregation of local wavelet spectra

The redundant wavelet transform results in 3×J spectral val-
ues at each grid point. In this study, we will follow Buschow
et al. (2019) and average the spectra over the three directions,
leaving us with one value per scale (some reasons for dis-
carding the directional information are given in Sect. 8). Be-
fore the structure information contained in the local wavelet
spectra can be used for analysis and verification, further data
reduction is required.

The straightforward approach consists of simply averag-
ing the local spectra over the complete domain. Kapp et al.
(2018) first demonstrated that the mean spectra are a solid
basis for forecast verification. This strategy generally leaves
open which feature in the underlying rain field corresponds
to which energy component – the localization potential of
the wavelets is under-utilized. Buschow et al. (2019) there-
fore suggested the map of central scales as an alternative ag-
gregation of the local wavelet spectra: instead of averaging
in space, each local spectrum is summarized by its centre of
mass. The resulting array of zC has the same dimensions as
the original field; the value at each pixel denotes the domi-
nant scale at that location. The authors cited above showed
that this form of visualization nicely separates small-scale
from large-scale features. The histogram of central scales can
replace the spatial mean spectrum as the basis of wavelet-
based verification.

We note that the greater their distance to the next rain
pixel, the larger the scales on which areas without rain will
appear. The addition of a tiny non-zero intensity to such a re-
gion can completely alter the local central scales. The spatial
mean spectra are naturally insensitive to regions with zero
intensity; for the scale histograms we simply remove them
from the analysis.

4 Climatology of wavelet spectra

For a first overview of the spatial structure in our data, we
apply the complete wavelet analysis (summarized in Algo-
rithm 1) to each of the 127× 22 rain fields. The resulting
mean spectra and scale histograms are then averaged over
days related to different weather situations (Fig. 4). We ob-
serve that purely convective cases, where thunderstorms oc-
curred without direct connection to a frontal structure, are
clearly recognized as small in scale, with energy peaking at
scale five (panel a) and the most frequent central scale be-
ing near four. The reverse situation, i.e., fronts without sig-
nificant thunderstorm activity, is characterized by a shift of
energy towards larger scales (energy concentrated at scale
seven, most centres near scale six). The forecast ensem-
ble and REA2 agree closely on this regime behaviour; the
relatively tight spread encompasses the observed spectra in
nearly all cases. The fact that almost no variability resides on
scales 1 and 2 is hardly surprising since the effective reso-
lution of the COSMO model, below which all processes are
unrealistically damped, is at 4 to 5 grid boxes (Bierdel et al.,
2012).

For the purely frontal cases, as well as the overall cli-
matology, precipitation in RADOLAN lives on systemati-
cally smaller scales than in the two model-based data sets,
with histograms shifted by about 0.5, reduced energy at scale
seven and increased energy below scale 5. Interestingly, this
discrepancy is not evident for the purely convective cases
where the curves corresponding to RADOLAN are even
closer to the centre of the ensemble range than REA2.

To assess the impact of the imperfect, padded boundary
conditions on the climatology of these wavelet spectra, we
have repeated the analysis for REA2 without setting pixels
missing from RADOLAN to zero (neglecting the second step
of Algorithm 1). As one might expect due to the possibility
for overall larger features, the resulting curves (dotted lines in
Fig. 4) are slightly shifted toward large scales. The effect is,
however, small compared to both the spread of the ensemble
and the difference between ensemble mean, RADOLAN and
REA2.

Besides the climatologies of the spatially aggregated
wavelet spectra, we are also interested in their average dis-
tribution across the domain. The map of central scales allows
us to investigate this behaviour in a straightforward manner
by simply averaging the locally dominant scales at each pixel
over all instances with rain. To ensure that the results are
reasonably robust, we only consider grid points with at least
three full weeks of non-zero data.

The resulting pattern of average central scales for the
reanalysis is shown in Fig. 5a. For this calculation no
RADOLAN mask was applied, thus enabling us to study the
variability across the complete COSMO-DE domain. We ob-
serve that the distribution of predominantly small and large
scales is closely tied to the orography: the Alps, Ore Moun-
tains, Black Forest and central German highlands are all as-

Adv. Stat. Clim. Meteorol. Oceanogr., 6, 13–30, 2020 www.adv-stat-clim-meteorol-oceanogr.net/6/13/2020/



S. Buschow and P. Friederichs: Using wavelets to verify the scale structure of precipitation forecasts 19

Figure 4. Normalized spatial mean spectra (a) and histograms of central scales (b), averaged over cases with fronts and no convection
(green), convection and no fronts (blue), and all cases (red). Areas indicate the range of these mean curves over the 20 ensemble members.
Solid and dashed lines correspond to REA2 and RADOLAN, respectively. The dotted line represents the REA2 spectra obtained without
masking the fields with the available RADOLAN data.

Figure 5. Map of central scales, averaged over all instants with non-zero precipitation for COSMO-REA2 (a), COSMO-DE-EPS (b, aver-
aged over all 20 members) and RADOLAN (c, individual colour bar). Pixels with fewer than 21 d with precipitation were discarded. The
RADOLAN mask was not applied to REA2 and COSMO-DE-EPS.

sociated with decreased central scales. The Baltic Sea, north-
ern German flatlands and Alpine foothills in Bavaria and
Austria, on the other hand, tend to experience larger precipi-
tation features.

The corresponding climatological map for the forecasts,
averaged here over all ensemble members, is very similar to
the reanalysis albeit with slightly larger scales in the southern
half of the domain. The picture for RADOLAN, on the other
hand, looks completely different (Fig. 5c; note the separate
colour scale). Most notably, the overall scales are decreased
by roughly 1. Due to the limited area – both the Alps and the
Baltic sea are outside the domain – and sharp edges caused
by missing data, very little of the structure described above
can be recognized.

For a direct and fair comparison of models and observa-
tion, we repeat the calculation of the climatological maps of
central scales for REA2 and COSMO-DE-EPS, this time in-
cluding only pixels for which RADOLAN data are not miss-
ing. Noting furthermore that the differences in scale vary
mainly in the meridional direction, we average these maps
over all longitudes; the results are shown in Fig. 6. In this

visualization, we find that the overall pattern of larger scales
in southern and northern Germany and smaller scales near
the centre is present in all three data sets after all. The
RADOLAN profile is qualitatively similar to the others, but
shifted down by nearly one scale.

Figure 6 furthermore allows us to assess the differences
between groups of ensemble members. Anticipating the re-
sults, we have coloured ensemble members according to their
physics setting. We find that members with the first physics
setting, i.e., an increased entrainment rate (Theis et al., 2014),
produce more small-scale variability than the others. Con-
versely, members with the fifth parameter setting, i.e., in-
creased turbulent length scale, favour large-scale variabil-
ity. No clear-cut pattern emerges when we sort the ensemble
members by their boundary condition (not shown).

Throughout northern and central Germany, the reanal-
ysis lies near the centre of the ensemble spread. In the
South, however, all ensemble members produce systemati-
cally larger features than REA2. Since the slight discrepancy
in internal resolution is constant across the domain, this dis-
crepancy is likely the result of continuous data assimilation.
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Figure 6. Map of central scales, averaged over all instants with
non-zero precipitation and all longitudes. Ensemble members with
the same physics setting have the same colour, and RADOLAN and
REA2 are black and grey, respectively. Only pixels with available
RADOLAN observations and at least 21 d of non-zero rain were
included.

5 Wavelet-based scores

5.1 Scores based on the mean spectra and scale
histograms

Following Buschow et al. (2019), we compare the scale his-
tograms of two rain fields, i.e., forecast and observation, via
the earth mover’s distance (henceforth EMD): the count in
each histogram bin constitutes a pile of earth located at the
bin’s centre. The EMD is given by the minimum work (dirt
moved times distance travelled) required to transport the pre-
dicted arrangement of piles into the observed one. We prefer
this type of comparison over an element-wise difference be-
cause it treats shifts between neighbouring scales appropri-
ately: a displacement from one bin to the next increases the
total work and thus the EMD only slightly. A discrepancy
by several scales, which would lead to the same element-
wise difference between the histograms, is punished more
strongly. For further details about the merits of the EMD, the
reader is referred to Rubner et al. (2000). The EMD between
the two scale histograms (henceforth HEMD) constitutes our
first wavelet-based score.

The second score, SEMD is analogously given by the
EMD between the two normalized and spatially and direc-
tionally averaged spectra. Here, the locations of the dirt piles
are given by the scales j ∈ {1, . . .,J }, the spectral energy
corresponds to the amount of dirt. The normalization of the
spectra eliminates differences in total intensity and guaran-
tees that the EMD is a true metric, meaning that only per-
fectly predicted spectra achieve perfect scores.

As mentioned in Buschow et al. (2019), we can obtain a
sign associated with the EMD by calculating the distance be-
tween the centres of the two curves, i.e., the difference in
expectation value for HEMD and the difference in central
scale for SEMD. When desired, the sign of these differences
can be attached to SEMD and HEMD in order to assess the
directions of the forecast errors (too large or too small).

5.2 Case study: 19 June 2011

To get a first impression of the kinds of errors which de-
termine the outcome of our wavelet-based verification, we
consider a case study for which the quality of the ensemble
members was deemed below average by both of our scores.
On 19 June 2011, a secondary depression near the end of its
life cycle made landfall on the German North Sea coast and
traversed northern Germany during the afternoon hours. Be-
tween 15:00 and 16:00 UTC, RADOLAN observed a large-
scale rain band near the cyclone’s centre in eastern Germany
and a large number of smaller, relatively intense, features
across the rest of the domain (Fig. 7a). The forecast consid-
ered in the example (member five, Fig. 7c) features a single,
substantially rounder, larger and smoother field in the east
and only a few scattered objects with very low intensity be-
sides. This discrepancy is clearly reflected by a surplus of
large-scale variability in both the mean spectra (panel b) and
the scale histograms (panel e). The resulting earth mover’s
distances amount to approximately one full scale in both
cases. Here, we have visualized the corresponding transports
as river plots (coloured lines between the histograms). Con-
sidering the maps of central scales (panels d and f), we find
that the features in the images are classified just as expected
with the large rain band living near scale 5 in RADOLAN
and scale 6 in the forecast, while the smaller features lie
closer to scales 3 and 4.

5.3 Case study: 26 February 2011

Our second case study similarly features a depression cross-
ing northern Germany. In contrast to the previous example,
the dominant weather phenomena are associated not with the
cyclone itself, but with its frontal system enclosing a very
narrow warm sector which crosses western Germany during
the afternoon of 26 February 2011 (Fig. 8). The resulting
rain field, as observed by RADOLAN (Fig. 9), consists of
two narrow rain bands, one with medium intensity associ-
ated with the cold front in the west and one with very low
intensities related to the warm front in the east. Neither the
reanalysis nor ensemble member 6 exhibit a separation be-
tween the precipitation fields of the two fronts, both showing
a single broad rain field across south-western Germany in-
stead. Member 1, on the other hand, produces two narrow
rain bands, albeit with increased width and length as well as
slightly wrong locations compared to RADOLAN.
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Figure 7. Wavelet-based verification for 19 June 2011 at 16:00 UTC: observed field (RADOLAN, a); observed spectrum, EMD components
and forecast spectrum (b); forecast field (Member 5, c). Bottom row: observed map of central scales (d); corresponding histogram, EMD
components, forecast scale histogram (e); forecast map of scales (f).

In terms of the overall structure, the first ensemble member
is arguably superior to member 6 and REA2. A point-wise
verification measure like the root mean square error does
not reward the correctly simulated separation into two rain
bands. The map of central scales (bottom row of Fig. 9), on
the other hand, adequately registers two disjoint rain bands
as smaller than the unified pattern. Consequently, member
1 receives a substantially better score (HEMD≈ 0.5) than
member 6 or REA (both close to HEMD= 1).

6 Non-wavelet scores

To investigate which properties of a forecast are punished
or rewarded by our wavelet-based verification, one natural
approach is to compare the scores presented above to alter-
native verification methods which also focus on the field’s
structure.

Our first candidate is the structure component of SAL
(Wernli et al., 2008, S). For the calculation of S, which is
implemented in the SpatialVx R package (Gilleland, 2018),
observed and predicted rain field are decomposed into dis-
crete objects. Here, we use the standard algorithm of the R
package, which first smooths the data with a simple disc ker-
nel, then discards all pixels below a given threshold Rmin and

Figure 8. UK Met Office surface pressure chart for 26 February
2011 18:00 UTC (cropped). Contains public sector information li-
censed under the Open Government Licence v1.0.

groups continuous regions of non-zero pixels into separate
objects. For each object (i), the ratio between total and max-
imal precipitation is calculated as

V(i) = Rtot,(i)/Rmax,(i) , (2)
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Figure 9. Logarithmic rain fields for 26 February 2011 at 19:00 UTC (top row) and corresponding maps of central scales (bottom). From
left to right: RADOLAN, REA and COSMO-DE-EPS ensemble members 1 and 6. All fields were cropped to the extent of the available
RADOLAN data.

where Rtot,(i) and Rmax,(i) refer to the total and maximum in-
tensity of the object, respectively. This “peakedness” is av-
eraged over all objects in both fields separately, weighted
by Rtot,(i). S is then given by the relative difference in
(weighted) mean peakedness of forecast and observation.
The sign is chosen such that S > 0 indicates forecasts with
features that are not peaked enough, i.e., too large and/or too
flat.

The key parameter of this procedure is the threshold Rmin,
which can, depending on the data, have a strong impact on
the outcome of the verification (Weniger and Friederichs,
2016). Radanovics et al. (2018) point out that such effects
can be minimized as long as thresholds below the respec-
tive minimum positive values of the fields are avoided. This
property is met by choosing individual thresholds for fore-
cast and observation, truncating each field at 1/15 of the
95 %-quantile of non-zero values. This approach greatly de-
creases the computational cost of the procedure since the ob-
ject decomposition has to be repeated only once per field,
not once per combination of observation and forecast. We
have checked that the results hardly differ from those ob-
tained with a common threshold.

Our second object of comparison is the weighted p-
variogram score of Scheuerer and Hamill (2015). Originally
designed for ensemble verification of multivariate quantities,
Buschow et al. (2019) adapted this score to a deterministic
setting. Assuming stationarity of the data, the score simpli-
fies to the mean squared difference between observed and
predicted empirical p variogram, weighted by the inverse

distance d−1 between pairs of points, i.e.,

VGS=
∑

all 0<d<dmax

d−1

 ∑
|ri−rj |=d

∣∣∣Robs(ri)

−Robs(rj )
∣∣∣p − ∑

|ri−rj |=d

∣∣∣Rfor(ri)−Rfor(rj )
∣∣∣p
2

. (3)

Here, Robs/for(ri) denotes the observed or predicted rain
value at a given location ri . In contrast to SEMD, HEMD and
S, scores of this form depend explicitly on the variance of the
two fields: for p = 2, i.e., the classic variogram, the expected
squared differences between distant points converges exactly
to the variance; changes in this parameter shift the curves up
and down. Since we wish to isolate structure from intensity
errors, we set p = 2 and standardize all fields to unit vari-
ance before calculating VGS. This guarantees that all curves
converge to the same value; their remaining differences are
due to discrepancies in correlation structure. Noting that the
inverse distance weighting limits the impact of very distant
pairs, we set dmax = 50px.

In order to check how strongly VGS and the other sup-
posed structure scores depend on intensity errors, we include
SAL’s amplitude component A, given as the relative differ-
ence in total rain, in our experiments as well. All wavelet and
non-wavelet scores used in this study are listed in Table 2, the
optimal score in each case is zero. The wavelet and variogram
transformations are applied to the logarithmic rain fields for

Adv. Stat. Clim. Meteorol. Oceanogr., 6, 13–30, 2020 www.adv-stat-clim-meteorol-oceanogr.net/6/13/2020/



S. Buschow and P. Friederichs: Using wavelets to verify the scale structure of precipitation forecasts 23

the reasons detailed in Sect. 3.2. This transformation is not
appropriate for S andA because the resulting negative values
lead to unexpected behaviour of the score definitions. These
scores are therefore based on the untransformed rain fields
for which they were originally developed.

7 Verification of COSMO-DE-EPS in 2011

To study the behaviour of our structure verification in ag-
gregate, we apply the wavelet analysis of Algorithm 1 to all
127× 22 fields in our data set to obtain the mean spectra
and scale histograms on which SEMD and HEMD are based.
Similarly, we calculate the total precipitation (basis for A),
the average structure function V (Eq. 2, basis for S) and the
weighted stationary variogram (basis for VGS). Every field is
then compared to every other field, giving us approximately
four million realizations of each score listed in Table 2. Dif-
ferent subsets of this large data set are then used to address
the following questions:

1. How are these scores related to each other?

2. Can the structure scores discriminate good forecasts
from bad ones?

3. How sensitive are the wavelet scores to the choice of
mother wavelet, the log-transform, the boundary condi-
tions and the choice of reference data?

The following sections address each of these questions in
turn.

7.1 Comparison between scores

For a first overview of the verification results, we con-
sider the distributions of all scores (absolute values) for the
20 forecasts issued on each of the 127 d, verified against
RADOLAN. In Fig. 10, we have first separated the result-
ing distributions by weather situation: days where precipita-
tion was generated by a single type of weather phenomenon
(warm front, cold front etc.) are shown in individual box
plots, and all other days are grouped into the class “multi-
ple”.

It appears that, at least qualitatively, HEMD, SEMD and
VGS are in fair agreement: purely convective days and pure
cold fronts (of which our data set contains eight and four
cases, respectively; see Fig. 2) were forecast best (lowest
scores), followed by warm fronts and other fronts. S agrees
in the convective cases, but sees no clear differences between
the front types. The two pure convergence-line cases received
the unanimously worst scores, but the small sample size pro-
hibits any general conclusions from this observation. The
amplitude score A, which does not measure structural prop-
erties, shows no great variation across weather situation, the
only exception being the four cold-front cases, the total am-
plitude of which was predicted unusually well.

To quantify how close the agreement between the dif-
ferent scores actually is, we calculate their correlation ma-
trix, shown in Fig. 11a. Unsurprisingly, the strongest connec-
tion is found between the two wavelet scores (0.85), both of
which also have a notable connection to the variogram score
(0.64 and 0.68). The object-based S is slightly less similar to
the other structure scores and shows the closest relationship
with the amplitude error A. SEMD, HEMD and VGS, on the
other hand, are only weakly linked to A.

To get a broader overview of these interrelations in cases
where forecast and observation may be very dissimilar, we
have also calculated the same correlations over all possible
pairs of forecast and observation date (Fig. 11b). Across this
data set, which includes some exceedingly bad predictions,
the similarity between all four structure scores increases
slightly, and SEMD and HEMD become nearly identical. The
connection to the amplitude error A mostly vanishes.

In the next step, we include the sign of S and endow
SEMD and HEMD with the signs of the corresponding centre
differences as described in Sect. 5.1. These scores now mea-
sure not only the severity of the structural error, but also the
direction, i.e., too small or too large. In accordance with the
classic SAL definition, the signs are chosen such that posi-
tive values indicate a forecast with too much large-scale vari-
ability. The joint distributions of the three signed scores are
shown in Fig. 12. Here, we have again included all 127×127
combinations of days in order to probe a broad range of
good and bad forecasts. HEMD and SEMD agree on the
sign of the error in 93 % of cases, and the sign of S matches
roughly 85 % of the time. As a result, the correlations rise
to cor(S,HEMD)= 0.87 and cor(S,SEMD)= 0.85, respec-
tively. The bivariate histograms furthermore show that ex-
treme disagreements, which would appear in the upper left
and lower right quadrants of the histograms, are rare. The
functional relationship of these scores follow a sigmoid-type
function.

7.2 Discrimination

The previous section has shown that structure scores based
on wavelets, variograms and object properties pass similar,
but by no means identical judgement of forecast quality. A
natural question is which (if any) of these assessments is cor-
rect in the sense that the best forecast receives the best score.
In a realistic setting, this question cannot be answered be-
cause the objectively best forecast is unknown. As a surro-
gate, we can consider the ensemble forecast issued for each
day as the “correct” prediction and compare it to the 126
forecasts issued for the other days: if the prediction system
were perfect and weather patterns never repeated, a sharp
verification tool should give the best scores to matching days.

The leftmost bars in Fig. 13 show the median rank of
those supposedly best forecasts, verified against RADOLAN.
Since there are 20 forecasts per day, the ideal rank is 10. Al-
though such perfect scores are not observed, matching days
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Table 2. All scores used in Sect. 7. Jmax and Jmin refer to the largest and smallest considered scale of the wavelet decomposition. In this
study, Jmax− Jmin = 7− 1= 6. The optimal value of each score is zero.

Abb. Description Range Signed log(rain)

HEMD EMD between histograms of central scale [0,Jmax− Jmin] (yes) yes
SEMD EMD between dir. averaged mean spectra [0,Jmax− Jmin] (yes) yes
VGS Weighted stationary variogram score, p = 2 [0,∞) no yes
S Relative difference in average feature “peakedness” [−2,2] yes no
A Relative difference in total rain intensity [−2,2] yes no

Figure 10. Distribution of absolute values for all scores (matching forecast and observation dates), separated by weather event.

Figure 11. Lower triangle: correlations between the absolute values
of all scores, calculated over (a) the 20× 127 pairs belonging to
matching days and (b) all 20× 127× 127 combinations of forecast
and observation. The upper triangles show bi-variate histograms for
all combinations of scores.

are nonetheless typically among the 25 % best forecasts, with
SEMD issuing the lowest median rank and S the highest.
When we use REA2 as the reference instead of RADOLAN,
the ranks of all scores improve by about 100 – all structure
scores clearly indicate that the COSMO-DE-EPS predictions
are structurally more similar to the reanalysis than the obser-
vations.

To focus on the discriminatory abilities of our scores, we
can take the quality of the predictions out of the equation
by selecting a member of the forecast ensemble as the “ob-
servation” against which all other forecasts are verified. Ide-
ally, the 20 ensemble members constitute independent real-
izations from a single distribution which changes from day to
day. When forecast and observation share neither physics set-
ting nor boundary conditions (centre of Fig. 13), the rankings
for matching days improve with respect to all four scores. In
a perfect world, the matching forecasts would rank at num-

ber six (since there are 12 unrelated ensemble members).
In reality, the ranks are between 326 for VGS and 424 for
S. Switching from an unrelated member to an “observation”
which shares the forecast’s physics settings (of which there
are four, making the perfect rank two) only marginally lowers
the ranks.

