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Abstract

by Yazan Abu Farha
for the degree of

Doctor rerum naturalium

Analyzing human actions in videos has gained increased attention recently. Several ap-
proaches, for instance, have been proposed to classify and temporally segment actions in
videos. Despite the success of these approaches, they only analyze fully observed videos
where all actions in the videos have been carried out. For many applications, however, this
is not sufficient and it is crucial to reason beyond what has been observed and anticipate the
future. While most existing methods for anticipation predict only the very near future, mak-
ing long-term predictions over more than just a few seconds is a task with many practical
applications that has been overlooked in the literature. In this thesis, we therefore propose
approaches that predict a considerably large number of future actions and their durations
for up to several minutes into the future. Nonetheless, the ability to predict the future de-
pends on the level of understanding of what has been observed. As recent approaches for
analyzing activities in long untrimmed videos either suffer from over-segmentation errors or
cannot be trained end-to-end, we first propose approaches to temporally segment activities
in long videos to address the limitations of the previous approaches. Then, we combine
the proposed segmentation and the anticipation approaches in an end-to-end framework for
long-term anticipation of activities.

To this end, we first propose two multi-stage architectures based on temporal convolu-
tional networks for the temporal action segmentation task. We further introduce a novel
smoothing loss that penalizes over-segmentation errors and improves the quality of the pre-
dictions. While the proposed segmentation models show a strong performance in recog-
nizing and segmenting activities, they depend on the availability of large fully annotated
datasets. Annotating such datasets with the start and end time of each action segment is,
however, very costly and time-consuming. Although several approaches have been pro-
posed to reduce the level of required annotations to only an ordered list of the occurring
actions in the video, the performance of these approaches is still much worse than fully
supervised approaches. Therefore, we propose to use a new level of supervision based on
timestamps, where only a single frame is annotated for each action segment. We demon-
strate that models trained with timestamp supervision achieve comparable performance to
fully supervised approaches using a tiny fraction of the annotation cost.

For the long-term anticipation of activities, we propose a two-step approach that first in-
fers the actions in the observed frames using an action segmentation model, then the inferred
actions are used to predict the future actions. As predicting longer into the future requires
considering the uncertainty in the future actions, we further propose a framework that pre-
dicts a distribution over the future action segments and use it to sample multiple possible
sequences of future actions.

To further improve the anticipation performance, we combine the proposed segmentation



vi

and the anticipation models in an end-to-end framework. Furthermore, as predicting the
future from the past and the past from the future should be consistent, we introduce a cycle
consistency loss over time by predicting the past activities given the predicted future. The
end-to-end framework outperforms the two-step approach by a large margin.

For both the action segmentation and anticipation tasks, we evaluate the proposed ap-
proaches on several public datasets with long videos containing many action segments. Ex-
tensive evaluation shows the effectiveness of the proposed approaches in capturing long-
range dependencies and generating accurate predictions.

Keywords: temporal action segmentation, temporal convolutional network, long-term an-
ticipation, activity forecasting



Acknowledgements

I would like to thank my advisor Prof. Juergen Gall for all the guidance and support. I was privileged
during my PhD and had the freedom to work on my own ideas and yet he always provided a thorough
feedback and many suggestions to polish these ideas and improve the quality of the work. I have been
always amazed by the amount of effort and time he puts until the last moment before the deadlines
to refine our submissions.

Furthermore, I would like to thank the dissertation committee members: Prof. Bernt Schiele,
Prof. Maren Bennewitz, and Prof. Alexander Effland for taking the time to review the thesis.

I’'m also grateful to my colleagues and friends in the Computer Vision Group at University of
Bonn. Their support, kindness, and insightful discussions made my stay at Bonn a pleasant experi-
ence. I would like also thank my collaborators for the fruitful collaboration.

Additionally, I want to thank the German Academic Exchange Service (DAAD) for supporting
my master’s studies at the University of Bonn. Their support was a main factor for advancing my
academic career and then deciding to extend my stay in Germany and pursue a PhD at the same
university.

Finally, many thanks to my parents, sister, and brother for their unconditional love and support.






Contents ix

Contents
1 Introduction 1
L1 Motivation . . . . . . . ot o e e e e e e e e e e 1
1.2 Problem Statement . . . . . . . . . ... 3
1.2.1 Temporal Action Segmentation . . . . . . .. .. ... .. ... 3
1.2.2 Long-Term Anticipation of Activities . . . . . . .. ... ... ... .... 3
1.3 Challenges. . . . . . . . . e e e 3
1.4 Contributions . . . . . . . . . . e e e e e 4
1.4.1 Multi-Stage Architectures for Temporal Action Segmentation . . . . . . . . 5
1.4.2 Timestamp Supervision for Action Segmentation . . . . . . ... ... ... 5
1.4.3 Long-Term Anticipation of Activities . . . . . . . ... .. ... ... ... 6
1.4.4  Uncertainty-Aware Framework for Anticipating Activities . . . . . . .. .. 6
1.4.5 End-to-End Framework for Long-Term Anticipation of Activities . . . . . . 6
1.5 Thesis Structure . . . . . . . . . L e e e e 7
2 Related Work 9
2.1 Action Recognition . . . . . . . .. .. .. 9
2.2 Temporal Action Segmentation . . . . . . . . . ... .. oL 10
2.2.1 Fully Supervised Approaches . . . . . ... ... ... L. 11
2.2.2  Weakly Supervised Approaches . . . . . . ... ... ... ... ... 12
2.3 Timestamp Supervision for Recognizing Activities . . . . . .. .. ... ... ... 13
2.4 Action Anticipation . . . . . . . . ... e e e e e e e e e e e 14
2.4.1 Short-Term Anticipation . . . . . . . . . . .. ... 14
2.4.2 Long-Term Anticipation . . . . . . . . . . . .. ... ..., 15
2.5 Anticipation Beyond Activity Labels . . . . . . ... ... oo 16
2.6 Datasets . . . . ... e e e e e 16
2.6.1 Breakfast . . . . ... ... 16
2.6.2 50Salads . . . . ... 16
2.6.3 Georgia Tech Egocentric Activities (GTEA) . . . . . . . .. ... ... ... 17
2.6.4 Bristol Egocentric Object Interactions Dataset (BEOID) . . . ... ... .. 18
3 Preliminaries 19
3.1 Neural Networks . . . . . . . . . . e 19
31,1 Neuron . . . ... L e e 20
3.1.2 OutputLayer . . . . . . . . .. e 22
3.1.3 Objective Function . . . . . . . ... . ... .. ... ... . 22
3.1.4 Network Training . . . . . . . . . .. ... 23
3.2 Convolutional Neural Networks (CNNSs) . . . . . . . . . .. . ... ... ...... 23
3.3 Recurrent Neural Networks (RNNs) . . . . ... ... .. .. ... ......... 24
3.3.1 Long Short-Term Memory (LSTM) . . ... ... ... ... ........ 25
33.2 GatedRecurrent Unit(GRU) . . . . . ... ... ... .. .. ........ 26
3.4 Temporal Convolutional Networks (TCNs) . . . . . . . . ... ... ... ...... 26
3.5 VideoRepresentation . . . . . . . ... 27



Contents

3.5.1 Improved Dense Trajectories (IDT) . . . ... ... ... .....
3.5.2 DeepLlearned Features . . . . . ... ... .. ... ........
3.6 Evaluation Metrics . . . . . . ... .. .. e
3.6.1 Temporal Action Segmentation Metrics . . . . . ... ... ....
3.6.2 Long-Term Anticipation Metrics . . . . . . . .. ... ... ....

Multi-Stage Temporal Convolutional Networks for Action Segmentation

4.1 Introduction . . . . . . ... . ...
4.2 Temporal Action Segmentation . . . . . . . . . .. ... ... ... ...
4.2.1 Single-Stage Temporal Convolutional Network (SS-TCN) . . . ..
4.2.2 Multi-Stage Temporal Convolutional Network (MS-TCN) . . . . .
423 DualDilatedLayer . . . . . ... ... ... ... ... .. ...
424 MS-TCN++ . . . oo
425 LossFunction. . . .. ... ... ... ... ... .. ... ...
43 EXPeriments . . . . . . . . . i .t e e e e e e e e e
4.3.1 Effect of the Numberof Stages . . . . . .. ... ... .. .....
4.3.2 Comparing Different Loss Functions . . . . . .. ... ... ....
4.3.3 Effect of Passing Features to Higher Stages . . . . . ... ... ..
434 MS-TCN++vs. MS-TCN . . .. ... ... ... ... ...
4.3.5 Impact of the Number of Layers . . . . . ... ... .. ......
4.3.6 Impact of the Large Receptive Field on Short Videos . . . . . . ..
4.3.7 Effect of the Number of Refinement Stages . . . . . ... ... ..
4.3.8 Impact of Parameters Sharing . . . .. ... ... .........
4.3.9 Impact of Temporal Resolution . . . ... ... ... ... ....
4.3.10 Impact of Fine-tuning the Features . . . . . . ... ... ... ...
4.3.11 Comparison with the State-of-the-Art . . . . . . .. ... .. ...
4.4 Summary . . ... .o e e e e e

Temporal Action Segmentation from Timestamp Supervision

5.1 Imtroduction . . . ... ... ... ...
5.2 Temporal Action Segmentation . . . . . . . .. ... ... ... ...
5.2.1 Timestamp Supervision. . . . . . . . . . . .. ...
5.2.2 Action Segmentation from Timestamp Supervision . . . . . . . ..
523 LossFunction. . . ... ... ... .......... ... ....
5.3 EXperiments . . . . . . ... e e e e e
5.3.1 Comparison with the Baselines . . . . . ... ... ... ......
5.3.2 Impactof the Loss Function . . . .. ... .............
5.3.3 Impact of the Energy Function for Action Change Detection . . . .
5.3.4 Impact of the Segmentation Model M . . . . . . ... .. ... ..
5.3.5 Frame Selection for the Timestamp Annotations . . . . . ... ..
5.3.6 Comparison with the State-of-the-Art . . . ... ... ... ....
54 Summary ... .. e



Contents xi
6 Anticipating Temporal Occurrences of Activities 71
6.1 Introduction . . . . . . . . . L 71
6.2 Anticipating ACtivities . . . . . . . . ... e e 72
6.2.1 Inferring Observed Activities . . . . . . . . . ... ... ... ... ... .. 73

6.2.2 RNN-based Anticipation . . . . . . . . ... ... L o 73

6.2.3 CNN-based Anticipation . . . . . . . . . . .. .. e 75

6.3 EXperiments . . . . . . . . ... e e e e e e e 76
6.3.1 Setup . . . ... 76

6.3.2 Prediction with Ground-Truth Observations . . . . . . .. ... ... .... 78

6.3.3 Prediction without Ground-Truth Observations . . . . . ... ... ... .. 79

6.3.4 Impact of the Recognition Model . . .. .. .. ... ............ 83

6.3.5 Analysisofthe CNNModel . .. ... ... ... ... ... ........ 84

6.3.6  Future Prediction Directly from Features . . . . ... ... ... ...... 85

6.3.7 Comparison with the State-of-the-Art . . . . .. ... .. ... ....... 85

6.4 Summary . . . . ... e e e e 87
7 Uncertainty-Aware Anticipation of Activities 89
7.1 Introduction . . . . . . . . e e 89
7.2 Anticipating Activities . . . . . . . . L. e 90
721 Model . . . oL 91
7.22 Prediction . . . . . ... 93

7.2.3 Implementation Details . . . . . .. .. ... ... L. 94

7.3 ExXperiments . . . . . ... e e e 94
7.3.1 Anticipation with Ground-Truth Observations . . . . . . ... ... ... .. 95

7.3.2  Anticipation without Ground-Truth Observations . . . . . . ... ... ... 97

7.3.3 Effect of the Numberof Samples . . . . . . ... ... ... .. ....... 97

7.3.4 Comparison with the State-of-the-Art . . . . ... ... ... ... ..., 99

T4 Summary . . .. ..o e e e e e e 101
8 Long-Term Anticipation of Activities with Cycle Consistency 103
8.1 Introduction . . . . . . . . . . . . e e 103
8.2 The Anticipation Framework . . . . . . . . . ... ... Lo oL 105
8.2.1 Sequence-to-Sequence Model . . . . ... ... ... ... ... ... .. 105

8.2.2 CycleConsiStency . . . . . . v v v v v i e e e e e 107

8.2.3 RecognitionModule . . . ... ... ... ... ... ... . 108

824 LossFunction. . . ... ... ... ... ... 109

8.3 Experiments . . . . . . . . ... e 109
8.3.1 Ablation Analysis . . . . . . . . ... 109

8.3.2 End-to-End vs. Two-Step Approach . . . . . ... ... ... ........ 111

8.3.3 Frame-wise Features vs. Frame-wise Labels . . . . . . ... .. ... ... .. 111

8.3.4 Impact of Passing the Duration to the Decoder . . . . ... ... ... ... 112

8.3.5 Comparison with the State-of-the-Art . . . . .. ... ... ... ...... 112

84 Summary . . ... e 114



xii Contents
9 Conclusion 117
9.1 Summary . . . . . . . e e e e e e 117
9.1.1 Temporal Action Segmentation . . . . . . ... ... ... ... 117

9.1.2 Long-Term Anticipation of Activities . . . . . . . .. ... ... .. .... 118

9.2 Future Work . . . . . . . . e 119
9.2.1 Advancing Temporal Action Segmentation Approaches . . . . . .. ... .. 119

9.2.2 Advancing Long-Term Action Anticipation Approaches . . . . ... .. .. 119



1.1

2.1

22

23

24

3.1

32

33

34

3.5

3.6

3.7

3.8

39

List of Figures

Look at this sequence of video frames. Can you guess what are the next steps? While
such predictive task seems trivial for humans, it is still challenging for computer
systems. In this thesis, we address this task and propose multiple models that are
capable of predicting the sequence of future activities and their durations. . . . . . . 2

Examples of frames from the Breakfast dataset. Each row depicts frames sampled
from the same video. . . . . . . . ... L 17

Examples of frames from the 50Salads dataset. Each row depicts frames sampled
fromthe same video. . . . . . . ... ... ... oo 17

Examples of frames from the GTEA dataset. Each row depicts frames sampled from
the same video. . . . . . . . .. 18

Examples of frames from the BEOID dataset. Each row depicts frames sampled from
thesame video. . . . . . . . ... L. 18

A feed-forward neural network with two hidden layers. Each layer consists of multi-

ple neurons. Each neuron is connected to all neurons form the previous layer. . . . . 20
A neuron with n inputs (x1, . . ., x,), weights (w1, . .., wy,), a bias (b) and activation
function f.. . . . . L e e 21

Different activation functions: Linear, Rectified Linear Unit (ReLU), tanh, and sigmoid. 21
The network architecture of LeNet-5 (LeCun et al., 1998). . . . . . ... ... ... 24

A vanilla recurrent neural network unfolded in time. The hidden state h; at each step
depends on the state from the previous time step h;_1 and the input z; at the current
step. The parameters W,,, W}, and b are shared overtime. . . . .. ... ... ... 25

Acausal temporal convolution with kernel size 3. Links with the same color indicates
sharing parameters. . . . . . . . . . ... e e e e e e e e e e e e 27

The pipeline for extracting dense trajectories from a video. Left: Dense sampling of
feature points on a grid for different spatial scales. Middle: The points are tracked in
each spatial scale for L frames based on a dense optical flow field. Right: The his-
tograms of oriented gradients (HOG), histograms of optical flow (HOF), and motion
boundary histograms (MBH) are computed along the trajectory in a N x N pixels
neighborhood, which is divided into n, x n, x n, cells. The figure is taken from

Wang et al. (2013). . . . . . . e e e 28
To compute the feature vector z; for frame ¢ with a window size of 21, all the frames
in the interval [¢ — 10, ¢ + 10] are used as input to the 3D model. . . . . ... ... 29

Examples of true positive, false positive and false negative segments for an intersec-
tion over union (IoU) ratio & of 25%. Note that both of the red segments have an loU
ratio higher than 25% but only the first one is considered as a true positive since it
has ahigherIoUratio. . . . . ... ... ... ... . ... ... 31



Xiv

List of Figures

4.1

4.2

4.3

4.4

4.5
4.6
4.7

4.8

4.9

4.10

5.1

5.2

53

54

Overview of the multi-stage temporal convolutional network. Each stage generates
an initial prediction that is refined by the next stage. At each stage, several dilated
1D convolutions are applied on the activations of the previous layer. A loss layer is
added aftereachstage. . . . . . . . . . ... 35
Overview of the dilated residual layer. At each layer [, the dilated residual layer uses
a convolution with dilated factor 2'. . . . . .. ... 37
Overview of the dual dilated layer (DDL). At each layer /, DDL uses two convolu-
tions with dilated factor 2 and 27!, respectively, where L is the number of layers in
the network. . . . . . . . L 39
Overview of MS-TCN++. The first stage adapts an SS-TCN model with dual dilated
layers. This stage generates an initial prediction that is refined incrementally by a set
of N, refinement stages. For the refinement stages, an SS-TCN with dilated residual
layers is used. A loss layer is added after each stage. . . . . .. ... ... ... .. 40
Qualitative result from the 50Salads dataset for comparing different number of stages. 42
Qualitative result from the 50Salads dataset for comparing different loss functions. . 43
Loss surface for the Kullback-Leibler (KL) divergence loss (L k1) and the proposed
truncated mean squared loss (L7—rsg) for the case of two classes. y; . is the pre-
dicted probability for class ¢ and y;_1  is the target probability corresponding to that

Qualitative results for two videos from the 50Salads dataset showing the effect of
passing features to higher stages. . . . . . . . . . . . ... ... ... ... ... .. 45
Qualitative results for two videos from the 50Salads dataset showing the impact of
the dual dilated layer (DDL). . . . . . . . . . . . . . .. ... 46
Qualitative results for the temporal action segmentation task on (a)(b) 50Salads,
(c)(d) GTEA, and (e)(f) Breakfastdataset. . . . ... ... ... ... ........ 51

For fully supervised temporal action segmentation, each frame in the training videos
is annotated with an action label (top). This process is time-consuming since it re-
quires an accurate annotation of the start and end frame of each action. To reduce the
annotation effort, we propose to use timestamps as supervision (bottom). In this case,
only one arbitrary frame needs to be annotated for each action and the annotators do
not need to search for the start and end frames, which is the most time-consuming
annotation Part. . . . . . . . . .. e e e e e e e e e e e e e 57
The framework of the proposed approach for training with timestamp supervision.
Given the output of the segmentation model and the timestamps annotations, we
generate action labels for each frame in the input video by estimating where the
action labels change. A loss function is then computed between the predictions and
the generated labels. . . . . . . . . .. L L 59
Given the timestamps annotations, we first estimate where the actions change be-
tween consecutive timestamps. To generate the frame-wise labels, all the frames
that lie between an annotated timestamp and an estimated time of action change are
assigned with the same action label as the annotated timestamp. . . . . ... .. .. 60
The confidence loss penalizes increases in the model confidence for label a;, as we
move a way from the annotated timestamp ¢;. . . . . . . ... ... L. 61



List of Figures

XV

55

5.6

6.1

6.2

6.3

6.4

6.5

6.6
6.7
6.8

6.9

6.10

7.1

7.2

Qualitative results on (a) 50Salads, (b) Breakfast, and (c) GTEA datasets. As
the naive baseline only trains on the sparse annotations, it suffers from an over-
segmentation problem. While the uniform baseline reduces this problem by uni-
formly assigning labels to the frames, the durations of the predicted segments are not
accurate and the predictions tend towards a uniform segmentation of the videos. On
the contrary, our approach generates better predictions by utilizing the model output
to detect where the action labels change. . . . . . . ... ... ... ... ... ..

Impact of the confidence loss. Forcing monotonicity encourages the model to have a
high confidence for all frames within an action segment (a). It also suppresses outlier
frames with high confidence (b). . . . . . . . ... .. ... oL

Proposed approach for future action prediction. From the observed frames, action
labels are inferred by a decoder. The future predictor predicts from the inferred
frame labels a.; the labels a;4 1.7 that are yettocome. . . . . . ... ... ... ..

Architecture of the RNN system. The input is a sequence of (length, I-hot class
encoding)-tuples. The network predicts the remaining length of the last observed
action and the label and length of the next action. Appending the predicted result to
the original input, the next action segment can be predicted. . . . . . . . .. ... ..

Training data is generated by cutting the ground-truth segmentations at random
points and using the left part as input and the next action segment to the right of
the cut as ground-truth for the prediction. . . . . . ... ... ... ... ...

Architecture of the CNN-based anticipation approach. Both the input sequence and
output sequence are converted into a matrix form where C' denotes the number of
classes and S corresponds to the number of video segments of a certain length. The
binary values of the matrix indicate the label of each video segment. . . . . . . . . .

Qualitative results for the future action prediction task for both, RNN and CNN with
and without ground-truth observations. . . . . . . .. ... ... oL oL

Results for future action prediction with ground-truth observations. . . . . . . . ..
Results for future action prediction without ground-truth observations. . . . . . . . .

Performance of the models on videos with different lengths from the Breakfast
dataset without ground-truth observations for the case of observing 30% of the videos
and predicting the following 50%. . . . . . . . . . . . ... ...

Results of the CNN model using the cross-entropy loss vs. the squared-error loss. . .

Results of the CNN model with and without post-processing. . . . . . ... ... ..

The anticipation task. Given an observed part of a video, we want to predict the future
activities that might follow in the future with their durations. The model outputs a
collection of samples to represent the uncertainty in the future actions. . . . . . . . .

Our anticipation framework consists of: (a) The action model which predicts the
probability distribution of the future action label. (b) The length model which pre-
dicts the probability distribution of the future action length. . . . . . . . .. ... ..

66

76



xvi

List of Figures

7.3

8.1

8.2

8.3

8.4

Qualitative result from the Breakfast dataset. This sequence corresponds to the activ-
ity of making_tea. We observe 20% of the video and predict the following 50%.
Both the generated samples and the mode of the predicted distribution are shown.
The samples are ranked based on the frame-wise accuracy of the predicted activities.
We also show the results of the RNN and CNN models from the previous chapter. . .

(Left) Overview of the proposed approach, which is trained end-to-end and includes
a cycle consistency module. (Right) Effect of the cycle consistency module. Without
the cycle consistency, the network anticipates actions that are plausible based on the
previous actions. However, in some cases an essential action is missing. In this
example pour oil. By using the cycle consistency, we enforce the network to verify
if all required actions have been done before. For the action fry pancake, pouring oil
into the pan is required and the cycle consistency resolves this issue. . . . . . . . ..
Overview of the anticipation framework. The observed frames are passed through
a TCN-based recognition module which produces discriminative features for the
sequence-to-sequence model. The sequence-to-sequence model predicts the future
activities with their duration. In addition, we enforce cycle consistency over time by
predicting the past activities given the predicted future. . . . . . . . .. ... .. ..
Impact of the cycle consistency loss. Cycle consistency verifies if, for the predicted
future actions, all required actions have been done before and no essential action is
missing (a), and it further encourages the decoder to keep the important information
from the observations until the end, which results in better predictions (b). . . . . . .
Qualitative results for anticipating future activities. (a-c) Three examples from the
Breakfast dataset for the case of observing 20% of the videos and predicting the
activities in the following 50%. (d) An example from the 50Salads dataset for the

case of observing 20% of the video and predicting the activities in the following 20%.

96

104

114



4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

4.10
4.11
4.12
4.13
4.14
4.15

4.16

5.1
5.2
53
54

55
5.6

5.7
5.8
59
5.10

5.11

5.12
5.13

List of Tables

Effect of the number of stages on the 50Salads dataset. . . . . .. ... ....... 42
Comparing a multi-stage TCN with a deep single-stage TCN on the 50Salads dataset. 42
Comparing different loss functions on the 50Salads dataset. . . . . . . ... ... .. 43
Impact of A and 7 on the 50Salads dataset. . . . . . ... ... ... ......... 44
Effect of passing features to higher stages on the 50Salads dataset. . . . . . ... .. 45
MS-TCN++ vs. MS-TCN vs. MS-TCN with DDL on the 50Salads dataset. . . . . . 46

Effect of the number of layers (L) in each stage of MS-TCN on the 50Salads dataset. 47
Effect of the number of layers (L) in each refinement stage on the 50Salads dataset. 47

Effect of the number of layers (L) in the prediction generation stage for MS-TCN++
onthe 5S0Salads dataset. . . . . . ... ... ... ... o o Lo 47
Evaluation of three groups of videos from the GTEA dataset based on their durations. 48

Impact of the number of refinement stages on the 50Salads dataset. . . . . . ... .. 48
Impact of sharing parameters for the refinement stages on the 50Salads dataset. . . . 49
Impact of temporal resolution on the 50Salads dataset. . . . . . ... ... ..... 49
Effect of fine-tuning on the GTEA dataset. . . . . . . . . ... .. ... ... .... 50
Comparison with the state-of-the-art on 50Salads, GTEA, and the Breakfast dataset.

(* obtained from (Ding and Xu,2018)). . . . . . . . L oo 53
Comparison with the state-of-the-art approaches extending our models on 50Salads,

GTEA, and the Breakfastdataset. . . . . . ... ... ... .. ............ 54
Comparison with the baselines on the three datasets. . . . . . . . ... ... ..... 63
Contribution of the different loss functions on the 50Salads and Breakfast datasets. . 65
Impact of 5 on the 50Salads dataset. . . . . . ... ... ... ... ......... 65
Impact of the energy function for action change detection on the 50Salads and Break-

fastdatasets. . . . . . . ... 66
Impact of the segmentation model M on the 50Salads and GTEA datasets. . . . . . 67
Using start, center, or random frame as timestamp for each action on the Breakfast

dataset. . ... 67
Comparison with different levels of supervision on the 50Salads dataset. . . . . . . . 68
Comparison with different levels of supervision on the Breakfast dataset. . . . . . . . 68
Comparison with different levels of supervision on the GTEA dataset. . . . . . . .. 69
Comparison with SF-Net (Ma et al., 2020) for action localization with timestamp

supervision on the GTEA and BEOID datasets. . . . . ... ... ... ....... 69
Comparison with Kuehne er al. (Kuehne et al., 2020) on the Breakfast dataset with

semi-supervised SetUp. . . . . . . ... e e e e e e 69
Human vs. generated annotations on the GTEA dataset. . . . . . . . .. ... .... 70

Percentage of actions with 0, 1, or >1 timestamps (TS) using the protocol of Ta-
ble 11. The last row is the protocol of Table 8. . . . . . . .. ... ... ... ... 70



xviii

List of Tables

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

8.1

8.2

Results for future action prediction with ground-truth observations. Numbers repre-
sent accuracy as mean over classes. . . . . . . ... ... e 78
Results for future action prediction without ground-truth observations. Numbers rep-
resent accuracy asmean overclasses. . . . . . ... ... oo 80
Accuracy over next, 2nd action, and 3rd action for 30% observation and 50% pre-
diction on the Breakfast dataset without ground-truth observations. The action is
correctly detected if the IoU of the predicted action segment with the annotated ac-
tionsegmentis = 0.5. . . . . . ... Lo 81
Impact of the recognition model on the anticipation performance. Numbers repre-
sent accuracy as mean over classes. * indicates that MS-TCN is trained with partial

sequences that correspond to only the first 15 — 35% of the videos. . . . . . . . . .. 83
Comparing different loss functions for the CNN model on the Breakfast dataset with
ground-truth observations. Numbers represent accuracy as mean over classes. . . . . 84

Results for future action prediction directly from features on the Breakfast dataset.
Numbers represent accuracy as mean overclasses. . . . . . . . . . ... ... .... 85
Comparison with Vondrick et al. (2016): Accuracy of predicting future actions one
second before they startisreported. . . . . . . .. ... .. L oL 86
Comparison with the state-of-the-art approaches extending our models. Numbers
represent MoC accuracy. . . . . . . . . ... oo e e e 86

Results for anticipation with ground-truth observations. Numbers represent mean
over classes (MoC) metric averaged over 25 samples. . . . . . . .. .. ... .... 95
Results for anticipation with ground-truth observations. Numbers represent mean
over classes (MoC) metric of the predicted distribution mode. . . . . . . . . ... .. 95
Results for anticipation without ground-truth observations. Numbers represent mean
over classes (MoC) metric averaged over 25 samples. . . . . . . .. .. ... .. .. 97
Results for anticipation without ground-truth observations. Numbers represent mean
over classes (MoC) metric of the predicted distribution mode. . . . . . . .. ... .. 97
Effect of the number of samples. Numbers represent mean over classes (MoC) metric
averaged over the samples. In each case, the average and standard deviation of 5 runs

arereported. . . . .. L. e e e e 98
Comparison with the state-of-the-art using ground-truth observations. Numbers rep-
resent mean over classes MoC). . . . . . . . . .. e 99
Comparison with the state-of-the-art without ground-truth observations. Numbers
represent mean over classes (MoC). . . . . . . . . ... o 100
Comparison with (Mehrasa et al., 2019): Accuracy of predicting the label of the next
action SEZMENL. . . . . . . ¢t it i e e e e e e e e 100

Comparison with the follow-up work of Zhao and Wildes (2020) using ground-truth
observations. Numbers represent mean over classes (MoC). . . . . . . . ... .. .. 100

Ablation study on the Breakfast dataset. Numbers represent mean over classes (MoC)
ACCUTACY. .+ v v v e e e e e e e e e e e e e e e 110
Comparison between the two-step approach and ours on the Breakfast dataset. Num-
bers represent mean over classes (MoC) accuracy. . . . . . . . . ... ... ... .. 111



List of Tables Xix

8.3 Comparison between passing features vs. passing class probabilities of the observed
frames from the recognition module to the subsequent modules on the Breakfast

dataset. Numbers represent mean over classes (MoC) accuracy. . . . . . .. ... .. 112
8.4 Impact of passing the predicted duration at each step to the recurrent decoder on the
Breakfast dataset. Numbers represent mean over classes (MoC) accuracy. . . . . . . 112

8.5 Comparison with the state-of-the-art. Numbers represent MoC accuracy. * indicates
that MS-TCN is trained with partial sequences that correspond to only the first 15 —
35% of the videos. T indicates concurrent approaches. . . . . . . . . ... ... ... 113






Nomenclature

Abbreviations

An alphabetically sorted list of abbreviations used in the thesis:

BPTT Back-Propagation Through Time
CNN Convolutional Neural Network
DDL Dual Dilated Layer

EOS End-Of-Sequence

FN False Negative

FP False Positive

FPN Feature Pyramid Network

GAN Generative Adversarial Network
GMM Gaussian Mixture Model

GRU Gated Recurrent Unit

HMM Hidden Markov Model

HOF Histograms of Optical Flow
HOG Histograms of Oriented Gradients
IDT Improved Dense Trajectories

IoU Intersection over Union

LSTM Long Short-Term Memory

MBH Motion Boundary Histograms
MLP Multi-Layer perceptron

MoC Mean over Classes

MSE Mean Squared Error

MS-TCN Multi-Stage Temporal Convolutional Network
PCA Principal Component Analysis
RBF Radial Basis Function

RNN Recurrent Neural Network

SOS Start-Of-Sequence

SS-TCN Single-Stage Temporal Convolutional Network
SVM Support Vector Machine

TCN Temporal Convolutional Network
TN True Negative

TP True Positive

TSN Temporal Segment Network






List of Publications

The thesis is based on the following publications:

* When will you do what? - Anticipating Temporal Occurrences of Activities
Yazan Abu Farha, Alexander Richard, and Juergen Gall
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

* MS-TCN: Multi-Stage Temporal Convolutional Network for Action Segmentation
Yazan Abu Farha and Juergen Gall
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

* Uncertainty-Aware Anticipation of Activities
Yazan Abu Farha and Juergen Gall
IEEE International Conference on Computer Vision Workshops, 2019.

* Long-Term Anticipation of Activities with Cycle Consistency
Yazan Abu Farha, Qiuhong Ke, Bernt Schiele, and Juergen Gall
German Conference on Pattern Recognition (GCPR), 2020.

* MS-TCN++: Multi-Stage Temporal Convolutional Network for Action Segmentation
Shijie Li*, Yazan Abu Farha*, Yun Liu, Ming-Ming Cheng, and Juergen Gall
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020.
(* denotes equal contribution)

* Temporal Action Segmentation from Timestamp Supervision
Zhe Li, Yazan Abu Farha, and Juergen Gall
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021.







