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Abstract

Ultracold quantum gases in optical lattices serve as an analogue quantum simulator to investigate
the physics of strongly correlated materials. With our quantum gas setup we investigate
fermionic potassium atoms in a single layer of an anisotropic three-dimensional optical lattice
configuration. The physics of this system is captured by the two-dimensional Fermi-Hubbard
model, which includes only two elementary processes, namely tunnelling between neighbouring
lattice sites with amplitude t and on-site interactions between opposite spins of strength U .
The combination of high-resolution imaging and radio-frequency spectroscopy enables us to
observe the in-situ density distribution of a single two-dimensional layer. We can either detect
magnetic correlations by employing a spin-resolved imaging scheme or we can study the density
sector by resolving the spatial distribution of singly and doubly occupied sites.

We have successfully employed a novel technique to coherently manipulate magnetic cor-
relations. This allowed us to quantify the magnetic order of a two-dimensional layer in
quasimomentum space and was furthermore used to perform thermometry at temperatures
where charge excitations are mostly frozen out. In contrast to the temperature obtained from
the global density profile, our spin thermometer represents a local probe, and combining both
techniques enables us to study non-equilibrium properties of our system.

By implementing a superlattice along the vertical lattice direction, we can couple two
horizontal layers in a controlled way. This allows us to study the bilayer Fermi-Hubbard model,
which adds yet another energy scale, namely the vertical tunnel coupling, t⊥. We have adapted
a measurement scheme to access the magnetic correlations between neighbouring layers by
inducing coherent singlet-triplet oscillations along the vertical bond and successively merging
the double-well like potential into a single well. We have investigated the influence of the tunnel
coupling between the two layers over a large parameter range of 0 ≤ t⊥ ≤ 5t and we have
observed that the direction along which magnetic correlations predominantly form changes.
Our results confirm the expectation of a crossover between the two low-temperature phases, i.e.
a two-dimensional antiferromagnet within the layer and a band insulator of singlet pairs along
the vertical direction for strong coupling between the layers. In addition, we have measured
the compressibility of the bilayer system by applying an in-plane magnetic field gradient and
thereby confirmed the strongly insulating nature of the bilayer band insulator.
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CHAPTER 1

Introduction

One of the main goals of modern physics is to improve the understanding of strongly correlated
quantum many-body systems [1]. These materials are governed by a subtle interplay of kinetic
energy, interactions and dimensionality, and they have attracted a lot of interest over the
past decades because they often exhibit macroscopic quantum phenomena such as colossal
magnetoresistance [2], thermoelectricity [3] or high-temperature superconductivity [4].

Since the first experimental observation of high-temperature superconductivity in a Ba-La-
Cu-O system in 1986 [5], many more superconducting copper oxide compounds have been
identified. The common structural units shared by these compounds are CuO2 layers, see
Figure 1.1.

Figure 1.1: High-temperature superconductivity in copper oxides. a) Atomic structure of the insulating
parent compound La2CuO4. The CuO2 layers highlighted by the grey shaded areas become supercon-
ducting upon hole doping, for example by substituting La3+ with Sr2+. b) Atomic structure of a CuO2

layer, which is the common unit of high-temperature superconductors. The exemplary blue and red
shaded areas represent the p and d

x
2−y2 orbitals of oxygen and copper, respectively. In the undoped

case the parent compound is a Mott insulator with antiferromagnetic correlations indicated by the black
arrows. The dotted grid lines highlight the underlying square lattice structure. This figure was inspired
by [6, 7].

When we consider the copper oxide compound La2CuO4, the valency of copper is given
by Cu2+ resulting in a 3d9 electron configuration, where the energetically highest d orbital
d
x

2−y2 is only half-filled [6]. Band structure calculations predict a metallic behaviour but the
presence of strong electron correlations leads to an antiferromagnetically ordered insulating
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Chapter 1 Introduction

phase. When substituting lanthanum La3+ with strontium ions Sr2+, the parent compound
becomes effectively hole-doped, and as a consequence, the antiferromagnetic order vanishes
and a superconducting gap with d-wave symmetry opens [8, 9]. While by now many new
materials have been identified with transition temperatures of up to 133 K at ambient pressure
[10], the research with solid-state materials is complicated by their limited tuning capabilities
and the presence of impurities, which often impede a direct comparison to theory calculations.
Even after decades of intensive research efforts the microscopic properties of high-temperature
superconductivity, the key to pushing the critical temperature even further, are still not fully
understood [11].

On the other hand, the theoretical models to describe copper oxides face the difficulty
of strong electron correlations, which are responsible for the breakdown of band structure
predictions. In addition, the exponential growth of the Hilbert space with system size restricts
exact numerical simulations. Even for the two-dimensional Fermi-Hubbard model, a minimal
microscopic Hamiltonian that is believed to describe high-temperature superconductivity, the
ground-state phase diagram is not fully understood. Many approximate methods have been
developed over the past decades including auxiliary-field quantum Monte Carlo [12, 13], density
matrix renormalization group theory [14, 15] and dynamical cluster approximation [16]. By now
it is for example well established that the Fermi-Hubbard model supports the (Mott) insulating
behaviour with antiferromagnetic correlations at half-filling [17], while the existence of a d-wave
superconducting phase at finite doping is still debated. In a recent publication, H.C. Jiang and
T. P. Devereaux have described a large-scale density matrix renormalization group study to
investigate the appearance of high-temperature superconductivity in a lightly doped Fermi-
Hubbard model [18]. Their results indicate a delicate interplay between superconductivity and
insulating charge stripes, which is tunable by additionally introducing a next-nearest neighbour
tunnelling amplitude.

An overview of the progress on the strongly correlated phases of the Fermi-Hubbard model
is presented in two very recent review articles [19, 20], including a discussion of relevant open
questions in [20]. The Simons collaboration has presented numerical solutions to a large part
of the phase space of the Fermi-Hubbard model obtained from a wide range of methods in the
thermodynamic limit and the authors claim to provide reliable benchmark data [21]. Their
approach of comparing several theoretical methods highlights the relevance of cross-validating
numerical findings also by experimental means.

To improve the microscopic understanding of strongly correlated materials and in particular
the Fermi-Hubbard model, we follow a complementary approach where we implement an
enlarged model of a solid-state crystal with ultracold atoms in optical lattices. This approach
is based on an idea proposed by Richard Feynman, one of the earliest pioneers of quantum
computation. In 1982, he suggested using a highly controllable quantum system to simulate
another quantum system that is interesting but more difficult to investigate by direct means
[22]. His idea of quantum simulation circumvents the problem of the exponential increase in
the required computation power by building a “machine”, which employs quantum-mechanical
elements as the logical units of computation. Since they can exist in a superposition of several
states at the same time, the number of qubits that are required to simulate a quantum system
only grows linearly with system size. Our experiment presents an analogue quantum simulator,
which provides a clean and highly tunable implementation of the Fermi-Hubbard model.

Advanced laser technologies paired with research on light-matter interaction made it possible
to refine our understanding of the quantum world using ultracold atoms and trapped ions
[23]. For a gas at room temperature the thermal de Broglie wavelength of the atoms is on
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the order of the Bohr radius. To access the regime of quantum degeneracy we need to reduce
the thermal velocity to an equivalent of around 100 nK. For this purpose laser cooling [24] is
typically employed as a first stage followed by a forced evaporation of the hottest atoms in a
magnetic and an optical trap. Advances in these techniques have led to the first realizations of
Bose-Einstein condensation in 1995 by Anderson et al. [25], Bradley et al. [26] and Davis et al.
[27], followed by the first observation of a degenerate Fermi gas by DeMarco et al. [28] in 1999.
Since then the field has evolved in several directions. Already today quantum gases serve as
a basis for many applications ranging from atomic clocks providing the most accurate time
standard to cold atom gravimeters [29]. Furthermore, companies and universities alike explore
their potential to serve as a platform for quantum computing [30].

Apart from the metrological purposes, research with ultracold atoms improves our funda-
mental understanding of quantum many-body systems, because they enable full control over the
microscopic system parameters. To confine neutral atoms in real space intense laser beams are
routinely employed. The electric field of the laser light induces a dipole moment in the atoms,
which in turn interacts with the electric field. The resulting potential landscape is proportional
to the local light intensity. In particular optical lattices, i.e. standing waves of light that are
generated by the interference of laser beams, allow us to implement lattice potentials, where
particles can only move between the potential minima via the quantum-mechanical tunnelling
effect. Ultracold gases of fermionic atoms loaded into such an artificial crystal made of light
have attracted a lot of interest since they emulate condensed-matter materials. In the spirit of
Feynman’s quantum simulator these atoms mimic the behaviour of the valence electrons in
crystal lattices. In contrast to their solid-state counterpart, ultracold atoms in optical lattices
constitute a clean system without impurities, and the increased mass of the itinerant particles
(atoms instead of electrons) facilitates the observation of dynamic effects. Furthermore, the
large spacing between lattice sites, which is on the order of the laser wavelength, allows for an
optical readout of the microscopic states using absorption or fluorescence imaging techniques,
among others [31, 32].

To mimic the screened Coulomb repulsion between electrons in a condensed-matter material,
we need to engineer short-range interactions between neutral atoms. The atomic species that
we use is fermionic potassium 40K, which belongs to the alkali metals, the first main group
in the periodic table, whose electronic structure is similar to that of hydrogen. In contrast to
lanthanides such as erbium or dysprosium, alkali atoms do not exhibit long-range dipole-dipole
interactions since their magnetic moment is an order of magnitude smaller, and therefore they
only interact via a short-range potential [33]. Intuitively speaking the ultracold potassium
atoms experience the short-range potential when they collide with each other. By adjusting
the magnetic field strength in the vicinity of a scattering resonance, one can tune the energy
of a bound state into resonance with the kinetic energy of the scatterers. This allows us to
realize a broad range of interaction strengths both in the repulsive and attractive regime. In
an optical lattice these so-called Feshbach resonances result in a shift of the on-site energy by
an amount U when two atoms with different internal states meet on a lattice site, see Figure
1.2. Therefore, ultracold atoms in optical lattices constitute an ideal platform to implement
the Fermi-Hubbard model and allow for the investigation of the strongly interacting regime.

The current research with fermionic atoms in optical lattices mostly focusses on two-
dimensional systems, for which the density equation of state reflecting the metal to insulator
transition has been mapped out at finite temperature [34]. Furthermore, several characteristic
features indicating the corresponding ground-state quantum phases such as the antiferro-
magnetic Mott insulator for repulsive interactions [35–38] and the charge-density wave for
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Chapter 1 Introduction

Figure 1.2: Two-dimensional and bilayer Fermi-Hubbard model. The Fermi-Hubbard model provides
a simplified description of interacting spin-1/2 particles moving in a periodic lattice structure with
amplitudes t and t⊥. The interaction is quantified by an on-site energy shift U . Originally it was
introduced to describe conduction electrons in narrow d-bands of transition metals. Inspired by the
layered structure of the copper oxides, the two-dimensional Fermi-Hubbard model has received particular
attention. We implement both the a) two-dimensional and the b) bilayer configuration using ultracold
potassium atoms in optical (super)lattices. The two spin states are emulated by two distinct magnetic
hyperfine states.

attractive interactions [39] have been observed. The characterization of magnetic order within a
two-dimensional layer in terms of the magnetic structure factor and its potential for quantifying
even out-of-equilibrium properties of the system by performing local thermometry are discussed
in Chapter 5.

Real materials, however, are typically not strictly two-dimensional but often comprise several
layers stacked on top of each other. For example, the copper-oxide compounds are classified
by the number N of CuO2 layers contained within a characteristic multilayer block [8, 9]. It
was observed that the critical temperature Tc significantly increases with N ≤ 3 and decreases
thereafter [40, 41]. For these reasons there was a growing interest in understanding the physics of
the bilayer Fermi-Hubbard model from a theoretical point of view [42–51]. It was found that the
interlayer coupling strength, t⊥, controls a transition from a Mott insulator to an unconventional
band insulating phase at half-filling, and the insulator to insulator transition itself has recently
received considerable attention [42, 43]. By implementing an optical superlattice we have
extended our existing setup to allow for the investigation of coupled bilayer systems, depicted
in Figure 1.2 b). Our results, including the characterization of the magnetic order both within
and between the two-dimensional layers and the measurement of the compressibility quantifying
the insulating nature of the system, are presented in Chapters 6 and 7.
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Thesis Structure

In this thesis I report on the investigation of the Fermi-Hubbard model using fermionic potassium
atoms in a three-dimensional optical lattice. The main focus is on the detection of magnetic
correlations both within a single two-dimensional layer and between two coupled layers.

• In Chapter 2, I introduce the concept of optical lattices, which are the main tool for
shaping the potential landscape experienced by ultracold atoms in order to emulate the
periodic crystal structure of solids. After reviewing the quantum-mechanical description
including the single-particle solutions called Bloch waves, I discuss the additional tuning
options offered by bichromatic superlattices.

• In Chapter 3, I introduce the Fermi-Hubbard Hamiltonian, which describes interacting
fermionic particles moving through a periodic lattice potential in a simplified version
that is motivated by the tight-binding approximation. The main concepts of quantum
magnetism and tunnel delocalization are reviewed for the minimal building block of
the Hubbard model, i.e. a double-well. This serves as the basis to discuss both the
two-dimensional and the bilayer Fermi-Hubbard model and their approximate phase
diagrams.

• In the beginning of Chapter 4, I briefly explain the main parts of the experimental setup
as well as the process of creating an ultracold Fermi gas. The following parts focus on
the detection protocols that are employed to probe both the spin and density sector of
a single two-dimensional layer as well as the recent adaptions that were implemented
during the course of this thesis, including both an in-plane and out-of-plane superlattice
as well as a digital-micromirror device (DMD) that allows for arbitrary potential shaping.

• In Chapter 5, I explain how we detect antiferromagnetic correlations in a two-dimensional
layer even without single-site resolved imaging. A novel scheme that coherently manipu-
lates spin correlations allows us to probe the magnetic structure factor in a momentum-
resolved manner and we thereby overcome the optical resolution limitation. Furthermore,
measuring magnetic correlations serves as a local probe of the temperature, which we
combine with global density thermometry to optimize the lattice loading process and to
ensure thermalization across the cloud.

• In Chapter 6, I present our results on magnetic correlations of the bilayer Fermi-Hubbard
model. We have measured both intra- and interlayer spin-spin correlations and observed
that the interlayer tunnelling amplitude drives a crossover from an anti-ferromagnetically
ordered Mott insulator to a bilayer band insulator of vertical singlet bonds.

• In Chapter 7, I present the measurement of the compressibility in the bilayer Fermi-
Hubbard model, which quantifies the insulating nature of the prepared state. We have
observed that for an intermediate repulsive interaction strength, the compressibility is the
lowest in the strong coupling regime and we have investigated the microscopic picture.

• In Chapter 8, I conclude this work with a summary of the main results followed by
suggestions for further improvements and additional measurements to complement the
findings presented in this thesis. Furthermore, I discuss possible future experiments that
build on either of the two implemented superlattices.
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CHAPTER 2

Quantum Simulation of Solids using Optical
Lattices

In the introduction I have motivated the use of ultracold atomic gases in optical lattices as a
quantum-mechanical model system to simulate the behaviour of electrons in condensed-matter
materials and to explore even their microscopic properties including magnetic correlations. To
mimic the periodic potential landscape generated by the positively charged ions in a crystal
lattice, we need to engineer a force, which acts on neutral particles and which is periodic in
space. Laser beams that are far-detuned from the atomic resonance frequencies shift the energy
levels of atoms, thereby creating a conservative potential, which is proportional to the local
intensity of the electric field. Interfering two laser beams with exactly the same wavelength, for
example by retro-reflecting one beam with a mirror, creates a standing-wave potential, i.e. a
one-dimensional optical lattice. The benefit of using ultracold atoms in lattice potentials made
of intense laser radiation is the increased lattice spacing, which is on the order of the laser
wavelength and hence, around three orders of magnitude larger than in crystal lattices. The
downside is that in order to observe quantum phenomena, we need to cool the atoms below the
Fermi temperature, which is much lower in optical lattice systems. For more details concerning
the comparison of solid-state materials and their quantum simulation using atoms see [32].

After briefly reviewing the interaction of neutral atoms with intense laser beams, this chapter
will focus on the description of optical lattices including the eigenenergy spectrum, i.e. the
band structure, which provides information on the mobility of the atoms. By adding a second
lattice laser with a different wavelength we can realize bichromatic optical superlattices, which
serve as a versatile toolbox that we employ both for the preparation and the detection of the
atomic samples, see Sections 6.1.1, 6.1.2 and 6.4.1. Finally, we characterize the additional
trapping potential generated by the finite waist of the Gaussian shaped laser beams, which is
superimposed on the periodic lattice structure.

2.1 Atom-Light Interaction

This section is devoted to the interaction of neutral atoms with intense light fields and will
focus in particular on how to confine atoms in space by employing laser beams. Since this
technique is at the heart of many quantum gas experiments, it has been described in numerous
places and I only want to highlight the review article by R. Grimm et al. [52], which was a
source of inspiration for the following paragraph.
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Chapter 2 Quantum Simulation of Solids using Optical Lattices

The trapping of neutral atoms in intense light fields relies on the electric dipole interaction

Ĥdip = −d ·E(r, t). (2.1)

Although neutral atoms in general do not possess a finite dipole moment d, an oscillating
electric field will induce a dipole moment that oscillates at the driving frequency ω

d(r, t) = α(ω)E(r, t), (2.2)

where the complex polarisability α(ω) determines not only the amplitude of the induced dipole
moment, but also the phase relation between the electric driving field and the atomic response.
The real part of the polarisability leads to a conservative trapping potential, which, in close
analogy to the refractive index, is often called the dispersive part of the atom-light interaction

Vdip(r) = − 1

2ε0c
Re[α]I(r). (2.3)

Even though the light field is far-detuned from all atomic transitions, an atom will absorb (and
reemit) photons with a scattering rate given by

Γsc(r) =
1

~ε0c
Im[α]I(r). (2.4)

If we substitute the atomic polarisability with the result from the Lorentz oscillator model, we
can express both the dipole potential as well as the scattering rate in terms of the detuning
from the atomic resonance ∆ = ω − ω0 and the damping rate Γ [52]

Vdip(r) =
3πc2

2ω3
0

Γ

∆
I(r), (2.5)

Γsc(r) =
3πc2

2~ω3
0

(
Γ

∆

)2

I(r). (2.6)

The two expressions scale differently with the detuning ∆, which has two profound consequences:
Firstly, in contrast to the scattering rate, Γsc, the dipole potential, Vdip depends on the sign of
the detuning from the atomic resonance. Hence, we can realize both attractive and repulsive
potentials by choosing either red- or blue-detuned laser beams, ∆ < 0 or ∆ > 0, respectively.
Secondly, the dipole potential is proportional to 1/∆, while the scattering rate scales as 1/∆2.
As a consequence, we can reduce the amount of spontaneous scattering events which have
an impact on the temperature of the atomic cloud, by choosing a large detuning from the
resonance. To achieve reasonably strong potentials we increase the laser intensity. Another
important benefit of choosing a large detuning is that the depth of the dipole potential is
independent of the magnetic hyperfine state.

However, we should keep in mind, that the dipole potential is not an ideal conservative
potential. Instead, the spontaneous emission of a photon in a random direction with rate Γsc

heats the cloud as quantified by the increase in the mean kinetic energy, which is proportional to
the scattering rate and the recoil energy, Erec = ~2k2

L/(2m), where kL = 2π/λ is the wavevector
of the lattice laser with wavelength λ [53]. A thorough investigation of heating processes in
far-detuned optical lattices was carried out by F. Gerbier et al. [54].
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2.2 Optical Lattices and Bloch’s Theorem

In the previous section we have seen that the dipole potential is proportional to the local
intensity I(r). An optical lattice is formed when two laser beams with the same frequency
but opposite propagation direction interfere with each other. Assuming their electric field
amplitude and polarization to be identical, the intensity distribution follows as

I(z) =
ε0c

2

∣∣∣E0e
ikz +E0e

−i(kz+ϕ)
∣∣∣2 = 4 |E0|2

ε0c

2
cos2(kz + ϕ/2) (2.7)

If we put an atom into a standing wave of light, it will interact with the laser radiation
forming the optical lattice through virtual absorption and stimulated emission of photons with
momentum ±~kLez, where kL = 2π/λ is the wavevector of the laser source with wavelength
λ [55]. Each of these absorption and re-emission cycles transfers either ±2~kL or zero net
momentum to the atom. This becomes apparent if we express the cosine-squared potential in
terms of exponential functions

V (z) = ±Vlatt cos2 (kLz) = ±Vlatt

4

(
e2ikL·z + e−2ikL·z + 2

)
, (2.8)

where Vlatt = |E0|2 |Re[α]| and the potential is positive (negative) for a blue (red) detuned
laser. In contrast to a free particle, whose momentum k is conserved due to the translation
invariance of the corresponding Hamiltonian, the potential landscape in an optical lattice only
possesses discrete translation symmetry. This leads to the conservation of quasimomentum,
which is defined as the momentum modulo 2kL. If spontaneous emission is neglected, the
atom’s momentum only changes because of the interaction with the lattice potential that
couples plane wave states with wavevectors differing by a multiple of 2kL, compare Equation
2.8. Therefore the lattice conserves quasimomentum [56]. This statement may also be recast
by the Nyquist-Shannon sampling theorem according to which spatial frequency components
above half the finite sampling rate cannot be distinguished from frequencies below. Hence, on
a discrete lattice it is only sensible to define wavevectors up to kmax = kL = π/a. In order to
differentiate states with higher energy but the same quasimomentum, a second quantum number
is introduced called the band index n. In the following I will discuss how the energy dispersion
and the wavefunction of an atom in an optical (super)lattice are modified as compared to the
case of a free particle, where V (z) = 0.

2.2.1 Monochromatic Optical Lattice

Since the lattice potential does not conserve momentum, the plane wave states eikz, which are
the eigenstates of a free particle with dispersion relation Ek = ~2k2/(2m) cannot solve the
eigenvalue problem of a particle in a periodic lattice. However, we can use them to construct a
set of basis states

φmq (z) = ei(2mkL+q)z, (2.9)

in a way that each two basis states for fixed q differ by a multiple of 2kL in their momentum,
which reflects the intrinsic coupling by the optical lattice potential. The kinetic energy operator
Êkin is diagonal when expressed in the φqm basis, which is not surprising since the basis states

9



Chapter 2 Quantum Simulation of Solids using Optical Lattices

are essentially plane waves:

〈
φiq

∣∣∣ Ĥkin

∣∣∣φjq′〉 =

〈
φiq

∣∣∣∣∣ −~2

2m

∂2

∂z2

∣∣∣∣∣φjq′
〉

=
~2

2m
(2jkL + q)2 δijδqq′ . (2.10)

The potential term however mixes the basis states, as we have discussed before

〈
φiq

∣∣∣V (z)
∣∣∣φjq′〉 = δqq′


Vlatt

2 for i = j,
Vlatt

4 for i = j ± 1,
0 else.

(2.11)

Since the basis states φmq with different quasimomentum are not coupled by the lattice potential,
we only have to solve the eigenvalue problem(

Ĥkin + V (z)
)
ψnq (z) = Enq ψ

n
q (z) (2.12)

in the subspace of fixed q. The quasimomentum is not unique in labelling the eigenstate,
therefore we need another quantum number, the band index n, which labels the energy
eigenvalues in ascending order. This is in contrast to the description of a continuous system,
where the kinetic energy E = ~2k2/(2m) directly follows from the momentum k and hence,
specifying the momentum is enough to represent the state.

Note that the ability to separate the Hilbert space into subspaces with fixed q represents
a huge simplification of the eigenvalue problem, since instead of solving for a continuous
spectrum, we only have to obtain a discrete set of energy eigenvalues Enq for a continuous set
of Hamiltonians. This simplification is nowadays best known in the form of the Bloch theorem,
according to which the eigenstates of a single particle in an optical lattice are Bloch waves
characterized by the quasimomentum q and the band index n,

ψnq (z) = eiqzunq (z). (2.13)

The amplitude function unq (z) inherits the periodicity of the optical lattice

unq (z) = unq (z + π/kL), (2.14)

which led Felix Bloch to the statement that Bloch waves are plane de Broglie waves that are
modulated in the rhythm of the lattice structure [57].

Band Structure In Figure 2.1 we plot the spectrum of eigenenergies for different lattice depths.
As the interaction between the atom and the optical lattice occurs through (virtual) absorption
and emission of photons, we can identify the recoil energy Erec as the relevant energy scale,

Erec = ~2k2
L/(2m). (2.15)

This is the energy that is transferred to an atom of mass m when absorbing a photon from
the lattice beam with wavelength λ = 2π/kL. Throughout this thesis we will specify all lattice
depths in units of their corresponding recoil energies.

For small lattice depths, the band structure as shown in Figure 2.1 a) still resembles the

dispersion relation of a free particle E = ~2
k

2

2m , however, folded into the first Brillouin zone,
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Figure 2.1: Band structure of a one-dimensional monochromatic optical lattice. The eigenenergies can
be grouped into energy bands, where the index n labels the bands according to their energy in ascending
order. For small lattice depth the bands resemble the parabolic free particle dispersion folded into the
first Brillouin zone. For high lattice depths the energy bands become flat, since the lattice wells are
mostly disconnected from each other and therefore resemble a harmonic oscillator potential.

q ∈ [−π/a, π/a]. Especially for energy bands whose energy is larger than the potential depth,
we fully recover the parabolic dependence and consequently there are no gaps between these
bands. In contrast, the lowest two Bloch bands are gapped at the band edge q = π/a even for
low lattice depths due to an avoided crossing. This has profound consequences, for example
when we look at the group velocity vG(k) = ∂E/∂k. For a free particle vG(k) is proportional
to k and we recover the intuitive picture that particles with higher momentum k possess a
larger kinetic energy. However, in the periodic lattice potential the group velocity vanishes
at the band edge q = π/a. Therefore when considering the lowest band only, eigenstates
with the highest and lowest energy both feature a vanishing group velocity. This leads to the
interesting effect that a cloud of fermionic atoms expands equally fast, whether the interactions
are repulsive or attractive (same magnitude), which is completely different from the case of a
free particle [58]. For large lattice depths the eigenenergy spectrum resembles the situation in
a harmonic oscillator potential with equidistant eigenenergies and large band gaps.

Bloch Waves As discussed before, the eigensolutions of a single particle in a periodic lattice
are Bloch waves. While in principle a particle is equally likely to be found at any lattice site, the
phase relation between sites may differ. According to Bloch’s theorem (see Equation 2.13) the
amplitude functions unq (z) inherit the periodicity of the lattice and hence, unq (z) = unq (z + a) =

unq (z + π/kL). For the centre of the Brillouin zone, q = 0, the plane wave phase factor eiqz = 1
for all z and hence the periodicity of the Bloch wave ψnq=0(z) has the same periodicity as the
lattice itself. However at the band edge q = π/a, the sign of the Bloch wave alternates between
neighbouring sites. In Figure 2.2 one can see how the quasimomentum determines the phase
relation between neighbouring lattice sites.

In particular the Bloch wave ψn=0
q=0 (x) for Vlatt = 2Erec still resembles a plane wave with

a probability density that is only slightly modulated by the periodic lattice structure. Due
to the large degree of delocalization the kinetic energy is low. In contrast, the Bloch wave

11



Chapter 2 Quantum Simulation of Solids using Optical Lattices

−2 0 2

z/a

−10

−5

0

5

10

V
(z

)/
E

re
c

Vlatt = 2Erec

−2 0 2

z/a

−10

−5

0

5

10

V
(z

)/
E

re
c

Vlatt = 8Erec

−2 0 2

z/a

−10

0

10

20

V
(z

)/
E

re
c

Vlatt = 20Erec

ψn=0
q=0 (z)

ψn=0
q=π

a
(z)

V(z)

Figure 2.2: Bloch waves at q = 0 and q = π/a. The Bloch waves are plotted in arbitrary units for
q = 0 (red) and q = π/a (blue), to visualize the phase relation between neighbouring lattice sites. For
increasing lattice depth Vlatt the Bloch waves become more peaked around each lattice site.

with q = π/a is forced to form a node where the optical lattice potential is maximum, and
the corresponding kinetic energy is hence considerably larger. For increasing lattice depths all
Bloch waves with arbitrary q become more strongly peaked around the centre of each lattice
site, and the only difference that remains between the Bloch waves with q = 0 and q = π/a
is the phase relation of neighbouring lattice sites. As a consequence, the difference in the
corresponding eigenenergies Enq decreases for deeper lattices and the energy band becomes
more flat. Furthermore, the increasingly strong localization of the Bloch waves already provides
an indication that for lattice depths Vlatt � Erec a new set of localized states, the Wannier
basis, will be more suitable.

Extension to Three Dimensions The extension of the description of the single-particle solution
to the three-dimensional case is straightforward, if the lattice potential and therefore the
Hamiltonian is separable, i.e. V (r) = V (x) + V (y) + V (z). In this case the full solution is
simply given by the product state

ψn
q (r) = ψnxqx (x) · ψnyqy (y) · ψnzqz (z), (2.16)

with the multi-band index n = (nx, ny, nz). In our experiment the angle between the optical
lattices in x and y direction deviates slightly from the right angle required for separability.
While this can be neglected in most cases, it has to be considered when designing ramps in
the lattice depth, as avoided crossings between the higher-band states of the different lattice
directions might appear [59].

2.2.2 Bichromatic Superlattice

So far, we have discussed monochromatic optical lattices, where the lattice depth is the only
relevant tuning parameter and we have seen that it determines the degree of localization
of the Bloch waves. By adding a second optical lattice with a different, but commensurate
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2.2 Optical Lattices and Bloch’s Theorem

wavelength along the same spatial direction, we can create a so-called superlattice. The unit
cell of the resulting lattice structure contains two sites and by tuning the wavelength of either
optical lattice we can manipulate the potential landscape ranging from a lattice of separate
double-wells to a potential with a staggered site offset. In the following we will mostly focus on
a retro-reflecting lattice setup and discuss its tuning capabilities.

Manipulation of the Optical Lattice Landscape The full potential of an optical superlattice
is given by the sum of the two individual lattices

V (z) = −Vr cos2(kr · z + φr) + Vg cos2(kg · z + φg), (2.17)

where we have explicitly taken care of the sign, since we consider the short- (long-) wavelength
lattice to be blue (red) detuned. In the experiment this is realized by employing a green
(λg = 532 nm) and an infrared (λr = 1064 nm) lattice laser, which are both far-detuned from
the atomic transitions of fermionic potassium at λ0 = 767 nm.

...

Figure 2.3: Superlattice potential for a retro-reflecting laser setup. Both individual optical lattices (red
and blue lines) acquire a phase over the distance L between the retro-reflecting mirror and the position
of the atoms. If the wavelengths are near-commensurate, the phase relation, which determines the
superlattice potential shown in black changes with distance L.

The phases φr and φg are fixed at the position of the retro-reflecting mirror z = 0 (see Figure
2.3), where the total electric field of each optical lattice is bound to have a node due to the
π-phase shift of the reflected beam. Therefore, an asymmetric double-well lattice with staggered
site-offset forms at the position of the retro-reflecting mirror and if the two wavelengths were
exact multiples of each other, the potential would not change as a function of the distance L.
This is different, when we introduce a finite detuning from the commensurate case kg = 2kr+∆k.
If the detuning of the frequency is small ∆ν � ν, we can still assume the lattice periodicities to
be multiples of each other ar = λr/2 = λg = 2ag. The effect of the slight detuning is, however,
visible on the phase, which will be position-dependent φtot(z) = φ+ ∆φ = φ+ ∆kz. At the
position of the atomic cloud, the phase has advanced by

∆φ = ∆kL =
2π∆ν

c
L, (2.18)

which leads to a significant change in the superlattice potential if L is sufficiently large. For
example, assuming a distance of L = 0.5 m between the retro-reflecting mirror and the atoms,
the frequency difference that is required to translate the optical lattice by one period, ∆φ = π,
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is given by

∆ν =
c

2L
= 300 MHz. (2.19)

Note that this frequency difference is independent of the actual wavelength of the optical lattice.
This means, that we have to shift either lattice by the same frequency in order to invoke a
π phase shift, which translates the optical lattice by λ/2 = π/kL. There are however some
differences when tuning either the short or the long wavelength lattice, which I will discuss in
the following.

In Figure 2.4 it is shown how the superlattice potential changes when tuning the frequency
of the red-detuned long-wavelength lattice. Clearly the phase relation of the two individual

Figure 2.4: Superlattice potential when tuning the long lattice wavelength. Starting from a symmetric
double-well configuration at φg = φr = 0 the potential gets more asymmetric when tuning the long-lattice
wavelength, which changes the phase of the red lattice at the position of the atoms. At φr = π/4 the
completely asymmetric configuration is reached and the potential returns to a symmetric configuration
at φr = π/2. The absolute centre of the double-well is however shifted along the lattice direction with
respect to the initial configuration at φr = 0.

optical lattices at the position of the atoms changes. A benefit of tuning the frequency of
the long-wavelength lattice is that the positions of the potential minima, which are mostly
determined by the frequency of the short-wavelength lattice, are fixed in space. This enables
us to tune the potential offset between lattice sites without additionally moving the atoms
along the axis of the optical lattice. Another benefit is that the frequency difference required
to change from a symmetric to an asymmetric double-well lattice is given by ∆νr = c/8L only,
corresponding to a phase difference of ∆φr = π/4. Since both lattices are translated in real
space by one period ag/r along the propagation direction for a phase change of ∆φg/r = π,
the impact of tuning the long-wavelength lattice frequency is stronger as a consequence of
the wavelength being twice as large, compare Figures 2.4 and 2.5. Therefore, the frequency
difference required to change from a symmetric to an asymmetric double-well lattice is a factor
of two larger, ∆νg = c/4L = 2∆νr, when tuning the short-wavelength lattice. This is visualized
in Figure 2.5.

Estimate of the Potential Energy Offset For a bichromatic optical lattice generated by two
laser sources with near-commensurate wavelengths 2kr ≈ kg, the resulting unit cell contains two
lattice sites. Depending on the superlattice phase, these two sites may experience a potential
energy offset, for which I want to derive an approximate formula in the following.

In the asymmetric case, the positions xn of the lattice sites are directly determined by the
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Figure 2.5: Superlattice potential when tuning the short lattice wavelength. The phase shift that is
necessary to change between a symmetric and an anti-symmetric configuration is equal to ∆φg = π/2,
which corresponds to a frequency difference of ∆νg = c/(4L).

potential minima of the short-wavelength lattice,

Vg cos2(kg · x+ φg)
!

= 0 → kg · xn =
π

2
· (2n+ 1)− φg ∀n ∈ N. (2.20)

Near the symmetric case the lattice sites within a double-well move closer together when
increasing the red lattice depth Vr. Therefore, the formula to determine the lattice site
positions xn given above only represents an approximation. Still, I will use it in the following
to obtain an estimate of the potential tilt V (x1)− V (x2) = 2∆ between the two lattice sites of
one unit cell,

V (x1)− V (x2) ≈ Vr
2

[
cos

(
(3π − 2φg) ·

kr
kg

+ 2φr

)
− cos

(
(π − 2φg) ·

kr
kg

+ 2φr

)]
(2.21)

≈ Vr sin
(
2φr − φg

)
. (2.22)

From this approximate formula for the potential tilt, it is apparent once more that there
is a difference when tuning the wavelength and hence the phase of either the short or the
long wavelength optical lattice. When shifting the frequency of the long-wavelength laser
the associated change in the superlattice configuration as quantified by the energy offset is
approximately a factor of two larger.

2.3 Optical Potential Landscape

So far we have assumed an ideal optical lattice potential, which is infinitely extended and
possesses a spatially constant lattice depth Vlatt 6= Vlatt(r). However, the experimental
implementation using laser beams deviates from this idealized description, as the intensity
distribution orthogonal to the propagation direction of a laser beam in the TEM0,0 mode is
given by a Gaussian

I(x, y) =
2P0

πωxωy
e
−2

[(
x
ωx

)2
+

(
y
ωy

)2
]

=
ε0c

2
|E0(x, y)|2 . (2.23)

Due to the finite waist in the x- and y-directions, the lattice depth reduces perpendicular to
the propagation direction with the distance from the centre of the beam. The Rayleigh range
is typically much larger than the cloud’s extent and we will therefore neglect its influence in
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the following by assuming the lattice depth to be constant along the axis of the optical lattice.

In our experiment, some of the optical lattices are created by retro-reflecting a laser beam and
due to the imperfect reflection/transmission of optical elements, there will be an imbalance in the
electric field amplitudes of the ingoing Ein

0 (x, y) and the reflected beam Ere
0 (x, y) =

√
γEin

0 (x, y)
at the position of the atoms. The power imbalance is quantified by the reflection coefficient
γ ≤ 1 and it leads to a so-called running wave component, since not all the power in the lattice
beam may be used to form the standing wave optical lattice. If we account for both, the locally
varying electric field amplitude as well as the power imbalance in the two beams forming the
optical lattice, Equation 2.8 modifies to [60]

V (r) = ±√γ |Re[α]|
∣∣∣Ein

0 (x, y)
∣∣∣2︸ ︷︷ ︸

Vlatt(x,y)

[
cos2(kz) +

(1−√γ)2

4
√
γ

]
. (2.24)

With increasing power imbalance the lattice depth reduces according to Vlatt ∝
√
γ. The offset

term

R− =
(1−√γ)2

4
√
γ

(2.25)

quantifies the relevance of the running wave component with respect to the amplitude of the
cosine-squared lattice potential, compare Figure 2.6.

Figure 2.6: Running wave component. For γ = 1 there is no power imbalance between the two beams
forming the optical lattice. In this case the maximum lattice depth is reached and there is no running
wave component, i.e. the potential is not offset from V (z) = 0. In contrast, a finite power imbalance
reduces the lattice depth by a factor of

√
γ, while increasing the offset R−Vlatt.