As a final experiment, we select an observation which
has the same boundary conditions as the prediction. Visual
inspection of example forecast ensembles shows that these
members are often extremely similar to one another. As a
result, SEMD, HEMD and VGS consider only a handful
of other predictions superior to those that share both the
boundaries and the date of the observation (rightmost bars
in Fig. 13). S, on the other hand, still prefers over 160 other
forecasts over the “correct” ones, indicating weaker discrim-
inatory ability.

7.3 Sensitivity of the wavelet scores

Concluding this statistical analysis of our wavelet-based
scores, we consider their sensitivity to the free parameters
of the method. To this end, the complete verification pro-
cedure is repeated three times: once with the Haar wavelet
instead of D2, once without the logarithmic transformation
and once without setting pixels missing from RADOLAN to
zero. The resulting joint distributions of original and altered
scores are shown in Fig. 14. Here, we have again included all
pairs of observation and forecast days in the bi-variate his-
tograms (colours).

Recalling the outcome of the wavelet selection (Sect. A),
as well as the results reported in Buschow et al. (2019), we
expect the impact of the chosen mother wavelet to be weak.
Figure 14a clearly confirms this expectation: SEMD experi-
ences only minor changes, and the scores remain correlated
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Figure 12. Bi-variate histograms of SEMD and S (a), HEMD and S (b), and SEMD and HEMD (c). The two wavelet scores have been
endowed with the sign of the corresponding difference in centre. Percentages indicate the fraction of cases where the two scores have the
same sign; cor denotes the correlation.

Figure 13. Median rank of the score obtained by the 20 ensemble
members belonging to the same day as the observation among the
set of all 2540 forecasts. From left to right, the designated “observa-
tions” are RADOLAN, REA2, an ensemble member which shares
neither boundary conditions nor physics settings with the forecast,
an ensemble member which shares the physics settings, and an en-
semble member which shares the boundary conditions.

at 0.96; HEMD is even less sensitive (cor= 0.98). We fur-
thermore observe no outliers, indicating that the verdict never
changes abruptly as a result of switching from one wavelet to
another.

Based on the discussion in Sect. 3.2, we expect the log-
arithmic transform to have a greater influence on the result
of the verification. For SEMD, our expectation is confirmed
(cor≤ 0.85, wide distribution), and HEMD is notably less
affected by the change in “colour scale”.

The experiment without the RADOLAN mask (panel c)
constitutes an ideal test for the impact of the wavelet-
transform’s boundary conditions: originally all values be-
yond the long and complicated edge of the available
RADOLAN data were simply set to zero; now we replace
them with the actually available model output, i.e., perfect
boundary conditions. The resulting difference in scores is
comparable in magnitude to that of the logarithmic trans-
form, but the distribution is different. While the overall cor-
relation over all cases is high, the range of occurring differ-

ences is broader, meaning that individual fields with promi-
nent features near or beyond the border can experience a
strong shift in the verification result. HEMD is again less
sensitive than SEMD and produces fewer outliers.

In a final step, we consider the impact of the chosen valida-
tion data (Fig. 14d). As one might expect based on the results
of previous sections, the change from RADOLAN to REA2
as “observation” can result in completely different verifica-
tion results, the sensitivity of both scores being similar in this
instance.

All correlations discussed so far decrease monotonically
when only matching pairs of forecast and observation date,
i.e., reasonably good forecasts, are considered (black dots in
Fig. 14). The qualitative results remain unchanged; HEMD
is the less sensitive score and the mother wavelet has the
least impact, while logarithm and boundary condition are
more important. The strongest decrease in correlations oc-
curs for the choice of validation data, meaning that, in our
data set, the ranking of individual forecasts for matching days
changes almost completely depending on the chosen obser-
vations. We note, however, that none of the effects discussed
in this section has a strong systematic component – the ex-
pected scores (white dots in Fig. 14) are nearly unchanged in
all four sensitivity experiments.

8 Summary and discussion

This study has applied the wavelet-based pure structure veri-
fication of Buschow et al. (2019) to the systematic evaluation
of numerical weather predictions against radar observations,
as well as a regional reanalysis.

In the first step, we have studied the climatological proper-
ties of the local wavelet spectra. Similar analyses of the pre-
dicted average spatial structure were carried out by Willeit
et al. (2015) and Wong and Skamarock (2016) using Fourier
transforms. Aggregation of these mean spectral properties
according to the weather situation has confirmed the find-
ings of Brune et al. (2018), who report that wavelet spectra
are very well suited to differentiate between rain fields with
different degrees of spatial organization. We furthermore find
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Figure 14. Bivariate histograms of the original wavelet-based scores (on the x axis) against their altered versions (y axis), including all
combinations of forecast and observation date. For (a)–(c), RADOLAN is the reference; (d) compares scores against RADOLAN to scores
against REA2. Numbers indicate the correlation over all scores, and the number in brackets is the correlation obtained for matching days
only (marked by black dots). The white dot represents the mean original and altered values for matching days.

that forecasts and reanalysis, which are based on similar con-
figurations of the same NWP model, have very nearly the
same average structure. RADOLAN, on the other hand, is
systematically shifted towards smaller scales in most situa-
tions. For purely convective rain fields, however, the fore-
cast ensemble is more similar to RADOLAN than to REA2.
The latter observation indicates that the discrepancy in scale
is not exclusively due to the slight difference in native res-
olution (1 km for RADOLAN, 2 km for REA2 and 2.8 km
for COSMO-DE-EPS) since the grid spacing also differs be-
tween forecast and reanalysis and does not depend on the
weather situation. By masking the forecasts with the avail-
able radar measurements, missing data have been ruled out as
a possible explanation as well. We therefore conclude that, ir-
respective of boundary conditions, physics settings and data-
assimilation scheme, the COSMO model tends to produce
frontal and other large-scale precipitation patterns which are
too large and too smooth.

An evaluation of the temporal mean map of central scales
has shown that the discrepancy is mostly constant in space.
This step furthermore revealed that the variation in aver-
age structure across the ensemble is mostly determined by
the physics parametrization. A systematic discrepancy be-
tween predictions and reanalysis was furthermore detected
over southern Germany. Since the difference in model res-
olution is constant in space, this observation indicates that
the model has an internal tendency to under-represent small-
scale variability in this region. Overall this type of clima-
tological analysis has proven to be a useful first evaluation
of the average model performance. The natural possibility
to localize errors in space constitutes an advantage over the
Fourier approach of Willeit et al. (2015) and Wong and Ska-
marock (2016).

Our second set of results concerns the typical behaviour of
the two wavelet-based structure scores SEMD and HEMD.
Buschow et al. (2019) report that these scores, as well as the
object-based S and the variogram score VGS, can discrimi-
nate between good and bad predictions of spatial structure in
a controlled environment. Exploiting the fact that each indi-
vidual forecast ensemble essentially contains 20 draws from
an ever-changing probability distribution, we have demon-
strated that many of the results previously obtained with syn-
thetic rain fields can be transferred to the real world: all four
scores are reasonably good at distinguishing matching fore-
casts from non-matching ones, S being the worst at this ex-
ercise and VGS marginally better than the two wavelet al-
ternatives. Interpreting this experiment, is important to real-
ize that discrimination is not the only desirable property for
the scores under consideration, since we also wish to isolate
information on the field’s structure from all other kinds of
errors.

To learn more about the kinds of forecast errors punished
by our structure scores, we have considered two selected case
studies. Here, HEMD was found to be particularly easy to in-
terpret since we can plot the map of central scales on which
it is based. In this manner we found that the score can, for ex-
ample, reward the correctly predicted split precipitation field
in a nearly but not completely occluded frontal system, or
punish the lack of small-scale rain features surrounding a
secondary depression.

A statistical analysis across the complete data set revealed
that, in realistic forecast situations, HEMD and SEMD
are usually in very close agreement with each other. The
wavelets furthermore typically find the same sign of the er-
ror as the object-based S. The moderate correlation between
S and the wavelet scores is likely due to low-intensity areas
which are removed during the object identification procedure
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required for SAL, but may have a big impact on the aver-
age wavelet spectra. The variogram-based VGS is, on aver-
age, more similar to the wavelets. Here, the remaining dif-
ferences are probably related to the fact that the incarnation
of VGS, recommended by Scheuerer and Hamill (2015) and
employed in this study, down-weights long-distance correla-
tions while the wavelet spectra treat all scales equitably. It is
worth noting that the overall performance of the variogram
score is surprisingly good, despite the questionable assump-
tion of spatial stationarity.

Based on the discussion above, we can overall recommend
HEMD as a useful tool for purely structural verification of
quantitative precipitation forecasts. Its verdict is very simi-
lar to that of SEMD, but less sensitive to the choice of the
mother wavelet and boundary conditions, and easier to in-
terpret thanks to the underlying map of central scales. We
have demonstrated that our score can provide useful addi-
tional information on a very specific aspect of forecast per-
formance and should be used in conjunction with other tech-
niques which isolate errors in feature location, intensity and
total area.

Another property, which has so far been left out of the
analysis, is the orientation and anisotropy of the rain fields.
Since several important weather phenomena such as fronts
and squall lines have very characteristic anisotropic shapes,
these are clearly relevant aspects of forecast quality to which
all scores tested in this study are insensitive. We have in-
tentionally removed the directional information from our
wavelet spectra because the underlying transformation is in-
variant under shifts, but not under rotations. Consequently,
the perceived degree of anisotropy, as well as the difference
in the orientation of two fields, depends on the orientation
itself – one could rotate observation and forecast simultane-
ously in the exact same way and receive a changed verifica-
tion result. To avoid this problem, future studies will explore
the use of different wavelet transforms which have the neces-
sary redundancy in both location and orientation. A second
important direction for future research is the application to
the problem of wind verification, which faces many of the
same issues as precipitation and has recently received much
attention in the spatial verification community (Dorninger
et al., 2018).
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Figure A1. Entropy of the transforms for the first 10 Daubechies
wavelets (specifically the “extremal phase” versions). Points denote
the median, lines the interquartile range over all forecasts and ob-
servations from our data set.

Appendix A: Wavelet selection

In order to objectively select the most appropriate mother
wavelet, we follow Goel and Vidakovic (1995), who demon-
strate that the similarity between data and basis function
can be optimized by minimizing the entropy of the mother
wavelet’s corresponding orthogonal transform. In a nutshell,
wavelets with many vanishing moments and large support ar-
eas are good at representing smooth internal structures while
shorter wavelets can handle discontinuities better. For a more
detailed discussion of this approach and its appropriateness
to our application, we refer to Buschow et al. (2019). Ap-
plying the same method to synthetic rain fields with tunable
smoothness and scale, these authors found that the differ-
ences between the Daubechies wavelets are only moderate
compared to the difference between parameter settings – the
wavelet spectra are determined mostly by the structure of the
field, not the shape of the basis function.

Figure A1, summarizing the entropies for all rain fields
from our data set, largely confirms this result. While the op-
timum lies between one and four vanishing moments, the
differences between these wavelets of short to intermediate
smoothness are marginal compared to the sample variability
across the different fields. Faced with the choice betweenD2
and D3, which have very nearly identical results, we select
D2 because it has a shorter support, thereby allowing us to
utilize the first seven scales (see Table 1).
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Data availability. The RADKLIM data
set is available from the DWD servers
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Abstract
One important attribute of meteorological forecasts is their representation of
spatial structures. While several existing verification methods explicitly measure
a structure error, they mostly produce a single value with no simple interpre-
tation. Extending a recently developed wavelet-based verification method, this
study separately evaluates the predicted spatial scale, orientation and degree of
anisotropy. The scale component has been rigorously tested in previous work
and is known to assess the quality of a forecast similar to other, established
methods. However, directional aspects of spatial structure are less frequently
considered in the verification literature. Since important weather phenomena
related to fronts, coastlines and orography have distinctly anisotropic signatures,
their representation in meteorological models is clearly of interest. The ability of
the new wavelet approach to accurately evaluate directional properties is demon-
strated using idealized and realistic test cases from the MesoVICT project. A
comparison of precipitation forecasts from several forecasting systems reveals
that errors in scale and direction can occur independently and should be treated
as separate aspects of forecast quality. In a final step, we use the inverse wavelet
transform to define a simple post-processing algorithm that corrects the struc-
tural errors. The procedure improves visual similarity with the observations, as
well as the objective scores.

K E Y W O R D S

MesoVICT, precipitation forecasts, structure error, verification, wavelets

1 INTRODUCTION

The errors of modern weather forecasts can take many
different forms. While everyday users may only notice
that their weather app failed to predict rainfall at a
specific point in space and time, such a mistake could
have several possible meanings. Perhaps the coherence
of a frontal precipitation band was underestimated. The
likelihood of convective initiation in a certain region may

have been misjudged. Alternatively, the simulated pattern
was perfectly adequate but its spatial location was wrong.
In some cases, the precipitating process is so small and
short-lived that no present-day weather model could be
expected to foresee its exact timing and placement.

In order to obtain useful diagnostic information on
the merits of highly resolved simulations, many forecast
verification tools aim to separate the various types
of error from one another. Most prominently, spatial
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displacements tend to mask all other kinds of error in
a point-wise evaluation. To tackle this issue, a multitude
of so-called “spatial” verification techniques have been
developed throughout the last two decades. A first inter-
comparison of these methods was undertaken within the
intercomparison project (ICP; Gilleland et al., 2009), which
classified the various approaches and attempted to elu-
cidate their differences and similarities using a set of
standardized test cases. The Mesoscale Verification Inter-
comparison over Complex Terrain (MesoVICT; Dorninger
et al., 2018), launched in 2014, constitutes the second
phase of the ICP and focuses on the effects of uneven ter-
rain and uncertain observations and considers forecasts of
both precipitation and wind.

This study participates in MesoVICT by using both
the realistic test cases of Dorninger et al. (2018) and the
recently presented geometric tests of Gilleland et al. (2020).
Our focus lies on isolating and understanding errors in
the predicted spatial structure of quantitative precipitation
forecasts. Using a two-dimensional wavelet transform, we
want to separately determine whether the predicted struc-
ture was (a) too small or too large, (b) too directed or too
round, and (c) oriented along the correct angle.

Several popular methods from the rich spatial verifi-
cation literature have previously been used to determine
a “structure” error. Using the field deformation tech-
nique of Keil and Craig (2007), Han and Szunyogh (2016)
approximately corrected the forecast’s location and inten-
sity and referred to the residual error as “structural”. While
straightforward and intuitive, this kind of approach yields
no further information on how exactly the pattern was
mis-forecast. Furthermore, it should be noted that any
field deformation approach which allows for a divergent
optical flow will be sensitive, simultaneously, to errors in
both the spatial scale and anisotropy and therefore cannot
truly separate structure from location.

A more intuitive notion of structural disagreement can
be obtained using object-based methods that decompose
the fields into features and measure their individual prop-
erties. Such techniques are typically adapted to the special
case of precipitation forecasts where well-defined discrete
objects are known to exist. The popular SAL method of
Wernli et al. (2008) defines its structure component S via
the ratio between total and maximum precipitation in each
object. The resulting score is related to the size and num-
ber of objects as well as the tail behaviour of the marginal
distribution; directional aspects are neglected by S. Inter-
estingly, the relative placements of the individual objects
are also not included in S. It is clear that a number of
small features in close proximity to one another can form
a large-scale structure, perhaps driven by a single meteo-
rological process. Such fractured pattern may result from
the driving process itself, the complex terrain in which

it occurs, or, in case of observational data, the measure-
ment technique. SAL does not consider this as an element
of structure, but instead includes the relative placement
of the object in the location component (Wernli et al.,
2008). A further related drawback of this otherwise use-
ful technique is its potential sensitivity to the details of the
object identification algorithm (Weniger and Friederichs,
2016).

The popular Method for Object-based Diagnostic Eval-
uation (MODE; Davis et al., 2006) provides a wide frame-
work in which numerous structural properties such as
feature size, aspect ratio, aspect angle and even curvature
can be evaluated. Like SAL, it is mostly adapted to precip-
itation, can be sensitive to the object-defining algorithm
and does not simply allow multiple features to form an
organized super-structure on larger scales. More generally,
these techniques are inherently single-scaled. If objects are
detected by smoothing the field with a kernel of size 𝜎 and
thresholding at a value T, then the pair (𝜎,T) defines a spa-
tial scale: larger values of T isolate smaller intense regions,
larger values of 𝜎 lead to the union of increasingly dis-
tant features into single, larger objects. If we calculate, for
example, the average aspect ratio of the objects detected
in this manner (following Davis et al., 2006), the result
is characteristic of the anisotropy on the scale defined
by (𝜎,T). Re-arranging the objects in space (larger-scale
variability) or re-arranging the pixels within an object
(smaller-scale variability) leave the result of the analy-
sis unchanged, since the aspect ratio depends only on an
object’s shape, not its position or internal composition.

Avoiding such pitfalls of the object-based methods,
several authors have based their structural verification
on indirect estimates of the spatial correlation structure.
Marzban and Sandgathe (2009), Scheuerer and Hamill
(2015) and Ekström (2016) rely on empirical variograms
for this purpose. The latter study in particular achieves an
intuitive notion of the predicted and observed spatial scale
by estimating the variogram’s range. Without defining a
verification score, Willeit et al. (2015) study the climatolog-
ical structure of forecast precipitation fields using Fourier
transforms. Wong and Skamarock (2016) extended this
work using directional information from the 2D Fourier
spectra.

A similar direction was pursued in Buschow et al.
(2019). Building on the work of Kapp et al. (2018), they
used a two-dimensional redundant discrete wavelet trans-
form (RDWT) to analyze the scale on which spatial vari-
ability occurs, both globally and at each grid point. The
resulting scores effectively isolate scale errors in ideal-
ized (Buschow et al., 2019) as well as realistic situa-
tions (Buschow and Friederichs, 2020). A first analysis of
anisotropy, using the same kind of wavelet transform, was
undertaken by Brune et al. (2018) who included a measure
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of anisotropy as one component of their wavelet-based
convective organization index (WOI). Following the same
approach, Brune et al. (2020) furthermore attempted to
infer the local direction in precipitation fields from the rel-
ative contributions of horizontal and vertical features to
the total variability. However, as discussed in Buschow and
Friederichs (2020), the classic discrete wavelet transform
has inherent shortcomings in its representation of direc-
tional structures which make it especially unsuitable to
the task of forecast verification. With this transform, one
could rotate forecast and observation by the same angle
and receive a very different score.

In the context of image processing, the same issues
were long ago recognized by Kingsbury (1999), who
addressed the problem using complex-valued wavelets.
Their so-called dual-tree complex wavelet transform
(DTCWT) forms the new basis for our verification method.
A first meteorological application of this technique was
recently presented by Scovell (2020) who used it to incor-
porate anisotropy into a stochastic noise generator for
precipitation nowcasting. Nerini et al. (2017) pursued a
similar route in their application of a localized Fourier
transform to the task of reproducing non-stationary,
non-isotropic rainfall variability.

After introducing the relevant datasets in Section 2, we
explain in Section 3 why the original RDWT is unsuited
to analyze directions and how the DTCWT solves the
problem. The next step (Section 4) is to extend the
idea of a central scale (Buschow et al., 2019) to include
anisotropy and direction. This leads to the definition of
new wavelet-based structure scores in Section 5. Exper-
iments with geometric test patterns (Section 6) and the
realistic MesoVICT forecasts (Section 7) demonstrate that
the new wavelets allow for the same kind of sensitive
scale-verification as their predecessors. In addition, they
yield valuable information on the forecast’s degree of
anisotropy and predominant orientation. Section 8 uses
the inverse DTCWT to define a simple algorithm for cor-
recting the structural errors detected by our approach.
The algorithm is tested on individual forecasts as well as
the dataset as a whole. We discuss the outcomes of all
experiments in Section 9.

2 DATA

In contrast to the largely homogeneous Great Plains con-
sidered in the ICP, the study area of the MesoVICT
project focuses on a small, mountainous region surround-
ing the European Alps (Figure 1). Six case-studies on inter-
esting weather situations in summer and autumn 2007
were selected (Table 1, reproduced from Dorninger et al.
(2018)). Gridded analysis data of precipitation and wind

F I G U R E 1 vera orography in metres and minimum
common domain for the MesoVICT dataset (white rectangle)

T A B L E 1 MesoVICT cases, reproduced from Dorninger
et al. (2018)

Case Date Weather event

1 20–22 June 2007 Strong convective activity north
of the Alps followed by a cold
front

2 18–21 July 2007 Strong convective events across
an airmass boundary impinging
the Alps from northwest

3 25–29
September 2007

Accelerating cold front north of
the Alps and cyclogenesis in the
Gulf of Genoa with heavy rains
south of the Alps (Venice flood)

4 6–8 August 2007 Squall line ahead of cold front
crossing the Alps causing
widespread thunderstorms

5 18 September
2007

Cold front crossing the Alps
causing severe thunderstorm in
Slovenia

6 8–10 July 2007 Subtropical air mass advected
into the Alpine region causing
widespread thunderstorms

are provided by the Vienna Enhanced Resolution Analysis
(vera; Bica et al., 2007) which incorporates station obser-
vations and topographic information but no data from
numerical models. While a variety of forecast datasets
are in principle available within MesoVICT, we focus on
four deterministic models which cover the entire region
for all cases: the Swiss cosmo (initialized at 0000 UTC),
CMH from the Canadian weather service (initialized at
0600 UTC) as well as bolam007 and molo0225 from
the Institute for Environmental Protection and Research
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Abbreviation Organization Lead times 𝚫x Citations

CMH Environment Canada +1 hr… +24 hr 2.5 km McTaggart-Cowan (2009)

COSMO MeteoSwiss +6 hr… +24 hr 2.2 km Ament and Arpagaus (2009)

bolam007 ISPRA +12 hr…+35 hr 0.07◦ Mariani and Casaioli (2018)

molo0225 ISPRA +12 hr…+35 hr 0.0225◦ Mariani and Casaioli (2018)

VERA University of Vienna — 8 km Bica et al. (2007)

RADKLIM DWD — 1 km Winterrath et al. (2018)

T A B L E 2 Summary of
all used datasets

(ISPRA, both initialized at 1200 UTC, first 12 hr dis-
carded). To avoid obvious artifacts of model spin-up, we
consider only time steps from 0700 UTC to 2300 UTC. Fur-
ther details and the references for each model are given in
Table 2.