CHAPTER 1

Introduction

Contents
11 Motivation . . . . . oo ittt i ittt it e e e 1
1.2 ProblemStatement . ... .......... 0ttt 3
1.2.1 Temporal Action Segmentation . . . . . . . . ... ... ... ... .. 3
1.2.2  Long-Term Anticipation of Activities . . . . . .. . ... ... ...... 3
1.3 Challenges . . . . ...ttt i ittt iiiiinnneeeeeeeeeeeees 3
1.4 Contributions . . ... ... ... i i e e e 4
1.4.1 Multi-Stage Architectures for Temporal Action Segmentation . . . . . . . 5
1.4.2 Timestamp Supervision for Action Segmentation . . . . . . ... ... .. 5
1.4.3 Long-Term Anticipation of Activities . . . . .. .. ... ... ... ... 6
1.4.4  Uncertainty-Aware Framework for Anticipating Activities . . . . . .. .. 6
1.4.5 End-to-End Framework for Long-Term Anticipation of Activities . . . . . 6
1.5 ThesisStructure . . . . . . . . i it ittt it e 7

1.1 Motivation

Consider the video snippets illustrated in Figure 1.1. Can you predict how the video would evolve
into the future? It is not surprising that you can predict that the cook would add topping on the pizza,
bake it, and then slice and serve it. In fact, we are continuously predicting the future and it is hard to
imagine living without such ability. Imagine yourself, for instance, in a busy Monday morning trying
to cross the street. Even for such simple task, you would probably look around, identify moving
objects, and predict how they would move to avoid colliding with them. Almost every aspect of our
life relies on our ability to predict the future. When you help a friend to carry a new table upstairs
you continuously predict your friend’s actions and moves to ensure smooth interactions. During a
penalty kick in a football game, the goalkeeper has to anticipate the direction of the ball even before
the opposing player approaches it. Similarly, a chess player has to predict the movements of his
opponent several steps into the future to decide on his next move. Furthermore, future prediction
plays a significant role in many aspects of our societies such as weather and stock market forecasts,
navigation systems, decision making, and strategic planning.

As future prediction is in every aspect of our lives, it is crucial to model such capability in
intelligent agents. Nonetheless, the question is what to predict. Since we perceive the world as
a sequence of frames, initial approaches tried to predict future frames in video sequences at pixel
level (Ranzato et al., 2014; Mathieu et al., 2016). However, predicting in such high dimensional
space is challenging and these approaches failed at generating realistic predictions, which limits
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Figure 1.1: Look at this sequence of video frames. Can you guess what are the next steps?

While such predictive task seems trivial for humans, it is still challenging for computer systems.
In this thesis, we address this task and propose multiple models that are capable of predicting the
sequence of future activities and their durations. !

their applications. While other approaches tried to predict sentences describing future frames (Sener
and Yao, 2019; Mahmud et al., 2021), such representation cannot be directly used for real-world
applications.

As amiddle ground, predicting future activities in video sequences has emerged (Lan et al., 2014;
Vondrick et al., 2016; Gao et al., 2017c; Shi et al., 2018). Despite the success of these approaches,
they are limited to predicting the next action just a few seconds into the future. For many real
world applications, however, making long-term predictions beyond just a few seconds is crucial.
Therefore, the goal of this thesis is to extend the capabilities of intelligent systems to predict longer
time horizons that span several minutes into the future. Nonetheless, predicting longer time horizons
requires better understanding of the observed frames and capturing temporal dependencies over very
long video sequences. To this end, we also address the action segmentation task, which temporally
segments actions in long videos, and use the recognized actions to predict the future.

Recognizing and anticipating human activities in videos has many applications. In robotics, for
instance, the ability to predict the future activities results in better human-robot interactions (Koppula
and Saxena, 2016). Furthermore, service robots that predict the future can utilize this information
to decide where to place themselves to provide a timely service for users (Bruckschen et al., 2020).
The ability to recognize and forecast activities can also be used in assembly lines to detect mistakes
or missing important steps (Soran et al., 2015). A new application has also emerged in the medical
domain, especially in the computer-assisted surgery (Rivoir et al., 2020) and surgical skill assess-
ment (Liu et al., 2021). Moreover, the techniques discussed throughout this thesis can be useful
for many other applications such as animal behaviour analysis, anomaly detection (Oztiirk and Can,
2021), and sign language segmentation (Renz et al., 2021).

In this thesis, we contribute to both the action segmentation and the anticipation tasks. We pro-
pose approaches that are capable of temporally parsing long videos into the different action segments
that are depicted in the videos. We further introduce approaches that can anticipate sequences of
possible future activities that are likely to happen after observing partial video sequences. Finally,
we combine both approaches in a unified end-to-end framework for long-term anticipation.

"Video source: https://tasty.co/.
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1.2 Problem Statement

The proposed approaches in this thesis fall under either one of two video understanding tasks: tem-
poral action segmentation, and long-term anticipation of activities. On the one hand, the action
segmentation task predicts an action label for each frame in the input video. On the other hand, the
anticipation task reasons beyond the observed frames and predicts a sequence of future activities with
their durations. In this section, we provide a formal definition for both tasks.

1.2.1 Temporal Action Segmentation

The temporal action segmentation task can be defined by describing the expected input and the de-
sired output for that input. The input for this task is a long untrimmed video that contains multiple
actions. Let us denote the input video by 1.7 = (21, ..., 27), where T is the number of frames and
x; is the frame at time step ¢, represented by either an RGB image or as a feature vector representa-
tion. The goal of the temporal action segmentation task is to predict an action label for each frame
in the input video . Le. the output is a sequence a1.7 = (ai,...,ar) of length T', where a; is the
action label for the frame z;. We assume that the action labels a; are coming from a pre-defined set
of C action classes.

The sequence of the frame-wise action labels a1.7 can also be represented in a segment-wise
form. By grouping consecutive frames with the same action label into a single segment, the frame-
wise action labels aq.7 can be represented as sequence of action segments Ay.y = (Aq,..., An)
with their corresponding durations /1.y = (¢1,...,¢xN), where N is the total number of segments in
the sequence of 7" frames and »¢; = T In this representation, A; corresponds to the action label
for the i-th segment and ¢; is an integer number that corresponds to the number of frames belonging
to that segment.

1.2.2 Long-Term Anticipation of Activities

The goal of the long-term action anticipation is to predict a sequence of future activities with their du-
rations form a partially observed video. Formally, let 1.7 = (21, ..., z7) be a video with T" frames.
Given the first ¢ frames x1.¢, the task is to predict the actions happening from frame ¢ + 1 to T". That
is, we aim to assign action labels a; 1.7 = (G471, ..., ar) to each of the unobserved frames. Using
the equivalent segment-wise representation, the observed video sequence can also be represented as
n action segments Ay., = (Aq,..., A,) with their corresponding lengths ¢1., = (¢1,...,¢,). And
the target are the segments A, 1. with the corresponding segments lengths ¢, 1.5, where IV is the
total number of action segments in the video. This novel task is one of the contributions of this thesis,
which is published in (Abu Farha et al., 2018) and will be discussed in Chapter 6.

1.3 Challenges

Analyzing long untrimmed videos with multiple actions imposes many challenges. In this section,
we discuss some of these challenges and open questions that need to be addressed for building models
that can segment and anticipate human activities.
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Long-Range Dependencies

Since a video is a time series of frames, frames sampled from the same video are not independent.
What happens at the beginning of the video would very likely affect what will happen at the end of
that video. Therefore, naively treating each frame independently without its temporal context is sup-
optimal. Modelling such dependencies between frames allows for better understanding of the video
content, especially for ambiguous frames due to occlusions or motion blur. Furthermore, reasoning
over long-range temporal context would enable models to extrapolate and predict what is likely to
happen in the future.

Costly Annotations

The success of deep learning methods relies on the availability of large annotated datasets. Nonethe-
less, when it comes to video understanding, the annotation process becomes very costly and cumber-
some. For instance, for the temporal action segmentation task, videos are several minutes long and
span thousands of frames. Annotating every single frame in large collections of such videos would
require a significant amount of resources. Furthermore, different annotators might disagree on what
defines an action boundary and when the transition happens from one action segment to the next one.
Therefore, approaches that can be trained with less supervision are of great importance for the video
understanding domain.

Good Representations for Anticipation

Anticipating future activities form a partially observed video might seem easy at first glance.
Nonetheless, as videos consist of long sequences of frames, even a partially observed video can
still span several thousands of frames. Learning from such very high dimensional space is very chal-
lenging. Therefore, it is crucial to learn representations that capture the content of the videos in a low
dimensional space.

Modelling Uncertainty

Making predictions about the future is challenging. The future is inherently uncertain. For the same
observed sequence of activities, there are many possible ways in which the future can evolve. Thus,
only predicting the most likely future is insufficient for many practical applications and it is crucial
to model the uncertainty over future activities.

1.4 Contributions

In this thesis, we propose approaches to address the challenges discussed above. First, we propose
a class of models for recognizing and temporally segmenting action segments in long untrimmed
videos. Then, we propose methods to anticipate sequences of future activities with their durations
from partially observed videos. Finally, we combine these approaches in a single framework for
long-term anticipation. Our contributions can be summarized as follows.
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1.4.1 Multi-Stage Architectures for Temporal Action Segmentation

Our first contribution is two multi-stage architectures for the — ‘
. . . Stage N I—‘LN
temporal action segmentation task. In both architectures, we 506000000000000000
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eters. While the first architecture has small receptive fields ¢ '@b’@b’@b’@'
at shallow layers and gradually increases it by adding more
layers, the second architecture combines both large and small o ]
receptive fields at each layer. To train the proposed architec-

tures, we further introduce a smoothing loss that penalizes over-segmentation errors. We demon-
strate the effectiveness of our models in capturing long-range dependencies between action classes
and producing high quality predictions on multiple action segmentation benchmarks. Furthermore,
the proposed models are view-agnostic and work well on videos captured from different view-points
including top and egocentric views.

1.4.2 Timestamp Supervision for Action Segmentation

Although the proposed multi-stage architectures discussed Full Supervision
above have been very successful in segmenting actions, train- ‘ |
ing these models requires fully annotated videos with the pre-

cise start and end time of each action segment. As videos
are composed of thousands of frames, annotating every single
frame is a very costly and time-consuming process. While
recent approaches showed that it is feasible to train an ac-
tion segmentation model using only an ordered list of actions
that occur in the training videos, the performance of these ap-
proaches is still significantly worse than the performance of

the fully supervised approaches. As a second contribution, we
propose to use a new level of supervision that addresses the
limitations of the previous approaches. To this end, we propose to use timestamp supervision for the
temporal action segmentation task by only annotating a single frame from each action segment in the
training videos. Timestamps require a comparable annotation effort to annotating the list of actions
occurring in the video, and yet provide a more supervisory signal. We demonstrate the effectiveness
of timestamp supervision by proposing the first action segmentation approach that is trained using
only timestamps annotations. Our approach uses the model output and the annotated timestamps
to generate frame-wise labels by detecting the action changes. We further introduce a novel con-
fidence loss that forces the predicted probabilities to monotonically decrease as the distance to the
timestamps increases. We show that models trained with timestamps annotations achieve comparable
performance to the fully supervised approaches at a tiny fraction of the annotation costs.
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1.4.3 Long-Term Anticipation of Activities

Our contributions so far only address analyzing human ac-
tions in fully observed videos. However, for many applica-
tions it is beneficial to reason beyond what has happened and ’ ‘
predict what will happen in the future. State-of-the-art ap-
proaches addressing this task are, however, limited to antici-
pating only the immediate future. As a third contribution, we
therefore propose to extend the anticipation task and make i Y o
o . ey - () . e i e
long-term predictions over more than just a few seconds. We —
propose two methods to predict a sequence of future actions
and their durations, which can take up to five minutes into the future. Both models are trained in a
two-step approach. In the first step, we train an off-the-shelf action segmentation model that predicts
the action segments in the observed frames. Then, we use the proposed models to predict the future
actions from the observed action segments. We show that our methods generate accurate predictions
of the future even for long videos with a huge amount of different actions and can even deal with
noisy or erroneous input information.

Observed
Frames I

v

Decoder

1.4.4 Uncertainty-Aware Framework for Anticipating Activities

One of the contributions

of this thesis is the intro- WW%&% [ ewetes [ powmik |
duction of the long-term [ e s
|

‘ open cupboard ‘ take cup

anticipation task, which
extends the prediction time horizon to several minutes into the future. However, as increasing the
predicted time horizon, the future becomes more uncertain and models that generate a single predic-
tion fail at capturing the different possible future activities. Therefore, as a fourth contribution, we
extend the approach discussed in the previous section to predict multiple possible sequences of future
activities. Both an action model and a length model are trained to predict the probability distribution
of the future activity and its duration. At test time, we sample from the predicted distributions mul-
tiple samples that correspond to the different possible sequences of future activities. Evaluation on
two benchmarks shows that our approach is able to capture the multi-modal nature of future activities
without compromising the accuracy when only predicting a single sequence of activities.

1.4.5 End-to-End Framework for Long-Term Anticipation of Activities

Despite the success of our methods in predicting activities for

a longer time horizon into the future, they are trained in a two- S

step approach. While such a two-step approach demonstrates ‘ Cy"’@;s;“i;:’e""y }

that action labels are good representations to predict the fu- - R actio \
ture, it decouples the semantic interpretation of the observed ] fecosnition }» S“"”@”Z’;Z;f"”"”“’k

sequence from the anticipation task. As a last contribution,
we propose a framework for anticipating future activities di-
rectly from the features of the observed frames and train it in
an end-to-end fashion. Building on the success of the two-step approach, we cast the recognition
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of the observed frames as an auxiliary task that encourages learning discriminative representations.
Furthermore, following the success of cycle consistency in computer vision, we show that the antici-
pation performance can be further improved by forcing the model to predict the past activities given
the predicted future.

1.5 Thesis Structure

The rest of this thesis is organized as follows:

Chapter 2 provides an overview of the related work on action recognition, temporal action
segmentation, action anticipation, and anticipation of other representations. It also provides a brief
summary of the datasets that are used to evaluate the proposed approaches.

Chapter 3 gives a brief overview of the concepts that are used throughout the thesis. It starts
with a quick introduction to neural networks, including convolutional and recurrent networks. Then,
it describes the video representations that are used as input to the proposed approaches. Finally, it
provides a formal definition of the evaluation metrics that are used to evaluate the performance of
the proposed approaches.

Chapter 4 proposes two multi-stage temporal convolutional networks for the temporal action
segmentation task. It also proposes a novel smoothing loss to reduce over-segmentation errors. This
chapter is based on (Abu Farha and Gall, 2019a; Li et al., 2020).

Chapter 5 introduces timestamp supervision for the temporal action segmentation task. In
contrast to the full supervision, timestamp supervision only annotates one frame from each action
segment in the training videos. The chapter further proposes a framework to train an action
segmentation model using timestamps annotations. This chapter is based on (Li et al., 2021).

Chapter 6 proposes the novel task of long-term anticipation of activities. While state-of-the-
art approaches only anticipate a single activity a few seconds into the future, this chapter proposes
two approaches that anticipate future activities with their durations up to five minutes into the future.
This chapter is based on (Abu Farha et al., 2018).

Chapter 7 extends the approach proposed in Chapter 6 to predict multiple possible sequences of
future activities. This chapter is based on (Abu Farha and Gall, 2019b).

Chapter 8 proposes an end-to-end framework for long-term anticipation of activities. It fur-
ther introduces a cycle consistency loss over time by forcing the model to predict the past activities

from the predicted future. This chapter is based on (Abu Farha et al., 2020).

Finally, conclusions are given in Chapter 9 along with suggested directions for future work.






CHAPTER 2

Related Work

In this chapter, we discuss the related work for this thesis. First, we discuss approaches for action
recognition which classify trimmed videos. Second, we review action segmentation approaches that
handle long untrimmed videos. Third, we provide an overview of the methods that anticipate the
future with more focus on action anticipation. Finally, we briefly discuss the datasets that are used
throughout the thesis.

Contents
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2.6.3 Georgia Tech Egocentric Activities (GTEA) . . . . . . .. ... .. .... 17
2.6.4 Bristol Egocentric Object Interactions Dataset (BEOID) . . . .. ... .. 18

2.1 Action Recognition

The goal of action recognition is to classify a short video clip into a pre-defined action class. The
input videos, however, have to be pre-segmented and depict only a single action class. While in
real world scenarios videos are untrimmed and contain multiple activities spanning long durations,
the ability to recognize short clips is still useful in advancing research on analyzing long videos.
Action recognition approaches can learn strong representations that can be used for many video
understanding tasks. Therefore, we provide a brief overview of the advances in the action recognition
research.

Traditional action recognition approaches relied on hand-crafted features such as space-time
interest points (Laptev, 2005) and dense trajectories (Wang et al., 2011, 2013). In particular the
improved dense trajectories (Wang and Schmid, 2013) combined with the Fisher vectors encod-
ing (Sdnchez et al., 2013) showed a strong performance on different action recognition benchmarks,
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and even outperformed early attempts for applying convolutional neural networks (CNNs) on the
action recognition task (Karpathy et al., 2014).

Recent approaches for action recognition are deep learning based approaches and can be divided
into two groups: approaches that follow the two-stream architecture proposed by Simonyan and
Zisserman (2014), and approaches that are based on 3D convolutional neural networks (3D CNNss).
The two-stream network of Simonyan and Zisserman (2014) consists of two parallel 2D CNNs: a
spatial CNN and a temporal CNN. The spatial network performs action recognition from a single
video frame. Whereas the temporal network is trained to recognize actions from stacks of optical
flow frames. The final prediction is obtained by aggregating the predictions from both streams.
Several approaches built on top of the two-stream architecture and further improved its performance.
For instance, Feichtenhofer et al. (2016) used better network architecture based on ResNet (He et al.,
2016) and further introduced residual connections between the two streams. To capture long-range
temporal structure, Wang et al. (2016) introduced the temporal segment network (TSN). TSN divides
the input video into multiple segments and sparsely samples snippets from each segment to utilize the
visual information in the entire video. The final prediction is obtained by aggregating the predictions
from all snippets. Similarly, Zhou et al. (2018) sample frames at different temporal scales to capture
temporal relations. In (Diba et al., 2017), a temporal linear encoding layer was proposed to aggregate
information throughout the entire video.

Another class of action recognition approaches utilized spatio-temporal convolutions, which are
also known as 3D CNNs. While initial attempts of applying 3D CNNs for action recognition per-
formed worse than hand-crafted features (7ran et al., 2015), it was until the introduction of the I3D
model (Carreira and Zisserman, 2017) when 3D CNNss significantly outperformed other approaches
and took action recognition to the next level. The I3D network is designed by inflating successful 2D
CNN architectures into 3D and using its pre-trained weights on the ImageNet dataset (Deng et al.,
2009) for initializing the 3D CNN weights. Following the success of I3D, several approaches have
been proposed and advanced the capabilities of 3D CNNs in recognizing activities. In (Qiu et al.,
2017; Tran et al., 2018) the 3D convolutions are factorized into 2D spatial convolutions and 1D
temporal convolutions, which reduced the complexity of training the network. Diba et al. (2018) in-
troduced a spatio-temporal channel correlation block that can be integrated with 3D CNNs to model
the correlations between channels. Other approaches focused on modelling long range dependencies
both in the temporal and spatial domains (Varol et al., 2018; Wang et al., 2018; Wu et al., 2019).
In (Feichtenhofer et al., 2019), a 3D CNN with two pathways was proposed. The first pathway op-
erates on a low frame rate and captures spatial semantics. Whereas the second pathway operates
on a high frame rate and captures motion cues. In (Feichtenhofer, 2020), an efficient network has
been proposed by progressively expanding a tiny 2D image classification architecture into 3D. Re-
cent approaches improved the efficiency of action recognition models by learning an adaptive spatial
resolution (Meng et al., 2020), adaptive temporal resolution (Fayyaz et al., 2021), or by utilizing
the temporal differences between features at different levels of the network to capture multi-scale
temporal information (Wang et al., 2021).

2.2 Temporal Action Segmentation

In the previous section, we discussed advances in recognizing activities in short trimmed videos.
In this section, we discuss approaches that analyze long untrimmed videos with many activities.
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Depending on the level of supervision, we divide these approaches into two groups: fully supervised
approaches and weakly supervised approaches.

2.2.1 Fully Supervised Approaches

Temporal action segmentation has received a lot of interest from the computer vision community.
Many approaches were proposed to localize action segments in videos or assign action labels to video
frames. In earlier approaches, a sliding window approach is applied with non-maximum suppres-
sion (Rohrbach et al., 2012; Karaman et al., 2014). However, such approaches are computationally
expensive since the model has to be evaluated at different window scales. Other approaches model
actions based on the change in the state of objects and materials (Fathi and Rehg, 2013) or based on
the interactions between hands and objects (Fathi et al., 2011a). Bhattacharya et al. (2014) use a
vector time series representation of videos to model the temporal dynamics of complex actions using
methods from linear dynamical systems theory. The representation is based on the output of pre-
trained concept detectors applied on overlapping temporal windows. Cheng et al. (2014) represent
videos as a sequence of visual words, and model the temporal dependency by employing a Bayesian
non-parametric model of discrete sequences to jointly classify and segment video sequences.

Despite the success of the previous approaches, their performance was limited as they failed in
capturing the context over long video sequences. To alleviate this problem, many proposals tried
to employ high level temporal modeling over frame-wise classifiers. Kuehne et al. (2016) represent
the frames of a video using Fisher vectors of improved dense trajectories, and then each action is
modeled with a hidden Markov model (HMM). These HMMs are combined with a context-free
grammar for recognition to determine the most probable sequence of actions. HMMs are also used
in many other approaches. Kuehne et al. (2017) combine HMMs with a Gaussian mixture model
(GMM) as a frame-wise classifier. However, since frame-wise classifiers do not capture enough
context to detect action classes, Richard et al. (2017) and Kuehne et al. (2020) use a GRU instead of
the GMM that is used in (Kuehne et al., 2017). A hidden Markov model is also used in (7Tang et al.,
2012) to model both transitions between states and their durations. Vo and Bobick (2014) use a Bayes
network to segment activities. They represent compositions of actions using a stochastic context-free
grammar with AND-OR operations. Richard and Gall (2016) propose a model for temporal action
detection that consists of three components: an action model that maps features extracted from the
video frames into action probabilities, a language model that describes the probability of actions at
sequence level, and finally a length model that models the length of different action segments. To get
the video segmentation, they use dynamic programming to find the solution that maximizes the joint
probability of the three models. Singh et al. (2016a) use a two-stream network to learn representations
of short video chunks. These representations are then passed to a bi-directional LSTM to capture
dependencies between different chunks. However, their approach is very slow due to the sequential
prediction. In (Singh et al., 2016b), a three-stream architecture that operates on spatial, temporal
and egocentric streams is introduced to learn egocentric-specific features. These features are then
classified using a multi-class SVM.

Inspired by the success of temporal convolution in speech synthesis (Van Den Oord et al., 2016),
researchers have tried to use similar ideas for the temporal action segmentation task. Lea et al. (2017)
propose a temporal convolutional network for action segmentation and detection. Their approach
follows an encoder-decoder architecture with a temporal convolution and pooling in the encoder,
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and upsampling followed by deconvolution in the decoder. While using temporal pooling enables
the model to capture long-range dependencies, it might result in a loss of fine-grained information
that is necessary for fine-grained recognition. Lei and Todorovic (2018) build on top of (Lea et al.,
2017) and use deformable convolutions instead of the normal convolution and add a residual stream
to the encoder-decoder model. Ding and Xu (2018) add lateral connections to the encoder-decoder
TCN (Lea et al., 2017) and propose a temporal convolutional feature pyramid network for predicting
frame-wise action labels. Recently, Mac et al. (2019) propose to learn spatio-temporal features using
deformable convolutions and local consistency constraints. All of the approaches in (Lea et al.,
2017; Lei and Todorovic, 2018; Ding and Xu, 2018), however, operate on downsampled videos with
a temporal resolution of 1-3 frames per second. In our works (Abu Farha and Gall, 2019a; Li et al.,
2020) we proposed two multi-stage architectures that operate on the full temporal resolution of the
videos, which will be discussed in Chapter 4. Recent approaches built on top of our architectures and
further refined the predictions using graph convolutional networks (Huang et al., 2020), boundary-
aware pooling (Wang et al., 2020; Ishikawa et al., 2021), or by using neural networks architecture
search to optimize the receptive field of the model by adapting the dilation factors in each layer (Gao
etal.,2021).

Action detection is a related but a different task. In this context, the goal is to detect sparse action
segments while most parts of the videos are unlabeled. In this work, we focus on action segmentation
where the videos are densely annotated. For action detection, several approaches follow a two stage
pipeline. The first stage generates proposals, whereas the second stage classifies and refines the
boundaries of these proposals (Shou et al., 2016; Xu et al., 2017; Zhao et al., 2017; Chao et al.,
2018; Zeng et al., 2019; Gao et al., 2017a; Buch et al., 2017b; Gao et al., 2017b; Lin et al., 2019).
Other approaches combine the proposal generation and classification in a single-stage architecture
which enables end-to-end training (Yeung et al., 2016; Buch et al., 2017a; Long et al., 2019; Lin
etal.,2021).

2.2.2 Weakly Supervised Approaches

The approaches discussed in the previous section require training videos that are annotated with
frame-wise labels. However, densely annotating all the video frames is very expensive and time-
consuming. Therefore, many approaches tried to relax this requirement and proposed methods that
can be trained using weaker forms of supervision.

Earlier approaches for weakly supervised action segmentation apply discriminative clustering to
detect actions using movie scripts (Duchenne et al., 2009). However, these approaches ignored the
action ordering information and only focused on distinguishing action segments from background.
Bojanowski et al. (2014) extended these ideas to segment actions in videos using transcripts in the
form of an ordered list of actions as supervision. This form of supervision has been very popular
and many approaches have been proposed to train action segmentation models using transcripts as
a supervisory signal. Huang et al. (2016) align the video frames and the transcripts using connec-
tionist temporal classification. Richard et al. (2018b) combine a frame-wise loss function with the
Viterbi algorithm to generate frame-wise target labels. Chang et al. (2019) apply a soft dynamic time
warping algorithm and discriminate between positive and negative transcripts. In (Li et al., 2019),
an energy-based model is used such that the energy of all valid alignments that are consistent with
the groundtruth transcripts is minimized. Other approaches generate pseudo groundtruth labels for
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the training videos and iteratively refine them (Kuehne et al., 2017; Richard et al., 2017; Ding and
Xu, 2018; Kuehne et al., 2020). Starting with a uniform segmentation, Kuehne et al. (2017) trained
a hidden Markov model (HMM) for each activity and a Gaussian mixture model (GMM) for the ob-
servation probabilities. The trained model is then used to infer a new alignment which is again used
to retrain the model. The process is iteratively repeated until convergence. This work is extended
in (Richard et al., 2017; Kuehne et al., 2020) by replacing the GMM with a GRU and further divid-
ing the actions into smaller sub-actions to better model complex and long actions. In (Ding and Xu,
2018), soft labels are used around the boundaries between the action segments to reduce sensitivity
to initialization, which increased the robustness of the training. While these approaches have been
very successful, most of them suffer from a slow inference time as they iterate over all the train-
ing transcripts and select the one with the highest score. Souri et al. (2021) addressed this issue by
predicting the transcript besides the frame-wise scores and further introduced a mutual consistency
loss that enforces agreement between the predicted transcript and the frame-wise scores. Although
these approaches rely on a cheap transcript supervision, their performance is much worse than fully
supervised approaches.

Another line of research addresses the action segmentation task from set-level supervision. In
contrast to transcripts, set supervision only provides the set of actions that occur in the videos without
any information regarding the order or how many times each action occurs. Compared to transcripts,
the space of possible labellings of a video given the groundtruth action set is very large. Richard et al.
(2018a) proposed to reduce the search space of possible labellings by restricting the space of valid
sequences of actions and their durations. Li and Todorovic (2020) combine a frame-wise classifier
with a set-constrained Viterbi algorithm that only considers actions appearing in the groundtruth
action set to generate frame-wise pseudo labels. This work has been extended in (Li and Todorovic,
2021) by considering the most salient frames for each action in the groundtruth action set as an anchor
point to generate the pseudo labels. In contrast to these approaches that generate pseudo labels,
Fayyaz and Gall (2020) trained a model that directly predicts action labels for temporal regions in
the input videos and trained it with a set loss. While these approaches demonstrated that it is possible
to train a segmentation model using only action sets, the proposed weaker level of supervision comes
with the cost of inferior performance.

2.3 Timestamp Supervision for Recognizing Activities

Timestamp supervision has not yet received much attention from the action recognition community.
Initial attempts were inspired by the success of point supervision for semantic segmentation (Bear-
man et al., 2016). Mettes et al. (2016) apply multiple instance learning for spatio-temporal action
localization using points annotation on a sparse subset of frames. Chéron et al. (2018) use discrimi-
native clustering to integrate different types of supervision for the spatio-temporal action localization
task. Recently, Moltisanti et al. (2019) proposed a sampling distribution based on a plateau function
centered around temporal timestamps annotations to train a fine-grained action classifier. This ap-
proach relies on the classifier response to sample frames around the annotated timestamps and uses
them for training. The method was tested for classifying trimmed videos and also showed promising
results for temporal action localization. Ma et al. (2020) extended the action localization setup by
mining action frames and background frames for training.
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2.4 Action Anticipation

The interest in predicting future actions started at early stage. However, instead of predicting the fu-
ture, initial approaches tried to recognize an ongoing activity given only a partial observation (Ryoo,
2011; Hoai and De la Torre, 2014). This setup goes in the literature by the name early action de-
tection. Recent approaches addressed this task by using recurrent neural networks with special loss
functions to encourage early activity detection (Ma et al., 2016; Sadegh Aliakbarian et al., 2017),
predicting future representations of the unobserved frames as an auxiliary task (Gammulle et al.,
2019Db), or by learning representations that correlate past with the future using knowledge distillation
losses (Tran et al., 2019; Fernando and Herath, 2021).

In contrast to the early action detection task, action anticipation predicts future actions without
even observing any parts of these actions. Based on the predicted time horizon, action anticipation
approaches can be grouped into two categories: short-term anticipation approaches and long-term
anticipation approaches. While short-term approaches predict a single action a few seconds into the
future, long-term approaches predict a sequence of future actions with their durations up to several
minutes into the future. In the following sections, we discuss state-of-the-art approaches in both
categories.

2.4.1 Short-Term Anticipation

Short-term anticipation approaches rely on the most recently observed frames to predict what will
happen next. Early approaches focused on encoding the observations in a representation that fa-
cilitates predicting the future action. Lan et al. (2014) predicted future actions from hierarchical
representations of short clips or still images. They encoded the observed frames in a multi-granular
hierarchical representation of movements, and trained different classifiers at each level in the hi-
erarchy in a max-margin framework. Koppula and Saxena (2016) used a spatio-temporal graph
representation to encode the observed activities and then predict object affordances, trajectories, and
sub-activities. Instead of directly predicting the future action labels, several approaches were pro-
posed to predict future visual representations and then a classifier is trained on top of the predicted
representations to predict the future labels. Vondrick et al. (2016) trained a deep network to predict
visual representations of future frames, and used a support vector machine (SVM) to predict actions
one second into the future. This work has been extended in Gao et al. (2017¢), where an encoder-
decoder network was proposed to predict a sequence of future representations based on a history
of previous frames. To supervise the generated sequences, a reinforcement learning module was
used to give high rewards to sequences that correspond to early correct predictions. Similarly, Zeng
et al. (2017) used inverse reinforcement learning for visual sequence forecasting. Rodriguez et al.
(2018) encoded human motions using dynamic images (Bilen et al., 2016) and then predict the future
representations from partial observations of human actions. In (Shi et al., 2018), a recurrent neural
network with a mapping layer consisting of a linear combination of Gaussian radial basis function
(RBF) kernels was introduced for anticipating actions. Suris et al. (2021) proposed to learn hierarchi-
cal representations for the anticipation task based on the hyperbolic geometry. Besides action labels,
some approaches used multi-task learning to predict the future action and its starting time (Mahmud
et al., 2017; Mehrasa et al., 2019), or the future action and its spatial location (Liang et al., 2019;
Sun et al., 2019a).
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There is a parallel line of research addressing the anticipation task in egocentric videos.
In (Damen et al., 2018) the EPIC-KITCHENS dataset was introduced with a dedicated action an-
ticipation challenge. As a baseline, a temporal segment network (TSN) (Wang et al., 2016) was
trained to directly predict an action label one second into the future. Furnari and Farinella (2019)
proposed an LSTM-based sequence-to-sequence model to predict the future action at different time
steps before its start. Miech et al. (2019) modeled the transition probabilities between actions and
combine it with a predictive model to anticipate future action labels. Sener et al. (2020) proposed
a multi-scale temporal aggregation framework for learning representations. The learned representa-
tions were used for both short-term and long-term anticipation. Zatsarynna et al. (2021) introduced
a temporal convolutional network with a multi-modal fusion mechanism to predict actions one sec-
ond into the future. To exploit the characteristics of egocentric videos, Liu et al. (2020) utilized the
trajectories of hands as a representation for anticipating the future action. Similarly, Dessalene et al.
(2021) exploited hands and objects segmentation masks and used the time to contact between hands
and objects as a representation for the anticipation task. Recent approaches proposed transformer-
based models for the anticipation task (Girdhar and Grauman, 2021; Tai et al., 2021). In contrast to
these approaches, we address the anticipation task for a longer time horizon.