The amount of running wave component is independent of the detuning ∆ = ω − ω0 of the
lattice laser from the atomic resonance. There is, however, a major difference between red
and blue detuned lattice lasers when considering their impact on the slowly-varying trapping
potential, i.e. the part of the potential that remains after removing the cosine-squared term.
Since the atoms always reside in the potential minima of the optical lattice, they experience a
much higher laser intensity in the red-detuned case, see Figure 2.6, which is quantified by

R+ = −(R− + 1) = −(1 +
√
γ)2

4
√
γ

. (2.26)
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This is the relevant quantity when characterising the effect of a red-detuned laser on the
slowly-varying part of the potential and its precise knowledge is crucial for analysing the
inhomogeneous in-situ density distribution. There are two contributions to the overall trapping
potential for any one-dimensional optical lattice. The first contribution arises as a direct
consequence of the transverse intensity profile of the lattice laser beams, Vlatt(x, y)R∓, which
is typically given by a Gaussian

Vlatt(x, y)R∓ = V
(0)

latte
−2

[(
x
ωx

)2
+

(
y
ωy

)2
]
R∓, (2.27)

where V
(0)

latt = Vlatt(x = y = 0) is the lattice depth in the centre of the trap. The first contribution
to the trap potential is confining (deconfining) for red (blue) detuned light and its impact is
much larger in the case of red detuning, as R− ≈ 0 < |R+| = 1 +R− in the limit of small power
imbalance, compare Figure 2.6.

The second contribution to the slowly varying trap potential indirectly follows from the
lattice depth variation orthogonal to the beam propagation direction. It can be thought of
as the quantum-mechanical correction to the classical expectation as it quantifies how the
zero-point energy of each well increases with the local lattice depth. When Taylor expanding
the cosine squared potential up to second order, the zero-point energy reproduces the result of
an harmonic oscillator potential

~ωwell

2
=
√
Vlatt(x, y)Erec. (2.28)

Note that this result is only valid for large lattice depths Vlatt ' 5Erec. Combining these two
terms yields the full trap potential of an optical lattice along the z-direction

V pot(x, y) = ±e
−2

[(
x
ωx

)2
+

(
y
ωy

)2
]
V

(0)
lattR∓ +

√
V

(0)
lattErece

−
[(

x
ωx

)2
+

(
y
ωy

)2
]
. (2.29)

Note that the second term is always of deconfining nature, since the ground state energy of
the harmonic oscillator approximation only depends on the lattice depth, which reduces from
inside to outside, regardless of the sign of the detuning. In Section 4.3 we will use this formula
to characterize the trap potential in the three-dimensional optical lattice configuration beyond
the harmonic approximation.
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CHAPTER 3

The Fermi-Hubbard Model

The Fermi-Hubbard model describes the behaviour of interacting spin-1/2 particles in a periodic
potential landscape. Originally it was introduced to capture the physics of strongly correlated
electrons in a crystal lattice structure [61, 62]. It presents a simplified version of the full
many-body Hamiltonian by reducing both the kinetic and interaction energy to their most
dominant contributions, i.e. tunnelling between adjacent lattice sites and on-site interactions.
This simplification is valid for deep lattices, where the tight-binding approximation [63] holds,
which assumes the atomic orbitals to be strongly localized to their respective lattice sites.

In this chapter I begin by introducing the Wannier basis which allows for a localized
description of lattice physics. The double-well potential represents the fundamental building
block of the Fermi-Hubbard model and is often employed to investigate the interplay of the
kinetic and interaction energy with Pauli’s exclusion principle. Even though the Hubbard
Hamiltonian does not feature a direct spin-spin interaction, quantum magnetism already arises
in the two-site implementation due to the superexchange mechanism, which is equivalent to a
spin-flip process in the Heisenberg model. After reviewing the properties of the two-dimensional
(2D) Hubbard model, where the motion is limited to a two-dimensional layer with square lattice
structure, I will discuss an approximate phase diagram. Finally, I will introduce the bilayer
Fermi-Hubbard model. In its two limiting cases of negligible and strong coupling between
the two layers, we retrieve the behaviour of the 2D and double-well Fermi-Hubbard model,
respectively.

For more information, the reader may refer to the review articles on the Fermi-Hubbard
model and its implementation using ultracold fermions in optical lattices, [64–68]. The following
section was mostly inspired by the review article by L. Tarruell [69].

3.1 Tight-Binding Approximation

The many-body Hamiltonian that will be considered in the following contains an interaction
term, which introduces correlations between the spin-1/2 particles in addition to the single-
particle term. The Coulomb repulsion that we intend to mimic with our quantum simulator is
a long-range interaction that scales as VC ∝ 1/r. However, in solids it is mostly screened by
the positive nuclei and therefore we will assume a regularized δ-potential instead [70]

U(r) = gδ(r)
∂

∂r
, (3.1)
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where g is the interaction strength and r = r2−r1 is the relative position of the two interacting
particles. This assumption drastically simplifies the two-body interaction. For the description
of an interacting quantum many-body system, it is useful to adopt the formalism of second
quantization and the full Hamiltonian, including the single-particle kinetic energy, the lattice
potential landscape V (r) and the contact interaction U(r) is given by

Ĥ =
∑
σ=↑,↓

∫
d3r ψ̂†σ(r)

[
−~2∇2

2m
+ V (r)

]
ψ̂σ(r) + g

∫
d3r ψ̂†↑(r)ψ̂†↓(r)ψ̂↓(r)ψ̂↑(r), (3.2)

where the field operator ψ̂†σ(r) creates a particle with spin σ at position r.
Note that we consider interactions between fermions of opposite spin only. For a short-range

two-body interaction potential this is justified in the low-temperature limit, where only s-wave
interactions are energetically possible, as for l = 0 the angular momentum barrier in the
effective potential disappears [71]. Two fermions in the same spin state, or more generally
speaking in a symmetric spin state, can never undergo s-wave collisions for which a spatially
symmetric wavefunction is required. This is a very general statement and remains valid even
when considering higher bands.

Wannier Basis

In the previous chapter we have found that for deep lattices, Vlatt � Erec, the lowest energy
bands are essentially flat and the band gaps are large, similar to a harmonic oscillator potential.
If the temperature is small compared to the band gap, we can restrict the description to the
ground band. Since the Bloch functions of the lowest band strongly peak around each lattice
site, a change of the basis to a set of localized states is reasonable. Furthermore, a two-body
interaction that is purely local in real space will mix the Bloch waves at arbitrary momenta,
which renders the Bloch basis impractical. This mixing of the q-states is circumvented in the
Hubbard model by employing a set of basis states w(r − rj) called Wannier functions, which
are exponentially localized around their respective lattice sites [72],

w(r − rj) =
( a

2π

)3/2
∫

d3q ψ0
q(r)e−iq·rj . (3.3)

For periodic potentials where the unit cell contains more than one lattice site the Wannier
functions as defined in Equation 3.3 are not sensible as they would be centred with respect
to the unit cell. For example in the case of bichromatic superlattices, introduced in Section
2.2.2, the unit cell contains two lattice sites. In order to obtain a wavefunction that is strongly
localized around either of the sites, one may employ the definition of Wannier states by S.
Kivelson [73] as eigenstates of the position operator projected onto a given energy band or band
manifold. This method and its implementation are discussed in detail in [74–76]. Recently my
colleague N. Klemmer implemented this method to obtain a faithful description of the Wannier
functions of our optical superlattice configuration [77]. However, for the following discussion it
suffices to concentrate on simple cubic lattice structures.

In second quantization the field operator ψ̂σ(r) removing a particle with spin σ at position r
may be expanded in the Wannier basis of the lowest energy band according to

ψ̂σ(r) =
∑
j

w(r − rj)ĉj,σ, (3.4)
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3.1 Tight-Binding Approximation

where the fermionic operator ĉj,σ annihilates a particle with spin σ in the Wannier function of
the ground band that is centred around the lattice site j. If we insert this expression into the
Hamiltonian defined in Equation 3.2, we obtain a description in the lattice site space. For deep
lattices the Wannier functions are strongly localized around their respective lattice sites and
the overlap between Wannier functions of neighbouring sites is small although not negligible.
In this case, it is well justified to limit both the kinetic and interaction energy to their most
dominant contribution each, i.e. nearest-neighbour tunnelling with amplitude t and on-site
interactions of strength U , and we obtain the Fermi-Hubbard Hamiltonian in its standard form

Ĥ = −t
∑
〈i,j〉,σ

ĉ†i,σ ĉj,σ + U
∑
i

n̂i,↑n̂i,↓, (3.5)

where n̂i,σ = ĉ†i,σ ĉi,σ is the occupation number operator for particles with spin σ at site i. Both
contributions will be discussed briefly in the following.

Tunneling Dynamics

The tunnelling amplitude between two arbitrary lattice sites i and j is given by

tij = −
∫

d3rw∗(r − ri)
[
−~2∇2

2m
+ V (r)

]
w(r − rj). (3.6)

For the special case, where i = j, the matrix element corresponds to the on-site energy, which
is a relevant term if the particles experience an additional trap confinement or for bichromatic
optical lattices with differing site offsets. However, for homogeneous monochromatic lattices
the on-site energy is a constant offset and is typically neglected. As the spatial overlap of the
Wannier functions decreases quickly with distance rj − ri, the dominant contribution to the
kinetic energy is given by the nearest-neighbour tunnelling with amplitude t ≡ tij , with the
sites i and j being adjacent to one another.

Among other things the nearest-neighbour tunnelling amplitude t determines the relevant
timescale for coherent Rabi oscillations, where a single particle oscillates between two lattice
sites which are not offset in their potential energy. The oscillation frequency is given by
fRabi = 2t/h and this simple formula may be used to calibrate the tunnelling amplitude as
will be the topic of Section 6.2.1. In contrast, the expansion velocity of a Bloch wave with
wavevector q is given by the group velocity, vgroup = ∂E/ (~∂q) [58].

Two-Body Interaction

For a pure contact interaction potential the dominant contribution is the on-site interaction,
which shifts the energy of doubly occupied lattice sites by an amount

U = g

∫
d3r |w(r − ri)|4 =

4π~2asc

m

∫
d3r |w(r − ri)|4. (3.7)

Here, we have introduced the scattering length, asc, which is the only parameter that is required
to fully characterize the spherically symmetric contact interaction potential. More details on
the scattering length may be found in Section 4.1.1.

Note that the Wannier functions do not incorporate the effect of interactions, as they are
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Chapter 3 The Fermi-Hubbard Model

derived from the Bloch waves, which are the single-particle solutions of a periodic potential.
Therefore, the (simple) Wannier basis is not a suitable basis to estimate the Hubbard parameters
in the strongly interacting regime [78]. There has been considerable effort in determining the
energy offset for two interacting particles in an isotropic and anisotropic harmonic potential
[70, 79] and in optical lattices [78]. To obtain the interaction strength for our experimental
implementation of the Hubbard model, we follow the approach by [70] where the interaction
shift was calculated for an axially symmetric harmonic trap with ellipticity η = ωx,y/ωz. The
approximation by a harmonic potential close to the centre of a lattice site,

Vwell(x) ≈ 1

2
mω2

x(x− xi)2 + const., (3.8)

is valid if the lattice is deep and the particles are closely localized around their respective lattice
site minima [69]. Here we have introduced the harmonic oscillator frequency ~ωx = 2

√
sxErec

that depends on the lattice depth sx = Vx/Erec.

Figure 3.1: Harmonic approximation of an optical lattice potential. In a deep optical lattice, the
sinusoidal potential (grey) may be approximated by a harmonic oscillator potential (black) with a
Gaussian ground band wavefunction (red).

However, since the harmonic approximation overestimates the compression by the lattice
potential as shown in Figure 3.1, the true interaction in an optical lattice will be smaller than the
one given in [70]. This is accounted for by rescaling the result with the ratio of the interaction
strengths calculated using the single-particle Wannier functions and the non-interacting solution
of the harmonic oscillator potential [60, 80], which is a Gaussian,

g(x) =
1

π1/4l1/2x

e
− 1

2

(x−xi)
2

l
2
x , (3.9)

where lx =
√

~
mωx

is the harmonic oscillator length. In Figure 3.1 we plot the harmonic

approximation of the lattice potential close to the centre of the lattice sites and the Gaussian
eigenfunction of the harmonic well. In contrast to the Wannier functions, which constitute an
orthonormal basis, the Gaussian solutions centred around different lattice sites are in general
not orthogonal. Within the harmonic approximation, we may obtain an analytic expression for
the on-site interaction as a function of the lattice depths si and the respective lattice spacings
ai,

U =

√
π

8
asch

2 (sxsysz)
1/4

maxayaz
, (3.10)

which is used to calculate the rescale factor as discussed above.
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3.2 Two-Site Hubbard Model

According to [80] and [78] the true interaction strength deviates significantly from the non-
interacting estimate, if asc/li > 0.3 for any of the harmonic oscillator lengths lx,y,z. The absolute
value of the interaction strength reduces with respect to the estimate using non-interacting
Wannier functions independent of the sign of the scattering length, see [78] and [80]. Therefore,
it seems that the Wannier functions broaden under the effect of very strong interactions whether
they are repulsive [81, 82] or attractive in nature.

3.2 Two-Site Hubbard Model

In the following, I will discuss the fundamental building block of the Hubbard model. In a
double-well potential two sites are coupled by quantum-mechanical tunnelling through a barrier.
There is an introductory article by Foot and Shotter [83] reviewing the physics of the double-
well, which apart from the mathematical derivations provides an intuitive understanding. The
double-well is not only an instructive model system to understand the interplay of kinetic and
interaction energy, it also constitutes one of the two limiting cases of the bilayer Fermi-Hubbard
model, which is essential to this thesis.

3.2.1 Balanced Double-Well

I will start by investigating the properties of the balanced double-well system, i.e. there is no
potential energy offset between the two sites.

A Single Particle in the Double-Well

If we only fill a single particle, either bosonic or fermionic, into a double-well potential, a
possible basis is given by the Wannier states that are localized in either the left |L〉 or right |R〉
well, respectively. The only term in the Hamiltonian that gives a contribution in this case is
the tunnelling, since there is no other particle to interact with. Furthermore, the spin property
is irrelevant and therefore the spatial basis {|L〉 , |R〉} is sufficient to describe the system and
we obtain

HN=1 =

(
0 −t
−t 0

)
, (3.11)

with eigenenergies E± = ∓t and eigenstates

|φ±〉 =
1√
2

(|L〉 ± |R〉) . (3.12)

Note that we obtain the same ground state for fermions and bosons, since with just one particle
in the system it is not possible to define an exchange symmetry. Both eigenstates are delocalized
over the two lattice sites of the double-well potential, however only the symmetric superposition
|φ+〉 lowers the energy of the system, since it does not have a node in the wavefunction.

Two Interacting Fermions in the Double-Well

If the double-well is occupied by two particles of opposite spin, the interaction energy adds
flavour and will compete with the kinetic energy. We will start the discussion with the symmetric
double-well potential. The single band approximation is still valid in the presence of interactions
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Chapter 3 The Fermi-Hubbard Model

φ−
φ+

Figure 3.2: Eigenstates of a single-particle in the double-well potential. The symmetric spatial wavefunc-
tion φ+ lowers its kinetic energy with respect to the antisymmetric wavefunction φ− by delocalizing over
the barrier. The difference in eigenenergies E±, indicated by the blue and red dotted lines, respectively,
decreases with barrier height, as the tunnelling is suppressed.

as long as U � ~ω, where ω is the approximate harmonic oscillator frequency of the double-well
potential.

With two interacting particles in the double-well potential we will have to consider the spin
property of the particles. For the energy spectrum, however, the spin part of the wavefunction
is not relevant since there is no spin-dependent term in the Hamiltonian. Therefore, it suffices
to construct the two-particle basis {|LL〉 , |LR〉 , |RL〉 , |RR〉} in first quantization from the
localized singe-particle states, where the first (second) entry determines the spatial wavefunction
of the first (second) particle [84]. In this basis the Fermi-Hubbard Hamiltonian follows as

HN=2 =


U −t −t 0
−t 0 0 −t
−t 0 0 −t
0 −t −t U

 . (3.13)

For the non-interacting case U = 0, the spatial part of the eigenstates corresponding to the
lowest and highest energy, E1 and E4, are simply product states of the single-particle solutions
|φ±〉:

|φ1(U = 0)〉 =
1

2
(|LL〉+ |LR〉+ |RL〉+ |RR〉) = |φ+〉 ⊗ |φ+〉 , (3.14)

|φ4(U = 0)〉 =
1

2
(|LL〉 − |LR〉 − |RL〉+ |RR〉) = |φ−〉 ⊗ |φ−〉 . (3.15)

Therefore, it is not surprising to find E1(U = 0) = −2t (= 2E+) and E4(U = 0) = +2t (= 2E−).
In Figure 3.3 we can see that there is an avoided crossing at U = 0 between the eigenenergies
E1 and E4. Depending on the sign of the interaction strength, the ground state is either
dominated by singly or doubly occupied sites, which corresponds to a crossing of the bare states
1/
√

2 (|LL〉+ |RR〉) and 1/
√

2 (|LR〉+ |RL〉), which are coupled by quantum tunnelling.

The two states corresponding to the intermediate eigenenergies E2 and E3 cannot be expressed
as a direct product of the single-particle states, since the exchange symmetry following from
the spin statistics theorem would be violated. Their representation does not depend on the
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Figure 3.3: Energies of the eigenstates of two interacting fermions in a double-well potential. We
obtain the eigenenergies Ei of two interacting fermions in a double-well by exact diagonalization of the
Hamiltonian given in Equation 3.13. In the inset we show the two contributions |s〉 and |d+〉, defined in
Equations 3.27 and 3.28, to the full wavefunction of the ground state |ψ1〉 as a function of the interaction
strength. The inverse dependence is found for the excited state |ψ4〉. For large repulsive interactions the
ground state energy is well approximated by the superexchange constant J = 4t2/U (dashed black line).
A similar observation holds for the excited state at strong attractive interactions. The eigenenergies Ei
and their corresponding wavefunctions |ψi〉 are listed in Table 3.1.

interaction strength

|φ2(U)〉 = |φ2〉 =
1√
2

(|LL〉 − |RR〉) , (3.16)

|φ3(U)〉 = |φ3〉 =
1√
2

(|LR〉 − |RL〉) . (3.17)

The full eigenenergy spectrum of the double-well Hamiltonian is shown in Figure 3.3 and the
corresponding eigenenergies are given in Table 3.1. Note that in contrast to the non-interacting
case, the eigenenergies of two interacting spin-1/2 particles may not simply be inferred from
the single-particle sector.

Spin Wavefunction With two indistinguishable particles in the double-well, we also have
to take care of the proper symmetrization of the spin part of the wavefunction. Since the
spin property does not appear in the Hamiltonian, the spin part separates from the spatial
wavefunction, and is therefore not relevant for the eigenenergies. The full wavefunction is
simply given by the product of the spatial and the spin part,

ψi

(
r(1),m

(1)
S , r(2),m

(2)
S

)
= φi

(
r(1), r(2)

)
⊗ χ

(
m

(1)
S ,m

(2)
S

)
(3.18)
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Chapter 3 The Fermi-Hubbard Model

where the quantum number m
(1,2)
S denotes the internal spin state of the first (second) particle.

For fermions the total wavefunction must be antisymmetric under the exchange of two particles.
Therefore, we have to assign a symmetric spin state to an antisymmetric spatial wavefunction
and vice versa. These (anti)symmetric spin wavefunctions can be found by diagonalization
of the total spin operator Ŝ = Ŝ1 + Ŝ2, which in the case of two interacting fermions in a
double-well is a sum over the spin operators of both particles. The defining property of the
spin operator, as for any other angular momentum operator, is the commutation relation that

applies to the components of the vector operator Ŝ =
(
Ŝx, Ŝy, Ŝz

)
,[

Ŝx, Ŝy
]

= i~Ŝz (3.19)

and cyclic permutation of the indices x, y, z. For a spin-1/2 system the components of the spin
operator can be represented using the Pauli matrices and in first quantization we obtain

Ŝx =
~
2
σx =

~
2

(
0 1
1 0

)
, Ŝy =

~
2
σy =

~
2

(
0 −i
i 0

)
, Ŝz =

~
2
σz =

~
2

(
1 0
0 −1

)
, (3.20)

where the basis states |↑〉 =

(
1
0

)
and |↓〉 =

(
0
1

)
are the eigenstates of Ŝz and they correspond

to the spin projection quantum numbers mS = ±1/2, respectively.

Now, for the double-well we can express the total spin operator in matrix representation1 by
employing the two-particle basis {|↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉}, where the first (second) entry specifies
the spin projection quantum number of the first (second) particle and we obtain

Ŝ2 = ~2


2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2

 and Ŝz = ~


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1

 . (3.21)

The symmetric and antisymmetric spin wavefunctions χS,MS
are found by solving the

eigenvalue equations

Ŝ2χS,MS
= ~2S(S + 1)χS,MS

and ŜzχS,MS
= ~MSχS,MS

. (3.22)

From the matrix representation we can directly identify the two eigenstates |χ1,1〉 = |↑↑〉 and
|χ1,−1〉 = |↓↓〉 with eigenvalue S(S + 1) = 2. The other eigenstates are

|χ0,0〉 =
1√
2

(|↑↓〉 − |↓↑〉) and |χ1,0〉 =
1√
2

(|↑↓〉+ |↓↑〉) . (3.23)

Since there is no coupling between the spatial and spin degrees of freedom, the total wavefunction
is simply given by the product of the spatial and the spin part |ψi〉 = |φi〉 ⊗ |χ〉. Here, the spin
part has to be chosen such that |ψi〉 is antisymmetric under particle exchange for fermionic
particles. To simplify the description of the double-well, we will express the total wavefunction

1
S
x
1 + S

x
2 = ~

2


0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

 , S
y
1 + S

y
2 = ~

2


0 −i −i 0
i 0 0 −i
i 0 0 −i
0 i i 0

 , S
z
1 + S

z
2 = ~

2


2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −2
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3.2 Two-Site Hubbard Model

in the framework of second quantization by defining the Fock state basis

|↑↓, 0〉 = c†L↓c
†
L↑ |0〉 , |↑, ↓〉 = c†R↓c

†
L↑ |0〉 , |↓, ↑〉 = c†R↑c

†
L↓ |0〉 , |0, ↑↓〉 = c†R↓c

†
R↑ |0〉 , (3.24)

where we do not specify the state of each particle individually. Instead a state is determ-
ined merely by the number of particles in a certain spin state for both lattice sites. The
anticommutation relations for the fermionic creation and annihilation operators

{c†iσ, c
†
j,σ
′} = {ciσ, cj,σ′} = 0 and {ciσ, c†j,σ′} = δijδσσ′ (3.25)

take care of the proper symmetrization and normalization of the many-body state. In Table
3.1 we list the eigenenergies together with their corresponding total wavefunction |ψ〉 and the
exchange symmetries that apply to the spatial and spin part.

Eigenenergy |φ〉 |χS,MS
〉 |ψ〉

E1 = U
2

(
1−

√
16t

2

U
2 + 1

)
|φ1〉 (+) |χ0,0〉 (−) ∝ E4

2t |s〉+ |d+〉

E2 = U |φ2〉 (+) |χ0,0〉 (−) 1√
2

(|↑↓, 0〉 − |0, ↑↓〉) =: |d−〉

|χ1,−1〉 (+) |↓, ↓〉
E3 = 0 |φ3〉 (−) |χ1,0〉 (+) 1√

2
(|↑, ↓〉+ |↓, ↑〉) =: |t0〉

|χ1,1〉 (+) |↑, ↑〉

E4 = U
2

(
1 +

√
16t

2

U
2 + 1

)
|φ4〉 (+) |χ0,0〉 (−) ∝ E1

2t |s〉+ |d+〉

Table 3.1: Eigenenergies and wavefunctions for two interacting fermions in a double-well. We obtain the
eigenstates by exact diagonalization and specify both the spatial and the spin part of the wavefunction.
The sign states whether the corresponding wavefunction is symmetric (+) or antisymmetric (−) under
particle exchange.

Similar to the |t+〉 and |t−〉 states, which cannot lower their energy by tunnelling due to
Pauli’s exclusion principle, the triplet state |t0〉 also has the same energy E3 = 0. Even though
the two particles delocalize over the double-well by realizing a superposition state, they do not
build up coherence by quantum tunnelling since

Ĥkin |t0〉 = −t |d+〉+ t |d+〉 = 0. (3.26)

In contrast, note that the singlet state

|s〉 =
1√
2

(|↑, ↓〉 − |↓, ↑〉) (3.27)
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and the doublon state

|d+〉 =
1√
2

(|↑↓, 0〉+ |0, ↑↓〉) (3.28)

are connected via quantum tunnelling through the barrier of the double-well, since

〈d+| Ĥkin |s〉 = −2t. (3.29)

Therefore, for non-interacting fermions the ground state is an equal mixture of both of these
states. However, if we turn on strong interactions |U | � t between particles with opposite spin,
the ground state will favour either singly or doubly occupied sites. In the inset of Figure 3.3 we
show that the imbalance between the singlet and doublon state increases with the interaction
strength regardless of the sign. This is a clear indication that the delocalization energy is
outweighed by the interaction energy. In this regime of strong on-site interactions, density
fluctuations are suppressed and second-order tunnelling becomes the dominant process. In
the following section we will investigate how the interplay of strong repulsive interactions and
Pauli’s exclusion principle will lead to antiferromagnetic ordering.

3.2.2 Quantum Magnetism in the Double-Well

For fermions, the ground state of the double-well features an antisymmetric spin singlet
configuration for any interaction. However, only if particles with opposite spin strongly repel
each other, the ground state is mostly composed of singly occupied sites, see Figure 3.3. For
low enough temperatures they will order antiferromagnetically in spin space. In contrast,
for attractive interactions the system favours doubly-occupied and empty sites and therefore
we obtain ordering in the density sector (charge-density wave). In the following we want to
investigate how the Hubbard model supports quantum magnetism even though it does not
feature a direct spin-spin interaction term as the Heisenberg Hamiltonian does.

For the non-interacting case, the ground state minimizes its kinetic energy by delocalization
to E1(U = 0) = −2t. When introducing weak repulsive interactions the ground state energy
increases according to

E1(U) ≈ −2t+
U

2
. (3.30)

For strong repulsive interactions U � t, the single-particle tunnelling is strongly suppressed
due to the energy gap ∆E = U between basis states containing only singly-occupied sites
{|↑, ↓〉 , |↓, ↑〉 , |↑, ↑〉 , |↓, ↓〉} and those containing a doublon {|↑↓, 0〉 , |0, ↑↓〉}. In this case the
approximate eigenstates of the low-energy sector E ≈ 0 are given by |s〉 , |t0〉 , |t+〉 and |t−〉, cf.
Table 3.1. As the charge degree of freedom is frozen, we obtain an effective spin interaction.
Employing second-order perturbation theory, we can compute the energy shift experienced by
the singlet state by treating the tunnelling operator as a small perturbation [85]

δE
(2)
|s〉 =

〈s| Ĥkin |d+〉 〈d+| Ĥkin |s〉
E|s〉 − E|d+〉

Eq. 3.29
= −4t2

U
. (3.31)

Therefore, in the limit of U � t the energy of the ground state is reduced by the superexchange
constant, J = 4t2/U . Due to the fermionic anticommutation sign the first-order tunnelling
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3.2 Two-Site Hubbard Model

amplitudes interfere constructively for the singlet state (compare Equation 3.29) as visualized in
Figure 3.4. The opposite applies to the triplet state |t0〉 and indeed the energy shift according
to second-order perturbation theory vanishes for all three triplet states

δE
(2)
|t0〉 = δE

(2)
|t+〉 = δE

(2)
|t−〉 = 0. (3.32)

Physically this is linked to the fact that the triplet states are not able to tunnel. While for
the state |t0〉 the tunnelling amplitudes to the |d+〉 state interfere destructively (see Equation
3.26), tunnelling is forbidden by Pauli’s exclusion principle for the basis states |t+〉 and |t−〉
where neighbouring sites are occupied by the same spin state.

Figure 3.4: Superexchange mechanism in the double-well. In the strongly-interacting regime single-
particle tunnelling is strongly suppressed due to the energy difference of ∆E = U . The energy of the
singlet is still lower compared to the triplet states, since second-order tunnelling leads to a virtual
occupation of double occupancies. Therefore, this so-called superexchange process favours antiparallel
alignment of spins. This figure was inspired by [84].

The energy gain of the singlet state that we obtained as an approximate result by treating
the tunnelling as a perturbation matches the eigenenergy obtained by exact diagonalization of
the double-well Hamiltonian for strong repulsive interactions U � t, where

E1(U � t) ≈ −4t2

U
. (3.33)

The first-order correction to the bare singlet state |s〉 also reveals that a finite amount of double
occupancies is necessary to lower the ground state energy

|s〉(1) ∝ |s〉+
2t

U
|d+〉 ≈ |ψ1(U � t)〉 . (3.34)

Therefore the term virtual double occupancy that is often used is sensible only in the context of
perturbation theory.

Note that the antiferromagnetic alignment is favoured for fermions as a consequence of the
anticommutation relations that apply to the creation and annihilation operators. Therefore,
for bosons we obtain the opposite result and the spins experience an effective ferromagnetic
interaction.
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3.2.3 Tilted Double-Well

The implementation of the two-site system using optical superlattices allows us to modify
the potential landscape including the energy offset 2∆ between the two coupled sites of a
double-well potential, compare Figure 3.14. This site-offset is engineered by properly adjusting
the wavelength of either lattice, as shown in Figures 2.4 and 2.5. In the following we will
investigate the influence of this tilt onto the ground state wavefunction. The Hamiltonians
describing the situation when only one atom or two atoms with opposite spin are present in a
tilted double-well are given in Equation 3.35. For the matrix representation we employ the
basis states {|σ, 0〉 , |0, σ〉} and {|↑↓, 0〉 , |↑, ↓〉 , |↓, ↑〉 , |0, ↑↓〉}, respectively, where the order of

the fermionic creation operators c†R↓c
†
R↑c
†
L↓c
†
L↑ fixes the signs of the tunnelling matrix elements.

HN=1 =

(
∆ −t
−t −∆

)
HN=2 =


U + 2∆ −t t 0
−t 0 0 −t
t 0 0 t
0 −t t U − 2∆

 (3.35)

From an exact diagonalization in each of the sectors with fixed N we obtain the eigenenergies
and corresponding eigenstates. In Figure 3.5 a) and b) we plot the ground state contributions
for U/t = 2. For N = 1, the particle is predominantly localized in the left (right) well if ∆/t
smaller (larger) than zero or in a symmetric superposition in case of a balanced double-well
potential where ∆ = 0. With two particles, N = 2, we additionally have to consider double
occupancies, which will dominate the ground state when the tilt is large, |∆|/t� 1. Following
the definition of the basis, every single occupancy in the left well is accompanied by a single
occupancy with opposite spin in the right well. Therefore, we find that sL

σ = sR
σ̄ . In addition

the tilt is not spin-dependent, therefore the basis states |↑, ↓〉 and |↓, ↑〉 ought to be equally
likely. To simulate the probabilities for singly and doubly occupied sites for an arbitrary total
filling n per spin state we combine the two separate solutions with n = 0.25 for N = 1 and
n = 0.5 for N = 2. The result for an average filling of n = 0.43 is shown in Figure 3.5 c) and we
observe that the average singles filling is different in the two wells due to the finite contribution
of the N = 1 sector. In Figure 6.8 we will compare our experimental data on the filling of both
singly and doubly occupied sites obtained from a strongly coupled bilayer lattice system to this
double-well calculation.

Introducing a tilt to the lattice structure has profound consequences on the single particle
dynamics. I. Dimitrova and co-workers have shown that a potential energy offset 2∆ between
neighbouring sites suppresses first-order tunnelling while the superexchange mechanism remains
resonant [86]. However, the energy of the intermediate level is different for the two configurations
corresponding to a particle that has to tunnel either “uphill” or “downhill” and the coupling
constant modifies to [87]

J(∆) =
1

2

(
4t2

U + 2∆
+

4t2

U − 2∆

)
. (3.36)

3.3 Two-Dimensional Hubbard Model

In the 1980s, high-temperature superconductivity was observed in doped metal-oxide compounds
[5, 88, 89]. In conventional superconductors weak attractive interactions mediated by phonon
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Figure 3.5: Ground state wavefunction in a tilted double-well. Shown are the contributions to the
ground state |ψ0〉 of the N = 1 (a) and N = 2 (b) Fermi-Hubbard Hamiltonian, given in Equation 3.35,
with U/t = 2. For a single particle with spin σ there are only two basis states, namely a single occupancy

in the left or right well and we identify sLσ = | 〈σ, 0|ψ0〉 |2. In the case where two particles with opposite
spin occupy the double-well (N = 2) we additionally distinguish between single and double occupancies.

The latter is given by nL↑↓ = | 〈↑↓, 0|ψ0〉 |2. In order to simulate an intermediate filling, in between the
N = 1 case with a total filling of n = 0.25 per spin state and the N = 2 case with n = 0.5, we combine
the two solutions. In c) we have chosen an average total filling of n = 0.43.

modes couple electrons to Cooper pairs. In contrast, in materials with a high critical temperature
the superconducting phase often appears in close proximity to a Mott insulating state with
strong electron correlations [7, 90]. The conjecture by P. W. Anderson [91] that the main
features of high-temperature superconductivity are captured by the two-dimensional (2D)
Hubbard model has sparked an increasing interest in studying the properties of the 2D Hubbard
model both with theoretical [17, 92–94] and experimental efforts [34, 38, 95–97]. An extensive
overview about the realization of Fermi-Hubbard models in optical lattices is presented in [98].

In this section we will start with a close look at the individual terms that appear in the 2D
Fermi-Hubbard model. This serves as the foundation to investigate both the symmetries and
the (conjectured) properties of the phase diagram.

3.3.1 Fermi-Hubbard Hamiltonian

The 2D Fermi-Hubbard model describes spin-1/2 particles in a square lattice potential, where
the mobility is restricted to a 2D layer. In the tight-binding approximation only two elementary
processes are kept, i.e. nearest-neighbour tunnelling with amplitude t and an on-site interaction
with strength U , which shifts the energy of doubly occupied lattice sites, see Figure 3.6.

The corresponding Hamiltonian in real space is given by

Ĥ = −t
∑
〈i,j〉,σ

ĉ†i,σ ĉj,σ + U
∑
i

n̂i↑n̂i↓, (3.37)

where ĉi,σ (ĉ†i,σ) denotes the annihilation (creation) operator of a fermion on lattice site i in spin
state σ = {↑, ↓} and the bracket 〈i, j〉 indicates that the sum is restricted to nearest neighbours.
In the non-interacting case, U = 0, the Hamiltonian is diagonal in momentum space. This can
be seen by expressing the real space creation and annihilation operators as a Fourier transform
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Chapter 3 The Fermi-Hubbard Model

Figure 3.6: Sketch of the elementary processes in the two-dimensional Hubbard model. The Fermi-
Hubbard model describes spin-1/2 particles, shown as red and blue spheres, which can tunnel to a
neighbouring site, and thereby lower their kinetic energy. Interactions between opposite spin states are
introduced by the on-site interaction with strength U .

over the momentum space operators ĉq,σ,2

ĉj,σ =
1√
L

∑
q

eiqrj ĉq,σ. (3.38)

Consecutively, the diagonal form of the Hamiltonian is obtained by inserting this transformation
into Equation 3.37

Ĥ = −2t
∑
qσ

[
cos(qxa) + cos(qya)

]
ĉ†q,σ ĉq,σ, (3.39)

from which the eigenenergy spectrum is directly read-off

Eσ(q) = −2t
[
cos(qxa) + cos(qya)

]
. (3.40)

From the definition of the Fourier transform it follows that for a finite system with L lattice
sites there is also a finite number of momentum eigenstates. In the thermodynamic limit,
however, they lie infinitely close together in an energy band of width W = 8t. We obtain two
identical copies of the cosine shaped band, as we have not included the effect of interactions
yet and hence the two spin components simply coexist in the lattice. Note that this result
reproduces the true dispersion of the lowest band shown in Figure 2.1 in the limit of large
lattice depths V0 � Erec where the tight-binding approximation is well justified. Therefore,
the eigenstates of the non-interacting Fermi-Hubbard model are Bloch waves with wavevector
q. For a fully filled lattice, we find that the kinetic energy, which is given by the sum over all
occupied q-states, Ekin =

∑
q Eσ(q) vanishes. Intuitively speaking, the atoms are not able to

move, as all lattice sites are occupied. At half-filling, when there is on average one particle per
lattice site, the kinetic energy takes on its minimum value since all particles lower their energy
by delocalizing over the lattice.

Introducing on-site interactions to the Fermi-Hubbard model restricts the mobility of the
spin-1/2 particles by reducing the amount of density fluctuations in the ground state. The
purely local interaction term couples all the different quasimomentum states and therefore the
extended Bloch waves are not the eigenstates any more but are replaced by more localized states.
In the case of strong attractive (repulsive) interactions, the system minimizes its total energy

2
Note that due to the two-dimensional lattice geometry i, j and q are vectors comprising an x and y component:

i ≡
(
ix
iy

)
and q ≡

(
qx
qy

)
.
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3.3 Two-Dimensional Hubbard Model

by increasing (decreasing) the occurrence of doubles and holes. The stronger the interaction
the more classical is the behaviour of the spin-1/2 particles, i.e. the particle-character wins
over the wave-like nature and the amount of superposition in the eigenstates reduces. For
intermediate interaction strength, the competition of the kinetic and interaction energy terms
often leads to strong correlations in the density and spin sectors, and as a consequence the
2D Fermi Hubbard model is not exactly solvable. Before discussing the different phases in
more detail, I will introduce two additional terms to the Hamiltonian, namely the chemical
potential, µ, which adjusts the average filling nσ = Nσ/L and an effective magnetic field, h,
which couples to the imbalance in the spin densities n↑ − n↓.