In Section 7.2, we move beyond the domain of the
MesoVICT project and validate VERA, bolam007 and
molo0225 against the gauge-adjusted radar climatology
radklim of Winterrath et al. (2018). The dates and other
characteristics of the datasets remain the same, but the
domain for this experiment is defined by the German
national borders. Missing pixels in RADKLIM (outside
Germany or due to radar failures) are set to zero in all fields
to ensure comparability.

Hourly rain sums for all forecasts have been interpo-
lated to the VERA grid at a common resolution of approx-
imately 8 km. After cropping the data to the core regions
where all datasets have non-missing values, we obtain
133× 88 grid points for the Alpine domain and 99× 116
for Germany. These regions are symmetrically extended
to 256× 256 because our implementation of the wavelet
transform requires the input dimensions to be whole pow-
ers of two. Buschow and Friederichs (2020) discuss several
possible ways of handling these boundary conditions and
conclude that, in theory, reflective boundaries are the most
elegant and appropriate solution. However, this approach
may no longer be viable because we are interested not
only in the scale but also in the direction and anisotropy
detected by the wavelets. It is easy to imagine situations
where the latter two properties are distorted, when we
reflect the input image at the edges. To avoid such effects,
we pad the fields with zeros instead. Following Kapp et al.
(2018), we linearly decrease the original values to zero
across ten pixels along each side in order to smooth out
potential artificial edges.

Rain values below 0.1 mm are set to 0 mm, then all
values x are replaced by log2(x + 0.1) before the wavelet
transform is applied. Buschow and Friederichs (2020) dis-
cuss the rationale behind this step in detail. Simply, typ-
ical plots of rain fields use logarithmic or similar colour
scales in order to visualize both local extreme events and
extended areas of moderate intensities. Similar ideas apply

to our automatic analysis of spatial structure. The results
of the wavelet transform are generally easier to understand
if they are based on the same data transformation as the
plots used for visual inspection.

3 THE DUAL-TREE COMPLEX
WAVELET TRANSFORM

This section introduces the basics of discrete wavelet
transforms in a very concise manner. To readers who are
completely new to wavelets, we recommend Torrence and
Compo (1998) and Weniger and Friederichs (2016) for an
introduction in a meterological context, as well the general
textbook of Daubechies (1992).

Classic wavelet transforms start by selecting a function
𝜓(r), r ∈ Rn, which is localized in both space and fre-
quency and integrates to zero over its domain of definition.
From this so-called mother wavelet, a set of daugh-
ter wavelets are derived via shifting and re-scaling, i.e.,
𝜓s,u(r) = s−1∕2𝜓((r − u)∕s). In a multidimensional space
Rn with n> 1, the daughters can furthermore have various
spatial orientations, which we will denote by the index d.
A signal (a time series for n= 1, an image for n= 2) is pro-
jected onto the 𝜓s,u(,d), thereby decomposing it into com-
ponents with specific scales and (in 2D) directions. This
so-called wavelet transform is similar to the well-known
Fourier transform except that the basis functions are also
localized in time (or space in 2D), which allows for the
correct treatment of non-stationary signals.

The bottom row of Figure 2 shows the three directional
daughter wavelets associated with the two-dimensional
discrete wavelet transform (DWT). Their mother is the
least asymmetric Daubechies wavelet with six vanish-
ing moments. By shifting several scaled versions of these
directed, localized wave-forms across an image, one can
localize and study features of various spatial scales and
orientations. Looking at the diagonal daughter (45◦ in
the bottom row of Figure 2), it becomes obvious that all
attempts at deriving direction and anisotropy from these
basis functions are flawed: while the vertical and horizon-
tal daughter wavelets are rotated versions of one another,
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F I G U R E 2 Directed daughter wavelets of the dtcwt (top row) and the regular DWT (“extremal phase” Daubechies wavelet
number 6, bottom). Solid and dashed lines indicate positive and negative values, respectively, the background shading indicates the absolute
amplitudes squared. White contours correspond to the imagery part of the DTCWT daughters

the daughter for 45◦ clearly lives on a smaller scale and
cannot distinguish between the two diagonals. Using this
wavelet transform, it is thus impossible to decide whether
an edge is oriented at +45◦ or −45◦. The degree to which
one of the three directions dominates over the others, that
is, the estimated anisotropy of a given feature, furthermore
depends on the scale and the orientation of that feature.

To understand the origin of (as well as the solution to)
these undesirable effects, we must briefly discuss the algo-
rithms by which wavelet transforms are implemented. In
principle, one could convolve the signal with each scaled
and oriented daughter wavelet individually. This proce-
dure is used in continuous wavelet transforms (CWTs),
which allow arbitrary scales s and involve a high degree of
redundancy at high computational costs. A far more effi-
cient algorithm was introduced by Mallat (1989), paving
the way for innumerable modern wavelet methods: instead
of defining a continuous function 𝜓 , the mother wavelet
is represented by a finite set of filter coefficients g1, … , n.
Next, the so-called father wavelet 𝜙(x) is defined by the
filter coefficients hk = (− 1)kgn− 1− k. The father wavelet is
thus a reversed version of the mother, where the sign of
every second coefficient has been flipped. Loosely speak-
ing, mom performs a differentiation (high-pass) while dad
is an averaging (low-pass) filter.

In one dimension, the so-called discrete wavelet trans-
form (DWT) is then implemented by (1) convolving the
signal with g and discarding every second value from the
result to obtain the wavelet coefficients at the finest scale,
(2) convolving the signal by h (again discarding half of the
values) to obtain the input for the next coarser scale, and
(3) repeating (1) and (2) until only a single value remains.
By dropping every second value, we effectively shift the
smallest-scaled daughter wavelet (s= 20) to every second
location in the domain, the next larger one (s= 21) to

every fourth, and so on, thereby removing the redundancy.
The scales of this so-called “decimated” transform are no
longer continuous but whole powers of two, and the larger
wavelets are shifted to fewer locations. As a result, the
daughter wavelets of this transformation form an orthogo-
nal basis. The algorithm can be adapted to obtain values at
all possible locations by simply not discarding any values
and instead inserting zeros between the filter coefficients
hk and gk after each level, resulting in a redundant discrete
wavelet transform (henceforth rdwt).

The efficient dwt algorithm has a straightforward
extension to higher dimensions which wasalso intro-
duced by Mallat (1989) (shown in Figure 3). Given a
two-dimensional matrix of input values, convolve the rows
with h and then the columns with g to obtain the vertical
daughter coefficients. The horizontal daughter coefficients
result from applying g to the rows and h to the columns; the
diagonal daughter is the product of applying g to both rows
and columns. Application of h in both directions gives the
input for the next coarser scale. This procedure, which can
be implemented with decimation or redundancy just as in
the 1D case, generates the three directional daughters seen
in Figure 2. That explains the reduced scale of the diago-
nal wavelets (being the product of two high-pass filters), as
well as the absence of a fourth filter for the other diagonal.

Recognizing the shortcomings of the classic dwt,
Kingsbury (1999) introduced the so-called dual-tree com-
plex wavelet transform (henceforth dtcwt). Instead of a
single real-valued mother, they defined a complex-valued
𝜓 = 𝜓r + i𝜓i with corresponding filters hi, hr, gi, gr. The
two mother wavelets 𝜓r and 𝜓i are each other’s Hilbert
transform, meaning that they are 90◦ out of phase with
each other. In two dimensions, the complex transform
can be implemented by performing four regular DWT s
(as in Figure 3) with all possible combinations of hi, r, gi, r
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F I G U R E 3 One level of the
two-dimensional discrete wavelet
transform (dwt). g and h denote
applications of the high- or low-pass
filter, respectively. “2↓” signifies a
down-sampling step

applied to the rows and columns. The twelve resulting
sets of coefficients are then re-combined into six complex
directional daughter wavelet coefficients. A set of corre-
sponding daughter wavelets is shown in the top row of
Figure 2. Each of these functions represents one distinct
direction, and the two diagonals are no longer ambiguous.
Here, we have furthermore applied the method of Kings-
bury (2006) to obtain optimized diagonal wavelets with
very nearly the same scale as their sisters. The two issues
preventing us from utilizing the directional information of
the wavelet transform are thus resolved. The absolute val-
ues, shown as background shading in Figure 2, reveal a
further advantage of this transform. While real and imagi-
nary parts both constitute wave forms, the Hilbert property
means that the modulus monotonously decreases from
the centre of the support. Image features can thus unam-
biguously be located within the support of each daugh-
ter wavelet – a task which is less straightforward for the
Daubechies wavelets. As a final benefit, Selesnick et al.
(2005) report that the complex nature of the coefficients
greatly reduces the shift dependence of the transform.
While for the regular DWT, we must always rely on the
computationally more expensive redundant transform, we
can obtain robust information on the global structure of
a field from the decimated DTCWT as well. We demon-
strate the effective equivalence of the two transforms in
Appendix B.

Regardless of the merits of the decimated DTCWT, it
does not deliver fully localized information because the
large-scale coefficients are only available on increasingly
coarse grids due to the downsampling (cf. Figure 3). If
we are interested in local characteristics at every loca-
tion, a fully redundant transform is needed. In this
case, an over-emphasis on very large scales, caused by
their great redundancy (large overlapping areas), must
be avoided. Here, we follow Kapp et al. (2018), Brune
et al. (2018) and Buschow et al. (2019) and rely on the
theory of locally stationary wavelet processes (Eckley
et al., 2010) to remove this large-scale bias. In a nutshell,
it can be shown that the squared local wavelet coeffi-
cients have a well-defined relationship with the spatial

covariances if we multiply them by a bias-correction
matrix which depends on the domain size and choice of
mother wavelet. This step mostly reduces the values of
large-scale coefficients and re-distributes their energy to
smaller scales. The theory was extended to the redun-
dant DTCWT by Nelson et al. (2018). Following Buschow
et al. (2019), any negative “energy” values introduced
by the bias correction are set to zero. Based on the dis-
cussion in Buschow and Friederichs (2020), we further-
more discard the three largest scales due to their ambigu-
ous localization (basis functions being larger than the
entire domain).

4 ANALYZING SCALE
AND DIRECTION

In order to compactly summarize the output of the
wavelet transform, Buschow et al. (2019) studied the
central scales of the wavelet spectra. Let ej be the
(bias-corrected) squared wavelet coefficient for scale
j∈ {1, … , J}, averaged over all directions. Now consider
the ej as point-masses, located along a line at the coor-
dinates zj = j. The central scale of the wavelet spectrum
is then defined as the centre of mass zc of that arrange-
ment. A plot of these central scales for each pixel of an
input image compactly visualizes the result of the wavelet
analysis by showing the dominant scale at each loca-
tion. Buschow et al. (2019) demonstrated how this map
of central scales can also serve as the basis for spatial
verification.

We now extend the idea to the case of the directional
wavelet spectra produced by the DTCWT. Noting that the
energy of the 15◦ daughter wavelet should be next to
those for 45◦ and 165◦, both being a 30◦ rotation away
(Figure 2), the natural geometry in which to arrange the
6× J coefficients is a prism with hexagonal base. Figure 4
schematically shows this arrangement. The energies for
the six directions are placed along the vertices of a regular
hexagon, parallel to the x–y plane. The various scales j cor-
respond to different values of the z coordinate. Indexing
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F I G U R E 4 Geometry used to define the central scale, radius
and angle of the DTCWT spectra

the directions by d, the coordinates for the value ej, d are

xj,d = a cos{60(d − 1)𝜋∕180},
yj,d = a sin{60(d − 1)𝜋∕180},
zj,d = j ,

(1)

where a denotes the arbitrarily fixed circumradius of the
hexagon. Calculating the centre of mass in this geome-
try leads to the same central scale zc as before. The other
two central components xc and yc contain information
on the preferred direction and degree of anisotropy. We
can easily separate these two properties by transforming
from the x–y plane to polar 𝜌, 𝜃 coordinates. The central
radius 𝜌c =

√
x2

c + y2
c then measures the total degree of

anisotropy, averaged over all scales. From the central angle
𝜃c = arctan 2(yc, xc), we can derive the angle in image space
as 𝜑c = 15◦ + 𝜃c∕2. Note that a is merely a multiplicative
factor dertermining the scale of 𝜌. A more detailed example
of these ideas is discussed in Appendix A.

5 DEFINITION OF SCORES

Buschow et al. (2019) introduced the structure score semd,
which is given by the earth mover’s distance (EMD; Rub-
ner et al., 2000) between two direction-averaged spatial
mean spectra: the energy ej of scale j is considered a point
mass located at the position z= j along the real line. semd
measures the minimum cost of transporting all energy
from one spectrum to another. Both spectra are normal-
ized to unit sum, making the EMD a true metric. The EMD
was preferred over other metrics because it appropriately
measures shifts in the spectra as well as differences in their
shape.

Based on the ideas from Section 4, the extension of
semd to the case of directed spectra is very straightforward.
Simply place the energies ej, d corresponding to the scales
j and directions d at the corresponding vertices of the

hexagon (Figure 4) and solve the transport problem to
obtain the EMD. We will refer to this directed version of
semd as semdd. The radius a in Equation 1 i.e., the ratio
between width and length of the prism within which the
centre resides (cf. Figure 4), governs the relative contribu-
tions of errors in scale, direction and anisotropy to the
total value of the score. For the purposes of this paper, we
will set a= (J − 1)/2 corresponding to equal weights for
both components (e1,15◦ is equally far away from e1,105◦ and
eJ,15◦). A more in-depth explanation of this score, includ-
ing the mathematical definition of the EMD, is given in
Appendix A. In addition to this summary score, we intro-
duce three helpful auxiliary quantities:

d𝜌 = 𝜌
(for)
c − 𝜌(obs)

c , (2)

d𝜑 =
⎧⎪⎨⎪⎩
𝜑(for) − 𝜑(obs) − 180◦ for 𝜑(for) − 𝜑(obs) > 90◦,
𝜑(for) − 𝜑(obs) + 180◦ for 𝜑(for) − 𝜑(obs) < −90◦,
𝜑(for) − 𝜑(obs) otherwise,

(3)

dz = z(for)
c − z(obs)

c , (4)

where (for) and (obs) denote quantities related to forecast and
observation, respectively. The difference in central scales
dz was studied in Buschow et al. (2019) (under the name
Spcd). These authors note that dz is a lower bound on
semd (Rubner et al., 2000) which gives a rough estimate
of the scale error and, crucially, determines its sign (too
small or too large in scale). Analogously, we have now
defined the signed anisotropy error d𝜌 and the angular
error d𝜑. It is important to note that d𝜑 is only relevant if
the predicted and the observed field are both reasonably
anisotropic – a circle can be rotated by any angle with-
out actually changing. While this quantity is thus useful
and intuitive for individual comparisons, it cannot simply
be aggregated over many cases. We therefore define the
combined anisotropy and direction error

dxy =
√(

x(for)
c − x(obs)

c

)2
+
(

y(for)
c − y(obs)

c

)2
. (5)

In Section 7, we show that semdd can usually be explained
as a linear combination of dxy and |dz|, the difference in
the shape of the spectra playing only a minor role.

Concluding this section, we note that the complete
verification procedure has been implemented in the sad
R-package (Buschow, 2020).

6 GEOMETRIC TEST CASES

As a first test of our structural forecast verification
based on scale, anisotropy and direction, we consider the
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F I G U R E 5 Comparisons between elliptical MesoVICT test cases suggested by Gilleland et al. In each panel, d𝜌, dφ and dz are
anisotropy, angle and scale of the “forecast” (dashed contour) minus the “observations” (grey area)

geometric test cases proposed by Gilleland et al. (2020).
These authors present a set of 50 binary images and sug-
gest 55 pairwise comparisons between them. Here, we will
discuss only the 23 comparisons between the elliptical test
images because these are most relevant and interesting for
our purposes.

Figure 5 shows all of the elliptical comparisons and
the resulting values of d𝜌, d𝜑 and dz. We have calculated
the scores in this figure based on the decimated version
of the DTCWT in order to test its remaining dependence

on location and orientation. In Figure 5a–e, forecast and
observation differ only in their location. As expected, all of
our scores are close to zero with only very minor variations
due to the remaining shift variance.

The situation in Figure 5f–j is more interesting. Besides
possible displacement errors, the predicted area is now
also too small (f–i) or too large (j). Intuitively, we expect
d𝜌 = d𝜑 = 0 and an identical non-zero scale error dz in
all of these cases. While d𝜑 is indeed almost exactly zero,
d𝜌 indicates that the small ellipse appears slightly less
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anisotropic than the larger one. The values of the scale
error differ by less than one tenth of a whole scale and
have the expected sign. Figure 5k–t introduce errors in
the orientation. In all of those tests, d𝜑 detects the rota-
tion with nearly perfect precision (errors <0.05◦), irre-
spective of the presence of additional errors in location or
scale.

In the last three test cases (Figure 5u–w), more com-
plicated patterns are compared. In (u) and (v), the obser-
vation is a regular ellipse, while the forecast consists of
very small oblong shapes along the ellipses’ boundaries. As
expected, the orientation is found to be very nearly correct,
whereas the scale of the forecast is deemed far too small. As
for the slightly too small ellipses in previous comparisons,
d𝜌 indicates that the predicted pattern is too isotropic. In
the final suggested test (Figure 5w), the observation con-
sists of three small ellipses; the forecast shows a single
large feature enveloping the three. As expected, the scale
error dz is strongly positive. The anisotropy error is sig-
nificantly smaller than zero which is in good agreement
with our subjective judgement as well. A slight clock-
wise rotation, indicated by d𝜑, also seems reasonable since
the three small ellipses are vertically oriented, while the
combined pattern extends somewhat more along the diag-
onal. Since none of the suggested comparisons feature
an obvious error in anisotropy, we have added an extra
case Figure 5x which compares a circle to an ellipse. As
expected, the strongly negative value of d𝜌 correctly detects
the discrepancy. Note that the apparent rotation by -90◦ is
meaningless because one of the two images has a low value
of 𝜌.

In summary, the geometric tests show that our struc-
ture verification overall works as intended. The angular
component in particular yields almost perfect results and
is very robust to changes in location, scale, overall orienta-
tion and anisotropy of the fields to be compared. We have
seen that the remaining shift-dependence of the decimated
DTCWT plays only a minor role for our purposes (see also
Appendix B) with discrepancies on the order of∼0.05 in all
three components (compare, for example, Figures 5(r) to
(s), (u) to (v), and (i) to (j)). Conversely, this also means that
forecast errors smaller than 0.05 can generally be regarded
as negligible.

7 REALISTIC TEST CASES

7.1 Verification against VERA

For a first impression of our verification technique in a
realistic situation, we consider a single time step from
the second MesoVICT case. Here, we focus on only two
competing forecasts. Figure 6a–c show the hourly rain

intensity analyzed by VERA and predicted by CMH and
COSMO. At this time, precipitation was mainly induced
by a quasi-stationary airmass boundary extending roughly
from the German–French border to the southwesterly cor-
ner of the domain. VERA shows a relatively linear rain
feature along the Rhine and a number of more amorphous
cells throughout France and Switzerland. CMH overesti-
mates the rain area slightly and the total intensity strongly
by producing a nearly round rain field in the north and
numerous very small convective cells across the rest of the
domain. COSMO, on the other hand, simulates a single
linear feature along the airmass border. According to the
maps of zc (Figure 6d–f), the spatial scales are well repre-
sented by COSMO while the structure of CMH is overall
slightly too small (dz≈−0.3). As expected, CMH is slightly
too isotropic, whereas COSMO appears far more directed
than the observations (d𝜌 ≈ 0.46). In addition, a rotational
error of about 14◦ is assigned to COSMO, which is also in
good agreement with our visual impression. The slightly
worse scale and much better anisotropy add up to sub-
stantially better overall rating for CMH (semdd ≈ 0.2) than
COSMO (semdd ≈ 0.41).

To get an overview of the complete MesoVICT dataset,
we apply the decimated DTCWT to all fields and calcu-
late the central components 𝜌c,𝜑c and zc. Figure 7 displays
the distributions of the evaluated central statistics for each
hourly field as well as the the total rain area and total inten-
sity, separated by case and model. Starting with the two
simple, non-wavelet quantities, we observe that all mod-
els are able to simulate approximately correct rain totals,
at least as far as the average over all cases is concerned
(case 5 being an exception where all models frequently
predict too little rain). The rain area, on the other hand,
is systematically underestimated, especially by molo0225.
One possible interpretation would be that this model sim-
ulates variability on smaller scales than those analyzed
by VERA. We can partly confirm this hypothesis with
the help of zc which shows that molo0225 , as well as
COSMO and CMH , operate on smaller scales than VERA.
bolam007, with its nominal resolution of approximately
7 km, produces similar, in some cases even larger, scales
than VERA. The order of the five datasets, bolam007
being largest, followed by VERA, COSMO, CMH and the
very fine-scaled molo0225, is consistent across all six
cases.

Next, we are interested in the directional structure.
Looking at the distributions of 𝜌c in Figure 7, we note that
the degree of anisotropy of each model depends on the
weather situation. Cases 3 (featuring a Genoa cyclone),
4 (dominated by large convective cells across the Alpine
region) and 6 (no organizing frontal structure) are less
directed than the remaining three cases, in which cold
fronts and an airmass boundary dominate the weather
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F I G U R E 6 Wavelet-based analysis of observed and predicted precipitation on 20 August 2007, 1100 UTC. (a–c) Hourly rain
accumulation with total rain sum in mm (R) and area fraction (A), (d–f) map of central scales with mean central scale (z) and (g–i)
anisotropy (length of the arrows) and angle (direction of the arrows) with mean anisotropy (𝜌) and mean angle (𝜑) [Colour figure can be
viewed at wileyonlinelibrary.com]

patterns. In comparison to VERA, CMH reproduces the
average distribution of 𝜌c very well. COSMO has the largest
positive bias in 𝜌c (is far too anisotropic), followed by
bolam007 and molo0225.