2.4.2 Long-Term Anticipation

The long-term action anticipation task has been proposed in our work (Abu Farha et al., 2018), which
will be discussed in Chapter 6. We proposed two models to predict a sequence of future activities with
their durations: an RNN-based and a CNN-based models. Both models were trained in a two-step
approach by first inferring the activities in the observed part, then anticipating the future activities
with their corresponding duration given the inferred activities. Inspired by these models, several
approaches extended our approach and further improved the results. Ke et al. (2019) proposed to use
temporal convolutions with attention to anticipate future activities. Instead of recursively predicting
future activities, the model is conditioned on a time variable and only generates a prediction for
that point in time. In (Gammulle et al., 2019a), a recurrent neural network with memory is used
to anticipate future activities from the ground-truth action labels of the observed frames. Sener
et al. (2020) proposed a multi-scale temporal aggregation framework for learning representations
by relating recent observations to the long-range past. The learned representations are then used as
input to an LSTM to generate the sequence of future activities. Piergiovanni et al. (2020) proposed
an adversarial generative grammar model and applied it for both action anticipation and forecasting
3D human poses. Morais et al. (2020) re-annotated the Breakfast dataset (Kuehne et al., 2014) with
hierarchical labels and proposed a hierarchical neural network model that predicts future actions at
multiple levels of granularity.

Despite the success of the previous approaches in predicting the future actions, they only predict
a single possible sequence of future actions. In (Abu Farha and Gall, 2019b), we proposed to pre-
dict multiple possible sequences to account for the uncertainty in the future. This approach will be
discussed in Chapter 7. Zhao and Wildes (2020) built on our approach and proposed a conditional
generative adversarial network with a normalized distance regularizer that encourages realistic and
diverse predictions.
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2.5 Anticipation Beyond Activity Labels

Predicting the future has become one of the main research topics in computer vision. A popular
research direction focuses on predicting future frames in videos at pixel level. One of the early at-
tempts on full resolution inputs was introduced by Ranzato et al. (2014), where recurrent models
from natural language processing were used to predict future frames in video sequences. Recurrent
neural networks were also used in (Srivastava et al., 2015). In (Mathieu et al., 2016), a multi-scale
fully convolutional neural network was trained with an adversarial loss to generate sharp predictions.
Liang et al. (2017) introduced a dual motion generative adversarial network (GAN) that predicts
both the future frames and the corresponding future optical flow. To improve the quality of the pre-
dicted frames, several approaches proposed to first predict future human poses then condition the
predicted frames on the generated poses (Villegas et al., 2017; Walker et al., 2017). Recent ap-
proaches tried to leverage physical knowledge to improve the anticipation approaches (de Bezenac
etal.,2018; Guen and Thome, 2020). While the quality of the predictions has significantly increased,
low level representations like pixels of frames cannot be used directly for realistic applications. In-
stead of predicting pixel values, many approaches have been proposed to predict future semantic
image segmentations (Luc et al., 2017; Nabavi et al., 2018; Bhattacharyya et al., 2019), or instance
segmentations (Luc et al., 2018; Sun et al., 2019b). Recently, Graber et al. (2021) combined these
two representations and introduced the panoptic segmentation forecasting task.

Anticipating other representations has also been popular, such as future human trajectories (Ki-
tani et al., 2012; Alahi et al., 2016), future human poses (Jain et al., 2016; Martinez et al., 2017,
Ruiz et al., 2019), traffic accidents (Suzuki et al., 2018), human intentions (Wu et al., 2017; Rasouli
et al., 2019), failure prediction (Hecker et al., 2018; Epstein et al., 2020), anticipation of instrument
usage in surgical videos (Rivoir et al., 2020), or even full sentences describing future frames or steps
in recipes (Sener and Yao, 2019; Mahmud et al., 2021). In contrast to these approaches, we focus on
predicting future action labels as a representation.

2.6 Datasets

2.6.1 Breakfast

The Breakfast dataset (Kuehne et al., 2014) is a collection of around 77 hours of video. In total, it
consists of 1712 video clips, each video shows one out of ten possible activities related to preparing
breakfast, such as making coffee or frying eggs. The activities were carried out by 52 different
subjects and captured in 18 different kitchens. These activities are composed of sequences of more
fine-grained actions like take bowl and pour cereals. In total, there are 48 such actions including
background. For our experiments, we consider these specific 48 actions. The average length of the
videos is around 2.3 minutes, with a temporal resolution of 15 frames per second (fps). Figure 2.1
shows some frames from the Breakfast dataset.

2.6.2 50Salads

The 50Salads dataset (Stein and McKenna, 2013) consists of 50 videos of preparing mixed salads.
These videos were carried out by 25 subjects, where each subject prepares 2 salads. The dataset
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Figure 2.1: Examples of frames from the Breakfast dataset. Each row depicts frames sampled from
the same video.

provides fine-granular annotations of 17 low level activities, and also a coarser one with three high
level activities. The dataset comes also with accelerometer data and depth images. However, in
our experiments, we consider only the annotated RGB frames with the fine-granular annotations.
The video sequences consist of actions related to preparing salads, such as peel cucumber and mix
ingredients. The average length of the videos is around 6.4 minutes, with a temporal resolution of 30
fps. Figure 2.2 shows some frames from the 50Salads dataset.

Figure 2.2: Examples of frames from the 50Salads dataset. Each row depicts frames sampled from
the same video.

2.6.3 Georgia Tech Egocentric Activities (GTEA)

The GTEA dataset (Fathi et al., 2011b) contains 28 videos corresponding to 7 different activities,
such as preparing coffee or cheese sandwich, performed by 4 subjects. This dataset contains ego-
centric videos recorded by a camera that is mounted on the actor’s head. The frames of the videos
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are annotated with 11 action classes including background. On average, each video has 20 action
instances. Figure 2.3 shows some frames from the GTEA dataset.

Figure 2.3: Examples of frames from the GTEA dataset. Each row depicts frames sampled from the
same video.

2.6.4 Bristol Egocentric Object Interactions Dataset (BEOID)

The BEOID dataset (Damen et al., 2014) contains 58 egocentric videos. The videos were recorded in
six locations: kitchen, workspace, laser printer, corridor with a locked door, cardiac gym, and weight-
lifting machine. Originally, the dataset has been used for task-relevant object discovery. Afterwards,
the video frames were annotated with 34 action classes and have recently been used for evaluating
weakly supervised action recognition approaches trained with timestamps annotations. Figure 2.4

shows some frames from the BEOID dataset.
E .
F
&”

Figure 2.4: Examples of frames from the BEOID dataset. Each row depicts frames sampled from
the same video.




CHAPTER 3

Preliminaries

In this chapter, we provide a brief overview of some concepts that are used throughout this thesis. We
start with an introduction to neural networks, convolutional neural networks, and temporal modelling
with recurrent neural networks and temporal convolutional networks. Then we describe how videos
are represented and how to extract frame-wise features. Finally, we formally define the evaluation
metrics for both the temporal action segmentation task and the long-term anticipation task.
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3.1 Neural Networks

A neural network is a model that consists of interconnected layers, where each layer receives con-
nections from the layer before. Each layer contains multiple processing units that are called neurons,
which apply transformations to the output of the previous layer. Layers of a neural network can be
grouped into three different groups: an input layer, hidden layers, and an output layer. The first layer
is the input layer, and the last layer is the output layer. Layers between input and output layers are
called hidden layers. In the standard form of the neural networks, the nodes and edges form a directed
acyclic graph. This kind of neural networks is called a feed-forward neural network or multi-layer
perceptron (MLP). Figure 3.1 shows the architecture of a feed-forward neural network with two hid-
den layers. Neural networks are used to approximate functions, and they are very popular in the field
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Input Layer Hidden Layers Output Layer

Figure 3.1: A feed-forward neural network with two hidden layers. Each layer consists of multiple
neurons. Each neuron is connected to all neurons form the previous layer.

of pattern recognition, where it is infeasible to describe the solution as set of rules. In the following,
we briefly describe the different components of neural networks.

3.1.1 Neuron

The neuron is the building block of neural networks. It can be viewed as a system that takes inputs,
applies a transformation on them, and produces an output which is called activation. First it computes
a weighted sum of the inputs, adds a bias, and then maps the final sum to an output value using
its activation function, which is differentiable, usually non-linear, function. Feed-forward neural
networks are constructed by stacking layers of neurons. Each neuron computes a weighted sum of
the activations from the layer before and applies some non-linear transformation on the computed
sum to produce an activation for the next layer as follows

K

ol = b 4+ Sl a7V, 3.1)
i=1

ol = £, (3.2)

where ay) is the activation of neuron j at layer [, o

-1, wz(.jl.)
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J

is the weight from neuron ¢ at layer [ — 1 to neuron j at layer /, and K is the total number
of neurons at layer [ — 1. In (3.2), f is a non-linear activation function. It is crucial to have such

is the weighted sum of activations from layer

non-linearity in intermediate layers. Otherwise, the transformation applied by the network would be
equivalent to a single layer network. Figure 3.2 shows the architecture of a neuron with its inputs and
output, and Figure 3.3 shows some of the most commonly used activation functions.
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Figure 3.2: A neuron with n inputs (z1,...,z,), weights (w1, ...,w,), a bias (b) and activation
function f.
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Figure 3.3: Different activation functions: Linear, Rectified Linear Unit (ReLU), tanh, and sigmoid.
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3.1.2 OQOutput Layer

The output layer is the last layer in the network that generates the final prediction for the correspond-
ing input. The selection of the activation function for the output layer depends on the task. For
regression tasks where the output is a real number, a linear activation function is used

flinear(x) =, (33)

whereas for classification tasks, the activation function depends on the number of the classes. In the
case of binary classification where the number of classes is only two, a sigmoid activation is used

1

fsigmoid(x) = m7

(3.4)
such that the output of the neuron is scaled to have a value between 0 and 1 to represent the probability
of the corresponding class. Similarly, for multi-class classification problems, a softmax layer is used
to ensure that the network output is a proper probability distribution over the different classes

05

fsoftmaa:(oi) = W, 3.5
¥

where o; is the output of the i-th neuron in the output layer. Note that softmax is only used if the
target is a single label. For a multi-label setup, a sigmoid activation is used.

Furthermore, the activation function of the output layer can be used to enforce some constraints
on the output values. For instance, an exponential activation can be used to enforce positive predic-
tions, whereas a tanh activation restricts the output of the network to be between -1 and 1.

3.1.3 Objective Function

The objective function is a function that quantitatively measures the discrepancy between the neural
network output and the desired one. Since it reflects the model performance, the objective function
is also called loss function or error function. This function guides the neural network training to find
a good set of parameters that minimize the error by following the negative direction of the objective
function gradients. Therefore, the objective function has to be differentiable with respect to the
network outputs. A commonly used objective function is the mean squared error (MSE)

1 N
2
ﬁmse N Z:: xna n) 5 (3.6)

where the objective function L,,s. is parameterized by the network parameters 6 (the weights and
biases of the network), N is the number of training examples, y(x,, 6) is the output corresponding
to the n-th training example, and ¢,, is the target or desired value for that example. For multi-class
classification tasks with C' classes, the cross-entropy loss is usually used

1 N C
Lee(0) = N Z Z tne log(ye(an,0)), 3.7

n=1c=1
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where the target ¢,, is represented by a one-hot encoding of the target class and ¢,, . is its value for
class c. Similarly, y.(x,,0) is the predicted probability for class c. Since the target is a one-hot
encoding vector, this loss can be written simply as

1 N
Lee(t) = =37 2, 109(ve(n, 0)), (3.8)

n=1

where y.(z,, 6) is the predicted probability for the target class c.

In general, any function that measures the discrepancy between the network output and some tar-
get value can be used as an objective function to train a neural network, given that it is differentiable
with respect to the network parameters.

3.1.4 Network Training

In the previous sections, we described how neural networks stack layers of transformations to map
the inputs to the desired outputs. The parameters of these transformations are learned from data
by searching the parameters space for a set of parameters (weights and biases) that minimize the
objective function. Gradient descent based algorithms are commonly used to train neural networks.
Starting with an initial set of parameters, the learning algorithm iteratively updates these parameters
by following the opposite direction of the gradients of the objective function with respect to the
network parameters

Oir1 = 0; —nVL(O;), (3.9

where 6; are the network parameters at the ¢-th iteration, L is the objective function, 7 is the learning
rate, which is a small positive number that controls how much we move in the direction of the
negative gradients. To compute the gradients with respect to the parameters at the intermediate
layers, the backpropagation algorthim is used. The backpropagation algorithm recursively applies
the chain rule such that the gradients with respect to the parameters at layer [ are defined based on
the gradients at layer [ + 1.

The choice of the learning rate 7 is crucial for the convergence of the training. A large value
of 1 can result in oscillations around the minimum value. On the contrary, if 1 is too small, the
training would take too long to converge. Recent methods use an adaptive learning rate for different
parameters based on the gradients moments such as the Adam optimizer (Kingma and Ba, 2015).

3.2 Convolutional Neural Networks (CNNs)

Traditional neural networks consist of fully connected layers, where each neuron receives connec-
tions from all neurons at the previous layer. This means that each layer is represented by a matrix
multiplication of a weight matrix and an activation vector from the previous layer. However, convo-
lutional networks are those networks that contain at least one layer of convolution. In contrast to fully
connected layers, convolutional layers exhibits sparse connectivity, where each neuron is connected
to a local region from the layer before. Moreover, neurons at the same layer share their parameters,
which results in a significant reduction in the number of parameters compared to fully connected
layers.
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Figure 3.4: The network architecture of LeNet-5 (LeCun et al., 1998).

Convolutional neural networks are widely applied on images, and show huge success in image
classification and recognition. Each layer can be seen as a learned filter, or kernel, that extracts local
features in the input image. As the parameters are shared between neurons operating at different
regions, it is possible to learn multiple kernels with a relatively small number of parameters. The
convolutional layer is then just a convolution operation between the input image I and the learned
kernel W. A two-dimensional convolution is defined as follows

(I« W)(i,5) = D I(i — 1,5 —m)W(l,m). (3.10)
Im

Usually, convolutional networks consist of several convolutional layers followed by fully con-
nected layers at the end. After the convolutional layers, a non-linearity is applied using some nonlin-
ear activation like the ReLU. Sometimes a pooling layer is applied, where the activations of multiple
neurons are reduced to a single one. Using such kind of layers, like max pooling, has the advantage
of providing invariance to small translations.

There has been many successful convolutional neural network architectures. One of the popular
2D CNNs is the LeNet-5 (LeCun et al., 1998) (see Figure 3.4), which is one of the first convolutional
networks and has been used to recognize handwritten digits. AlexNet (Krizhevsky et al., 2012) and
VGG (Simonyan and Zisserman, 2015) have also been popular and applied to several tasks such as
image classifications and object detection. Nowadays, the most commonly used architectures are
based on ResNet (He et al., 2016).

3.3 Recurrent Neural Networks (RNNs)

A recurrent neural network is a neural network with feedback loops that connect the outputs of some
neurons back to their inputs. Therefore, the neurons of an RNN form a directed cyclic graph. In
contrast to the traditional feed-forward networks, RNNs maintain a hidden state that summarizes the
previous inputs, which makes them suitable for modelling sequential data. For an input sequence
x1.7 = (21,...,27), the RNN updates its state h; for step ¢ based on the previous state h;_1 and the
input z; at time ¢. A vanilla RNN combines h;_; and x; linearly as follows

hy = f(Wyze + Wihe1 + ), (3.11)
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Wh

Figure 3.5: A vanilla recurrent neural network unfolded in time. The hidden state h; at each step
depends on the state from the previous time step h;—; and the input x; at the current step. The
parameters W, W}, and b are shared over time.

where W, W}, are weight matrices, b is a bias vector, and f is a non-linear activation function.
The parameters W,,, W}, and b are shared over time, which allows RNNs to handle input sequences
with arbitrary length. To train recurrent neural networks, the back-propagation through time (BPTT)
algorithm is used. First, the network is unfolded in time, where the same parameters are used in each
step. Then, the back-propagation algorithm is used to update the network parameters. Figure 3.5
shows a vanilla RNN unfolded in time.

Despite the ability of RNNs to handle long sequences, training them with gradient descent based
methods suffers from several problems such as vanishing or exploding gradients (Bengio et al., 1994).
To overcome these problems, several RNN variants have been developed by adopting multiplicative
gates in the RNN update rule. The most popular RNN architectures are the long short-term memory
(LSTM) (Hochreiter and Schmidhuber, 1997) and the gated recurrent unit (GRU) (Cho et al., 2014).

3.3.1 Long Short-Term Memory (LSTM)

As mentioned previously, vanilla RNNs suffer from the vanishing gradients problem. This makes
RNNs tend to forget quickly and restrict their ability to learn long temporal dependencies. To alle-
viate these problems, the LSTM adapts the recurrent architecture by introducing a memory cell that
is updated at each step using multiplicative gates. The LSTM applies the following update rules at
each time step

it = o(Wyixy + Whihi—1 + Weie—1 + by), (3.12)
ft = U(Wmfxt + thht_1 + chct_1 + bf), (3.13)
¢t = freem1 + i tanh(Weexy + Whehe—q + be), (3.14)
or = oc(Waomy + Whohi—1 + Weoer + bo), (3.15)
hy = o tanh(cy), (3.16)

where W, are weight matrices, b, are bias vectors, x; is the input at time ¢, h; is the hidden state at
time ¢, ¢; is the memory cell, o is the sigmoid function, i.e. o(z) = and iy, f;, o; are the input
gate, forget gate, and output gate, respectively.

At each step, the forget gate determines what information should be removed form the memory
cell and the input gate decides what should be added. Finally, the output is determined by multiplying
the memory cell with the output gate.

_1
1+e-2?
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3.3.2 Gated Recurrent Unit (GRU)

The GRU has been motivated by the LSTM. Nonetheless, it uses a simpler architecture with only
two gates. The GRU applies the following update rules at each time step

2zt =o0(Wyxy + Uyhy—1 + b2), (3.17)
ri = o(Wyay + Uphy—1 + by), (3.18)
he = tanh(Wyae + Up(rs © he—1) + by), (3.19)
he = (1= 2) Ohe—1 + 2 O hy, (3.20)

where W, W,., Wy, U,, U,, Uy, b., b, by, are the parameters of the GRU, z; is the input at time
t, hy is the hidden state at time ¢, o is the sigmoid function, ® is the Hadamard product, l~zt is called
the candidate state at time ¢, z; is the update gate, and 7; is the reset gate.

Both the reset gate and the update gate control which information should flow to the next time
step. The reset gate controls which information should be removed from the hidden state. Whereas
the update gate controls how much information from the previous hidden state and the new candidate
state should be transferred to the next time step.

3.4 Temporal Convolutional Networks (TCNs)

Temporal convolutional networks are a class of neural networks that are used to model sequential
data. TCNs stack several layers of temporal convolutional layers. A temporal convolutional layer
applies 1D convolution between the input sequence and a learned one dimensional kernel. For an
input sequence 1.7 = (x1,...,x7) and a convolutional layer with kernel W' of size k, the output of
the convloutional layer h; at time ¢ is defined as follows

k—1
he =) @i wi, (3.21)
=0

where wj is the i-th parameter of the convolutional kernel W. The convolution defined in (3.21) is
called causal since the output at time ¢ only depends on inputs up to time ¢. It is also possible to
define the convolution operation such that the output also depends on inputs from the future. In this
case, the convolution is called acausal as illustrated in Figure 3.6.

Similar to traditional convolutional neural networks (CNNs), TCNs can also optionally have
pooling layers. Other CNN-related concepts are also applicable to TCNs such as padding, strided
convolution, and dilated convolutions. In this thesis, we consider the dilated convolution variant. A
dilated convolution with dilation factor d is a standard convolution where the kernel is inflated by in-
serting d— 1 zeros between the consecutive elements of the kernel. For example, a dilated convolution
with kernel size 3 and dilation factor of 4 has a kernel of the form (wy, 0,0, 0, w1, 0, 0,0, ws).

In contrast to RNNs, the output of the TCNs at time ¢ does not depend on the output at previous
time steps and only depends on the input sequence. This allows for computing the output at all time
steps in parallel, which makes TCNs much faster than RNNs, especially for long sequences.
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Figure 3.6: Acausal temporal convolution with kernel size 3. Links with the same color indicates
sharing parameters.

3.5 Video Representation

A video is represented as a 4D tensor of dimension 3 x H x W x T, where T is the number of
frames, H x W is the spatial dimension of each frame, and 3 is the three RGB channels. While deep
learning approaches for action recognition takes the raw video frames as input, this is not feasible
for the temporal action segmentation or the long-term anticipation tasks due to the limited resources.
For these tasks, some videos might have more than ten thousands frames, which cannot be fitted in
the limited memory of modern GPUs. Therefore, the video frames are pre-processed by a feature
extraction algorithm and each frame is represented by an F-dimensional vector. Ie., the video is now
represented by an F' x T tensor, which serves as input for the temporal action segmentation task. In
this thesis, we work with two types of features representations: features based on improved dense
trajectories and deep learned features using 3D CNNs. In the following, we provide more details
about these features.

3.5.1 Improved Dense Trajectories (IDT)

Improved dense trajectories (Wang et al., 2013; Wang and Schmid, 2013) have been very successful
hand-crafted features for action recognition. The pipeline for extracting the dense trajectories is
illustrated in Figure 3.7. First, dense feature points are sampled at different spatial scales. Then,
these points are tracked through the video using optical flow. Finally, the trajectories are represented
by different descriptors. In details, points are sampled on a grid for multiple spatial scales and tracked
in each scale separately. To track the feature points, a dense optical flow field is first computed and
smoothed by a median filter. For the improved dense trajectories, the flow is further corrected for the
camera motion. Trajectories are then formed by concatenating tracked points of subsequent frames.
To avoid drifting in tracking the feature points, the trajectories length is limited to L frames (for
example . = 15). Furthermore, points sampled in homogeneous areas are discarded. Given the
sequence of tracked points, each trajectory is encoded by a sequence of normalized displacement
vectors. Furthermore, histograms of oriented gradients (HOG), histograms of optical flow (HOF),
and motion boundary histograms (MBH) descriptors are computed in a 3D volume of size N x N x L
aligned around the trajectory. To capture structure information, the 3D volume is further divided into
ne X g XNy grid and the descriptors are computed for each cell separately as illustrated in Figure 3.7.
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Figure 3.7: The pipeline for extracting dense trajectories from a video. Left: Dense sampling of
feature points on a grid for different spatial scales. Middle: The points are tracked in each spatial
scale for L frames based on a dense optical flow field. Right: The histograms of oriented gradients
(HOG), histograms of optical flow (HOF), and motion boundary histograms (MBH) are computed
along the trajectory in a IV x N pixels neighborhood, which is divided into n, x n, x n, cells. The
figure is taken from Wang et al. (2013).

In this thesis, we experimented with IDT-based features provided by Kuehne et al. (2016). First,
the IDT features are computed as described in Figure 3.7. Then the dimensionality is reduced to
64 using principal component analysis (PCA). After that, the trajectories are encoded by the Fisher
vectors (Sdnchez et al., 2013) based on a Gaussian mixture model (GMM) with 64 Gaussians. Fisher
vectors is a technique to encode a patch of features by describing their deviation from a universal
Gaussian mixture model. To compute these features, a GMM is first fitted to the features from all the
training data. Then, given a patch of K features x.j, the average gradients of the log-likelihood of
the features under the GMM is first computed with respect to the GMM parameters as follows

K
G)\<Z'1;K) = i Z V)\ lng)\(xk), (3.22)

K=
where p)y (zy) is the likelihood of the feature x;, and \ represents the parameters of the GMM. The
Fisher vector is then obtained by normalizing the gradients vector by the Fisher information matrix.
More details on computing the Fisher vectors are given in (Sdnchez et al., 2013). In our setup, each
frame in the input videos is represented by a feature vector based on the Fisher vectors encoding. To
get the feature vector for a frame, the Fisher vectors are computed using all the trajectories that start
in a window of 21 frames centered around that frame. Power- and £»-normalization are applied, and

at the end, the dimensionality is again reduced to 64 with PCA.

3.5.2 Deep Learned Features

The progress of deep learning in modelling video data has been falling behind the success achieved
for images. While initial attempts for using convolutional neural networks (CNNs) for video classifi-
cation achieved much worse results compared to using IDT-based features (Karpathy et al., 2014), it
was until the introduction of the two-stream network (Simonyan and Zisserman, 2014) when a deep
learning model could achieve a similar performance to the state-of-the-art hand-crafted features.
Two-stream networks consist of two parallel CNNs. The first CNN is called the spatial or the appear-
ance stream, which processes the RGB frames of the videos. Whereas the second stream is called
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Figure 3.8: To compute the feature vector xz; for frame ¢ with a window size of 21, all the frames in
the interval [t — 10, ¢ 4+ 10] are used as input to the 13D model.

the temporal stream, which takes a stack of optical flow frames. The output of these two streams
is fused and then passed to a classifier. Several methods afterwards followed this two-stream archi-
tecture and continuously improved the results. In (Carreira and Zisserman, 2017), the two-stream
architecture is extended to 3D CNNs where the learned convolutional kernels are three dimensional
and operate both on the spatial and the temporal dimension. To alleviate the difficulty of designing
and training 3D CNNs from scratch, Carreira and Zisserman (2017) proposed the 13D network by
inflating a successful 2D CNN architecture into 3D and using its pre-trained weights on the ImageNet
dataset (Deng et al., 2009) for initializing the 3D CNN weights.

Pre-training deep networks on large-scale action classification datasets can be used to learn rep-
resentations that are useful for other video understanding tasks. In this thesis, we use the I3D model
pre-trained on the Kinetics-400 dataset (Kay et al., 2017) to extract frame-wise features. To get a fea-
ture vector for a video frame, we forward a window of 21 frames centered around that frame to the
pre-trained I3D model. We pass both the RGB frames and the optical flow frames and get the output
of the penultimate layer from each stream. The final feature vector for that frame is then obtained by
concatenating the output of both the appearance and temporal streams. Figure 3.8 shows the frames
that are used to compute the feature vectors for each frame using a window of 21 frames.

3.6 Evaluation Metrics

3.6.1 Temporal Action Segmentation Metrics

Temporal action segmentation approaches use three different metrics: frame-wise accuracy, segmen-
tal edit score (Edit) and the segmental F1 score. In the following, we describe these metrics in detail.
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Frame-wise Accuracy (Acc). Frame-wise accuracy measures the percentage of the correctly pre-
dicted frames, i.e.

1% T, N
2iv=1 2t Lay,[Gu]
%

ZU=1 TU
where a, ¢ is the ground-truth label at frame ¢ in video v, ay, is the predicted label, T, is the total
number of frames in video v, and 14, ,[d¢ ] is an indicator function which equals one if and only if
the prediction is correct

Acc = - 100%, (3.23)

1 Zf Gty = Aty

Co . (3.24)
0 if ary # ary

]lat,'u [dt’y] = {

While the frame-wise accuracy (Acc) is the most commonly used metric for temporal action seg-

mentation, long action classes have a higher impact than short action classes on this metric. More-
over, frame-wise metrics are not sensitive to segment-level errors such as over-segmentation.

Edit Score. the Edit score is a segmental metric that penalizes over-segmentation errors and out of
order predictions. This metric is defined on a segment-level sequence of actions, which is referred to
as the transcript. The transcript for a sequence of frame-wise labels can be obtained by squeezing
consecutive frames with the same label. For instance, the sequence {a,a,a,b,b,c, ¢, c,c,c} has a
transcript of the form {a, b, c¢}. In contrast to the frame-wise accuracy, the edit score ignores the tem-
poral shifts between the ground-truth and the predicted segments and only considers the sequential
order of action segments. The edit score metric is defined based on the Levenshtein distance (Leven-
shtein, 1966), which measures the minimum number of character insertions, deletion or replacements
that are required to change a sequence of characters into another target sequence. The Levenshtein

distance between two sequences A = {é1, ..., d,} and A = {a1, ..., an} can be defined recursively
as follows
|4 if |Al =0,
|A] if |Al =0,
P L({ag,...,an},{a2,...,am}) if ap = ay,
L(AA) =< . . (3.25)
( ) L({fzg,...,an},A)
1+ min< L(A {a2,...,am}) otherwise,
L({ag, ..., an}, {az, ... am})

where L(.,.) is the Levenshtein distance, |.| denotes the length of a sequence. The edit score is then
computed based on the normalized Levenshtein distance

Edit = (1 —~ L(AiA)) -100%. (3.26)
maz(|Al, |A])

F1 Score. Similar to the edit score, the F1 score is also a segmental metric. However, unlike the
edit score, the F1 score considers the temporal overlap between the ground-truth and the predicted
segments. This metric is associated with a threshold k that is used to group the predicted segments
into true positives (TP) and false positives (FP) based on the intersection over union (IoU) ratio,

predicted segment N ground-truth segment

IoU = (3.27)

predicted segment U ground-truth segment’
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Figure 3.9: Examples of true positive, false positive and false negative segments for an intersection
over union (IoU) ratio k& of 25%. Note that both of the red segments have an IoU ratio higher than
25% but only the first one is considered as a true positive since it has a higher IoU ratio.

If a predicted segment has the same label as the ground-truth segment and the IoU ratio is higher
than k, then it is considered a true positive. Otherwise, the segment is considered a false positive.
If multiple predicted segments have an IoU ratio higher than k, then only the segment with the
maximum ratio is considered a true positive and the others are labeled as false positives. After
considering all the predicted segments, any ground-truth segment that is not associated with any
predicted segment is considered a false negative (FN). Figure 3.9 illustrates examples of the different
segment types for an IoU ratio of 25%. To compute the F1 score, we first calculate the precision and
the recall as follows

.. TP
Precision = TP+ FP (3.28)
TP
Recall = TP+ PN’ (3.29)

then, the F1 score at overlapping threshold k is defined as

Precision - Recall
Flag = 2. Lrecision - fecall - 00 (3.30)

Precision + Recall

Since the F1 score is based on the IoU ratio, it does not depend on the duration of the action seg-
ments and treats both short and long segments equally. Furthermore, small temporal shifts between
the predicted and the ground-truth segments are not penalized.

3.6.2 Long-Term Anticipation Metrics

The standard metric for the long-term action anticipation is the mean over classes (MoC). This
metric is defined by the average of the class-wise accuracy. I.e. the accuracy of each class is computed
independently by calculating the percentage of the correctly predicted frames for that class. Then,
the MoC is computed by taking the average of these accuracies over all classes as follows

1
MoC = GZC]ACCC, (3.31)

\% T, ~
v ]la v : ]]-c v
Acc, = Zv:l Zt=1 v,t [Go,t] [a,t] -100%, (3.32)

Vv T,
o=t 2ut21 Lef[av]
where C' is the total number of action classes, Acc, is the frame-wise accuracy for class ¢, a, is
the ground-truth label at frame ¢ in video v, a, ¢ is the predicted label, and 7, is the total number of
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frames in video v. Averaging the accuracies over the action classes ensures that both short and long
action segments contribute equally to the metric.



CHAPTER 4
Multi-Stage Temporal Convolutional
Networks for Action Segmentation

In this chapter, we propose two multi-stage architectures for the temporal action segmentation task.
In both architectures, the first stage generates an initial prediction that is refined by the next ones. To
capture long-range dependencies, we stack several layers of dilated temporal convolutions in each
stage covering a large receptive field with a few parameters. While the first architecture has a recep-
tive field that exponentially increases with the number of layers, the second architecture combines
both large and small receptive fields at each layer. We further propose a smoothing loss that penalizes
over-segmentation errors and improves the quality of the predictions. Extensive evaluation shows the
effectiveness of the proposed models in capturing long-range dependencies and recognizing action
segments. Our models achieve state-of-the-art results on three datasets when the work has been
published: 50Salads, Georgia Tech Egocentric Activities (GTEA), and the Breakfast dataset.

This chapter is based on (Abu Farha and Gall, 2019a; Li et al., 2020). Yazan Abu Farha proposed
the multi-stage architecture (MS-TCN), the smoothing loss, and wrote the papers. Shijie Li proposed
the extension of MS-TCN, which we call MS-TCN++. Both authors contributed to the experiments.
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4.1 Introduction

Action recognition from video has been an active research area in computer vision in the past few
years. Most of the efforts, however, have been focused on classifying short trimmed videos (Si-
monyan and Zisserman, 2014; Feichtenhofer et al., 2016; Carreira and Zisserman, 2017; Feichten-
hofer et al., 2019). Despite the success of these approaches on trimmed videos with a single activity,
their performance is limited on long videos containing many action segments. Since for many appli-
cations, like surveillance and robotics, it is crucial to temporally segment activities in long untrimmed
videos, approaches for temporal action segmentation have received more attention. Early attempts
for temporal action segmentation tried to extend the success on trimmed videos by combining these
models with sliding windows (Rohrbach et al., 2012; Karaman et al., 2014; Oneata et al., 2014).
These approaches use temporal windows of different scales to detect and classify action segments.
However, such approaches are expensive and do not scale for long videos. Other approaches apply
a coarse temporal modeling using Markov models on top of frame-wise classifiers (Kuehne et al.,
2016; Lea et al., 2016; Richard et al., 2017). While these approaches achieved good results, they are
very slow as they require solving a maximization problem over very long sequences.