Chemical Potential For the discussion of the double-well Hamiltonian in the preceding chapter,
we have treated the problem in the subspace of fixed particle number N = 1 and N = 2. It
is however useful to solve the 2D Fermi-Hubbard model within the framework of the grand-
canonical ensemble, and hence to specify the chemical potential µ instead of the total particle
number N [99]. The role of the chemical potential µ is to adjust the average density in the
system by allowing for exchange with a particle reservoir and we obtain

Ĥ = −t
∑
〈i,j〉σ

(ĉ†i,σ ĉj,σ + h.c.) + U
∑
i

n̂i↑n̂i↓ −
∑
i

µi(n̂i↑ + n̂i↓). (3.41)

The dependence of the average filling nσ = 〈n̂σ〉 on the chemical potential µ is called the
(density) equation of state, since we can derive thermodynamic variables such as the pressure
and the entropy from it. We will revisit the equation of state nσ(µ) throughout this thesis, for
example in Figure 3.11 we investigate the effect of introducing repulsive on-site interactions to
the equation of state of the 2D Fermi-Hubbard model. Note that for a spin-balanced system
we have nσ(µ) = nσ̄(µ) ≡ n(µ).

Unlike solid-state systems, ultracold atoms in optical lattices are usually confined by an
additional slowly varying trapping potential V (x, y), see Section 2.3. This leads to an inhomo-
geneous density distribution nσ(x, y) within the 2D layer. In Figure 3.7 we sketch the trap
potential, which close to the centre may be approximated as a harmonic trap. If the potential

Figure 3.7: Sketch of the local density approximation. Due to the trap potential V (x) the local chemical
potential µ(x) varies throughout the trap and the maximum value µ0 is realized in the trap centre. The
red dotted lines schematically indicate the isopotential bins that we typically define for analysing the
inhomogeneous density distribution.

varies slowly as compared to characteristic length scales of the system, e.g. the correlation
length of spin correlations and if the chemical potential variation is negligible as compared
to the smallest energy, we can adopt the local density approximation (LDA) [99]. According
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Chapter 3 The Fermi-Hubbard Model

to this approximation, the trapped system behaves locally like a homogeneous one with the
chemical potential

µ(x, y) = µ0 − V (x, y). (3.42)

In order to analyse our experimental data, we typically group the density into isopotential bins
as sketched in Figure 3.7. This requires an accurate calibration of the trap potential V (x, y).

Spin Imbalance So far we have only assumed the chemical potential to vary locally within the
trap. However, there was no dependence on the spin state included in the description above.
In order to account for different total atom numbers of spin-up and -down atoms, we need to
extend the Hamiltonian by introducing spin-dependent chemical potentials,

Ĥµ = −
∑
i

(µi↑n̂i↑ + µi↓n̂i↓) (3.43)

= −
∑
i

µi↑ + µi↓
2︸ ︷︷ ︸
µi

(n̂i↑ + n̂i↓)−
∑
i

µi↑ − µi↓
2︸ ︷︷ ︸
hi

(n̂i↑ − n̂i↓). (3.44)

Now, the mean chemical potential µi couples to the total density as before, while the difference
in the chemical potentials leads to an imbalance of the spin densities. The latter term is often
referred to as an effective magnetic field h, since a (real) magnetic field causes a mismatch
in the Fermi surfaces for the two spin components of the electrons in the solid-state context
[100]. For experiments using ultracold atoms however, the internal level structure is much more
complicated and the spin property is emulated in the magnetic hyperfine state, thus realizing a
so-called pseudo-spin system. Since the lowest magnetic hyperfine states are stable and only
transferred into one another by driving radio-frequency transitions, a magnetic field would not
unbalance the spin mixture. However, we can engineer an effective magnetic field term in the
experiment by creating an imbalance in the populations of the two pseudo-spin components
before loading them into the three-dimensional optical lattice configuration [101, 102]. In
Figure 3.8 we sketch the impact of the effective magnetic field on the chemical potentials of
both spin components within the LDA.

Figure 3.8: Sketch of the local density approximation with spin imbalance. In a system with an
imbalance in the spin populations, the local chemical potentials µ↑(x) and µ↓(x) differ by twice the
effective Zeeman field, 2h, at any position.

There is a peculiarity about the effective magnetic field h. If the confining potential V (x, y)
is independent of the spin property, h is a global parameter describing the entire trapped
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3.3 Two-Dimensional Hubbard Model

system. For far-detuned lattice beams this assumption is fulfilled to good approximation and
hence the spatial dependence as introduced by the trapping potential cancels. This can be
shown by employing the definition of the local chemical potential according to the LDA, given
in Equation 3.42 and we indeed find that h is constant within the trap

2h = µ↑(x, y)− µ↓(x, y) = µ0,↑ − µ0,↓. (3.45)

3.3.2 Symmetries in the Fermi-Hubbard Model

Symmetry is a very general concept which finds application in all natural sciences and is often
exploited in order to limit the parameter space that needs to be investigated. In particular,
knowing the symmetry properties of the Hamiltonian of interest allows for choosing the
parameter regime that is the most accessible in the experiment in order to probe a certain
phase [102]. In the following I will discuss some of the symmetries of the Fermi-Hubbard model,
including the (partial) particle-hole symmetry, which maps the spin onto the density sector for
opposite interaction strengths and thereby provides a strong connection between the repulsive
and the attractive Fermi-Hubbard model.

Discrete Translation Symmetry

The homogeneous Hubbard Hamiltonian is invariant under a discrete translation in real space
by a multiple of the lattice spacing. The conserved quantity corresponding to this symmetry
operation j → j+ 1 is the quasimomentum q. Consequently, any change to the lattice potential
that does not violate the discrete translation symmetry, e.g. the lattice depth modulation
to excite transitions to higher bands, does not change the quasimomentum. However, if the
harmonic confinement of the trap potential is too strong, different q-states will be coupled with
a finite probability. Another way to (partially) break the discrete translation symmetry is by
introducing disorder to the lattice potential [103].

Spin and Charge Symmetries

Another group of symmetries is found when considering the internal degrees of freedom, the
spin and the charge. Note that within our experimental implementation of the Fermi-Hubbard
model using optical lattices, the spin-1/2 particles are emulated by neutral atoms, which do
not carry a charge. Still, the terminology from the solid-state community is often adopted, e.g.
the term charge sector is used even though density sector would be more appropriate. In the
following we will use these terms interchangeably. For the discussion of the spin and charge
symmetries it is beneficial to bring the Fermi-Hubbard Hamiltonian into a more symmetric
form. This is achieved by the transformation n̂i,σ → n̂i,σ − 1/2, which shifts the chemical
potential such that half-filling is obtained at µ = 0 for all U [104]. The resulting Hamiltonian
is given by

Ĥ =− t
∑
〈i,j〉,σ

ĉ†i,σ ĉj,σ + U
∑
i

(
n̂i,↑ − 1/2

) (
n̂i,↓ − 1/2

)
−
∑
i

µi
(
n̂i,↑ + n̂i,↓ − 1

)
− h

∑
i

(
n̂i,↑ − n̂i,↓

)
(3.46)
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and from this symmetrized form we can read off that the chemical potential is connected to the
density doping away from the special point of half-filling, where 〈n̂i,↑ + n̂i,↓〉 = 1. In a similar
manner the effective Zeeman field h couples to an imbalance in the total spin densities. We
can identify two distinct sectors by calculating the expectation values of the density imbalance
〈n̂↑ − n̂↓〉 and the density doping 〈n̂↑ + n̂↓ − 1〉 for the four possible states of a single lattice
site. The result is given in Table 3.2. The spin sector is given by the single occupancies |↑〉 and
|↓〉, while the doubles and the empty sites do not possess magnetization, i.e. spin. Conversely,
the single occupancies do not contribute to the charge sector as quantified by the density doping
since they represent a half-filled lattice site. Hence, the charge sector is spanned by the doubles
and empty lattice sites. By defining the occupation number operators for doubly occupied and

|↑〉 |↓〉 |↑↓〉 |0〉
〈n̂↑ − n̂↓〉 1 -1 0 0

〈n̂↑ + n̂↓ − 1〉 0 0 1 -1

Eint −U/4 −U/4 U/4 U/4

Table 3.2: Identifying spin and density sector. Only the singly occupied lattice sites carry spin and
hence magnetization. The charge or density doping sector, in contrast, is formed by the doubly occupied
and empty sites as the expectation value 〈n̂↑ + n̂↓ − 1〉 vanishes in the case of half-filling. Furthermore,
the expectation value of the interaction energy, Eint, clearly shows that we have chosen a symmetric
form of the Fermi-Hubbard Hamiltonian where not only the doubles experience an energy shift.

empty lattice sites,

n̂i,↑↓ = n̂i,↑n̂i,↓ and n̂i,0 = (1− n̂i,↑)(1− n̂i,↓) = n̂i,↑↓ − (n̂i,↑ + n̂i,↓ − 1), (3.47)

we can rewrite the density doping as the imbalance of doubles and empty sites 〈n̂i,↑ + n̂i,↓ − 1〉 =
〈n̂i,↑↓ − n̂i,0〉. Furthermore, the occupation number operator for singly occupied sites ŝi,σ follows
from the total spin occupation by subtracting the occurrence of doubles,

ŝi,σ = n̂i,σ − n̂i,↑↓. (3.48)

If we rewrite the Fermi-Hubbard Hamiltonian once more according to the Equations 3.47 and
3.48, we obtain

Ĥ =− t
∑
〈i,j〉,σ

ĉ†i,σ ĉj,σ + U
∑
i

(
n̂i,↑ − 1/2

) (
n̂i,↓ − 1/2

)
−
∑
i

µi
(
n̂i,↑↓ − n̂i,0

)
− h

∑
i

(
ŝi,↑ − ŝi,↓

)
, (3.49)

which further highlights the intricate connection between the spin and charge sectors that
will be discussed further in the following paragraphs. In addition, we calculate the energy
expectation value of the on-site interaction, Eint, which takes on distinct values in the spin and
density sector, compare Table 3.2. Note that forming a double occupancy out of two singly
occupied sites still requires adding a total energy of U , however it is now evenly distributed
over the two processes of forming a double occupancy and a hole.
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Spin-SU(2) Symmetry If we consider the spin-balanced Fermi-Hubbard model, h = 0, intuit-
ively speaking it should not matter which of the two spin components we label as spin-up or
-down. This argument can be extended further, as any arbitrary global rotation on the Bloch
sphere would keep the Hamiltonian invariant. To see this we heave to properly define the spin
operators in second quantization, which directly follow from their first quantized representation
given by the Pauli matrices, see Equation 3.20,

Ŝαi =
~
2

∑
σσ′

ĉ†iσσ
α
σσ′ ĉiσ′ , for α = x, y, z. (3.50)

Typically the factor ~ is neglected in the description of the spin operators and we will follow
this convention throughout the remainder of this thesis. The global spin operators are defined
as a sum over all lattice sites,

Ŝα =
∑
i

Ŝαi , (3.51)

and one can show that they commute with the Fermi-Hubbard Hamiltonian when there is no
effective magnetic field h, [

Ĥ, Ŝα
]

= 0. (3.52)

This shows that the Fermi-Hubbard Hamiltonian possesses a spin-SU(2) symmetry if h = 0.
In contrast, when introducing an effective magnetic field term, the two spin components are
distinct, as we will obtain a minority and a majority component. Therefore, the Fermi-Hubbard
Hamiltonian is not invariant when rotating the basis states and correspondingly the commutator
does not vanish any more, [Ĥ, Ŝx,y] ∝ [Ŝz, Ŝx,y] 6= 0.

There is a special case, namely when rotating the basis states on the Bloch sphere around
the x-axis by an angle of π, we effectively transform

ĉi,σ → −iĉi,σ̄. (3.53)

This interchanges the spin-up with the spin-down component. Even though this transformation
does not keep the Hamiltonian invariant, we recover the Fermi-Hubbard Hamiltonian when
additionally flipping the sign of h. Intuitively speaking, if we exchange the minority and
majority components by the transformation given above, the direction of the effective magnetic
field has to be flipped in order to restore a physically reasonable scenario.

Pseudospin-SU(2) Symmetry There is another less known SU(2) symmetry of the Fermi-
Hubbard model, which is generated by the pseudospin operators,

η̂† =
∑
j

(−1)j ĉ†j,↓ĉ
†
j,↑ = η̂x + iη̂y, η̂ =

∑
j

(−1)j ĉj,↑ĉj,↓, η̂z =
1

2

∑
j

(
n̂j,↑↓ − n̂j,0

)
(3.54)

also referred to as η-pairing operators. These operators form an SU(2) algebra analogous
to the one of the spin operators defined in Equation 3.51. As seen in Table 3.2, within the
charge sector doubles and empty sites take on the role of spin-up and spin-down particles
of the previously discussed spin sector. In particular, to obtain a better understanding of
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the pseudospin symmetry we may think about a Bloch sphere defined by the basis states
|↑↓〉 and |0〉. To highlight the close connection, the spin-balanced case at h = 0 is mirrored
by equal probabilities for obtaining a doubly occupied or an empty site, which is fulfilled at
half-filling, i.e. µ = 0. Having drawn the close analogy to the spin sector, we can directly apply
the conclusion obtained in the paragraph above. For a half-filled system where µ = 0, the
pseudospin operators commute with the Fermi-Hubbard Hamiltonian,[

Ĥ, η̂α
]

= 0. (3.55)

Since the η-operators obey the same commutation relations as the spin operators, this leads to
another SU(2) symmetry however in the charge sector of the Hubbard model, for which the
terms superconducting [105] or pseudospin [106] SU(2) symmetry are used.

For a spin-balanced system at half-filling we have µ = h = 0 and hence the Hubbard
model possesses an SO(4)-symmetry [107]. At this point the probabilities of the four different
occupations of a single site are equal 〈ŝ↑〉 = 〈ŝ↓〉 = 〈n̂↑↓〉 = 〈n̂0〉 = 0.25, if U = 0.

Partial Particle-Hole Transformation The partial particle-hole transformation only affects
the spin-down component3 and is defined for bipartite lattices as

ĉj,↓ ↔ (−1)jx+jy ĉ†j,↓, ĉj,↑ ↔ ĉj,↑. (3.56)

The definition in terms of the creation and annihilation operators is mostly relevant for the
kinetic energy, which is invariant only due to the staggered sign. For all other terms in the
Fermi-Hubbard Hamiltonian it suffices to know the transformation of the occupation number
operator

n̂i,↓ ↔ (1− n̂i,↓). (3.57)

In the left part of Figure 3.9 we show the mapping of the site occupancies under the partial
particle-hole transformation (PHT), which maps the spin to the charge sector and vice versa.
If we apply the transformation to the Hubbard Hamiltonian given in Equation 3.46, we realize

Figure 3.9: Particle-hole transformations in the Fermi-Hubbard model. There are two distinct particle-
hole transformations (PHT) in the Fermi-Hubbard model. The partial PHT maps the spin onto the
charge sector and vice versa. The roles of the effective Zeeman field h and the chemical potential µ are
therefore interchanged. While the tunnelling term is left invariant, the sign of the interaction strength
changes, compare Table 3.2. In contrast, the full PHT acts separately within both the spin and charge
sector.

3
In principle, transforming only the spin-up component is also a valid transformation, which is connected to
the case presented here by the full particle-hole transformation.
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that the effective Zeeman field, h, and the chemical potential, µ, exchange their roles while
the interaction energy flips its sign, compare Table 3.2. Therefore, the partial PHT links the
attractive to the repulsive Fermi-Hubbard model and we can conclude that there is an intricate
connection which allows us to infer the properties on the attractive side from the repulsive
case. In some sense the attractive and repulsive Fermi-Hubbard model are the exact opposite
of each other and we will come back to this point when discussing the phase diagram of the
2D Fermi-Hubbard model shown in Figure 3.12. It is however important to note that the site
occupancies also interchange, which is shown in Figure 3.10. Therefore, density correlations
at U < 0 are mapped onto spin correlations at U > 0. In a recent publication [102], we have
experimentally verified that even the thermodynamic variables are transformed into one another
by comparing the compressibility κ = ∂n/∂µ for U > 0 to the spin susceptibility χs = ∂m/∂h
for U < 0, where m = 〈n↑ − n↓〉 is the magnetization of the system. Apart from the physical
insight that one gains from the connection between the repulsive and attractive Hubbard model,
the partial PHT has practical benefits as well since we can choose the experimental conditions
to probe a certain phase. For example, preparing a homogeneous system is not easily achievable
for quantum gas experiments. However, the partial PHT allows for a second level to quantum
simulation, as we can simulate thy physics in a homogeneous lattice potential in a harmonic
trap by inverting the sign of the interaction strength and transforming the physical observable
under consideration. This is possible as the chemical potential µ, which varies throughout the
trap is mapped onto the effective Zeeman field, which is a global parameter.

Full Particle-Hole Transformation The full particle-hole transformation (PHT) equally affects
both spin components and is defined for bipartite lattices as

ĉj,↓ ↔ (−1)jx+jy ĉ†j,↓, ĉj,↑ ↔ (−1)jx+jy ĉ†j,↑. (3.58)

Instead of providing a mapping between the spin and density sectors, the full PHT transforms
spin-up into spin-down particles and doubles into empty sites, as shown on the right side of
Figure 3.9. Therefore it acts only within each of the two sectors, and flips the sign of both
h and µ while the interaction strength U and the tunnelling amplitude t are invariant. As a
consequence we obtain a mirror symmetry in the expectation value of the occupation number
operator around µ = 0 and h = 0, as shown in Figure 3.10 a) and b), respectively.

We will first discuss the charge sector, which is slightly more intuitive. By tuning the
chemical potential the total filling in the lattice changes. This can also be quantified by the
imbalance of doubles and empty sites. At half-filling we find that 〈n̂↑↓〉 = 〈n̂0〉4. Increasing the
chemical potential enhances the number of doubles, which is exactly mirrored by an increasing
probability to obtain empty sites below half-filling. For a vanishing Zeeman field h = 0 the
amount of spin-up s↑ and spin-down singles s↓ are equal for all µ. Consequently, the singles
filling is mapped back onto itself by the full PHT,

si,↑(µ) = si,↓(−µ) = si,↑(−µ). (3.59)

This is shown in Figure 3.10 a) and we obtain a maximum in the singles occupancy at the
symmetry point, which is at half-filling, µ = 0. This so-called singles peak provides an extremely
important calibration point, which allows us to assign an absolute chemical potential to the

4
At half-filling we have 2n↑↓+s↑+s↓ = 1. In combination with the normalization condition n0+n↑↓+s↑+s↓ = 1,
we obtain that the number of empty sites and doubles is equal at half-filling.
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Figure 3.10: Mapping of site occupancies under the particle-hole transformation. We compare the
expectation value of the site occupancies n = 〈n̂〉 in the repulsive (a) and attractive (b) Fermi-Hubbard
model, as determined by determinantal QMC (DQMC). The DQMC code is provided by the Quantum
Electron Simulation Toolbox (QUEST) [17]. For more information on the DQMC simulations see Section
7.2 or [108]. The mirror symmetry around the µ = 0 (h = 0) axis, indicated by the grey dashed line, is
a consequence of the full particle-hole transformation (PHT). The partial PHT in contrast provides a
mapping that interchanges the roles of the effective magnetic field, h, and the chemical potential, µ,
which is accompanied by a flip in the sign of the interaction. While increasing the chemical potential
enhances the number of doubles in the system, a larger Zeeman field implies a strong imbalance in the
spin components. Hence, the partial PHT maps doubles onto spin-up singles, which is indicated by the
black arrow.

local filling n(x, y) which varies slowly within the xy-plane due to the harmonic confinement
provided by the lattice laser beams. Since we obtain the filling of singly and doubly occupied
sites only up to a constant scaling factor, the determination of this detection fudge relies on the
knowledge of the absolute filling that we realize locally in addition to the theory comparison
providing the equation of state n(µ).

When tuning the Zeeman field (Figure 3.10 b) instead of the chemical potential, we obtain
the very same graph where only the legend has changed. This was to be expected, as the
charge sector is mapped onto the spin sector by the partial PHT discussed above. The effective
Zeeman field tunes the imbalance of the spin-up and spin-down components and similar to
before we obtain an increase in the spin-up component for h > 0 which is exactly mirrored by
an increase of the spin-down component for h < 0.

According to the full PHT is suffices to probe the Hubbard model only up to half-filling,
which is a huge practical benefit. Furthermore, for spin-imbalanced systems, we observe the
same physics whether the majority component is given by the spin-up or -down atoms.

Energy Inversion Symmetry The Fermi-Hubbard model possesses another symmetry which
links the high-energy states of the attractive Hubbard model to the low-energy states of the
repulsive Hubbard model if the momenta are shifted according to k → k +Q, where Q = π/a
[109–111]. The underlying transformation that is responsible for this connection inverts the
sign of both t and U . Consequently, also the sign of the full Hamiltonian changes Ĥ → −Ĥ.
The corresponding states are often referred to as negative temperature states, where the sign
change effectively has been put into the temperature instead of the Hamiltonian.
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3.3 Two-Dimensional Hubbard Model

3.3.3 Phase Diagram

The Fermi-Hubbard model includes strong correlations in the spin and density degree of freedom
which arise due to the competition of kinetic and interaction energy as well as the dimensionality
and the total filling. As a consequence, a reliable (ground state) phase diagram of the Fermi-
Hubbard model in two and three dimensions remains elusive, while the one-dimensional case is
solved by the Bethe ansatz. In the following, we will therefore only discuss an approximate
phase diagram at half-filling, following the discussions in [67, 69].

For weak attractive or repulsive interactions or large temperatures the Fermi-Hubbard system
is in a metallic state, which is characterized by (thermally induced) density fluctuations as the
spin-1/2 particles have a large kinetic energy. Upon lowering the temperature, the relevance
of the on-site interaction increases, which aims at localizing the particles to their respective
lattice sites, either in the form of singles (U > 0) or doubles and empty sites (U < 0). An
intuitive picture that explains the impact of the on-site interaction is provided by the concept
of the Hubbard bands, see Figure 3.11. In Section 3.3.1 we have discussed the band structure of
the non-interacting Fermi Hubbard model where we obtain separate bands for the two spin
components with a bandwidth of W/t=8 each. For a finite interaction strength, the q-states get
mixed and hence they can not be the eigenstates of the Fermi-Hubbard Hamiltonian. However,
if U is much larger than t, the interacting spectral function separates into two Hubbard bands.
In contrast to quasiparticles, which have a well defined quasimomentum corresponding to a
certain energy, the Hubbard bands are incoherent, hence they describe localized particles that
are smeared in q-space. The two Hubbard bands do not represent the two spin components

Figure 3.11: Hubbard bands and equation of state of the two-dimensional Fermi-Hubbard model. (Left)
When increasing the interaction strength U , a charge gap opens for U > W . The insulating character
of the Mott insulator is also apparent in the density equation of state n(µ), which features a plateau
near half-filling, µ = 0, and from the dip in the compressibility κ(µ). Both quantities are obtained using
the DQMC code as provided by the Quantum Electron Simulation Toolbox (QUEST) [17] and we have
chosen a temperature within our experimental capabilities, kBT/t = 1. For more information on the
DQMC simulations see Section 7.2.

as in the non-interacting case but singly and doubly occupied (+empty) sites, respectively.
The gap to the upper Hubbard band is given by the on-site interaction which punishes the
occurrence of doubles and empty sites (singles) in the repulsive (attractive) case. The concept
of the Hubbard bands is useful for understanding the phase diagram of the Fermi-Hubbard
model that is shown in Figure 3.12 and I will review some of the characteristics in the following.
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Chapter 3 The Fermi-Hubbard Model

Mott Insulator If the interaction strength is positive and exceeds the bandwidth of the
interacting system, we obtain an insulating state at half-filling, the so-called Mott insulator.
In Figure 3.11 we plot the density equation of state, n(µ), which develops a plateau around
µ = 0. This signals the insulating character as the system resists the addition of more particles.
Consequently, the compressibility, which we define as ∂n/∂µ, shows a dip at half-filling. In
contrast to a band insulator, adding more particles to the system is prohibited by the strong
repulsive interaction. Therefore, the charge gap is a correlation gap and depends on the
temperature. This is the reason why the compressibility at half-filling does not vanish even for
U/t = 12. It is also noteworthy that the strong correlations induced by the on-site interaction
will narrow the bandwidth to W/t < 8 [49] since the energy gain by delocalization is reduced.
Therefore, the critical interaction strength to enter the Mott insulating regime will be smaller
than the non-interacting bandwidth.

Figure 3.12: Phase diagram of the Fermi-Hubbard model at half-filling. Approximate scaling of the
critical temperature to obtain order in the charge sector (dashed line), and the superexchange energy
(dotted line) as a function of the Fermi-Hubbard parameters. In the repulsive case, the competition of
quantum tunnelling, interactions and Pauli’s exclusion principle drives a second-order phase transition
from a disordered paramagnetic phase to a long-range ordered antiferromagnetic phase (AFM) with
antiparallel spin alignment. According to the partial PHT, opposite behaviour is expected for the
attractive Fermi-Hubbard model, where the charge order manifests itself in the reduction of single
occupancies, in contrast to the Mott insulator. The normal fluid with preformed pairs and empty
lattice sites becomes superfluid when lowering the temperature below the superexchange energy scale,
J = 4t2/|U |. In close analogy to the AFM, doubles and empty sites will order in a chequerboard fashion
called the charge-density wave (CDW). This schematic is based on [67, 69].

Preformed Pairs For attractive interactions, it is energetically favourable for two fermions
with opposite spin to form pairs, i.e. doubles and empty sites. Increasing the total filling is
not prohibited as the state can adjust the probabilities of forming doubles and empty sites at
no energy cost, see Table 3.2. Therefore, the preformed pairs phase is not a charge insulator.
In contrast to the repulsive case, where the energy excitations on top of the Mott insulating
ground state were given by particle-hole pairs, the low-energy excitations in the attractive
case are single occupancies created out of a doublon and an empty site. A finite Zeeman field,
h, introduces an imbalance of the two spin components, and consequently not all fermionic
particles will find a partner to form a doubly occupied lattice site. The associated energy cost for
the pair breaking induced by the Zeeman field is the on-site interaction. Hence, quantitatively
we recover the result of the repulsive counterpart, the Mott insulator. However, the system
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3.4 Bilayer Fermi-Hubbard Model

with attractive interactions resists the breaking of pairs as quantified by the spin susceptibility,
which mirrors the meaning of the compressibility in the repulsive Fermi-Hubbard model [102].

Quasi-Long-Range Order at low Temperatures When the temperature is lowered below the
superexchange scale, J , introduced in Section 3.2.2, the system develops (quasi-)long-range
order5 both in the attractive and repulsive Fermi-Hubbard model. Since first-order tunnelling
processes are suppressed by the large interaction energy, the system is only able to lower its
energy by the superexchange mechanism. On the repulsive side this leads to antiferromagnetic
correlations in the spin sector. This will be investigated in detail in Chapter 5 for an elevated
temperature kBT/J ≈ 1.2, where only short-ranged correlations are expected. On the attractive
side, the doubles and the empty sites will order in a chequerboard fashion which is sometimes
referred to as charge-density wave [104]. The quasi-long-range order that builds up in the
transverse components of the pseudospin operators is linked to s-wave superfluidity.

3.4 Bilayer Fermi-Hubbard Model

The bilayer Fermi-Hubbard model is a natural extension of the two-dimensional version discussed
above, where an additional parameter, t⊥, is introduced that quantifies the tunnelling amplitude
between a pair of horizontal layers, see Figure 3.13. I will start to analyse its properties by

Figure 3.13: Sketch of the elementary processes in the bilayer Fermi-Hubbard model. In addition to
the elementary processes within the two-dimensional Fermi-Hubbard model, namely the (intralayer)
tunnelling amplitude t between adjacent lattice sites and the on-site interaction U , the bilayer Fermi-
Hubbard model contains the interlayer tunnel coupling t⊥ as an independent parameter.

deriving the single-particle dispersion in the non-interacting case, which reveals the opening
of a band gap at half-filling in the strongly coupled regime, i.e. for t⊥ � t. When adding
repulsive interactions to the model, even the ground state properties of the phase diagram at
half-filling are extremely hard to predict. In the past years, several theory groups have studied
the bilayer Fermi-Hubbard model with partially conflicting conclusions, which I will briefly
mention in the second part. In order to reach the strongly coupled bilayer regime we reduce
the barrier between the layers and thereby realize tunnelling amplitudes of up to t⊥/h = 1 kHz.
To evaluate whether the tight-binding approximation is still valid even for the low barrier
heights, I will discuss the impact of higher-order interaction processes such as nearest-neighbour
interactions and density-induced tunnelling in the last part of this section.

5
The Mermin-Wagner theorem states that long-range order in two dimensions is only possible at zero
temperature.
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3.4.1 Band Structure of a Dimerized Lattice

In the experiment we realize the bilayer Fermi-Hubbard model by employing a superlattice along
the z-direction. This creates a dimerized lattice structure as shown in Figure 3.14, where each
unit cell labelled by an index j contains two lattice sites. If we follow the tight-binding approach
as we did for the 2D Fermi-Hubbard model we can limit the relevant tunnelling processes to
a coupling of nearest neighbours. Nevertheless, in general we obtain two distinct tunnelling
amplitudes corresponding to a coupling within or between neighbouring unit cells. In order to

Figure 3.14: Dimerized lattice potential. With a bichromatic superlattice we can create dimerized lattice
structures with a site offset of 2∆. We restrict the elementary processes to nearest-neighbour tunnelling
with an amplitude t1 within a unit cell and a tunnelling amplitude t2 between unit cells.

derive the band structure of this dimerized lattice structure, I will consider non-interacting
particles and hence the spin index on the creation and annihilation operators may be dropped.
The Hamiltonian, sometimes referred to as the Rice-Mele model, is then given by

ĤSL = −
∑
j

(
t1â
†
j b̂j + t2â

†
j b̂j−1 + h.c.

)
+ ∆

∑
j

(
â†j âj − b̂

†
j b̂j

)
(3.60)

and its elementary processes are visualized in Figure 3.14. To account for the dimerized lattice
structure we have introduced fermionic operators â†j (b̂†j), which create a particle in unit cell j
on the left (right) site, respectively. We obtain a diagonal representation by expressing the real
space creation and annihilation operators using their momentum space analogues

âj =
1√
L

∑
q

eiqrj âq (3.61)

and equivalently for sublattice B. Since the single-particle Hamiltonian is diagonal in momentum
space, we can solve the eigenvalue problem for a fixed q. In the basis {â†q |0〉 , b̂†q |0〉} the
Hamiltonian transforms to

Ĥq =

 ∆ −
(
t1 + t2e

−iqa
)

−
(
t1 + t2e

iqa
)

−∆

 (3.62)

and the eigenvalues follow from the exact diagonalization,

E±q = ±
√
t21 + t22 + 2t1t2 cos(qa) + ∆2. (3.63)
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Here, a denotes the period of the superlattice (see Figure 3.14). For a dimerized lattice without
tilt ∆ = 0 the band structure E±q is shown in Figure 3.15 for different ratios of the tunnel
couplings. For the special case where t1 = t2 ≡ t, we expect to recover the dispersion relation
of a monochromatic one-dimensional optical lattice. However, the real-space unit cell of a
dimerized lattice is larger by a factor of two and therefore we do not obtain the cosine band
itself. Instead the band with a bandwidth of W1D = 4t is folded into the first Brillouin zone of
the superlattice potential according to

E±q = ±2t| cos(qa/2)| for t1 = t2 ≡ t. (3.64)

If the tunnel amplitudes t1 and t2 are different, a band gap opens at the edge of the Brillouin
zone q = ±π/a

∆gap = 2|t1 − t2|. (3.65)

The bandwidth of these so-called minibands reduces and vanishes completely when the lattice
consists of individual uncoupled double-wells t2 = 0. Hence, the tunnelling amplitude between
different unit cells, t2, takes over the role of the standard Hubbard tunnelling amplitude t and
determines the bandwidth of the superlattice potential WSL = 2t2 which is, however, reduced
by a factor of two compared to a one-dimensional monochromatic lattice, where W1D = 4t.

... ...

Figure 3.15: Band structure for a dimerized lattice potential without tilt. Band structure of the one-
dimensional Fermi-Hubbard model in a dimerized lattice potential without tilt for various ratios of the
tunnel couplings. The bandwidth of both minibands is determined by the amplitude t2, while tunnelling
within the double-well shifts the centres of the bands apart. An energy gap opens at the band edge
whenever t1 6= t2 or for a finite tilt ∆ 6= 0 (the latter is not shown).

The minibands are separated in energy by 2t1 and for t2 = 0 we obtain flat bands at

E± = ±t1, (3.66)

which matches the result of a single particle in the double-well, compare Equation 3.11.
Therefore, we can identify the lower miniband as the singlet band with a spatially symmetric
wavefunction while the upper miniband contains the triplet states, as discussed in Section 3.2.1.
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Chapter 3 The Fermi-Hubbard Model

Therefore, in the bilayer Fermi-Hubbard model strong magnetic correlations may be observed
along the double-well direction, even if the particles do not interact.

To realize the bilayer Fermi-Hubbard model with a superlattice potential along the z-direction,
we have to make sure that tunnelling between different unit cells is strongly suppressed, i.e.
t2 � t1. This guarantees that only two layers are coupled and consequently we obtain flat
bands, as we will assume throughout this thesis. In this case, the band energy only depends on
the intra-well tunnelling amplitude and we identify t1 ≡ t⊥.

For a separable three-dimensional lattice potential, the full band structure of the bilayer
Fermi-Hubbard model simply follows as the sum of the dispersion of the 2D Fermi-Hubbard
model E(qx, qy) = −2t(cos qxa+cos qya) with bandwidth W = 8t and the eigenenergy spectrum
of a double-well along the vertical z-direction

E±(q) = E(qx, qy)± t⊥ = −2t
[
cos(qxa) + cos(qya)

]
± t⊥. (3.67)

As shown on the left side of Figure 3.16, the dimerized lattice structure along the vertical
direction creates two copies of the Hubbard bands. In line with the terminology used in
molecular physics, these two energy bands E± are referred to as bonding (−) and antibonding
(+) band [42, 49], corresponding to the symmetric/antisymmetric superposition state of the left
and right well. When increasing the interlayer coupling strength, the system transitions from a

Figure 3.16: Band structure and equation of state of the non-interacting bilayer Fermi-Hubbard model.
(Left) When increasing the tunnel coupling t⊥ in the double-well direction a single-particle charge gap
opens at 2t⊥ = W . As for the Mott insulator, compare Figure 3.11, the insulating character can be
quantified via the density equation of state n(µ) that is shown for U = 0 and kBT/t = 1. Near half-filling
it features a plateau if t⊥/t > 4 and consequently the compressibility κ(µ) shows a minimum. Both
quantities are obtained by using the DQMC code that is provided by the Quantum Electron Simulation
Toolbox (QUEST) [17]. For more information on the DQMC simulations, see Section 7.2.

metallic state to a band insulator, since a gap opens between the bonding and antibonding
band at half-filling if 2t⊥ > W . Note that in contrast to the Mott insulating gap, which is a
correlation gap, the charge gap responsible for the insulating nature of the non-interacting
bilayer Fermi-Hubbard model is a single-particle gap and is therefore more robust since the
non-interacting spectral function does not depend on the temperature.
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3.4.2 Phase Diagram of the Bilayer Fermi-Hubbard Model

In the past years, several theory groups have studied the bilayer Fermi-Hubbard model employing
different methods including dynamical mean field theory [42, 46] and its cluster extensions [43,
49] as well as variational Monte Carlo [50] and finite temperature determinantal quantum Monte
Carlo (DQMC) studies [44, 48, 51, 112, 113], with partially conflicting conclusions. In the
middle column of Figure 3.17, we show the phase diagram as put forward by M. Golor et al. [51],
who have combined functional renormalization group calculations with projective determinantal
quantum Monte Carlo simulations to estimate the phase boundaries over a broad range of
interaction strengths. For the non-interacting square-lattice bilayer Fermi-Hubbard model, they
predict a transition from a metallic state at low interlayer coupling strength to a band insulator
at t⊥/t = 4, which matches the prediction obtained from the single-particle dispersion shown
above. While both cluster DMFT [43] and finite-temperature DQMC calculations [44] have
found the paramagnetic metallic phase to persist at small on-site interactions and low interlayer
coupling, Golor et al. predict that the metallic phase is restricted to U = 0. Instead, they argue
that a Stoner instability, arising due to the perfect nesting property of the Fermi surfaces of
the bonding and antibonding band at q = (π/a, π/a), is responsible for driving the system into
an antiferromagnetic insulator. More insight into the underlying physics may be gained by
combining these findings with the paper by R. Rüger et al. [50], where they have investigated
both the magnetic and paramagnetic phase diagram with the variational Monte Carlo method
by either allowing for or suppressing long-range magnetic order, respectively. They have
found that only if magnetic order is allowed, the ground state of the square lattice bilayer
Fermi-Hubbard model at U > 0 is an insulator with antiferromagnetic correlations instead of a
paramagnetic metal as predicted by cluster DMFT calculations. As pointed out by Golor et al.,

8

Figure 3.17: Band structure of the non-interacting bilayer system. (Middle) Schematic depiction of the
ground state phase diagram of the bilayer Fermi-Hubbard model at half-filling, as obtained by M. Golor
et al. [51]. They have employed functional renormalization group calculations (fRG) in combination
with projective determinantal quantum Monte Carlo simulations (DQMC) and found that at a finite
repulsive interaction strength the interlayer tunnelling amplitude controls a continuous transition from
a Mott-insulator with antiferromagnetic correlations within the layers (left) to a band insulator with
singlet bonds between the layers (right). The shaded areas illustrate the spin correlations between
spin-up and -down particles, shown as red and blue spheres, respectively.

there are two regimes, which both show AFM order however with a different characteristic: For
large U the well-known Mott insulator is obtained, which favours singly occupied lattice sites.
Therefore, the local moment is large and spin correlations build up due to the superexchange
mechanism [51]. In contrast, the AFM order found at small repulsive interactions is triggered
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by the Fermi surface instability described above. Since the paramagnetic phase diagram by
Rüger et al. predicts a metallic state at low U when suppressing long-range order, it suggests
that the AFM correlations stabilise the insulating nature. At finite temperatures long-range
order is absent in low-dimensional systems due to the Mermin-Wagner theorem, indicating the
relevance of the paramagnetic phase diagram, which predicts a metallic state at low U [50].