The angles 𝜑c are not included in Figure 7 because
box-plots can be misleading for a circular quantity.
Figure 8 therefore shows the corresponding histograms
instead. As expected, the two strongly directed cases 1
and 2 have a clear preferential direction around 45◦ and
60◦, respectively, corresponding to the alignment of the
airmass boundaries present in these cases. All models
reproduce the analyzed direction reasonably well in the
first case; bolam007 and molo0225 exhibit slight rota-
tion errors in case 2. The anisotropic cases 3 and 4 feature
a wide variety of directions, which are not particularly
well matched by any of the models – recall that errors
in the orientation are not meaningful when 𝜌c is small.
Case 5, which only encompasses 24 hr, has well-defined
directions related to the cold front crossing the domain.
All models represent the 45◦ orientation of this feature
reasonably well. VERA’s secondary peak at 90◦ is caused
by a large rain area being cut off at the domain’s east-
ern edge during the final time-steps of the day. Despite

its relatively low anisotropy, case 6 also exhibits a well
defined peak around 45◦, which is present in VERA and
all four forecast models. This phenomenon is likely related
to the shape of the western flank of the Alps, where many
of the precipitation events during this case-study were
triggered.

So far, we have only assessed the modelled and
observed statistics of spatial structures in each of the
six cases. Figure 9 shows the corresponding distributions
of the structure scores from Section 5 with respect to
VERA, calculated at each time step and separated by
case. COSMO and bolam007’s systematic overestimation
of 𝜌c is reflected in increased values of the combined
anisotropy / direction score dxy. Cases 2 and 5 are deemed
particularly bad, while errors in the other, overall more
isotropic, cases are less severe. In total, the representa-
tion of directional structures in CMH and molo0225 is
notably better than in the other two models. The oppo-
site result emerges for the representation of spatial scales
where CMH and molo0225 are the worst candidates with
strongly negative values of dz. Despite its nominally finer
resolution, COSMO is only slightly too small in scale; the
low-resolution bolam007 fares best.
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F I G U R E 7 Degree of (row 1) anisotropy, (row 2) central scale, (row 3) fraction of the domain with non-zero rain and (row 4) total rain
sum in mm for each of the six MesoVICT test cases and for all cases together

F I G U R E 8 Histograms of dominant directions φc for all data forecasts (open bars) and VERA (grey bars), separated by case
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F I G U R E 9 Combined (row 1) anisotropy/direction error, (row 2) difference in scale and (row 3) complete spectral EMD between
VERA and the forecast models for the six cases. Positive values of dz indicate that the forecast is too large in scale

CMH COSMO bolam007 molo0225 All

|dz|∼dxy 0.23 0.04 0.11 0.05 0.05

semdd ∼ |dz| 0.82 0.58 0.51 0.69 0.69

semdd ∼ dxy 0.61 0.57 0.79 0.48 0.48

semdd ∼ |dz|+dxy 0.98 0.96 0.98 0.97 0.97

T A B L E 3 Coefficient of determination R2 for linear
regressions of the scores on the left of ∼ against those on the
right for each model individually and for all models

semdd, shown in row 3 of Figure 9, combines both
kinds of structural errors into a single score that takes
into account the complete distribution of energy across
directions and scales. We find that the large scale-error
makes molo0225 the overall loser in each individual case
and in total, despite its good representation of directions.
For CMH and COSMO, the two kinds of error tend to aver-
age out, leading to nearly identical scores in aggregate.
bolam007 emerges as the overall winner, largely due to
having similar spatial scales as VERA.

To get a rough idea of the interrelations between our
structure scores, we perform a series of linear regressions
between them and consider the degree of determination
measured by R2. Table 3 confirms that the scale and direc-
tional errors are largely independent of one another. The
relative contributions of dxy and dz to the overall score
semdd differ from model to model, scale dominating for
CMH and molo0225, direction for bolam007 and both
contributing equally for COSMO. In all cases, as well as
in total, semdd can almost entirely be explained as a linear
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combination of the shift in scale and the shift in direction/
anisotropy (R2 > 0.95).

7.2 Verification against RADKLIM

Up to this point, we have assumed VERA as a flawless rep-
resentation of the true precipitation fields and interpreted
all discrepancies as forecast errors. However, the fact that
the coarsest model achieved the best overall rating raises
some suspicions. Can VERA appropriately represent the
scale structure of precipitation fields? To address this ques-
tion, we shift our attention from the Alpine MesoVICT
domain to Germany, where the radar-based RADKLIM
dataset offers spatial observations at 1 km nominal resolu-
tion. CMH and COSMO are not available in this domain,
so the other three datasets are now treated as competing
forecasts to be verified against RADKLIM.

Before looking at the scores, it is again instructive to get
a visual first impression from an example case. Figure 10
shows an instance of scattered convective cells across Ger-
many during MesoVICT case 6. As expected, VERA and
RADKLIM agree very well on the placement and approxi-
mate shape of the individual cells. Accordingly, the degree
of anisotropy and the overall direction 𝜑 are nearly iden-
tical. However, RADKLIM reveals a much finer-scaled
texture and distributes more precipitation across a smaller
total area, leading to a scale error of dz= 0.5 for VERA.
bolam007 and molo0225 both under-forecast the over-
all rain intensity and area and produce patterns slightly
too isotropic. Variability in molo0225 occurs on the same
small scales as in RADKLIM, and bolam007 is again far
more similar to VERA.

The distribution of scores shown in Figure 11 reveals
that our example case was in fact representative of an over-
all trend: while the scale errors of molo0225 are centred
around zero, both bolam007 and VERA exhibit a bias
towards larger scales (dz≈ 0.3). In terms of directional
structure, VERA is by far the most similar to RADKLIM,
followed by molo0225 and bolam007. With respect to the
summary score semdd, VERA and molo0225 are thus tied
for first place, both performing substantially better than
bolam007. It is worth noting that the distributions of the
scores for the two forecast models have substantially heav-
ier tails than for VERA. These outliers represent complete
mis-forecasts of spatial structure, which naturally do not
occur in observational datasets like VERA.

8 CORRECTING STRUCTURAL
ERRORS

Errors related to the marginal distribution of a forecast
can generally be corrected if the desired distribution is

known. Such a calibration procedure may be desirable
to improve the forecast or to remove marginal errors
before applying further verification methods. Most spatial
verification techniques do not suggest a simple way of
correcting the errors they detect; the wavelet approach
is an exception to this rule. As detailed in Section 3, a
wavelet transform is essentially just a change of basis,
which can be reversed. Similar to the well-known Fourier
case, the discrete wavelet transform allows for analysis
and synthesis. To correct the errors in the spatial mean
wavelet spectrum, we can therefore (1) transform fore-
casts and observations, (2) multiply the forecast values
at each location, scale and direction by the correspond-
ing ratio between total observed and predicted energy and
(3) reverse the transform to obtain a corrected version of
the forecast. The spatial distribution of the energy of the
resulting image is that of the prediction, but its distribution
over scale and direction corresponds to that of the obser-
vations. The complete procedure is given by Algorithm 1.
The logarithmic transform in step 2 and the limitation to
scales ≤J ensure that the correction is consistent with our
verification. By restoring the original mean and variance of
the log-transformed field in step 10, we concentrate on the
spatial structure without attempting to correct the margins
as well.

Algorithm 1 is applied to all forecasts in the Alpine
MesoVICT dataset; the reference in each case is the VERA
analysis. Figure 12 shows four examples which illustrate
the effects of our structural correction. In the first case
Figure 12a–c, a forecast by the molo0225 model was
deemed too small and too anisotropic. The algorithm
smooths the field, rounds the linear pattern and visibly
reduces small-scale variability. The result has near-perfect
scale and direction properties, while maintaining the same
arrangement of features as the original.

The second example Figure 12d–f depicts a situation in
which the bolam007 model predicted a single large-scale
rain band over the Alps, whereas VERA sees a number of
smaller, disjointed cells. As expected, the correction con-
verts the continuous rain area of the forecast into several
smaller objects, thereby increasing the visual similarity
with VERA.

While the previous two predictions were too
anisotropic, Figure 12g–i show a forecast from the CMH
model that was both too small-scaled and too round. After
correction, much of the small-scale variability has dis-
appeared, while the elongated shape in the centre of the
domain has been rendered more coherent and linear.

As our final example, we have included a com-
plete mis-forecast from the CMH model, which fails to
simulate the front seen in VERA and produces scat-
tered small-scaled precipitation across the Alps. This
extreme example, which is clearly related to model spin-up
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Algorithm 1. Correction of structure errors

Input: forecast F, reference R, largest scale J, minimum
value Rmin
Output: corrected forecast F′

1: Set values <Rmin to zero
2: Set F → log2(F + Rmin), R → log2(R + Rmin)
3: Standardize F and R to zero mean, unit variance
4: Forward transform dtF = dtcwt(F), dtR = dtcwt(R)
5: for all scales j = 1,… , J, directions d = 1,… , 6 do
6: Calculate sum over all grid points i: eF =∑

i |dtFi,j,d|2, eR =
∑

i |dtRi,j,d|2
7: set all dtFi,j,d → dtFi,j,d ⋅ eR∕eF
8: end for
9: Inverse transform F′ = dtcwt−1(dtF)

10: Reset mean and variance of F′ to the values before step
3

11: Set F′ → 2F′ − Rmin
12: Set values <Rmin to zero

in CMH, serves to demonstrate the limitations of the
algorithm. The global adjustment of the wavelet spectra
cannot possibly create a cold front in which no precipita-
tion has been simulated. Instead, the two largest cells at
the western domain edge are united into a smooth, elon-
gated feature; most of the remaining small-scale variability
is removed.

Having seen that the correction algorithm produces
realistic-looking fields while greatly improving the visual
similarity between forecast and observation, we now quan-
tify its influence on the verification results. As expected,
Figure 13 shows that both directionality and scale, mea-
sured by dxy and dz, are greatly improved. The fact that
these scores are not exactly zero is due to the (necessary)
truncation step (Algorithm 1, step 12). In addition, the
inverse wavelet transform used here (following Kingsbury
2006) is not perfect due to the special treatment of the
diagonal directions. The improvement of the scores is

nonetheless immense, indicating that these effects play no
great role – the algorithm works as intended.

While the improvement in the wavelet scores is thus
almost guaranteed by design, it is interesting to see
whether beneficial effects on the structural forecast skill
are observed by other verification methods as well. To this
end, we apply the object-based structure score S of Wernli
et al. (2008) (using 1/15 of the observed and predicted
90% quantiles as thresholds) and the variogram score
vgs of Scheuerer and Hamill (2015). Following Buschow
and Friederichs (2020), we use the stationary, isotropic,
inverse-distance-weighted version of vgs with p= 2 and
scale each field by its standard deviation to concentrate
on verifying the correlation structure. The bottom panels
in Figure 13 confirm that both the object-based S and the
variogram score vgs measure a significant improvement
after the wavelet-based structure correction. In particu-
lar, S originally also detects the substantial scale errors of
molo0225 and CMH; after our adjustment, these models
are deemed as good as COSMO and bolam007, both of
which see a modest improvement in S as well.

9 DISCUSSION

The central goal of this study is to present a verification
technique that evaluates the predicted spatial structure
in terms of scale, anisotropy and direction. This level
of detailed structural analysis is enabled by the com-
plex dual-tree wavelet transform of Kingsbury (1999),
which comprises six directional filters on a range of spa-
tial scales. Using data from the MesoVICT project, we
have demonstrated that the DTCWT can indeed replace
the classic discrete wavelet transform in an analysis
of spatial scales. All previous results concerning the
usefulness of such an analysis for spatial forecast
verification (Kapp et al., 2018; Buschow et al., 2019;
Buschow and Friederichs, 2020) or the quantification of
convective organization (Brune et al., 2018; 2020) remain

F I G U R E 10 Predicted, analyzed and observed rain fields and structural characteristics on 9 July 2007 at 1900 UTC [Colour figure can
be viewed at wileyonlinelibrary.com]
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(a) (b) (c)

F I G U R E 11 (a) Anisotropy, (b) scale and (c) total structure error of bolam007, molo0225 and VERA, verified against RADKLIM in
the Germany domain. Only cases with at least 100 non-zero rain pixels in the RADKLIM image were included

F I G U R E 12 (a, d, g, j) Original forecasts, (b, e“h, k) corrected versions, and (c, f, i, l) the corresponding VERA analysis for four cases
[Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 13 Distributions of structure scores for the original and corrected predictions of each model

valid for the dual-tree version. When only global charac-
teristics are of interest, we can even replace the computa-
tionally expensive redundant transform by the extremely
efficient decimated version. This potentially enables the
use of our methods in contexts where time constraints,
very large spatial domain sizes (nx > 1024) or the sheer
number of fields would make the redundant transform
impractical. Incidentally, the decimated transform also
allows for an efficient implementation of the global WOI of
Brune et al. (2018).

However, the key innovation of the dual-tree approach
lies in the analysis of the directional structure, which is
impossible with the three directional filters of the clas-
sic DWT. Building on the idea of a central scale, we have
introduced two further components to the centre of the
wavelet spectrum, namely the degree of anisotropy 𝜌c and
the angle 𝜑c. The geometric MesoVICT test cases demon-
strate that 𝜌c adequately distinguishes between elongated
and round patterns; the analysis of directions using 𝜑c is
nearly flawless for simple geometric shapes.

For the purposes of verification, we advocate the use
of a combined anisotropy–direction score since errors in
𝜑c are not meaningful when the anisotropy is low. This
score, denoted here as dxy was used together with the
signed difference in central scale dz and the combined
structure score semdd to verify precipitation forecasts from
four competing models within the MesoVICT framework.
Perhaps the most important lesson from this experiment
is that scale and directionality represent two independent
aspects of forecast quality. Compared to VERA, CMH and
COSMO achieve nearly the same average values of semdd,
but the composition of the structure score is very differ-
ent: while COSMO simulates structures that are system-
atically too linear, leading to higher values of dxy, CMH
produces excessive small-scale variability early in the day
(dz< 0). molo0225 is tied for the lowest dxy with CMH but
simulates far smaller structures than any other model. It
may be interesting to note that the scale of the precipitation

fields is not entirely determined by the model’s nomi-
nal spatial resolution, which is nearly the same for CMH,
COSMO and molo0225. On the other hand, bolam007
has a much coarser grid spacing of approximately 7 km
and, somewhat expectedly, produces nearly the same dis-
tribution of spatial scales as VERA, which gives it the best
overall scores in this comparison.

Should we thus conclude that the coarsest model
delivers the most realistic representation of spatial struc-
ture? Doubting this, we have compared VERA, bolam007
and molo0225 to the radar-based RADKLIM dataset,
which represents a realistic spatial observation of rain-
fall. Here molo0225, the overall loser in the previ-
ous comparison, is rewarded for simulating the same
fine spatial scales as seen in the observations; both
VERA and bolam007 are deemed too large. molo0225’s
representation of directionality is good but not as good
as VERA’s, again leaving two “forecasts” tied in terms of
the overall score semdd. This is a good example of inde-
pendence between directional and scale-related aspects
of the spatial structure: even if a comparatively coarsely
resolved validation dataset hinders our analysis of spa-
tial scales, we can nonetheless study the direction and
directedness.

The degree of anisotropy and the distribution of domi-
nant directions in a realistic precipitation field are closely
tied to meteorological processes like organized or unorga-
nized convection, moving airmass boundaries and pres-
sure systems, as well as the interaction of these pro-
cesses with the local topography. Our results demon-
strate that the wavelet-based approach can meaningfully
verify these directional aspects of spatial structure, and
thereby indirectly the simulation of the underlying pro-
cesses. Together with the analysis of scales and sim-
ple statistics such as the total rain area and accumu-
lation, we can obtain a very detailed, objective picture
of the spatial pattern in various observed and simulated
fields.
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An advantage of the wavelet-based approach is the
existence of an inverse transform which allows us to
correct the detected structural errors by a rather straight-
forward algorithm. The resulting post-processed fields
combine the spatial placement of the predicted rain
field with the global structure of the observations. We
have shown that this procedure produces realistic-looking
results with greatly improved wavelet and non-wavelet
structure scores. The correction procedure has three main
benefits. First, it enhances our intuitive understanding
of the wavelet-based verification by showing us what an
improved version of the forecast would have been. Second,
the errors detected by the wavelet scores can be removed
from the forecast before other scores are applied. In this
manner, one can eliminate structure errors before verify-
ing other aspects like the location of the predicted objects.
Third, if a forecasting system exhibits strong systematic
biases in its spatial structure (as was the case for molo0225
here), a correction to the observed climatological spectra
could actually improve the value of the forecasts. How
exactly such a structural post-processing could be imple-
mented and whether it has any real-world utility is a
question for future research.
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APPENDIX A. HEXAGONAL ARRANGE-
MENT AND THE EMD

To further illustrate the concepts introduced in Section 4,
we consider the wavelet spectra corresponding to the rain
fields shown in Figure 12l,j. In Figure A1a, b, we have listed
the energy values corresponding to each combination of
scale j and direction d. For our calculations, each of these
energies ej, d is treated as a point mass located at the coor-
dinates xj, d, yj, d, zj, d (cf. Equation 1). The point masses are
visualized as spheres of different volumes in Figure A1c, d.
The frontal structure from Figure 12 l leads to a concen-
tration of mass at scale five and the directions around 90◦.
Conversely, the small, isotropic pattern of Figure 12 j is
reflected by a more even distribution across all directions
and the three smallest scales.

𝜌c, 𝜃c and zc are the barycentre of this arrangement
of point masses, represented in cylindrical coordinates.
Scores like d𝜌 and dz are simply given by the difference
between the central coordinates of two spectra. These sim-
ple scores are useful because they are easy to interpret,
but they neglect some information on the full distribu-
tion of energy (Buschow et al., 2019). To define a summary
score that includes all information from the mean spec-
trum, we therefore use the Earth Mover’s Distance (EMD)
which measures the minimum total cost of transforming
one arrangement of point masses into another (Rubner
et al., 2000). Let m= 1, … , 6J be an index enumerating all
combinations of scale and direction (j, d). One spectrum
is transformed into another by successively transferring
amounts of “mass” (in our case spectral energy) f m→n > 0
from locations m in the first spectrum to locations n in



BUSCHOW and FRIEDERICHS 19

the second spectrum. Recalling that our “masses” are nor-
malized such that

∑
ie
(k)
i = 1 (k= 1, 2 denoting the first and

second spectrum), we seek a set of mass transfers which
satisfy

∑
m

fm→n = e(2)n
(the result of the
transport is spectrum 2) ,∑

n
fm→n = e(1)m

(all mass from spectrum 1
is transported somewhere) .

Denoting the Euclidean distance between locations m
and n by

dm,n =
√
(xm − xn)2 + (ym − yn)2 + (zm − zn)2 ,

we can write the total work of a particular transport
scheme as

∑
m,ndm,nfm→n. The EMD is given by the mini-

mum work needed, i.e.,

semdd = min

( 6⋅J∑
m,n=1

dm,nfm→n

)
, (A1)

where the minimum is taken over all possible sets of trans-
ports (f m→n)m, n that satisfy the requirements above. The
solution of the optimization problem is found numeri-
cally via the emdist R-package (Urbanek and Rubner,
2012).

APPENDIX B. COMPARISON BETWEEN
WAVELET TRANSFORMS

To quantify the impact of our choice of wavelet transform
on the resulting structure analysis, we transform each field
in the original MesoVICT dataset (Alpine domain, VERA,
CMH, COSMO, bolam007, molo0225) three times: once
with the decimated DTCWT which was used through-
out Sections 6 and 7, once with the redundant version
(used to produce Figure 6) and a third time with the sixth
“Extremal Phase” Daubechies wavelet (redundant version
with bias correction). Figure B1a shows the central scales
zc resulting from the spatially averaged, bias-corrected
wavelet spectra. Apart from a slight linear offset, the
agreement between the three analyses is close to per-
fect (R2 ≈ 0.99), and we observe no surprising outliers
and no nonlinear effects. This confirms our claim that
the DTCWT analyses scales in nearly exactly the same
way as the usual DWT used by Buschow and Friederichs
(2020). For the anisotropy 𝜌c, we only compare the deci-
mated DTCWT to its undecimated version since the DWT
is not expected to agree with the dual-tree results here.
Figure B1b shows almost no systematic bias; the corre-
lation is again very high (R2 ≈ 0.95). We conclude that
the global scale and anisotropy can be inferred from the
decimated DTCWT just as well as from the undecimated
version without incurring any significant, systematic dou-
ble penalty.

F I G U R E A1 Mean wavelet spectra for the fields in Figure 12 l,j. (a“b”) Energy values, re-scaled and rounded to integers between 0 and
10. (c, d) Representation in a hexagonal arrangement (Figure 4); the volume of the spheres is proportional to the energy listed in the table
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F I G U R E B1 Dependence of structural characteristics on the wavelet transform. (a) central scale zc of the DWT (DB6) against that of
the decimated and redundant DTCWT. (b) Anisotropy 𝜌c of the redundant and decimated DTCWT. The solid line indicates linear regression,
and the dashed line marks the unit diagonal
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Abstract. The verification of high-resolution meteorological models requires highly resolved validation data and appropriate

tools of analysis. While much progress has been made in the case of precipitation, wind fields have received less attention,

largely due to a lack of spatial measurements. Clear-sky radar echoes could be an unexpected part of the solution by affording

us an indirect look at horizontal wind patterns: Regions of horizontal convergence attract non-meteorological scatterers such as

insects; their concentration visualizes the structure of the convergence field. Using a two-dimensional wavelet transform, this5

study demonstrates how divergences and reflectivities can be quantitatively compared in terms of their spatial scale, (horizontal)

anisotropy and direction. A long-term validation of the highly resolved regional reanalysis COSMO-REA2 against the German

radar composite RADOLAN shows surprisingly close agreement. Despite theoretically predicted problems with simulations

in or near the ‘grey-zone’ of turbulence, COSMO-REA2 is shown to produce a realistic diurnal cycle of the spatial scales

larger than 8km. In agreement with the literature, the orientation of the patterns in both data-sets closely follows the mean10

wind direction. Conversely, an analysis of the horizontal anisotropy reveals that the model has an unrealistic tendency towards

highly linear, roll like patterns early in the day.