With the success of temporal convolutional networks (TCNs) as a powerful temporal model for
speech synthesis, many researchers adapt TCN-based models for the temporal action segmentation
task (Lea et al., 2017; Lei and Todorovic, 2018; Ding and Xu, 2018). These models were more ca-
pable in capturing long range dependencies between the video frames by relying on a large receptive
field. However, these models are limited for a very low temporal resolution of a few frames per sec-
ond. Furthermore, since these approaches rely on temporal pooling layers to increase the receptive
field, many of the fine-grained information that is necessary for recognition is lost.

To overcome the limitations of the previous approaches, we propose a new model that also uses
temporal convolutions. In contrast to previous approaches, the proposed model operates on the full
temporal resolution of the videos and thus achieves better results. Our model consists of multiple
stages where each stage outputs an initial prediction that is refined by the next one. We call the new
architecture Multi-Stage Temporal Convolutional Network (MS-TCN). In each stage, we apply a se-
ries of dilated 1D convolutions, which enables the model to have a large temporal receptive field with
less parameters. Figure 4.1 shows an overview of the proposed multi-stage model. Furthermore, we
employ a smoothing loss during training which penalizes over-segmentation errors in the predictions.

While the proposed MS-TCN already achieves good performance, some of the design choices
are sub-optimal. First, although the receptive field is very large for higher layers in MS-TCN, lower
layers suffer from a small receptive field. Second, the first stage generates an initial prediction, which
is refined by the remaining stages. Despite the differences between these two tasks, all stages share
the same architecture. To address the first limitation, we propose a dual dilated layer (DDL) which
combines both large and small receptive fields at each layer. For the second, we divide the whole
architecture into two parts: The first part is the first stage, which is the prediction generation stage,
and the second part consists of prediction refinement stages. Then we customize the architecture
of each part separately and do not force all stages to have the same architecture as in MS-TCN.
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Figure 4.1: Overview of the multi-stage temporal convolutional network. Each stage generates an
initial prediction that is refined by the next stage. At each stage, several dilated 1D convolutions are

applied on the activations of the previous layer. A loss layer is added after each stage.

By incorporating these design choices on MS-TCN, we propose an improved version of the model,
which we call MS-TCN++. Furthermore, we show that the parameters of the refinement stages
in MS-TCN++ can be shared without compromising the accuracy. This model achieves superior
performance compared to MS-TCN with much less parameters. Our contribution is thus five folded:

We propose a multi-stage temporal convolutional network (MS-TCN) for the action segmen-
tation task that operates on the full temporal resolution.

We introduce a smoothing loss to enhance the quality of the predictions and reduce over-
segmentation errors.

We propose a dual dilated layer that combines large and small receptive fields.

We optimize the architecture design of MS-TCN by decoupling the prediction phase and the
refinement phase. We call the new model MS-TCN++, which achieves superior results com-
pared to MS-TCN.

We further show that sharing the parameters between the refinement stages in MS-TCN++
results in a more compact model without compromising performance.
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Extensive evaluation shows the effectiveness of our models in capturing long range dependen-
cies between action classes and producing high quality predictions. Our approach achieves state-
of-the-art results on three challenging benchmarks for action segmentation: 50Salads (Stein and
McKenna, 2013), Georgia Tech Egocentric Activities (GTEA) (Fathi et al., 2011b), and the Break-
fast dataset (Kuehne et al., 2014). Moreover, the proposed models are view-agnostic and work well
on all the three datasets, which depict videos with third person view, top view and egocentric videos.

4.2 Temporal Action Segmentation

We introduce a multi-stage temporal convolutional network (MS-TCN) for the temporal action seg-
mentation task. Then we introduce a new layer and address the limitations of MS-TCN to propose
an improved model called MS-TCN++. Given the frames of a video 1.7 = (x1,...,27), our goal
is to infer the class label for each frame a1.7 = (aq,...,ar), where T is the video length. First, we
describe the single-stage approach in Section 4.2.1, then we discuss the multi-stage model in Sec-
tion 4.2.2. Section 4.2.3 introduces the dual dilated layer. In Section 4.2.4, we analyze the drawbacks
of MS-TCN and introduce the improved model MS-TCN++. Finally, we describe the proposed loss
function in Section 4.2.5.

4.2.1 Single-Stage Temporal Convolutional Network (SS-TCN)

Our single stage model consists of only temporal convolutional layers. We do not use pooling layers,
which reduce the temporal resolution, or fully connected layers, which force the model to operate on
inputs of fixed size and massively increase the number of parameters. We call this model a single-
stage temporal convolutional network (SS-TCN). The first layer of a single-stage TCN isa 1 x 1
convolutional layer, that adjusts the dimension of the input features to match the number of feature
maps in the network. Then, this layer is followed by several layers of dilated 1D convolution. Inspired
by the wavenet (Van Den Oord et al., 2016) architecture, we use a dilation factor that is doubled at
each layer, i.e. 1, 2,4, ..., 512. All these layers have the same number of convolutional filters.
However, instead of the causal convolution that is used in wavenet, we use acausal convolutions with
kernel size 3. Each layer applies a dilated convolution with ReLU activation to the output of the
previous layer. We further use skip connections to facilitate gradients flow. The set of operations at
each layer can be formally described as follows

Hy = ReLU(Wy * Hi_1 + by), 4.1
Hy=H_1+W = H +b, 4.2)

where H is the output of layer [, * denotes the convolution operator, W, € R3*P*D are the weights
of the dilated convolution filters with kernel size 3 and D is the number of convolutional filters,
W e RY>P>D are the weights of a 1 x 1 convolution, and by, b € RP are bias vectors. These
operations are illustrated in Figure 4.2. Using dilated convolution increases the receptive field without
the need to increase the number of parameters by increasing the number of layers or the kernel size.
Since the receptive field grows exponentially with the number of layers, we can achieve a very large
receptive field with a few layers, which helps in preventing the model from over-fitting the training
data. The receptive field at each layer is determined by

ReceptiveField(l) = 21 — 1, (4.3)



4.2. Temporal Action Segmentation 37

A
4 # N
1x1
CReLWD

Dilated Conv
Dilation: 2’
A
\______ _J
{\

Figure 4.2: Overview of the dilated residual layer. At each layer [, the dilated residual layer uses a
convolution with dilated factor 2°.

where [ € [1, L] is the layer number. Note that this formula is only valid for a kernel of size 3. To get
the probabilities for the output class, we apply a 1 x 1 convolution over the output of the last dilated
convolution layer followed by a softmax activation, i.e.

Y, = Softmax(Whp +b), 4.4)

where Y; contains the class probabilities at time ¢, iy, ; is the output of the last dilated convolution
layer at time ¢, W € RE*P and b € R are the weights and bias for the 1 x 1 convolution layer. C
is the number of classes and D is the number of convolutional filters.

4.2.2 Multi-Stage Temporal Convolutional Network (MS-TCN)

Stacking several predictors sequentially has shown significant improvements in many tasks like hu-
man pose estimation (Wei et al., 2016; Newell et al., 2016; Dantone et al., 2014). The idea of these
stacked or multi-stage architectures is composing several models sequentially such that each model
operates directly on the output of the previous one. The effect of such composition is an incremental
refinement of the predictions from the previous stages.

Motivated by the success of such architectures, we introduce a multi-stage temporal convolutional
network (MS-TCN) for the temporal action segmentation task. In this multi-stage model, each stage
takes an initial prediction from the previous stage and refines it. The input of the first stage are the
frame-wise features of the video as follows

Y = i, 4.5)
Ve =F(Y*sh, (4.6)
where Y? is the output at stage s and F is the single-stage TCN discussed in Section 4.2.1. Using

such a multi-stage architecture helps in providing more context to predict the class label at each
frame. Furthermore, since the output of each stage is an initial prediction, the network is able to
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capture dependencies between action classes and learn plausible action sequences, which helps in
reducing the over-segmentation errors.

Note that the input to the next stage is just the frame-wise probabilities without any additional
features. We will show in the experiments how adding features to the input of the next stage affects
the quality of the predictions.

4.2.3 Dual Dilated Layer

In the dilated convolution layers in MS-TCN, the dilation factor increases as we increase the number
of layers. While this results in a large receptive field for higher layers, lower layers still suffer
from very low receptive fields. Furthermore, higher layers in MS-TCN apply convolutions over very
distant time steps due to the large dilation factor. To overcome this problem, we propose a dual
dilated layer (DDL). Instead of having one dilated convolution, the DDL combines two convolutions
with different dilation factor. The first convolution has a low dilation factor in lower layers and
exponentially increases as we increases the number of layers. Whereas for the second convolution,
we start with a large dilation factor in lower layers and exponentially decrease it with increasing the
number of layers. The set of operations at each layer can be formally described as follows

I:Il,dl = Wqy, * H_1 + bg,, 4.7
Hy g, = Wy, * Hi_q + by, (4.8)
H; = ReLU([Hyq,, Hy.0,]), (4.9)
Hy=H_+ W= H +b, (4.10)

where Wy, , Wy, € R3*P*P are the weights of dilated convolutions with dilation factor 2! and 2-~
respectively, W € RY*2P*D are the weights of a 1 x 1 convolution, and bg, , bg,, b € R are bias
vectors. In (4.9), H, 1,d, and H 1,do are concatenated. An overview of the dual dilated layer is illustrated
in Figure 4.3.

While the dual dilated layer combines local and global context from the input sequence, there
are other techniques in the literature for fusing multi-scale features like feature pyramid networks
(FPN) (Lin et al., 2017). While applying FPN for temporal action segmentation has been success-
ful (Ding and Xu, 2018), these approaches still suffer from a very limited receptive field. Moreover,
the multi-scale features in FPN are obtained by applying pooling operations which results in a loss
of the fine-grained information that is necessary for temporal segmentation. On the contrary, DDL
combines multi-scale features and yet preserves the temporal resolution of the input sequence.

424 MS-TCN++

In this section, we introduce MS-TCN++, which utilizes the proposed dual dilated layer to improve
MS-TCN. Similar to MS-TCN, the first stage in MS-TCN++ is responsible for generating the initial
prediction, whereas the remaining stages incrementally refine this prediction. For the prediction gen-
eration stage, we adapt an SS-TCN with dual dilated layers (Figure 4.3) replacing the simple dilated
residual layers (Figure 4.2) that are originally used in SS-TCN. Using the DDL enables the predic-
tion generation stage to capture both local and global features in all layers, which results in better
predictions. As refinement is easier than prediction generation, we adapt the SS-TCN architecture
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Figure 4.3: Overview of the dual dilated layer (DDL). At each layer [, DDL uses two convolutions
with dilated factor 2! and 25!, respectively, where L is the number of layers in the network.

with dilated residual layers for the refinement stages. In our experiments, we show that using DDL
only for the first stage performs best. Figure 4.4 shows an overview of the proposed MS-TCN++.

While adding more stages incrementally refines the predictions, it also drastically increases the
number of parameters. Nevertheless, as the refinement stages are sharing the same role, their pa-
rameters can be shared to get a more compact model. In the experiments, we show that sharing the
parameters between the refinement stages significantly reduces the number of parameters with only
a slight degradation in accuracy.

4.2.5 Loss Function

As a loss function, we use a combination of a classification loss and a smoothing loss. For the
classification loss, we use a cross entropy loss

Las = %Z ~log(yt.a), (4.11)
t
where y; , is the predicted probability for the ground truth label a at time ¢.

While the cross entropy loss already performs well, we found that the predictions for some of
the videos contain a few over-segmentation errors. To further improve the quality of the predictions,
we use an additional smoothing loss to reduce such over-segmentation errors. For this loss, we use a
truncated mean squared error over the frame-wise log-probabilities

1 ~
L1 mse = == 2, A7, (4.12)
TC = e
- A Ay, <
Apg={ te "TtaST (4.13)
T : otherwise

Atq = |log Yt.a — 109 Yt—1,a| s 4.14)
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Figure 4.4: Overview of MS-TCN++. The first stage adapts an SS-TCN model with dual dilated
layers. This stage generates an initial prediction that is refined incrementally by a set of [V, refine-
ment stages. For the refinement stages, an SS-TCN with dilated residual layers is used. A loss layer
is added after each stage.

where T is the video length, C' is the number of classes, y; , is the probability of class a at time ¢,
and 7 is a hyper-parameter.

Note that the gradients are only computed with respect to ¥; ., whereas y;_1 , is not considered
as a function of the model’s parameters. This loss is similar to the Kullback-Leibler (KL) divergence
loss where

1
Lxr =7 D v 1a(l0g yi-1.0 — 10g Yra)- (4.15)

t,a

However, we found that the truncated mean squared error (L7_jrsr) (4.12) reduces the over-
segmentation errors more. We will compare the KL loss and the proposed loss in the experiments.
The final loss function for a single stage is a combination of the above mentioned losses

Ls=Les + Ner_MmSE, (4.16)
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where A is a model hyper-parameter to determine the contribution of the different losses. Finally to
train the complete model, we minimize the sum of the losses over all stages

L= Z Ls. (4.17)

4.3 Experiments

Datasets. We evaluate the proposed models on three challenging datasets: 50Salads (Stein and
McKenna, 2013), Georgia Tech Egocentric Activities (GTEA) (Fathi et al., 2011b), and the Breakfast
dataset (Kuehne et al., 2014). Details about the datasets are available in Chapter 2.

For all datasets, we extract 13D (Carreira and Zisserman, 2017) features for the video frames
and use these features as input to our model. For the GTEA and Breakfast datasets we use the
temporal video resolution at 15 fps, while for 50Salads we downsampled the features from 30 fps to
15 fps to be consistent with the other datasets.

Evaluation Metrics. For evaluation, we report the frame-wise accuracy (Acc), segmental edit
score (Edit), and the segmental F1 score at overlapping thresholds 10%, 25% and 50%, denoted
by F1@{10,25,50}. The overlapping threshold is determined based on the intersection over union
(IoU) ratio. While the frame-wise accuracy is the most commonly used metric for action segmen-
tation, long action classes have a higher impact than short action classes on this metric and over-
segmentation errors have a very low impact. For that reason, we use the segmental F1 score as a
measure of the quality of the prediction as proposed by (Lea et al., 2017). Formal definitions for the
evaluation metrics are discussed in Chapter 3.

Implementation Details. For both MS-TCN and MS-TCN++, we use a multi-stage architecture
with four stages. While all stages are the same for MS-TCN, the stages in MS-TCN++ consist of one
prediction generation stage and three refinement stages. Each stage in MS-TCN and the refinement
stages in MS-TCN++ contain ten dilated convolution layers. For the prediction generation stage in
MS-TCN++, we use eleven layers. Dropout is used after each layer with probability 0.5. We set the
number of filters to 64 in all layers of the model and the filter size is 3. For the loss function, we set
7 =4 and X\ = 0.15. In all experiments, we use Adam optimizer with a learning rate of 0.0005.

4.3.1 Effect of the Number of Stages

We start our evaluation by showing the effect of using a multi-stage architecture (MS-TCN). Table 4.1
shows the results of a single-stage model compared to multi-stage models with different number of
stages. As shown in the table, all of these models achieve a comparable frame-wise accuracy. Never-
theless, the quality of the predictions is very different. Looking at the segmental edit distance and F1
scores of these models, we can see that the single-stage model produces a lot of over-segmentation
errors, as indicated by the low F1 score. On the other hand, using a multi-stage architecture reduces
these errors and increases the F1 score. This effect is clearly visible when we use two or three stages,
which gives a huge boost to the accuracy. Adding the fourth stage still improves the results but not
as significant as the previous stages. However, by adding the fifth stage, we can see that the perfor-
mance starts to degrade. This might be an over-fitting problem as a result of increasing the number
of parameters. The effect of the multi-stage architecture can also be seen in the qualitative results
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F1@{10,25,50} Edit Acc

SS-TCN 27.0 253 21.5 205 782
MS-TCN (2 stages) 55,5 529 473 479 1798
MS-TCN (3 stages) 71.5 68.6 61.1 64.0 78.6
MS-TCN (4 stages) 76.3 74.0 645 679 80.7
MS-TCN (5 stages) 764 734 63.6 69.2 79.5

Table 4.1: Effect of the number of stages on the 50Salads dataset.
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Figure 4.5: Qualitative result from the 50Salads dataset for comparing different number of stages.

shown in Figure 4.5. Adding more stages results in an incremental refinement of the predictions. In
the rest of the experiments we use a multi-stage TCN with four stages.

Multi-Stage TCN vs. Deeper Single-Stage TCN

Table 4.1 showed that our multi-stage architecture is better than a single-stage one. However, this
comparison does not show whether the improvement is because of the multi-stage architecture or
due to the increase in the number of parameters when adding more stages. For a fair comparison, we
train a single-stage model that has the same number of parameters as the multi-stage one. As each
stage in our MS-TCN contains 12 layers (ten dilated convolutional layers, one 1 x 1 convolutional
layer and a softmax layer), we train a single-stage TCN with 48 layers, which is the number of layers
in a MS-TCN with four stages. For the dilated convolutions, we use similar dilation factors as in
our MS-TCN. Le. we start with a dilation factor of 1 and double it at every layer up to a factor of
512, and then we start again from 1. As shown in Table 4.2, our multi-stage architecture outperforms
its single-stage counterpart with a large margin of up to 27%. This highlights the impact of the
multi-stage architecture in improving the quality of the predictions.

F1@{10,25,50} Edit Acc

SS-TCN (48 layers) 490 464 402 40.7 78.0
MS-TCN 76.3 74.0 645 67.9 80.7

Table 4.2: Comparing a multi-stage TCN with a deep single-stage TCN on the 50Salads dataset.
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F1@{10,25,50} Edit Acc

Leis 713 69.7 60.7 642 799
Leos + k1, 719 693 60.1 64.6 80.2
Leos + ANer_MsE 76.3 740 645 67.9 80.7

Table 4.3: Comparing different loss functions on the 50Salads dataset.
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Figure 4.6: Qualitative result from the 50Salads dataset for comparing different loss functions.

4.3.2 Comparing Different Loss Functions

As a loss function, we use a combination of a cross-entropy loss, which is common practice for
classification tasks, and a truncated mean squared loss over the frame-wise log-probabilities to ensure
smooth predictions. While the smoothing loss slightly improves the frame-wise accuracy compared
to the cross entropy loss alone, we found that this loss produces much less over-segmentation errors.
Table 4.3 and Figure 4.6 show a comparison of these losses. As shown in Table 4.3, the proposed
loss achieves better F1 and edit scores with an absolute improvement of up to 5%. This indicates that
our loss produces less over-segmentation errors compared to cross entropy since it forces consecutive
frames to have similar class probabilities, which results in a smoother output.

Penalizing the difference in log-probabilities is similar to the Kullback-Leibler (KL) divergence
loss, which measures the difference between two probability distributions. However, the results show
that the proposed loss produces better results than the KL loss as shown in Table 4.3 and Figure 4.6.
The reason behind this is the fact that the KL divergence loss does not penalize cases where the
difference between the target probability and the predicted probability is very small. Whereas the
proposed loss penalizes small differences as well. Note that, in contrast to the KL loss, the proposed
loss is symmetric. Figure 4.7 shows the surface for both the KL loss and the proposed truncated
mean squared loss for the case of two classes. We also tried a symmetric version of the KL loss but
it performed worse than the KL loss.

Impact of A and 7

The effect of the proposed smoothing loss is controlled by two hyper-parameters: A and 7. In this
section, we study the impact of these parameters and see how they affect the performance of the
proposed model.

Impact of \: In all experiments, we set A = 0.15. To analyze the effect of this parameter, we train
different models with different values of A\. As shown in Table 4.4, the impact of A is very small on
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Figure 4.7: Loss surface for the Kullback-Leibler (KL) divergence loss (L) and the proposed
truncated mean squared loss (L7_prsk) for the case of two classes. y; . is the predicted probability
for class ¢ and y;_1 .. is the target probability corresponding to that class.

the performance. Reducing A to 0.05 still improves the performance but not as good as the default
value of A = 0.15. Increasing its value to A = 0.25 also causes a degradation in performance.
This drop in performance is due to the fact that the smoothing loss heavily penalizes changes in
frame-wise labels, which affects the detected boundaries between action segments.

Impact of 7: This hyper-parameter defines the threshold to truncate the smoothing loss. Our default
value is 7 = 4. While reducing the value to 7 = 3 still gives an improvement over the cross entropy
baseline, setting 7 = 5 results in a huge drop in performance. This is mainly because when 7 is
too high, the smoothing loss penalizes cases where the model is very confident that the consecutive
frames belong to two different classes, which indeed reduces the capability of the model in detecting
the true boundaries between action segments.

Impact of A F1@{10,25,50}  Edit Acc

MS-TCN (A =0.05, 7=4) 741 717 624 66.6 80.0
MS-TCN (A =0.15, 7=4) 763 74.0 645 679 80.7
MS-TCN (A =0.25, 7=4) 747 724 637 681 789

Impact of 7 F1@{10,25,50} Edit Acc

MS-TCN(\ = 0.15, 7 =3) 742 721 622 67.1 79.4
MS-TCN (A = 0.15, 7 = 4) 763 740 645 67.9 80.7
MS-TCN (A = 0.15, 7 = 5) 66.6 637 547 60.0 74.0

Table 4.4: Impact of A and 7 on the 50Salads dataset.
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F1@{10,25,50}  Edit Acc

Probabilities and features 56.2 53.7 458 47.6 76.8
Probabilities only 76.3 740 645 67.9 80.7

Table 4.5: Effect of passing features to higher stages on the 50Salads dataset.
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Figure 4.8: Qualitative results for two videos from the 50Salads dataset showing the effect of passing
features to higher stages.

4.3.3 Effect of Passing Features to Higher Stages

In the proposed multi-stage TCN, the input to higher stages are the frame-wise probabilities only.
However, in the multi-stage architectures that are used for human pose estimation, additional fea-
tures are usually concatenated to the output heat-maps of the previous stage. In this experiment,
we therefore analyze the effect of combining additional features to the input probabilities of higher
stages. To this end, we trained two multi-stage TCNs: one only with the predicted frame-wise prob-
abilities as input to the next stage, and, for the second model, we concatenated the output of the last
dilated convolutional layer in each stage to the input probabilities of the next stage. As shown in
Table 4.5, concatenating the features to the input probabilities results in a huge drop of the F1 score
and the segmental edit distance (around 20%). We argue that the reason behind this degradation
in performance is that a lot of action classes share similar appearance and motion. By adding the
features of such classes at each stage, the model is confused and produces small separated falsely de-
tected action segments that correspond to an over-segmentation effect. Passing only the probabilities
forces the model to focus on the context of neighboring labels, which are explicitly represented by
the probabilities. This effect can also be seen in the qualitative results shown in Figure 4.8.

4.3.4 MS-TCN++ vs. MS-TCN

In this section, we compare the two multi-stage architectures: MS-TCN++ and MS-TCN. In contrast
to MS-TCN, MS-TCN++ uses the dual dilated layer (DDL) in the first stage. Table 4.6 shows the
results of both architectures on the 50Salads dataset. As shown in the table, MS-TCN++ outperforms
MS-TCN with a large margin of up to 6.4%. This emphasizes the importance of combining both local
and global representations in the prediction generation stage by utilizing the DDL in MS-TCN++.
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Figure 4.9: Qualitative results for two videos from the 50Salads dataset showing the impact of the
dual dilated layer (DDL).

F1@{10,25,50} Edit Acc

MS-TCN 763 740 645 679 80.7
MS-TCN with DDL 773 750 673 69.8 824
MS-TCN++ 80.7 78,5 70.1 743 83.7

Table 4.6: MS-TCN++ vs. MS-TCN vs. MS-TCN with DDL on the 50Salads dataset.

To study the impact of using DDL in all stages, we also train an MS-TCN where we use the DDL in
all stages. As shown in Table 4.6, MS-TCN++ outperforms MS-TCN with DDL in all stages. This
indicates that decoupling the design of the refinement stages and the prediction generation stage is
crucial. While utilizing the global context by the DDL is crucial for the prediction generation stage,
the refinement stages focus more on the local context. By adding DDL to the refinement stages, the
accuracy even drops due to overfitting. Note that using DDL in all stages outperforms MS-TCN with
up to 2.8%. This further highlights the gains of the DDL. The impact of DDL is also visible in the
qualitative results shown in Figure 4.9.

4.3.5 Impact of the Number of Layers

For MS-TCN and the refinement stages in MS-TCN++, we fix the number of layers in each stage to
10 layers. Whereas for the prediction generation stage in MS-TCN++, we set the number of layers
to 11. In this section, we study the impact of these parameters. Table 4.7 shows the impact of the
number of layers (L) for the MS-TCN stages on the 50Salads dataset. Increasing L form 8 to 10
significantly improves the performance. This is due to the increase in the receptive field. Using more
than 10 layers (L = 11, L = 12) does not improve the frame-wise accuracy but slightly increases the
F1 scores. We also tried to change the number of layers only in the refinement stages in MS-TCN.
As shown in Table 4.8, this does not have a significant impact and using 10 layers achieves the best
performance. Also for the refinement stages in MS-TCN++, the number of layers L, does not have
a significant impact on the performance. To be consistent with MS-TCN, we set L, = 10 which
achieves a reasonable trade-off on performance with respect to all metrics as shown in Table 4.8.
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Table 4.7: Effect of the number of layers (L) in each stage of MS-TCN on the 50Salads dataset.

F1@{10,25,50}

Edit

Acc

i
Il

MS-TCN

o

<

%
i
—_

3
— = == 00 O\

[\

<

74.3
75.4
76.3
75.0
74.1

71.5
72.4
74.0
72.0
71.2

62.8
64.3
64.5
63.5
62.3

66.0
68.0
67.9
67.6
65.7

78.6
79.5
80.7
80.3
79.1

<

MS-TCN++

o

<

p—

<

SISESESESIISESESESES

<

\S]

3
1l
—_— = 00 O\

78.2
80.9
80.7
80.5
79.4

75.6
78.2
78.5
78.3
76.9

67.7
70.2
70.1
70.0
69.2

69.6
73.4
74.3
72.6
71.3

82.3
82.9
83.7
83.4
83.5

Table 4.8: Effect of the number of layers (L, ) in each refinement stage on the 50Salads dataset.

A similar behavior can be observed in Table 4.9 for the number of layers L, in the prediction
generation stage with L, = 11 achieving the best performance. Generally speaking, the number of
layers in each stage has more impact in MS-TCN compared to MS-TCN++. As the main difference
between these two models is the dual dilation layer (DDL) that is used in MS-TCN++, this indicates
that the DDL can better capture both local and global features to generate much better predictions.
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Table 4.9: Effect of the number of layers (L) in the prediction generation stage for MS-TCN++ on

the 50Salads dataset.
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Duration F1@{10,25,50} Edit Acc

< 1 min 89.6 879 77.0 825 76.6
MS-TCN 1—-1.5mn 859 843 719 80.7 764
>15mmn 812 765 584 718 759

< 1 min 904 904 80.8 844 793
MS-TCN++ 1—1.5min 887 858 75.1 83.6 793
>15min 80.8 78.8 633 76.1 772

Table 4.10: Evaluation of three groups of videos from the GTEA dataset based on their durations.

N, F1@{10,25,50} Edit Acc
MS-TCN++ 0 51.0 484 407 404 80.7
MS-TCN++ 1 70.7 682 59.7 62.0 82.4
MS-TCN++ 2 778 751 669 694 82.5
MS-TCN++ 3 80.7 785 70.1 743 837
MS-TCN++ 4 80.6 787 701 73.1 824

Table 4.11: Impact of the number of refinement stages on the 50Salads dataset.

4.3.6 Impact of the Large Receptive Field on Short Videos

To study the impact of the large receptive field on short videos, we evaluate MS-TCN and MS-
TCN++ on three groups of videos based on their durations. For this evaluation, we use the GTEA
dataset since it contains shorter videos compared to the other datasets. As shown in Table 4.10, both
MS-TCN and MS-TCN++ perform well on both short and long videos. Nevertheless, the perfor-
mance is slightly worse on longer videos due to the limited receptive field. The improvements of
MS-TCN++ over MS-TCN are also noticeable for both short and long videos.

4.3.7 Effect of the Number of Refinement Stages

We set the number of refinement stages NV, in MS-TCN++ to 3 stages, which results in a model
with 4 stages in total. Table 4.11 shows the impact of the refinement stages on the 50Salads dataset.
Using only the prediction generation stage (N, = 0) results in a relative low performance but it
is much better than a single stage TCN (Table 4.1). Adding more refinement stages improves the
performance incrementally. Nevertheless, adding more than 3 refinement stages does not provide
additional improvements.

4.3.8 Impact of Parameters Sharing

MS-TCN++ consists of a prediction generation stage and 3 refinement stages. Although adding more
stages results in a better performance, it also increases the number of parameters. As the refinement
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F1@{10,25,50} Edit Acc # param.(m)
MS-TCN 76.3 740 645 67.9 80.7 0.80
MS-TCN++ 80.7 785 70.1 743 83.7 0.99
MS-TCN++(sh) 78.7 76.6 683 70.7 82.2 0.66

Table 4.12: Impact of sharing parameters for the refinement stages on the 50Salads dataset.

stages share in principle the same task, it is hence intuitive that they can share parameters. Ta-
ble 4.12 shows the impact of sharing parameters between the refinement stages. Sharing parameters
significantly reduces the number of parameters with only a slight decrease in performance. For an
MS-TCN++ with 3 refinement stages, sharing parameters reduces the total number of parameters to
roughly 66% of the total parameters in the original model. As shown in the table, MS-TCN++ with
shared parameters outperforms MS-TCN with a margin of up to 3.8% despite having less parameters.

4.3.9 Impact of Temporal Resolution

Previous temporal models operate on a low temporal resolution of 1-3 frames per second (Lea et al.,
2017; Lei and Todorovic, 2018; Ding and Xu, 2018). On the contrary, our approach is able to handle
a higher resolution of 15 fps. In this experiment, we evaluate MS-TCN and MS-TCN++, with and
without parameter sharing, for a low temporal resolution of 1 fps. As shown in Table 4.13, both mod-
els are able to handle both low and high temporal resolutions. While reducing the temporal resolution
for MS-TCN results in a better edit distance and segmental F1 score, using a higher resolution gives
better frame-wise accuracy. Operating on a low temporal resolution makes MS-TCN less prone to
the over-segmentation problem, which is reflected in the better edit and F1 scores. Due to the dual di-
lated layers, MS-TCN++ benefits more from a higher temporal resolution and the impact of reducing
the temporal resolution for MS-TCN++ is noticeable for all evaluation metrics. Note that even when
we share the parameters of the refinement stages in MS-TCN++, using a higher temporal resolution
results in a better performance.

F1@{10,25,50} Edit Acc

MS-TCN (1 fps) 778 749 640 70.7 78.6
MS-TCN (15 fps) 763 740 645 679 80.7
MS-TCN++ (1 fps) 804 78.7 68.6 733 8l1.1
MS-TCN++ (15 fps) 80.7 785 70.1 743 83.7
MS-TCN++(sh) (1 fps) 77.0 738 640 69.1 80.8
MS-TCN++(sh) (15 fps) 787 176.6 683 70.7 82.2

Table 4.13: Impact of temporal resolution on the 50Salads dataset.
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F1@{10,25,50} Edit Acc

w/o FT SS-TCN 62.8 60.0 48.1 550 733
MS-TCN 85.8 834 698 79.0 763
MS-TCN++ 87.0 852 735 820 787
MS-TCN++(sh) 87.8 86.2 744 82.6 789
with FT SS-TCN 69.5 649 558 61.1 753
MS-TCN 875 854 746 814 79.2
MS-TCN++ 88.8 857 76.0 835 80.1

MS-TCN++(sh) 88.2 86.2 759 83.0 79.7

Table 4.14: Effect of fine-tuning on the GTEA dataset.

4.3.10 Impact of Fine-tuning the Features

In our experiments, we use the I3D features without fine-tuning. Table 4.14 shows the effect of
fine-tuning on the GTEA dataset. Both of our multi-stage architectures, MS-TCN and MS-TCN++,
significantly outperform the single stage architecture - with and without fine-tuning. This also holds
when the parameters of the refinement stages in MS-TCN++ are shared. Fine-tuning improves the
results, but the effect of fine-tuning for action segmentation is lower than for action recognition. This
is expected since the temporal model is by far more important for segmentation than for recognition.

Note that without fine-tuning, sharing parameters achieves better results on GTEA. This is mainly
due to the reduced number of parameters, which prevents the model from over-fitting the training
data, especially for small datasets like GTEA.

4.3.11 Comparison with the State-of-the-Art

We divide state-of-the-art methods into two groups: methods published before the proposal of our
temporal convolutional networks, and methods that extend and build on our models. In the following
we compare our models with both types of the state-of-the-art methods.