While there are conflicting conclusions about the ground state in the low U and low t⊥
regime, there is no doubt that at strong interlayer coupling t⊥/t > 4 the bilayer system will be
in a band insulating state independent of the strength of the repulsive on-site interaction. The
insulating nature of this state is not connected to the repulsive interactions, instead the atoms
reduce their kinetic energy by forming a symmetric superposition of the left and right layer
[114]. A. Fuhrmann et al. have investigated the spectral density of the symmetric superposition
state and found that for a pure band insulator the symmetric band is located entirely below
the Fermi level and for a Mott insulator it is distributed equally over the upper and lower
Hubbard bands [42]. Hence, the signature of the bilayer band insulator state for strong repulsive
interactions are singlet bonds forming between the horizontal layers, see schematic in Figure
3.17. For low U we additionally expect to observe correlations between doubly occupied and
empty sites, as the double-well ground state at U = 0 is a sum of the singlet state |s〉 and the
doublon state |d+〉, see Section 3.2. The critical tunnelling amplitude that is necessary to open
the band gap between the bonding and antibonding band decreases, starting at t⊥/t = 4 for
the non-interacting system, since strong interactions reduce the bandwidth of the bonding and
antibonding bands [49]. For U/t→∞ we approach the Heisenberg limit, where the Hubbard
Hamiltonian reduces to an effective spin model and the transition to the dimerized phase with
spin singlets forming between the horizontal layers occurs at t⊥/t ≈ 1.59 [115–118].

3.4.3 Extended Hubbard Parameters

So far for the description of the bilayer Fermi-Hubbard model we silently assumed the particles
to be well localized to either site of the symmetric double-well potential along the vertical
direction. However, if we want to realize strong tunnel couplings between the layers we need
to reduce the barrier height. In this case the physics of the bilayer Fermi-Hubbard model is
dominated by individual double-well potentials. In the following I want to investigate whether
the tight-binding assumption is still well justified when reducing the height of the barrier or
whether higher-order processes such as density-induced tunnelling or off-site interactions need
to be included in the Hamiltonian description. Assuming a symmetric double-well, the on-site
interaction U as previously defined does not distinguish whether two particle with opposite
spin meet on the left or the right side of the double-well

U ∝
∫
dz w∗L(z)w∗L(z)wL(z)wL(z) =

∫
dz w∗R(z)w∗R(z)wR(z)wR(z). (3.68)

Here, I deliberately ignored the Wannier functions w(x) and w(y) within the layer, since the
tight-binding approximation is only likely to be unjustified along the z-direction. Starting from
the Equations 3.2 and 3.4 we can group terms according to the value of the general interaction
integral relative to the standard on-site interaction

Uijkl
U

=

∫
dz w∗i (z)w

∗
j (z)wk(z)wl(z)∫

dz w∗L(z)w∗L(z)wL(z)wL(z)
, (3.69)
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where the indices i, j, k, l indicate either the left or the right well. Since there is a gauge
freedom in the complex phase of the Bloch functions, it is always possible to define real-valued
Wannier states and we may drop the complex conjugation. Higher-order interaction terms
can be grouped according to the total occurrence of Wannier functions on the left and right
well. There are two distinct groups that we need to distinguish including processes where two
particles in the left well interact with two particles in the right well. They are quantified by
the parameter

V := ULLRR = ULRLR = URLRL = ULRRL = URLLR = URRLL. (3.70)

The other group contains three Wannier states either on the right or the left well and corresponds
to density-induced tunnelling with amplitude

∆t = ULLLR = ULLRL = ULRLL = URLLL = URRRL = URRLR = URLRR = ULRRR. (3.71)

All possible higher-order processes are listed in Table 3.3.

V
ĉ†L↑ĉ

†
R↓ĉR↓ĉL↑ = n̂L↑n̂R↓ nearest-neighbour interaction

ĉ†R↑ĉ
†
L↓ĉL↓ĉR↑ = n̂R↑n̂L↓

V
ĉ†L↑ĉ

†
L↓ĉR↓ĉR↑ pair hopping

ĉ†R↑ĉ
†
R↓ĉL↓ĉL↑

V
ĉ†L↑ĉ

†
R↓ĉL↓ĉR↑ spin-flip

ĉ†R↑ĉ
†
L↓ĉR↓ĉL↑

ĉ†L↑ĉ
†
L↓ĉL↓ĉR↑ + ĉ†R↑ĉ

†
L↓ĉL↓ĉL↑ = n̂L↓

(
ĉ†L↑ĉR↑ + h.c.

)
∆t

ĉ†R↑ĉ
†
R↓ĉR↓ĉL↑ + ĉ†L↑ĉ

†
R↓ĉR↓ĉR↑ = n̂R↓

(
ĉ†R↑ĉL↑ + h.c.

)
density-induced tunnelling

ĉ†L↑ĉ
†
L↓ĉR↓ĉL↑ + ĉ†L↑ĉ

†
R↓ĉL↓ĉL↑ = n̂L↑

(
ĉ†L↓ĉR↓ + h.c.

)
ĉ†R↑ĉ

†
R↓ĉL↓ĉR↑ + ĉ†R↑ĉ

†
L↓ĉR↓ĉR↑ = n̂R↑

(
ĉ†R↓ĉL↓ + h.c.

)

Table 3.3: Off-site interaction processes in a double-well potential. We can group off-site interaction
terms according to the total occurrence of Wannier functions on the left and right well [119].

Collecting the terms given in Table 3.3 the double-well Hamiltonian including off-site
interactions is given by

Ĥ =
∑
σ

[
−t
(
ĉ†Lσ ĉRσ + h.c.

)
+ ∆t

(
ĉ†Lσ̄(n̂Lσ + n̂Rσ)ĉRσ̄ + h.c.

)]
+ U(n̂L↑n̂L↓ + n̂R↑n̂R↓)

+ V
[
n̂L↑n̂R↓ + n̂R↑n̂L↓ +

(
ĉ†L↑ĉ

†
L↓ĉR↓ĉR↑ + h.c.

)
+
(
ĉ†L↑ĉ

†
R↓ĉL↓ĉR↑ + h.c.

)]
. (3.72)

When expanding the interaction in the Wannier basis, there is one term quantified by ∆t that
even though it derives from the interaction term indeed modifies the tunnelling. This can be
intuitively understood by realizing that the on-site interaction effectively lowers or increases
the barrier height that the atoms experience. In the basis of the singlet |s〉, the triplet |t0〉 and
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the doublon states |d+〉 , |d−〉 the Hamiltonian simplifies to

Ĥ =


2V 0 −2(t−∆t) 0
0 0 0 0

−2(t−∆t) 0 U + V 0
0 0 0 U − V

 . (3.73)

For repulsive interactions we find that ∆t < 0, and therefore density-induced tunnelling enhances
the tunnel coupling, which was successfully modelled in [120, 121] by an effectively shallower
lattice potential. The opposite behaviour is expected for attractive interactions, where due to
the energy gain particles tend to be more localized when a different spin component is present.
Density-induced tunnelling was observed with ultracold bosons in a tilted one-dimensional
optical lattice [121]. By varying the filling they verified the linear dependence on the density.
For fermions the number of particles in a certain spin state is limited to one per lattice site
according to Pauli’s exclusion principle. Therefore, density-induced tunnelling is in general
less relevant for fermionic systems. However, since the interaction integral ∆t includes three
Wannier functions on the same site, density-induced tunnelling is the off-site interaction term
with the highest amplitude. Its relevance is boosted by the fact that we need to compare it to
the conventional single-particle tunnelling amplitude t [122], which in our systems is typically
much smaller than the on-site interaction U . In Section 6.2.3, I will estimate the relevance of
higher order processes for our specific implementation of the bilayer Fermi-Hubbard model.
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CHAPTER 4

Setup and Experimental Implementation

The experimental setup that I worked on during the course of my thesis has seen many
generations of PhD students by now. Most of the important components had already been in
place when I joined the team in 2016, and therefore will only be briefly summarized in this
chapter by following the journey of the atoms from the heated potassium reservoir through all
the cooling and trapping stages until they are finally loaded into the three-dimensional optical
lattice potential. After discussing the main observables that we have access to, I will introduce
the recent adaptions to the experiment. To further engineer the optical potential landscape we
have set up two superlattices along an in-plane and the out-of-plane direction, respectively. A
digital micromirror device (DMD) allows us to create arbitrary optical potentials within the
horizontal layers, e.g. to realize a homogeneous Hubbard model.

4.1 Creating an Ultracold Fermi Gas

Alkali atoms whose electronic structure resembles the one of hydrogen are often used for
ultracold atom experiments as their electronic transitions are very suitable for laser cooling
[123]. In our setup we use the fermionic isotope of potassium, 40K, with atomic number Z = 19
and neutron number N = 21. With a single valence electron the total angular momentum
quantum number of the ground state is given by J = 1/2. In combination with a nuclear spin
of I = 4 the electronic ground state 2S1/2 composes of an F = 9/2 and an F = 7/2 manifold, as
shown in Figure 4.1. The eigenenergies of the magnetic hyperfine states |F,mF 〉 are obtained by
exact diagonalization of the hyperfine Hamiltonian in a homogeneous magnetic field B = Bzez
[124],

ĤHFS = AÎĴ − µ̂B = AÎĴ − (µNgImI − µJgJmJ)Bz. (4.1)

While the |mI ,mJ〉 basis is an eigenbasis to the magnetic field term, the hyperfine interaction
can be rewritten in terms of raising and lowering operators and includes two terms, Î+Ĵ− and
Î−Ĵ+ that both mix basis states with different values of mI and mJ but the same sum value
mF = mI +mJ . Note that the magnetic quantum number mF corresponding the projection
of the total angular momentum is a good quantum number for all magnetic field strengths,
as [ĤHFS, F̂z] = 0 and therefore it will be used in the following to label the eigenstates. We
can differentiate two regimes in the Breit-Rabi diagram shown in Figure 4.1. At low magnetic
field strengths, in the so-called Zeeman regime, the energy of all the eigenstates increases
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Figure 4.1: Hyperfine structure of 40K in a magnetic field. The energies are referenced to the 2S1/2

ground state of 40K. Most of our experimental protocols are concerned with the lowest four states only,
which we label according to the magnetic hyperfine quantum number, mF , which is a good quantum
number for all magnetic field strengths. For example, the state |F = 9/2,mF = −9/2〉 is abbreviated as
|9〉 (= |−2mF 〉) and its energy is denoted as E9.

linearly with B. As the internal magnetic field with a strength of around A/µB still exceeds
the external field, the nuclear Î and electron angular momenta Ĵ are still coupled to form
the total angular momentum F̂ . Once the external magnetic field reaches the strength of the
internal field, the behaviour changes and the eigenenergies increase in parallel. For very strong
magnetic fields the eigenstates can be grouped according to their electron angular momentum
quantum number mJ = ±1/2, while the impact of the nuclear magnetic moment on the slope
in the Breit-Rabi diagram is negligible since the nuclear magneton is much smaller than the
Bohr magneton, µN � µB.

To implement the spin property of the electron, we identify the lowest two magnetic hyperfine
states as the spin-up and -down states,

|↑〉 = |F = 9/2,mF = −9/2〉 ≡ |9〉 and |↓〉 = |F = 9/2,mF = −7/2〉 ≡ |7〉 . (4.2)

Throughout this thesis we will employ the term spin states, even though we simply refer to
two distinct eigenstates of the internal structure of potassium. This pseudo-spin-1/2 system
behaves differently when exposed to a real magnetic field. Even though the eigenenergies are
different as for a real spin system, the two pseudo-spin states are stable and cannot transform
themselves into one another. Therefore, in quantum gas experiments the effect of a magnetic
field is simulated by preparing an imbalanced mixture of the two spin components.

One of the benefits of 40K is that its Feshbach resonances, which are essential for modifying
the interaction strength between the spin states, lie in the transition region of the Breit-Rabi
diagram. This serves a twofold purpose, since firstly we can individually address transitions
between any two neighbouring magnetic hyperfine states by Landau-Zener sweeps, see Section
4.2.1. Secondly, the magnetic moments are sufficiently different such that we can manipulate
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4.1 Creating an Ultracold Fermi Gas

the relative spin orientation at different lattice sites by applying magnetic field gradients. This
is particularly relevant for the detection of magnetic correlations, which plays a crucial role
throughout this thesis.

4.1.1 Interaction of Ultracold Neutral Atoms

In the introduction I have motivated the use of ultracold Fermi gases to mimic the behaviour
of electrons in solid-state materials. However, neutral atoms clearly do not experience the
Coulomb force. Still they interact with each other via collisions, which is modelled by their
two-body interaction potential. At short distances when the electron clouds start to overlap
the atoms strongly repel each other. This is a consequence of Pauli’s exclusion principle, which
forces electrons into higher-lying energy states [125]. If the separation of two atoms is much
larger than several Bohr radii and electron exchange effects leading to covalent bonding may
be neglected, the atoms feel a weak attractive force due to induced dipole-dipole interactions.
This so-called van-der-Waals force is caused by vacuum fluctuations of the electric field, which
induce a time-dependent dipole moment in a neutral atom. An oscillating dipole moment leads

to an electric field, E
(1)
ind ∝ 1/r3, which quickly decays with distance r. This induced electric

field in turn generates an electric dipole moment in another atom, p
(2)
ind ∝ E

(1)
ind ∝ 1/r3. The

interaction energy of the induced dipole moment in the second atom and the electric field of

the first atom amounts to W = −p(2)
indE

(1)
ind ∝ −1/r6.

When two colliding particles come close enough such that their thermal de Broglie wavelengths
overlap, a classical scattering treatment in terms of particle trajectories and the impact
parameter is not sufficient any more [126]. Instead to describe the scattering properties of
two ultracold atoms, a quantum-mechanical treatment is necessary which takes the wave-like
nature of the atoms into account. Hence, we have to solve the Schrödinger equation with the
two-body interaction potential V (r), where r = r2−r1 is the relative coordinate of the colliding
atoms. The eigensolutions are grouped into bound states and scattering states according to the
sign of their eigenenergy. By working in the centre-of-mass frame, the two-particle scattering
problem is simplified to a one-body problem with relative momentum ~k and kinetic energy
E = ~2k2/(2mr), where mr is the reduced mass [127]. The eigensolution to this scattering
problem in relative coordinates is a sum of the incident plane wave with the relative momentum
pointing along the z-direction1 and the scattered spherical wave with scattering amplitude
f(θ), which depends on the polar angle θ,

ψ(r) ∝ eikz + f(θ)
eikr

r
. (4.3)

For the electronic ground state of alkali and alkaline-earth-metal atoms the electronic angular
momentum vanishes, L = 0. Consequently, the interaction potential is isotropic, i.e. V (r) = V (r)
and the relative angular momentum quantum number l is a conserved quantity [124]. Therefore,
it is sensible to expand the scattering wavefunction using a partial wave basis, where the
quantum number l = 0, 1, 2, .. distinguishes between s-, p- and d-wave scattering events. In
spherical coordinates the scattering problem separates into a radial and an angular equation,

1
without any loss of generality

53



Chapter 4 Setup and Experimental Implementation

where the former is given by

− ~2

2m2
r

d2φl(r)

dr2 + Vl(r)φl(r) = Eφl(r), (4.4)

with the radial wavefunction ψl(r) = φl(r)/r. The interatomic potential Vl(r) contains the
centrifugal barrier, Vl(r)−V (r) = ~2l(l+ 1)/(2mrr

2), which vanishes only for s-wave scattering.
Higher-partial wave scattering with l > 0 may be neglected for ultracold quantum gases,
where the collision energy is typically much lower than the centrifugal barrier and hence,
resonant interactions with bound states are exponentially suppressed by the barrier height
[128]. This has profound consequences, as the relative motion of the colliding particles is
coupled to their internal states by quantum statistics. For identical fermions (bosons) the total
scattering wavefunction must be antisymmetric (symmetric) with respect to particle exchange.
In the absence of spin-orbit coupling the wavefunction factorizes into a spin and spatial part
characterizing the internal states and the relative motion of the scatterers, respectively. As
the spin wavefunction is always symmetric for identical particles, i.e. particles with the same
internal structure, the parity of the spatial part has to be odd (even) for fermions (bosons).
The parity of the scattering wavefunction is determined by the angular momentum quantum
number and is equal to (−1)l. Therefore, identical fermions (bosons) may only interact via
partial waves with odd (even) l. In particular at low enough temperatures where the energy of
the scatterers is not sufficient to overcome the centrifugal barrier, identical fermions2 do not
interact with each other. In order to engineer interactions in fermionic quantum gases typically
a spin mixture with two different magnetic hyperfine states is implemented.

To identify the impact of the scattering process on the radial wavefunction, it is sufficient
to focus on the asymptotic behaviour at a separation r that is larger than the effective range
of the potential. It was realized that the partial waves are merely shifted by a phase δl(k)
as compared to the incident plane wave, representing free particles [129]. In the limit of low
energy scattering k → 0, the thermal de Broglie wavelength is much larger than the effective
range of the potential and effectively the scatterers do not resolve the details of the interatomic
potential and only the s-wave collision channel is energetically accessible. In this limit the
scattering phase shift δ0(k) is directly connected to an energy independent parameter, the
scattering length asc [130],

asc = − lim
k→0

tan δ0(k)

k
. (4.5)

For a negative (positive) scattering length the phase of the radial wavefunction advances
more (less) quickly, which is equivalent to the case where a particle scatters off an attractive
(repulsive) square well potential. Therefore, the scattering length is sometimes interpreted as
an effective hard sphere radius [130]. This analogy is also helpful, when thinking about the
s-wave scattering cross section, which is given by

σ = 4πa2
sc (4.6)

in the low energy limit k → 0. It should be noted that for δ0 = π/2 the scattering length
diverges. This resonance behaviour is accompanied by a sign change of the scattering length, see

2
i.e. with the same set of quantum numbers (including mF )
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4.1 Creating an Ultracold Fermi Gas

[130, 131] for more details. Therefore, when increasing the well depth of an attractive two-body
potential beyond the resonance position, the phase shift gets larger than π/2 and the scattering
length becomes positive. In [127] it is explained that this effect is related to the energy of the
least-bound state of the scattering potential V (r) and the resonance in the scattering length is
linked to the appearance of a bound state at E = 0. In contrast, purely repulsive potentials do
not have bound states and therefore they do not support such a resonance behaviour and the
scattering length is always positive [131].

Magnetic Feshbach Resonances When the collision energy of two free atoms matches the
energy of a molecular bound state, the scattering is resonantly enhanced. In cold atom systems
the resonance condition can typically be tuned by adjusting the strength of an external magnetic
field B. Such a magnetically tunable resonance relies on the Zeeman effect, which shifts the
energy levels according to the magnetic moment of the respective scattering channels. Neglecting
decay of the bound state, the scattering length in the vicinity of a Feshbach resonance can be
parametrized by the resonance position B0 and the width ∆ [127],

asc(B) = aBG

(
1− ∆

B −B0

)
. (4.7)

The background scattering length aBG is independent of the involved spin states. For potassium-
40 the literature value is aBG = 174(7)a0 [132]. While the scattering length diverges in the case
of resonant coupling to a bound state, the scattering cross section is bound by the maximum of
the relative momentum of the scatterers k [133],

σ(k) =
4πa2

sc

1 + a2
sck

2 =

{
4πa2

sc for kasc � 1,

4π/k2 for kasc � 1.
(4.8)

An exhaustive list containing the parameters of both s- and p-wave Feshbach resonance of
40K can be found in the PhD thesis of my colleague Eugenio Cocchi [80]. In Figure 4.2 the
scattering length a is shown for the most common spin mixtures of 40K and for the typical
magnetic field range used in our experiments.
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Figure 4.2: Relevant Feshbach resonances of potassium. Feshbach resonances between the lowest three
magnetic hyperfine states of the F = 9/2 manifold of 40K are plotted according to Equation 4.7. The
resonance parameters have been looked up in [80].
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4.1.2 Trapping and Cooling to Quantum Degeneracy

In the following I will briefly explain the individual cooling and trapping stages, which are
implemented to cool down the potassium atoms to around 100 nK.

Magneto-Optical Trap The journey of creating ultracold atoms starts with a glass ampoule
containing solid potassium, which was broken under vacuum in our first experimental chamber
several years ago. To reach a sufficient vapour pressure the reservoir is heated to around 60◦C.
Atoms are evaporated and diffuse throughout the chamber with a velocity that is small enough
to directly trap and cool them with a magneto-optical trap (MOT) without the need for a
Zeeman slower. Laser cooling relies on the momentum transfer between a near-resonant laser
beam and the atomic gas. In the case of red-detuning, ω−ω0 < 0, atoms predominantly scatter
photons from a beam that is opposing their propagation direction due to the Doppler effect.
As a consequence of the spontaneous emission being isotropic, this leads to a net force that
slows down the atoms. In a MOT, laser cooling along all three directions is combined with a
magnetic quadrupole field that is generated by a pair of coils in anti-Helmholtz configuration.
In contrast to magnetic traps, the inhomogeneous magnetic field is not strong enough to trap
the atoms with their intrinsic magnetic moment. However, in combination with the three
pairs of counter-propagating laser beams with opposite circular polarization the magnetic field
gradient close to the centre of the MOT leads to a position dependent force on the atoms if
they are displaced from the centre of the intersection region of the laser beams which overlaps
with the magnetic field zero. The viscous force slowing down the atoms is counteracted by the
random scattering of photons from the near-resonant laser beams. Therefore, in a MOT the
equilibrium temperature is bound from below by the Doppler temperature, which for potassium
is given by

TD =
~Γ

2kB
= 145µK. (4.9)

For more information on the basic principle of a MOT see [124].

The setup of the MOT in our experiment is described in detail in [134, 135] and I will only
summarize the main aspects in the following. In order to reach sufficiently low temperatures
the atoms need to scatter many photons. This is achieved in our experiment by choosing a
closed optical transition provided by the D2 line of potassium at around 767 nm between the
|F = 9/2〉 manifold of the 2S1/2 ground state and the 2P3/2 excited state with |F ′ = 11/2〉. In
reality, due to the small hyperfine splitting in the excited state and the finite laser linewidth
there is off-resonant excitation to the |F ′ = 9/2〉 manifold, which may decay back to the
|F = 7/2〉 ground state manifold. Therefore in addition to the so-called cooling laser operating
on the main cooling transition, another laser is necessary to pump atoms back into the cooling
cycle. However, as the cooling and the repumping laser are each detuned by 32 MHz from
their respective transition frequencies, both contribute to the cooling of the atoms. The final
temperature in the MOT is severely limited by random scattering of photons, therefore we
need to transfer the potassium atoms into a magnetic trap.

Magnetic Trap For loading the potassium atoms into a magnetic trap they need to be in
low-field seeking states, i.e. mF gF > 0. This is achieved by optically pumping the system on
the |F = 9/2〉 to |F ′ = 9/2〉 transition. For this purpose we turn off the MOT quadrupole field
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4.1 Creating an Ultracold Fermi Gas

and define a quantization axis by creating a homogeneous bias field along the z-direction. We
send σ+-polarized cooling and repumping light along the quantization axis and end up in a
spin mixture of predominantly the mF = 9/2 and mF = 7/2 states. Once the atoms are in
the correct magnetic hyperfine states, we quickly turn on a magnetic quadrupole field that
is provided by running a much larger current through the MOT coils. Since the MOT coils
are mounted on a motorized translation stage, we can consecutively transport them to the
science chamber, which is a glass cell with a pressure of around 10−11 mbar. This value is
considerably lower as compared to the pressure in the MOT chamber, where the background
pressure needs to be high enough to load sufficiently many atoms into the MOT. Once the
atoms have arrived in the science chamber, they are transferred into a Ioffe-Pritchard trap. For
details on the coil design and the evaporative cooling technique see [135, 136]. At the end of
the forced radio-frequency (RF) and microwave (MW) evaporation in the Ioffe-Pritchard trap
we typically obtain a cloud containing approximately 10.6 million atoms at around 2.9µK.

Dipole Trap A major drawback of magnetic traps is that the trapping potential depends on
the magnetic moment of the atoms and hence on the internal state that we use to emulate the
spin property of the electron. Therefore, after the forced evaporation we transfer the atoms
from the Ioffe-Pritchard into a crossed-beam dipole trap [136]. The transfer efficiency strongly
depends on the position of the horizontal dipole trap, in particular on its z-component, since
the vertical beam waist is very small, wz = 12.5µm. Furthermore it is beneficial to match the
trap depth of the dipole trap to the temperature of the cloud in the Ioffe-Pritchard trap. We
consecutively transfer the low-field seeking states to the lowest two magnetic hyperfine states
whose Feshbach resonance is located at around 202 G. For the internal state transfer the total
magnetic field needs to be in the Zeeman regime, where the energy differences between each
two consecutive magnetic hyperfine states are all equal. In this case a Landau-Zener sweep
transfers the population from the +mF to the −mF state. We carefully adjust the spin mixture
to a balanced situation before ramping up the second dipole trap beam, called the dimple. In
analogy to the forced evaporative cooling using RF and MW transitions in the magnetic trap,
we successively lower the trap depth of the dipole trap to selectively get rid of the hottest
atoms. Previously, this evaporation process was performed at magnetic field of around 190 G
with repulsive interactions between the lowest two magnetic hyperfine states, see [60] for more
details. We typically reached cloud sizes of 110 thousand atoms per spin state at around 10%
of the Fermi temperature. The starting point for the bilayer experiments is a band insulator in
the optical lattice for which we need a very high density in the centre of the cloud. This is
facilitated by using attractive interactions during the lattice loading stage. Furthermore for
experiments on the attractive Hubbard model it is beneficial to avoid the abrupt change in
interaction energy by already performing the evaporative cooling with attractive interactions.
An additional advantage is the absence of the loss channel due to the molecular bound state
that is only present for effectively repulsive interactions. With the evaporation at 204 G we
typically reach cloud sizes of 70 thousand atoms per spin state at around 9% of the Fermi
temperature. For more details see [137].

Optical Lattices At the end of the evaporation in the dipole trap we have reached quantum
degeneracy and the atoms are cold enough to be loaded into the three-dimensional optical
lattice setup that is shown in Figure 4.3 with typical trap depths on the order of a few µK
only. We start by ramping up the vertical lattice that is derived from a Coherent Verdi V-10
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and coupled through a polarisation maintaining single-mode photonic-crystal fibre from NKT
photonics. At the same time we reduce the dipole trap confinement. During the long ramp time
of 3 s we further evaporate hot atoms since the dipole trap confinement in combination with the
anti-confinement from the blue-detuned lattice laser creates pockets along the x-direction. The
vertical lattice depth decreases exponentially with the distance from the trap centre and at the
position of the side pockets at around 220µm it is not strong enough to trap the atoms against
gravity. Therefore the atoms leave the trap along the vertical direction and at the end of the
ramp we have lost the hottest atoms, which predominantly occupied the side-pockets. For more
details see [60, 80]. This is an important step to reach a cold lattice gas and counteracts the
heating caused by non-adiabaticity during the lattice loading [138, 139].

Figure 4.3: Optical lattice setup. Experimental setup of the lattice laser beams that create a stack of
two-dimensional layers with a square in-plane lattice structure. Each of theses planes constitutes an
independent realization of the two-dimensional Hubbard model. Figure taken from [34].

The vertical lattice separates the three-dimensional cloud into two-dimensional layers as
shown in Figure 4.3. The two beams with a wavelength of λg = 532 nm interfere under a
half-angle of θz = 14.5(1)◦, which fixes the lattice spacing to az = 1.064µm. To create a square
lattice structure in each of the horizontal planes, we ramp up both the x- and y-lattice with a
wavelength of λr = 1064 nm within 500 ms to 6Erec. This time has been chosen carefully and is
equal to the minimal time that is required to reach global thermal equilibrium within the layer
as will be discussed in Section 5.3.6. While previously the light for all infrared lattices was
derived from a single 20 W Mephisto Mopa from Innolight, we have changed the laser source
for the infrared x-lattice to an Ytterbium-doped fibre laser system (Koheras Adjustik from
NKT photonics) with a linewidth reduction to less than 5 kHz. This step was necessary for
the implementation of a superlattice along the x-direction, which requires the frequency of the
infrared x-lattice to be tuned at will without disturbing the other lattices, see Section 4.1.3 for
more details. The Adjustik fibre laser uses a fibre Bragg grating cavity to maintain a single
mode laser output over the whole operating range. The wavelength of the Adjustik fibre laser
system is coarsely adjustable by thermal tuning of the laser substrate. For locking the laser
a fast wavelength modulation with fine control is necessary and is achieved by employing an
internal piezo module with a bandwidth of around 20 kHz.
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4.1.3 Adding Flavour: Optical Superlattices

We have recently extended our experimental setup by implementing superlattices along the x-
and z-direction. This required adding a second optical lattice with a commensurate wavelength
along both directions. Furthermore, to obtain full control over the superlattice configuration
(compare Figures 2.4 and 2.5) an offset lock was set up for each superlattice to tune the
frequency difference of the corresponding lattice lasers.

Intralayer Superlattice

As mentioned above the standard wavelength of both intralayer lattices is λr = 1064 nm. To
create a superlattice along the x-direction we added a green laser source with λg = 532 nm to
the setup. As the distance from the retro-reflecting mirror to the position of the atoms is equal
to around 50 cm, the frequency difference that is required for a spatial shift of the optical lattice
by one period is given by 300 MHz, see Equation 2.19. For a phase stable superlattice it is hence
crucial that both lattice lasers have a small spectral linewidth. This requirement eliminates
the use of a commercial green laser source such as the Verdi from Coherent with a spectral
linewidth of around 5 MHz. Instead, a monolithic cavity was designed that frequency-doubles
the infrared light from a 55 W Mephisto Mopa with a spectral linewidth of approximately 1 kHz
over 100 ms [140]. The spectral properties of the frequency-doubled green light are inherited
from the infrared laser, in particular the linewidth of the frequency-doubled light is expected
to be equal to twice the linewidth of the infrared seed laser. The design and the integration
into the experimental setup are described in [141].

In order to reach large enough lattice depths the green laser beam is focussed down by a lens
with a focal length of f = 250 mm such that the minimum waist position matches the location
of the atoms. However, we can not tune the position of this lens, as it is already adjusted
for the horizontal dipole trap and the infrared x-lattice. Instead, a regular and a cylindrical
telescope are placed into the beam path of the green lattice to match the focus position to the
position of the atoms and to tune the beam profile. The optimal beam parameters are found as
a compromise between a large lattice depth and a small spatial inhomogeneity of the Hubbard
parameters. I will briefly discuss our considerations in the following.

By combining Equations 2.23 and 2.24 one can derive a formula to estimate the lattice depth3

of the green x-lattice in the centre of the trap

Vx,g =
4
√
γP in

πωyωzε0c
· Re [α(λ)], (4.10)

which is a function of the power in the incoming beam path, P in, the power ratio γx,g = P refl/P in

and the two orthogonal beam waists wy,z. In addition, we need to know the real part of the
atom’s polarisability and we use the results from [142] to interpolate the polarisability of
potassium-40 for the wavelengths used in our experiment. In SI units we obtain

Re[α(λ = 532 nm)] = −h · 5.97 · 10−6 m2

sV2 , (4.11)

Re[α(λ = 1064 nm)] = h · 1.49 · 10−5 m2

sV2 . (4.12)

3
lattice depth in units of Joule
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In Figure 4.4 the local lattice depth of the green x-lattice is plotted in units of the corresponding
recoil energy as a function of the distance from the trap centre along the y-axis. We assume
the local laser intensity to follow a Gaussian behaviour with the width given by the waist
in the y-direction. For different values of the vertical beam waist, wz, the peak intensity is
simply scaled by a multiplicative factor. In contrast the waist in y-direction determines the full
width at half maximum of the Gaussian shape and if chosen too small will lead to considerable
variation of the local lattice depth over the cloud size. This ultimately leads to local variations
in the Hubbard parameters, t and U , as both are sensitive to the local lattice depth. The
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Figure 4.4: Lattice depth variation of the green x-lattice. The lattice depth of the green x-lattice varies
as a function of the y-position. The estimate shown is obtained for a power of P in = 1 W in the forward
beam, γx,g = 0.78 and wy = 137µm. The red dashed lines at 21 and 50µm correspond to a distance of
40 and 95 sites to the trap centre. The corresponding variation in the local lattice depth amounts to 5%
and 24%, respectively. Note that this relative variation does not depend on the vertical waist, wz but
on the horizontal one, wy.

telescope lenses are chosen to produce a cylindrical beam profile with an expected vertical waist
of wz = 45µm and wy = 138µm within the plane. With a small camera (Basler acA1300-30gm)
we characterise the final beam profile, and obtain wz = 55µm and wy = 134µm. More details
on the alignment procedure can be found in [77]. In Section 4.3 I explain how we additionally
calibrate the horizontal waist wy via the potential that the atoms experience and we indeed
obtain a similar value.

The superlattice configuration is controlled by tuning the frequency of the infrared lattice laser.
The frequency variation is minute such that the periodicity of the optical lattice is essentially
unchanged. However, the phase is proportional to the frequency difference accumulated over a
distance of L = 50 cm and hence the position of the potential minima of the infrared lattice
will move with respect to the green lattice potential. The main reason for tuning the frequency
of the infrared laser is that the absolute position of the lattice sites remain approximately
constant, compare Figure 2.4. Furthermore, there are technical reasons for tuning the Adjustik
fibre laser whose piezo module has a large bandwidth of around 20 kHz, while the lock of the
frequency-doubling cavity would not allow for fast tuning of the wavelength. Even though the
frequency stability of both the Mephisto Mopa and the fibre laser are outstanding4, we lock

4
e.g. frequency stability of less than 1 MHz/min for the Mephisto laser [140]
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their beatnote to an external reference provided by a DDS (AD9914 from Analog Devices),
which allows for quickly tuning the frequency of the fibre laser via its piezo module. For more
details on the offset lock see [77].

Vertical Superlattice

For implementing an optical superlattice along the vertical direction we needed to overlap
an infrared laser with the existing green lattice beam path. The setup including all optical
elements is shown and described in [108, 137]. Note that the polarizing beamsplitter cube,
which separates the light coming from the fibre coupler into an upper and lower beam path, is
not designed for the infrared wavelength, λr = 1064 nm. Consequently the power imbalance
of the two beams is rather large leading to a strong running-wave component and hence
the confinement within the horizontal layers is undesirably tight. Due to the angled lattice
configuration, the waist of the vertical lattice beam projected into the horizontal plane is much
smaller along the x-direction. Therefore, the confinement of the infrared laser is much tighter
along the x-direction. Originally the angled configuration was chosen due to the negligible path
length difference of the two interfering beams [60], see Figure 4.3. While this is beneficial for
obtaining a high-stability optical lattice, i.e. very little change in the height of the horizontal
layers, it is disadvantageous for implementing a superlattice. Even after inserting an anti-
reflection-coated glass plate with 5 mm thickness into the upper beam path, the transformation
from a symmetric to an asymmetric double-well configuration requires a tuning range of several
tens of Gigahertz. The laser source for the additional infrared lattice is the 20 W Mephisto
Mopa, which is also used for the y-lattice. Even though it offers to tune its frequency by a
piezo-electric transducer with a response bandwidth of up to 100 kHz [140] the tuning range is
only ±65 MHz wide, which is way too little for our needs. The thermal tuning range in contrast
is much larger, i.e. on the order of 30 GHz. However the thermal response bandwidth of 1 Hz is
not sufficient to change the frequency within the course of an experimental cycle. Therefore
the superlattice configuration is adjusted by tuning the frequency of the green lattice laser,
which is a Verdi-V10 [143]. One of its resonator mirrors is mounted on a piezo-electric actuator
containing two stacks of lead zirconate titanate (PZT) material [144] that change the frequency
by adjusting the roundtrip length of the cavity. The shorter stack is tuned by the fast PZT
input and is suited for small changes in frequency with a fast nominal response bandwidth of
20 kHz. In contrast, the tall stack is controlled by the slow PZT input and allows for a large
tuning range of more than 8.2 GHz. Both PZT stacks are controlled independently from one
another via two BNC connectors with an input voltage range of 0 to 100 V each. This high
voltage is created by a piezo controller5, which limits the bandwidth performance since the
piezo actuator acts as a capacitance and hence forms a low-pass filter in combination with the
output impedance of the piezo driver. According to the manual [145] the effective bandwidth
may be estimated as

BW = 1/(2π · 150 Ω · (47 nF + CPZT)). (4.13)

When connecting the fast (slow) piezo stack whose capacitance is equal to CPZT = 25 nF
(450 nF) [137], the bandwidth is limited to 14.7 kHz (2.1 kHz), respectively.

In Figure 4.5 a) and b) we characterize the change in the output frequency as measured

5
MDT693A Piezo Controller from Thorlabs
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by a wavemeter6 when tuning the etalon temperature and the slow PZT voltage, respectively.
Even though the PZT control voltage can be tuned from 0 to 100 V, we have observed an
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Figure 4.5: Calibration of the Verdi tuning range. a) The etalon temperature changes the frequency of
the Verdi and we observe several plateaus with unstable mode-hop regions in between. b) In the unlocked
case we directly tune the slow piezo control voltage, UPZT to adjust the superlattice configuration during
the course of the experimental sequence. The corresponding gain factor is obtained from a linear fit as
9.4(4) · 10−2 GHz/V. c) In contrast, when locking the frequency of the Verdi via an offset lock to the
frequency doubled light from the Mephisto, we tune the VCO which is frequency doubled before mixing
it with the beatnote. Consequently, we obtain a scaling factor that is equal to twice the slope inferred
from a linear fit to the data shown in c), 2 ·∆fVCO/∆UVCO = 1.31(2) GHz/V.

unstable regime with mode-hops above 80 V. Therefore we typically avoid the large voltage
range. As a consequence of the short path length difference, the required frequency tuning
range to transform a symmetric into an asymmetric double-well configuration is at least four
orders of magnitude larger than the spectral linewidth of either lattice laser forming the
vertical superlattice7. Therefore, we do not necessarily need an offset lock to control their
difference frequency. Instead to adjust the phase relation at the position of the atoms we
may directly tune the slow PZT voltage, see Figure 4.5 b). To achieve both the symmetric
and a sufficiently asymmetric double-well configuration the absolute frequency of the Verdi is
optimized beforehand by tuning the Etalon temperature, see Figure 4.5 a).