1 Introduction

Modern numerical weather models at horizontal resolutions on the order of 1− 10km are generally believed to be useful, but

their added value compared to coarser models is not easy to quantify. On the one hand, the precise placement of very small15

features continues to be largely unpredictable. In a gridpoint-by-gridpoint comparison, highly resolved models are punished

twice for slight location errors in features which coarser models do not attempt to simulate at all. On the other hand, a single

error value summarizing the realism of a highly complex meteorological field is not very informative. To address these issues,

a large variety of so-called spatial verification techniques has been developed in recent years. A first systematic survey of

the field was undertaken in the spatial forecast verification Inter-Comparison Project (Gilleland et al., 2009, ICP). At this20

point, almost all efforts were focused on the verification of precipitation forecasts, for several reasons: Firstly, the improved

representation of convective precipitation was a main incentive for the development of mesoscale weather models. Secondly,

the intermittent nature of rain fields makes the aforementioned double-penalty problem particularly obvious. Lastly, radar (and

to a lesser degree, satellite) observations readily provide high-resolution spatial observations of precipitation.
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The second phase of the ICP project (Dorninger et al., 2018, MesoVICT) has highlighted the need for a spatial verification25

of other meteorological variables, particularly wind: Wind fields at kilometer resolutions can produce highly complex patterns

with potential impacts on convective initiation, wind energy, air quality and aviation safety. The task of verifying spatial wind

forecasts poses practical, methodological and theoretical challenges.

From a practical point of view, we face a lack of spatial observations: Model analyses (e.g. used for wind verification

by Zschenderlein et al. (2019)) conveniently provide highly resolved, gap-free data but the realism of the underlying model30

would have to be verified against some other data beforehand. Interpolated station data (for example the VERA analysis used

within MesoVICT) are generally too coarsely resolved to represent structures on the scale of single kilometers, denser station

networks such as the WegenerNet data-set used by Schlager et al. (2019) are rare. Bousquet et al. (2008) and Beck et al. (2014)

use Multi-Doppler wind retrievals from the French national radar network to verify wind predictions from the AROME model.

This approach is very appealing but limited to cases with precipitation. In addition, Doppler-derived wind composites are not35

yet widely available.

Skinner et al. (2016) present a very interesting alternative using single-Doppler azimuthal wind shear as a proxy for low-

level rotation. Their study also highlights some of the main methodological challenges related to wind verification: Most spatial

verification techniques were developed for scalar quantities which can be decomposed into discrete objects via thresholding.

How should such techniques be adapted to vector fields where non-zero variability is present at every location and the existence40

of well defined objects is not guaranteed? Skinner et al. (2016), who are interested in tornado forming mesocyclones, chose

to focus on the rotational component of the wind field by verifying only the horizontal vorticity. Model and observations are

subjected to several spatial filters and then thresholded at manually selected values before the object based MODE technique

(Davis et al., 2009) and the image-morphing DAS of Keil and Craig (2009) are applied. Their approach is justified because

well-defined objects, i.e., tornadic supercells, clearly exist in the specific case study under consideration. Bousquet et al.45

(2008) find a similar answer to the vector-problem by verifying horizontal divergences against the corresponding values from

the French Multi-Doppler network. Besides point-wise measures, these authors apply a simple scale-separation approach based

on a Haar wavelet decomposition of the wind fields. Other recent attempts at spatial wind verification include Zschenderlein

et al. (2019) who apply the object-based SAL technique (Wernli et al., 2008) to tresholded predictions of gusts (i.e. absolute

wind speed), and Skok and Hladnik (2018) who sort wind vectors into classes based on their speed and direction and use the50

popular fractions skill score (Roberts and Lean, 2008, FSS) to find the scales on which the predicted classes agree with the

observations.

In this study, we take a similar route as Skinner et al. (2016) but instead of the rotational component we focus on the

horizontal divergence of the near surface wind field. Under the right environmental conditions, the spatial pattern of this

divergence field can be observed in widely available radar reflectivity data: On warm, rain-free days, convergent boundary55

layer circulations attract swarms of insects which are drawn in and actively attempt to resist the vertical motion of updraughts

(Wilson et al., 1994). The resulting increased concentration of biological scatterers within the radar beam reflects the pattern

of convergence and divergence. Numerous studies including Weckwerth et al. (1997, 1999); Thurston et al. (2016); Banghoff

et al. (2020) have used this kind of data to study the dominant patterns of boundary layer organization. Atkinson and Wu Zhang
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(1996) identified mesoscale shallow convection, organized in the form of cells or horizontal rolls, as the most prominent of60

those patterns. Numerous studies have used radar data to observe these phenomena (see references in Banghoff et al. (2020));

Banghoff et al. (2020) also present a first long-time climatology using ten years of reflectivities and Doppler velocities from a

single radar station in Oklahoma. They manually classified radar images from over 1000 days into cells, rolls and unorganized

patterns, reporting organized features on 92 % of summer days without rain. Santellanes et al. (2021) exploited this data-set to

study the environmental conditions that favor the different modes of organization.65

In the present investigation, we aim to study a similarly large data-base of reflectivities from the German RADOLAN-RX

composite and compare it to divergence structures from the regional reanalysis COSMO-REA2 (Wahl et al., 2017), covering

the time-span from 2007 to 2013. We limit our analysis to small environments around each radar station and consider both the

entire COSMO-REA2 time-series (for an overall model climatology) and the subset where clear air radar echoes are available

(for verification).70

For a fair, quantitative validation of the model, the spatial patterns must be analyzed objectively. Here, we rely on the

wavelet-based SAD verification methodology of Buschow and Friederichs (2021) which applies a series of directed filters to

objectively determine the dominant spatial Scale, Anisotropy and Direction in an image. A closely related approach was used

to define a wavelet-based index of convective organization in radar and satellite images by Brune et al. (2021).

To what extent a model atO(1km) horizontal resolution can be expected to realistically represent boundary layer circulations75

in the so-called ’Grey-Zone’ regime (Wyngaard, 2004) between parametrized and resolved turbulence is a difficult question

which poses further theoretical challenges to the verification process. Section 2 therefore briefly summarizes some of the

relevant theoretical and experimental results from the literature. Data and methodology are described in sections 3 and 4.

Section 5 presents the results of our analysis, including the model-based climatology of divergence structures and its validation

against RADOLAN. Some discussion of our findings is given in section 6, section 7 examines what conclusions can be drawn80

and identifies avenues for future research.

2 Theory and modelling of mesoscale shallow convection

Zhou et al. (2014) have demonstrated how occurrence and basic properties of shallow convective circulation in the atmospheric

boundary layer can be understood in analogy to Rayleigh Bénard thermal instability. In the classic framework, the circulation

regime of a fluid between two heated plates is determined by the Rayleigh number85

Ra =
gα

kν
·βd4 , (1)

where d is the distance between the plates, β = dT/dz is the temperature gradient, and the coefficients g,α,k,ν denote grav-

itational acceleration, thermal expansion coefficient, thermal conductivity and kinematic viscosity, respectively. Eddies of

wavelength λ start to grow when Ra exceeds a critical value Rac(λ). The qualitative sketch in figure 1 shows that this marginal

stability curve has a global minimum near λ= 2d. For Ra<Rac(2d), the flow is laminar and heat is exchanged via conduction.90

When Ra is increased to Rac(2d), convective cells are initiated with a wavelength of roughly twice the depth of the fluid. Zhou
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Figure 1. Marginal stability curve of Rayleigh-Bénard convection for the classic rigid-rigid boundary conditions. For any given wavelength

λ (relative to the fluid depth d), Eddies grow if the Rayleigh number lies above the curve and decay otherwise.

et al. (2014) argue that an analogous stability curve applies to the atmospheric boundary layer. In this case, Ra is replaced by a

turbulent Rayleigh number of similar form as Eq. 1 wherein the depth d is replaced by the boundary layer heightH . On a sunny

day, the earth’s surface is heated and the vertical temperature gradient, as well as the height of the boundary layer increase.

The theory predicts that, once a critical Ra is crossed, the initial wavelength of the circulation should be near λ= 2H ≈ 3km;95

both smaller and larger eddies begin to develop later.

The simulation of this process is challenging because a model with grid-spacing δ can never resolve eddies with λ < 2δ.

In large eddy simulations with δ << 2H , convection will correctly be initiated at the natural critical Rac with a wavelength

of ∼ 2H . Current NWP models, on the other hand, have δ & 2H . In this case, the first eddies to form as Ra increases have

λ≈ δ and initiate at a grid-spacing dependent value Rac(δ). For global or regional models with δ & 10km, the critical value100

is so large that such circulations will never form under realistic conditions. Modern mesoscale models, however, operate at

δ =O(1km) and Rac(δ) becomes attainable. The result is a potentially unrealistic model circulation, the scale and initiation

time of which depends on δ. This is one example of the so-called Terra Incognita or Grey-Zone of turbulence (Wyngaard,

2004; Honnert et al., 2020), where the highest energy vortices are too large to be adequately represented by the boundary layer

parametrization but too small to be explicitly resolved by the dynamical core of the model. Ching et al. (2014) observed this105

phenomenon in nested WRF simulations, Poll et al. (2017) detected it in TerrSysMP, the atmospheric component of which is

COMSO. Using LES runs of the same models as a reference, both of these studies found that simulations with grid spacing on

the kilometer scale initiate turbulence too late and too energetically. In the present study, we will investigate how frequently

such small-scaled circulations occur in the climatology of COSMO-REA2 and how they compare to radar observations.
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3 Data110

3.1 COSMO-REA2

For a systematic investigation of low-level divergence structures, we ideally need a long, homogeneous time series of high

resolution model data. The regional reanalysis COSMO-REA2 is uniquely suited for our need as it provides seven years (2007-

2013) of hourly output from the mesoscale model COSMO (Baldauf et al., 2011) at a horizontal resolution of 0.018◦ or roughly

2 km. The model was run with 50 vertical levels over a domain covering Germany and the neighbouring countries. For a full115

description of the used physics parametrizations, we refer to Wahl et al. (2017) and references therein. For our purposes, it

is important to note that boundary layer fluxes are handled by a level-2.5 TKE-closure, shallow convection is parametrized

via a modified Tiedtke mass-flux scheme while deep moist convection is left to the dynamic core. The data assimilation

uses a continuous nudging scheme to relax the prognostic temperature, wind speed, pressure and relative humidity towards

observations from stations, radiosondes, aircraft, ships and buoys. In addition, rain rates from radar observations are assimilated120

via latent heat nudging (Stephan et al., 2008, LHN). Thus, on clear air days, the only source of mesoscale information (LHN)

is inactive, meaning that while data assimilation can help create realistic environmental conditions, the fine-scale structure of

the fields is a product of the dynamics and physics of the model. Horizontal divergences were calculated from the hourly 10 m

wind vector fields as a simple finite difference approximation.

3.2 RADOLAN RX125

RADOLAN (Radar online adjustment, ’RADar OnLine ANeichung’) RX is the operational radar reflectivity composite of the

16 C-band radars operated by the German weather service. The output has a spatio-temporal resolution of 1km×1km×5min

and covers Germany and parts of its neighbours. The underlying radar scans are performed at an orography following elevation

angle (∼ 1◦) with an azimuthal resolution of 1◦ and a range resolution of 250 m. Due to the beam geometry, the true native

resolution of the reflectivity composite, as well as the height for which it is representative, depends heavily on the distance to130

the radar station. Pejcic et al. (2020) show that the beams reach typical boundary layer heights of 1− 1.5 km at about 100 km

from the radar location. Therefore, relevant clear-air echoes caused by insects that cannot survive at low temperatures are

expected to be found only in the immediate vicinity of the radars.

To get an idea of the type of data we rely on for our model validation, it is instructive to consider an example case. Figure 2 (a)

displays the RADOLAN RX composite at noon on 2009-07-29. Aside from a few showers over the North Sea, no appreciable135

precipitation was observed in Germany on this warm summer day. Temperatures reached values in the high twenties and a high

pressure system centred near the German-Polish border generated weak south-easterly flow. Despite the absence of rain, most

radars in the composite are surrounded by a disk of low but non-zero reflectivities (-10 to 5 dBZ). While the size, shape and

mean intensity of the disks varies, a consistent fine-scaled cellular pattern can be observed throughout central, northern and

eastern Germany. Moreover the regions of increased reflectivity are coherently organized in a line-like fashion along a SW/NE140

direction. Figure 2 (b), showing the corresponding wind and divergence field from COSMO-REA2, reveals that the orientation

of the reflectivity lines is broadly consistent with the overall direction of low level flow. Furthermore, the divergence field is
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Figure 2. RADOLAN RX reflectivity in dBZ (a), COSMO-REA2 10 m divergence (b) and AQUA MODIS satellite image (c) on 2009-07-29

12:00 UTC.
6
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Figure 3. Number of complete clear air radar echoes at the twelve selected radars, separately for night and day as defined by sunrise and

sunset.

characterized by small scaled patterns of cells and lines with alternating convergence and divergence, the size and orientation

of which roughly resembles the radar pattern. Throughout eastern Germany, where the divergences are strongest, the satellite

image in panel (c) shows the typical chains of Cumulus clouds often associated with mesoscale shallow convection (Atkinson145

and Wu Zhang, 1996). A visual comparison of the reflectivities around, for example, the Berlin radar with the simulated

divergences and the clouds in that region leads us to hypothesize that the boundary layer processes in COSMO-REA2 are not

entirely unrealistic.

3.3 Data availability

As mentioned above, clear-air echoes typically only occur in a small environment around each radar. We therefore limit our150

study to circular regions with 64km radius, centred at the 16 radar station which were active throughout the COSMO-REA2

period. While simulated divergences are readily available at every such grid point for each hour between 2007 and 2013,

the availability of clear-sky echoes depends on many factors including local topography, technical details of the radars, radar

processing at DWD and the life-cycle of the biological scatterers. We consider an individual radar image incomplete if less

than 50 % of pixels within our 64km radius around the radar are above −10dBZ (visual analysis of many example images155

has shown that no significant signals exist between roughly −10dBZ and the smallest stored value of −32.5dBZ). From the

remaining data, we must filter out rainy episodes, defined here somewhat arbitrarily as cases where at least 100 pixels exceed

+10dBZ. We will refer to all remaining images as complete.

Table 1 shows that such complete clear air echoes are overall rare (well below 5 % of all hourly images) and their frequency

varies considerably between radars. For this study, we neglect the four radar stations with the fewest data, thereby removing160
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Table 1. Number of hourly incomplete, rainy, nighttime and complete daytime hourly radar images per station. The top four radars are

excluded from further analysis.

incomplete rain night day

Frankfurt 54841 6335 41 104

Emden 56064 5065 60 132

Essen 54229 6889 58 145

Rostock 54627 6059 295 340

Hamburg 53556 6866 351 548

Munich 51315 9131 181 694

Feldberg 52143 7419 855 904

Ummendorf 52806 6847 666 1002

Neuhaus 50355 8357 1527 1082

Berlin 52075 6935 1011 1300

Flechtdorf 49117 9033 1830 1341

Hannover 49199 8846 1478 1798

Eisberg 48088 9154 2100 1979

Tuerkheim 45576 10672 3044 2029

Neuheilenbach 47286 8731 3107 2197

Dresden 45787 9462 3122 2950

Table 2. Number of complete hourly non-rainy daytime radar echoes at the twelve selected radar stations.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2007 12 1 34 191 446 797 293 147 81 90 11 1

2008 3 1 24 13 212 808 1333 124 87 38 6 11

2009 16 12 38 26 264 209 1379 892 406 66 0 34

2010 36 73 52 45 74 541 1684 171 84 5 3 24

2011 2 31 13 145 210 716 741 190 139 59 2 7

2012 10 27 44 22 211 289 750 301 91 16 3 2

2013 53 18 53 46 65 318 1740 509 93 7 2 1

two urban (Essen, Frankfurt) and two coastal locations (Emden, Rostock). The twelve remaining radars give us roughly 20

thousand individual hourly images for comparison with COSMO-REA2. When studying the diurnal cycles below, we will

furthermore include radar data at the full 5 min resolution which gives us over 200 thousand images.

In table 2, we see that the vast majority of clear sky echoes occurs during summer, particularly June and July, with consider-

able variability between the years. The preference for the warm season is expected since both insect activity and boundary layer165

8



height are increased by higher temperatures. Consequently, the daytime frequency of available data follows a diurnal cycle as

well (figure 3). In addition, there is a large second population of night time cases. The sudden increase in clear air echoes at

dusk, as well as their absence in winter, hints at migrating swarms of insects as a likely explanation (Drake and Reynolds,

2012). We exclude these data because (1) the weaker nighttime convergences are less likely to influence the pattern of the

insect cloud and (2) migrating swarms tend to inhabit thin layers near an atmospheric inversion which only partly intersect the170

radar beam (cf. p.237 f. in Drake and Reynolds (2012)).

4 Methods

4.1 Wavelet analysis

The idea of this study is to compare the correlation structures of the radar reflectivities and divergence fields, summarized

in terms of scale, anisotropy and direction. To extract these properties from divergence and reflectivity images, we use the175

SAD methodology of Buschow and Friederichs (2021): The image to be analyzed is convolved with a series of localized 2D

wave-forms with varying scale and orientation. The analyzing filters are the so-called daughter wavelets which are generated

by shifting, scaling and rotating a single, carefully designed wave function, the mother wavelet. The square of one wavelet

coefficient, i.e., the result convolving the image with one of the daughters, represents the amount of variance present at a

particular location for a particular combination of spatial scale and orientation. The dual-tree complex wavelet transform180

(Selesnick et al., 2005) used in this study provides daughter wavelets with six orientations and up to J scales for an image of

size 2J × 2J . Following Buschow and Friederichs (2021), the largest three scales are removed because their support is larger

than the image, rendering their interpretation ambiguous. After spatial averaging, a radar image with 128× 128 pixels is thus

summarized by 4×6 values, the so-called wavelet spectrum. To extract the scale, anisotropy and direction from this spectrum,

we treat the J ×6 values as point-masses arranged in a 3D space such that the six directions for one scale are at the vertices of185

a hexagon in the x− y-plane and the hexagons for the J scales are located at z = 1, . . . ,J . The centre of mass of these point

masses has three components in cylindrical coordinates:

– The central scale z ∈ [1,J ] measures the dominant spatial scale of the image. If all variance was at spatial scale j, then

z = j; if all scales contain equal variance, then z = (J − 1)/2.

– The radius ρ ∈ [0,1] describes the anisotropy. If all directions have equal variance, then the centre of mass is in the190

middle of the hexagon and ρ= 0; if all energy is concentrated in one direction, then ρ= 1.

– From the angular coordinate, we can determine the dominant orientation angle ϕ ∈ [0◦,180◦]. Note that ϕ is only mean-

ingful if the anisotropy ρ is non-zero.

For a detailed description of the calculation of these properties, as well as the details of the wavelet transform itself, we refer

to Buschow and Friederichs (2021) and references therein. The software for this analysis is freely available in the open source195

dualtrees R-package (Buschow et al., 2020).
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The central scale z is a dimensionless quantity which cannot be analytically transformed into an equivalent Fourier wave-

length. Since the actual physical size of the patterns is of some interest in the present study, we derive an empirical relationship

based on test images with fixed wavelength in appendix A. We find that, in the range of 1.5< z < 2.5, the relationship is well

described by a linear fit with200

λ≈ z · 9km− 5.4km (2)

It is important to note that this relationship is only approximately valid for the specific wavelets, scales and wave-like test

images used in the present study. This equivalent wavelength is furthermore not identical to the spacing between wave-crests

used as the measure of horizontal scale by Banghoff et al. (2020) because our λ includes also the scale perpendicular to the

orientation of the features.205

To make the distribution of angles ϕ interpretable, we compute the angles of intersection between ϕ and the model wind

direction (averaged over the regions around each radar). A relative angle ∆ϕ= 0◦ thus means that the patterns align with the

wind direction whereas ∆ϕ= 90◦ indicates an orthogonal orientation.

4.2 Boundary conditions and pre-processing

The wavelet analysis described above requires data on a regular grid, ideally of size 2n× 2n to ensure fast computation times,210

discontinuities at the boundaries must be avoided. This is only a minor factor for intermittent fields like rain but very important

for data with non-zero values along each border. To achieve periodic boundaries, we cut out a 128km× 128km region (128

and 64 pixels for RADOLAN and COSMO-REA2, respectively) around each radar location and apply a circular Tukey window

to smoothly reduce the field to zero (for divergences) or−10 dBz (for reflectivities) towards each side. A rectangular boundary

would introduce spurious horizontal and vertical directions to the wavelet spectra.215

For the reflectivity data, further pre-processing steps are required. Firstly, some radar images contain erroneous isolated

pixels with unusual intensities which would artificially reduce the analyzed spatial scales. Following Lagrange et al. (2018),

we therefore compare each pixel to the average over its eight nearest neighbours. If the difference is greater than 10 dBZ, the

pixel value is replaced by the neighbourhood average. Secondly, the reflectivities around each radar often contain gaps of very

small reflectivities (<−10 dBZ), caused for example by buildings, mountains or water bodies without scattering insects. These220

arbitrarily shaped holes introduce an artificial pattern which is unrelated to the wind field and needs to be removed. Here, we

fill in the gaps with a simple algorithm which iteratively replaces values below -10 dBZ with an average over the neighbouring

non-missing pixels. The details of the gap-filling algorithm, as well as a demonstration of its effectiveness are given in appendix

B.