Comparison with Previous Approaches

In this section, we compare the proposed models to the state-of-the-art methods on three datasets:
50Salads, Georgia Tech Egocentric Activities (GTEA), and the Breakfast datasets. The results are
presented in Table 4.15. As shown in the table, our models outperform the state-of-the-art methods
on the three datasets and with respect to three evaluation metrics: F1 score, segmental edit distance,
and frame-wise accuracy (Acc) with a large margin (up to 11.6% for the frame-wise accuracy on the
50Salads dataset). Qualitative results on the three datasets are shown in Figure 4.10. Note that all the
reported results are obtained using the I3D features. To analyze the effect of using a different type of
features, we evaluated MS-TCN on the Breakfast dataset using the improved dense trajectories (IDT)
features, which are the commonly used features for the Breakfast dataset. As shown in Table 4.15,
the impact of the features is very small. While the frame-wise accuracy and edit distance are slightly
better using the 13D features, the model achieves a better F1 score when using the IDT features
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Figure 4.10: Qualitative results for the temporal action segmentation task on (a)(b) S0Salads, (c)(d)
GTEA, and (e)(f) Breakfast dataset.

compared to I3D. This is mainly because I3D features encode both motion and appearance, whereas
the IDT features encode only motion. For datasets like Breakfast, using appearance information does
not help the performance since the appearance does not give a strong evidence about the action that
is carried out. This can be seen in the qualitative results shown in Figure 4.10. The video frames
share a very similar appearance. Additional appearance features therefore do not help in recognizing
the activity. As shown in Table 4.15, sharing the parameters of the refinement stages achieves similar
performance to MS-TCN++, but it requires about 66% less parameters as reported in Table 4.12.

As our approaches do not use any recurrent layers, they are very fast both during training and
testing. Training MS-TCN++ for 50 epochs takes only 10 minutes on the 50Salads dataset compared
to 35 minutes for training a single cell of a Bi-LSTM with a 64-dimensional hidden state on a single
GTX 1080 Ti GPU. This is due to the sequential prediction of the LSTM, where the activations at
any time step depend on the activations from the previous steps. For the MS-TCN and MS-TCN++,
activations at all time steps are computed in parallel.
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Comparison with Approaches Extending our Models

Motivated by the success of the proposed architectures, several approaches built on top of them and
further improved the results. For instance, Huang et al. (2020) used the predictions of our models to
construct a graph and then apply a graph convolutional network to model relations between the action
segments. Other approaches predicted action boundaries and used them to aggregate predictions
inside the action segments (Wang et al., 2020; Ishikawa et al., 2021). Recently, Gao et al. (2021)
proposed a global-to-local search scheme to determine the dilation factors for each layer. Souri
et al. (2021) used a TCN-based backbone similar to our models and combine it with a sequence-
to-sequence model that predicts the action segments and their durations. A comparison with these
approaches is provided in Table 4.16. Our models are still competitive with these approaches. Our
architectures have also been used as a backbone for self-supervised domain adaption approaches for
the action segmentation task (Chen et al., 2020).

4.4 Summary

We presented two multi-stage architectures for the temporal action segmentation task. While the
first stage generates an initial prediction, this prediction is iteratively refined by the higher stages.
Instead of the commonly used temporal pooling, we used dilated convolutions to increase the tem-
poral receptive field. The experimental evaluation demonstrated the capability of our architecture in
capturing temporal dependencies between action classes and reducing over-segmentation errors. We
further introduced a smoothing loss that gives an additional improvement of the predictions quality.
We also introduced a dual dilated layer that captures both local and global features, which results in
better performance. Moreover, we showed that sharing the parameters in the refinement stages results
in a more efficient model with a slight degradation in performance. Our models outperformed the
state-of-the-art methods when the work has been published on three challenging datasets recorded
from different views with a large margin. Since our models are fully convolutional, they are very
efficient and fast both during training and testing.
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50Salads F1@{10,25,50}  Edit Acc
Spatial CNN(Lea et al., 2016) 323 27.1 189 248 549
IDT+LM(Richard and Gall, 2016) 444 389 27.8 458 48.7
Bi-LSTM(Singh et al., 2016a) 62.6 58.3 470 556 557
Dilated TCN(Lea et al., 2017) 522 47.6 374 43.1 593
ST-CNN(Lea et al., 2016) 559 49.6 37.1 459 594
ED-TCN(Lea et al., 2017) 68.0 639 526 526 64.7
TRN(Lei and Todorovic, 2018) 70.2 654 563 637 669
TDRN+UNet(Lei and Todorovic, 2018)  69.6 65.0 53.6 62.2 66.1
TDRN(Lei and Todorovic, 2018) 729 685 572 660 68.1
LCDC+ED-TCN(Mac et al., 2019) 73.8 - - 669 72.1
MS-TCN 76.3 740 645 679 80.7
MS-TCN++(sh) 78.7 76.6 68.3 70.7 82.2
MS-TCN++ 80.7 785 70.1 743 83.7
GTEA F1@{10,25,50}  Edit Acc
Spatial CNN(Lea et al., 2016) 41.8 36.0 25.1 - 54.1
Bi-LSTM(Singh et al., 2016a) 66.5 59.0 43.6 - 55.5
Dilated TCN(Lea et al., 2017) 58.8 522 422 - 58.3
ST-CNN(Lea et al., 2016) 587 544 419 - 60.6
ED-TCN(Lea et al., 2017) 722 69.3 56.0 - 64.0
LCDC+ED-TCN(Mac et al., 2019) 75.4 - - 72.8 65.3
TRN(Lei and Todorovic, 2018) 774 713 59.1 722 6738
TDRN+UNet(Lei and Todorovic, 2018)  78.1 73.8 62.2 737 69.3
TDRN(Lei and Todorovic, 2018) 792 744 6277 74.1 70.1
MS-TCN 875 854 746 814 792
MS-TCN++(sh) 88.2 86.2 759 83.0 79.7
MS-TCN++ 88.8 857 76.0 83.5 80.1
Breakfast F1@{10,25,50} Edit Acc
ED-TCN (Lea et al., 2017)* - - - - 43.3
HTK (Kuehne et al., 2017) - - - - 50.7
TCFPN (Ding and Xu, 2018) - - - - 52.0
HTK(64) (Kuehne et al., 2016) - - - - 56.3
GRU (Richard et al., 2017)* - - - - 60.6
GRU-+length prior (Kuehne et al., 2020) - - - - 61.3
MS-TCN (IDT) 582 529 408 614 65.1
MS-TCN (I3D) 52.6 48.1 379 61.7 66.3
MS-TCN++(I3D) (sh) 63.3 57.7 445 649 673
MS-TCN++ (I3D) 64.1 58.6 459 65.6 67.6

Table 4.15: Comparison with the state-of-the-art on 50Salads, GTEA, and the Breakfast dataset. (*

obtained from (Ding and Xu, 2018)).
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50Salads F1@{10,25,50} Edit Acc
MS-TCN 763 740 645 679 80.7
MS-TCN++(sh) 787 76.6 683 70.7 822
MS-TCN++ 80.7 785 70.1 743 83.7
MS-TCN + GTRM (Huang et al., 2020) 754 728 639 675 826
BCN (Wang et al., 2020) 823 813 740 743 844
ASREF (Ishikawa et al., 2021) 849 835 773 793 845
MS-TCN + Global2Local (Gao et al., 2021) 80.3 78.0 69.8 73.4 82.2
GTEA F1@{10,25,50} Edit Acc
MS-TCN 875 854 746 814 792
MS-TCN++(sh) 882 862 759 83.0 79.7
MS-TCN++ 88.8 857 76.0 835 80.1
BCN (Wang et al., 2020) 885 87.1 773 844 798
ASRF (Ishikawa et al., 2021) 89.4 87.8 79.8 837 1773
MS-TCN + Global2Local (Gao et al.,2021) 899 873 758 84.6 785
Breakfast F1@{10,25,50} Edit Acc
MS-TCN (IDT) 582 529 408 614 65.1
MS-TCN (I3D) 526 48.1 379 61.7 66.3
MS-TCN++(I3D) (sh) 633 577 445 649 67.3
MS-TCN++ (I3D) 64.1 58.6 459 656 67.6
MS-TCN + GTRM (Huang et al., 2020) 575 540 433 587 650
BCN (Wang et al., 2020) 68.7 655 550 662 704
ASREF (Ishikawa et al., 2021) 743 689 56.1 724 67.6
MuCon (Souri et al., 2021) 732 66.1 484 763 62.8

MS-TCN + Global2Local (Gao et al., 2021) 749 69.0 552 733 70.7

Table 4.16: Comparison with the state-of-the-art approaches extending our models on 50Salads,
GTEA, and the Breakfast dataset.



CHAPTER 5
Temporal Action Segmentation from
Timestamp Supervision

In the previous chapter, we proposed two temporal convolutional networks for action segmentation.
While these networks show impressive performance in segmenting actions, training these models
is expensive as it requires annotating every single frame in the training videos. Recently, several
approaches managed to reduce the amount of required annotations. For instance, it is possible now
to train an action segmentation model using only an ordered list of actions that occur in the video.
However, the performance of these approaches is still significantly worse than the performance of
the approaches that rely on the full supervision.

To alleviate the limitations of the previous approaches, we propose in this chapter to use time-
stamp supervision for the temporal action segmentation task. Timestamps require a comparable
annotation effort to annotating the list of actions occurring in the video, and yet provide a more su-
pervisory signal. To demonstrate the effectiveness of timestamp supervision, we propose an approach
to train a segmentation model using only timestamps annotations. Our approach uses the model out-
put and the annotated timestamps to generate frame-wise labels by detecting the action changes. We
further introduce a confidence loss that forces the predicted probabilities to monotonically decrease
as the distance to the timestamps increases. This ensures that all and not only the most distinctive
frames of an action are learned during training. The evaluation on four datasets shows that models
trained with timestamps annotations achieve comparable performance to the performance achieved
by fully supervised approaches.

This chapter is based on (Li et al., 2021). Yazan Abu Farha proposed the timestamp supervison
for action segmentation, the confidence loss, designed the baselines, and wrote the paper. Zhe Li
proposed the action change detection approach and ran all the experiments.
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5.1 Introduction

Analyzing and understanding video content is very important for many applications, such as surveil-
lance or intelligent advertisement. In the previous chapter, we proposed two architectures that have
been very successful in analyzing and segmenting activities in videos. Despite the success of the
proposed approaches, they rely on fully annotated videos where the start and end frames of each
action segment are annotated.

This level of supervision, however, is very time consuming and hard to obtain. Furthermore,
as the boundaries between action segments are usually ambiguous, this might result in inconsis-
tencies between annotations obtained from different annotators. To alleviate these problems, many
researchers start exploring weaker levels of supervision in the form of transcripts (Bojanowski et al.,
2014; Richard et al., 2018b; Li et al., 2019) or even sets (Richard et al., 2018a; Fayyaz and Gall,
2020; Li and Todorovic, 2020). For transcript-level supervision, the videos are annotated with an
ordered list of actions occurring in the video without the starting and ending time of each action.
Whereas for the set-level supervision, only the set of actions are provided without any information
regarding the order or how many times each action occurs in the videos.

While transcript-level and set-level supervision significantly reduce the annotation effort, the
performance is not satisfying and there is still a gap compared to fully supervised approaches. In this
chapter, inspired by the recently introduced timestamp supervision for action recognition (Moltisanti
et al., 2019), we propose to use timestamp supervision for the action segmentation task to address the
limitations of the current weakly supervised approaches. For timestamp supervision, only one frame
is annotated from each action segment as illustrated in Figure 5.1. Such timestamps annotations can
be obtained with comparable effort to transcripts, and yet they provide more supervision. Besides the
ordered list of actions occurring in the video, timestamps annotations give partial information about
the location of the action segments, which can be utilized to further improve the performance.

Given the timestamps annotations, the question is how to train a segmentation model with such
level of supervision. A naive approach takes only the sparsely annotated frames for training. This,
however, ignores most of the information in the video and does not achieve good results as we
will show in the experiments. Another strategy is to iterate the process and consider frames with
high confidence scores near the annotations as additional annotated frames and include them during
training (Moltisanti et al., 2019). Furthermore, frames that are far away from the annotations can
be considered as negative samples (Ma et al., 2020). For temporal action segmentation, which is
comparable to image semantic segmentation, however, all frames need to be annotated and there are
no large parts of the video that can be used to sample negative examples. Furthermore, relying only
on frames with high confidence discards many of the video frames that occur during an action and
focuses only on the most distinctive frames of an action, which can be sufficient for action recognition
or detection but not for action segmentation.

In this chapter, we therefore propose a different approach where all frames of the videos are
used. Instead of detecting frames of high confidences, we aim to identify changes of actions in
order to divide the videos into segments. Since for each action change the frames before the change
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Figure 5.1: For fully supervised temporal action segmentation, each frame in the training videos is
annotated with an action label (top). This process is time-consuming since it requires an accurate
annotation of the start and end frame of each action. To reduce the annotation effort, we propose to
use timestamps as supervision (bottom). In this case, only one arbitrary frame needs to be annotated
for each action and the annotators do not need to search for the start and end frames, which is the
most time-consuming annotation part.

should be assigned to the previous timestamp and after the change to the next timestamp, we find
the action changes by minimizing the variations of the features within each of the two clusters of
frames. While we can then train the model on all frames by assigning the label of the timestamp to
the corresponding frames, it does not guarantee that all frames of an action are effectively used. We
therefore introduce a loss function that enforces a monotonic decrease in the class probabilities as the
distance to the timestamps increases. This loss encourages the model to predict higher probabilities
for low confident regions that are surrounded by high confident frames and therefore to use all frames
and not only the most distinctive frames.

Our contribution is thus three folded.

1. We propose to use timestamp supervision for the temporal action segmentation task, where the
goal is to predict frame-wise action labels for untrimmed videos.

2. We introduce an approach to train a temporal action segmentation model from timestamp su-
pervision. The approach uses the model predictions and the annotated timestamps for estimat-
ing action changes.

3. We propose a novel confidence loss that forces the model confidence to decrease monotonically
as the distance to the timestamp increases.

We evaluate our approach on four datasets: 50Salads (Stein and McKenna, 2013), Break-
fast (Kuehne et al., 2014), BEOID (Damen et al., 2014), and Georgia Tech Egocentric Activities
(GTEA) (Fathi et al., 2011b). We show that training an action segmentation model is feasible with
only timestamp supervision without compromising the performance compared to the fully supervised
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approaches. On the 50Salads dataset, for instance, we achieve 97% of the accuracy compared to fully
supervised learning, but at a tiny fraction of the annotation costs.

5.2 Temporal Action Segmentation

Temporal action segmentation is the task of predicting frame-wise action labels for a given input
video. Formally, given a sequence of video frames x1.7 = (x1,...,27), where T is the number of
frames, the goal is to predict a sequence of frame-wise action labels a1.7 = (a1, ..., ar). In contrast
to the fully supervised approaches, which assume that the frame-wise labels are given at training time,
we consider a weaker level of supervision in the form of timestamps. In Section 5.2.1 we introduce
the timestamp supervision for the temporal action segmentation task. Then, we describe the proposed
framework for learning from timestamp supervision in Section 5.2.2. Finally, we provide the details
of the loss function in Section 5.2.3.

5.2.1 Timestamp Supervision

In a fully supervised setup, the frame-wise labels (a1, ..., ar) of the training videos are available.
On the contrary, for timestamp supervision, only a single frame for each action segment is annotated.
Given a training video with 7" frames and NV action segments, where N << T, only N frames are
annotated with labels Args = [as,, ..., aty |, Where frame ¢; belongs to the i-th action segment. To
annotate timestamps, one can go fast forward through a video and press a button when an action
occurs. This does not take more time than annotating transcripts. Whereas annotating the start and
end frames of each action requires going slowly back and forth between the frames. As reported
in (Ma et al., 2020), annotators need 6 times longer to annotate the start and end frame compared
to annotating a single timestamp. While timestamps are much easier to obtain compared to the full
annotation of the video frames, they provide much more information compared to weaker forms of
supervision such as transcripts. Figure 5.1 illustrates the difference between timestamp supervision
and full supervision.

5.2.2 Action Segmentation from Timestamp Supervision

Our goal is to train an action segmentation model M to predict action labels for each frame in the
input video. If the frame-wise labels are available during the training, as in the fully supervised
case, then it is possible to apply a classification loss on the output of the model M for each frame
in the input video. However, in timestamp supervision, only a sparse set of frames are annotated.
To alleviate this problem, we propose to generate frame-wise labels for the training videos, and use
them as a target for the loss function as illustrated in Figure 5.2.

Detecting Action Changes. Given the timestamps annotations Ars = [ay,, . . ., at, | for a training
video, we want to generate frame-wise action labels a1.7 = (ay, . . ., ar) for each frame in that video
such that a;, = ay, fori € [1, N|. As for each action segment there is an annotated frame, finding the
frame-wise labels can be reduced to finding the action change between each consecutive annotated
timestamp. To this end, we pass the input video z1.7 to the segmentation model M, which will be
described in Section 5.3, and use the output of the penultimate layer / combined with the timestamps
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Figure 5.2: The framework of the proposed approach for training with timestamp supervision. Given
the output of the segmentation model and the timestamps annotations, we generate action labels for
each frame in the input video by estimating where the action labels change. A loss function is then
computed between the predictions and the generated labels.

annotations to estimate where the action labels change between the timestamps. To generate the
labels, all the frames that lie between an annotated timestamp and an estimated time of action change
are assigned with the same action label as the annotated timestamp as illustrated in Figure 5.3. To
detect the action change between two timestamps ¢; and ¢;,.1, we find the time ¢;, that minimizes the
following stamp-to-stamp energy function

tit1
ty, = arg;nin 2 d(h, c;) + 2 d(h, civ1),
t t=t; t=t+1
s.t.
1 i
_ Loy, (5.1)
ti (=,
t1+1
Ci+1 = Z hy,
tl“ —i- t i+1

ti <t <ti,

where d(.,.) is the Euclidean distance, h; is the output of the penultimate layer at time ¢, ¢; is the
average of the output between the first timestamp ¢; and the estimate #, and c; | is the average of the
output between the estimate t and the second timestamp ¢; 1. Le., we find the time ¢;, that divides
the frames between two timestamps into two clusters with the minimum distance between frames
and the corresponding cluster center.
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Figure 5.3: Given the timestamps annotations, we first estimate where the actions change between
consecutive timestamps. To generate the frame-wise labels, all the frames that lie between an anno-
tated timestamp and an estimated time of action change are assigned with the same action label as
the annotated timestamp.

Forward-Backward Action Change Detection. In (5.1), the stamp-to-stamp energy function con-
siders only the frames between the annotated timestamps to estimate where the actions change.
Nonetheless, if we already have an estimate for ¢;, ,, then we already know that frames between
the estimate ¢;,_, and the next timestamp ¢; will be assigned to action label a;,. This information can
be used to estimate the time of action change for the next action segment ¢;,. The same argument also
holds if we start estimating the boundaries in reverse order. Ie., if we already know ¢;_ ., then frames
between ;41 and tp,,
for the ¢-th action change, whereas the later is called the backward estimate. The final estimate for
iy, 1s the average of these two estimates. Formally

i+1°
can be used to estimate t;,. We call the former estimate a forward estimate

_ Uy, rw +ty, BW

ty, 5
s.t.
t tit1
ty, Fyv = argmin Z d(ht, c;) + Z d(ht, cit1), (5.2)
to =ty t=f+1
t toiyq
ty, pw = argmin Y d(hy,c;) + Y d(hy, citn).
b t=t t=f+1

5.2.3 Loss Function

For the fully supervised action segmentation models in Chapter 4, we used a combination of a clas-
sification loss and a smoothing loss. Besides these losses, we further introduce a novel confidence
loss for the timestamp supervision. In the following, we describe in detail each loss function.
Classification Loss. We use a cross entropy loss between the predicted action probabilities and
the corresponding generated target label
1
Los = ; ~log(y1,a). (53)

where y;  is the predicted probability for the target label a at time ¢.
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Figure 5.4: The confidence loss penalizes increases in the model confidence for label a;, as we move
a way from the annotated timestamp ¢;.

Smoothing Loss. As the classification loss treats each frame independently, it might result in an
undesired over-segmentation effect. To encourage a smooth transition between frames and reduce
over-segmentation errors, we use the truncated mean squared error proposed in Chapter 4

1 A2
Lrysp = 75 tZ Aas (5.4)
~ : a <
Apg=| Bta PBtasT (5.5)
T : otherwise
Atg = |logyta — logyi—1.4l, (5.6)

where 7' is the video length, C' is the number of action classes, and v , is the probability of action a
at time .

Confidence Loss. Our approach relies on the model output to detect action changes. Nonethe-
less, as some frames are more informative than others, the model confidence might alternate between
high and low values within the same action segment. Such behavior might result in ignoring regions
with low confidence within the segments. To alleviate this problem, we apply the following loss

1 tit1
'Cconf = F Z Z 5ati,t ) (57)

ar,€Ars \t=ti_1

Sae, t = { maz(0, 1og yra,, — 108 Ye-1a,) it >t (5.8)

maz (0, 10gYyt—1,a,, — 108 Yta,) ift <t
where Yt,ar, is the probability of action a;, at time ¢, and 7" = 2(t — t1) is the number of frames
that contributed to the loss. For the first and last timestamps, we set tg = t; and {411 = tn. This
loss penalizes increase in confidence as we deviate from the annotations as illustrated in Figure 5.4.
Enforcing monotonicity on the model confidence has two effects as shown in Figure 5.6. First,
it encourages the model to predict higher probabilities for low confident regions that are surrounded
by regions with high confidence. Second, it suppresses outlier frames with high confidence that are
far from the timestamps and not supported by high confident regions.
The final loss function to train the segmentation model is the sum of these three losses

ﬁtotal = £cls + aﬁT—MSE + Bﬁconfa (5.9

where o and 3 are hyper-parameters to balance the contribution of each loss.
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5.3 Experiments

Datasets. We evaluate our approach on four datasets: 50Salads (Stein and McKenna, 2013), Break-
fast (Kuehne et al., 2014), BEOID (Damen et al., 2014), and Georgia Tech Egocentric Activities
(GTEA) (Fathi et al., 2011b). Details about the datasets are available in Chapter 2.

To generate the timestamps annotations, we randomly select one frame from each action segment
in the training videos. We further evaluate our approach using human and noisy annotations in
Section 5.3.6.

Metrics. We use the standard metrics for fully supervised action segmentation and report frame-
wise accuracy (Acc), segmental edit score (Edit) and segmental F1 scores at overlapping thresholds
10%, 25% and 50%. Formal definitions for the evaluation metrics are discussed in Chapter 3.
Baselines. We implement two baselines: a Naive and a Uniform baseline. The Naive baseline com-
putes the loss at the annotated timestamps only and does not generate frame-wise labels. Whereas
the Uniform baseline generates the frame-wise labels by assuming that action labels change at the
center frame between consecutive timestamps.

Implementation Details. We use a multi-stage temporal convolutional network (see Chapter 4) as
a segmentation model M. Following (Vats et al., 2020), we use two parallel stages for the first
stage with kernel size 5 and 3 and pass the sum of the outputs to next stages. We also experimented
with different segmentation models in Section 5.3.4. We train our model for 50 epochs with Adam
optimizer. To minimize the impact of initialization, only the annotated timestamps are used for the
classification loss in the first 30 epochs, and the generated labels are used afterwards. The learning
rate is set to 0.0005 and the batch size is 8. Following Chapter 4, we set 7 = 4 and o = 0.15 for the
smoothing loss and set 5 = 0.075. As input for our model, we use the 13D (Carreira and Zisserman,
2017) features of the video frames.

5.3.1 Comparison with the Baselines

In this section, we compare the proposed approach for action segmentation from timestamp supervi-
sion with the naive and uniform baselines. The results on the three datasets are shown in Table 5.1.
Our approach outperforms these baselines with a large margin in all the evaluation metrics. While
the naive baseline achieves a good frame-wise accuracy, it suffers from a severe over-segmentation
problem as indicated by the low F1 and Edit scores. This is because it only uses the sparse time-
stamps annotations for training, which leaves a lot of ambiguity for frames without annotations.
Using the uniform baseline reduces the over-segmentation by uniformly assigning a label for each
frame. However, this results in inferior frame-wise accuracy as the uniform assignment generates
many wrong labels. On the contrary, our approach utilizes the model predictions to generate much
better target labels, which is reflected in the performance as illustrated in Figure 5.5. We also compare
the performance of our approach to the fully supervised setup in Table 5.1. Our approach achieves
comparable performance to the fully supervised case. Interestingly, our weakly supervised model
achieves slightly higher F1 scores than the fully supervised model on the 50Salads dataset. This can
be attributed to the ambiguity in the annotations. In contrast to timestamps, annotating the start and
end of an action is ambiguous. Fully supervised approaches are therefore trained with slightly incon-
sistent annotations, which results in a few over-segmentation errors. The fully supervised setting has
therefore always a higher frame accuracy, but the F1 score can be lower due to over-segmentation.
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F1@{10,25,50} Edit Acc

50Salads

Naive 479 433 340 372 69.6

Uniform 629 582 423 604 634
L Ows 739 709 60.1 668 756

Full Supervision 70.8 677 586 638 778

Breakfast

Naive 341 291 201 374 568

Uniform 66.2 563 364 68.1 51.0
Ows 705 636 474 699 641

Full Supervision 699 642 515 694 68.0

GTEA

Naive 59.7 553 396 511 565

Uniform 789 725 509 731 565
_Ows 789 730 554 723 664

Full Supervision 85.1 827 69.6 79.6 76.1

Table 5.1: Comparison with the baselines on the three datasets.
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Figure 5.5: Qualitative results on (a) 50Salads, (b) Breakfast, and (c) GTEA datasets. As the naive
baseline only trains on the sparse annotations, it suffers from an over-segmentation problem. While
the uniform baseline reduces this problem by uniformly assigning labels to the frames, the durations
of the predicted segments are not accurate and the predictions tend towards a uniform segmentation
of the videos. On the contrary, our approach generates better predictions by utilizing the model
output to detect where the action labels change.
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F1@{10,25,50}  Edit Acc

50Salads

Leis 65.7 626 507 577 72.8
ﬁcls + OéﬁT—MSE 70.1 66.8 55.3 62.6 74.6
Leis + BLeony 732 706 60.1 652 753
Les +alp_yse + BLeony 739 709 601 668  75.6
Breakfast

Leis 60.3 528 367 642 60.2
Loas +alr_pysE 67.5 60.1 443 689 63.7
Leis + BLeony 67.6 604 437 68.0 61.6

Los +aLlr_ysE + BLeony 705 63.6 474 699 64.1

Table 5.2: Contribution of the different loss functions on the 50Salads and Breakfast datasets.

Fl@{10, 25,50} Edit Acc

B8=0 70.1 66.8 553 626 74.6
B =0.025 70.9 68.8 574 634 76.2
B =0.05 73.1 70.2 587 654 75.6
B8 =0.075 73.9 70.9 60.1 668 75.6
8=0.1 73.2 70.6 60.1 66.1 74.6

Table 5.3: Impact of 5 on the 50Salads dataset.

5.3.2 Impact of the Loss Function

The loss function to train our model consists of three losses: a classification loss, a smoothing loss,
and a confidence loss. Table 5.2 shows the impact of each loss on both the 50Salads and the Break-
fast dataset. While either of the smoothing loss and the confidence loss gives an additional boost
in performance, the best performance is achieved when both of the losses are combined with the
classification loss with a frame-wise accuracy improvement of 3.9% and 2.8% on 50Salads and the
Breakfast dataset respectively, and roughly 10% on the F1 score at 50% overlapping threshold.

While the smoothing loss forces a smooth transition between consecutive frames, it does not take
the annotations into account. On the contrary, the confidence loss forces the predicted probabilities
to monotonically decrease as the distance to the timestamps increases. This encourages the model to
have a high confidence for all frames within an action segment, and yet it suppresses outlier frames
that are far from the annotations and not supported by regions with high confidence as illustrated in
Figure 5.6.

To balance the contribution of the different losses, we set the weight of the smoothing loss to
0.15, and the weight of the confidence loss 8 = 0.075. In Table 5.3, we study the impact of 5 on the
performance on the 50Salads dataset. As shown in the table, good results are achieved for 3 between
0.05 and 0.1.
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Figure 5.6: Impact of the confidence loss. Forcing monotonicity encourages the model to have a
high confidence for all frames within an action segment (a). It also suppresses outlier frames with
high confidence (b).

Fl@{10, 25, 50} Edit  Acc

50S8alads

Stamp-to-Stamp (Prob.) 675 61.8 48.6 61.1 689
Stamp-to-Stamp (Features) 73.4 70.5 599 66.7 742
Ours 739 709 601 66.8 75.6
Breakfast

Stamp-to-Stamp (Prob.) 657 559 359 68.0 58.8
Stamp-to-Stamp (Features) 663 59.6 444 679 60.1
Ours 705 63.6 474 699 o64.1

Table 5.4: Impact of the energy function for action change detection on the 50Salads and Breakfast
datasets.

5.3.3 Impact of the Energy Function for Action Change Detection

Our approach generates target labels by estimating where the action labels change using the forward-
backward estimate as in (5.2). To analyze the impact of this estimate, we train another model that
directly uses the stamp-to-stamp estimate (Stamp-to-Stamp (Features)) as in (5.1). As shown in
Table 5.4, our approach performs better. We also tried another variant of the stamp-to-stamp energy
function that maximizes the average probabilities of the action segments (Stamp-to-Stamp (Prob.))
instead of minimizing the distances to cluster centers. However, the performance is worse than the
proposed energy function.

5.3.4 Impact of the Segmentation Model M

In all experiments, we used a multi-stage temporal convolutional architecture based on Chapter 4
and (Vats et al., 2020). In this section we study the impact of the segmentation model on the perfor-
mance. To this end, we apply the proposed training scheme on the original MS-TCN and MS-TCN++
that we proposed in Chapter 4. As shown in Table 5.5, our approach is agnostic to the segmentation
model and performs well with all these models.
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Dataset  Seg. Model M Fl1@{10, 25,50} Edit Acc

50Salads MS-TCN (Chapter 4) 7177 687 57.0 64.0 747
MS-TCN++ (Chapter4) 75.0 71.1 55.8 67.2 729
Ours 73.9 709 60.1 66.8 75.6

GTEA  MS-TCN (Chapter 4) 79.8 733 4777 763 593
MS-TCN++ (Chapter4) 783 722 49.1 745 62.2
Ours 78.9 730 554 723 664

Table 5.5: Impact of the segmentation model M on the 50Salads and GTEA datasets.

5.3.5 Frame Selection for the Timestamp Annotations

The used datasets in this work are fully annotated. To simulate timestamp supervision, we randomly
select one frame from each action segment in the training videos. To study the impact of the frame
selection strategy, Table 5.6 shows results for two additional settings. While using the center frame
of each segment achieves comparable results to a random frame, the performance drops when the
start frame is used. Humans, however, would not annotate the start frame since it is more ambiguous
(see Figure 4 in (Ma et al., 2020)).

Timestamps Fl@{10, 25,50} Edit Acc
Start frame 655 522 280 704 512
Center frame 70.8 635 454 713 613
Random 70.5 63.6 474 699 64.1

Table 5.6: Using start, center, or random frame as timestamp for each action on the Breakfast dataset.

5.3.6 Comparison with the State-of-the-Art

In this section, we compare our approach with recent state-of-the-art approaches for timestamp super-
vision. To the best of our knowledge, timestamp supervision has not been studied for the temporal
action segmentation task. We, therefore, compare with similar methods in the context of action
recognition (Moltisanti et al., 2019) and action localization (Ma et al., 2020).

Since the approach of (Moltisanti et al., 2019) assumes the testing videos are trimmed and does
not work for long untrimmed videos, we replaced their backbone network with our segmentation
model for a fair comparison. To this end, we initialized the plateau functions around the timestamps
annotations of the training videos and iteratively update their parameters based on the segmentation
model output as in (Moltisanti et al., 2019). Results on 50Salads, Breakfast, and GTEA datasets
are shown in Tables 5.7-5.9, respectively. Our approach outperforms (Moltisanti et al., 2019) on all
datasets with a large margin of up to 13.5% frame-wise accuracy and 11.8% for the F1 score with
50% overlapping threshold on the GTEA dataset.

We also compare our approach for timestamp supervision with other levels of supervision for the
temporal action segmentation task. As shown in Tables 5.7-5.9, timestamp supervision outperforms
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Supervision Method Fl1@{10, 25,50} Edit Acc
Full MS-TCN (Chapter 4) 763 740 645 679 80.7
MS-TCN++ (Chapter 4) 80.7 785 70.1 743 83.7

BCN (Wang et al., 2020) 823 813 740 743 844

ASREF (Ishikawa et al., 2021) 849 835 773 793 845

Timestamps  Seg. Model M + plateau (Moltisanti et al.,2019)  71.2 682 56.1 62.6 73.9
Ours 739 709 60.1 66.8 75.6

Transcripts CDFL (Li et al., 2019) - - - - 54.7
NN-Viterbi (Richard et al., 2018b) - - - - 494

HMM-RNN (Richard et al., 2017) - - - - 45.5

Table 5.7: Comparison with different levels of supervision on the 50Salads dataset.