To improve the long-term stability of the absolute frequency that is output by the Verdi
lattice laser an offset lock was implemented by my colleague M. Gall [137]. This involves
frequency-doubling the 1064,nm light that is emitted from the Mephisto with a periodically
poled lithium niobate (PPLN) crystal in single-pass configuration. The frequency-doubled
light is overlapped with the Verdi to form an optical beat note, which we compare to an
external reference provided by a voltage controlled oscillator8 (VCO). To increase the accessible
frequency range we use an upscaling mixer9, which frequency doubles the VCO signal before
mixing it with the high optical frequency beat note. An error signal is obtained by mixing
half the power of the downconverted beat signal with its other half that has been delayed by a
15 cm delay line. We obtain both a proportional and an integral regulation signal that are fed

6
High Finesse WS7

7
The spectral linewidth of the Verdi is less than 5 MHz over 50 ms [143] and for the Mephisto it is around
1 MHz over 60 s [140].

8
HMC733 from Analog Devices

9
HMC264 from Analog Devices
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back to the fast and slow PZT input of the Verdi, respectively. For more information on the
microwave frequency downconversion and the feedback loop see [137]. To optimize the locking
range with respect to the superlattice configuration and to maximize the possible scan range
of the Verdi, we tune both the crystal temperature of the Mephisto seed laser and the etalon
temperature of the Verdi, respectively. Setting up an offset lock has the additional advantage
that we can closely monitor how the frequency difference changes when enforcing a ramp via
the VCO control voltage, which allows us to identify mode hops or frequency jumps. Even
with the offset lock enabled, the VCO control voltage resulting in a symmetric double-well
configuration needs to be regularly optimized.

The offset lock allows us to scan the frequency by up to 6 GHz within 100 ms. As compared
to the experimental timescales of the microscopic tunnelling processes this ramp duration is
rather long and precludes sudden changes in the optical lattice potential seen by the atoms.
However for the experiments presented within this thesis we only need to shift the frequency of
the green lattice laser when its power is not used on the atoms. Therefore, we are not severely
limited by the ramp duration. The limited frequency tuning range is more problematic, as the
symmetric and asymmetric double-well configurations are roughly 60 GHz apart when tuning
the frequency of the green laser10. To be able to realize both limiting cases of the superlattice
configuration within a single experimental cycle a second Mephisto laser was installed (Mephisto
(S) with 500 mW), whose only purpose is to realize the fully asymmetric double-well lattice.
Therefore it is detuned by around 30 GHz from the original infrared lattice laser [108, 137].

4.2 Detection and Observables

The detection is at the heart of every experimental cycle. In our setup we use absorption
imaging to read out the density distribution of the atoms and from this we can further infer
properties of the gas such as its temperature. In the following, I will explain the basics of
absorption imaging, its implementation into our setup and how we avoid averaging over several
horizontal layers with different total atom number. Depending on the specific experiment, it
is beneficial to obtain either the density distribution of both spin components individually
(without doubles), or to access the full density sector, by separating the signals from singly
and doubly occupied sites of one spin component only. Both schemes will be discussed in the
following.

4.2.1 Landau-Zener Sweeps

While radio-frequency (RF) and microwave (MW) transitions have already been used for the
evaporative cooling in the magnetic trap, they also play a pivotal role for the detection, and
therefore, I will briefly explain how to change the internal state of the atoms with high fidelity
by so-called Landau-Zener sweeps. As for the evaporation, the RF field is generated by a small
coil with five windings and a diameter of around 4 cm. It is glued on top of the Ioffe Pritchard
coils in close proximity to the atoms [135].

At large magnetic field strengths of around 200 G, the transition energies between each
two consecutive magnetic hyperfine states differ by around 2 MHz and are hence sufficiently
different to selectively address individual transitions between magnetic hyperfine states with
a linear frequency sweep. The chosen pulse parameters are a sweep width of ∆RF = 175 kHz

10
When adjusting the infrared frequency only half the tuning range is required, compare Figures 2.4 and 2.5.
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and a pulse duration of TRF = 2 ms. The amplitude envelope of the RF sweeps is shaped by a
voltage controlled attenuator (VCA), which is controlled by an arbitrary function generator
(Tektronix AFG 3022C). In the first and last 100µs of the pulse window the VCA control
voltage is linearly increased (decreased). This is necessary to obtain a complete state transfer
and to avoid non-adiabatic state projections.

4.2.2 Absorption Imaging

For absorption imaging a resonant laser beam is directed onto the atom cloud, which will
imprint a shadow onto the beam profile that contains information about the density distribution
of the atoms [146]. The optical density (OD) of the sample is defined via the intensity of the
imaging beam before and after passing the atoms and is a dimensionless quantity, which is a
measure for the light absorption. If the imaging beam propagation direction is parallel to the
z-axis, we obtain the optical density as

OD = − ln

(
I(x, y)

I0(x, y)

)
= σ0n(x, y). (4.14)

The last equality follows from a comparison to standard Beer’s law [124], where σ0 is the
absorption cross section and n(x, y) =

∫
n(x, y, z)dz is the column density. For a two-level

system interacting with a resonant probe beam, the bare scattering cross section σ0 = 3λ2/2π
is modified to

σ(I) =
σ0

1 + I

I
sat
0

, (4.15)

if saturation effects play a role. In addition, the imaging cross section is affected by deviations
from the idealized two-level treatment, which are unavoidable in a real experiment. Possible
sources are given for example by an imperfect polarization of the imaging beam or the excited
level structure leading to deviations from an ideal cycling transition. Following G. Reinaudi et
al. [147], we introduce a dimensionless quantity, α∗ ≥ 1, which measures both the reduction in
cross section and the increase in saturation intensity Isat

eff = α∗Isat
0

σeff(I) =
σ0

α∗
1

1 + I

I
sat
eff

. (4.16)

If the cross-section depends on the probe intensity, Beer’s law gets modified by a high-intensity
correction. Integration of

dI

dz
= −n(x, y, z)σeff(I)I (4.17)

by a separation of variables leads to the density distribution

n(x, y) = −α
∗

σ0
ln

(
I(x, y)

I0(x, y)

)
+
I0(x, y)− I(x, y)

σ0I
sat
0

. (4.18)

Therefore, to obtain the high-intensity corrected density distribution, one needs to calibrate
the factor α∗ beforehand. The procedure for this was developed in [147] and the results for our
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setup are discussed in [60, 80].

Vertical Imaging Setup Most of our experimental protocols rely on the vertical imaging setup,
sketched in Figure 4.6 a), to obtain an in-situ density distribution, i.e. in the presence of the
optical lattices. It is explained in detail in [60, 80] and was not adapted since. Therefore, I will
only summarize the main features.

First the imaging beam is demagnified by a telescope consisting of an achromatic lens
with focal length f = 350 mm and a first aspheric lens (asphere) within the glass cell. The
corresponding demagnification is rather large M ≈ 1/44, which is relevant for projecting light
and thereby creating small spatial potential structures with the digital-micromirror device
(DMD), see Section 4.4. To guarantee that we obtain a high-resolution image with the CCD
camera, the light scattered by the atoms in the object plane is collected by a second aspheric
lens inside the science chamber with the same focal length and an equally large numerical
aperture of NA = 0.5. The beam is magnified such that one square pixel with an edge length
of 13µm corresponds to around 1.1 lattice sites. However, as will be discussed later, the
point-spread function (PSF), which characterizes the imaging resolution smears out the signal
of a single lattice site over several pixels. A slit is placed in the first imaging plane after the
atoms, which ensures that only a fourth of the CCD chip is exposed to the imaging beam. The
remaining part of the chip serves as the storage region. Hence, using the fast kinetics mode of
the Andor iXon 888 camera we can take up to three images in quick succession, see Figure 4.6
a). The 1:1 relay creates another image plane at the position of the CCD chip.

In Figure 4.6 b) we show how to obtain the density distribution of both spin components in a

Figure 4.6: Vertical in-situ imaging setup. a) Schematic of the vertical imaging system. Not shown are
a line filter to selectively transmit the imaging wavelength to the CCD chip and a quarter-wave plate to
minimize interference effects at the position of the atoms by spurious back-reflection [60]. Using the fast
kinetics mode of the Andor camera, we can take up to three images in quick succession. This allows us
to image for example the density distribution of both spin components in a single realization. b) We
utilize a microwave sweep to store one of the spin clouds in a far detuned hyperfine state when imaging
the other spin component. This minimizes off-resonant contributions to the absorption imaging signal.
This figure was adapted from [137].

65



Chapter 4 Setup and Experimental Implementation

single realization.11 A broad microwave sweep with a width of ∆MW = 1.6 MHz transfers atoms
(red ellipse) residing in the lowest hyperfine state of the F = 9/2 ground state manifold to
|F = 7/2,mF = −7/2〉. Consecutively, the other spin component (blue ellipse), is transferred
into the lowest hyperfine state by an RF sweep in order to be imaged on the cycling transition
of the D2 line. It is important to depopulate the second lowest hyperfine state as otherwise
it contributes to the observed optical density via off-resonant scattering of the imaging light.
After having recorded the density distribution of the spin-up component, the spin-down atoms
are transferred back into the lowest magnetic hyperfine state by a second MW sweep and
imaged in quick succession. If atoms on doubly occupied sites get shelved, both atoms on this
lattice site are lost due to spin changing collisions during the MW sweep. The third image
(“bright”) characterizes the intensity distribution of the imaging light pulse when there are no
atoms left to scatter off. In order to calculate the optical densities, the bright image is slightly
rescaled to match the intensity of the respective atom image in a region where there are no
atoms.

Imaging Resolution The aspheric lenses placed inside the science cell provide a high numerical
aperture by requiring a short working distance of 5.92 mm. The numerical aperture, NA = n sin θ
quantifies the maximum wavevector with half-angle θ that is collected by an optical element
with refractive index n. Therefore, it is crucial in determining the diffraction limited resolution.
The Rayleigh criterion, for example, yields an estimate on the minimum achievable radius
of the Airy disk in the case of incoherent fluorescent imaging. Considering our experimental
parameters, we obtain rAiry = 1.22λ/(2NA) = 0.94µm as a rough estimate [148].

A more sophisticated approach to determine the imaging resolution of our setup includes
the point-spread function (PSF). While I will only quickly summarize the main features, a
comprehensive discussion of its impact on absorption imaging may be found in an article by
Hung et al. [149]. In simple terms, the PSF smears out the signal of the true in-situ density
distribution n(r), and therefore the measured density distribution contains contributions from
all atoms at position r whose PSF takes on a finite value at position r′:

nmeas(r
′) =

∫
drn(r)P(r′ − r). (4.19)

The PSF can be determined experimentally via the modulation transfer function (MTF)
M(k) = |P(k)|, which quantifies the imaging system’s sensitivity at a given spatial frequency
k [149]. The MTF in turn can be calculated from the Fourier transform of the density
fluctuations if the static density structure factor is approximately constant in reciprocal space.
The characterization of our imaging setup in terms of the PSF is presented in detail in the
PhD thesis of my colleague J. Drewes [148]. The spatial extent of the Airy-disk-like PSF is
quantified by the full width at half maximum, FWHM = 2.5µm. In Figure 4.7 the PSF is
sketched in the CCD pixel array of the vertical imaging camera.

The PSF of our imaging system is not only limited by diffraction [80, 148]. The vertical
position of the atoms, fixed by the coils of the Ioffe-Pritchard trap, does not match the exact
working distance of the aspheric lenses. As these lenses are mounted within the science chamber
we can not easily move them, nor can we move the coils for the magnetic trap. Therefore, the
correction of the spherical aberrations does not work as intended and the imaging resolution is
slightly worse than expected.

11
Note that the spin property is encoded in the magnetic hyperfine state.
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Figure 4.7: Effect of the point-spread function. For our in-situ imaging setup along the vertical direction
the resolution limited spot size is larger than the lattice spacing by approximately a factor of five.
Individual atoms, represented by the coloured arrows, appear as a resolution limited spot (dashed circles)
in the image. This effect is shown only exemplary for both a spin-up and spin-down atom. The grid
lines represent the CCD pixel array, therefore, the spins are not necessarily aligned to them. Note that
the numbers shown have been scaled down by the magnification M = 23 to convert them into the object
plane. This allows us to easily compare them to the in-plane lattice spacing, a = 0.532 µm.

Lattice Filling As shown in Equation 4.14, we can infer the column integrated density
distribution n(x, y) in units of m−2 from the imaging beam intensities before and after passing
the cloud. In the context of optical lattices it is however more convenient to specify the density
in terms of the dimensionless filling factor, n. Even though we do not realize a one-to-one
mapping of a lattice site to a camera pixel, we can directly obtain the mean filling within the
local density approximation from the mean density distribution n(x, y) by multiplying it with
the area of a single lattice site

n = a2 n(x, y). (4.20)

Note that the spin property is encoded in the magnetic hyperfine state of the atom, therefore we
selectively address a certain spin component when imaging the whole cloud while the imaging
beam is off-resonant for the other magnetic hyperfine states. Therefore, the maximum filling
(per spin state) in one layer according to the single-band approximation of the Hubbard model
is equal to one. This convention will be used throughout this thesis.

4.2.3 Radio-Frequency Spectroscopy Resolving the Interaction Strength

Within the single-band approximation of the Fermi Hubbard model, a lattice site may be
occupied by either a single spin-up or spin-down atom (singles) or by two particles with opposite
spin, i.e. in different magnetic hyperfine states (doubles). Of course, the lattice site can also be
empty. However, since empty sites do not show up in absorption imaging we can only infer
their occurrence indirectly, if we have separately quantified the filling of singles and doubles.

To distinguish singly from doubly occupied sites we employ radio-frequency (RF) spectroscopy
and exploit that the on-site interaction, U , shifts the energy in case two atoms in different
magnetic hyperfine states occupy the same lattice site. As the on-site shift is in general not
equal in the initial and final state configuration, the resonance frequency for transferring atoms
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on doubly occupied sites, is shifted with respect to the bare transition frequency of the singles.
In Figure 4.8 a) it is schematically shown how we distinguish the signal from singly and doubly
occupied sites on the |9〉 → |7〉 transition. The optimum frequency to transfer singles is given
by

νS =
E7(B)− E9(B)

h
(4.21)

and therefore, only depends on the total magnetic field strength, B. This can be used to extract
the magnetic field at the position of the atoms with high accuracy, as demonstrated in Figure
6.14. In contrast, the resonance frequency for atoms on doubly occupied sites will be shifted
according to

νD = νS +
U57 − U59

h
. (4.22)

The on-site interaction shift depends on the compression of the wavefunction and the combina-
tion of hyperfine states in addition to the total magnetic field, see Figure 4.2.

Figure 4.8: RF spectroscopy resolving the interaction strength. a) The transition frequency of the
singly occupied sites, νS , only depends on the total magnetic field strength through the Zeeman energy
of the respective magnetic hyperfine states. In contrast, if an atom is to be transferred from |9〉 to
|7〉, which shares its lattice site with an atom in the other spin state |5〉, the transition frequency is
shifted by the difference in on-site interaction, ∆U = U57 − U59, which is smaller than zero in our case.
b) Therefore the doubles get transferred to appear in OD1 at a smaller RF centre frequency than the
singles.

To obtain a stable transfer efficiency, we employ a certain pulse shape, where the frequency
is swept over the resonance position to realize a Landau-Zener type transfer. This pulse is
called the hyperbolic secant (HS1) and is known from nuclear magnetic resonance (NMR)
spectroscopy [150].

HS1 Pulse The RF pulse is generated by applying a time-dependent voltage derived from an
arbitrary waveform generator (AWG Keysight 33622A) to the RF coil. In the case of the HS1
pulse, the voltage is given by

VHS1(t) = A(t) cos [2πν(t) t] , (4.23)

where the amplitude varies as

A(t) = A0 sech

[
Ctrunc

(
2t

tRF
− 1

)]
(4.24)
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and the frequency is swept according to

ν(t) = νRF +
∆RF

2
tanh

[
Ctrunc

(
2t

tRF
− 1

)]
. (4.25)

In Figure 4.8 b) we show an exemplary RF spectrum, with a sweep width of ∆RF = 1.3 kHz.
The transferred atoms appear in the first image, OD1, and the residuals end up in OD2. We
can clearly distinguish two spectral features: If the RF pulse is resonant with the singles, we
obtain a peak in OD1 and a corresponding dip in OD2. The fact that no atoms are seen in
the second image indicates that atoms on doubly occupied sites are lost during the microwave
transfer. The doubles peak is shifted by around 1.8 kHz to the left of the singles peak. Its
appearance clearly deviates from the singles peak, as the total atom number detected in OD1
and OD2 is not constant but increases by the amount of doubles, for which one of the atoms
is transferred from |9〉 to |7〉. Again, this is due to the fact that doubles can only appear in
OD1 and not in OD2 because of the loss process during microwave shelving. Note that if the
transfer of singles is fully efficient, the ratio of the singles density obtained in OD2 and OD1
should yield the combined efficiency of both microwave pulses.

4.2.4 Radio-Frequency Tomography of a Single Layer

To obtain a quantitative understanding of the 2D Fermi-Hubbard model, we need to avoid
averaging over several layers with different local filling factors. Therefore, a crucial step prior
to absorption imaging is to select an individual horizontal layer for detection. This is achieved
by applying a magnetic field gradient along the z-direction with a strength of 33.3 G/cm. As
the magnetic bias field is far from the Paschen-Back regime, the magnetic field gradient shifts
the transition frequency between two magnetic hyperfine states according to the local field
strength (Zeeman effect).

The vertical gradient is generated by the fast Feshbach coils operated in anti-Helmholtz
configuration. The centre of the resulting quadrupole field is not aligned to the atom cloud,
meaning that the gradient vector is not perpendicular to the individual 2D layers. Therefore to
obtain a constant transfer efficiency within a layer for a given radio-frequency, we need to shift
the magnetic field zero in x-direction with the offset coils of the Ioffe trap and in y-direction
with a pair of elliptical coils until the magnetic field is constant within each layer respectively
[60, 80].

Resolving the horizontal layers with a spacing of az = 1.06µm is extremely difficult, as the
transition frequency between |3〉 and |5〉 differs only by around 640 Hz between neighbouring
layers. Therefore, to obtain a stable transfer efficiency, all fluctuations in the total magnetic
field should accumulate to around 50 Hz at most. The differential slope in the Breit-Rabi
diagram amounts to (∂E|3〉 − ∂E|5〉)/∂B = h · 181 Hz/mG. Therefore, the required magnetic

field stability between different realizations is on the order of 10−4 G. For this purpose a µ-metal
shielding is installed around the science chamber. Furthermore, the large bias field is created by
the slow Feshbach coils, which feature a large inductance of 2.3 mH. Hence, they are designed
to operate at large currents with a small noise level. The downside is the relatively long ramp
time that is necessary to change the magnetic bias field. To further optimize the stability, there
is a twofold current regulation scheme. The slow part consists of a current transducer (Danfysik
STH 600), which measures the current that is output by the power supply (Delta Elektronika
SM 60-100), and then converts it into a voltage which is compared to the control voltage from
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the respective analogue channel. The slow feedback is, however, not enough to suppress 50 Hz
noise and higher harmonics thereof. Therefore, there is an additional fast feedback loop, which
consists of a second current transducer (LEM ITN 600 S) and a bandpass filter transmitting
frequencies between 20 Hz and 3 kHz. The error signal is not fed back to the power supply, but
to an active load element, which is connected in parallel to the main coils and which therefore
controls the magnetic field strength at the position of the atoms by adjusting its resistance.
The coil setup including the current stabilization was already in place when I joined the group,
more information can be found in [80].

Even though the peak-to-peak amplitude of the magnetic field noise is reduced significantly
by introducing the active load feedback, the signal from the current transducer still shows
oscillations with a period of 20 ms [80]. We therefore synchronize the timing of the RF
tomography pulse with centre frequency νRF to the 50 Hz noise of the power line just before
the vertical magnetic gradient field is ramped up, see Figure 4.9 a). Upon the rising edge of
the syncline trigger, the experimental sequence stops for a variable hold time 0...20 ms, which
ends at the next rising edge of the 50 Hz noise of the power line. The tomography pulse can be
shifted relative to the noise of the power line by varying the consecutive time step, tsync. With
this synchronization and a specifically designed RF pulse (SRS) with a fixed frequency and a
time window of tRF = 3 ms, we could reduce the contributions from neighbouring planes in
the RF tomography signal to less than 5% [60, 80]. However, the transfer function was too
narrow and therefore, it was not possible to continuously acquire data at the highest transfer
efficiency. To improve the stability of the RF tomography signal, we now use the HS1 sweep
that we already successfully employed to separate the signals of singly and doubly occupied
lattice sites.

HS1 Sweep for Monolayer Tomography The relevant advantage of the HS1 pulse over the
previously used SRS pulse is that its frequency is not constant in time but instead it is swept
over the resonance frequency of the RF transition. This greatly increases the stability and
hence the average efficiency of the transfer. Another advantage of the HS1 pulse is, that its
amplitude A0 does not need careful calibration as in the case of the SRS, which induces Rabi
oscillations between the two spin states. The HS1 pulse is however limited in its frequency
resolution, which can in principle be improved by increasing the time window tRF.

To further diminish the effect of magnetic field noise, we measure the transition frequency of
the whole cloud (without the magnetic gradient) in a time-resolved manner. For this purpose
we employ the SRS pulse, which offers a very good resolution both in time and frequency.12

In Figure 4.9 b) we show how the resonance frequency changes with time. The observed shift
in the centre frequency of the RF transfer corresponds to a peak-to-peak amplitude in the
magnetic field strength of around 5 mG, which is approximately a factor of two larger than
in [80]. We characterize the time-dependent variations of the total magnetic field in terms of
50 Hz and 150 Hz noise, as well as a linear slope γ by employing the fit function

∆ν(t) = A50Hz sin (2π · 50 Hz · t+ φ50Hz) +A150Hz sin (2π · 150 Hz · t+ φ150Hz) + γt. (4.26)

We obtain the following fit results

A50Hz = 242(40) Hz, φ50Hz = 3.1(2), γ = −2.9(2.4) Hz/ms (4.27)

12
In principle a Gaussian pulse with a short time window of around 3 ms should also work. However, as it was
not implemented in the python script controlling the AWG, we opted for the more complicated SRS pulse.
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Figure 4.9: Radio-frequency tomography resolving individual horizontal layers. On the rising edge of
the syncline trigger the experimental sequence stops and only resumes at the first rising edge of the 50 Hz
noise obtained from the power line. This synchronizes the RF tomography pulse relative to the magnetic
field noise shown in b) to avoid sudden jumps in the transfer efficiency. An RF tomography spectrum of
the whole cloud is shown in c). The HS1 sweep parameters are tRF = 14 ms and ∆RF = 500 Hz.

A150Hz = 110(37) Hz, φ150Hz = 1.0(3). (4.28)

The linear slope γ that characterises the frequency drift is approximately zero. This is extremely
important to check as otherwise the slow Feshbach coils would not be settled during the RF
tomography pulse. A drift in the magnetic field would cause sudden jumps in the transfer
efficiency since the resonance frequency would change between realizations due to the variable
hold time that is added after the syncline trigger has been sent to the clock-interruption circuit,
as shown in Figure 4.9 a). Therefore, if the slope does not vanish one has to increase the hold
time after the last ramp (before the RF tomography) of the slow Feshbach coils.

We feed forward the fit result to the HS1 waveform by adding a time-dependent phase
∆φ =

∫
2π∆ν(t)dt to the fast cosine oscillation. This will effectively advance or impede the

frequency of the RF sweep to counteract the drift of the magnetic field. Note that so far we
have only characterized the field noise and drifts in the absence of the vertical magnetic field
gradient that is generated by the fast Feshbach coils. As the quadrupole field changes the total
magnetic field at the position of the atoms by only around 1.3 G, it is reasonable to assume,
that noise on the fast Feshbach field current will be less problematic. However, we observe
that the RF transfer efficiency in the presence of the magnetic gradient depends crucially on
the sweep direction, which indicates that the magnetic field experienced by the atoms is not
constant over the duration of the pulse. We vary the parameter γ, which adjusts the phase
of the RF tomography pulse and find that for γ = 187 Hz/ms the transfer looks similar for
both sweep directions. As the fast Feshbach coils are not water-cooled, this drift might be a
thermal effect. Fortunately, by advancing the phase of the tomography pulse correspondingly,
we can compensate the field drift. It will not affect the stability of the RF transfer, as the fast
Feshbach coils ramp up after the syncline trigger has been sent and therefore, the variable hold
time is irrelevant in this case. After completing all the steps as described above, we record a
single scan over the whole cloud, where only every second plane is filled, see Figure 4.9 c). We
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observe a flat plateau which is around 350 Hz wide and steep flanks, which guarantee that even
if all layers were filled, the contribution from neighbouring planes would be negligible.

For reference, I show the full RF schemes that we employ to probe the spin and density
sector in Figure 4.10 a) and b), respectively.

Figure 4.10: Radio-frequency manipulation for detection purposes. We employ both broad Landau-
Zener sweeps (black arrows) and narrow HS1 pulses (grey arrows) to manipulate the magnetic hyperfine
state of the atoms. The RF tomography pulse takes place at a magnetic bias field of around 213.8 G,
where U37 = U57, and hence, the transfer efficiency for both singly and doubly occupied sites is maximal
at the same RF frequency. While the monolayer tomography is relevant for probing both the spin and
density sector, shown in a) and b), respectively, the second HS1 sweep to distinguish the contribution
from singly and doubly occupied lattice sites is applied only for measurements concerning the full density
sector.

4.3 Characterization of the Lattice Potential

In the following I will describe the characterization of the optical lattice potential including
both the measurement of the lattice depth as well as the determination of the underlying
slowly-varying optical potential due to the Gaussian waist of the laser beams. The latter is
relevant in particular when we want to measure the equation of state, which requires mapping
a spatial position within a horizontal layer (x, y) to a chemical potential µ.

Lattice Depth Calibration We calibrate the lattice depth by applying a sinusoidal variation
to the laser power in the respective lattice beam. This process is called parametric heating
and since it preserves the discrete translation symmetry the quasimomentum is conserved13.
Furthermore, the excitation operator is symmetric with respect to the centre of each lattice
site. Therefore, transitions between bands with opposite parity are strongly suppressed. We
obtain a quasimomentum resolved spectrum of the resonance by performing adiabatic band
mapping after exciting from the lowest to the second excited energy band. From the resonance
frequency we can directly infer the lattice depth in the centre of the cloud [60]. For more
details on the procedure I refer to [60], while the spectra of the newly added lattices along the
x- and z-direction are discussed in detail in [77, 137], respectively. In Section 2.3 we have seen
that the full potential generated by the optical lattice beams is not characterized by the lattice
depth in the centre alone. The additional, slowly-varying part of the optical lattice potential
crucially depends on the beam waists.

13
The quasimomentum conservation is slightly relaxed by the harmonic confinement, which strictly speaking
breaks the discrete translation symmetry.
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Beam Waist Determination In order to analyse the inhomogeneous density distribution n(x, y)
within a horizontal layer, we need to precisely characterize the slowly varying part of the optical
lattice potential, compare Equation 2.29. We measure the trap frequencies ωx,y by exciting a
dipole oscillation along the x, y-direction, respectively. The oscillation is initialized by abruptly
turning off an in-plane magnetic field gradient that had been ramped up in 100 ms to displace
the centre of the atom cloud.14 To observe the dipole mode we put a beam block into the
setup, which blocks the retroreflection of the lattice beam. The reduced trap confinement
is compensated by increasing the power of the respective lattice by a factor of four. When
choosing a small enough cloud extent and excitation amplitude, the observed oscillation
frequency characterizes the potential V pot(x, y) close to the trap centre only, where it is well
approximated by a second order polynomial. We investigate the impact of the cloud size on
the observed oscillation frequency in order to evaluate whether the atoms are probing the
harmonic confinement only. Obtaining the correct trap oscillation frequencies is crucial for
the potential mapping V pot(x, y)→ V pot(µ) following the local-density approximation. If the
measured trap frequency deviates by 1 Hz, the temperature estimate obtained from fitting the
equation of state n(µ) will in turn change by around 0.25t/kB. We tune the extent of the cloud
in both the x- and y-direction by varying the final power in the dimple beam when handing
over to the in-plane lattices. The cloud extent depends approximately linearly on the dimple
power. In Figure 4.11 we show the dependence of the trap frequency ωx on the 1/e2-radius of
the cloud in x-direction and find a significant dependence. For an increasing cloud size the
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Figure 4.11: Trap frequency investigation. We determine the dependence of the inferred oscillation
frequency ωx on the extent of the atom cloud in the x-direction, which is varied by means of the final
dimple confinement during the handover to the three-dimensional optical lattice configuration. The
cloud size is given as the 1/e2-radius of the density distribution along the x-direction. The standard
error on the cloud size is smaller than the marker size. The peak-to-peak oscillation amplitude for the
data shown was equal to around 8.5µm.

atoms experience a larger part of the Gaussian confining potential. This effectively reduces
the inferred oscillation frequency. Therefore, we chose to work with the smallest power in the
dimple beam, where we still obtain a stable atom number, resulting in a cloud size of around
33µm. For this cloud extent we did not observe a significant dependence of the oscillation
frequency on the peak-to-peak amplitude. Therefore, we stay with an oscillation amplitude of
around 8µm, where the error bars on the oscillation frequency are still reasonably small.

14
Previously we have displaced the dimple beam to initialize the oscillation. However this scheme suffers from
additionally exciting a breathing mode.
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In order to calibrate the beam waists of all lattice lasers at the position of the atoms, we
measure the x- and y-trap frequencies for various lattice configurations, see Figure 4.12. Note
that we always specify the lattice depth in units of the respective recoil energy.
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Figure 4.12: Calibration of the lattice beam waists. We measure the trap frequencies along the x- and
y-directions, ωx,y, for different lattice configurations. While our experimental data aims at characterising
the harmonic part of the slowly-varying potential only, we obtain the beam waists from a comparison to
the predicted trap frequency as inferred from a second-order polynomial fit to the the centre region of
the full potential given in Equations 4.32 to 4.36.

We compare the experimentally determined (harmonic) trap confinement ωx,y to the curvature

of the full lattice potential V pot(x, y) close to the trap centre. The slowly-varying part of
each individual lattice potential depends on the power ratio in the two (counter-propagating)
beams γ, the beam waist w, the propagation direction and the lattice depth Vlatt. The power
imbalance of the interfering beams is measured with a powermeter15 and the lattice depths are
calibrated by parametrically exciting atoms to the second band as described in the previous
paragraph. For an accurate determination of the propagation direction of the in-plane lattice
beams we measure density correlations in time-of-flight and infer the lattice angles from the
position of the antibunching dips that appear due to the Fermi statistics [60]. In the coordinate
frame of the vertical camera we specify the propagation direction of the x/y-lattice as the angle
θx,y relative to the x/y-axis, respectively and we obtain

ex-latt =

 cos θx
− sin θx

0

 , e⊥x-latt =

sin θx
cos θx

0

 , θx = −5.3(3)◦, (4.29)

ey-latt =

sin θy
cos θy

0

 , e⊥y-latt =

 cos θy
− sin θy

0

 , θy = −0.9(1)◦. (4.30)

15
γx,r = 0.84, γy,r = 0.77, γz,g = 1.00, γz,r = 0.33, γx,g = 0.78
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4.3 Characterization of the Lattice Potential

The z-lattice was set up in an angled configuration with two beams that intersect under an
angle of 2θz = 29.0(2)◦. We specify the propagation direction for the two interfering beams

and note that both orthogonal vectors e⊥z-latt have a contribution within the xy-plane [80]

ez-latt =

 0
− cos θz
± sin θz

 , e⊥z-latt =

 0
sin θz
± cos θz

 ,

1
0
0

 , θz = 14.5(1)◦. (4.31)

Since we are only interested in the (anti)confinement that is created within the horizontal
xy-plane, the vertical component, which is different for the two z-lattice beams is irrelevant.
Combining the knowledge of the lattice beam propagation direction with the general formula
for the slowly-varying lattice potential given in Equation 2.29, we obtain the optical potentials
for all lattices along the x-, y- and z-direction and for both wavelengths, λr = 1064 nm and
λg = 532 nm,

V pot
x,g (x, y) ' Vx,gRx,g

− e
−2

(
x sin θx+y cos θx

wx,g

)2

+
√
Vx,g E

x,g
rec e

−
(
x sin θx+y cos θx

wx,g

)2

, (4.32)

V pot
x,r (x, y) ' Vx,rRx,r+ e

−2

(
x sin θx+y cos θx

wx,r

)2

+
√
Vx,r E
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−
(
x sin θx+y cos θx

wx,r

)2
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V pot
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−2
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√
Vy,r E

y,r
rec e

−
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)2
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Since we have independently determined the power imbalance γ, the lattice depth in the centre
of the trap Vlatt and the beam propagation direction, the only remaining parameter in the full
potential is the beam waist. Hence we obtain an estimate of the beam waists at the position of
the atoms by matching the theory expectation of the trap potential provided by Equations 4.32
to 4.36 to the experimentally determined oscillation frequencies. For this purpose we extract
the curvature of the full lattice potential16 that is related to the trap frequency according to
V pot(x, y) = m

2 (ω2
xx

2 + ω2
yy

2). The final result for the beam waists of the lattice lasers at the
position of the atoms is

wx,r = 170µm, wy,r = 162µm, wz,g = 120µm, wz,r = 128µm, wx,g = 137µm. (4.37)

The simulation matches our experimental results well apart from the green x-lattice, where
the deviation is significantly larger than the error bar. There are several things to check for
this particular lattice including the propagation direction, which was adjusted by overlapping
the forward beam with the one of the infrared x-lattice. However, I imagine the most likely
deviation for the data set shown in Figure 4.12 d) to be caused by the superlattice configuration
along the x-direction. In the presence of a superlattice the second term of the slowly-varying
potential, which quantifies the quantum-mechanical ground state energy (compare Equation

16
via a second-order polynomial fit close to the trap centre
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2.29), does not simply follow as the sum of the individual green and infrared lattice terms, as
these potentials do not separate. Instead we need to compute the ground state energy in a
superlattice configuration and measure the trap frequency with a well-defined phase relation
of the two lattice lasers at the position of the atoms. It is probably beneficial to measure in
the symmetric double-well configuration, where the ground state energy is the same for both
wells. Another option to generate confinement along the y-direction is to replace the infrared
x-lattice with the horizontal dipole trap beam, which however would need to be characterized
in terms of its waist and laser power beforehand.

4.4 Digital Micromirror Device

A digital micromirror device (DMD) in combination with a far-detuned laser beam allows us to
manipulate the optical potential felt by the atoms in a local manner. The model that we use, a
DMD DLP6500 from Texas Instruments, features more than two million micromirrors with a
pitch size of 7.56µm. These tiny mirrors can be tilted around their diagonal axis by an angle
of ±12◦ relative to the flat state, and we refer to the “on” and “off”-configuration depending
on whether the light is directed towards the atoms or not. We place the DMD in a conjugate
image plane of the atoms and demagnify the displayed pattern by the same optics that is used
for the vertical high-resolution in-situ imaging.

Optical Setup To achieve strong optical potentials we have upgraded the laser source from a
self built grating-stabilized diode laser and a tapered amplifier to a commercial high-power
laser system, a Matisse CS (Sirah) pumped by a Verdi V18. If we do not lock the Sirah to its
reference cavity the linewidth is specified to be on the order of a few MHz corresponding to a
coherence length of around 100 m. With a wavelength of 730 nm the DMD is the laser that is
the closest to the D2 transition during the main experimental stage. While this is necessary to
obtain a sizeable dipole potential, we have to keep in mind that heating will be more likely to
occur. After passing the beam through an acousto-optic modulator for intensity control, the
first diffraction order is coupled into an optical fibre, which guides the light to the experiment
table. The optical setup starting with the fibre coupler on the experiment table is sketched in
Figure 4.13. The purpose of the optical elements is briefly explained in the figure caption. For
details on the alignment procedure see [137].

The magnification from the DMD to the object plane is set by the f = 350 mm lens and the
asphere inside the science cell with f = 8 mm and consequently, we expect a demagnification
by a factor of around 350/8 ≈ 44. To obtain a more accurate value, the magnification was
measured by projecting three circles whose centres are forming an equilateral triangle onto the
atom cloud. By varying the separation of the circles we extract the magnification and obtain
that the DMD beam is demagnified by a factor of 45.06(12). Consequently, around three DMD
pixels, with an edge length of 7.56µm each, correspond to the lattice spacing of a = 0.532µm.
The pointing stability of the DMD beam quantified by the standard deviation measured over
several hours is below one lattice site and also the long-term drifts are negligible over the course
of a weekend.