Lastly, a comparison between the wavelet spectra of two images would normally require that both data sets be given on the225

same grid. In our case, we can avoid re-gridding either field since the spatial resolutions differ by a factor of two. The second

scale in RADOLAN thus corresponds to the first scale of COSMO-REA2. We can therefore simply remove the smallest scale

from the radar image to make the spectra comparable. We have checked that the results are virtually identical when the radar
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Figure 4. Average central scale (a), anisotropy (b) and angle relative to the mean wind (c), calculated from COSMO-REA2 (2007-2013) in

the environment of the selected radar stations. White contours mark the sun’s elevation angle at 0◦,20◦,40◦,60◦.

images are bilinearly re-mapped instead. The largest daughter wavelet that fits into our domain is j = 4 for RADOLAN and

j = 3 for COSMO-REA2, giving us three comparable scales with six directions each.230

5 Results

5.1 Climatology of divergence structures in COSMO-REA2

Based on section 2, we can expect that small-scaled, cellular circulations will form on warm sunny days, favored by high

pressure and low wind speeds. Following the diurnal cycle of the boundary layer depth, these circulations start out small and

become larger over the course of the day. According to Poll et al. (2017), Banghoff et al. (2020) and references therein, we235

furthermore expect to see a more linear mode of organization on windier days. The orientation of these roll-like structures will

generally follow the mean wind direction (Weckwerth et al., 1997). Both cells and rolls should leave an imprint on the scale

and anisotropy and direction of the horizontal divergence fields. We therefore cut out square regions of 64× 64 pixels around

the twelve selected radar stations (table 1) and apply the wavelet analysis described above for all hourly time-steps from 2007

to 2013.240

As a first overview, we average the scale z, anisotropy ρ and direction relative to the mean wind ∆ϕ over the hours of the day

and weeks of the year. Figure 4 shows that all three simulated variables undergo pronounced diurnal and annual cycles. During

nighttime, the average central scales of the divergence fields remain close to z ≈ 2 (about 13 km) with no strong variations

between seasons. After the solar elevation exceeds roughly 40◦, z approaches a clear minimum around noon before increasing

again during the afternoon. This region of small values is surrounded by a ring of increased scales a few hours after sunrise245

and around sunset. These largest average scales coincide with a similar ring of unusually low anisotropy (figure 4 b). ρ reaches

a maximum during the early hours of the small-scale phase before decreasing during the afternoon. Concerning the orientation
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Figure 5. Estimated probability densities (kernel estimates) for the scale z (a, converted into an approximate wavelength λ via equation 2),

anisotropy ρ (b) and relative angle ∆ϕ (c) for different seasons and times of day.

of the divergence field (panel c), we observe that the small-scale pattern is typically aligned with the mean wind direction while

the larger scaled nighttime patterns are not.

As expected, the simulated small-scaled circulations thus impress their diurnal life-cycle on the mean spatial structure of250

the divergence field. To see how prominent these features are, compared to the overall variability, we now consider probability

densities of the three structural quantities, separated by season and time of day (figure 5).

For the spatial scales in panel (a), we find that the prominent minimum around noon is indeed a common occurrence in all

seasons except winter, indicated by bi-modal distributions between 9 and 15 UTC. During summer in particular, the smaller-

scaled mode, centred near z ≈ 1.75 or λ≈ 10km, is more likely than z > 2. Two modes can be seen with similar clarity in255
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Figure 6. REA2 wind speed, boundary layer height, surface pressure anomaly and 2 m temperature during summer (JJA) between 11 UTC

and 13 UTC, averaged around the selected radar locations. “small and round” cases have z < 1.86,ρ < 0.12, “small and linear” is z <

1.86,ρ > 0.32. The boxplot labeled “rx” contains all instances where at least one clear air radar echo is available.

the distribution of orientations (figure 5 c): During winter or nighttime, orientations along the wind direction are rare, most

angles are closer to −75◦. In the other three seasons, ∆ϕ≈ 0 is by far the most likely value during daytime. The signal in the

anisotropy (figure 5 b), on the other hand, is far weaker: A clearly increased likelihood for anisotropic features is only evident

in summer between 9 and 12 UTC and the change in the distribution is far less pronounced than for z. While the formation

of exceptionally small structures, oriented along the mean wind, is thus a common occurrence, the increased linearity around260

noon seen in figure 4 b can only occasionally be observed.

Next, we are interested in the typical weather situation associated with the occurrence of these small and / or linear patterns.

To this end, we focus on the three hours around noon during the summer season and search for cases where both ρ and z are

in the bottom 5 % of their climatological distribution (“small and round” mode). For the “small and linear” mode, we select

those cases where z is in the bottom 5 % whereas ρ is in the top 5 % of its distribution. At these time-steps, as well as the265

remaining “reference” cases, we compute spatial averages around the selected radar stations for several relevant variables from

COSMO-REA2.

Figure 6 shows that boundary layer height, 2 m temperature and surface pressure see a moderate increase during time-

steps with small and linear patterns and a stronger increase if the pattern is small and round. In the latter cases, the median

temperature is close to 25◦C and the boundary layer rarely falls below 2 km. Simultaneously, the average 10 m wind speed270

is strongly reduced. Conversely the small and linear mode is associated with a significantly increased wind speed. Hence the

boundary layer circulation in COSMO-REA2 qualitatively resembles Rayleigh Bénard convection.

In preparation for the quantitative comparison with radar data, figure 6 also includes the environmental conditions for days

where at least one clear-sky RADOLAN image is available. We find that the radar echoes occur mostly on very warm days

with moderately increased boundary layer depth and decreased wind speeds. This is consistent with the assumption of insects275

as the primary origin of these echoes. The observations thus mostly sample cases where small-scale circulations are likely to

occur.
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Figure 7. Randomly selected examples from the set of available, non-rainy 12 UTC radar images at Flechtdorf. Top row: Aqua MODIS

snapshots (wvs.earthdata.nasa.gov, timing only approximately matches 12 UTC). Middle: RADOLAN RX reflectivity. Bottom: COSMO-

REA2 10 m divergence. Light colors indicate high reflectivity and convergence, respectively. Numbers in the top left corner indicate the

analyzed scale and anisotropy, the range of reflectivity / divergence values is given in the bottom right.

5.2 Verification against radar reflectivities

In this section, we attempt to assess the realism of our model-based climatology using the clear-sky radar reflectivity data from

RADOLAN. Besides cases with too many missing or rainy pixels, we also exclude all nighttime images. The remaining data280

is subjected to the wavelet analysis as described in section 4.2.

Before analysing the statistics of the entire dataset, we briefly consider a few individual examples. Figure 7 shows five

randomly selected cases from the Flechtdorf radar station. The 12 UTC time step was chosen so that a visible satellite image

from MODIS is available at approximately the same time. For consistency with the wavelet-based analysis, we have removed

the smallest-scaled features from the RADOLAN images by transforming to wavelet-space, setting the coefficients at level 1285

to zero and transforming back.

The first two examples (leftmost columns) feature a closed cloud-cover; model and observation agree on a relatively large

structure on 2009-09-09 and small, isotropic cells on 2011-07-11. The remaining three cases are all relatively small in scale
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Figure 8. Diurnal cycles of spatial scales from 5 min radar data (areas and lines) and hourly COSMO-REA2 10 m divergence (points and

error bars). Grey area and error bars indicate inter-quartile range, white line and black dots mark the median. Only cases with complete (see

section 3.3) clear air echoes are included.

with both data-sets agreeing that 2009-07-29, i.e., our example from figure 2, has the smallest and most anisotropic structure.

Overall, the decent visual similarity between COSMO-REA2 and RADOLAN is reflected in small to moderate differences in290

ρ and z.
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Figure 8 shows a quantitative comparison of the modelled and observed diurnal cycles of central scales. In addition to the

hourly data for which corresponding COSMO-REA2 divergences are available, we have included all other 5 min time-steps

with complete clear-air echoes as well. The results can be separated into two main groups: At the rural radar stations in Eisberg,

Flechtdorf, Neuhaus, Neuheilenbach, Türkheim and Ummendorf, the agreement betweeen model and observations is surpris-295

ingly good. COSMO-REA2 reproduces not only the correct evolution of the diurnal cycle but also similar spatial scales with a

large overlap in the inter-quartile ranges. In contrast, the observed spatial patterns at the three largest German cities of Berlin,

Hamburg and Munich, differ significantly from the modelled values, as well as from the other stations. Hannover and Dresden

have more data than the other urban locations (cf. table 1) and show better agreement with the model. Here, the observed

cycle is flatter but resembles its modelled counterpart in the afternoon. The unusual behaviour of the Feldberg/Schwarzwald300

station is likely the result of its mountainous surrounding which causes both additional ground clutter and changes to the local

circulation, neither of which is resolved by the 2 km model orography. It is however worth noting that, despite the offset, both

data sets agree that the smallest-scaled patterns occur later in the day than at other stations.

Good agreement between model and observations can be seen in the distribution of the angle ϕ as well. In figure 9, we have

pooled all radars together and consider only full hours where the model wind direction is known. Cases with small observed305

anisotropy (ρ≤ 0.1), i.e., ambiguous orientation, were removed as well. We find that, between 10 and 17 UTC, both sets of

images are usually oriented within ±15◦ of the mean model wind direction; the distributions of RADOLAN and COSMO-

REA2 match almost perfectly. Before and after this interval, which coincides with the small-scale phase of the diurnal cycle, a

wider variety of orientations is possible.

While the scale and orientation are thus in reasonably good agreement, the same can not be said for the anisotropy. Figure310

10 shows that the observations are almost universally more isotropic than the model fields. The pattern of increasing linearity

towards a maximum before noon seen in figure 4 b is clearly present in this sample of the model data. The observations, on the

other hand, hardly contain this pattern at all with only a very weak maximum at 11 UTC and nearly constant values during the

afternoon.

Aside from the climatological distribution and diurnal cycle, we are interested in the model’s ability to represent the day-315

to-day variability of the spatial divergence patterns. For z and ρ, we can eliminate the overall bias and diurnal behaviour by

subtracting the long-time mean for every daytime hour from the respective time series. To avoid residual effects of the annual

cycle, we limit this analysis to the summer season. Timing errors within each day are furthermore removed by taking the daily

minimum of z and maximum of ρ. Figure 11 a reveals that the remaining scale anomalies in COSMO-REA2 and RADOLAN

are slightly correlated with many remaining errors below 0.1 and almost all below 0.2 (outer lines). As expected, the correlation320

is even lower for ρ (figure 11 b) and the typical errors are relatively large even after the bias has been removed.

6 Discussion

The results of section 5.1 and 5.2 raise several intertwined questions: What level of realism can be expected of the reanalysed

small-scale structure? To what extent can the RADOLAN data-set be used to validate the simulation? How appropriate was the
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Figure 9. Distribution of orientations relative to the COSMO-REA2 mean wind throughout the day. COSMO-REA2 shown in black,

RADOLAN in blue. Only complete, on-rainy daytime cases with ρ(RADOLAN)> 0.1 are included.

wavelet-based analysis for the task at hand? Concerning the trustworthiness of COSMO-REA2, it must be remembered that the325

local divergence patterns are primarily the product of the model dynamics and parametrized turbulence, not the data assimila-

tion. The environmental conditions which drive the formation of a particular mode of small-scale organization, however, can be

expected to have good accuracy due to the continuous input of wind speed, humidity and pressure from weather stations. It is

therefore not surprising that the model can accurately represent diurnal and annual cycles and differentiate between days with

organized and unorganized situations. Consequently, the model climatology as described in section 5.1 qualitatively agrees330

with our expectations from the literature. Whether or not the simulated small-scale structure can itself be trusted is question-

able in light of the theory discussed in section 2. Our comparison with RADOLAN clear-air data suggests that, despite the

proximity to the Grey-Zone, the modelled structures are not overall unrealistic. In interpreting this result, we must recall that

the difference in native resolution between RADOLAN and COSMO-REA2 was handled by deleting the smallest scale from

RADOLAN. We have thereby filtered out any variability below the model’s effective resolution. Figure 8 therefore does not335
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Figure 10. As figure 8, but for ρ and without separation by radars.

indicate that the mesoscale model successfully simulates the spatial scales present in the real atmosphere. We can merely see

that the remaining variability (upwards of λ≈ 8km), which both data-sets can represent, matches the observed diurnal cycle

decently, especially at the rural stations.

As predicted by Zhou et al. (2014), the wavelengths of the simulated eddies are near the smallest scale resolved by the

model. We note, however, that the underlying resolution of RADOLAN is 1◦ in azimuth- and 250m in range-direction. Inside340

our 64km radius, and particularly close to the radar, the internal resolution of the measurements is considerably finer than

the used 1km× 1km grid. There is thus no obvious technical reason why, after filtering, RADOLAN should have to exhibit

increased variability on the same scale as the model. We have experimentally re-calculated the central scales of the radar images

including the previously removed smallest scales and found a slight shift in the cycle towards earlier hours. Conversely, if we

remove the second smallest scale as well, a shift in the opposite direction emerges. This supports our interpretation that the345

model simulates the patterns seen in the observations with an approximately correct diurnal cycle, on the scales we included;

smaller-scaled variability, which would initiate earlier in the day, is resolved by neither COSMO nor RADOLAN. It should

furthermore be noted that we make no direct statements about the intensity (variance) of the circulations. Such information

cannot easily be inferred because the absolute radar reflectivities depend on the technical details of the radar, applied pre-

processing and the unknown overall concentration of biological scatterers.350

The greater disagreement at the urban radar locations has two main explanations. On the one hand, it is likely that buildings

and unrelated radio signals introduce excessive noise into the images, overshadowing the natural signal. This explanation is

supported by the lack of complete images at the Essen and Frankfurt stations, both of which are located in highly urbanized

regions (Frankfurt is the city with the most skyscrapers in Germany). On the other hand, the urban landscape itself can influence
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Figure 11. Scatter-plot of daytime minimum scale (a) and daytime maximum anisotropy (b) anomalies during daytime in summer (JJA) from

RADOLAN (x-axis) and COSMO-REA2 (y-axis). Anomalies were calculated by subtracting the respective mean values from every hour of

the day. Dashed lines mark errors dz,dρ= {−0.2,−0.1,0,0.1,0.2}.

19



the near-surface circulation in ways which are not resolved by the model. The similar effects of small-scale orography likely355

explain the special behaviour at the Feldberg/Schwarzwald station.

Aside from spatial scales, the anisotropy of the divergence pattern, i.e., the difference between linear and cellular orga-

nization, is of interest. Here, the model’s tendency towards more linear patterns earlier in the day could not be confirmed

observationally. On the one hand, it is plausible that the lack of finer-scale variability leads to the simulation of unnaturally

regular stripes. On the other hand, gaps and noise have a larger impact on the anisotropy than the scale (cf. appendix B), making360

these results somewhat less robust.

Lastly, it should again be emphasized that our clear air data-set provides no information on nighttime and winter and is

biased towards cases with high temperatures where small-scale circulations are likely to occur. Our validation is therefore

mostly conditional on the occurrence of these phenomena; whether or not the model correctly differentiates between days with

and without organized shallow convection could only partly be judged (cf. figure 11).365

7 Conclusions and outlook

The main goal of this study was to explore the use of clear-sky radar data for the evaluation of simulated low-level divergence

structures. A wavelet-based verification methodology, developed and extensively tested for precipitation data, was used to

summarize the spatial patterns in terms of scale, anisotropy and direction. We have demonstrated that model-based divergences

and radar reflectivities are comparable at this level of abstraction. Our investigation of the German radar network has shown370

that usable clear sky echoes are rare overall and almost non-existent in winter. This supports the assumption that such daytime

echoes are caused by small insects, the life cycle and habitats of which may also explain the substantial differences between

radars as well as strong year to year variations. The relatively long time-span from 2007 to 2013 nonetheless resulted in a robust

data set of over 20.000 individual images, mostly during summer, where the modelled patterns could be verified against spatial

observations. At most radar locations, both data sets show a very similar diurnal cycle in the spatial scales and orientations375

with a strong preference for small-scaled (λ≈ 10km) features around noon. The orientation during the small-scaled phase of

the cycle is almost always within 15◦ of the mean wind. The fact that this observation holds for both data sets also implicitly

confirms that the model adequately represents the mean wind direction. COSMO-REA2 furthermore simulated a trend towards

increasingly linear features at the start of the small-scaled phase which could not be found in the observations. As discussed

above, a more complete set of observations might be able to clarify whether this indicates deficiencies of the model or the380

observations or (likely) both.

Based on the overall decent agreement with the radar observations, we may put some trust in the model’s behaviour at the

unobserved parts of the time series as well. If COSMO-REA2 is thus to be believed, mesoscale shallow convection, favored

by high pressure (clear skies) and temperatures, as well as weak winds, is a common occurrence in Germany in all seasons

except winter; during JJA, the small-scale mode is more likely than the larger-scaled configuration. Its onset a few hours after385

sunrise is characterized by a transition phase with larger scaled, isotropic divergence patterns, the orientation of which switches

from ∼ 70◦ to ∼ 0◦ with respect to the mean wind direction. While most patterns are isotropic, i.e., cellular in nature, there
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is also a weaker signal of linear organization. This more roll-like mode is most often simulated during JJA between 9 and

12 UTC and preferably occurs when winds are unusually strong and the boundary layer is shallower than in the cellular cases.

These simulated features are qualitatively consistent with the theory, as well as previous observations of mesoscale shallow390

convection.

Concerning future prospects, it must be emphasized that we have relied on only the most widely available kind of radar

observations. Modern dual-polarization Doppler radars produce a wealth of further information, which would for example

allow us to confidently separate insect-related echoes from unhelpful noise and clear up the nature of the night-time echoes

(Zrnic and Ryzhkov, 1998; Melnikov et al., 2015). Additionally, parameters like mean wind speed and direction, and even395

the boundary layer height (Banghoff et al., 01 Aug. 2018) could be inferred directly from the radar instead of relying on the

model (Banghoff et al., 2020). Lastly, we re-iterate that small scales below ∼ 8km were filtered out in this study in order

to fairly evaluate the mesoscale model. Depending on their frequency, weather radars can observe much finer details of the

turbulent boundary layer. A similar strategy to ours could therefore also provide useful information for the objective validation

of realistic large eddy simulations as in Thurston et al. (2016); Poll et al. (2017); Bauer et al. (2020); Ito et al. (2020); Pantillon400

et al. (2020).

Code and data availability. Software for the dual-tree wavelet transformation is available in the dualtrees R-package (Buschow et al.,

2020). In addition, the specific version (0.1.4) used for this manuscript has been permanently archived at https://doi.org/10.5281/zenodo.

5027277 (Buschow, 2021a). COSMO-REA2 is currently available from the website of the Hans Ertel centre (reanalysis.meteo.uni-bonn.de).

RADOLAN is available via the DWD OpenData portal (opendata.dwd.de). The cropped reflectivity and divergence fields around the used405

radar station have been archived at https://doi.org/10.5281/zenodo.5036447, together with all auxiliary data and software needed to fully

reproduce the figures in this manuscript from scratch (Buschow, 2021b).

Appendix A: Empirical relationship between scale and wavelength

To approximately translate the central scale into an equivalent Fourier wavelength λ, we apply the exact method described in

section 4.2 to synthetic test images of pure sine-waves, given by410

f(x,y) = sin(2π(kxx+ kyy)) + ε

where ε is a Gaussian white noise term with zero mean and variance 0.04. Figure A1 shows that the relationship between z

and λ is nearly linear for this idealized signal. For z < 1.5 and z > 2.5, the curve becomes non-linear because most variance

is outside the range of scales covered by our wavelet transform. The linear fit yields λ/∆x = 4.464 · z− 2.765. Since we are

merely interested in a rough approximation with round numbers, we simplify the result for ∆x ≈ 2km to obtain equation 2.415
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Appendix B: Filling the gaps in the radar images

For this study, we are not interested in the radar reflectivities themselves, or even their full spatial correlation function, but

only the estimates structural characteristics ρ,ϕ,z. To mitigate the effects of holes, i.e., regions with Z ≤−10dBz, in the

radar images, we implement a simple iterative algorithm to smoothly fill in the gaps: (1) Find missing points with at least

one non-missing neighbour, (2) replace values of those points with an average over the up to eight adjacent non-missing420

values and (3) repeat from (1) until all gaps are filled. The result is similar to inverse distance interpolation but (at least in

our implementations of the two algorithms) considerably faster. To test the success of our approach, we select 300 nearly

complete (less than 3 % missing data) clear-air radar echoes from our data-set and artificially add the gaps form 300 other

randomly selected incomplete images. In figure B1, we compare ρ,ϕ,z, estimated with and without the gap-filling algorithm.

As expected, the impact of the gaps is massive but our algorithm mostly mitigates the effects. We have repeated the experiment425

with inverse distance interpolation (not shown) and found no substantial improvement over the iterative procedure.