Supervision Method F1@{10, 25,50} Edit Acc
Full MS-TCN (Chapter 4) 52.6 48.1 379 61.7 663
MS-TCN++ (Chapter 4) 64.1 58.6 459 656 67.6

BCN (Wang et al., 2020) 68.7 655 550 662 704

ASRF (Ishikawa et al., 2021) 743 689 56.1 724 676

Timestamps  Seg. Model M + plateau (Moltisanti et al., 2019)  65.5 59.1 43.2 659 63.5
Ours 70.5 63.6 474 699 64.1

Transcripts CDFL (Li et al., 2019) - - - - 50.2
MuCon (Souri et al., 2021) - - - - 47.1

D3TW (Chang et al., 2019) - - - - 45.7

NN-Viterbi (Richard et al., 2018b) - - - - 43.0

TCFPN (Ding and Xu, 2018) - - - - 38.4

HMM-RNN (Richard et al., 2017) - - - - 333

ECTC (Huang et al., 2016) - - - - 27.7

Sets SCT (Fayyaz and Gall, 2020) - - - - 30.4
SCV (Li and Todorovic, 2020) - - - - 30.2

Action Sets (Richard et al., 2018a) - - - - 233

Table 5.8: Comparison with different levels of supervision on the Breakfast dataset.

weaker levels of supervision in the form of transcripts or sets with a large margin. Our approach
provides a good compromise between annotation effort and performance, and further reduces the
gap to fully supervised approaches.

Timestamp supervision has recently been studied for action localization in (Ma et al., 2020). In
their approach, they use the model confidence to sample foreground action frames and background
frames for training. To compare with (Ma et al., 2020), we use the same setup and the provided
human annotations to train our model and report mean average precision at different overlapping
thresholds. Table 5.10 shows the results on the GTEA and BEOID (Damen et al., 2014) datasets.
Our approach outperforms (Ma et al., 2020) with a large margin of 5.4% average mAP on GTEA
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Supervision Method Fl1@{10, 25,50} Edit Acc
Full MS-TCN (Chapter 4) 858 834 698 79.0 763
MS-TCN++ (Chapter 4) 88.8 857 76.0 83.5 80.1

BCN (Wang et al., 2020) 88.5 87.1 773 844 798

ASREF (Ishikawa et al., 2021) 894 878 798 837 1773

Timestamps  Seg. Model M + plateau (Moltisanti et al., 2019)  74.8 68.0 43.6 723 529
Ours 789 73.0 554 723 664

Table 5.9: Comparison with different levels of supervision on the GTEA dataset.

mAP@IoU 0.1 0.3 0.5 0.7 Avg
GTEA

SF-Net (Ma et al., 2020) 580 379 193 119 31.0
Ours 60.2 44.7 28.8 122 364
BEOID

SF-Net (Ma et al., 2020) 629 40.6 167 35 30.1
Ours 71.5 403 203 55 344

Table 5.10: Comparison with SF-Net (Ma et al., 2020) for action localization with timestamp super-
vision on the GTEA and BEOID datasets.

and 4.3% on the BEOID dataset. In contrast to (Ma et al., 2020) where only the frames with high
confidence are used for training, our approach detects action changes and generates a target label for
each frame in the training videos.

Finally, we compare our approach with the semi-supervised setup on the Breakfast dataset pro-
posed in (Kuehne et al., 2020). In this setup, the training videos are annotated with the transcript of
actions and a fraction of the frames as well. Compared to the proposed timestamp supervision, this
setup provides annotations for much more frames. Since the timestamps are randomly sampled from
the video, there are sometimes multiple timestamps for one action and not all actions are annotated.
As shown in Table 5.11, our approach outperforms (Kuehne et al., 2020) with a large margin. While
the approach of (Kuehne et al., 2020) relies on an expensive Viterbi decoding during inference time,
our approach directly predicts the frame-wise labels.

Fraction Method Acc
0.1 HMM-RNN (Kuehne et al., 2020) 60.9
Ours 68.4

0.01 HMM-RNN (Kuehne et al., 2020) 58.8
Ours 674

Table 5.11: Comparison with Kuehne et al. (Kuehne et al., 2020) on the Breakfast dataset with semi-
supervised setup.
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Human Annotations vs Generated Annotations

In Table 5.12, we directly compare the human annotations from (Ma et al., 2020) with simulated
annotations on the GTEA dataset. The results show that the performance with random sampling is
very close to real annotations.

mAP@IoU 0.1 0.3 0.5 0.7  Avg

Human annotations 60.2 447 288 122 364
Random sampling 597 463 260 104 35.6

Table 5.12: Human vs. generated annotations on the GTEA dataset.

Impact of Noise

In Table 5.11, the timestamps are randomly sampled from the videos. Thus, there are sometimes
multiple timestamps for one action and not all actions are annotated. Table 5.13 shows the percentage
of action segments with 0, 1, or >1 timestamps (TS). As shown in the table, our approach is robust
to annotation errors.

Fraction , % actions withO TS % with 1 TS % with > 1 TS | Acc

0.1 3.5 34 93.1 68.4
0.01 27.5 21.6 50.9 67.4
0.0032 49.0 25.2 25.8 61.7
0.0032 0 100 0 64.1

Table 5.13: Percentage of actions with 0, 1, or >1 timestamps (TS) using the protocol of Table 11.
The last row is the protocol of Table 8.

5.4 Summary

In this chapter, we proposed an approach to train a temporal action segmentation model using only
timestamps annotations. Our approach combines the model predictions with the timestamps anno-
tations for estimating where the action labels change. We further introduced a confidence loss that
enforces monotonicity on the model confidence. The loss encourages high confidence values for all
frames within an action segment and suppresses outlier frames. Results on four datasets show that
models trained with timestamp supervision achieve comparable performance to the fully supervised
setup. The proposed approach is model agnostic and can be applied to any segmentation model.



CHAPTER 6
Anticipating Temporal Occurrences of
Activities

In the previous two chapters, we demonstrated the capabilities of deep learning methods in analyz-
ing human actions in videos. Despite the success of such methods, this is not enough for intelligent
agents that interact with humans. Such intelligent agents require reasoning beyond what has hap-
pened and predict what will happen in the future. Approaches addressing this task are, however,
limited to anticipating only the immediate future. In this chapter, we therefore propose to extend
the anticipation task and make long-term predictions over more than just a few seconds. To address
this long-term anticipation task, we propose two methods to predict a considerably large number of
future actions and their durations. Both, a CNN and an RNN are trained to learn future video labels
based on previously seen content. We show that our methods generate accurate predictions of the
future even for long videos with a huge amount of different actions and can even deal with noisy or
erroneous input information. This chapter is based on (Abu Farha et al., 2018).
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6.1 Introduction

In the last years, we have seen a tremendous progress in the capabilities of computer systems to
classify and segment activities in videos, e.g. (Richard et al., 2017; Lea et al., 2017; Lei and Todor-
ovic, 2018). These systems, however, analyze the past or in the case of real-time systems the present
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with a delay of a few milliseconds. For applications, where a moving system has to react or interact
with humans, this is insufficient. For instance, collaborative robots that work closely with humans
have to anticipate the activities of a human in the future. In contrast to humans that are very good
in anticipating activities, developing methods that anticipate future activities from video data is very
challenging and has just recently received an increase of interest.

Current works anticipate activities only for a very short time horizon of a few seconds. While
early activity detection addresses the problem of inferring the class label of an action at the point
when the activity starts or shortly thereafter (Ryoo, 2011; Hoai and De la Torre, 2014; Ma et al.,
2016; Sadegh Aliakbarian et al., 2017), other works predict the class label of the action that will
happen next (Pei et al., 2013; Jain et al., 2016; Lan et al., 2014). In the work (Mahmud et al., 2017),
the starting time of the future activity is estimated as well.

In this chapter, we go beyond the recognition of an ongoing activity or the anticipation of the
next activity. We address the problem of anticipating all activities that will be happening within a
time horizon of up to 5 minutes. This includes the classes and order of the activities that will occur
as well as when each activity will start and end.

To address this problem, we propose two novel approaches for this task. In both cases, we first
infer the activities from the observed part of the video using an off-the-shelf action segmentation
model. The first approach builds on a recurrent neural network (RNN) that predicts for a given
sequence of inferred activities the remaining duration of the ongoing activity as well as the duration
and class of the next activity. The anticipated activities are then fed back to the RNN in order to
anticipate activities for a longer time horizon. The second approach builds on a convolutional neural
network (CNN). To this end, we convert the temporal sequence of inferred activities in a matrix
that encodes both the length and the action label information. The CNN then predicts a matrix that
encodes the length and the action labels of the anticipated activities. In contrast to the RNN approach,
the CNN approach anticipates all activities in one pass.

We have evaluated the two approaches on two challenging datasets that contain long sequences
and large variations. Both approaches outperform by a large margin two baselines, a grammar based
baseline and a nearest neighbor baseline. While the RNN and CNN perform similarly for a long
time horizon of more than 40 seconds, the RNN performs better for shorter time horizons less than
20 seconds. Both approaches also outperform the method of Vondrick et al. (2016) that does not
anticipate activities directly but visual representations of future frames, which can then be used to
classify the activities.

6.2 Anticipating Activities

Our goal is to anticipate from an observed video what will happen next in the video for a given time
horizon, which can take up to 5 minutes. We aim to predict for each frame in the future the label
of the activity that will happen. More formally, let x1.7 = (z1,...,2z7) be a video with T" frames.
Given the first ¢ frames x1.¢, the task is to predict the actions happening from frame ¢ + 1 to 7. That
is, we aim to assign action labels a; 1.7 = (a¢+1,- .., ar) to each of the unobserved frames.
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Figure 6.1: Proposed approach for future action prediction. From the observed frames, action labels
are inferred by a decoder. The future predictor predicts from the inferred frame labels a;.; the labels
a¢+1.7 that are yet to come.

6.2.1 Inferring Observed Activities

Instead of predicting the future actions a4 1.7 directly from the video frames z;.;, we first infer the
actions ay, . .., a; for the given frames x, ..., x; and then predict the future actions a;41,...,ar
from the inferred actions aj.; as it is illustrated in Figure 6.1. This has the advantage that we can
separately study the impact of the network, which infers activities from observed video sequences,
and the network that anticipates the future activities.

For inferring the activities a;.; from x1.4, we experimented with two models. The first model is
based on a hybrid RNN-HMM approach (Richard et al., 2017). In contrast to (Richard et al., 2017),
which train the method in a weakly supervised setting, we train the model fully supervised since in
our training set each video frame x; is labeled with a class a;. Whereas for the second model, we
experimented with MS-TCN presented in Chapter 4 for inferring the activities ay.¢.

For predicting the activities a;, 1.7 from a;.;, we investigate two architectures. The first architec-
ture is based on a recurrent neural network (RNN) and will be described in Section 6.2.2. The second
architecture is based on a convolutional neural network (CNN) and will be described in Section 6.2.3.

6.2.2 RNN-based Anticipation

We can interpret future action prediction as a recursive sequence prediction: As input sequence, the
RNN obtains all observed segments and predicts the remainder of the last segment as well as the next
segment. This is repeated until the desired amount of future frames is reached.

More precisely, for each observed segment, the RNN gets its class label in form of a 1-hot en-
coding and the corresponding segment length, which is normalized by the video length, as input.
Sequentially forwarding all those segments, three output predictions are made: the remaining length
of the last observed segment as well as a label and a length for the next segment. This prediction



74 Chapter 6. Anticipating Temporal Occurrences of Activities

| future (to be predicted) |

input video | |

observed part 1
e |

le
I«

lencode

Future action

Length of future
action

FC 128
FC 128

Remaining length of
last observed action

| Length| Action (1-hot encoding) |
| Length| Action (1-hot encodlng)|

| Length| Action (1-hot encoding) |

Recursively predict more in the future J

l

Final output | | | |

Figure 6.2: Architecture of the RNN system. The input is a sequence of (length, I-hot class en-
coding)-tuples. The network predicts the remaining length of the last observed action and the label
and length of the next action. Appending the predicted result to the original input, the next action
segment can be predicted.

is concatenated with the observed segments to form a new input for the network. The new input
is again forwarded through the network to produce the next prediction. The final result is obtained
by repeatedly forwarding the previously generated prediction until the desired amount of frames is
predicted, see Figure 6.2.

As RNN architecture, we use two stacked layers of 256 gated recurrent units and fully connected
layers at the input and output. As output layer for both length predictions, remaining length of current
action and length of next action, we use a rectified linear unit to ensure non-negative length outputs.
The label prediction is done via a softmax layer as usual for classification tasks.

RNN Training. The training data generation for the RNN is illustrated in Figure 6.3. Given a
ground-truth labeling of a training sequence with N action segments, /N — 1 training examples are
generated out of it. For a segment ¢ < N, a random split point is defined. Everything before this
point is encoded as a sequence of ¢ tuples containing the length of the observed segment and its label
as 1-hot encoding. Each such sequence is an input training example for the network. For segment
1+ 1, another random split point is defined. The values between the first and second split point define
the target the network should predict: A triplet consisting of the remaining length of segment ¢ (I,.),
the length of the next action ¢ + 1 from its start up to the split point (/,,), and the label of the next
action (a). By processing each training sequence like this, a large amount of input tuple sequences
and target triplets is generated.
As loss for a single training example, we use

L=— logﬁa + (lr - lr)2 + (ln - ln)2a (61)
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Figure 6.3: Training data is generated by cutting the ground-truth segmentations at random points
and using the left part as input and the next action segment to the right of the cut as ground-truth for
the prediction.

where [, denotes the predicted remaining length of the current action, I, denotes the predicted length
of the next action, and p,, the predicted class probability of the next action. For training, we minimize
the loss, which is summed over all training examples, by backpropagation through time.

6.2.3 CNN-based Anticipation

The CNN-based anticipation approach aims at predicting all actions directly in one single step, rather
than relying on a recursive strategy such as the RNN. The given framewise labels a;.; are encoded in
a matrix X with C columns and S rows. While the columns correspond to the C' action classes, the
rows correspond to action segments. The number of rows for an action segment of length [ is given
by [%SJ and, for each row s, X, = 1 for the label a of the corresponding action segment and zero
otherwise. The matrix is filled in the order the actions occur as illustrated in Figure 6.4. We set S
large enough such that each action segment covers at least one row.

The matrix X that encodes the observed labels a;.; is forwarded through a CNN which consists
of two convolutional layers and two fully connected layers. The convolutional layers have 8 and 16
feature maps respectively and perform a 5 x 1 convolution followed by a rectified linear unit and max
pooling. After the fully connected layers, the output layer is reshaped to a matrix Y, which has the
same size as matrix X, and each row of Y is /3 normalized. We further apply a 1D Gaussian filter
along each column for temporal smoothing. We will show in the experiments that the additional
smoothing reduces the effect of spurious predictions of very short segments, see Figure 6.10. To
convert Y back into a sequence of labels a; 1.7, we compute for each row

Gs = argmax Yy, (6.2)
a
and concatenate G, where each row corresponds to [%J frames.

CNN Training. Since the CNN approach predicts all actions directly while the RNN uses a re-
cursive strategy, we also have to prepare the training data slightly differently. For each video in the
training set, we generate 4 training examples by using the first 10%, 20%, 30%, and 50% of the
video, respectively, as observation and the following 50% of the video as ground-truth for the pre-
diction. For each training example, we convert the sequence of action labels a;.; into the matrix X
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Figure 6.4: Architecture of the CNN-based anticipation approach. Both the input sequence and
output sequence are converted into a matrix form where C' denotes the number of classes and S
corresponds to the number of video segments of a certain length. The binary values of the matrix
indicate the label of each video segment.

and the labels of the following 50% of the video frames into the ground-truth matrix Y. To train the
network, we use the squared error criterion over all output elements

_ L Y2
L=<5 Z(Y Vi), (6.3)

where Y is the prediction of the network. We found this loss in combination with the row-wise £2-
normalization of the output more robust than a standard softmax output with cross-entropy loss which
we attribute to the smoothing properties of the softmax function, see Section 6.3.5 for an evaluation.

6.3 Experiments

6.3.1 Setup

We conduct our experiments on two benchmark datasets for action recognition. The Breakfast
dataset (Kuehne et al., 2014) contains 1, 712 videos of 52 different actors making breakfast. Overall,
there are 48 fine-grained action classes and about 6 action instances for each video. The average
duration of the videos is 2.3 minutes. We use the four splits as proposed in (Kuehne et al., 2014).

The 50Salads dataset (Stein and McKenna, 2013) contains 50 videos with 17 fine-grained action
classes. With an average length of 6.4 minutes, the videos are comparably long and contain 20
action instances per video on average. Following (Stein and McKenna, 2013), we use five-fold cross-
validation.

The longest video in both datasets is 10 minutes. More details about the datasets are available in
Chapter 2. As evaluation metric, we report the accuracy of the predicted frames as mean over classes
(MoC). Formal definitions for the evaluation metrics are discussed in Chapter 3.
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Figure 6.5: Qualitative results for the future action prediction task for both, RNN and CNN with and
without ground-truth observations.

Video Representation. We evaluate our systems on two settings. The first is with ground-truth
observations, i.e. the observed labels are the ground truth annotation. This setting allows for a clean
analysis of the prediction capabilities of our systems. As a second setting, we consider the labels
of the observed part of the videos to be obtained using the decoder from (Richard et al., 2017) (or
MS-TCN from Chapter 4). This way, already the observed labels can contain errors and prediction is
much harder as previous errors are propagated into the future. In order to obtain the decoded labels
from (Richard et al., 2017), we compute improved dense trajectories over the observed frames .
and then reduce the dimensionality to 64 using PCA. After that, Fisher vectors are computed for each
frame using a temporal window of size 20. For Fisher vectors computation, a Gaussian mixture model
(GMM) with 64 Gaussians is built using 150, 000 random samples of the dense trajectory features.
Power- and /5-normalization are applied, and at the end, the dimensionality is again reduced to 64
with PCA. For MS-TCN, we use I3D features as in Chapter 4.

Parameters. For the CNN approach, we set the number of rows S of the matrix X to 128 for the
Breakfast dataset. This ensures that each action segment covers at least one row. Since the average
video length for 50Salads is about four times larger than for Breakfast, we set S to 512 for 50Salads.
As increasing S and therefore sampling at a finer temporal resolution did not significantly change
the results, we stick to these values for the remainder of the chapter. For the post-processing, we
use Gaussian smoothing with standard deviation 0 = 3 for the Breakfast dataset and 0 = 13 for
50Salads. For the RNN approach, the normalized length input is scaled by the average number of
actions in the videos to ensure numerical stability.
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Observation % 20% 30%
Prediction % 10%  20% 30%  50% 10%  20% 30%  50%
Breakfast
Grammar 48.92 4033 36.24 31.46 52.66 42.15 38.44 33.09

Nearest-Neighbor 43.78 37.26 3492 29.84 4412 37.69 35770 30.19
RNN model 60.35 50.44 45.28 4042 61.45 50.25 4490 41.75
CNN model 5797 49.12 44.03 39.26 60.32 50.14 45.18 40.51

50Salads

Grammar 28.69 21.65 18.32 10.37 26.71 1459 11.69 09.25
Nearest-Neighbor 2521 21.05 16.34 13.17 2212 17.15 18.38 14.71
RNN model 42.30 31.19 25.22 16.82 44.19 29.51 1996 10.38
CNN model 36.08 27.62 21.43 1548 3736 24.78 20.78 14.05

Table 6.1: Results for future action prediction with ground-truth observations. Numbers represent
accuracy as mean over classes.

Baselines. We define two baselines for future action prediction to compare against our two pro-
posed systems. The first baseline uses a grammar and the mean length of each action class. The
mean length of each action class is estimated from the training data. The finite grammar generates
all action sequences that have been observed during training. This is the same grammar as proposed
in (Richard et al., 2017). Given the observed actions a; ., either based on the ground truth or on the
action decoder (Richard et al., 2017), we randomly select an action sequence from the grammar that
has a1.; as prefix. We then predict action labels a;. 1.7 such that the labels are consistent with the
chosen action sequence of the grammar. Each action class from the chosen grammar path that has not
been observed, i.e. that is to appear in the future, is added with its mean class length to the prediction
until all required frames from ¢ + 1 to 7" are predicted.

As a second baseline, we use a nearest neighbor approach. We search the nearest neighbor in the
training set using the frame-wise error of the observed part as a distance, and use the remaining part
as future prediction.

6.3.2 Prediction with Ground-Truth Observations

In order to provide a fair evaluation, we first assume that the observed segmentation a;.; of the video
is perfect, i.e. that the observed labels do not contain any errors. While this is not the case in most
realistic settings, it allows to get a clean evaluation how well the systems can predict the future. With
noisy observations, the results are more delusive as errors in the observed part are propagated to the
future.

In Table 6.1 and Figure 6.6, the results on the Breakfast dataset and 50Salads are shown. Both the
RNN model and the CNN model show good performance compared to the baselines. Independent of
the fraction of the video that has been observed, i.e. 20%, or 30%, however, the RNN outperforms the
CNN in most cases. In general, the RNN is better for short term prediction, i.e. 10%, or 20%, while
the CNN performs similarly or even sometimes better than the RNN for longer prediction. The reason
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Figure 6.6: Results for future action prediction with ground-truth observations.

lies in the recursive structure of the RNN predictions: once a segment is predicted, it is appended to
the observed part and used as input to predict the next sequence. Consequently, if the RNN outputs
an erroneous prediction at some point, this error is likely to propagate through time. The CNN, on
the contrary, uses the observed part of the video to predict all future actions directly, so errors are less
likely to propagate from one segment to another. However, this slightly better performance of the
CNN comes with the drawback of favouring long action segments over short ones. The behaviour
can also be observed in the qualitative results in Figure 6.5 (a) and (c). For example in the case of
(c), the CNN tends to miss small action segments, whereas the RNN seems to be more reliable.

6.3.3 Prediction without Ground-Truth Observations

In this section, we evaluate the performance of our proposed systems given noisy annotations. In
contrast to the clean ground-truth observations from the previous section, we now assume that the
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Observation % 20% 30%
Prediction % 10%  20% 30%  50% 10%  20% 30%  50%
Breakfast
Grammar 16.60 1495 1347 1342 21.10 18.18 17.46 16.30

Nearest-Neighbor 16.42 15.01 14.47 13.29 19.88 18.64 17.97 16.57
RNN model 18.11 17.20 15.94 15.81 21.64 20.02 19.73 19.21
CNN model 1790 1635 1537 14.54 22.44 20.12 19.69 18.76

50Salads

Grammar 24773 2234 19.76 12.74 29.65 19.18 15.17 13.14
Nearest-Neighbor 19.04 16.10 14.13 10.37 21.63 1548 13.47 13.90
RNN model 30.06 2543 18.74 13.49 30.77 17.19 14.79 09.77
CNN model 21.24 19.03 1598 09.87 29.14 20.14 17.46 10.86

Table 6.2: Results for future action prediction without ground-truth observations. Numbers represent
accuracy as mean over classes.

observed part of the video has been decoded using the system of (Richard et al., 2017) and, thus, a1
is not perfect anymore but is likely to contain errors. The mean over frames accuracy of (Richard
et al., 2017) when observing 20% of the video, for instance, is only 37% on Breakfast and 67% on
50Salads. While the accuracy when observing 30% of the video is 43% on Breakfast and 68% on
50Salads.

Compared to the amount of noise in the observed video labeling, the prediction results are still
surprisingly stable, see Table 6.2 and Figure 6.7. While the drop in performance on the Breakfast
dataset (Table 6.1 vs. Table 6.2) is comparably large, both systems still achieve a good performance
compared to the baseline. On 50Salads, the overall loss of accuracy compared to the system with
perfect observations is surprisingly small. This can on the one hand be attributed to the better per-
formance of the decoder (Richard et al., 2017). On the other hand, the inter-class dependencies on
50Salads are very strong, making it easier for both RNN and CNN to learn valid action sequences.

We would also like to put emphasis on the qualitative results for noisy observations, see Fig-
ure 6.5 (b) and (d). Particularly, the case of (d) is interesting: the decoder mistakenly predicted
incorrect label for the last observed segment. For both models, RNN and CNN, this error propagates
further to future segment predictions.

As the videos have different lengths, the proposed models might behave differently depending
on the length of the videos. An evaluation on three categories of videos from the Breakfast dataset
based on the prediction length is shown in Figure 6.8 for the case of observing 30% of the video and
predicting the 50% that follows. While the models perform well on both short and long videos, they
achieve a better performance for shorter videos. This is mainly because the duration of the predicted
future is less for shorter videos, which makes the prediction task much easier compared to long video
sequences. A similar behavior can also be observed when considering the number of actions that are
predicted in the future. As shown in Table 6.3, the accuracy of both models drops as we predict more
into the future.
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Figure 6.7: Results for future action prediction without ground-truth observations.

Istaction 2nd action 3rd action
Grammar 22.32 13.25 11.17
Nearest-Neighbor 22.95 13.23 12.34
RNN 26.43 17.73 17.92
CNN 25.95 16.03 14.25

Table 6.3: Accuracy over next, 2nd action, and 3rd action for 30% observation and 50% prediction

on the Breakfast dataset without ground-truth observations.

The action is correctly detected if the

IoU of the predicted action segment with the annotated action segment is > 0.5.
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Figure 6.8: Performance of the models on videos with different lengths from the Breakfast dataset
without ground-truth observations for the case of observing 30% of the videos and predicting the
following 50%.
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Observation % 20% 30%
Prediction % 10%  20% 30% 50% 10%  20% 30% 50%
Breakfast
RNN + RNN-HMM (Richard et al., 2017) 18.11 17.20 1594 15.81 21.64 20.02 19.73 19.21
RNN + MS-TCN (Chapter 4) 0593 05.68 05.52 05.11 08.87 0890 07.62 07.69
RNN + MS-TCN (Chapter 4)* 23.56 20.74 19.52 18.37 26.12 23.55 21.47 20.99
CNN + RNN-HMM (Richard et al.,2017) 1790 16.35 1537 14.54 2244 20.12 19.69 18.76
CNN + MS-TCN (Chapter 4) 09.85 09.17 09.06 08.87 17.59 17.13 16.13 14.42
CNN + MS-TCN (Chapter 4)* 2540 2392 22.09 20.95 28.82 26.29 24.40 22.69
50Salads
RNN + RNN-HMM (Richard et al., 2017) 30.06 25.43 18.74 13.49 30.77 17.19 14.79 09.77
RNN + MS-TCN (Chapter 4) 32.31 25.,51 19.10 14.15 26.14 17.69 1633 12.97
RNN + MS-TCN (Chapter 4)* 2991 24.10 20.48 15.22 28.60 20.09 17.55 12.88
CNN + RNN-HMM (Richard et al.,2017) 21.24 19.03 1598 09.87 29.14 20.14 17.46 10.86
CNN + MS-TCN (Chapter 4) 16.02 14.68 12.09 09.89 19.23 14.68 13.18 11.20
CNN + MS-TCN (Chapter 4)* 1562 1448 11.64 9.71 17.16 12.66 11.11 10.55

Table 6.4: Impact of the recognition model on the anticipation performance. Numbers represent
accuracy as mean over classes. * indicates that MS-TCN is trained with partial sequences that corre-
spond to only the first 15 — 35% of the videos.

6.3.4 Impact of the Recognition Model

In the previous section, we evaluated the proposed RNN and CNN models when the input frame-
wise labels are obtained using the RNN-HMM (Richard et al., 2017) decoder. In this section, we
evaluate our methods when the inputs are inferred using the MS-TCN presented in Chapter 4. Since
the observed part of the videos corresponds to only 20% or 30% of the video duration, we consider
two variants of MS-TCN. The first variant is trained on the full extent of the videos and then used to
infer the frame-wise labels for the observed part of the testing videos. Whereas the second variant is
trained using only the first 15 — 35% of the videos.

Table 6.4 shows the results on both 50Salads and the Breakfast dataset. While the RNN performs
well using any of the recognition models on 50Salads, the CNN achieves slightly better performance
when the RNN-HMM decoder is used. On the contrary, both models achieve significantly better
performance using MS-TCN trained with partial videos on the Breakfast dataset. However, if the MS-
TCN is trained on the full videos, the performance significantly drops. This is due to the difference
between the training and inference setup (i.e. using full vs. partial videos as input). Training MS-
TCN on the full videos results in falsely predicting labels at the end of the observations that usually
occur at the end of the full videos. These errors are propagated to the anticipation models and
severely affect the performance. Nonetheless, by using the same setup during both training and
inference, the MS-TCN generates better predictions and the performance of the anticipation models
is recovered. The mean over frames accuracy of the MS-TCN trained on full videos on the Breakfast
dataset is only 23% and 32% for observing 20% and 30% of the videos respectively. If the MS-TCN
is trained on partial sequences, then the mean over frames accuracy increases to 49% and 52% for
observing 20% and 30% of the videos respectively. However, we noticed this behavior only on the
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Figure 6.9: Results of the CNN model using the cross-entropy loss vs. the squared-error loss.

Observation % 20% 30%
Prediction % 10% 20% 30% 50% 10% 20% 30% 50%

CNN (cross-entropy) 51.77 42.80 39.40 36.25 5499 4838 43.24 38.58
CNN (squared loss) 57.97 49.12 44.03 39.26 60.32 50.14 45.18 40.51

Table 6.5: Comparing different loss functions for the CNN model on the Breakfast dataset with
ground-truth observations. Numbers represent accuracy as mean over classes.

Breakfast dataset and training MS-TCN on the full videos of 50Salads achieves around 6.5% higher
accuracy than training on partial videos. More discussion on the impact of the recognition model
will be provided in Chapter 8, where we address this issue by proposing an end-to-end framework
for long-term anticipation.

6.3.5 Analysis of the CNN Model

Model Architecture Compared to commonly used CNN architectures such as VGG-16 or ResNet,
our model is comparably small. We stick to this simple architecture since we have very limited
amount of training data, and complex models would easily overfit on the training set. A comparison
of our architecture to a VGG-16 (Simonyan and Zisserman, 2015) on Breakfast with and without
ground truth annotation is provided in Figure 6.6 (a) and Figure 6.7 (a), respectively. The perfor-
mance of our architecture compared to VGG-16 is clearly better with an improvement up to 9% when
using the ground truth annotation as observations. Note that our architecture already has around 6m
parameters due to the fully connected layers at the end.

Loss Function Our choice of the loss function for the CNN based model is a squared loss preceded
by an {5 normalization layer. However, for classification tasks, a softmax with cross-entropy loss is
usually used. Since the future action prediction task can be viewed as special kind of classification,
a softmax layer trained with the cross-entropy loss seems a more suitable choice on first glance. Yet,
a comparison of both loss types shows a clear superiority of the squared loss combined with the ¢
normalization layer, see Table 6.5. We attribute this to the smoothing properties of the softmax layer.
Even large differences of the input values to a softmax layer lead to comparably small differences
in the output probability distribution. This is a desirable effect in classification tasks. For our task,
however, it leads to frequent changes of the maximizing label index, which corresponds to over-
segmentations. The effect can also be observed in Figure 6.9. While strong over-segmentation can
be observed for the softmax output, this effect nearly completely vanishes using the ¢o normalization
layer. Nevertheless, even with the /5 normalization layer, a small over-segmentation effect is still
visible in some cases, which can be eliminated by the post-processing step as shown in Figure 6.10.
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Figure 6.10: Results of the CNN model with and without post-processing.

Observation % 20% 30%
Prediction % 10% 20% 30% 50% 10% 20% 30% 50%

CNN (features) 1278 11.62 11.21 10.27 17.72  16.87 15.48 14.09
CNN (w/o GT obs.) 17.90 16.35 15.37 14.54 2244 20.12 19.69 18.76

Table 6.6: Results for future action prediction directly from features on the Breakfast dataset. Num-
bers represent accuracy as mean over classes.

6.3.6 Future Prediction Directly from Features

So far, we considered observations that are either frame-wise ground truth action labels, or those
labels that are obtained by decoding the observed frame-wise features. In this section, we evaluate the
performance of our models when applied directly on the observed frame-wise features and compare
it to the two-step approach. We only use the CNN model for this evaluation. Originally, the input
of the model is a matrix with C' columns that correspond to the number of classes, and S rows that
represent the temporal resolution. Each row is a 1-hot encoding that represents the action label of the
corresponding frames in the observed sequence. When applying this model to features directly, C' is
equal to the dimensionality of the features, which is 64 in our case for the Fisher vectors features.
S is kept at 128 as before. The observed video features are down-sampled or upsampled to have
exactly 128 frames. We use the same training protocol that is used for the previous experiments, by
considering the set {10%, 20%, 30%, 50%} as observation percentages, and the target is always
the 50% that follows immediately after the observations. Table 6.6 shows the results of the CNN
model when applied on features directly compared to the two-step approach. As shown in the table,
using the two-step approach outperforms the direct prediction from features by a large margin of
up to +5%. Predicting the future directly from features is a harder problem since the model has to
recognize the observed actions and capture the relevant information to anticipate the future, while for
the two-step approach these two tasks are decoupled. This allows to use a strong decoding model to
recognize the observed actions, and restricting the future predictor to capture the context over action
classes only instead of frame-wise features. A similar conclusion was reached by (Garbade and Gall,
2017) where semantic labels of the unseen parts are predicted in the spatial domain of an image. It
has been shown that segmenting the observed part of the image first and then using the segmented
image for prediction achieves better results than using the RGB image directly.