Pattern Generation We optimize the pattern generated on the DMD using a CCD camera
(Thorlabs DCC1545M), see Figure 4.13. In a first step we display three points with the DMD
in order to determine the affine transformation matrix, which provides a mapping between the
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Figure 4.13: Optical setup of the DMD. On the experimental table the polarization of the laser beam
is cleaned by a PBS before a small portion of the light is directed to a regulation photodiode. The
beam is enlarged by a telescope to cover a large part of the DMD. We filter the light coming from the
DMD by a real-space iris, which blocks unwanted diffraction orders that would lead to ghost images
[137]. However, ghost images do not appear with either all mirrors on or off, so their appearance is
likely connected to the digitalized pattern that is generated by the error diffusion algorithm [151]. The
4F-setup formed by two 300 mm lenses allows us to access the Fourier plane, where another iris is placed
to cut off high-frequency noise components. At the first beam splitter cube half of the power is directed
onto a CCD camera which is used for optimizing the DMD pattern. A neutral-density filter (not shown)
is mounted between the lenses in order not to oversaturate the camera. The black dashed lines mark
the (approximate) position of the different image planes. Note however that this sketch is not true to
scale. At a second beam splitter cube the DMD beam is overlapped with the vertical imaging light.
To be able to create small spatial structures with the DMD at the position of the atoms, the beam is
demagnified by a factor of around 350/8 ≈ 44. This figure was adapted from [137].

position on the DMD to the CCD camera. Apart from the translation and the relative rotation
angle, we also obtain the magnification from the resulting matrix representation. As expected,
1.37 DMD pixel correspond to one pixel of the CCD camera with a pixel size of 5.2µm. In
a second step we run an optimization loop where the deviation from the desired pattern is
fed back to the displayed DMD potential. For the feedback to work properly one has to make
sure that the point-spread function of a single (or few neighbouring) DMD pixel(s) is round
and small. Otherwise the (local) one-to-one mapping, which does not take the point-spread
function into account, will not succeed and the RMS error quantifying the deviation to the
target pattern will not converge. Finally, when we have reached the desired potential shape,
we need to determine the optical power in the DMD beam that is required to achieve a certain
potential depth at the position of the atoms. For this purpose we display the inverted trap
potential and tune the laser power. From the special point where the resulting potential seen
by the atoms is flat, we obtain the scaling factor, which translates an intensity on the feedback
camera to an absolute potential depth. While this in principle concludes the pattern generation,
we have implemented an additional feedback loop that improves the displayed DMD potential
based on the density distribution of the atoms, instead of the CCD camera.
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Atom Density Feedback Optimizing the DMD potential based on the intensity distribution
that is seen by the CCD camera suffers from a major drawback namely that any optical element,
which is exclusively in the camera feedback path or the main DMD path going to the atoms,
might distort the intensity distribution seen by the atoms relative to what is captured by the
camera. Therefore we implemented a second feedback loop where we adjust the DMD pattern
according to the density of doubly occupied sites, which serves as a sensitive measure of local
deviations in the chemical potential µ because the slope in the corresponding equation of state,
nD(µ), is much larger than for singly occupied sites. In Figure 4.14 a) we show the doubles
density summed over two neighbouring layers after the DMD pattern has been optimized based
on the camera feedback only. Instead of a flat density distribution that we aimed for, we
observe large aberrations.
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Figure 4.14: DMD atom density feedback. We optimize the intensity pattern that is displayed by the
DMD in a feedback optimization loop. The error signal is given by the deviation of the doubles density
averaged over 15 realizations from the intended flat distribution. With a sweep width of ∆RF = 2.5 kHz
we obtain the combined signal of approximately two horizontal layers. a) Initially, without applying the
atom density feedback, the DMD pattern distorts the density due to large-scale spatial aberrations. b)
While the atom feedback clearly improves these features, it also introduces disorder in the potential
landscape on a much smaller length scale. c) Applying a Gaussian filter with σ = 4 px (Andor camera
pixel) to the averaged density distribution before feeding it back, reduces the appearance and the
amplitude of the small-scale structures. d) We quantify the imperfection in the observed density after
each iteration by the RMS error.

For the atom feedback to work properly the affine transformation between the atom and the
DMD frame needs to be calibrated carefully. What is however more difficult to achieve is a high
quality local point-spread function, which should be small and round at all spatial positions
over the extent of the whole cloud. Unfortunately the wavefront is not perfectly planar at the
position of the atoms, which might be caused by spherical aberrations as the atoms are not
in the exact working distance of the aspheric lenses mounted inside the vacuum system. This
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discrepancy from the ideal alignment might be responsible for the fringe pattern appearing
predominantly in the lower region of the atom cloud, see Figure 4.14 b). We can reduce the
amplitude of the small-scale aberrations that are introduced by the atom density feedback by
applying a low-pass filter to the observed density distribution before feeding back the error
signal, see Figure 4.14 c).

Disorder The atom density feedback can only improve large-scale structures. At smaller length
scales the limited accuracy in mapping the DMD to the atom frame and more importantly
the size of the point-spread function preclude a correction of small-scale structures. However,
we assume that the finite imaging resolution does not allow high frequency components
corresponding to variations in the local chemical potential over a few lattice sites to reach the
atoms. Unfortunately, we have observed that the atoms become immobile in the presence of
the DMD potential [152] and we have attributed this to disorder in the DMD potential for
intermediate length scales ranging from around four to nine lattice sites where neither the
imaging resolution nor the atom feedback prevent the appearance of aberrations.

There are several reasons for why the DMD light is more prone to introducing disorder to
the potential seen by the atoms than the optical lattice beams. Firstly, the lattice laser beams
are focussed down by a single lens with the minimal waist position matched to the atom cloud.
Therefore, high frequency (noise) components, which arise due to dust particles or clipping of
the beam will be further away from the trap centre. This leads to intrinsic mode-cleaning [60].
However, the DMD beam path shares the high magnification of the vertical in-situ imaging
setup and is therefore collimated at the position of the atoms17. Secondly, the normal incidence
of the DMD beam relative to the surface of the glass cell might lead to interference effects
from multiple reflections at the glass cell wall with a thickness of 4 mm. To investigate the
relevance of interference effects on the disorder of the DMD potential one could try to broaden
the linewidth of the DMD laser to around 45 GHz, where the coherence length is on the order
of around 2 mm.

While we still use the DMD to slightly modify the potential or to introduce steep barriers,
the intrinsic disorder precludes experiments where the atoms need to be mobile. To further
improve the DMD pattern one might try to calibrate the local point-spread function of a DMD
pixel at different positions of the atom cloud. Using this knowledge when calculating the error
signal for the atom density feedback loop we might reduce the minimal periodicity of spatial
intensity variations that can be corrected.

17
Note that since we need to create spatially extended patterns that cover the whole cloud it is beneficial to
place the DMD in the image plane and therefore the DMD beam would always be collimated at the position
of the atoms even if it was not for the imaging lenses.
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CHAPTER 5

Magnetic Correlations in the Two-Dimensional
Fermi-Hubbard Model

Quantum magnetism in the Fermi-Hubbard model has been extensively studied for many
decades, in particular the antiferromagnetic phase has been at the heart of research lately
[36, 153–156]. The reasons for the continued interest are related to the conjecture by P. W.
Anderson [91] that the main features of high-temperature superconductivity are captured by the
two-dimensional (2D) Fermi-Hubbard model and the expected phase diagrams, which suggest
that high-temperature superconductivity may occur in the regime of strong correlations close
to the antiferromagnetic phase [157, 158].

In this Chapter I will explain how we quantify magnetic ordering within a single horizontal
layer realizing the two-dimensional (2D) Fermi-Hubbard model. The antiferromagnetic order
parameter, the staggered magnetization, is defined in quasimomentum space and peaks at
the corners of the Brillouin zone, qAFM = (π/a, π/a). Therefore, we employ a scheme that
allows for probing the magnetic structure factor at arbitrary quasimomentum q, in particular
at qAFM. This scheme requires a coherent control over the relative spin orientations between
neighbouring lattice sites, which is achieved by applying a magnetic field gradient within the
2D layer. By probing the magnetic correlations at several points in quasimomentum space, we
overcome the resolution limit of our absorption imaging setup and are even able to quantify
individual spatial spin correlators. Furthermore, the staggered magnetic structure factor serves
as a sensitive thermometer and in combination with a global density thermometry it allows for
the examination of thermal equilibrium. Parts of this chapter have been published in [159].

5.1 Quantifying Magnetic Order

As discussed in Section 3.2.2, the Fermi-Hubbard model features antiferromagnetic correlations
when the on-site interaction U is much stronger than the tunnelling amplitude t. In this
limit, the Fermi-Hubbard model maps to the Heisenberg model, which explicitly contains a
spin-spin interaction between neighbouring sites, and which considers the spin-1/2 particles to
be immobile

ĤHB = J
∑
〈i,j〉

ŜiŜj , (5.1)
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where J = 4t2/U is the superexchange energy scale.1 This simplified model will help us to gain
intuitive insights into magnetic correlations in lattice systems and their quantification.

For J > 0, intuitively speaking, the energy is minimized when neighbouring spins align
antiparallel and therefore the (semi-)classical Néel state seems to be a sensible guess for the
ground state of the Hamiltonian above. The Néel state is defined for bipartite lattices, i.e. lattice
structures that may be separated into two disjoint subsystems, where a spin in subsystem A
only interacts with spins of subsystem B and vice versa, and is characterized by the spins being
polarized in the same direction for a given sublattice and pointing in the opposite direction for
the other sublattice. Such a state is considered semi-classical as it does not build up coherence
by superposition, the orientation however is quantized unlike the classical case. The Néel state
can not be the ground state, as it strongly breaks the SU(2) symmetry, and furthermore it is
not even an eigenstate of the Heisenberg (Hubbard) Hamiltonian. The latter can be shown
by rewriting the transverse spin operators in Equation 5.1 in terms of raising and lowering
operators

ĤHB = J
∑
〈i,j〉

[
Ŝzi Ŝ

z
j +

1

2

(
Ŝ+
i Ŝ
−
j + Ŝ−i Ŝ

+
j

)]
. (5.2)

By inducing spin flips between neighbouring lattice sites, i and j, the transverse part of the
Hamiltonian couples Néel ordered basis states such as |↑, ↓, ↑, ↓〉 to states with reduced sublattice
magnetization, e.g. |↑, ↑, ↓, ↓〉. For the double-well potential, there are only two spin-balanced
basis states, |↑, ↓〉 and |↓, ↑〉, which are coupled by the transverse spin operators to form the
spin singlet state as shown in Figure 5.1. This is the ground state with energy E = −3/4J , as
can be verified by exact diagonalization.

-
Figure 5.1: Comparison of antiferromagnetic states. The classical Néel state breaks the SU(2) symmetry
and is not an eigenstate of the Heisenberg (Hubbard) Hamiltonian. For the double-well potential the
expectation value of the energy is given by (−J/4), which is equal to the average energy gain per
bond for a larger Néel state. In contrast, the spin singlet state with a total spin of S = 0 is the
quantum-mechanical ground state. Its energy is reduced by forming a superposition state. The staggered
magnetization, 〈m̂z

st〉, the order parameter quantifying antiferromagnetic spin alignment, is not suited
to describe the magnetic correlations of the spin singlet state, as it vanishes for SU(2) symmetric states.

The quantum-mechanical ground state lowers its energy with respect to the classical Néel
ordered state, with energy (−J/4) per bond, by forming a superposition. This effect is often
referred to as quantum fluctuations originating from the zero-point motion of spin waves
[160, 161], which destroy the perfect Néel order. This is, however, not to be mistaken for a

1
Note that we have chosen the opposite sign convention as compared to the standard Heisenberg model.
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time-dependent mechanism [162]. Instead, the quantum state acquires admixtures with reduced
sublattice magnetization by the transverse mixing as discussed above. For a system containing
two sites only, spin-balanced basis states with reduced sublattice magnetization do not exist.
They only become relevant when the number of lattice sites exceeds two. The impact of these
so-called quantum fluctuations on the ground state and its magnetic order increases with
the system size and ultimately they oppose long-range magnetic order (LRO). Whether they
succeed in rendering LRO impossible critically depends on the lattice dimensionality under
consideration and in particular on the coordination number [163].

Typically, the definition of magnetic order parameters builds on (semi-)classical states, such
as the Néel state [163]. To (artificially) break the SU(2) symmetry in spin space, which both,
the Hubbard and the Heisenberg model possess in the case of a spin-balanced mixture, one
needs to introduce a symmetry breaking effective Zeeman field h, see Section 3.3.1. This
additional term will lift the SU(2) rotational symmetry by fixing a quantization axis, typically
the z-direction, along which the spins align. In the case of spontaneous symmetry breaking,
the order parameter for antiferromagnetic alignment, the staggered magnetization m̂z

st, is then
defined in the limit of h→ 0

mz
st = lim

h→0
〈m̂z

st〉 = lim
h→0

1

N

N∑
i=1

(−1)i
Ŝzi
S
. (5.3)

The relevance of this order parameter for our system is however marginal as spontaneous
symmetry breaking does not occur in finite lattice systems [163]. Furthermore, for a spin
singlet state the staggered magnetization 〈m̂z

st〉 vanishes. Therefore one might conclude that the
quantum fluctuations, which are necessary for the build-up of SU(2) symmetric superposition
states, destroy the magnetic order completely [160]. However, the spin singlet state is in fact
strongly correlated in spin space, and therefore a more suitable definition that does not rely
on a preferred orientation in spin space needs to be found for spin systems possessing SU(2)
symmetry. A common choice is given by [38, 163]

m̄st =

√
〈(m̂x

st)
2

+ (m̂y
st)

2
+ (m̂z

st)
2〉 =

√
3 〈(m̂z

st)
2〉, (5.4)

where the second equality sign requires the state to be SU(2) symmetric. With our experimental
quantum simulator we are not able to resolve the occupation of a single lattice site. Therefore,
it is not possible to directly measured the staggered magnetization as done in [38]. However, as
will be shown in Section 5.3.1, we can measure the magnetic structure factor

Szq =
1

N

N∑
i,j=1

〈Ŝzi Ŝzj 〉 eiq(ri−rj) =
N∑
j=1

〈Ŝzi Ŝzj 〉 eiq(ri−rj) (5.5)

at arbitrary quasimomentum q. The last equality follows from the discrete translation symmetry
in a homogeneous system according to which, it is irrelevant which lattice site, i, is correlated
with all other lattice sites j. The staggered magnetic structure factor SzqAFM

is connected to
the antiferromagnetic order parameter via

〈(m̂z
st)

2〉 =
1

N

SzqAFM

S2 , (5.6)
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where the quasimomentum qAFM = (π/a, π/a) takes care of the staggered sign (−1)i.

5.2 Quantifying Antiferromagnetic Order with a Finite Resolution

In Section 4.2.2 I have already discussed the finite resolution of our in-situ imaging setup, which
precludes us from directly measuring real-space spin correlators defined as

Czij = 〈Ŝzi Ŝzj 〉 − 〈Ŝzi 〉 〈Ŝzj 〉 . (5.7)

For a spin-balanced system the expectation value of the z-component of the local spin operator
〈Ŝzj 〉 vanishes for all sites j. Hence, as expected for an SU(2) symmetric state, there is no
net magnetic moment and the second term of Czij vanishes. In contrast, magnetic ordering
in classical spin systems features localized moments as for example in the Néel state [164]
discussed above. The second term is needed in order to only account for proper quantum
correlations, since it subtracts an offset such that for a classical state the correlator amounts to
Cij = 0. In the following I will first discuss the observables quantifying magnetic correlations,
which are readily accessible by our spin-resolved imaging technique, i.e. the local moment and
the uniform spin structure factor. Then I will explain how to circumvent our limited imaging
resolution by probing magnetic order in quasimomentum space, which in particular allows us
to measure the staggered magnetic structure factor that is related to the antiferromagnetic
order parameter as shown above.

5.2.1 Local Moment

The local moment represents the on-site contribution to the spatial spin correlations Cij and is
defined as

C00 =
1

N

N∑
i=1

Czii ≡ Czii. (5.8)

In a homogeneous system the on-site correlator Czii is equal for all sites i. Under the assumption
of the single-band approximation, the average particle number on a certain lattice site i in spin
state σ is given by

ni,σ = 〈n̂i,σ〉 = 〈ĉ†i,σ ĉi,σ〉 . (5.9)

As a consequence of the commutation relations of fermionic creation and annihilation operators,
we can apply the occupation number operator several times without changing the result

〈n̂2
i,σ〉 = 〈ĉ†i,σ ĉi,σ ĉ

†
i,σ︸ ︷︷ ︸

=1−ĉ†i,σ ĉi,σ

ĉi,σ〉 = 〈n̂i,σ〉 . (5.10)

This is intuitively clear, as a lattice site is occupied by at most one particle of a certain spin
state due to Pauli’s exclusion principle. As a consequence, we may rewrite the local moment in
terms of the densities of both spin components

C00 =
1

4

[
〈n̂i,↑〉 − 〈n̂i,↑n̂i,↓〉+ 〈n̂i,↓〉 − 〈n̂i,↑n̂i,↓〉 −

(
〈n̂i,↑〉 − 〈n̂i,↓〉

)2]
(5.11)
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=
1

4

[
si,↑ + si,↓ −

(
〈n̂i,↑〉 − 〈n̂i,↓〉

)2]
, (5.12)

where the singles density of spin-up (-down) particles, si,σ, is defined as in Equation 3.48. For
a spin balanced cloud 〈n̂i,↑〉 = 〈n̂i,↑〉 the equation above simplifies to

C00 =
1

4

(
si,↑ + si,↓

)
. (5.13)

Therefore, the local moment is a direct measure for the amount of single occupancies, which was
to be expected since doubly occupied and empty sites do not contribute to the magnetization
of the system as

〈↑↓ |Ŝz| ↑↓〉 = 〈0|Ŝz|0〉 = 0. (5.14)

5.2.2 Uniform Spin Structure Factor

When we acquire the absorption images of both spin components, the signal of an individual
atom is smeared out over several pixels by the point-spread-function (PSF), P(r − ri), as
explained in Section 4.2.2. Therefore, we cannot directly infer the spatial spin correlator Czij
for arbitrary sites i and j, apart from the special case, i = j, which is discussed above. It is
however possible to correlate the local density measured by two pixels labelled by the indices k
and l,

C̃kl = 〈n(rk)n(rl)〉 =
∑
i,j

P(rk − ri)P(rl − rj) 〈Ŝzi Ŝzj 〉 , (5.15)

which contains contributions from all lattice sites, i and j, whose signal is smeared out by the
PSF to the pixels k and l, respectively. The PSF in units of 1/m2 is normalized in real space
according to ∫

P(r − ri)d2r = 1. (5.16)

The discrete version of this normalization condition depends on whether the summation runs
over lattice sites or camera pixels and we find that

a2
∑
j

P(rj − ri) = 1 = a2
px

∑
k

P(rk − ri). (5.17)

The so-called summed correlations correlate each individual pixel l with all other pixels k∑
k,l

C̃kl =
∑
i,j

Cij
∑
k

P(rk − ri)︸ ︷︷ ︸
1/a

2
px

∑
l

P(rl − rj)︸ ︷︷ ︸
1/a

2
px

=
1

a4
px

∑
i,j

〈Ŝzi Ŝzj 〉 =
1

a4
px

∑
i,j

Cij . (5.18)

In pixel space we correlate the optical densities and not the dimensionless filling, therefore the
additional factor 1/a4

px adjusts the units by converting the optical density into a filling factor
per pixel. In the last step we need to account for the size mismatch of a lattice site to a camera
pixel by comparing the number of pixels Npx to the number of lattice sites Nsites that cover a
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certain area with fixed size

Npx

∑
l

C̃kl =
∑
k,l

C̃kl =
1

a4
px

∑
i,j

Cij = Nsites
1

a4
px

∑
j

Cij (5.19)

⇒ Sq=0 =
∑
j

Cij = a4
px

Npx

Nsites

∑
l

C̃kl = a4
px
a2

a2
px

∑
l

C̃kl = a2
pxa

2
∑
l

C̃kl. (5.20)

Here, we he have used that the number of pixels (lattice sites) scales inversely with the size
of the respective unit cell. The consequences of this calculation are immense, as it means
that we can obtain the uniform spin structure factor even with reduced imaging resolution by
performing the correlation analysis in the pixel frame and applying a correction factor a2

pxa
2.

The lattice spacing, a, is a well known quantity as we have access to the exact wavelength of
the lattice laser. However, the size of a pixel needs rescaling into the object plane, hence the
magnification has to be well calibrated. Furthermore, the calculation above implies that the
exact shape of the point-spread function does not need to be known. This is however only
the case if we sum over a region much larger than the extent of the point-spread function. To
reduce the impact of numerical noise from the integration, we typically correlate only pixels
whose distance is smaller than the equivalent of seven lattice sites. As the summed correlations
depend on the radius of the summation region, the optimal summation point is chosen such
that the spin structure factor of an uncorrelated system is equal to the local moment as inferred
from the singles density directly. In addition, before running the experiment it is important to
optimize the position of the camera along the imaging beam propagation direction, as it affects
both the imaging resolution and the magnification. Also, we have observed that the inferred
spin correlations greatly deviate if the camera is not in its focus position. For more details on
the extraction of the summed spin correlations, I refer the reader to [37, 148].

Results We have measured spin correlations for a spin-balanced cloud in the slowly varying
trap potential that is formed due to the Gaussian confinement of the lattice beams. This allows
us to sample a broad range of chemical potentials in a single realization. After the green z-lattice
has reached its final depth of 120Erec, which separates the cloud into two-dimensional pancakes,
both in-plane lattices are ramped up to 6Erec within 500 ms to realize the 2D Fermi-Hubbard
model with t/h = 224(6) Hz. The on-site interaction between the lowest two hyperfine states
|9〉 and |7〉 is adjusted to U/t = 8, where we expect the antiferromagnetic correlations to be
the most prominent. The results are shown in Figure 5.2. The maximum value of the local
moment C00, defined in Equation 5.13, is 0.25, as the overall probability to obtain a single
occupancy on a lattice site, si,↑ + si,↓, can not exceed unity. Due to the finite interaction
strength U/t, there will always be a finite amount of doubles and holes in the lattice even at
half-filling. Therefore, the local moment does not reach 0.25. The uniform structure factor
contains both on-site and off-site magnetic correlations and is smaller than the local moment
owing to the presence of negative nearest-neighbour correlations. While this clearly shows
that antiferromagnetic order emerges in our system, the uniform structure factor alone does
not yield quantitative information about the correlation length scale and individual spatial
spin correlators. Furthermore, with decreasing temperature the amount of off-site correlations
will increase and since the individual spin correlators alternate in sign with distance, they
partially cancel each other. Therefore, in the zero-temperature limit the uniform structure
factor approaches zero [165] and does not serve as a precise thermometer.
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Figure 5.2: Uniform spin structure factor and local moment. Due to the presence of off-site antiferro-
magnetic correlations, the uniform structure factor is reduced with respect to the local moment, which
only quantifies the on-site contribution. The difference is most pronounced around half-filling, µ = 0.
The chemical potential is inferred in a local density approximation (LDA) from the precisely calibrated
trapping potential [34], compare Section 4.3. These results have been published in [159].

5.3 Coherent Manipulation of Spin Correlations

In the last section we have seen that the autocorrelation analysis of the magnetization does
not provide a full characterization of the magnetic order in our system, as we only obtain
the integral over the real-space correlation function convolved with the imaging point-spread
function. To overcome our optical resolution limit we developed an experimental protocol,
which coherently manipulates the spatial spin correlations by imprinting a periodic phase
pattern with wavevector ksp onto the atoms within the two-dimensional layers. This allows us
to probe magnetic correlations in quasimomentum space and the observable is the static spin
structure factor at arbitrary momentum q = ksp,2

Szq =
∑
j

〈Ŝzi Ŝzj 〉 eiq∆rij . (5.21)

In particular this scheme enables us to measure the staggered magnetic structure factor, Szπ,π
3,

which is related to the order parameter of the antiferromagnet, see Equation 5.6. Via a discrete
Fourier transform we can exploit our precise calibration of the imprinted wavevector to overcome
our optical resolution limit and extract information on individual real-space spin correlators.

The following sections summarize the experimental findings published in [159] and add further
explanations and discussions. Both the calibration routines and the theoretical description of
the coherent manipulation of spin correlations have been developed during my master thesis,
therefore more details on these parts can be found in [166].

5.3.1 Theoretical Description of the Coherent Manipulation of Spin Correlations

Probing the uniform structure factor is not ideally suited to characterize antiferromagnetic
order, as the real-space spin correlators partially cancel each other. In simple terms, it would
be better if we were able to flip the spin on every other lattice site. Effectively, this would

2
Note that the lattice site index i is arbitrary for a homogeneous system.

3
For simplicity, we will replace the quasimomentum subscript by the imprinted phase per lattice site qa.
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transform a chequerboard spin pattern (Néel antiferromagnet) into a spin-polarized state.
Consequently, when computing the summed correlations, all off-site correlators would have the
same sign and would therefore add up constructively. In the following, I will start by giving a
physical intuition about how to manipulate the (relative) orientation of spins in a semi-classical
picture. Then, I will explain how the presented scheme acts on the double-well eigenstates and
how spin correlations are transformed in a general setting.

Classical Picture In Figure 5.3 the main steps for the manipulation of the spin orientation are
depicted. After the atoms have distributed themselves according to the Hubbard parameters,
t and U , we freeze the motion within the layers by quickly ramping up the in-plane lattice
depths from 6 to 60Erec within 1 ms. Now, the only thing left to manipulate is the internal
state of the atoms.

Figure 5.3: Manipulation of the relative spin orientation. Experimental scheme to imprint spatially
periodic spin patterns onto fermionic spin-1/2 atoms loaded into an optical lattice potential realizing
the 2D Fermi-Hubbard Hamiltonian. After freezing the atomic motion, a Ramsey-type sequence is
applied, which is composed of two π/2 RF pulses enclosing the evolution in a magnetic field gradient
∇Bz for a variable time tsp. The same scheme is employed to probe the static magnetic structure factor
at arbitrary quasimomentum. This figure was adapted from [159].

The initial π/2-pulse rotates the spin vector into the equatorial plane of the Bloch sphere,
where it will precess according to the local Larmor frequency, which is proportional to the
energy difference of the two spins states |↑〉 = |7〉 and |↓〉 = |9〉. Therefore, in a magnetic field
gradient atoms occupying sites i and j will pick up a relative phase that is given by

φij = 2πγ↑,↓

∫
∇Bz · (ri − rj)dt, γ↑,↓ =

1

h

∂E7 − ∂E9

∂Bz
. (5.22)

The relative phase between neighbouring sites can be tuned either by the magnetic gradient
strength or the duration tsp. For a relative phase of φij = π, antiparallel spins on lattice sites
i and j will change their relative orientation to parallel. If we let them precess for twice as
long, the imprinted phase difference will amount to φij = 2π and consequently the relative
orientation will match the initial configuration. In the last step, we flip back the spin vectors
into the measurement (z-)basis by applying a second π/2-pulse.

Quantum Mechanical Description So far we have neglected that atoms are quantum-mechanical
objects and hence will form superposition states to conform to the SU(2) symmetry of the

88



5.3 Coherent Manipulation of Spin Correlations

Hubbard Hamiltonian. While the main principle of operation of the spin manipulation scheme
depicted in Figure 5.3 stays the same, there are some peculiarities and I will therefore discuss
the impact on the eigenstates of the double-well in the following. For more details, I kindly
refer to [166].

When we freeze the motion by quickly ramping up the power in the in-plane lattices, in the
quantum-mechanical description we project on the eigenstates of the Hubbard Hamiltonian
for U/t→∞, see Table 3.1. It is unnecessary to consider the |d+〉 and |d−〉 states, as doubly
occupied sites are neither affected by the π/2-pulses nor by the evolution in the magnetic field
gradient. Furthermore, in the experiment we remove all doubles after freezing as they do not
contribute to magnetic correlations. Without loss of generality, I choose the x-axis of the Bloch

Figure 5.4: Spin manipulation on the double-well. Evolution of the double-well eigenstates for U/t→∞.
The magnetic field gradient breaks the SU(2) symmetry by inducing singlet-triplet oscillations between
|s〉 and |t0〉. The oscillation between the |t+〉 and |t−〉 states occurs at a considerably higher frequency.
However, it does not play a role as the number of triplet states has to be equal in the beginning, in
order to conform to SU(2) symmetry.

sphere as the rotation axis of both π/2-pulses and I will explain in the following that it is
irrelevant around which axis we rotate due to the SU(2) spin symmetry. If we investigate the
effect of the initial π/2-pulse on the double-well eigenstates, we observe that the singlet state
|s〉 and the triplet state |t−〉 = 1/

√
2 (|↑, ↑〉 − |↓, ↓〉) remain unchanged, while the former was to

be expected since the singlet state is SU(2)-symmetric, the latter is linked to the choice of the
rotation axis4. In contrast, the population of |t0〉 is mapped onto |t+〉 = 1/

√
2 (|↑, ↑〉+ |↓, ↓〉)

and vice versa. In the magnetic field gradient the SU(2) spin symmetry is broken as the singlet
and triplet populations periodically exchange |s〉 ↔ |t0〉. If the relative phase between the two
sites of the double-well is φ12 = π, the singlet is fully mapped onto the triplet state. A similar
oscillation occurs between the other two triplet states |t+〉 and |t−〉, however, at much higher
frequency. We can not observe this oscillation in a spin-balanced system, since the occupation
of all the triplet states is equal for an SU(2) symmetric initial state. Therefore the occupation
probabilities of |t+〉 and |t−〉 will remain constant. As the evolution in the magnetic gradient
is described by a Larmor precession around the z-direction on the Bloch sphere, only the x-
and y-components of the spin operator have rotated. Therefore, the remaining task is to map
the time-evolved spins back into the measurement basis with the second π/2-pulse. Atoms
that were in a singlet configuration initially, end up in the spin-polarized triplet state |t+〉.
Note that in contrast to the classical case described above the rotation axis of both π/2-pulses
is irrelevant for this measurement as we will always obtain a spin polarized state with some
(irrelevant) phase between |↑↑〉 and |↓↓〉, if atoms are in the triplet state |t0〉 at the end of the
singlet-triplet oscillations in the magnetic field gradient.

4
If we chose the rotation axis to be parallel to the y-axis, the roles of |t+〉 and |t−〉 would be interchanged.
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For a larger system size, the time evolution is better understood in the Heisenberg picture,
as all the operators (spin rotations) factorize for the different lattice sites. First, we assume
that our initial state is SU(2) symmetric and hence [166]〈

Ŝxi Ŝ
x
j

〉
(0) =

〈
Ŝyi Ŝ

y
j

〉
(0) =

〈
Ŝzi Ŝ

z
j

〉
(0) =:

〈
Ŝ0
i Ŝ

0
j

〉
. (5.23)

In this case, the initial π/2-pulse has no effect since the Hubbard Hamiltonian commutes with
the total spin operators

∑
i Ŝ

x,y,z
i and therefore any eigenstate is fully invariant under rotations

in spin space [167]. We can visualize this on the Bloch sphere. Since the spin correlations are
isotropic on the Bloch sphere before applying the π/2-pulse, a rotation will not change the
amount of spin correlations in any direction. In the experiment we check whether initially
the state conforms to the SU(2) symmetry by measuring spin correlations both with the first
π/2-pulse on and off.

The time evolution of the local spin operator Ŝi can be considered as a precession around
the magnetic field direction with a locally varying Larmor frequency ωi,ŜxiŜyi

Ŝzi

 (t) =

 cos(ωit) sin(ωit) 0
− sin(ωit) cos(ωit) 0

0 0 1

ŜxiŜyi
Ŝzi

 (0), (5.24)

where ωi = (E7 − E9)/~. The differential precession breaks the SU(2) spin symmetry as
mentioned before. This becomes clear, when looking at the time evolution of the spin correlators〈

Ŝxi Ŝ
x
j

〉
(t) = cos

[(
ωi − ωj

)
t
] 〈
Ŝ0
i Ŝ

0
j

〉
=
〈
Ŝyi Ŝ

y
j

〉
(t), (5.25)〈

Ŝzi Ŝ
z
j

〉
(t) =

〈
Ŝ0
i Ŝ

0
j

〉
. (5.26)

While the longitudinal spin correlations are left unchanged, the x- and y- correlators oscillate
in time and for φij =

(
ωi − ωj

)
t = π, we recover the classical result, where the respective spin

correlator Cij flips its sign. Note that for φij = π/2 the transverse spin correlations seem to

vanish, they are however rotated into the cross-correlators 〈Ŝxi Ŝyj 〉 (t), which were zero in the
initial state. Furthermore, it becomes clear, why the rotation axis of the second π/2-pulse is
irrelevant. As the transverse correlators oscillate in phase, they are always equal and therefore,
the RF pulse will always map back the full time-evolved spin correlations into the measurement
z-basis. When computing the autocorrelation of the magnetization after applying the spin
manipulation scheme, we therefore measure the static magnetic structure factor∑

j

cos
[(
ωi − ωj

)
t
] 〈
Ŝ0
i Ŝ

0
j

〉
=
∑
j

eiq(ri−rj)
〈
Ŝ0
i Ŝ

0
j

〉
= Sq (5.27)

at arbitrary momentum q = 2πγ↑,↓
∫
∇xyBzdt. Since the spatial spin correlator only depends

on the distance of the two lattice sites i and j, we find that in particular 〈Ŝzi Ŝzj 〉 = 〈Ŝzj Ŝzi 〉.
Consequently the structure factor is purely real and we may replace the cosine with the
exponential in the equation above.
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5.3.2 Calibration Routine: Imprinting Spin Patterns

The calibration routine for imprinting spin patterns onto the atom cloud starts with the two
π/2-pulses. The envelope of the RF pulses in the time domain is described by a Gaussian with
a full width at half maximum of 50µs. This corresponds to a transfer function that is 20 kHz
wide. Since the RF frequency is not swept but stays constant for the duration of the pulse,
it is important to regularly check that the RF pulse is operating on resonance. In particular,
the resonance frequency of the second pulse should not depend on the time tsp during which
the spins evolve in the magnetic field gradient. Otherwise the total magnetic field needs more
settling time before starting the spin manipulation scheme. Once the frequency is adjusted,
the amplitudes of both π/2-pulses are calibrated consecutively. Starting with a spin-polarized
cloud the optimum amplitude is found when the final atom numbers after applying the RF
pulse are equal. Note that the atom number recorded in OD2 must be corrected by the MW
efficiency to account for relative detection losses between the two spin components N↑ and
N↓. In Figure 5.5, we show the relative atom number of both spin components to account for
fluctuations in the total atom number. We fit both curves with a sinusoidal function to obtain
the crossing point, which yields the correct amplitude for a π/2-pulse.
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Figure 5.5: Amplitude calibration of the π/2-pulses. From a sinusoidal fit to the relative atom numbers,
we extract the crossing point indicated by the black dashed lines. For this particular RF amplitude
we obtain a balanced spin mixture after applying the pulse and hence we have found the π/2-pulse
amplitude.

The differential precession on the Bloch sphere between neighbouring sites is achieved by
applying an in-plane magnetic field gradient that is generated by two small coils. At the
position of the atoms, they produce a gradient that is pointing approximately along either
of the two diagonals within the xy-plane, respectively. Originally, they were implemented to
compensate small residual magnetic field gradients and are therefore not water-cooled. Hence,
care has to be taken that the applied currents are small enough. In order to calibrate both the
amplitude and the angle of the imprinted wavevector we start with a spin-polarized cloud. Since
we do not want to apply the monolayer RF tomography scheme, we need to compensate the
residual vertical magnetic field gradient. This is described in detail in my Master thesis [166].
As far as we know, this vertical gradient is mostly caused by the slow Feshbach coils, however
the two small gradients coils also have a small out-of-plane component. Therefore, the vertical
gradient should be compensated for the final currents through the in-plane gradient coils. With
the vertical gradient compensated, we can vary the time tsp and observe the change in the
periodicity of the imprinted spin spiral pattern, see Figure 5.6 a)-c). Note that it is extremely
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relevant to check that the two gradient coils ramp up (and down) equally fast. Otherwise the
direction of the total imprinted wavevector, which is proportional to

∫
∇Bz(t)dt, changes as a

function of hold time and it would not be possible to measure along the diagonal of the first
Brillouin zone without readjusting the currents of the gradient coils [166]. We set the ramp
time to 20 ms to solve this problem.

In Figure 5.6 we show typical images of the observed contrast in the singles densities,

M(x, y) =
s↑(x, y)− s↓(x, y)

s↑(x, y) + s↓(x, y)
(5.28)

for different wavevector amplitudes. Owing to the discrete nature of the lattice, the wavevector

Figure 5.6: Imprinting spin patterns onto a spin-polarized cloud. The magnetic field gradient is ramped
up to |∇Bz| = 0.64 G/cm, except for a), where |∇Bz| = 0.1 G/cm. a), b) Contrast M(x, y) for spin
patterns observed at different gradient strengths, and tsp = 0.1 ms. c) Observed spin pattern with small
wavevector after Bragg reflection. The contrast is still high, suggesting that single-particle coherence is
maintained. d) We plot the magnitude of the extracted wavevector |qsp| versus the duration tsp of the
spin evolution in the magnetic field gradient. Due to the resolution limit of our imaging setup, we can
only infer the imprinted wavevector if the periodicity of the fringe pattern is large enough. A combined
fit (solid grey line) provides a precise calibration to imprint spin patterns with arbitrary wavevectors
along the diagonal of the first BZ and to extract the turning points tπsp and t2πsp , highlighted by the two
black dashed lines. This data has been published in [159].

ksp that monotonically grows with the spin evolution time tsp is equivalent to a wavevector qsp

within the first BZ. From the Fourier transformation of M(x, y) we extract both the magnitude
and the direction of the wavevector qsp. Our optical resolution allows us to resolve spin
patterns with wavevectors up to |qsp| ≈ 2π/(5a). When the imprinted wavevector ksp crosses
the boundary of the first BZ, it effectively gets Bragg-reflected [159]. Therefore, for evolution
times tsp > 220 ms, we again observe spin patterns. However, the wavevector |qsp| decreases as
we approach the 2π-point, ksp = (2π/a, 2π/a), which cannot be distinguished from the initial
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spin polarized state apart from some residual magnetic field curvature, see Figure 5.6 c). Note
that the direction of the imprinted spin pattern varies rapidly around the desired value if we do
not match the diagonal of the 2D in-plane lattice structure perfectly. This characteristic allows
for an accurate alignment of the direction to the lattice diagonal with superb precision of less
than one degree. From a combined fit to the observed evolution of the x- and y-components of
the spiral wavevector at small and large times, we obtain the turning points, tπsp and t2πsp , for
which a relative phase of π (2π) is imprinted between neighbouring lattice sites.

If the camera position was adjusted to its focus position before running the calibration of
the spiral wavevector, one can determine the magnification of the vertical imaging setup by
comparing the maximal wavevector amplitude extracted from the combined fit to the theoretical
expectation, which is given by the length of the lattice diagonal.