Author contributions. SB had the idea for this work, both authors jointly developed the original methodology. Writing and coding was led

by SB, with suggestions and additions from PF. Both authors contributed to the final draft and proof-reading.
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Figure B1. Anisotropy ρ (a), angle ϕ (b) and scale z (c) estimated from nearly complete images (x-axis) and images with added holes

(y-axis). Black dots show the results of the iterative gap-filling algorithms; values obtained without gap filling are shown in grey.
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Measuring Displacement Errors with1

Complex Wavelets2

Sebastian Buschow3

July 27, 20214

When highly-resolved precipitation forecasts are verified against observations, dis-5

placement errors tend to overshadow all other aspects of forecast quality. The ap-6

propriate treatment and explicit measurement of such errors remains a challenging7

task. This study explores a new verification approach which uses the phase of com-8

plex wavelet coefficients to quantify spatially varying displacements. Idealized and9

realistic test cases from the MesoVICT project demonstrate that our approach yields10

helpful results in a variety of situations where popular alternatives may struggle.11

Potential benefits of very high spatial resolutions can be identified even when the ob-12

servational data-set is coarsely resolved itself. The new approach can furthermore be13

applied not only to precipitation but also variables such as wind speed and potential14

temperature, thereby overcoming a limitation of many established location scores.15

1. Introduction16

Location errors are the main reason why simulated meteorological fields like precipitation can-17

not be directly compared to observations in a grid-point wise manner. If a forecast mis-places18

a rain field, large differences are seen both at the predicted and the true, observed location of19

the feature; possible similarities between the two images are not rewarded and the magnitude of20

the displacement is not quantified. Due to this double-penalty effect, quality measures like the21

point-wise RMSE prefer forecasts with large, smooth structures to finer-scaled, arguably more22

realistic models. The need for informative, objective evaluation of high-resolution forecasting23

systems lead to the development of numerous new “spatial” verification techniques, which were24

surveyed in the Spatial Forecast Verification Methods Intercomparison Project [Gilleland et al.,25

2009, ICP] and its successor project MesoVICT (Mesoscale Verification Intercomparison over26

Complex Terrain, Dorninger et al. [2018]). Besides facilitating the development of new meth-27

ods and providing standardized test cases for their comparison, these projects classified nearly28

all existing approaches into five classes. The common thread is that each class uses a specific29

abstract representation of the underlying fields: Neighbourhood methods apply smoothing fil-30

ters to essentially compare the average rainfall characteristics around each location. Similarly,31

1



scale separation methods split forecast and observation into individual frequency components via32

band-pass filters. Binary distance measures instead rely on the computation of distance maps33

which measure the distance from each pixel to the next rainy pixel in one of the images. Field34

deformation methods consider the optimization problem of transforming one image into the other35

via an optical flow field. The fifth and perhaps most popular group of methods decomposes the36

fields into discrete objects and compares their properties.37

Many of these methods aim to isolate individual aspects of forecast quality in order to specify38

the nature of a forecast’s error and, ideally, hint at the reasons for the shortcoming. Such39

scores would be useful even in the absence of double penalties, since the realism of a complex40

simulated field can hardly be described by a single number. A prime example is the object-41

based SAL method of Wernli et al. [2008], which identifies errors in Structure, Amplitude and42

Location. Weniger and Friederichs [2016] pointed out that SAL can be highly sensitive to the43

specifics of the object identification procedure and may not be appropriate for variables other44

than precipitation. Motivated by this, we developed a new structure verification method based45

on scale-separation instead of object decomposition [Kapp et al., 2018, Buschow et al., 2019,46

Buschow and Friederichs, 2020]. In its final form, presented in Buschow and Friederichs [2021],47

this approach compares the spatial Scale, Anisotropy and Direction. The scale-component of48

SAD is similar to SAL’s S, albeit more specific in its interpretation (predicted structure too49

small or too large) and more effective in detecting the correct correlation structure [Buschow50

et al., 2019]. The other two components measure how strongly a field is directed and what its51

preferred orientation is; two aspects which are neglected by S.52

Taking further inspiration from SAL, this study aims to define a location-score based on the53

same scale-decomposition used in SAD. On the one hand, a verification that considers only the54

correlation structure (and perhaps the marginal distribution) is incomplete since forecasts with no55

location-information are useless for many applications. On the other hand, the complex wavelet56

transform, which forms the technical core of SAD, affords us the unique opportunity to extract57

location information from the phases of the complex coefficients. As a further motivation, our58

literature survey in section 2 below indicates that SAL’s location score is often used but rarely59

useful. In addition, wavelet transforms require no strong assumptions on the structure of the60

underlying fields, such as the existence of discrete objects and meaningful thresholds. Our new61

methodology is therefore not limited to intermittent, precipitation-like data but can be applied62

to any meteorological field of interest.63

The remainder of this paper is structured as follows: In Section 2, we review some of the most64

popular location scores from the literature, including SAL. Section 3 briefly introduces the SAD65

structure verification and the wavelet transform on which it is based. We define the new, phase-66

based location score in section 4 and demonstrate its behaviour in a series of idealized tests.67

Realistic test cases from the MesoVICT project are introduced in section 5 and verified using68

the new and old location scores in section 6. Here we focus mainly on precipitation; potential69

temperatures and wind speed are included as a proof of concept as well. Section 7 summarizes70

the outcomes of our study and discusses the merits, as well as limitations of all tested scores.71
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2. Established displacement measures72

Perhaps the most widely used pure location score is the L-component of the object-based Struc-73

ture, Amplitude and Location score [Wernli et al., 2008, SAL]. Denoting the centre of mass in74

the observed and forecast field by r(obs) and r(forc), respectively, one half of L is defined as75

L1 =
|r(obs) − r(forc)|

Lmax
, (1)

where Lmax is the longest distance between two grid-points within the domain. For the other half76

of L, rain fields are decomposed into discrete objects. In this study, we use the standard object77

identification procedure advocated in Wernli et al. [2009] and implemented in the SpaialVx78

R-library: (1) convert precipitation into binary fields by thresholding at 1/15 times the 95-th79

percentile of non-zero values in the respective field, (2) smooth the binary mask with a disk-80

kernel and (3) group continuous non-zero regions into individual objects. We compute the81

centres r1,...,N and precipitation totals R1,...,N of all N objects in one of the fields and define the82

scatter around the overall centre r as ∆r =
∑N

i=1Ri|ri − r|/∑N
i=1Ri. The second half of L is83

then given by84

L2 = 2 · |∆r
(obs) −∆r(forc)|

Lmax
. (2)

The overall location score L = L1 + L2 is therefore in the interval [0, 2] and consists of equal85

contributions from the overall centre of mass and the scattering around that centre. Considering86

the continued popularity and wide-spread use of SAL, it is worth pointing out that L has re-87

peatedly failed to produce useful information on forecast performance. Table 2 in the appendix88

summarizes the results of L in 20 verification studies. Only three of these authors obtain any89

interpretable information from the location component [Hanley et al., 2013, Navascués, 2013,90

Davolio et al., 2017]; the others either fail to mention it entirely [Früh et al., 2007, Zimmer et al.,91

2008, Zacharov, 2013], or explicitly state that L remained uninformative (e.g. Wittmann et al.92

[2010], Lindstedt et al. [2015], Kann et al. [2015], Maurer et al. [2017]). While this list is not93

exhaustive, it nonetheless demonstrates that (1) there is considerable interest in a pure location94

score and (2) SAL’s location component is frequently uninformative. An obvious explanation95

for this shortcoming is that the co-occurrence of multiple different location errors in one forecast96

may be handled incorrectly. L1 is invariant under any rearrangement of the fields that leaves97

the centre of mass unchanged. The behaviour of L2, which is supposed to compensate for such98

effects, is not obvious when the number, placement and intensity of objects can differ between99

the two fields in a variety of ways.100

Field deformation is another widely cited approach to the explicit measurement of location101

errors. By computing an optimal vector field which transforms one image into the other (the102

so-called optical flow), these techniques account for varying displacements in different parts of103

an image. Since the flow field is generally not divergence free, such scores register not only104

displacements but also errors in the spatial structure and, in the case of precipitation, the rate of105

occurrence. While field deformation methods are frequently mentioned in lists of popular spatial106
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verification methods, they are comparatively rarely used. Of the three deformation approaches107

included in the original ICP [Gilleland et al., 2010, Marzban and Sandgathe, 2010, Keil and108

Craig, 2009], only the Displacement and Amplitude Score (DAS) of Keil and Craig [2007, 2009]109

appears to have seen use in multiple later studies. Their “pyramid matching” algorithm performs110

an exhaustive search for the best shift of each individual pixel for a series of coarse-grained111

versions of the two fields and combines the resulting displacement vectors into an optical flow112

field (for a complete description see the papers cited above). While this pragmatic approach113

is not guaranteed to find the true optimum, it will always give a result after a predetermined114

number of steps (unlike other methods which may even fail to converge) and can be computed115

at reasonably low cost. Compared to SAL, DAS is far less widely used, likely because it is less116

easy to understand and implement. In fact, most subsequent applications are either co-authored117

by one of the original authors [Tafferner et al., 2008, Craig et al., 2012, Lange and Craig, 2014]118

or acknowledge them for providing the code and / or assisting with the implementation [Nan119

et al., 2010, Skinner et al., 2016, Han and Szunyogh, 2016]. For this study, we have developed120

an implementation of DAS based on the imager R-library [Barthelme, 2018]. We will refer to the121

vector magnitude of the flow which transforms the forecast into the observation, averaged over122

all locations with observed precipitation, as DKC .123

A third way of quantifying location errors is given by binary distance measures. The basis124

for these scores is the so-called distance map d(r, X), which measures the distance from an125

arbitrary location r to the nearest element of the set X of grid-points where the binary field126

under consideration has the value 1. For a recent review and comparison of distance measures127

used in forecast verification, we refer to Gilleland et al. [2020]. In this study, we use Baddeley’s128

delta metric [Gilleland, 2011] as an example from this class. Denoting by A and B the sets of129

grid-points where predicted and observed precipitation exceed 0.1mm, it is defined as130

BD =

[
1

N

N∑

i=1

|w(d(ri, A))− w(d(ri, B))|p
]1/p

. (3)

Here, we use the default SpatialVx implementation where p = 2 and the weight function is just131

the identity w(d) = d. Thus, for each pixel in the domain, we compare the distance to the132

next rainy pixel in forecast and observation. BD rewards overlap and can measure displacement133

errors but also reacts to difference in the general shape and spatial distribution of the rain areas.134

3. Wavelet based structure verification (SAD)135

Wavelets were among the first proposed solutions to the double penalty problem in forecast136

verification. The basic concept is to represent an image (in our case a meteorological field) as a137

superposition of functions ψj,d,l which are limited to a specific scale j, direction d and location138

l.1 Classically, a suitable set of these so-called daughter wavelets ψj,d,l is obtained by applying139

a re-scaling, rotation and shift to a single mother wavelet ψ. To qualify as a wavelet, ψ must140

1For the sake of simpler notation, we have implicitly assumed that the locations l can be counted by a scalar
index; general wavelet transforms can allow arbitrary locations in R2.
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Figure 1: Complex daughter wavelets at scale j = 6 on a 200 × 200 domain in hcl-colorspace:
Phase mapped to the hue, chroma and luminance correspond to the modulus. Images
are cropped to a 200× 200 region around the maximum amplitude, white boxes show
an area of 26 × 26 pixels.
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integrate to zero (localization in space) and its Fourier transform must decay sufficiently quickly141

(localization in frequency). The expansion coefficient for a specific daughter is defined as the142

scalar product with the image I(x, y), i.e.,143

cj,d,l =

∫

R

∫

R
I(x, y)ψj,d,l(x, y)dxdy . (4)

Almost all forecast verification approaches based on wavelets rely on the multi-resolution analysis144

(MRA) algorithm of Mallat [1989]. The MRA is a wavelet transform that allows only scales which145

are whole powers of two, i.e., ψj(x, y) = 2−j/2ψ(2−jx, 2−jy), and shifts the daughter wavelets146

at scale j in increments of 2j . In two dimensions, the transform is not implemented as an147

explicit convolution (as written in equation 4) but by a series of discrete high- and low-pass148

filters applied recursively to the rows and columns of the image. This separable construction149

leads to an orthogonal decomposition with three directions, namely horizontal (high-pass on150

the rows, low-pass on the columns), vertical (vice-versa) and diagonal (high-pass on rows and151

columns). The popular ISS verification method [Casati et al., 2004] uses an MRA to split the152

overall MSE between two binary images into its components on the various spatial scales. The153

double penalty effect is thereby limited to the small-scale side of the decomposition while skill154

on larger scales can still be rewarded.155

In Buschow and Friederichs [2021], we pursued a different approach and used wavelets to156

isolate information on the spatial correlation structure of the images while ignoring location errors157

entirely. In principle, this could be achieved by summing up the squared MRA-coefficients over158

all locations l to obtain a wavelet spectrum. In analogy to the Fourier spectrum, information on159

the correlation structure could consequently be inferred following Eckley et al. [2010]. However,160

Mallat’s original MRA is ill-suited to this task for two main reasons: (1) the distribution of energy161

across scales and directions changes abruptly when the input image undergoes a small shift and162

(2) the diagonally oriented daughter wavelets are ambivalent in their orientation (±45◦) and163

smaller in scale than their sisters. Both issues are resolved by switching to the so-called dual-tree164

complex wavelet transform [Kingsbury, 1999, dtcwt]: The real-valued mother ψ is replaced by a165

complex-valued function ψr + iψi where the real and imaginary part are out of phase by 90◦. In166

two-dimensions, this is realized by a suitable set of four separate MRAs, the coefficients of which167

are re-combined into six uniquely oriented, complex daughter wavelets. For the details of the168

algorithm, we refer to the helpful tutorial-paper by Selesnick et al. [2005]. Figure 1 shows the six169

different orientations at scale j = 6 . As in the original MRA, wavelets at this scale are shifted170

in increments of 26, i.e., the region inside the white box is represented by one complex coefficient171

per direction. We note that the support of the wavelet (image region where |ψj,d,l| > 0) is larger172

than the box it represents, which raises the question of boundary conditions, even if the input173

image were a square of size 2J × 2J . In this paper we will avoid this issue by (1) reflecting the174

fields at the edges2 and (2) removing all coefficients which are either larger than the input image,175

centred outside of the input image, or touching the outer boundary. In accordance with Buschow176

and Friederichs [2021], the largest three scales are thereby removed entirely from the analysis.177

2Here, reflection is preferred over padding because the former is appropriate for both precipitation and other
variables.
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The resulting grids at the largest scales can also be seen in figure 12 at the end of section 6.178

The dtcwt’s quadruple redundancy (two complex numbers for each pixel in the input image)179

gives it near-perfect invariance under shifts: We can sum up the squared coefficients c2
j,d,l over all180

locations to obtain a J×6 wavelet spectrum that changes only mildly when the underlying 2J×2J181

image is shifted. From this spectrum, we obtain the central Scale z ∈ [1, J ], degree of Anisotropy182

ρ ∈ [0, 1] and preferred Direction ϕ ∈ [0, π] by treating the c2
j,d,l as point-masses located along the183

edges of a hexagonal prism and computing the centre of mass. These structural characteristics184

can then be compared between forecast and observation. For a detailed explanation of the SAD185

verification method, we refer to Buschow and Friederichs [2021]. In this paper, we will use it186

only briefly to summarize the observed spatial structure of our test cases. Our goal in the next187

section is to derive a location score, which is exactly complementary to the SAD structure scores.188

4. A wavelet based location score189

The dtcwt achieves near-perfect shift invariance thanks to its complex basis functions: Shifts190

of the input image are encoded in the phase of the complex coefficients while the amplitudes,191

averaged over all locations, are almost invariant. To get an intuition for this behaviour, consider192

again figure 1 and suppose that the image I(x, y) to be transformed consists of a single non-zero193

pixel located somewhere inside the white box. At scale j = 6, the entire box is represented194

by a single complex coefficient for each direction, namely the scalar product between I and the195

daughter wavelet ψ centered on the box. Since I is zero everywhere except for one pixel, the196

resulting coefficient is simply the value of the daughter wavelet at that pixel. In other words, the197

complex number shown at any point inside the box in figure 1 is exactly the value of the cj,d,l198

we would obtain if I was 1 at that point and zero elsewhere. When we move the non-zero pixel199

around, the absolute value of the coefficient (the luminance and chroma in figure 1) remains200

nearly constant, but the phase Φ (the hue in our plot) changes. The basic idea of our location201

score is to use this change in phase to estimate the displacement between two images. This202

approach is particularly promising because the relationship between phase and displacement is203

approximately linear. For the Fourier transform of a shifted signal x(· − τ), it is easy to show204

that205

F{x(· − τ)}(ω) = e−2πiωτF{x}(ω) , (5)

meaning that a time-shift by τ results in a frequency-dependent phase shift by −2πωτ . Since206

the real and imaginary part of the dtcwt wavelets have the same 90◦ offset as the Fourier basis,207

their local phase behaviour is similar and should thus be close to linear. We derive a location208

score as follows:209

1. perform the dtcwt of forecast and observation210

2. at every location, scale and direction compute the phase difference211

∆Φj,d,l = min( |Φj,d,l(obs)− Φj,d,l(for)|, 2π − |Φj,d,l(obs)− Φj,d,l(for)| )/π212

3. take a weighted average of ∆Φ over all locations and directions to obtain a scale-dependent213
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Figure 2: Difference between shifted and original test image used in figure 3

location error214

∆Φ(j) =
∑

all l

6∑

d=1

wj,d,l∑
d,l wj,d,l

∆Φj,d,l (6)

The division by π gives us a score between 0 and 1, where ∆Φ(j) = 0 indicates that the215

coefficients for scale j are perfectly in phase and ∆Φ(j) = 1 is the largest possible phase shift of216

180◦. Intuitively, the worst possible location score should be assigned to a forecast which contains217

no information on the location of the observed features at all. In this case, the predicted phase218

Φ(for) is a uniform random variable on the unit circle. Due to the rotational symmetry of the219

problem, we can set Φ(obs) = 0◦ without loss of generality and find for the expected phase error220

E [ min(|Φ(obs)− Φ(for)|, 2π − |Φ(obs)− Φ(for)|) ] = E [ |Φ(for)| ] = 0.5π . (7)

To ensure that this remains the worst case for our verification score, we will therefore consider221

∆Φ > 0.5 equally bad as ∆Φ = 0.5. This is also the value that materializes when the intensity in222

at least one of the images is zero, since the phase Φ is computed with finite precision as the arc-223

tangent of the ratio between two very small numbers. It is therefore clear that the spatial average224

of phase differences must be weighted by the amplitudes of the coefficients: Without weighting,225

regions of correct negative forecasts would contribute ∆Φ = 0.5, i.e., the worst possible score!226

To prevent this, we weight the phase differences by the total observed and forecast energy, i.e.,227

wj,d,l = c2
j,d,l(obs) + c2

j,d,l(for) . (8)

The resulting score is thus symmetrical with respect to exchanging forecast and observation,228

ignores featureless regions and focuses on the most important part of the two fields.229

For a first impression of the phase-based location score, we perform a simple experiment and230

compare a rain field from the MesoVICT data set to shifted versions of itself (figure 2). Figure231

3 a shows the resulting weighted average phase differences ∆Φ(j). As we expected due to the232

analogy to Fourier, the phase shift is indeed initially linear, with a slope depending on the scale233

j. We observe that ∆Φ reaches 0.5, i.e., 90◦, at shifts around 2j−1 (see dashed, colored vertical234

lines) and then oscillates around that limit value. The oscillation, caused by random re-alignment235

of image features at large displacements3, is a further reason to treat ∆Φ > 0.5 and ∆Φ = 0.5236

3large compared to the daughter wavelet
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Figure 3: Scale-dependent phase-shift ∆Φ(j) (a) and estimated shift in image space 2j∆Φ(j) (b)
as a function of the true shift applied to the input image. For the solid lines in (b),
∆Φ is cut off at 0.5.

equally.237

We can use the observation that ∆Φ(j) = 0.5 is attained after 0.5 ·2j pixels to obtain a simple238

quantitative estimate of the displacement:239

∆x(j)




≈ 2j ·∆Φj for ∆Φj < 0.5

> 2j−1 otherwise
(9)

Figure 3 b shows that this estimator works quite well for our example. All scales agree approxi-240

mately on the correct result until the shift exceeds 2j at which point the corresponding estimate241

saturates. At very large displacements, we notice that the slope is not perfect, especially for242

j = 6, 7, but the deviations remain small. We confirmed that equation 9 is typically a good243

approximation across a large number of similar experiments (not shown).244

Whenever a single summary measure of the overall displacement errors is needed, we will use245

the maximum estimated displacement, henceforth called246

dΦ = max
j

(∆x(j)) . (10)

For a single rigid displacement, dΦ is our best estimate of the true error. In this simple case, the247

displacement error is generally easy to estimate, for example as the distance in centroids (equation248

1). Due to their localized nature, the wavelets should, however, also be able to correctly handle249

more difficult situations with multiple different displacements. dΦ then represents the most severe250

location error in the forecast. To demonstrate this capability, we consider some of the geometric251

test images from the MesoVICT project [Gilleland et al., 2020], shown in figure 4.252

• The true displacement of ∆x = 40 is almost correctly identified in (a-c). All scales smaller253

than j = 7 are saturated, the result depends only weakly on the position and orientation254

of the features.255
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Figure 4: Estimated location errors for the circular test images. Grey areas mark the observation,
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32.
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• (d) and (e) are correctly identified as worse than (a-c). (g) and (h) are recognized as256

better, the two largest scales approximately agree on the result, the estimated values are257

reasonably close to the correct solutions (57 in d and e, 20 in g, h).258

• The addition of further features around the observation in (h) and (i) is considered an259

improvement over (a-c). These are two examples where the biggest error does not reside260

on the largest scale: With respect to j = 7, the placement of the features is decent; on261

smaller scales it is just as bad as in (a-c).262

• Similarly, the additional hit in (j) leads to an overall improved score over the otherwise263

identical case (a).264

• (k) is deemed worse than (a) on the largest scale but better on the small scales.265

• (l) looks like a decent forecast on the largest scale while (m) is bad across almost all scales.266

• The displacement in (n) is recognized but the two largest scales don’t agree on a value. The267

shift indicated by j = 6 is close to the correct answer, at j = 7 each of the four daughters268

likely sees part of the unrelated feature and interprets it as a miss.269

• (o) is among the overall worst forecasts.270

• The correctly placed region of scattered pixels in (p) receives nearly perfect scores, the271

shifted region in (q) is maximally bad.272

• The scores are nearly invariant under inversions of the image (compare r to b) and addition273

of noise (compare s to d).274

Overall, these results confirm that sensible estimates of displacement errors can be extracted275

from the wavelet phase in scenarios which are more complex than a single, image-wide shift.276

One aspect which is hardly tested by the MesoVICT cases is the direction dependence of the277

scores. It is easy to see that ∆Φ will depend on the direction of the displacement errors if the278

features under consideration have a preferred orientation: Suppose the observed object is an279

elongated rectangle. If the forecast is displaced parallel to the longer edge, the two fields remain280

in phase along the overlapping section of their long edges, leading to a small overall phase error.281

A displacement perpendicular to the longer side will bring a much bigger portion of the image out282

of phase, thereby increasing ∆Φ more quickly. Consequently, we cannot always recover the “true”283

shift as well as in figure 3 because the score effectively rewards forecasts with longer overlapping284

edges. In a real verification setting, where forecast errors are not the result of a simple image285

translation, this property is not necessarily a flaw.286

Lastly, the localization of the daughter wavelets also allows us to display spatially varying287

displacement errors on a map. In our example case below (figure 7), we will use this to draw288

contours around the regions with the largest contributions to the overall ∆Φ. At the end of289

section 6, we also discuss the option of averaging ∆Φ over time instead of space to obtain a map290

of scale-dependent mean displacements.291
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# dates time steps weather events

1 20-22 Jun 2007 24 widespread convection
2 18-21 Jul 2007 48 airmass boundary
3 25-29 Sep 2007 48 cut-off low, Genoa cyclone
4 6-8 Aug 2007 24 airmass boundary, convergence line
5 18 Sep 2007 0 cold front
6 8-10 Jul 2007 24 widespread convection

Table 1: Dates of the MesoVICT test cases with a list of dominant weather events and the number
of time steps used in this study.