6.3.7 Comparison with the State-of-the-Art

To the best of our knowledge, long term future action prediction has not been addressed before. Most
works focus on predicting the immediate future. Vondrick et al. (2016), for instance, train a model to
predict AlexNet features of a frame one second in the future. Based on these predictions, an SVM is
trained to determine the action label of the future frame.
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Breakfast 50Salads

Vondrick et al. (2016) 8.1 6.2
RNN model 30.1 30.1
CNN model 27 29.8

Table 6.7: Comparison with Vondrick et al. (2016): Accuracy of predicting future actions one second
before they start is reported.

Observation % 20% 30%
Prediction % 10% 20% 30% 50% 10% 20% 30% 50%
Breakfast
RNN model 18.11 17.20 15.94 15.81 21.64  20.02 19.73 19.21
CNN model 17.90 16.35 15.37 14.54 22.44  20.12 19.69 18.76
UAAA (mode) (Chapter 7) 16.71 15.40 14.47 14.20 20.73 18.27 18.42 16.86
Time-Cond. (Ke et al., 2019) 18.41 17.21 16.42 15.84 22775  20.44 19.64 19.75
End2End (Chapter 8) 25.88 2342 2242 2154 29.66 27.37 2558 2520
TAR (I3D) (Sener et al., 2020) 2420 21.10  20.00 18.10 30.40 2630 23.80 21.20
TAR (I3D + Labels) (Sener et al., 2020) 3710 31.80 30.10 27.10 39.80 3420 3190 27.80
50Salads
RNN model 30.06 25.43 18.74 13.49 30.77 17.19 14.79  09.77
CNN model 21.24 19.03 1598 09.87 29.14 20.14 17.46 10.86
UAAA (mode) (Chapter 7) 24.86  22.37 19.88 12.82 29.10  20.50 15.28 12.31
Time-Cond. (Ke et al., 2019) 32.51 27.61 21.26 15.99 35.12  27.05 22.05 15.59
End2End (Chapter 8) 3476  28.41 21.82 15.25 3439  23.70 18.95 15.89
TAR (IDT + Labels) (Sener et al., 2020) 3470 2590 23.70 15.70 34.50 26.10 19.00 15.50
AGG (Piergiovanni et al., 2020) 40.40 33.70 2540 20.90 40.70 40.10 26.40 19.20

Table 6.8: Comparison with the state-of-the-art approaches extending our models. Numbers repre-
sent MoC accuracy.

Since Vondrick et al. (2016) train their future prediction model on 600A of videos from the web,
which are not made publicly available, we use the recent I3D network trained on the Kinetics dataset
to generate deep CNN features that have shown to generalize extremely well on several action recog-
nition datasets (Carreira and Zisserman, 2017). We run the approach of Vondrick et al. (2016) on
both, Breakfast and 50Salads, and compare their results to our model. To provide a fair comparison,
our model is trained in a way that the input sequences always end one second before the next action
segment starts. The results are shown in Table 6.7. Our approach outperforms the system of Vondrick
et al. (2016) by a large margin. Note that for both datasets, predicting an action label only based on a
single frame is particularly hard and the framewise action classifier achieves less than 10% accuracy.
In contrast to Vondrick et al. (2016), our approaches make use of temporal context of the previously
observed video content, which is crucial for reliable predictions.

Inspired by our methods, several researchers extended our approach and further improved the
results. Table 6.8 provides a comparison with these approaches. Ke et al. (2019) proposed an ap-
proach that, instead of recursively predicting future activities, predicts a single future action segment
by conditioning the model on a time variable. To predict all the future activities, several forward
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passes with different time values are needed. Sener et al. (2020) proposed a multi-scale temporal
aggregation framework for learning representations by relating recent observations to the long-range
past. The learned representation are then used as input to an LSTM to generate the sequence of future
activities. Piergiovanni et al. (2020) proposed an adversarial generative grammar model and applied
it for both action anticipation and forecasting 3D human poses. Besides these methods, we will also
extend our approach in the next chapter to predict multiple possible future sequences. Furthermore,
we will introduce an end-to-end framework for long-term anticipation in Chapter 8.

6.4 Summary

We have introduced two efficient methods to predict future actions in videos, which is a task that has
not been addressed before. While most existing prediction approaches focus on early anticipation
of an already ongoing action or predict at most one action in the future, our methods have been the
first to predict video content of up to several minutes length. Proposing two models to address the
task, an RNN and a CNN, we obtain accurate predictions that scale well along different datasets and
videos with varying lengths, varying quality of observed data, and huge variations in the possible
future actions. Our approach has been a source of inspiration for several follow-up works.






CHAPTER 7
Uncertainty-Aware Anticipation of
Activities

In the previous chapter, we proposed the long-term anticipation task and extended the prediction
time horizon to several minutes into the future. However, with increasing the time horizon of the
predicted activities, the future becomes more uncertain and models that generate a single prediction
fail at capturing the different possible future activities. In this chapter, we address the uncertainty
modelling for predicting long-term future activities. Both an action model and a length model are
trained to model the probability distribution of the future activities. At test time, we sample from the
predicted distributions multiple samples that correspond to the different possible sequences of future
activities. Our model is evaluated on two datasets and shows a good performance in capturing the
multi-modal nature of future activities without compromising the accuracy when predicting a single
sequence of future activities. This chapter is based on (Abu Farha and Gall, 2019b).
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7.1 Introduction

Anticipating future activities in video has become an active research topic in computer vision. While
earlier approaches focused on early activity detection (Ryoo, 2011; Hoai and De la Torre, 2014;
Ma et al., 2016; Sadegh Aliakbarian et al., 2017), recent models predict activities a few seconds in
the future (Lan et al., 2014; Jain et al., 2016; Vondrick et al., 2016; Gao et al., 2017c). However,
predicting the future activity label shortly before it starts is not sufficient for many applications.
Robots, for instance, that interact with humans to accomplish industrial tasks or help in housework
need to anticipate activities for a long time horizon. Such long-term prediction would enable these
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‘ open cupboard ‘ take cup
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Figure 7.1: The anticipation task. Given an observed part of a video, we want to predict the future
activities that might follow in the future with their durations. The model outputs a collection of
samples to represent the uncertainty in the future actions.

robots to plan ahead to complete their tasks efficiently. Moreover, anticipating the activities of other
interacting humans improves human-robot interaction.

In the previous chapter, we extended the prediction horizon up to a few minutes into the future
and predict both future activities and their durations as well. While our approach generates good
predictions, it does not take the uncertainty of the future into consideration. For example, given a
video snippet that shows a person taking a cup from the cupboard, we cannot be sure whether the
future activity would be pour water or pour coffee. Approaches that predict a single output and do
not model the uncertainty in the future actions would fail in such cases. On the contrary, approaches
that are capable of predicting all the possible outputs are preferable. Figure 7.1 illustrates a case
where the future activities have multiple modes and the model has to predict all these modes.

In this chapter, we introduce a framework that models the probability distribution of the future
activities and use this distribution to generate several possible sequences of future activities at test
time. To this end, we train an action model that predicts a probability distribution of the future action
label, and a length model which predicts a probability distribution of the future action length. At
test time, we sample from these models a future action segment represented by an action label and
its length. To predict more in the future, we feed the predicted action segment to the model and
predict the next one recursively. We evaluate our framework on two datasets with videos of varying
length and many action segments: the Breakfast dataset (Kuehne et al., 2014) and 50Salads (Stein
and McKenna, 2013). Our framework outperforms a baseline that predicts the future activities using
n-grams as an action model and a Gaussian to predict the action length. Furthermore, we are able
to achieve results that are comparable with the state-of-the-art if we use the framework to predict a
single sequence of future activities.

7.2 Anticipating Activities

Given an observed part of a video with ¢ frames and the corresponding frame-wise labels
ay = (a1,...,a:), we want to predict all the action segments and their lengths that will occur in
the future unseen part of that video. The observed video sequence can also be represented as n action
segments Ay., = (Ay,..., A,) with their corresponding lengths ¢;.,, = (¢1,...,¥,). And the target
are the segments A,, 1.y with the corresponding segments lengths #,,, 1.7, where NNV is the total num-
ber of action segments in the video. Furthermore, since the last observed action segment A,, might be
partially observed and will continue in the future, we want to update our estimate of ¢,, as well. Since
for the same observed action segments Aj.,, there are more than one possible future action segments,
we want to predict more than one output to capture the different modes in the future as shown in
Figure 7.1. To this end, we propose a framework to model the uncertainty in the future activities, and
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Figure 7.2: Our anticipation framework consists of: (a) The action model which predicts the prob-
ability distribution of the future action label. (b) The length model which predicts the probability
distribution of the future action length.

then use this framework to generate samples of the future action segments. We start with the model
description in Section 7.2.1, and then describe the prediction procedure in Section 7.2.2.

7.2.1 Model

We follow the two-step approach that we proposed in the previous chapter and infer the actions in
the observed frames and then predict the future actions. For inferring the actions in the observed
part, we also use the same RNN-HMM model (Richard et al., 2017). Our goal now is to model the
probability of the future actions and their lengths. This can be done using an autoregressive model
that predicts the future action and its length, and then feeding the predicted output to the model again
to predict the next one. Using such an autoregressive approach allows us to use the same model to
predict actions for arbitrarily long time horizons. The probability distribution of the future action
segment and its length can be factorized as follows

P(An+t1, lnt1lAim, lin) = P(Ant1]Arm, Cim) - Plnsi|Arn, liny Ant1), (7.1)

where the first factor p(A,+1|A1.n, ¢1.n) is an action model that describes the probability distri-
bution of the future action label given the preceding action segments. Whereas the second factor
P(ln+1|A1:n, l1:n, An+1) is a length model that describes the probability distribution of the future
action length given the preceding action segments and the future action label. In the following, we
discuss the details of these models.

7.2.1.1 Action Model

The action model predicts a probability distribution of the future action given the sequence of ob-
served action segments and their lengths. For this model we use an RNN-based model similar to
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the one proposed in the previous chapter as shown in Figure 7.2 (a). Given the observed part of the
video, each action segment is represented by a vector of a 1-hot encoding of the action label and the
corresponding segment length. This sequence is passed through a fully connected layer, two layers
of gated recurrent units (GRUs), and another fully connected layer. We use ReLU activations for
the fully connected layers. For the output layer, we use another fully connected layer that predicts
action scores for the future action. To get the probability distribution of the future action, we apply a
softmax over the predicted scores

eTA

where x ; is the predicted action score for the class A. To train this model, we use a cross entropy
loss

p(Ans1 = AlA1y, O0) (7.2)

1

»Caction = M Z _log(ym,A)u (73)

m

where y,,, 4 is the predicted probability for the ground-truth future action label A in the m-th training
example.

7.2.1.2 Length Model

We model the probability distribution of the future action length with a Gaussian distribution, i.e.
p(£n+1’A1:m el:m An+1) = N(,Ua 02)- (7~4)

To predict the mean length p and the standard deviation o of this distribution, we use a network
with two branches as shown in Figure 7.2 (b). The first branch is the same as the RNN-based model
used in the action model. It takes the sequence of the observed action segments as input and encodes
them into a single vector representation. Whereas the second branch is a single fully connected
layer that takes a 1-hot encoding of the future action A, 1 and encodes it in another single vector
representation. These two encoded vectors are concatenated and passed through two fully connected
output layers to predict the mean length 1 and the standard deviation o. To ensure that the standard
deviation is positive we use exponential activations for the output layer. To train the length model,
we minimize the negative log likelihood of the target length

1
Elength = MZ_ZOQ p(€n+1 = €%|A1:na Zl:na AnJrl)a
(¢ — n)? "

2 )
20%,

1
= MZO‘E) log(2m) +log(om) +

where £9! is the ground-truth length of the future action, p,,, and oy, are the predicted mean length
and standard deviation for the m-th training example. As the first term in (7.5) is constant, our final
loss function for the length model can be reduced to

(65 — pim)?

5 (7.6)

1
Elength = M Z lOQ(Gm) +
m
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The training examples for both the action and length models are generated based on the ground-
truth segmentation of the training videos. Given a video with [V action segments, we generate N — 1
training examples. For a segment ¢ > 1, the sequence of all the preceding segments is considered
as input of the training example, where each segment is represented by a vector of a 1-hot encoding
of the action label and the corresponding segment length. The action label of segment ¢ defines the
target for the action model and its length serves as a target for the length model.

7.2.2 Prediction

Given an observed part of a video with n action segments, we want to generate plausible sequences of
future activities. Note that the observed part might end in a middle of an action segment and the last
segment in the observations might be not fully observed. In the following we describe two strategies
for predicting the sequence of future activities. The first strategy generates multiple sequences of
activities by sampling from the predicted distributions of our approach. Whereas the second strategy
is used to generate a single prediction that corresponds to the mode of the predicted distributions.

7.2.2.1 Prediction by Generating Samples

At test time we alternate between two steps: sampling a future action label from the action model
An-&-l ~ p(An+1|A1:n7 gl:n)a (77)

and then we sample a length for the sampled future action using the length model

~ ~

U1 ~ p(lns1|Aim, Lim, Ant1). (7.8)

We feed the predicted action segment recursively to the model until we predict the desired time
horizon. As the last observed action segment might continue in the future, we start the prediction
with updating the length of the last observed action segment. For this step, we sample a length for
the last observed action segment based on the preceding segments and only update the length of that
segment if the generated sample is greater than the observed length as follows

gn ~ p(£n|A1:n71> El:nfla An)a (79)
. fn : Zn >V,
0 = , (7.10)
£, :otherwise

where /), is the observed length of the last observed action segment, and £}, is the predicted full length
of that segment.

7.2.2.2 Prediction of the Mode

For predicting the mode, we also alternate between predicting the future action label and then predict-
ing the length of that label. However, instead of sampling from the predicted action distribution, we
choose the action label with the highest probability. For predicting the length, we use the predicted
mean length from the length model instead of sampling from the predicted distribution.
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7.2.3 Implementation Details

We implemented both models in PyTorch (Paszke et al., 2017) and trained them using Adam opti-
mizer (Kingma and Ba, 2015) with a learning rate of 0.001. The batch size is set to 32. We trained
the action model for 60 epochs and the length model is trained for 30 epochs. Dropout is used after
each layer with probability 0.5. We also apply standardization to the length of the action segments
as follows

(="—" (7.11)

where ¢ and o, are the mean length and standard deviation, respectively, computed from the lengths
of all action segments in the training videos.

7.3 Experiments

Datasets. We evaluate the proposed model on two challenging datasets: the Breakfast
dataset (Kuehne et al., 2014) and 50Salads (Stein and McKenna, 2013).

The Breakfast dataset contains 1, 712 videos with roughly 3.6 million frames. Each video be-
longs to one out of ten breakfast related activities, such as make tea or pancakes. The video frames
are annotated with fine-grained action labels like pour water or take cup. Overall, there are 48 dif-
ferent actions where each video contains 6 action instances on average. The videos were recorded
by 52 actors in 18 different kitchens with varying view points. For evaluation, we use the standard 4
splits as proposed in (Kuehne et al., 2014) and report the average.

The 50Salads dataset contains 50 videos with roughly 600, 000 frames. On average, each video
contains 20 action instances and is 6.4 minutes long. All the videos correspond to salad prepara-
tion activities and were performed by 25 actors. The video frames are annotated with 17 different
fine-grained action labels like cut tomato or peel cucumber. For evaluation, we use five-fold cross-
validation and report the average as in (Stein and McKenna, 2013).

Evaluation Metric. We evaluate our framework using two evaluation protocols. The first protocol
is used in the previous chapter where we observe 20% or 30% of the video and predict the following
10%, 20%, 30% and 50% of that video. As a metric, we report the mean over classes (MoC) by
evaluating the frame-wise accuracy of each action class and then averaging over the total number
of ground-truth action classes. To evaluate multiple samples of future activities, the average frame-
wise accuracy of each action class is used to compute the MoC. The average accuracy over samples
has been used in other future prediction tasks like predicting future semantic segmentation (Bhat-
tacharyya et al., 2019) or predicting the next future action label (Mehrasa et al., 2019). The second
protocol is used in (Mehrasa et al., 2019) where we predict only the next future action segment and
report the accuracy of the predicted label.

Baseline. As a baseline we replace our action model with tri-grams, where the probability of the
action is determined based on the preceding two action segments. For the length model, we assume
the length of an action follows a Gaussian distribution with the mean and variance estimated from
the training action segments of the corresponding action.
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Observation % 20% 30%
Prediction % 10% 20% 30% 50% 10% 20%  30% 50%
Breakfast

bi-grams 45.11 35.03 3094 25.69 45.78 36.29 3148 26.12
tri-grams 4595 3759 34.13 29.52 48.09 4030 35.86 30.60
four-grams 4728 3855 34774 29.70 4988 4143 36.45 30.86
Ours 50.39 41.71 37.79 32.78 51.25 4294 3833 33.07

508alads

bi-grams 30.39 2230 18.53 10.75 31.53 18.59 1295 08.84
tri-grams 31.88 23.13 19.19 11.58 32.07 1931 13.90 09.40
four-grams 3042 2253 1831 11.25 30.79 18.89 13.09 09.58
Ours 3495 28.05 24.08 1541 3315 24.65 18.84 14.34

Table 7.1: Results for anticipation with ground-truth observations. Numbers represent mean over
classes (MoC) metric averaged over 25 samples.

Observation % 20% 30%
Prediction %  10% 20% 30%  50% 10%  20% 30% 50%
Breakfast
Baseline 49.54 4038 36.83 32.71 5225 4295 3892 33.80
Ours 53.00 44.10 39.72 34.90 53.99 44.53 40.21 35.58
50S8alads

Baseline 31.65 25.02 20.75 12.41 36.98 2251 16.04 11.58
Ours 38.10 30.10 26.33 16.51 40.00 29.27 23.17 15.48

Table 7.2: Results for anticipation with ground-truth observations. Numbers represent mean over
classes (MoC) metric of the predicted distribution mode.

7.3.1 Anticipation with Ground-Truth Observations

We start the evaluation by using the ground-truth annotations of the observed part. This setup allows
us to isolate the effect of the action segmentation model which is used to infer the labels of the
observed part (i.e. the RNN-HMM model). Table 7.1 shows the results of our model compared to
n-grams baselines. For each example in the test set, we generate 25 samples and use the average
accuracy of each class to compute the mean over classes metric (MoC). As shown in Table 7.1, our
approach outperforms the baselines on both datasets and in all the test cases. This indicates that
our model learns a better distribution of the future action segments represented by the generated
samples. We also show the effect of using bi-grams or four-grams instead of the used tri-grams for
the baseline. As shown in Table 7.1, the effect of using different n-grams model is small. While using
more history gives a slight improvement on the Breakfast dataset, the tri-grams model performs better
than four-grams on the 50Salads dataset, which contains much longer sequences. For the rest of the
experiments, we stick with the tri-grams model for the proposed baseline.
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Figure 7.3: Qualitative result from the Breakfast dataset. This sequence corresponds to the activity
of making_tea. We observe 20% of the video and predict the following 50%. Both the generated
samples and the mode of the predicted distribution are shown. The samples are ranked based on
the frame-wise accuracy of the predicted activities. We also show the results of the RNN and CNN
models from the previous chapter.

We also report the accuracy of the mode of the predicted distribution. Instead of randomly draw-
ing a sample from the predicted distribution, we predict the action label with the highest probability
at each step. For the action length, we use the predicted mean length. Table 7.2 shows the results on
both 50Salads and the Breakfast dataset. Our approach outperforms the baseline in this setup as well.

Figure 7.3 shows a qualitative result from the Breakfast dataset. Both the generated samples and
the mode of the distribution are shown. We also show the results of the RNN and CNN models
from the previous chapter. As illustrated in the figure, there are many possible action segments that
might happen after the observed part (SIL, take_cup), and our model is able to generate samples
that correspond to these different possibilities. In contrast, both the RNN and CNN from Chapter 6
generate only one possible future sequence of activities, which in this case does not correspond to
the ground-truth.
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Observation % 20% 30%
Prediction % 10%  20% 30% 50% 10% 20% 30% 50%
Breakfast
Baseline 1539 13.65 1293 11.90 19.31 1656 15.76 13.90
Ours 15.69 14.00 13.30 12.95 19.14 17.18 17.38 14.98
508alads
Baseline 2141 1636 13.29 09.39 2459 15.60 11.73 08.57
Ours 23.56 19.48 18.01 12.78 28.04 1795 14.77 12.06

Table 7.3: Results for anticipation without ground-truth observations. Numbers represent mean over
classes (MoC) metric averaged over 25 samples.

Observation % 20% 30%
Prediction % 10%  20% 30% 50% 10%  20% 30% 50%
Breakfast
Baseline 16.55 14.74 13.85 13.19 20.80 17.67 17.00 15.78
Ours 16.71 1540 14.47 14.20 20.73 18.27 18.42 16.86
508alads
Baseline 2174 1743 1496 10.34 28.06 18.70 14.60 09.75
Ours 24.86 2237 19.88 12.82 29.10 20.50 15.28 12.31

Table 7.4: Results for anticipation without ground-truth observations. Numbers represent mean over
classes (MoC) metric of the predicted distribution mode.

7.3.2 Anticipation without Ground-Truth Observations

In this section, we evaluate our approach without relying on the ground-truth annotations of the
observed part. le. we infer the labels of the observed part of the video with the RNN-HMM
model (Richard et al., 2017), and then use our approach to predict the future activities. Table 7.3
reports the results of the generated samples, represented by the mean over classes averaged over 25
samples. Whereas Table 7.4 shows the results of the distribution mode. Our approach outperforms
the baseline in both cases, which emphasizes the robustness of our approach to noisy input. Never-
theless, the baseline performs slightly better than our approach for the case of observing 30% and
predicting the next 10% of the videos on the Breakfast dataset. This case corresponds to a short-term
prediction where in most cases the future activities consist of only one action segment. Whereas our
approach is better for longer time horizons.

7.3.3 Effect of the Number of Samples

To evaluate the generated samples, we report the mean over classes averaged over 25 samples. Ta-
ble 7.5 shows the effect of using different numbers of samples. In each case, the average and standard
deviation of 5 runs are reported. As shown in Table 7.5, the impact of the number of samples is small.
While the average MoC remains in the same range, the standard deviation decreases as increasing
the number of samples.
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Observation % 20% 30%
Prediction % 10% 20% 30% 50% 10% 20% 30% 50%
Breakfast
5 samples 15.47 £ 00.14 14.02 + 00.07 13.49 + 00.20 13.10 £+ 00.18 19.07 £ 00.17 17.03 +£00.16 17.38 £ 00.36 15.08 + 00.20
10 samples 15.57 £ 00.10 14.07 £ 00.12 13.47 +00.17 13.02 + 00.13 1897 £ 00.15 17.08 +00.12 17.07 £ 00.10 15.02 + 00.10
25 samples 15.57 £ 00.07 14.06 + 00.08 13.42 + 00.07 13.10 £+ 00.06 19.04 + 00.06 17.12 + 00.08 17.18 +00.11 15.09 + 00.06
50 samples 15.56 £ 00.11 14.00 + 00.06 13.48 + 00.06 12.98 + 00.03 19.06 + 00.11 17.12 +00.05 17.22 +£00.03 15.07 + 00.06
50Salads
5 samples 24.04 +02.00 20.02 +£00.71 16.93 +00.77 12.47 + 00.78 26.39 £ 01.08 1798 +01.39 14.53 +01.18 11.99 £+ 00.44
10 samples 23.04 £ 01.18 20.37 +£00.45 17.39 +£00.54 12.64 £+ 00.54 26.99 + 00.80 18.07 +00.75 14.68 £+ 00.95 12.59 + 00.40
25 samples 23.16 + 00.68 20.03 +00.40 17.30 +00.48 12.71 + 00.13 26.58 +£00.42 18.22 +00.62 14.83 +00.60 12.20 £+ 00.29
50 samples 23.08 £00.32 19.98 + 00.10 17.54 +£00.14 12.78 +00.13 26.64 +00.30 18.26 + 00.36 14.59 + 00.28 12.25 4+ 00.37

Table 7.5: Effect of the number of samples. Numbers represent mean over classes (MoC) metric averaged over the samples. In each case, the

average and standard deviation of 5 runs are reported.
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Observation % 20% 30%
Prediction % 10% 20% 30% 50% 10% 20% 30% 50%
Breakfast

RNN model (Chapter 6) 60.35 50.44 4528 40.42 61.45 5025 4490 41.75
CNN model (Chapter 6) 5797 49.12 44.03 39.26 60.32 50.14 45.18 40.51
Time-Cond. (Ke et al., 2019) 64.46 56.27 50.15 43.99 6595 5594 49.14 4423

Ours (Mode) 53.00 44.10 39.72 34.90 5399 4453 4021 35.58
Ours (Top-1) 78.84 72.84 66.29 6345 82.00 72.83 69.13 62.39
508alads

RNN model (Chapter 6) 4230 31.19 2522 16.82 44.19 2951 1996 10.38
CNN model (Chapter 6) 36.08 27.62 2143 1548 37.36 2478 20.78 14.05
Time-Cond. (Ke et al., 2019) 45.12 33.23 2759 17.27 46.40 34.80 2524 13.84

Ours (Mode) 38.10 30.10 26.33 16.51 40.00 29.27 23.17 1548
Ours (Top-1) 74.89 5875 46.07 35.71 67.39 5237 46.73 36.64

Table 7.6: Comparison with the state-of-the-art using ground-truth observations. Numbers represent
mean over classes (MoC).

7.3.4 Comparison with the State-of-the-Art

In this section, we compare our approach with the state-of-the-art methods for anticipating activities.
Since the state-of-the-art methods do not model uncertainty and predict just a single sequence of
future activities, we report the accuracy of the mode of the predicted distribution of our approach.
Table 7.6 shows the results with the ground-truth observations, and Table 7.7 shows the results with-
out the ground-truth observations. While the mode of the distribution from our approach only out-
performs the CNN model (Chapter 6) on the 50Salads dataset, it shows a lower accuracy compared
to the RNN model and (Ke et al., 2019). This is expected since these approaches were trained to
predict only a single sequence of future activities while our approach is trained to predict multiple
sequences. We therefore also report the top-1 MoC. The results show that our model captures the
future activities better.

We also compare our approach with (Mehrasa et al., 2019) in predicting the next action segment
given all the previous segments. The accuracy of predicting the label of the future action segment is
reported in Table 7.8. Note that in this comparison we use the ground-truth annotations of the videos
as in (Mehrasa et al., 2019). Our approach achieves a lower accuracy. However, our approach is
designed for long-term prediction as we have already observed in Section 7.3.2 and this compari-
son considers short-term prediction only. Moreover, the approach of Mehrasa et al. (2019) is very
expensive, making it infeasible for long-term predictions.

Finally, we compare with the follow-up work of Zhao and Wildes (2020). They proposed a condi-
tional generative adversarial network based on LSTMs. To train the model, they used a combination
of an adversarial loss and a normalized distance regularizer that encourages realistic and diverse pre-
dictions. Table 7.9 compares the results of Zhao and Wildes (2020) with our approach. While their
approach outperforms ours on the average MoC metric, our approach is still competitive when the
top-1 sample is considered.
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Observation % 20% 30%
Prediction % 10% 20% 30% 50% 10% 20% 30% 50%
Breakfast

RNN model (Chapter 6) 18.11 17.20 1594 15.81 21.64 20.02 19.73 19.21
CNN model (Chapter 6) 1790 1635 1537 14.54 2244 20.12 19.69 18.76
Time-Cond. (Ke et al., 2019) 18.41 17.21 16.42 15.84 2275 20.44 19.64 19.75

Ours (Mode) 16.71 1540 14.47 14.20 20.73 1827 1842 16.86
Ours (Top-1) 28.89 2843 27.61 28.04 32.38 31.60 32.83 30.79
508alads

RNN model (Chapter 6) 30.06 2543 18.74 13.49 30.77 17.19 1479 09.77
CNN model (Chapter 6) 21.24 19.03 1598 09.87 29.14 20.14 1746 10.86
Time-Cond. (Ke et al., 2019) 3251 27.61 21.26 15.99 35.12 27.05 22.05 15.59

Ours (Mode) 2486 2237 19.88 12.82 29.10 20.50 15.28 12.31
Ours (Top-1) 53.53 4299 40.50 33.70 5643 42.82 35.80 30.22

Table 7.7: Comparison with the state-of-the-art without ground-truth observations. Numbers repre-
sent mean over classes (MoC).

Model Accuracy
APP-VAE (Mehrasa et al., 2019) 62.2
Ours 57.8

Table 7.8: Comparison with (Mehrasa et al., 2019): Accuracy of predicting the label of the next
action segment.

Observation % 20% 30%
Prediction % 10%  20% 30% 50% 10%  20% 30% 50%
Breakfast
Ours (AVG) 50.39 4171 37.79 32.78 51.25 4294 38.33 33.07
Ours (Top-1) 78.84 72.84 66.29 63.45 82.00 72.83 69.13 62.39

Zhao and Wildes (2020) (AVG) 72.22 62.40 56.22 4595 74.14 7132 65.30 52.38
Zhao and Wildes (2020) (Top-1) 82.08 70.59 68.51 64.06 8336 76.85 72.13 64.06

50Salads
Ours (AVG) 3495 28.05 24.08 15.41 33.15 24.65 18.84 14.34
Ours (Top-1) 74.89 58.75 46.07 35.71 67.39 5237 46.73 36.64

Zhao and Wildes (2020) (AVG) 46.63 35.62 3191 21.37 46.13 36.37 33.10 19.45
Zhao and Wildes (2020) (Top-1) 51.50 38.45 36.06 27.62 50.79 47.54 37.83 29.08

Table 7.9: Comparison with the follow-up work of Zhao and Wildes (2020) using ground-truth
observations. Numbers represent mean over classes (MoC).
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7.4 Summary

We presented a framework for modelling the uncertainty of future activities. Both an action model
and a length model are trained to predict a probability distribution over the future action segments.
At test time, we used the predicted distribution to generate many samples. Our framework is able to
generate a diverse set of samples that correspond to the different plausible future activities. While our
approach achieves comparable results to the state-of-the-art for short-term prediction, our approach
is in particular useful for long-term prediction since for such scenarios the uncertainty in the future
activities increases.






CHAPTER 8
Long-Term Anticipation of Activities
with Cycle Consistency

In the last two chapters, we proposed several approaches to extend the prediction horizon up to
several minutes into the future and anticipate a sequence of future activities with their durations.
However, these approaches decouple the semantic interpretation of the observed sequence from the
anticipation task. In this chapter, we propose a framework for anticipating future activities directly
from the features of the observed frames and train it in an end-to-end fashion. Furthermore, we
introduce a cycle consistency loss over time by predicting the past activities given the predicted
future. Our framework achieved state-of-the-art results on two datasets when the work has been
published: the Breakfast dataset and 50Salads. This chapter is based on (Abu Farha et al., 2020).
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8.1 Introduction

Long-term anticipation of activities beyond just a few seconds is a task with many practical appli-
cation. In Chapter 6, we proposed two models that are able to predict activities several minutes into
the future. These models inspired several researchers to address the long-term anticipation task and
further improve the performance (Gammulle et al., 2019a; Ke et al., 2019). While these approaches
successfully predict future activities and their duration, they decouple the semantic interpretation of
the observed sequence from the anticipation task using a two-step approach.
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Figure 8.1: (Left) Overview of the proposed approach, which is trained end-to-end and includes a
cycle consistency module. (Right) Effect of the cycle consistency module. Without the cycle consis-
tency, the network anticipates actions that are plausible based on the previous actions. However, in
some cases an essential action is missing. In this example pour oil. By using the cycle consistency,
we enforce the network to verify if all required actions have been done before. For the action fry
pancake, pouring oil into the pan is required and the cycle consistency resolves this issue.

Separating the understanding of the past and the anticipation of future has several disadvantages.
First, the model is not trained end-to-end, which means that the approach for temporal action seg-
mentation is not optimized for the anticipation task. Second, if there are any mistakes in the temporal
action segmentation, these mistakes will be propagated and affect the anticipated activities. Finally,
the action labels do not represent all information in the observed video that is relevant for anticipating
the future. In contrast to these approaches, we propose a sequence-to-sequence model that directly
maps the sequence of observed frames to a sequence of future activities and their duration. We then
cast the understanding of the past as an auxiliary task by proposing a recognition module, which
consists of a temporal convolutional neural network and a recognition loss, that is combined with the
encoder.

Furthermore, as we humans can reason about the past given the future, previous works only
aim to predict the future, and it is intuitive that forcing the network to predict the past as well is
helpful. To this end, we propose a cycle consistency module that predicts the past activities given
the predicted future. This module verifies if, for the predicted future actions, all required actions
have been done before as illustrated in Figure 8.1. In this example, the actions pour dough to pan
and fry pancake are plausible given the previous actions, but the action pour oil has been missed.
The cycle consistency module then predicts from the anticipated actions, the observed actions. Since
pour dough to pan and fry pancake are the inputs for the cycle consistency module, it will predict
all the required preceding actions such as pour milk, stir dough and pour oil. However, as pour oil
is not part of the observations, the cycle consistency module will have a high error, which steers the
network to predict pour oil in the future actions.