The remaining task before one can use the spin spiral technique to coherently manipulate
spin correlations is to cancel all in-plane magnetic field gradients as they would cause the
transverse spin correlators to oscillate even before the spin spiral has started and thereby they
would change the correlations that we measure. By turning the initial π/2-pulse on or off we
can check whether the transverse correlations have changed with respect to the z-correlations,
which are unaffected by magnetic field gradients.

5.3.3 Measurement of the Staggered Structure Factor

As shown on page 89 f., when applying the spin spiral technique to our experimentally prepared
state, we probe the magnetic order at the arbitrary wavevector q = ksp. The (local) spin
structure factor characterizes the Fourier spectrum of the spatial magnetic correlations in a
certain region of the trap. I will start by discussing the special case where the nearest-neighbour
phase that we imprint is equal to π. In this case the autocorrelation analysis yields the staggered
magnetic structure factor, Sπ,π. Intuitively speaking, the imprinted spin pattern matches the
existing antiferromagnetic order, and we probe our system “on resonance”, which is why we
obtain a large increase in signal strength. In Figure 5.7 we compare the staggered to the
uniform structure factor, which was recorded as in previous work [37] without manipulating
the spins. Due to the Gaussian confinement of the lattice beams, we sample a broad range of
chemical potentials in a single realization, which we infer using the local density approximation
(LDA) from the precisely calibrated trapping potential. As a reference, we show the measured
local moment, which is maximal at half-filling, µ = 0.

As discussed before the uniform structure factor is smaller than the local moment due to
the negative sign of the nearest-neighbour correlator. In contrast, the staggered spin structure
factor is observed to exceed the local moment by more than the mismatch between the local
moment and the uniform structure factor since all spatial correlators add up constructively.
This asymmetry with respect to the local moment clearly indicates the presence of beyond-
nearest-neighbour AFM spin correlations [159]. As the staggered spin structure factor is a
sensitive measure for the emerging spin order, it serves as a precise thermometer even when
the density degree of freedom is essentially frozen. By direct comparison to calculations using
numerical linked-cluster expansion (NLCE) for the staggered structure factor at half-filling and
U/t = 8.2(5) [93], we deduce a local (spin) temperature of kBTs = 0.57(3)t at half-filling. The
global density temperature kBTd = 0.63(3)t, obtained from fitting NLCE data to the singles’
density profiles, yields a similar result.
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Chapter 5 Magnetic Correlations in the Two-Dimensional Fermi-Hubbard Model

Figure 5.7: Staggered and uniform spin structure factor. We record both the uniform (blue) and
staggered (red) spin structure factor as a function of the chemical potential µ. For comparison, we also
show the local magnetic moment, C00, as obtained from the mean singles density (black). The data was
taken with t = 224(6) Hz and U/t = 8.2(5). The two dashed lines highlight the centres of the potential
bins used for Figure 5.9. These results have been published in [159].

5.3.4 Decoherence of the Evolution

To investigate the effect of dephasing and decoherence on the spin correlations, we add a
variable hold time of length thold directly after freezing the in-plane lattices to 60Erec and
quantify the amount of spin correlations by both the uniform and staggered spin structure
factor, see Figure 5.8. The local moment does not depend on the duration of the hold time. We
can only access the pure z-correlations if both π/2-pulses are off, which limits us to measuring
the uniform structure factor. With an exponential decay constant of T1∗ = 9.3(2.8) s, the
signal loss of the longitudinal spin correlators as quantified by the spin structure factor Sz0
is negligible. The transverse xy-correlations are accessed when only the second π/2-pulse is
turned on (blue data points). In this case, we observe a severe decrease in spin correlations,
which can be partially averted by adding a spin echo π-pulse after half the hold time (red data
points). It is surprising that the dephasing has such a large impact. This might indicate that
the atoms still experience a finite gradient during the hold time. Since the in-plane gradient is
typically cancelled over several consecutive time steps, in general it only works for the specific
times that were chosen for the calibration and when adding hold time one would have to
check whether a small gradient is introduced by this. The exponential decay times of the
staggered structure factor are larger as compared to the uniform structure factor, which is
unexpected as both quantify the decay of the transverse correlations. However it should be
pointed out that the fitted decay times depend on the local moment that we decided to fix to
the experimentally determined value. If the coherent manipulation of spin correlations was
not fully efficient, we would underestimate the staggered structure factor, which would in turn
reduce the extracted exponential decay constant. It is also possible that there is a relative
mismatch between the magnetic structure factors as obtained via an autocorrelation analysis
and the average filling, as the detection fudge factor enters quadratically and linearly, in the
respective cases. Furthermore, if the camera was not in its focus position, the magnification
that enters only the calculation of the magnetic structure factors would be wrong.

From this analysis we can conclude that in general the first π/2-pulse is beneficial, as the
transverse spin correlators are more prone to dephasing. By turning on the initial π/2-pulse, the
mean of the transverse and longitudinal spin correlations is measured. Furthermore, it appears
to be sensible to implement the spin manipulation scheme at an early stage in the experimental
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Figure 5.8: Decoherence and dephasing of magnetic correlations. Uniform (circles) and staggered
(squares) spin structure factor at half-filling as a function of the hold time in the deep detection lattice
configuration. The error bars quantify statistical deviations in terms of the standard deviation around
half-filling. The black dashed line indicates the local moment C00 as extracted from the singles density.
By adding a π-pulse after half of the hold time we realize a spin echo and therefore quantify the
decoherence without being affected by dephasing (red data points). In contrast, the full decoherence of
the transverse correlators leads to a much faster decay (blue data points).

sequence. Once the spin correlations have been mapped back into the measurement z-basis by
the second π/2-pulse, they are safe from dephasing and even the decoherence effect is minimal.
As the time in the deep lattice up to the spin spiral scheme can easily be kept well below 100 ms
the effect of decoherence and dephasing is minimal.

5.3.5 Individual Spatial Spin Correlators

In order to infer the individual spatial spin correlators Cij , we need to measure the spin structure
factor for various values of the quasimomentum and then perform a Fourier decomposition. As
indicated in the inset of Figure 5.9 a), we decided to probe the magnetic order along the diagonal
of the first BZ, where q = (q, q). At half-filling, the structure factor exhibits a minimum at q = 0
and peaks at qAFM = (π/a, π/a), as expected. We observe a qualitatively similar q-dependence
of the structure factor away from half-filling, the build-up of spin correlations is however
suppressed [159]. Note that at the time we took this data we could not invert the direction of
the in-plane gradient. Therefore, the data shown in the interval q ∈ [−π

a , 0] corresponds to an
imprinted wavevector with ksp ∈ [πa ,

2π
a ]. As the spin structure factor is purely real, we expect

the data to be symmetric in reciprocal space S(q) = S(−q). Deviations from this behaviour
would indicate that the evolution on the Bloch sphere on the timescale of the spin manipulation
tsp is not fully coherent. In particular, as the two data points at q = 0, corresponding to no

gradient evolution and the longest time t2πsp , coincide, the spin spiral rotation is fully efficient

at least up to t2πsp .5 The structure factor that we obtain for qa = π/2 is special as we expect
it to be equal to the local moment if the correlations are short-ranged, i.e. only nearest and

5
If the gradient direction changes (slightly) as a function of evolution time tsp and only matches the lattice
diagonal at the 2π-calibration point, we would not obtain the full signal at the π-point, even though the
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Figure 5.9: Spin structure factor versus quasimomentum. Spin structure factor (circles) and local
moment (solid black line) recorded along the diagonal of the first Brillouin zone at a) low filling
µ = −3.6t and b) at half-filling µ = 0, respectively. We plot the fit using the Fourier series given in
Equation 5.30 (solid red line). These results have been published in [159].

next-nearest neighbour correlations are significant. The four nearest-neighbour correlators
with strength C01 vanish at this particular point, while the next-nearest neighbour correlators
cancel each other, as two of them still carry the (initial) positive sign, while the other two have
flipped their sign. Indeed we observe that the experimentally determined spin structure factor
S( π2a ,

π
2a) approximately matches the local moment for both fillings presented in Figure 5.9.

Correlation Length Scale In the following, we estimate the length scale over which the AFM
correlations extend in our system. At half-filling, the Hubbard model with strong repulsive
interactions can be mapped onto the Heisenberg model [85] where the magnitude of spin
correlations decays exponentially with a characteristic spin correlation length ξ. Additionally,
in a homogeneous system the spatial spin correlators Cij of the unperturbed spin state depend
on the distance d = |rij |/a only. Therefore, at half-filling we obtain

|Cij | ≡ |Cd| ∝ e−da/ξ, (5.29)

which we use to model S(q, q) according to Equation 5.27. Under the assumption of the
exponential decay of the spatial spin correlators with distance, we fit the spin structure factor
as a function of quasimomentum q at half-filling and obtain ξ = 0.43(3)a.

Fourier Decomposition Furthermore, recording the spin structure factor as a function of q
provides access to the individual spatial spin correlators Cij . The value of the correlation

length deduced at half-filling suggests that spin correlators with d ≥
√

8 do not significantly
contribute to the measured spin structure factor. Rewriting S(q, q) along the diagonal of the
first BZ as a Fourier series, we obtain

S(q, q) ≈
3∑

n=0

fn cos(nqa), (5.30)

measurement at t
2π
sp matches the uniform structure factor.
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with f0 = C00 + 2C11, f1 = 4C01 + 4C12, f2 = 2C12 + 4C02, and f3 = 4C12. Using the
independent measurement of the local moment C00 from the density profile we are able to
extract all higher-spin correlators Cd up to a distance of d =

√
5 from the first four Fourier

components of the measured structure factor. Note that we do not assume the spatial spin
correlators to be governed by an exponential decay. The first three spin correlators are shown in
Figure 5.10 as a function of the chemical potential. We compare the nearest-neighbour correlator
C01 to data from NLCE calculations [93] for a temperature interval of kBTs = [0.54, 0.6]t.
We observe a small deviation for all chemical potentials, which might indicate that there is
a relative mismatch between the density and spin correlation results or that we are slightly
colder than expected. The next-to-nearest-neighbour correlator C11 is observed to contribute
significantly to the measured spin structure factor and possesses a positive sign as expected.
The obtained values of C02 and C12 are not shown, because they are mostly consistent with
zero within the 1σ error.

Figure 5.10: Fourier decomposition into spatial spin correlators. Extracted spin correlators as a function
of the chemical potential. The red and black shadings show NLCE data of the nearest-neighbour correlator
and the local moment for a temperature interval kBT/t = 0.54 to 0.6. These results have been published
in [159].

5.3.6 Local Spin Thermometry

Thermometry in strongly interacting fermionic lattice systems is especially difficult at low
temperatures when the density degree of freedom is essentially frozen, e.g. in the Mott insulator
regime for strong repulsion. In contrast, the staggered spin structure factor is a sensitive measure
of the emerging spin order with respect to temperature. Hence the coherent manipulation
of spin correlations offers a novel probe for the local temperature of the lattice gas, and is
even suited to characterize out-of-equilibrium systems. This is achieved by comparing the
temperature Ts inferred from the measured staggered structure factor at half-filling to the
temperature Td obtained from fitting NLCE data [34, 93] to the singles’ density profile.

A crucial step in the preparation of our Fermi-Hubbard simulator is the handover from the
dipole trap to the square lattice configuration, which unfortunately is never perfectly adiabatic.
One of the dominant limitations is the density redistribution, as it strongly affects the global
thermalization timescale, which becomes increasingly slow the larger the lattice depth gets [59].
Therefore, dynamics are an integral part of optical lattice experiments and in the following
we will investigate the loading process into the two in-plane lattices to obtain a timescale for
global thermalization. Figure 5.11 shows the measured temperatures Ts and Td as a function of
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the duration tload within which the in-plane lattice depth is increased from 0Erec to 6Erec using
a sine-squared ramp shape. The two independent thermometers agree well for loading times
larger than 0.5 s, where both increase linearly with a slope of 0.18(5)t/s. We interpret this as
genuine heating caused by light-induced scattering of the in-plane lattice beams.6 To further
support this, we compare this slope to the background heating rate 0.37(5)t/s, obtained by
holding the equilibrated cloud at the final lattice depth. Under the assumption that residual
heating is proportional to the integrated intensity of the lattice beams seen by the atoms
[169], we expect the heating rate when holding to be twice as large as the one during lattice
loading (sine-squared ramp shape). Our data supports this interpretation and we conclude
that the main source of heating is related to the in-plane lattices. The linear increase in the
spin temperature Ts over the full range of tload suggests that the spins are in local equilibrium
for all our measurement data. At short quench times, the density temperature deviates from
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Figure 5.11: Equilibration in the spin and density sector. a) We show the density temperature Td and
the spin temperature Ts as a function of the duration tload. The data suggests that density and spin
degrees of freedom reach thermal equilibrium for tload > 0.5 s. The red dashed line is a linear fit to
Ts, which we compare to an extrapolation using half the heating rate measured by holding at the final
lattice depth (blue solid line). b), c) Averaged density profiles at tload = 0.1 s and tload = 0.5 s suggest
that equilibration is related to density redistribution towards the trap centre. These results have been
published in [159].

the linear trend. Since Td is extracted from the entire density profile, we conclude that the
cloud has not reached global equilibrium. This is reflected in the density redistribution shown
in Figure 5.11 b) and c), which occurs as a consequence of the slight change in the harmonic
confinement when handing over the atoms from the dipole trap to the three-dimensional lattice
configuration. Therefore, to obtain a cold cloud in thermal equilibrium it is crucial to match the

6
In principle, intensity or phase noise of the lattice lasers is also a possible source for heating [168]. This effect
should however be minimal in our case, as we had exchanged the RF source of both AOM driver boxes from a
VCO module to a Marconi 2024 Signal Generator with significantly reduced linewidth and less prominent
sidebands.
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trap confinement as well as possible in order to minimize the time that the atoms are exposed
to the residual heating. Note that the density temperature in a system that is not in global
equilibrium is not a meaningful quantity, and we only show it in Figure 5.11 to determine the
critical timescale, where the two thermometers start to deviate from each other. With this
equilibration study we confirm that the spin correlation results presented above are obtained
from a thermalized cloud with a reliable temperature estimate for arbitrary filling. We conclude
that residual heating in our system caused by the lattice lasers does not only destroy spin
correlations of entangled states, but is also reflected in the global density temperature, which is
mostly determined by the slope of the equation of state in the wings of the cloud. Furthermore,
we have observed that the timescale for global thermalization, which is on the order of 500 ms,
is considerably longer compared to the local equilibration timescale in the spin sector.
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CHAPTER 6

Magnetic Correlations in the Bilayer
Fermi-Hubbard Model

In the past decades the research with strongly-correlated fermions in optical lattices has mostly
focussed on the two-dimensional (2D) Fermi-Hubbard model, due to the anticipated connection
to high-Tc superconductivity observed in the cuprates [170]. In particular, recent experimental
advances pushing the resolution limit down to a single site have fuelled the investigation of the
2D Fermi-Hubbard model. Real materials, however, are rarely two-dimensional, but instead
compose of several coupled layers. Therefore, we have extended our experimental setup by
implementing a superlattice along the vertical lattice direction. This allows us to precisely
control the tunnel coupling, t⊥, between a pair of neighbouring layers. The strength of this
additional tunnelling process has been predicted to drive a crossover from a Mott insulating
phase with antiferromagnetic correlations within the layer to a band insulating state, where
interplanar singlets form along the vertical bonds. This competition in the magnetic ordering
has been studied theoretically by various techniques including DMFT, DCA and DQMC [42,
48, 49].

In this chapter I will explain the main steps to prepare a bilayer lattice system including
the characterization of the Hubbard parameters. We detect magnetic intralayer correlations
with the technique that was introduced in Chapter 5. To access the interlayer spin correlator,
we implemented a similar protocol along the vertical direction. By inducing singlet-triplet
oscillations and subsequently merging the two layers [59] we were able to quantify magnetic
ordering along the vertical bonds and could thus complete our toolbox for the characterization
of magnetic correlations in the bilayer Fermi-Hubbard model. Parts of this chapter have been
published in [171].

6.1 Experimental Sequence to Prepare a Bilayer System

In the following, I will explain the fundamental steps for preparing a bilayer system close to
half-filling with repulsive interactions starting after the evaporative cooling in the dipole trap.

6.1.1 Preparation of a Single-Band Band Insulator

In order to prepare a band insulating state in the long-wavelength vertical lattice, we need
a high filling factor n close to unity. For this reason, the handover from the dipole trap
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to the in-plane lattices takes place at a moderate attractive interaction, U79 = −1.724(1)t.
Furthermore, the loading scheme of the vertical lattices is optimized to obtain a large atom
number in a single layer by reshaping the cloud with the help of the long-wavelength lattice to
occupy only every other layer of the short-wavelength lattice.

Second Plane Loading Scheme A schematic showing the laser powers for the relevant beams
of the second plane loading scheme is presented in Figure 6.1. When turning on the infrared z-
lattice to around Vz,r = 60Erec within 200 ms, prior to the long ramp up of the short-wavelength
lattice, the atom cloud at the end of the dipole trap evaporation is separated into several
horizontal layers with a distance of ∆z = 2az = 2.12µm. In the next step, the short-wavelength
lattice depth is increased to Vz,r = 120Erec in 3 s and since the vertical superlattice is in the
asymmetric configuration we obtain a clean transfer of the atoms to every other plane of
the short-wavelength lattice. The handover between the vertical lattices was optimized by
introducing an asymmetric ramp shape1 to both the long-wavelength z-lattice and the dimple
beam of the dipole trap. Consequently, the atoms are held longer in the planes defined by the
infrared lattice until the green lattice has reached a sufficient amount of power.

Figure 6.1: Second plane loading schematic. The solids lines indicate the beam powers for the second
plane lattice loading scheme, which is completed when every other plane of the short-wavelength lattice
is occupied. Without this scheme (dotted lines) the atoms are directly transferred from the dipole trap
to the short-wavelength lattice and hence, all planes with a spacing of ∆z = az are occupied. The small
insets show the lattice potential along the z-direction and the resulting occupation in case of the second
plane loading scheme.

This protocol is advantageous as we do not throw away the atoms residing in every other
plane, but instead the atom cloud is reshaped along the vertical direction by the long-wavelength
lattice beforehand. Figure 6.2 visualizes the redistribution of atoms over the horizontal layers as
a consequence of the second plane loading scheme. By applying the monolayer tomography we
resolve the occupation of individual layers with a narrow RF pulse with a width of ∆RF = 500 Hz.
Without the second plane loading scheme (dotted lines in Figure 6.1), all lattice planes of
the short-wavelength lattice are occupied and therefore the spacing amounts to ∆z = az only.
While, with the second plane loading scheme enabled, we observe that only every other plane is

1
The ramp shape is a sine to the power of six.
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Figure 6.2: RF tomography resolving the horizontal layers. Using a narrow RF transfer in combination
with a magnetic field gradient, we resolve the total atom number of individual horizontal layers and
observe, that, with the second plane loading scheme enabled (blue data points), only every other plane
is occupied. The sequence schematics corresponding to the two cases shown are given in Figure 6.1 as
the solid and dotted lines, respectively. The data represents a single scan of the centre frequency of
the RF tomography pulse with a spacing of 50 Hz, where data points within a window of 100 Hz have
been averaged. The solid lines show the result of a fit consisting of several flat-top line shapes with an
equally large spacing and are meant as a guide to the eye.

occupied, which does not only increase the spacing to ∆ = 2az, but also significantly increases
the atom number in the occupied layers.

Characterization of the Band Insulator in the Harmonic Trap Once the atom cloud has been
separated into several independent layers by the vertical z-lattice, both infrared in-plane lattices
are ramped up to Vxy,r = 6Erec in 500 ms. They create a square lattice structure within the
plane, thus realizing the two-dimensional Hubbard model. Freezing the motion of the atoms
at this point and comparing their density distribution to the theoretically predicted density
equation of state n(µ), allows us to characterize how close we are to the band insulating regime
in the centre of the harmonic trap.

Having precisely calibrated the trap potential V (x, y) in Section 4.3, we can bin the density
distribution of a single horizontal layer n(x, y), as shown in Figure 6.5 a) and d), into equipo-
tential regions and fit the density equation of state simulated with DQMC in combination with
LDA to the resulting data n(µ). Figure 6.3 shows the binned density n(µ) averaged over 10
realizations selected out of a total of 30 data sets.

From the fit to the DQMC theory data, we obtain the temperature T and the global chemical
potential µ0, which together determine the maximum achievable doubles filling in the centre
of the harmonic trap. This is a relevant quantity as it characterizes how close we are to a
band insulating state. The Hubbard interaction parameter U was calibrated beforehand by
performing RF spectroscopy (see Section 6.2.2) and is fixed to U79 = −1.72t for the fitting
procedure. In addition, the fit of the density equation of state provides us with the individual
detection fudge factors for singly and doubly occupied sites, σS and σD. They account for
atom loss processes, e.g. light-assisted collisions, as well as imperfections in the RF and MW
transfer pulses and in the (calibration of the) absorption imaging. The resulting fit parameters
corresponding to the data shown in Figure 6.3 are

kBT/t = 1.97(6), µ0/t = 6.03(6), σD = 0.483(8), σS = 0.806(18). (6.1)
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Figure 6.3: Initial state characterization in the harmonic trap. We resolve the density within a single
layer of the vertical lattice of our initial state in the harmonic trap. The solid lines indicate the DQMC
theory data that was fitted to our experimentally determined density distribution in the harmonic trap
under the assumption of the local density approximation. Since the interaction strength is fixed the free
fit parameters are the temperature T , the global chemical potential µ0 and the individual detection
fudges for singly and doubly occupied sites. The error bars represent the standard error that results
from binning the filling in steps of ∆µ = 100 Hz.

The total filling per spin state in the centre of the trap potential amounts to n = 0.906(16).
However, the on-site interaction is still set to slightly attractive and the sudden switch to a
strong repulsive interaction as necessary for the bilayer experiment will decrease the filling.
Furthermore, the size of the region as defined by the DMD potential, which is discussed in the
next section, will also affect the quality of the initial band insulating state.

Potential Reshaping with the DMD In order to separate the high filling region in the centre
of the trap from a low filling reservoir we employ a digital micromirror device (DMD), which
allows for arbitrary shaping of the potential landscape by adding a repulsive optical potential,
see Section 4.4. The spatial separation is important for splitting the band insulator as it
involves switching the on-site interaction U from attractive to repulsive, which would increase
the cloud size and hence lower the filling in the centre. The DMD potential also defines the core
region, where we analyse the spin correlations after splitting the single-band band insulator
into a bilayer system.

Without the DMD potential, the combined trap geometry in the centre of the three-
dimensional optical lattice is approximated by a harmonic potential, as visualized by the
blue line in the upper left and right part of Figure 6.4. To separate the high filling core, the
DMD applies a repulsive potential to the region defined by 500 Hz ≤ Vlatt(x, y)/h ≤ 3500 Hz
and indicated by the black dotted lines, which pushes atoms outwards, while at the same time
creating a steep barrier at the boundary of the core region. A sketch of the DMD potential
along the x-direction as well as the combined potential of the optical lattices and the DMD
light is shown in the upper right of Figure 6.4 as the red and black solid line, respectively.

In order to facilitate the density redistribution, the DMD potential is ramped up in the same
time step as the in-plane lattices, followed by a hold time of 100 ms to ensure that the density
is stationary. The motion in the vertical direction is frozen by the short-wavelength z-lattice
for the whole duration as shown in the middle panel of Figure 6.4. To analyse the density
distribution at this point, we quickly increase the lattice depth of the in-plane lattices, which
freezes the motion also within the plane. This allows us to turn off the DMD potential, as the
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Figure 6.4: Loading the band insulator with the DMD. In the upper row we show how the potential
in the three-dimensional lattice configuration (blue solid line) is altered when applying a repulsive
DMD potential (red line) to the region indicated by the black dotted lines and defined by 500 Hz ≤
Vlatt(x, y)/h ≤ 3500 Hz. The black solid line represents the sum of both terms. Note that the potentials
shown represent only sketches, whereas when creating the DMD potential for the experiment, we employ
the lattice potential beyond the quadratic approximation as explained in Section 4.3. The false-colour
images in the lower row show the density distribution of doubly occupied sites in the three-dimensional
optical lattice configuration (left) and after ramping up the DMD potential (right) as sketched in the
middle panel.

atoms cannot move any more and to proceed to the detection part. The lower left and right
image in Figure 6.4 visualize how the density of doubly occupied sites is altered by adding the
DMD potential and we can clearly identify the region that is depleted by the repulsive DMD
light pushing atoms much further out.

In the following we want to further investigate the effect of the DMD potential on the
density, in particular within the core region of the trap Vlatt(x, y)/h ≤ 500 Hz. For this purpose
we analyse the density distribution averaged according to the underlying lattice potential
Vlatt(x, y)/h within equipotential bins with a spacing of 100 Hz. In the top (bottom) row of
Figure 6.5 we separately show the results for the distribution of doubly (singly) occupied sites.

So far, we have conducted our experiments in a harmonic trapping potential, where we could
individually fudge the spin densities when sampling the equation of state beyond the point of
half-filling. In contrast, for a homogeneous system this is not possible, since we cannot assign
an absolute chemical potential and hence we are unable to differentiate the detection efficiency
from a global variation in the filling factor. Instead, we calibrate a mean detection efficiency by
fitting the density distribution of the band insulator in the harmonic trap to DQMC theory
data, see Figure 6.3 and Equation 6.1. The scaling factors for the density of single and doubly
occupied sites fluctuate only slightly over the course of several weeks and common sources for
deviations are the detuning of the imaging resonance and the singles-doubles separation RF
pulse. We calibrate the detection efficiency before and after each data run.

In Figure 6.5 c) and f) we plot the density distribution shown in the other four subfigures,
binned according to the potential map of the initial lattice configuration with Vxy,r = 6Erec

and Vz,g = 120Erec and scaled according to the fudge factors given in Equation 6.1. We can
infer that the centre region containing around 5600 sites with an average filling of n = 0.85(1),
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Figure 6.5: Density distribution of the initial state. In the top (bottom) row we show the density
distribution of doubly (singly) occupied sites with and without the repulsive DMD potential. A
quantitative comparison is obtained from the binned density data in subfigures c) and f). The error bars
represent the standard error. The sharp boundary at V/h = 500 Hz is clearly visible and the density
within the core region is hardly affected by the DMD light.

is separated by a steep potential barrier from the rest of the cloud, which is reflected in the
abrupt change in the density when the DMD is on.

The DMD potential is designed to modify only the outer region of the trap, since our aim
is to accumulate as many atoms in the centre as possible. Applying a compensation to the
centre region is not beneficial, as it would increase the impact of light-assisted collisions, which
lead to atom loss. Furthermore, we have realized that the compensation potential, as seen
by the atoms, features random disorder on the length scale of several lattice sites, which is
disadvantageous when loading the in-plane lattices. Such random speckle might also explain
the reduction in doubles density in the centre of the atom cloud when turning on the DMD
potential, see Figure 6.5 c).

6.1.2 Splitting the Band Insulator

After the preparation of a band insulating state in the centre of our trap using the DMD, the
motion of the atoms is frozen by quickly ramping the lattice depths to Vxy,r = 60Erec. Since
we later want to split the band insulating initial state into a bilayer lattice by ramping up the
short-wavelength vertical lattice, we first need to handover the atoms occupying every other
plane of the green z-lattice to the long-wavelength lattice. For this purpose we ramp up the
1064 nm z-lattice to Vz,r = 120Erec within 50 ms and consecutively reduce the power in the
532 nm lattice to zero, see Figure 6.6. For the handover the frequency of the green lattice laser
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6.1 Experimental Sequence to Prepare a Bilayer System

is detuned by around 5 GHz from the symmetric configuration. Even though this corresponds
to a small phase deviation only, due to the high infrared lattice depth, the site offset is still
large enough to obtain a clean transfer to the lowest band of the long-wavelength lattice. This
was verified by measuring the band occupation after the handover in time-of-flight [137]. As
soon as the green z-lattice is off, the frequency of the corresponding laser source is shifted to
realize a symmetric double-well configuration, as necessary for the splitting part later on. As a
preparation for the fast quench of the interaction strength, the current of the fast Feshbach
coils is ramped up and the slow Feshbach coils are ramped down accordingly to keep the total
magnetic field at a constant value of around 207 G.
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Figure 6.6: Sketch of the experimental sequence to split the band insulator into two horizontal layers.
We ramp up the power of the infrared z-lattice from zero to 120Erec when the motion is frozen in all
directions. The handover from the short to the long-wavelength lattice is completed once the green
z-lattice is turned off. The second DMD potential is designed such that the atoms in the centre of the
trap realize the homogeneous Hubbard model. The two dotted lines indicate RF sweeps that exchange
the population of the |5〉 and |7〉 states as necessary for crossing the Feshbach resonance of the lowest
two magnetic hyperfine states located at around 202 G. The single-band band insulator is split into the
bilayer lattice configuration by ramping up the short-wavelength lattice in the symmetric superlattice
configuration. For the detection part, the motion of the atoms is frozen. The laser power for the optical
lattices are given in their respective recoil energy, while the DMD power is given in arbitrary units.

From Attractive to Repulsive Interactions In order to perform the splitting of the single-band
band insulator at strong repulsive interactions, we need to cross the Feshbach resonance between
the |7〉 and |9〉 states located at around 202 G, compare Figure 4.2. We avoid losing double
occupancies by moving the occupation of |7〉 to |5〉 with a broad RF sweep just before quickly
turning off the fast FB coils. The interaction switch is completed, when the population is
transferred back from |5〉 to |7〉. Since we did not observe any difference in the final doubles
fraction, when the interaction switch is performed with the in-plane motion frozen or unfrozen,
we decided to ramp down the in-plane lattice depth to Vxy,r = 6Erec already beforehand (see
Figure 6.6) to reduce the absolute value of the interaction strength. In order to preserve the
high filling in the central part, the DMD is ramped up featuring a barrier with a height of
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Chapter 6 Magnetic Correlations in the Bilayer Fermi-Hubbard Model

8 kHz at the boundary of the core region. Furthermore, the DMD potential compensates the
strong confinement, mostly imposed by the infrared z-lattice, to achieve an approximately
homogeneous central part. Once the interaction strength has been set to strongly repulsive, the
green z-lattice is slowly ramped up to a final value of 13Erec ≤ Vz,g ≤ 28Erec, which determines
the coupling strength, t⊥, between each two layers emerging from splitting the planes of the
long-wavelength lattice. To prepare a SU(2) symmetric state in spin space, it is essential to
cancel residual magnetic field gradients in all three directions. Particular care must be taken
for the vertical gradient when splitting the band insulator, as it would lead to a spin-imbalance
in the horizontal layers. For the detection we freeze the motion by ramping up the power of
the in-plane lattices and the green z-lattice within 150µs.

Single Plane Detection As a consequence of splitting the single-band band insulator into two
horizontal layers, the spacing between occupied layers along the z-direction is reduced by a
factor of two. Therefore, the detection of the density distribution by the monolayer tomography
is more challenging. It is, however, crucial to minimize the contribution of neighbouring planes,
since they would partially cancel the signal of the in-plane spin correlations while at the same
time increasing the measured density. In order to check whether the density that we detect
is contaminated by contributions from neighbouring planes, we measure the density of singly
occupied sites for the initial band insulating state in the harmonic trap in two cases, namely
with and without the second plane loading scheme that was introduced in Section 6.1.1.
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Figure 6.7: Monolayer detection fidelity. We compare the density distribution of singly occupied sites
with and without the second plane loading scheme, for reference see Figures 6.1 and 6.2. Without
applying the scaling factor σS, the measured densities coincide and hence we conclude that there are no
significant contributions from neighbouring planes even when the spacing between layers amounts to
∆z = az corresponding to 630 Hz only. Note that as expected the central filling is larger with the second
plane loading scheme.

To be able to judge on the contribution of neighbouring planes we apply the exact same HS1
tomography pulse with a sweep width of ∆RF = 500 Hz in both cases. The resulting equations
of state of the singly occupied sites are shown in Figure 6.7 and they coincide with each other
within error bars. This is furthermore reflected in the scaling factors that we obtain from the
fit to the DQMC theory data

σS = 0.822(16) for ∆z = az, (6.2)
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6.1 Experimental Sequence to Prepare a Bilayer System

σS = 0.809(13) for ∆z = 2az, (6.3)

which agree within errors. Therefore, we conclude that contributions from neighbouring planes
are negligible. In addition to the fudge factors, the fit also determines the temperature and the
chemical potential in the centre of the trap,

kBT/t = 1.77(4), µ0/t = 4.50(5) for ∆z = az (6.4)

kBT/t = 1.98(3), µ0/t = 5.38(4) for ∆z = 2az. (6.5)

While with the second plane loading scheme the atom number and in turn the chemical potential
in the trap centre is clearly higher, the temperature increases slightly as well. It might be
beneficial to perform th handover from the dimple to the infrared z-lattice even slower, compare
Figure 6.1, to minimize this increase in temperature.

Symmetry Point of the Vertical Superlattice When we ramp up the green z-lattice in order
to split the band insulator, we want the vertical superlattice to be in the symmetric double-well
configuration to obtain two equally populated layers. There are several ways to calibrate the
symmetry point in the experiment and an overview of the techniques we applied is given in
[137]. Here, I will present our most relevant protocol to get an accurate calibration of the
symmetry point using the experimental sequence that is presented in Figure 6.6.

When we split the layers of the long-wavelength lattice by ramping up the green z-lattice to
Vz,g = 15Erec, the double-well that is formed, is strongly coupled, t⊥ = 3.4t, where t = 174 Hz.
The on-site interaction between atoms with opposite spins is repulsive U = 6.8t = 2t⊥. We vary
the site offset, 2∆, of the double-well potential along the z-direction by shifting the frequency
of the green lattice laser via its slow Piezo input that is controlled by the VCO of the offset lock
UVCO. We measure the average site occupation of the left and the right layer in two separate
experimental realizations. The result for various superlattice phases is shown in Figure 6.8 and
we observe that the atoms predominantly occupy either the left or the right layer when ∆ is
large as compared to the vertical tunnel coupling t⊥. In between we realize the symmetric
double-well configuration, where the initial band insulating state is mostly split into singly
occupied sites.

We compare our experimental data for two coupled layers to the expectation for a simple
double-well potential, as discussed in Section 3.2.3. The tunnel coupling t⊥ and the interaction
strength U are fixed to the values realized in the experiment, see Section 6.2. We find nice
agreement if we apply the following scaling between the site offset ∆ and the control voltage of
the VCO

2∆/h

UVCO
= 987(41)

Hz

V
. (6.6)

Note that apart from the standard detection fudge, no further amplitude scaling was applied to
the density data. Nevertheless, we have to treat the quantitative results with caution, since we
compare our experimental situation of two strongly coupled layers with a simple double-well
potential.

109



Chapter 6 Magnetic Correlations in the Bilayer Fermi-Hubbard Model

−2 −1 0 1 2

∆/t⊥ = (UVCO − 5.7 V)/1.2 V

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F
il
li
n

g

nLeft
↑↓

sLeft
↑

nRight
↑↓

sRight
↑

Figure 6.8: Symmetry point of the vertical superlattice. We measure the probability to find a single
spin-up particle or a doubly occupied lattice site for both the left and the right layer. The site offset
of the double-well potential along the vertical direction is varied by tuning the voltage of the VCO
controlling the frequency of the short-wavelength lattice laser. The data shown results from a single
measurement, therefore no statistical error bars are given. The solid lines represent the theoretical
expectation for a pure double-well potential (compare Figure 3.5) with the only free parameter being
the scaling between the site offset ∆ and the voltage UVCO.

6.2 Characterization of the Hubbard Parameters

The main features of the superlattice setup along the vertical z-direction have already been
described in Section 4.1.3 and extensive information may also be found in the PhD thesis of
my colleague Marcell Gall [137]. Therefore, this section mostly focusses on the characterization
of the superlattice potential in terms of the interaction strength, U , between particles with
opposite spin and the tunnelling amplitude between neighbouring layers, t⊥. The tunnelling
amplitude within the layer, t, is inferred from a band structure calculation. In the end of
this section, I will also give an estimate on the strength of higher-order effects including
density-induced tunnelling and nearest-neighbour interaction.

6.2.1 Vertical Tunnelling Amplitude

The additional parameter that is introduced to formulate the bilayer Fermi-Hubbard model is
the vertical tunnelling amplitude, t⊥, between the two layers forming a symmetric double-well
along the z-direction. It is calibrated by inducing Rabi tunnel oscillations along the vertical
direction. In Figure 6.9 the main stages of the measurement protocol are depicted. Note that
the motion in the xy-directions is frozen for the whole sequence. After loading only every
second plane of the short-wavelength lattice along z-direction, we ramp up the infrared lattice
to form symmetric double-well potentials. Also, as part of the preparation, we reduce the
barrier height, however only thus far that the atoms still do not tunnel yet. This step enables us
to initialize the Rabi oscillations more quickly by ramping down the green z-lattice depth to the
lattice configuration that is to be investigated within 150µs. After a variable hold time TRabi,
we freeze the motion by ramping up the green z-lattice to 120Erec within 1 ms, while at the
same time reducing the infrared z-lattice to zero. We selectively remove the occupation of every
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Figure 6.9: Schematic of the protocol to measure Rabi oscillations. We induce Rabi tunnel oscillations
along the z-direction by abruptly reducing the barrier height of the double-well potential. After some
variable hold time TRabi, we freeze the motion by quickly ramping up (down) the green (infrared)
z-lattice within 1 ms. We ramp up the infrared z-lattice in the asymmetric double-well configuration to
selectively remove every second plane with the additional help of a magnetic field gradient. Detection
takes place in the short-wavelength vertical lattice only.

second layer by ramping up the infrared lattice in the asymmetric double-well configuration. As
compared to the second plane loading, the two in-plane lattices provide additional confinement.
Therefore, we need a vertical magnetic field gradient to efficiently remove the occupation
without loosing atoms in the planes that we want to keep. This step is crucial since it allows us
to resolve the tunnel oscillations between two neighbouring layers by imaging the whole cloud
without the need to resolve a single layer using the tomography scheme introduced in Section
4.2.4. In the last step we freeze again the motion in z-direction by increasing the power of the
short-wavelength lattice laser and detect the remaining atoms.