5. Data292

The MesoVICT project relies on the Vienna Enhanced Resolution Analysis [Bica et al., 2007,293

VERA] as observational data against which all forecast models are verified. This model indepen-294

dent data set enhances interpolated station observations with thermal and dynamical fingerprints295

to produce maps of meteorological variables. In this study, we focus mainly on hourly precipita-296

tion sums, which are inferred from station observations alone. In addition, we explore the use of297

the novel score for absolute wind speed, potential and equivalent potential temperatures. For the298

latter two variables, the fingerprint method was applied, thereby introducing information from a299

finer-scaled orography beyond the resolution of the station network [Dorninger et al., 2018]. All300

data are interpolated to a regular 8 km grid covering central Europe (see maps in figure 7).301

When the analysis domain is small compared to the typical features to be verified, displacement302

errors are hard to diagnose accurately because patterns are quickly displaced into or out of the303

domain. In the interest of avoiding such effects, as well as streamlining the experiment as a whole,304

we focus on two forecast models which cover the entire VERA domain: The hydrostatic BOLAM305

(BOlogna Limited Area Model), run at 0.07◦ resolution and the non-hydrostatic, convection306

permitting MOLOCH (MOdello LOCale) with 0.0225◦ grid-spacing which receives its boundary307

conditions from BOLAM. Re-forecasts with the 2015 operational version of this model chain308

were performed at ISPRA for the MesoVICT project [Mariani and Casaioli, 2018]. Both models309

were initialized at 12UTC each day and run for 84h (MOLOCH) and 108h (BOLAM). The first310

twelve hour of each run were discarded as model spin-up time.311

Table 1 lists the dates of the six MesoVICT test cases. With the exception of number five, all312

cases cover multiple days, thereby giving us the opportunity to compare forecasts from the same313

model with different lead-times. For the purpose of testing a new verification measure, this is314

convenient as it allows us to probe a wide range of error magnitudes and gives us a clear a priori315

expectation for which forecasts should, on average, be better than others. To take full advantage316

of this idea, we select those time-steps for which three different forecasts from each of the two317

models are available. This leaves us with the last day of cases 1, 4 and 6 and the last two days of318

cases 2 and 3 (168 time-steps in total). In the plots below, we will refer to the different forecasts319

as320

• BOLAM007_1, MOL00225_1 with leadtimes +13h, ...,+36h321
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(a) June 22, 00UTC (b) July 20, 12UTC (c) September 28, 00UTC

(d) August 8, 12UTC (e) September 18, 00UTC (f) July 10, 00UTC

Figure 5: Representative synoptic analyses from the KNMI archive (https://www.knmi.nl/
nederland-nu/klimatologie/daggegevens/weerkaarten) for MesoVICT test cases
1-6 (panels a-f). Case 5 is included for completeness but not used in this study.

rho z area

0.0 0.1 0.2 0.3 3.8 4.0 4.2 4.4 0.2 0.3 0.4

case 1

case 2

case 3

case 4

case 6

Figure 6: From left to right: Degree of anisotropy ρ, central scale z and fraction of the domain
with non-zero rain, all calculated from VERA data for the five cases considered in this
study.

• BOLAM007_2, MOL00225_2 with leadtimes +37h, ...,+60h322

• BOLAM007_2, MOL00225_3 with leadtimes +61h, ...,+84h .323

An overview of the synoptic situations in the different case studies is given in figure 5. As324

an objective measure of the spatial structure of the resulting rain fields analyzed in VERA, we325

also consider the degree of anisotropy ρ, dominant spatial scale z and total rain area in figure326

6. Without discussing each case in detail, we observe that cases one and six have the weakest327

synoptic-scale forcing, leading to mostly isotropic structures across a relatively wide range of328

small and intermediate scales, covering roughly a quarter of the analysis domain – the precip-329

itation fields are mostly convective. In contrast, cases two and four have anisotropic patterns330

with smaller areas. Here, the main precipitation regions are aligned along airmass boundaries331

and related convergence lines. Case four is smaller in scale, indicating a more prominent role of332

convection. Lastly, case three sees the strongest synoptic forcing from a cut-off low centered over333
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Germany and a related Genoa cyclone, resulting in large rain areas (up to 40% of the domain)334

with a large, anisotropic pattern.335

6. Verification of the MesoVICT data set336

Based on the discussion above, we have a number of expectations for the outcome of the verifi-337

cation experiment:338

• Short range forecasts are likely better than those with longer lead-times.339

• The synoptically driven case three should be the more predictable over longer time-ranges340

than the others.341

• The convective cases one and six are likely the most difficult to predict.342

Whether the highly resolved MOLOCH will perform better or worse than BOLAM is unclear343

a priori, especially because the VERA analysis has a relatively coarse internal resolution and344

therefore produces smooth fields which look more similar to BOLAM. Scores which are sensitive345

to the spatial structure of the fields might therefore prefer the coarser forecasts. The high-346

resolution model could nonetheless be superior in terms of precipitation locations, especially in347

convectively driven situations.348

In the next section, we focus on precipitation and compare the novel score to the established349

alternatives from section 2. The subsequent section briefly summarizes some of the results350

obtained for the other variables.351

6.1. Precipitation352

Before computing the various scores, we set all observed and predicted rainfall values below353

0.1mm to zero. For the wavelet-based score dΦ, rain intensities are replaced by their binary354

logarithm (setting log2(0)→ log2(0.1)) to reduce the impact of localized extremes and focus on355

the spatial distribution of rainfall as a whole (see also Buschow and Friederichs [2020]).356

To give an impression of the new score’s behaviour under realistic conditions, we present an357

example from the second MesoVICT case (figure 7). On 2007-07-20, the bulk of the observed358

precipitation field is linearly organized along an airmass boundary near the centre of the domain.359

The 23h BOLAM forecast predicts a visually similar linear feature with nearly correct placement360

and orientation. dΦ registers a displacement of 16 pixels which corresponds to a single cell of the361

background grid in the figure. To visualize the detected errors, we have added contours around362

the pixels with the largest contributions to ∆Φ(j) for j = 3, 4, 5. Focusing on scale 5 (shown in363

blue), we see that the leading edge of the simulated front lies roughly in the middle of the two364

squares whereas the observation align with the outer edges – a phase error of roughly half the365

support size at j = 5, i.e., 16 pixels or 128 km.366

The previous day’s BOLAM forecast (bottom part of figure 7) also simulates the linear pattern367

but clearly rotated and strongly displaced to the south-west. This is again easily seen by com-368

paring the patterns within the blue box. In addition, the forecast contains a relatively intense369
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Figure 7: Phase verification for 2007-07-20 11UTC: Contours encircle the regions with 5% largest
contributions to ∆Φ at scales 3, 4, and 5 for the +23h (top) and +47h BOLAM07
forecast (bottom). The value of the maximum estimated displacement d is indicated in
the top right corners. Points mark the fields’ centroids, arrows point from the predicted
to the observed centre.
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Figure 8: Inter-quartile range (colored bars) and median (white gaps) of ∆Φ(j) for the different
MesoVICT cases and forecasts.

false alarm near the north-east corner of the domain which is picked up by ∆Φ(3, 4) but not at370

larger scales because small-scale patterns have less impact there. Overall, we find dΦ = 32 which371

is the largest possible value in our case study.372

In figure 7, we have marked the locations of the observed and predicted centres of mass which373

are the basis of SAL’s location component L. We find that the centroids are almost identical in374

all three fields. For the 47h forecast, the westward displacement of the front is compensated by375

the additional feature in eastern part of the domain, leading to a centroid displacement close to376

zero. This is one of two common scenarios that can lead to substantial disagreement between dΦ377

and L: In a complex precipiation field with multiple objects, individual displacements (or misses378

and false alarms) can cancel out to create a centroid location near the centre of the domain,379

potentially leading to dΦ >> L1. The opposite result can occur when forecast and observations380

contain precipitation regions at the same locations but with different relative intensities. In this381

scenario, L1 may be large since the centroid shifts towards the most intense feature while dΦ382

would likely see only small phase errors at each precipitation location.383

We now begin our systematic verification of the entire data set with a look at the individual384

phase differences ∆Φ, separated by scale, forecast and case number in figure 8. Recalling that385

the worst case is ∆Φ ≥ 0.5, we observe that none of the forecasts have any appreciable skill386

at scales smaller than j = 4; almost all are at least slightly skillful at the largest scale j = 6.387

As expected, the forecasts started on the previous day are almost universally superior to those388

with longer lead times, the advantage being most evident on scale five. The overall quality of389

the predictions, as well as the range from best to worst forecast, differ substantially from case to390

case: A clear difference between the two- and three-day forecasts is evident at all scales j > 3 in391

cases three and four. Only the most recent forecasts stand out in the first two cases.392

The remarkable lack of lead-time dependence, as well as the overall mediocre performance in393

case six is likely due to the dominant role of convective activity (smallest observed scales in figure394

6), the precise timing and location of which is hardly predictable at lead times longer than a few395

hours. This is also the only case where the convection permitting MOLOCH consistently out-396
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Figure 9: Distribution of RMSE (a), one minus linear correlation (b), SAL’s location component
(c), BD (d), DKC (e), and dΦ (f) for the six competing forecasts.

performs the coarser BOLAM at all scales and lead-times. At the shortest lead times, MOLOCH397

furthermore has slight advantages in cases one and four which exhibit relatively small-scaled398

structures as well.399

Conversely, case three sees the strongest synoptic forcing and was overall forecast best. The400

pronounced lead-time dependence indicates some remaining difficulty in predicting the precise401

path of the cut-off low. The difference between lead times is even stronger in case four where402

the formation and movement of the linearly organized precipitation patterns proved difficult to403

forecast more than one day in advance.404

While the difference in quality between the +12h, +36h and +50h forecasts is thus often405

obvious, no clear winner emerges from the comparison between BOLAM and its finer-scaled406

sister model MOLOCH. This overall ranking is also reflected by the resulting displacement errors407

dΦ shown in figure 9 (f). Here we see that the median displacement across all cases is around 12408

pixels (roughly 100 km) for the shortest lead times, 16 for leadtimes greater than 36h and slightly409

below 20 for the longest-range forecasts. The three ranges of leadtimes are clearly separated:410

Values that fall in the upper quartile for day one are near the median of day two and the lower411

quartile of day three. The worst-case value of dΦ = 32 is rare even on the third forecast day.412

Interestingly, each of the other five scores shown in figure 9 (a-e) paints a different picture. As413

expected, RMSE (panel a) is a textbook example of the double penalty issue with hardly any414

difference between leadtimes but a strong preference for the coarser resolved BOLAM model.415

The linear correlation coefficient, shown in panel (b), mostly rewards overlap between forecast416

and observation and therefore naturally prefers BOLAM as well. In addition, most of the longer-417

ranged predictions hardly overlap the observed field at all, leading to near zero correlations in418

most instances on days two and three. In stark contrast to the overall bad performance with419

respect to correlations, SAL’s location component (c) indicates low values for all forecasts with420

hardly any preference for either model and a very weak dependence on leadtime. The reason421

for this behaviour is explained by figure 10: Due to the frequently complex and wide-spread422

nature of these precipitation fields, their centroids are usually concentrated near the centre of423

the domain, leading to small values of L1. The other half of L measures the scattering around424
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Figure 10: Average distance (in pixels) to the next rainy gridpoint for VERA and the most recent
BOLAM and MOLOCH forecasts. White dots mark the position of the field’s centre
of mass for all cases.

the centroid and is more a structural characteristic than a measure of displacement.425

The distance measure BD (panel d), shows perhaps the most surprising behaviour (cf. figure426

9 e): Like RMSE, it registers almost no lead time dependence but instead of BOLAM, it clearly427

prefers the fine-scaled MOLOCH model! To understand this unexpected result, we must recall428

that distance measures are based on the distance from each rainy pixel in one field to the nearest429

rainy pixel in the other and therefore react sensitively to the presence or absence of small features430

in otherwise empty regions of the domain. Figure 10 reveals that the average distance to the431

nearest rain event is substantially too large in BOLAM, especially near the western and northern432

domain edge. While the model can decently simulate the main features of the precipitation field,433

it tends to neglect smaller-scaled showers throughout the rest of the domain. For the other scores,434

this effect is largely overshadowed by the displacement of the dominant precipitation systems.435

The last score included in our comparison is the field-deformation score DKC (panel e) which436

generally prefers MOLOCH as well while noting a similar decrease in forecast quality over time437

as dΦ. It is possible that this score also rewards the finer model for producing additional smaller-438

scaled precipitation cells in the general vicinity of the observed rain areas: The addition of hits or439

near misses on small scales will tend to reduce the overall mean displacement vector. Conversely440

dΦ, as defined in equation 10, will focus on the most intense parts of the image due to the441

weighting and ignores small-scale displacements if a big displacement is present on larger scales.442

6.2. Other variables443

While the location scores from section 2, as well as most others in the literature, were designed444

specifically for precipitation or similarly intermittent fields, our approach makes no such assump-445

tions. As a proof of concept, we now apply the exact same methodology used for precipitation to446

fields of absolute wind speed in 10m height (V ), 2m potential temperature (θ) and 2m equivalent447

potential temperature (θe).448

Figure 11 summarizes the scale-dependent phase errors ∆Φ for all four variables. The most449

obvious difference between precipitation and the others is a substantial improvement of ∆Φ at450

small scales and long lead-times. The increased small-scale skill is particularly obvious for θ451

where the phase errors at scale j = 3 are comparable to those seen at j = 5 for precipitation.452
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Figure 11: Inter-quartile range (colored bars) and median (white gaps) of ∆Φ(j) for all variables
and forecasts.

Wind speed and equivalent potential temperature exhibit slightly larger phase errors than θ, all453

three show a weak but consistent increase with lead-time. In comparing the two models, we454

observe that MOLOCH has some advantages for both θe (mostly on small scales) and θ (mostly455

on large scales). For wind speed, on the other hand, the coarser BOLAM model is slightly456

superior, especially on small scales.457

An obvious explanation for the smaller displacements compared to precipitation is the presence458

of stationary objects like coast-lines and mountains. Depending on their representation in the459

model orography and land-surface fields, such features allow the forecasts to predict the location460

of spatial gradients in near-surface fields with high accuracy, even on small scales and multiple461

days in advance. To understand the qualitative difference between θ and V , we must recall that462

VERA enhances temperature-related variables with thermal and dynamic “fingerprints”. The463

interpolated station data are thereby imbued with additional fine-scaled texture far beyond the464

spatial resolution of the station network. This method was not applied for wind and precipita-465

tion. As a result, the finer-scaled wind features of MOLOCH appear erroneous compared to the466

analysis, thereby increasing the average phase errors.467

An inherent advantage of the wavelet-approach is its natural capability to localize errors in468

space. To produce a map of average phase errors, we simply take the weighted mean over time469

instead of space. Figure 12 shows the results for all four variables but only one of the forecasts470

(images for all six forecasts look qualitatively similar). As expected, there is no coherent pat-471

tern for precipitation since the phases result form intermittent features materializing at various472

discrete locations across the domain. Only on the largest two scales, we see a slight tendency473

towards better forecast locations in the South-West and larger errors over Germany. In contrast,474

individual pixels with ∆Φ << 0.5 can be seen even at j = 3 for the other three variables. The475

regions of improved localization are primarily aligned along the coastlines. For θ, the Alps appear476

as an additional source of consistent localization which is reproduced by the model. On large477

scales (j = 5, 6), most of the pixels in the domain border on either a coast or mountain range478
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Figure 12: Weighted time-average of ∆Φ(j) of the MOL00225_2 forecasts for all considered
variables (left to right) and selected scales (top to bottom).

and consequently exhibit small ∆Φ.479

7. Conclusions480

In this study, we have introduced a novel location score which exploits the phase information of481

the dual-tree complex wavelet transform. Idealized tests with simple geometric shapes demon-482

strate that this score generally works as intended. The easiest of these tests consider a single,483

rigidly displaced feature and ask the score to reconstruct the magnitude of the shift. Like most484

other scores, the wavelet-approach can typically solve such problems. The localization property485

of the wavelets furthermore allows us to correctly assess more complex scenarios where multiple486

different displacements occur in different parts of the domain.487

In a real-world verification setting, however, the problem is even more complicated because488

the existence of a well-defined location error is not guaranteed at all. This is particularly true489

when we consider fields like temperature and wind speed which do not naturally separate into490

discrete objects.491

As a realistic case study, we used a subset of the MesoVICT test cases and compared one-, two-492

and three-day forecasts of hourly precipitation from the BOLAM-model and its higher-resolved493

sister-model MOLOCH to the VERA analysis. Our first experiment focused on precipitation494

fields and compared several scores which are sensitive to displacement errors. As expected, the495

point-wise RMSE uniformly prefers BOLAM. The linear correlation suffers from the same double496

penalty issue, but is at least capable of identifying the advantages of the one-day forecast over497

the others. More surprisingly, the distance measure BD exhibits the exact opposite behaviour498

of RMSE, preferring MOLOCH irrespective of lead-time. A look at the underlying distance499

maps shows that this score punishes BOLAM for neglecting small-scaled, scattered precipitation500
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cells in parts of the domain. This result, while not uninformative, is more a property of the501

model climatology than the day-to-day precipitation placement. In agreement with our literature502

survey, SAL’s L proved to have very little information on forecast performance, as indicated by503

miniscule differences between both models and leadtimes. It should be mentioned that this504

score was originally defined and optimized with a much smaller domain in mind (a single river505

catchment) – a setting where small numbers of features and single, well defined displacements506

are generally more likely than on our map of Western Europe.507

With the novel wavelet-based score dΦ, we find a clear decrease of skill with lead-time. In508

addition, advantages for MOLOCH are identified in the smaller-scaled, convectively driven cases509

1, 4 and 6. These cases were also found to be more challenging to forecast than the synopti-510

cally dominated case 3. The most similar established score turned out to be the displacement511

component of DAS. The fact that this field deformation method showed a general preference for512

MOLOCH may be partially due to the same phenomenon as for BD. In contrast to dφ neither513

of these scores give special weight to intense regions. We can furthermore conclude that, despite514

allowing divergent flow fields, DAS is not strongly sensitive to scale errors. Both it and dΦ can515

thus be recommended as a complement to pure structure verification techniques and pure com-516

parisons of the marginal distribution. When the structure is verified via SAD, dΦ is a natural517

complementary score because it relies on the same wavelet transform (no additional computation518

needed) and utilizes exactly the information that SAD neglects.519

Unlike the other scores in our inter-comparison, dΦ requires no thresholding or object identifi-520

cation can therefore, in principle, be used to verify any meteorological field of interest. As a first521

demonstration, we have applied our method to equivalent and dry potential temperature, as well522

as absolute wind speed. All of these variables were considered near the surface since a relatively523

dense station network is needed to produce a spatial analysis. The local phases of the resulting524

wavelet transforms are therefore strongly influenced by mountains and coasts. Phase errors at525

these spatially fixed locations are likely caused by errors in the strength of local gradients, rather526

than a spatial displacement. Our scores represent averages over both these stationary features527

and more transient phenomena related to, for example, fronts, cyclones and convection. For the528

two temperature variables, VERA includes additional fine-scale information, resulting in slight529

advantages for the higher-resolved model. The localized nature of the wavelets furthermore al-530

lows us to study the distribution of consistent phase errors in space. For precipitation, this531

yielded little additional information due to the relatively small sample-size. The other variables,532

however, exhibit well-localized regions of improved location-skill, primarily along the coast lines.533

While the option to apply the same location-score to a variety of atmospheric variables is534

doubtlessly convenient, a number of limitations must be kept in mind. Firstly, non-intermittent535

fields have variance in all parts of the domain and our score represents an average. It is therefore536

not always easy to identify the meteorological sources of the measured errors. A human might,537

for example, focus on the displacement of a cold front while the strongest spatial gradients,538

which dominate the score, are actually located on the coast. An obvious solution is to move539

up into the free atmosphere where surface features, as well as diurnal cycles, have less impact.540

This, however, exasperates the second main limitation, namely the lack of spatial observations.541

Interpolated data-sets like VERA can already be problematic near the surface since the density542
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of station-networks is far coarser than the resolution of modern weather models like MOLOCH;543

at higher levels, spatial verification must either rely on reanalysis (which is not entirely model-544

independent) or novel remote-sensing data from satellites or (clear-air) radar and lidar scans.545
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study result of L relevant quote

Paulat [2007] hardly any difference between
models, no lead-time depen-
dence

Früh et al. [2007] not discussed
Zimmer et al. [2008] not discussed
Wittmann et al. [2010] uninformative “The results for the location component L

do not yield much information [...]”
Zimmer [2010] no difference between models
Vincendon et al. [2011] hardly discussed “The L component does not show system-

atic behaviour with S and A components.”
Haiden et al. [2011] uninformative “The location score shows little variability

both for summer and winter.”
Sokol and Zacharov [2012] hardly informative “L is usually lower than 0.2.”
Prein et al. [2013] not discussed “Since we found that there are no large

changes in the location (L) component be-
tween different simulations, the focus here
lies on changes in the structure (S) and
amplitude (A) component.”

Zacharov [2013] not discussed
Hanley et al. [2013] detailed analysis of L1,2 use-

ful in single cases
Navascués [2013] moderate difference be-

tween models
Lindstedt et al. [2015] uninformative “As the L component is very similar among

the models, we focus on S and A.”
Schneider et al. [2014] uninformative “The location score L is quite similar for

all regions, which is a typical behavior for
this parameter when averaging it for sev-
eral events”

Kann et al. [2015] uninformative “The location indicator [...] does not yield
conclusive results”

Hardy et al. [2016] marginal leadtime-dependence,
hardly significant

Maurer et al. [2017] hardly informative “The values [of L] are generally low, be-
cause the precipitation objects are large
compared to the size of the evaluation do-
main, which causes the centers of mass to
be mainly located in the middle of the do-
main.”

Schellander-Gorgas et al. [2017] uninformative “The location score [...] shows not as much
variability as the other two components.”

Davolio et al. [2017] indicates expected im-
provement

“The L component is strongly improved
[...] for the NUDG simulations. More-
over, blue dots, which are those indicating
largely misplaced QPF, disappear.”

Gofa et al. [2018] no difference between models

Table 2: Use of SAL’s L-component in the literature.
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