Our contribution is thus three folded: First, we propose an end-to-end model for anticipating
a sequence of future activities and their durations. Second, we show that the proposed recognition
module improves the sequence-to-sequence model. Third, we propose a cycle consistency module
that verifies the predictions.

We evaluate our model on two datasets with untrimmed videos containing many action segments:
the Breakfast dataset (Kuehne et al., 2014) and 50Salads (Stein and McKenna, 2013). Our model is
able to predict the future activities and their duration accurately achieving superior results compared
to the state-of-the-art methods.
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Figure 8.2: Overview of the anticipation framework. The observed frames are passed through a
TCN-based recognition module which produces discriminative features for the sequence-to-sequence
model. The sequence-to-sequence model predicts the future activities with their duration. In addition,
we enforce cycle consistency over time by predicting the past activities given the predicted future.

8.2 The Anticipation Framework

Given a partially observed video with many activities, we want to predict all the activities that
will be happening in the remainder of that video with their corresponding duration. Assuming
that the observed part consists of ¢, frames z1.4,, = (z1,...,2,) corresponding to n activities
A1 = (A1,..., Ay), our goal is to predict the future activities A, +1.8y = (Ap41,...,AN) and
their corresponding duration ¢, 1.y = (p41,...,¢N), where N is the total number of activities
in that video. In contrast to the previous approaches that use only the action labels of the observed
frames for anticipating the future, we propose to anticipate the future activities directly from the ob-
served frames. First, we propose a sequence-to-sequence model that maps the sequence of features
from the observations to a sequence of future activities and their duration. Then, we introduce a
cycle consistency module that predicts the past activities given the predicted future. The motivation
of this module is to force the sequence-to-sequence module to encode all the relevant information
in the observed frames and verify if the predictions are plausible. Finally, we extend the sequence-
to-sequence model with a recognition module that generates discriminative features that capture the
relevant information for anticipating the future. An overview of the proposed model is illustrated in
Figure 8.2. Our framework is hence trained using an anticipation loss, a recognition loss, and a cycle
consistency loss. In the following sections, we describe in detail these modules.

8.2.1 Sequence-to-Sequence Model

The sequence-to-sequence model maps the sequence of observed frames to a sequence of future
activities and their duration. For this model, we use a recurrent encoder-decoder architecture based
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on gated recurrent units (GRUSs).

Recurrent Encoder. The purpose of the recurrent encoder is to encode the observed frames in a
single vector which will be used to decode the future activities. Given the input features z, the
recurrent encoder passes these features through a single layer with a gated recurrent unit (GRU)

hi = GRU (x4, hi_y), 8.1)

where z; is the input feature for frame ¢, and Ay _; is the hidden state at the previous time step. The
hidden state at the last time step i encodes the observed frames and will be used as an initial state
for the decoder.

Recurrent Decoder. Given the output of the encoder hy , the recurrent decoder predicts the future
activities and their relative duration. The decoder also consists of a single layer with a gated recurrent
unit (GRU). The hidden state at each step is updated using the GRU update rules

hd = GRU(Ap_1, %), (8.2)

where the input at each time step A,,_1 is the predicted activity label for the previous step. At
training time, the ground-truth label is used as input. Whereas the predicted label is used during
inference time. For the first time step, a special start-of-sequence (SOS) symbol is used as input.
Given the hidden state h¢, at each time step, the future activity label A, and its relative duration £,,,
are predicted using a fully connected layer, i.e.

Ay = Wahl + ba, (8.3)

U = WS + by, (8.4)

where A, is the predicted logits for the future activity, and 0, is the predicted duration in log space.
To get the relative duration, we apply softmax over the time steps

- eént
b = — . 8.5
"= (85)
The decoder keeps predicting future activity labels and the corresponding duration until a special
end-of-sequence (EOS) symbol is predicted. As a loss function, we use a combination of a cross
entropy loss for the activity label and a mean squared error (MSE) for the predicted relative duration

La=Lcr+ LMSE, (8.6)
] N
Lop =3 D1 —log(dm,a), (8.7)

m=n+1

1 ~
Cuse = 35— 2, (b —tm)?, (8.8)

m=n+1

where £ 4 is the anticipation loss, @, 4 is the the predicted probability for the ground truth activity
label at step m, n is the number of observed action segments and NV is the total number of action
segments in the video.

Since the input to the encoder are frame-wise features which might be very long, the output of
the encoder h§ might not be able to capture all the relevant information. To alleviate this problem
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we combine the decoder with an attention mechanism using a multi-head attention module (Vaswani
et al., 2017). Given the current hidden state of the decoder h¢, and the output of the encoder at each
step hf,; = (h{,...,h{ ), the attention output for a single head is computed by first generating the
query (q), the keys (K) and values (V) as described in the following

q=Wyhi, (8.9)
K = Wih§, (8.10)
V = Wyhs,., (8.11)

where ¢ € R% is a column vector, K, V € R4t and d 4 is set to be one-eighth of the hidden state
size of the GRU. We normalize these tensors by the ||.|, norm and then compute the output using a
weighted sum of the values

O = Softmax(qTK)VT, (8.12)

where Oy, € R?4 is the output of a single head. We use 8 heads and concatenate the output of these
heads, apply a linear transformation and then concatenate the output with the input of the decoder at
each step.

8.2.2 Cycle Consistency

Since predicting the future from the past and the past from the future should be consistent, we propose
an additional cycle consistency loss. Given the predicted future activities, we want to predict the past
activities and their duration. This requires the predicted future to be good enough to predict the
past. The cycle consistency loss has two benefits. First, it verifies if, for the predicted future actions,
the actions that have been previously observed are plausible. Second, it encourages the recurrent
decoder to keep the most important information of the observed sequence until the end, instead of
storing only the information of the previous anticipated activity. In this way, a wrong prediction does
not necessary propagate since the observed sequence is kept in memory.

The cycle consistency module is similar to the recurrent decoder and consists of a single layer
with GRU, however, it predicts the past instead of the future. The hidden state of this GRU is
initialized with the last hidden state of the recurrent decoder and at each step the hidden state is
updated as follows

h$¥¢ = GRU (Ap—1, hy'<)). (8.13)

Given the hidden state hy;° at step m, an activity label of the observations and its relative duration
are predicted using a fully connected layer. The loss function is also similar to the recurrent decoder

ﬁcyc = £CE + EMSE7 (814)
1 « By
Lop =— ), —log(am,a), (8.15)
m=1
1 -
Luse = — D (bn = tm)?, (8.16)
m=1

where L. is the cycle consistency loss, Log and L)y/sg are the cross entropy loss and MSE loss
applied on the past activity labels and their relative duration.
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While the mapping from past to future can be multi-modal, this does not limit the applicability
of the cycle consistency module. Since the cycle consistency module is conditioned on the predicted
future, no matter what mode is predicted, the cycle consistency makes sure it is plausible. This also
applies to the inverse mapping. As there is a path from the observed frames to the cycle consistency
module through the sequence-to-sequence model, there is no ambiguity in which past activities have
been observed.

8.2.3 Recognition Module

In the sequence-to-sequence model, the input of the recurrent encoder are the frame-wise features.
However, directly passing the features to the encoder is sub-optimal as the encoder might struggle
to capture all the relevant information for anticipating the future activities. As past activities provide
a strong signal for anticipating future activities, we use a recognition module that learns discrimi-
native features of the observed frames. These features will then serve as an input for the sequence-
to-sequence model to anticipate the future activities. Given the success of temporal convolutional
networks (TCNs) in analyzing activities in videos, we use a similar network for our recognition
module. Besides being a strong model for analyzing videos, TCNs are fully differentiable and can
be integrated in our framework without preventing end-to-end training. For our module, we use a
TCN similar to the one proposed in Chapter 4. The TCN consists of several layers of dilated 1D
convolutions where the dilation factor is doubled at each layer. The operations at each layer can be
formally described as follows

H; = ReLU(Wy % Hi_1 + by), (8.17)

H,=H_,4 +W2*I;[l+b2, (8.18)

where H is the output of layer [, * is the convolution operator, Wy € R3*P*D are the weights of the

dilated convolutional filters with kernel size 3 and D is the number of the filters, Wy € R1*P*D are
the weights of a 1 x 1 convolution, and by, by € RPL are bias vectors. The input of the first layer Hy
is obtained by applying a 1 x 1 convolution over the input features X as follows

Hy=Wy=X + by (8.19)

where Wy € R1*P*F and by € RP are the weights and bias for the 1 x 1 convolutional layer and F
is the dimension of the input features.

The output of the last dilated convolutional layer serves as input to the subsequent modules. To
make sure that these features are discriminative enough, we add a classification layer that predicts
the action label at each observed frame

Y; = Softmax(Whp +b), (8.20)

where Y; contains the class probabilities at time ¢, by ; € RP is the output of the last dilated convo-
lutional layer at time ¢, W € RE*P and b € R® are the weights and bias for the 1 x 1 convolutional
layer, where C' is the number of action classes. To train this module we use a cross entropy loss
1
Lr= tf Z _log(yt,a)a (8.21)

2 ¢=1
where ¥ 4 is the predicted probability for the ground truth label a at time ¢, and £, is the number of
observed frames.
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8.2.4 Loss Function

To train our framework, we sum up all the three mentioned losses
L =LA+ LR+ Leye, (8.22)

where L 4 is the anticipation loss, L is the recognition loss, and L. is the cycle consistency loss.

8.3 Experiments

We evaluate the proposed model on two datasets: the Breakfast dataset (Kuehne et al., 2014) and
50Salads (Stein and McKenna, 2013). In all experiments, we report the average of three runs.

The Breakfast dataset is a collection of 1,712 videos with overall 66.7 hours and roughly 3.6
million frames. Each video belongs to one out of ten breakfast related activities, such as make tea or
pancakes. The video frames are annotated with fine-grained action labels like pour milk or fry egg.
Overall, there are 48 different actions. On average, each video contains 6 action instances and is 2.3
minutes long. For evaluation, we use the standard 4 splits as proposed in (Kuehne et al., 2014) and
report the average.

The 50Salads dataset contains 50 videos showing people preparing different kinds of salad.
These videos are relatively long with an average of 6.4 minutes and 20 action instances per video.
The video frames are annotated with 17 fine-grained action labels like cut fomato or peel cucumber.
For evaluation, we use five-fold cross-validation and report the average as in (Stein and McKenna,
2013).

We follow the state-of-the-art evaluation protocol and report the mean over classes (MoC) accu-
racy for different observation/prediction percentages.

Implementation Details. For the recognition module, we used a TCN with 10 layers and 64 filters
in each layer. The number of units in the GRU cells is set to 512. For each training video, we generate
two training examples with 20% and 30% observation percentage. The prediction percentage is
always set to 50%. All the models are trained for 80 epochs using Adam optimizer (Kingma and Ba,
2015). We set the learning rate to 0.001 and reduce it every 20 epochs with a factor of 0.8. For both
datasets, we extract I3D (Carreira and Zisserman, 2017) features for the video frames using both
RGB and flow streams and sub-sample them at 5 frames per second.

8.3.1 Ablation Analysis

In this section, we analyze the impact of the different modules in our framework on the anticipa-
tion performance. This analysis is conducted on the Breakfast dataset and the results are shown in
Table 8.1.

Impact of the recognition module: The recognition module consists of two parts: a TCN and a
recognition loss Lg. Starting from only the sequence-to-sequence module (S2S), we can achieve a
good accuracy in the range 20% — 27%. By combining the sequence-to-sequence module with the
recognition module (S2S + TCN + L), we gain an improvement of 1% — 2% for each observation-
prediction percentage. This indicates that recognition helps the anticipation task. We also evaluate
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Observation % 20% 30%

Prediction % 10% 20% 30% 50% 10% 20%  30% 50%
S28S 23.22  20.92 20.10 20.05 2643 2438 24.13 23.38
S2S + TCN 14.52 13.55 13.15 12.70 14.83 14.11 13.61 13.01
S2S + TCN + Lp 2472 2243 21.70 21.77 28.35 26.29 2501 2447
S2S+TCN + L + ,Ccyc 25.16 2273 2222 22.01 28.07 26.25 25.12 24.81

S2S + TCN + L + Ly +attn. 25.88  23.42 2242 21.54 29.66 27.37 25.58 25.20

Table 8.1: Ablation study on the Breakfast dataset. Numbers represent mean over classes (MoC)
accuracy.

the performance when the TCN is combined with the sequence-to-sequence module without the
recognition loss (S2S + TCN). As shown in Table 8.1, the results are worse than using only the
sequence-to-sequence module if we do not apply the recognition loss. This can be explained by the
structure of the network. The recurrent encoder maps the features extracted by the TCN from all
frames to a single vector. Without additional loss for the recognition module, the gradient vanishes
and the parameters of the TCN are not well estimated. Nevertheless, by just applying the recogni-
tion loss, we get enough supervisory signal to train the TCN and improve the overall anticipation
accuracy. This also highlights that the improvements from the recognition module are due to the
additional recognition task and not because of having more parameters.

Impact of the cycle consistency loss: The cycle consistency module predicts the past activities
from the predicted future. The intuition is that to be able to predict the past activities, the predicted
future activities have to be correct. As shown in Table 8.1, using the cycle consistency loss gives an
additional improvement on the anticipation accuracy. The cycle consistency loss verifies if, for the
predicted future actions, all required actions have been done before and no essential action is missing.
For example in Figure 8.3 (a), the model observes spoon flour, crack egg, pour milk, and stir dough.
Without the cycle consistency the network did not predict the action pour oil, which is required to fry
pancake. By using cycle consistency this issue is resolved. Cycle consistency also forces the decoder
to remember all observed activities. As illustrated in Figure 8.3 (b), the model observes spoon flour,
crack egg, pour milk, butter pan, and stir dough. Without the cycle consistency, the network predicts
the action stirfry egg, which would have been plausible if spoon flour and pour milk were not part of
the observations. Since the cycle consistency encourages the decoder to use all observed actions for
anticipation, the activity fry pancake is correctly anticipated.

Impact of the attention module: Finally, using the full model by combining the recurrent decoder
with the multi-head attention module further improves the results by roughly 1%. As shown in
Table 8.1, the gain from using the attention module is higher when the observation percentage is
30%. This is mainly because of the encoder module. Given the observed frames, the encoder tries
to encode them in a single vector. This means that the encoder has to throw away more information
from the long sequences compared to shorter sequences. In this case, the attention module can help in
capturing some of the lost information in the encoder output by attending on the relevant information
in the observations.



8.3. Experiments 111

1 Y £ q ) w
Observed . ! “ " o ‘ o Observed / !
Frames d Frames = - ! 4,

GT Future

GT Future

pour_oil, pour_dough2pan, fry_pancake stir_dough, pour_dough2pan, fry_pancake

with Ly with Leye

pour_oil, pour_dough2pan, fry_pancake stir_dough, butter_pan, pour_dough2pan, fry_pancake

W/O Leyc w/0 Leye

pour_milk, stir_dough, pour_dough2pan, fry_pancake stir_egg, pour_oil, pour_egg2pan, stirfry_egg

(a) (b)

Figure 8.3: Impact of the cycle consistency loss. Cycle consistency verifies if, for the predicted
future actions, all required actions have been done before and no essential action is missing (a), and
it further encourages the decoder to keep the important information from the observations until the
end, which results in better predictions (b).

Observation % 20% 30%
Prediction % 10% 20% 30% 50% 10% 20% 30% 50%
Two-Step 23.58 2190 20.80 20.18 27.80 2521 23.32 2296
Ours 25.88 2342 2242 21.54 29.66 27.37 25.58 25.20

Table 8.2: Comparison between the two-step approach and ours on the Breakfast dataset. Numbers
represent mean over classes (MoC) accuracy.

8.3.2 [End-to-End vs. Two-Step Approach

To illustrate the benefits of end-to-end learning over two-step approaches, we compare our framework
with its two-step counterpart. For this comparison, we first train the recognition module from our
framework and then fix the weights of the TCN and train the remaining components of our model
with the anticipation loss and the cycle consistency loss. Table 8.2 shows the results of our framework
compared to the two-step approach on the Breakfast dataset with different observation and prediction
percentages. As shown in the table, our framework outperforms the two-step approach with a large
margin of up to 2.3%. This highlights the benefits of end-to-end approaches where the model can
capture the relevant information in the observed frames to anticipate the future. On the contrary, two-
step approaches can only utilize the label information of the observed frames that are not optimized
for the anticipation task which is sub-optimal.

8.3.3 Frame-wise Features vs. Frame-wise Labels

In our model, we use the output features of the recognition module as input to the subsequent mod-
ules. Since the recognition module also predicts frame-wise class probabilities of the observed
frames, another option would be to pass these probabilities instead of the features. In this section,
we provide a comparison between these two variants. As shown in Table 8.3, passing frame-wise
class probabilities gives a comparable performance to frame-wise features. Nevertheless, using the
features is slightly better. This is expected as the features contain much richer information that can
be utilized by the subsequent modules. We also tried concatenating the frame-wise features and the
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Observation % 20% 30%
Prediction % 10%  20% 30%  50% 10%  20%  30%  50%
Ours with class probabilities 25.53 23.39 22.50 21.70 28.95 27.36 25.06 24.32
Ours with features 25.88 2342 2242 21.54 29.66 27.37 25.58 25.20

Ours with features and prob.  25.15 23.41 22.53 21.64 29.21 26.62 24.65 24.69

Table 8.3: Comparison between passing features vs. passing class probabilities of the observed
frames from the recognition module to the subsequent modules on the Breakfast dataset. Numbers
represent mean over classes (MoC) accuracy.

Observation % 20% 30%
Prediction % 10% 20% 30% 50% 10% 20% 30% 50%

Ours with duration input ~ 25.21 2094 19.61 20.38 2820 2471 23.58 23.15
Ours without duration input  25.88 23.42 2242 21.54 29.66 27.37 25.58 25.20

Table 8.4: Impact of passing the predicted duration at each step to the recurrent decoder on the
Breakfast dataset. Numbers represent mean over classes (MoC) accuracy.

frame-wise class probabilities and pass the concatenated tensor to the sequence-to-sequence module.
However, it did not improve the results.

8.3.4 Impact of Passing the Duration to the Decoder

The GRU in the recurrent decoder takes as input at each step the predicted activity label from the
previous step as described in (8.2). In this section, we study the impact of passing the predicted
duration to the decoder as well, i.e.

he = GRU([Am—1, bm—1], h% ). (8.23)

As shown in Table 8.4, passing the duration to the decoder results in a degradation in performance.
This is due to passing the duration before applying the softmax, which means that there might be
huge variations in the duration value between different iterations. While passing the duration after
applying the softmax is not feasible, passing only the activity labels provides enough information for
the decoder. We also tried to predict the absolute duration. In this case, no EOS symbol is predicted
and the decoder keeps generating future activities and their duration until the desired time horizon is
predicted. However, the model performed very poorly in this setup. This is expected since predicting
a stopping symbol is much easier than predicting the absolute duration of all activities.

8.3.5 Comparison with the State-of-the-Art

In this section, we compare our framework with the state-of-the-art methods on both the Breakfast
dataset and 50Salads. We follow the same protocol and report results for different observation and
prediction percentages. Table 8.5 shows the results on both datasets. All the previous approaches
follow the two-step approach by inferring the action labels of the observed frames first and then use
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Observation % 20% 30%
Prediction % 10% 20% 30% 50% 10% 20% 30% 50%
Breakfast
RNN model (Chapter 6) 18.11 17.20 1594 15.81 21.64 20.02 19.73 19.21
CNN model (Chapter 6) 1790 1635 1537 14.54 2244  20.12 19.69 18.76
RNN (Chapter 6) + MS-TCN 0593 0568 05.52 05.11 08.87 0890 07.62 07.69
RNN (Chapter 6) + MS-TCN* 23.56 20.74 19.52 18.37 26.12 2355 2147 2099
CNN (Chapter 6) + MS-TCN 09.85 09.17 09.06 08.87 17.59 17.13 16.13 14.42
CNN (Chapter 6) + MS-TCN* 2540 2392 2209 2095 28.82 2629 2440 22.69
UAAA (mode) (Chapter 7) 16.71 1540 1447 14.20 20.73 1827 1842 16.86
Time-Cond. (Ke et al., 2019) 1841 1721 1642 15.84 2275 2044 19.64 19.75
Ours 2588 2342 2242 21.54 29.66 27.37 25.58 25.20
TAR (I3D) (Sener et al., 2020)1 2420 21.10 20.00 18.10 3040 2630 23.80 21.20
TAR (I3D + Labels) (Sener et al., 2020)T 37.10 31.80 30.10 27.10 39.80 3420 3190 27.80
50Salads

RNN model (Chapter 6) 30.06 2543 18.74 13.49 30.77  17.19 1479  09.77
CNN model (Chapter 6) 21.24  19.03 1598 09.87 29.14 20.14 17.46 10.86
RNN (Chapter 6) + MS-TCN 3231 25.51 19.10 14.15 26.14  17.69 1633 1297
RNN (Chapter 6) + MS-TCN* 2991 24.10 2048 15.22 28.60 20.09 17.55 12.88
CNN (Chapter 6) + MS-TCN 16.02 14.68 12.09 09.89 19.23 14.68 13.18 11.20
CNN (Chapter 6) + MS-TCN* 15.62 1448 11.64 9.71 17.16 12.66 11.11  10.55
UAAA (mode) (Chapter 7) 2486 2237 19.88 12.82 29.10 20.50 1528 1231
Time-Cond. (Ke et al., 2019) 32,51 27.61 2126 15.99 3512 27.05 22.05 15.59
Ours 3476 2841 21.82 15.25 3439 2370 1895 15.89
TAR (IDT + Labels) (Sener et al., 2020)T 3470 2590 2370  15.70 3450 26.10 19.00 15.50
AGG (Piergiovanni et al., 2020)f 40.40 3370 2540 20.90 40.70  40.10 2640 19.20

Table 8.5: Comparison with the state-of-the-art. Numbers represent MoC accuracy. * indicates that
MS-TCN is trained with partial sequences that correspond to only the first 15 — 35% of the videos.
T indicates concurrent approaches.

these labels to anticipate the future activities. As shown in Table 8.5, our framework outperforms
all the previous methods by a large margin of up to 2.5% on the breakfast dataset. For 50Salads,
our model outperforms the state-of-the-art in 50% of the cases. This is mainly because 50Salads is a
small dataset. Since our model is trained end-to-end, it requires more data to show the benefits over
two-step approaches.

On both datasets, the proposed end-to-end framework outperforms both the RNN and the CNN
approaches from Chapter 6, even when they are combined with MS-TCN. This highlights that the
improvements in our model are not only due to the TCN, but mainly because of the joint optimization
of all modules for the anticipation task in an end-to-end fashion and the introduced cycle consistency
loss.

Table 8.5 also shows the results of the concurrent approaches (Sener et al., 2020; Piergiovanni
et al., 2020). In the work of Piergiovanni et al. (2020), an adversarial grammar is learned from the
videos of the 50Salads dataset and then used to predict future activities. Sener et al. (2020) proposed
a framework for aggregating representations over long-video sequences. The learned representations
were then used for both recognizing and anticipating activities. For the anticipation experiment, two
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Figure 8.4: Qualitative results for anticipating future activities. (a-c) Three examples from the Break-
fast dataset for the case of observing 20% of the videos and predicting the activities in the following
50%. (d) An example from the 50Salads dataset for the case of observing 20% of the video and
predicting the activities in the following 20%.

setups were evaluated. The first setup uses only the frame-wise features as input, whereas for the
second, the labels of the observed frames are first inferred and then concatenated with the frame-
wise features. While the approach of Sener et al. (2020) outperforms our framework when applied
on the concatenation of the frame-wise action labels and the 13D features on the Breakfast dataset,
our framework works better when only the features are used.

Qualitative results for our model on both datasets are illustrated in Figure 8.4. As shown in
the figure, our model can generate accurate predictions of the future activities and their duration.
We also show the results of the sequence-to-sequence (S2S) and the two-step baselines. Our model
anticipates the activities better.

8.4 Summary

In this chapter, we introduced a model for anticipating future activities from a partially observed
video. In contrast to the state-of-the-art methods which rely on the action labels of the observations,
our model directly predicts the future activities from the observed frames. We train the proposed
model in an end-to-end fashion and show a superior performance compared to the previous ap-
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proaches. Additionally, we introduced a cycle consistency loss for the anticipation task which further
boosts the performance. Our framework achieved state-of-the-art results on two publicly available
datasets when the work has been published.






CHAPTER 9

Conclusion

In this chapter, we summarize the contributions of the thesis for both the temporal action segmen-
tation and the anticipation tasks. Furthermore, we discuss future directions for research to advance
state-of-the-art approaches for recognizing and anticipating activities in long videos.
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9.1 Summary

In this thesis, we proposed approaches that address the limitations of the current state-of-the-art
approaches for both analyzing and anticipating activities in long untrimmed videos with many action
segments. First, we proposed two architectures for the temporal action segmentation task that are
capable of temporally segmenting activities with high accuracy. Then, we proposed a new level of
weak supervision to train these architectures to reduce the required annotation cost. Furthermore,
we addressed the action anticipation task and proposed to extend the predicted time horizon up to
several minutes into the future. To this end, we introduced several architectures based on RNNs and
CNNss that predict sequences of future activities with their durations up to five minutes into the future.
Finally, we combined the proposed approaches for both tasks in a unified framework for long-term
anticipation of activities. In the following we discuss these contributions in detail.

9.1.1 Temporal Action Segmentation

Previous approaches for temporal action segmentation suffer from several limitations. These ap-
proaches either operate on a very limited temporal resolution and have many over-segmentation
errors, or rely on heuristics to capture the long-range dependencies such as grammars and length
models based on the training data statistics. In Chapter 4, we addressed these limitations and pro-
posed two multi-stage architectures based on temporal convolutional networks. We demonstrated that
stacking multiple stages sequentially results in incremental refinement of the predictions. We further
showed that having a large receptive field in each stage is crucial for generating accurate action seg-
ments. Additionally, we introduced a dual dilated layer that captures both local and global features
at each layer, which results in better performance. To reduce over-segmentation errors, we further
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introduced a smoothing loss that gives an additional improvement. Our models achieved state-of-the-
art results on three challenging datasets and yet they are very efficient and fast both during training
and inference.

To reduce the annotation cost required to train action segmentation models, we proposed in Chap-
ter 5 a new level of supervision based on timestamps. In contrast to full supervision, only a single
frame from each action segment is annotated for the timestamp supervision. To demonstrate the
effectiveness of the proposed level of supervision, we proposed an approach to train an action seg-
mentation model using only timestamps annotations. The proposed approach relies on the model
output and the annotated timestamps to generate pseudo-labels by detecting action changes. Further-
more, to reduce the impact of the noisy pseudo-labels, we proposed a confidence loss that enforces
monotonicity on the model confidence. This loss ensures that all and not only the most distinctive
frames of an action are learned during training by penalizing increases in the model confidence as
we move away form the annotations. We showed that models trained with timestamp supervision
achieve comparable performance to models that are trained with full supervision.

9.1.2 Long-Term Anticipation of Activities

Previous approaches for action anticipation only predict the next action a few seconds into the future.
In this thesis, we proposed to extend the predicted horizon up to several minutes into the future
and introduced architectures that can predict multiple activities with their durations. In Chapter 6,
we presented two models, a CNN-based model and an RNN-based model, to predict actions in the
future for up to five minutes. Both models are trained in a two-step approach by first inferring
activities in the observed frames, and then using the proposed models to predict future activities.
We demonstrated the ability of the proposed models to generate accurate predictions that scale well
along different datasets and videos with varying lengths, varying quality of observed data, and huge
variations in the possible future actions. We also showed that activities in the observed frames serve
as strong cues to predict future activities.

As the future is multi-modal, generating a single prediction is not enough for many applications.
Therefore, we extended our anticipation approach to generate multiple outputs that capture the dif-
ferent possible future activities for an observed sequence of activities. To this end, we proposed
in Chapter 7 an action model and a length model based on RNNs to predict a probability distribu-
tion over the future action segments. At test time, we sample from the predicted distributions many
sequences of future activities.

Finally, we proposed an end-to-end framework for long-term anticipation of activities in Chap-
ter 8. This framework builds on our contributions in Chapter 4 and Chapter 6 and combines the
proposed segmentation and anticipation approaches in a unified framework. Furthermore, we intro-
duced a cycle consistency loss for the anticipation task which further boosts the performance. This
loss forces the model to predict the past activities form the predicted future activities, which veri-
fies if, for the predicted future actions, all required actions have been done before. Results on two
datasets showed that the proposed end-to-end framework outperforms the two-step approaches from
Chapter 6 by a large margin.
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9.2 Future Work

Research on recognizing and anticipating human activities is still in its early stages. While many of
the proposed approaches in this area have been successful, deploying such approaches in real world
applications requires addressing their limitations. In this section, we briefly discuss some of the open
challenges and possible extensions to the proposed approaches in this thesis.

9.2.1 Advancing Temporal Action Segmentation Approaches

Segment-Wise Loss Functions. The proposed action segmentation models generate frame-wise
action probabilities and are trained using frame-wise cross-entropy loss. Although such models per-
form well on metrics such as the frame-wise accuracy, their performance is poor with respect to
segment-based metrics such as the edit and F1 scores. In Chapter 4, we proposed the smoothing loss
to address this issue. Nonetheless, the proposed loss is still a frame-based loss and cannot capture the
global structure of the predicted segments. While an alternative approach is discussed in Souri et al.
(2021) by predicting the action segments and their durations instead of the frame-wise representa-
tion, the performance of these approaches is significantly worse with respect to frame-based metrics
such as the frame-wise accuracy. A promising future direction would investigate segment-based loss
functions to train segmentation models that still predict frame-wise probabilities. The challenge,
however, is that segment-based metrics are not differentiable with respect to the predicted probabili-
ties. Therefore, it is crucial to formulate differentiable approximations of segment-based metrics and
apply them as loss functions.

Principled Receptive Field Design. In Chapter 4, we proposed two architectures for the temporal
action segmentation task. While the receptive field in the first architecture is increased exponentially
with respect to the number of layers, the second architecture combines both large and small receptive
fields at each layer. Despite the success of these approaches, the design choice of the receptive
field is purely heuristic based. In Gao et al. (2021), a search scheme has been proposed to find
better receptive field combinations and it has been shown that the choice of the receptive field can
significantly affect the performance. Therefore, it is crucial to investigate and propose principled
methods to design the receptive field of the networks.

Handling Noisy Annotations. In Chapter 5, we proposed an approach to train action segmentation
models using timestamp annotations. While the proposed approach is robust to noisy annotations,
depending on the level of noise the performance can still degrade. An interesting future direction
is to explicitly consider annotation errors in the design of the training approach. As a baseline, it is
possible to use the model confidence to either ignore segments in the input video, or ignore some of
the annotations.

9.2.2 Advancing Long-Term Action Anticipation Approaches

Benchmarking Long-Term Anticipation of Activities. In this thesis, we proposed several ap-
proaches to anticipate sequences of future activities. To evaluate these approaches, we did our ex-
periments on datasets with long videos and many action segments (Kuehne et al., 2014; Stein and
McKenna, 2013). Nonetheless, these datasets are mainly used for the temporal action segmentation
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task and not collected with the anticipation task in mind. Therefore, advancing research in long-term
action anticipation requires collecting a dedicated dataset for this task. Furthermore, considering
different evaluation protocols, different evaluation metrics, and different setups for the amount of
observations and predictions, including online prediction, are all important directions for future re-
search.

End-to-End Anticipation with Uncertainty Modelling. In Chapter 8, we proposed an end-to-
end model that predicts a sequence of future activities directly from the observed frames. However,
this model is deterministic and predicts only a single sequence of activities for a given input of
observations. While the uncertainty modelling for long-term anticipation is addressed in Chapter 7,
this approach assumes that the anticipation model predicts only one segment at each step and cannot
be directly combined with the end-to-end approach that predicts a sequence of activities in one shot.
Therefore, it is crucial to address the uncertainty modelling for the end-to-end setup as well.

Adaptive Prediction Horizon. The proposed anticipation approaches in this thesis predict the fu-
ture for a fixed time horizon. While the RNN approach discussed in Chapter 6 can be applied re-
cursively to anticipate an arbitrarily long time horizon, the prediction made at each step is still for a
fixed time horizon. It would be interesting, and beneficial, to design approaches that can adaptively
decide on how long into the future it can predict. Such approaches should preferably take uncertainty
into consideration for making these decisions. A similar idea has been explored in (Jayaraman et al.,
2019) for predicting a single predictable future frame.

Hierarchical Prediction. Human activities are structured hierarchically. The same activity can be
described at different levels of abstraction. An interesting future direction is to explore hierarchical
models that can predict the future at different levels of granularity. Based on the difficulty of the pre-
diction task, the model has to decide which level to predict. While Morais et al. (2020) proposed a
hierarchical model that predicts future activities at both coarse and fine levels, there is no mechanism
to decide which level is preferable. In (Suris et al., 2021), the selection of the granularity level is ad-
dressed in an unsupervised manner by predicting representations in a hyperbolic space. Nonetheless,
the approach only works for predicting the next action a few seconds into the future. Combing ideas
from these approaches can inspire future research on long-term hierarchical anticipation of activities.
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