Rabi Oscillation Frequency Since the individual double-well potentials do not couple to each
other, we may describe the dynamics in the reduced space of a left and right localized Wannier
state |L〉 and |R〉. Furthermore, since we load a spin-polarized cloud into the lattice, interaction
effects may be neglected. The Hamiltonian including a site offset of 2∆ then reads

Ĥ =

(
∆ −t⊥
−t⊥ −∆

)
. (6.7)

In the following, I want to relate the observed Rabi oscillation frequency fRabi to the double-well
parameters t⊥ and ∆. The left and right localized states |L〉 and |R〉 are not stationary states
of the full Hamiltonian including the tunnel coupling t⊥. They are however well suited to
express the time evolution of the full wavefunction [124]

|ψ〉 = cL(T ) |L〉 e−i/~∆T + cR(T ) |R〉 e+i/~∆T . (6.8)

The normalization condition requires the combined probability of being in either the left or the
right well to be equal to unity at any instant of time, |cL(T )|2 + |cR(T )|2 = 1.

Starting from the time-dependent Schrödinger equation, we arrive at two coupled first-order
differential equations for the time-dependent coefficients

i~
(
ċL
ċR

)
= −t⊥

(
cRe

2i/~∆T

cLe
−2i/~∆T

)
. (6.9)
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By combining these two coupled differential equations, we obtain(
c̈L
c̈R

)
− 2i∆

~

(
ċL
−ċR

)
+
t2⊥
~2

(
cL
cR

)
= 0. (6.10)

When we prepare a particle in the left well |ψ(T = 0)〉 = |L〉, which is not an eigenstate of the
Hamiltonian, it will oscillate back and forth between the two wells according to

|cR(T )|2 =
t2⊥
t2eff

sin2 (teff/~T ) and |cL(T )|2 = 1− |cR(T )|2 . (6.11)

Therefore, we conclude that the particle performs sinusoidal Rabi oscillations with frequency

fRabi = 2teff/h = 2

√
t2⊥ + ∆2/h (6.12)

and peak-to-peak amplitude

2ARabi =
t2⊥

t2⊥ + ∆2 . (6.13)

Data Evaluation In order to observe Rabi tunnel oscillations with a sufficient amplitude in the
experiment, it is crucial to be close to the symmetric double-well configuration, compare Figure
6.12 b). Therefore, we need to calibrate the symmetry point of the vertical superlattice before
we can observe any tunnel oscillations. In Figure 6.10 the result of a Rabi oscillation including
all atoms within the layers is shown for Vz,r = 120Erec and Vz,g = 13Erec. Even though the
oscillation was recorded for the symmetric double-well potential, the contrast is not perfect,
but typically reaches only around 50% for the global cloud. From the in-situ images revealing
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Figure 6.10: Global Rabi tunnel oscillation. Close to the symmetric double-well configuration, the atom
number NL in the left well oscillates with frequency fRabi = 2t⊥/h. The contrast reaches at most around
60% due to local dephasing.

the in-plane density distribution it is evident that the tunnel oscillations at different positions
within the layer dephase due to a spatial dependence of the tunnel frequency. Therefore, we
decided to evaluate the Rabi oscillations locally.

Local Evaluation of Rabi Oscillations To quantify the local dependence of the effective Rabi
frequency, we divide the in-situ image into a grid of 8×8 subregions with a size of approximately
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10µm× 10µm each. In these subregions we separately fit the tunnel oscillations and the local
contrast is rather high, which indicates that the regions were chosen small enough and that the
different double-wells stacked on top of each other hardly dephase. The latter is explained by
the small extent of the cloud in z-direction.

The resulting local fit parameters are shown in Figure 6.11. The amplitude ARabi reveals
the extent of the atom cloud, while the Rabi frequency fRabi seems to depend mostly on the
x-position. This might indicate that the source of the spatial variation are the vertical lattices,
since both laser beams forming the optical superlattice enter within the yz-plane (see Figure
4.3) and therefore the waist projected into the xy-plane is smaller in x-direction. Since the
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Figure 6.11: Local evaluation of Rabi tunnel oscillations. (a) The Rabi frequency fRabi depends on the
position within the xy-plane and varies by around 5% within the central part of the cloud. (b) The
local Rabi amplitude ARabi reflects the inhomogeneous density distribution in the harmonic trap.

effective tunnel frequency increases to the outside region of the cloud, we attribute the main
effect to the blue-detuned short-wavelength lattice, which determines the barrier height. In the
centre the barrier height is largest, which would explain a lower oscillation frequency.

The measurement of the effective Rabi frequency provides another tool to calibrate the
symmetric double-well configuration, since the oscillation frequency depends on the site-offset
and is minimal, when the tilt vanishes. We therefore measure the effective Rabi frequency
for different control voltages UVCO of the VCO, which determines the phase of the vertical

superlattice. We extract the oscillation frequency in the centre of the cloud f
(0)
Rabi as the mean

over those four subregions, which are the closest to the centre of mass of the cloud. The
dependence on the superlattice phase is shown in Figure 6.12. Under the assumption that the
site offset ∆ is proportional to the frequency of the offset lock, which is a good approximation
close to the symmetric double-well configuration, we fit the effective Rabi frequency using
Equation 6.12. Unfortunately, we can shift the superlattice phase by around 0.05π only,
therefore the range, where we are able to measure the effective Rabi frequency is limited.
Still, we can deduce the symmetry point, which is located at UVCO = 5.89(8) V and the bare

tunnelling amplitude in the centre of the cloud t
(0)
⊥ , which is given as half of the oscillation

frequency in the symmetric double-well configuration

t
(0)
⊥ /h = 846(3) Hz. (6.14)

The minute uncertainty on the tunnel amplitude in the central part derives from the confidence
interval of the fit, but we should keep in mind that the vertical tunnel amplitude varies by
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Figure 6.12: Rabi oscillations with finite detuning. We vary the phase of the superlattice around the
symmetric double-well configuration at UVCO = 5.9 V and observe how the Rabi frequency fRabi increases
according to Equation 6.12. The red line is a fit to the data assuming that the site offset ∆ scales
linearly with the control voltage of the VCO. The amplitude increases when approaching the symmetric
double-well configuration, as expected.

around 5% over the cloud’s extent.

In addition, we obtain a scaling dependence of the site offset on the control voltage. According
to Equation 2.22, the site offset 2∆ mostly depends on the long-wavelength lattice depth and
the phase of the superlattice potential, but is independent of the short-wavelength lattice depth.
For the data set presented, the infrared lattice depth was set to Vz,r = 120Erec and the scaling
that we obtain from the fit to the effective Rabi frequency shown in Figure 6.12 a) follows as

2∆/h

UVCO
= 770(60)

Hz

V
. (6.15)

Comparison to Numerical Simulation We have repeatedly calibrated the effective tunnel
oscillation frequency for different barrier heights, given by Vz,g, and the results are shown in
Figure 6.13. As expected for a quantum-mechanical tunnelling process, the coupling between
the two wells decreases exponentially with barrier height.
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Figure 6.13: Theory comparison for the interlayer tunnelling amplitude. In the experiment, we measure
the interlayer tunnelling amplitude by inducing Rabi oscillation between the two layers of a symmetric
double-well configuration. From the oscillation frequency in the centre of the cloud we infer the tunnelling
amplitude t⊥ and compare it to a numerical simulation of the double-well.
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We compare the experimentally determined tunnelling amplitudes to a numerical simulation of
a single double-well potential without interactions.2 A finite difference method was implemented,
which discretizes the position in z-direction with a spacing of around ∆z = 0.004az. Expressing
the potential energy in a basis of delta functions is straight forward, the kinetic energy however,
contains a second derivative, which effectively couples a position zn to its neighbouring grid
points zn+1 and zn−1 [172]

d2ψ(zn)

dz2 ≈ 1

∆2
z

[ψ(zn−1) + ψ(zn+1)− 2ψ(zn)] . (6.16)

An exact diagonalization of the Hamiltonian yields a set of eigenfunctions and their corres-
ponding eigenenergies. We continue with the two energetically lowest wavefunctions, which
are mixed by minimizing the spread of the two resulting Wannier states, which are localized
in the left and right well, respectively. In addition, we require the two Wannier states to be
orthonormal and to conform to the mirror symmetry of the potential, which fixes the sign
of the real-valued Wannier states. With these non-interacting Wannier functions we can not
only estimate the tunnelling amplitude between the two wells t⊥, but also investigate how the
on-site interaction U and the higher-order corrections V and ∆t depend on the double-well
potential, which will be discussed later, see Figures 6.16 and 6.17. Note that for a symmetric
double-well potential both the inter- and intra-dimer tunnelling amplitudes may also be inferred
from the bandwidth and the band separation of the minibands appearing in the superlattice
band structure, respectively, compare Figure 3.15.

In Figure 6.13 we compare our experimental results on the interlayer tunnelling amplitude
with the numerical simulation of the double-well and find nice agreement. However, we have
to keep in mind, that for the calibration of the interlayer tunnelling amplitude we load a
single-component Fermi gas into the lattice, which is intrinsically non-interacting. The same is
assumed for the simulation. By contrast, in the bilayer experiment the particles will interact
repulsively, which slightly broadens the (two-particle) Wannier wavefunction [81]. However, in
[82] it was argued that the tunnelling amplitude should not be affected by the broadening of
the two-particle Wannier function, as it derives from the single-particle part of the Hamiltonian.
Still, intuitively it is clear that an individual spin-down particle will tunnel faster in the presence
of a spin-up polarized Mott insulator with strong repulsive interactions as compared to an
empty lattice, as effectively the increase in on-site energy reduces the barrier height as seen by
the spin-down atom. The opposite effect, i.e. a reduction of the tunnelling amplitude, occurs for
strong attractive interactions. This effect is captured by the density-induced tunnelling [121],
which is a higher-order process of the local interaction term, see Section 3.4.3. The relevance of
this process for our implementation of the bilayer Fermi-Hubbard model will be estimated in
Section 6.2.3.

In this paragraph I have only presented the calibration of the intra-dimer tunnelling amplitude
of the superlattice potential along the vertical direction. The inter-dimer coupling is expected
to be negligible as the barrier height between the double-wells is approximately a factor of
three larger than the strongest barrier that we realize within a double-well. As the tunnel
coupling through a barrier scales exponentially with its height, the inter-dimer coupling should
be strongly suppressed. In addition, the spatial separation of lattice sites between double-wells
is larger than within a double-well, which further suppresses tinter with respect to tintra ≡ t⊥.

2
This simulation was initially set up by my colleague Marcell Gall.
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6.2.2 Interaction Strength

For a simple cubic lattice configuration, where Vx = Vy 6= Vz, the interaction strength felt by
atoms with opposite spin, may be calculated from the analytic solution for two interacting
particles in a harmonic trap [70]. This was already implemented by the earlier generation of PhD
students and is discussed in [60, 80]. Therefore, in this case we do not need to probe U directly,
but instead it is sufficient to measure the magnetic field to infer the scattering length, which in
combination with the knowledge of the lattice depths is enough to calculate the interaction
strength. In contrast, for a superlattice configuration the interaction strength is more difficult
to predict and we infer it from a narrow RF spectroscopy that resolves the difference in the
on-site interaction energy between the initial and the final state. Both techniques and their
results will be explained in the following.

Interaction Strength during Lattice Loading It is extremely relevant to obtain an accurate
calibration of the interaction strength U when loading the atoms from the dipole trap into
the xy-lattices, since it strongly influences the density distribution, in particular the relative
occurrence of singles and doubles. Therefore, the detection fudge factors for the densities
of singly and doubly occupied sites strongly depend on this interaction parameter, compare
Figure 6.3. For the intralayer spin correlations we perform an autocorrelation analysis, where
we multiply the magnetization of a single shot with its shifted version and therefore the spin
correlation results depend quadratically on the fudge factors. In contrast, the local moment, is
proportional to the density and consequently scales linearly with the detection fudge. Hence,
if the interaction strength during loading is not accurately known, there will be a mismatch
between the local moment and the spin structure factor even if all off-site correlators vanish.

The final lattice depths of the xy-lattice loading stage are Vx = Vy = 6Erec and Vz = 110Erec.
Therefore, we simply need to calibrate the magnetic field during the lattice loading stage
and then the interaction strength is calculated as explained above. The total magnetic field
strength is obtained from the resonance frequency νRF of an RF sweep with width ∆ = 3 kHz
on the |9〉 ↔ |7〉 transition. The sequence schematics is shown in Figure 6.14 a). Starting
spin polarized in |9〉, the RF sweep transfers the population to |7〉. Applying the microwave
detection routine, we obtain the signal of the residual cloud in OD2, which is shown in Figure
6.14 b).

Figure 6.14: Interaction strength calibration during lattice loading. We indirectly measure the total
magnetic field B via an RF sweep with width ∆ = 3 kHz on the |9〉 ↔ |7〉 transition.

There is a clear dip at 45.6374(1) MHz, which translates to a magnetic field strength of
B = 207.3965(5) G. At our experimental lattice depths, our simulation suggests an interaction
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strength of U79 = −386.1(2) Hz. With a tunnelling amplitude of t = 224(6) Hz this corresponds
to a moderate attractive interaction U79 = −1.72(5)t.

Interaction Strength in the Bilayer Configuration The interaction during the experimental
stage where the band insulator is split into the bilayer lattice configuration needs to be strongly
repulsive in order to obtain a sizeable amount of spin correlations. Since we are in a bilayer
lattice configuration it is not straight forward to calculate the Hubbard parameter U . We
can, however, measure the difference in interaction strength ∆U = |U79 − U59|, if we transfer
the spin down particles in state |7〉 to |5〉, as shown in the sequence schematics in Figure 6.15
a). To achieve this narrow transfer, we apply the same HS1 pulse as for the singles-doubles
separation that is part of our detection routine presented in Section 4.2.3, however with a
reduced sweep width of ∆RF = 500 Hz. To obtain a stable transfer, we synchronize the HS1
pulse to the power line and optimize the relative delay. It is not possible to calibrate ∆U in

Figure 6.15: Interaction strength calibration in the bilayer configuration. After selectively transferring
either the single or double occupancy in the bilayer lattice configuration on the |7〉 ↔ |9〉 transition, the
spin states are interchanged such that we obtain the signal of the transferred cloud in OD1 and the
residual atom signal in OD2. The microwave routine is identical to the one shown in Figure 6.14 a) and
is omitted here.

the lattice configuration used to split the bilayer, since the peak separation would be too small
to resolve. Therefore, we increase the xy-lattice depth, which in turn enhances the on-site
interaction in either spin mixture. In order not to split all the doubles, which are necessary for
the calibration routine, we introduce a small potential tilt to the double-well potential, which
hardly alters the wavefunction. Also, it proved to be helpful not to reduce the green z-lattice
depth to zero before splitting. In Figure 6.15 b) we separately show the atom number of the
transferred (OD1) and residual cloud (OD2), as well as the sum of both for a bilayer lattice
configuration with Vxy,r = 60Erec, Vz,g = 20Erec and Vz,r = 120Erec. The left peak corresponds
to the situation, where we transfer doubly occupied sites and the total atom number (black data
points) increases, as the doubles are not lost during the microwave sweep. When we transfer
singles, they appear in OD1 and therefore, the atom number in OD2 is expected to drop
correspondingly, which is the case for the right peak. From the centre frequency of the singles
peak, which is independent of the particular lattice configuration, we infer the total magnetic
field B = 194.825 G. At this field a peak separation of 1.07 kHz would also be obtained with a
simple cubic lattice configuration of Vxy,r = 60Erec, Vz,g = 11.8Erec and Vz,r = 0Erec. With
this knowledge we can not only infer the difference in interaction strength for different spin
mixtures, but also the absolute value of the Hubbard parameter U79, which then only needs
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rescaling to account for the in-plane lattice depth. We obtain the interaction strength for an
arbitrary z-lattice configuration by rescaling the experimentally determined value according to
the change in the Wannier function. The results are shown in Figure 6.16 b). When changing
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Figure 6.16: Accessible range of Hubbard parameters in the bilayer lattice configuration. The Hubbard
parameters t⊥ and U are numerically estimated using a finite difference method introduced on page
114f. As expected, the vertical tunnelling amplitude, t⊥, decreases exponentially with the barrier height,
which is proportional to the short-wavelength lattice depth. A knob to tune the on-site interaction
strength without changing the magnetic field, is provided by the in-plane lattice depth Vxy,r, which
impacts the extent of the wavefunction. The grey data set estimates the effective tight-binding Hubbard
parameters when additionally including higher-order interaction processes, see Section 6.2.3. The legend
applies to the whole figure.

the in-plane lattice depth Vxy,r, the wavefunction gets more or less squeezed, and therefore it
serves as a knob to tune the relative strength of the on-site interaction with respect to the
interlayer tunnelling amplitude t⊥. However, we only tune the in-plane lattice within a limited
range of Vxy,r = [5, .., 7]Erec to avoid higher-order tunnelling processes within the layer and to
keep the timescales similar and reasonably short.

6.2.3 Extended Hubbard Parameters

In Figure 6.17 the numerical results for the extended Hubbard parameters ∆t and V defined in
Section 3.4.3 are shown. For repulsive interactions, density-induced tunnelling as quantified by
∆t⊥ enhances the tunnelling amplitude in the double-well direction and we therefore compare it
to the bare tunnelling amplitude t⊥. For a low barrier height this effect is rather small, however,
when increasing the barrier the density-induced tunnelling seems to contribute substantially
to the overall coupling strength. This counter-intuitive behaviour is explained by the bare
tunnelling amplitude t⊥, which becomes very small at these large barrier heights, compare
Figure 6.16 a). The ratio ∆t⊥/t⊥ depends on the intralayer lattice depth, since the density-
induced tunnelling is an off-site interaction effect, which takes into account the compression of
the wavefunction in all spatial dimensions. In contrast, the bare tunnelling amplitude t⊥ does
not depend on Vxy,r since it follows from a non-interacting calculation for which the Wannier
functions in the three directions separate. In Figure 6.16 a) we compare the bare tunnelling
amplitude t⊥/t (black circles) to the effective tunnelling amplitude (t⊥ + ∆t⊥)/t (grey circles)
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for an in-plane lattice depth with Vxy,r = 7Erec. The deviation reaches at most around 0.18t.
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Figure 6.17: Extended Hubbard parameters in the bilayer lattice configuration. The higher-order
corrections to the Hubbard interaction term are numerically estimated using the finite difference method
introduced on page 114f. The parameter ∆t⊥ quantifies the amplitude of density-induced tunnelling
and directly modifies the bare tunnelling amplitude t⊥, compare Equation 3.73. Therefore its strength
needs to be compared to t⊥. In contrast, the interaction parameter V alters the effective interaction
shift between singly and doubly occupied sites and consequently has to be compared to U .

The higher-order interaction parameter V comprises several effects, i.e. pair-hopping, nearest-
neighbour interaction and spin-flips. On a qualitative level, it follows the behaviour of the bare
tunnelling t⊥, since both depend on the overlap of the Wannier states in the left and right well.
Therefore, it plays a significant role only for very low barrier heights, where the overlap is largest
and the bilayer configuration is well-described by individual double-wells. The interaction
parameter V will effectively reduce the on-site interaction strength felt by the atoms to U − V ,
as the expectation value of the energy of the singlet |s〉 is shifted by 2V in contrast to the |d+〉
state, which is shifted by V only, compare Equation 3.73. We have already discussed that the
on-site interaction depends on the short-wavelength lattice depth due to the compression of
the wavefunction. Including the effect of V will further lower the effective interaction in the
strongly coupled case, where the barrier is low, compare the black and grey circles in Figure
6.16 b). However, since we will compare our results on magnetic correlations to theory data
with a fixed U for all bilayer lattice configurations, the nearest-neighbour interaction is just a
small correction on top of the strong U dependence introduced by changing the barrier height.

6.3 Intralayer Spin Correlations in the Bilayer Fermi-Hubbard Model

In the following, I will discuss our results on magnetic intralayer correlations in the bilayer
Fermi-Hubbard model. The correlation analysis of the combined spin-up and -down densities
as well as the measurement of the local moment is implemented as in Chapter 5, with the
slight difference that the atoms do not experience a harmonic trapping potential. Instead we
aim at realizing the homogeneous Hubbard Hamiltonian with a constant chemical potential
by employing the DMD. Hence, the density as well as the local magnetic structure factor
are averaged over the entire central region containing around 5600 lattice sites. We compare
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our results to DQMC simulations to obtain an estimate of the spin temperature. Since both
horizontal layers show the same amount of magnetic correlations, as we have verified beforehand,
the results shown in the following are obtained from one of the layers only.

6.3.1 DQMC Theory Comparison

The DQMC simulations are performed using the Quantum Electron Simulation Toolbox
(QUEST)3 [17]. The bilayer lattice structure is implemented by adding a second orbital for
each lattice site. Simulations are performed for a homogeneous lattice with 8× 8× 2 sites with
2000 warm-up sweeps and 200000 measurement sweeps, and the number of imaginary time
slices is set to 25. The interlayer tunnelling is varied from t⊥/t = 0 to 5.5, while the on-site
repulsion is kept at U/t = 8. A small but finite doping is introduced by varying the chemical
potential over the range of µ/t = −2.5 to 0, which approximately corresponds to a filling factor
ranging from n = 0.4 to 0.5. The magnetic structure factor is obtained by a finite Fourier
transform of the spatial spin correlators [171].

The comparison to the DQMC theory data has to be treated with caution, as it relies on
several assumptions, which do not reflect the way we acquire our experimental data. In the
following I will discuss the most relevant deviations (to my knowledge).

• The DMD potential, which is designed to create a flat-bottom trap in the centre introduces
disorder in the local chemical potential [152]. Due to the finite numerical aperture of the
aspheric lens inside the vacuum chamber, which projects the DMD potential onto the
atoms, the disorder length scale will be on the order of several lattice sites, and hence much
larger than the correlation length of the antiferromagnetic order. As a consequence, locally
the lattice potential may still be considered homogeneous, even though we realize a variety
of fillings within the central part. Therefore, we do not realize the homogeneous Hubbard
model, as we have assumed for the DQMC simulations, but our results will represent
an average over locally homogeneous subsystems with varying chemical potential within
the layers. Opposing lattice sites of the two horizontal layers should however experience
the same DMD disorder and will only be imbalanced in chemical potential if we do not
split the single band band insulator in the symmetric double-well configuration. While
simulating the effect of potential disorder on the magnetic correlations is difficult with the
DQMC method due to the limited system size, real-space functional renormalization group
calculations (fRG) might be more suited [51], as much larger system sizes may be realized
(several thousands of sites). One of the drawbacks of fRG is that the on-site interaction
must be smaller than the bandwidth of the system, which is however approximately
fulfilled in our case.

• The interaction strength, U , changes when tuning the interlayer tunnelling amplitude
t⊥ via the short-wavelength lattice depth due to the compression of the wavefunction.
However, the theory comparison shown in the figures throughout this chapter corresponds
to a fixed interaction strength of U/t = 8.

6.3.2 Local Moment and its Dependence on the Freezing Timescale

For the detection of intralayer spin correlations in a single layer of the bilayer Fermi-Hubbard
model, the sequence sketched in Figure 6.6 already contains all the necessary ingredients. After

3
Fortran 90/95 package, version 1.44 available from https://code.google.com/archive/p/quest-qmc/
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ramping up the short-wavelength lattice from zero to a finite value, 13Erec ≤ Vz,g ≤ 28Erec,
the atomic density distribution needs to be frozen for the detection part. The timescale for
freezing the motion is critical, since we do not want the system to adjust to the change in
Hubbard parameters, when quickly increasing the lattice depths. In the previous chapter
a freezing timescale of the in-plane lattices of tfreeze = 1 ms was sufficiently fast to measure
magnetic correlations in the 2D Fermi-Hubbard model with t = 224 Hz. However, for the
implementation of the bilayer Fermi-Hubbard model, we realize interlayer tunnelling amplitudes
of up to t⊥/h ≈ 900 Hz. The largest tunnelling amplitude in any lattice direction determines
the critical response time of the atoms. As freezing the in-plane lattices has an effect not
only on t, but also on the interaction strength, it also needs to occur faster than the critical
timescale, which is given by the vertical tunnelling amplitude in our case. Therefore, we need to
be more restrictive on the freezing timescale for all optical lattices when t⊥ is large. In Figure
6.18 b) we plot the local moment C00, which is proportional to the singles filling, as a function
of the vertical tunnelling amplitude and investigate the impact of the freezing timescale.
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Figure 6.18: Local moment and its dependence on the freezing timescale. a) We investigate the
dependence on the freezing timescale for the strongly coupled bilayer lattice configuration, t⊥ = 5.2t.
The filling of singly and doubly occupied lattice sites suggests an exponential dependence on the inverse
of the freezing timescale. The dashed lines and the shaded regions indicate the settling values of the
filling as obtained from the exponential fits and the standard error, respectively. b) DQMC theory
data (grey shaded region) predicts a monotonic decrease of the local moment when tuning the vertical
tunnelling amplitude t⊥ in a bilayer system. Our experimental data with tfreeze = 1 ms deviates strongly
from the expected behaviour for large t⊥. If the freezing can not be considered instantaneous on
experimental timescales, some of the doubly occupied sites are split into single occupancies since the
repulsive interaction strength increases when ramping up the lattice depths. With a reduced freezing
time of tfreeze = 0.15 ms, the experimentally determined local moment follows the monotonous behaviour,
as expected. Since the standard error of the local moment is tiny, the vertical error bar mostly derives
from the uncertainty of the detection fudge. The error bar on the tunnelling amplitude t⊥ takes into
account systematic uncertainties in the lattice depth and the vertical superlattice phase, both of which
would increase the effective tunnelling amplitude if they deviated from their calibrated values.

We compare our experimental results to DQMC data at U/t = 8 and 1.0 ≤ kBT/t ≤ 1.4 and
a filling factor of n = 0.4 (grey shaded area), which predicts that the local moment decreases
monotonically with interlayer tunnelling amplitude. This is expected as we leave the Mott
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insulating regime by increasing the tunnelling amplitude. We can qualitatively understand
the impact of the freezing timescale in the double-well case. The ground-state composition,
starting from an equal mixture of singly and doubly occupied sites at U = 0 changes, when
introducing interactions and for increasingly strong repulsive interactions the singles fraction
increases at the expense of the doubles filling (see Figure 3.3, in particular the inset). When
we freeze the motion of the bilayer lattice configuration along all spatial directions, the ratio
U/t⊥ is suddenly increased by several orders of magnitude. If the freezing does not happen
fast enough as compared to the experimental time scales of the tunnelling amplitude, the
ground-state composition can (partially) follow the quench in the lattice depth, and hence
the amount of double occupancies reduces, as shown in Figure 6.18 a). While close to the
experimental timescale of around 1 kHz we observe a strong dependence of the filling on the
duration of the ramp to the detection lattice, the values start to settle off at around 3 kHz. We
fit an exponential decay (growth) to the filling of singly (doubly) occupied sites as a function
of the inverse freeze duration, which was inspired by the transition probability defined by the
Landau-Zener formula.4

In Figure 6.18 b) we investigate the effect of the freezing timescale as a function of the
interlayer tunnel amplitude, which dictates the critical experimental time scale. At large t⊥,
we observe a significant deviation of our experimental data with tfreeze = 1 ms from the DQMC
theory data. When reducing the time for freezing to tfreeze = 0.15 ms, the density decreases
monotonically with interlayer tunnelling amplitude as expected. However, we still observe a
slight discrepancy between theory and experimental data. One likely reason that might explain
the deviation in the trend is the on-site interaction strength U , which is fixed at U/t = 8 for
the theory data, while for our experimental results it decreases from U/t ≈ 9 to U/t ≈ 6.5
with the interlayer tunnelling amplitude, as shown in Figure 6.16 b). At very small interlayer
coupling, t⊥ < 1, the local moment is equal for the differently fast ramps to the detection lattice.
While this might indicate, that even the “slow” ramp with tfreeze = 1 ms may be considered
instantaneous on experimental time scales, it could also be linked to the fraction of doubly
occupied lattice sites, which is significantly lower in the regime of the two-dimensional Mott
insulator.

Note that also the uniform and the staggered magnetic structure factors deviate from their
theory expectation at large t⊥ if the freezing timescale is too slow. This was expected as both
are equal to the local moment in the absence of off-site magnetic correlations.

6.3.3 Intralayer Correlation Analysis

When splitting the band insulator into two layers, the repulsive DMD potential is designed to
create a flat potential in the centre region. Therefore, we expect to realize the homogeneous
bilayer Fermi-Hubbard model with a fixed chemical potential. In a first, global, approach, we
analyse the magnetic order by averaging over the centre region while generously excluding the
edge area. Unfortunately, the DMD light introduces disorder with a length scale of several
lattice sites to the potential landscape [152], which leads to large variations in the local density.

4
However, in contrast to the standard Landau-Zener formula, we expect the filling to level off also in the
non-adiabatic regime, which is shown in Figure 6.18 a), and therefore, we decided to plot the settling behaviour
for increasingly fast ramps as a function of the inverse ramp duration. The settling values of the filling are
given by the overlap of the experimentally prepared state with the respective double-well eigenstate. Another
deviation from the scenario described by the Landau-Zener formula is the initial starting configuration of the
sweep in the lattice depth, which in our case is not far away from the energy level crossing of the |d+〉 and |s〉
state.
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Therefore, in a second, local approach, we extract the dependence of the magnetic order on the
local singles density, see page 125.

Before discussing our results, I want to mention a few key steps, which are vital to the
measurement of intralayer magnetic correlations with our particular setup and which need to
be checked regularly. Firstly, it is extremely relevant to focus the camera to the examined atom
plane that was selected for the intralayer spin correlation analysis, as this has a direct impact
on the point-spread function and hence, the imaging resolution [148]. The focus position is
found by moving the camera along the imaging beam direction as the point where the largest
wavevectors are collected by the imaging system, see [60, 80] for details. We have empirically
found that the position of the camera needs to change by 1 mm, if the centre frequency of the
monolayer tomography shifts by around 870 Hz. Secondly, the magnification of our absorption
imaging setup needs to be determined accurately as it enters the calculation of the magnetic
structure factors. Furthermore, at the end of the splitting procedure, every plane of the
short-wavelength vertical lattice is occupied. Therefore, the transfer function of the RF sweep,
which selectively transfers an individual layer to a different magnetic hyperfine state, needs to
be narrow enough to ensure that the contributions from neighbouring planes are negligible.

Global Evaluation

The spin correlation analysis is implemented as introduced in Chapter 5. In addition, we
apply a low-pass filter to the spin densities in Fourier space, with kcut/2π = 0.22 a−1, which
is designed to cut off high-frequency noise, e.g. circular fringes appearing due to small dust
particles in the imaging beam path. The resolution limit of our vertical in-situ imaging setup
is quantified in terms of the maximum wavevector that is collected, kmax/2π = 0.2 a−1 [80]
and the chosen cut-off should always exceed this resolution limit in order not to throw away
the actual spin correlation signal. We have observed the intralayer correlations to yield more
reproducible values upon introducing the Fourier cut-off.

In Figure 6.19 we plot the local moment together with the uniform and the staggered
spin structure factor, as obtained from averaging over the centre region. In the absence of
magnetic off-site correlations all three quantities should be equal. However, the local moment is
calculated from the singles density directly, while the magnetic structure factors derive from an
autocorrelation analysis. Therefore, these quantities scale differently with the detection fudge
factors5 and any error in the determination of the detection fudges or the magnification of the
imaging system will imbalance these quantities even if there are no long-range spin correlations.
In contrast, the difference between the staggered and uniform spin structure factor does not
suffer from this issue and it will reveal without doubt whether off-site correlations are present.

We compare our experimental results to numerical simulations of the bilayer Fermi-Hubbard
model using the determinant quantum Monte Carlo (DQMC) method with U/t = 8 and
1.0 ≤ kBT/t ≤ 1.4 (see shaded areas in Figure 6.19). The simulation describes a system with a
constant filling factor n = 0.4. This value was chosen such that the local moment as calculated
by DQMC matches our experimental results. The deviation from half-filling is mostly due to
imperfections in the initial band insulating state with a typical filling factor of n = 0.85(1)
before the splitting takes place. In addition, the effective filling that we need to compare
our data to might be further reduced due to the rather large variations in the local chemical
potential, as the local moment does not grow linearly with the local filling factor.

5
The density scales linearly with the detection fudge, while for the calculation of the magnetic structure factors
the local densities are multiplied and therefore their scaling is quadratic.
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Figure 6.19: Intralayer spin correlations in the bilayer Fermi-Hubbard model. Staggered structure factor
(red) and uniform structure factor (blue) versus interlayer tunnelling amplitude t⊥. For comparison,
we also show the local magnetic moment (black). The data were taken with t = 174 Hz and U ≈ 8t.
The shaded areas are the results of DQMC calculations corresponding to the experimental parameters
covering the temperature range kBT = 1.0t–1.4t at filling factor n = 0.4. The error bars on the magnetic
structure factors denote the standard error of the spin correlation results in the central region of the
cloud. The error bars on the local moment C00 and the tunnelling amplitude t⊥ are discussed in the
caption of Figure 6.18. These results have been published in [171].

All three magnetic correlators shown in Figure 6.19 agree well with the experimental data.
At the temperatures reached in our experiment we do not expect long-range correlations. This
is reflected in the fact that the distances of the staggered and uniform structure factors to
the local moment are equal, which indicates nearest-neighbour correlations only, see Equation
5.30. We observe that the antiferromagnetic intralayer correlations disappear for increasing
coupling t⊥ between the two-dimensional layers [171]. In particular, for very large values of t⊥
the homogeneous and staggered structure factors approach the local moment and agree within
errors, which directly implies that within the layer there are only on-site spin correlations.
This result is in contrast to the three-dimensional Hubbard model, where due to the larger
coordination number the relative strength of quantum fluctuations is suppressed, and therefore,
a phase transition occurs at finite temperature, below which the system exhibits long-range
order [114]. However, increasing t⊥ does not simply add a new dimension for the atoms to
move, but also breaks the isotropy in the tunnelling amplitude. It has been predicted in
several publications including [43, 51, 113, 117] that increasing the interlayer coupling, t⊥,
beyond the intralayer tunnelling amplitude, t, drives the formation of singlets across the bonds
between the two layers at the expense of reducing magnetic correlations within the layers. We
have experimentally verified this by observing that the difference between the staggered and
the uniform magnetic structure factor, which quantifies magnetic order within the horizontal
layer, decreases monotonically with the interlayer coupling strength and completely vanishes
in the strong coupling limit. Furthermore, the local moment quantifies the occurrence of
single occupancies, which are an important prerequisite for the superexchange process that
is responsible for the antiferromagnetic correlations in the Mott insulator at low t⊥. The
reduction in the local moment when increasing the vertical coupling strength indicates that the
superexchange process does not dominate the magnetic properties in the strong coupling limit.
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Local Evaluation

Due to the large variations in the local chemical potential introduced by the DMD light, the
average singles density is not constant within the central region. The characteristic length
scale of the disorder potential is on the order of four to nine lattice sites, as everything beyond
should be taken care of by the atom feedback loop (see Section 4.4) and smaller structures
are prohibited by the limited numerical aperture of the lower aspheric lens within the science
cell (see Figure 4.6). Histograms of the local moment evaluated pixel by pixel in the centre
region of the trap are shown in Figure 6.20 for different vertical tunnelling amplitudes. As
the variations in the chemical potential do not depend on the interlayer tunnelling amplitude,
t⊥, the width of the distribution is a measure of the insulating nature of the corresponding
many-body state. The relative width is the smallest at large t⊥, indicating that the state is the
most insulating in this regime.
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Figure 6.20: Histograms of the local moment. We evaluate the density in the centre region without
applying any filter to the images (faint colour histogram) and investigate how the width of the distribution
changes (darker colour) when applying a Gaussian low pass filter with an RMS width of σ = 2 px
corresponding to around σ = 2.1a. For each histogram around 90 realizations were combined. The fit
results of the normal distribution corresponding to the darkly coloured lines are given as an inset.

The faintly coloured histograms represent the raw density data without averaging over
different realizations and without smoothing. Therefore, their width is affected by both the
imaging noise, e.g. shots noise of the camera or fringes, and the DMD disorder. Assuming
that the imaging shot noise is present on much shorter length scales than the DMD disorder
potential, we aim to disentangle these two effects by applying a Gaussian filter with RMS width
of σ = 2 px corresponding to about 2.1 lattice sites6. The absolute width reduces by 0.01 for
all three graphs shown in Figure 6.20. Using the DQMC method, we can simulate the local
moment as a function of the chemical potential, see Figure 7.1 b). This allows us to estimate
the RMS disorder amplitude that is felt by the atoms to around σµ = 0.65t. This number
appears small as compared to the on-site interaction, which should in principle limit the effect
of the disorder. However, the finite temperature and a filling of n = 0.4 only, strongly reduce
the insulating nature and therefore the density response is larger than naively expected.

Furthermore, the local evaluation of magnetic correlations allows us to correlate the local
density of singly occupied sites (local moment) with the amount of off-site correlations. However,

6
As the DMD disorder is mostly constant over time, in contrast to imaging noise, another approach would be
to average over different realizations instead of smoothing the density data.
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to observe the trend shown in Figure 6.21, we need to apply a Gaussian filter with an increased
width of σ ≈ 6.4a. We compare to DQMC theory data with a density n between 0.4 and 0.5.
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Figure 6.21: Local evaluation of the magnetic structure factor. We apply a Gaussian low pass filter
with an RMS width of σ = 6 px corresponding to around σ = 6.4a to the 2D map of both the local
moment and the magnetic structure factor before binning the data. The squares (circles) represent the
staggered (uniform) structure factor, with the error bar given as the standard deviation of the (filtered)
magnetic structure structure factor evaluated in regions where the local moment is within a certain
bin of width ∆C00 = 0.005. The dashed line indicates the expectation for purely on-site magnetic
correlations, hence, where Szq = C00 for any wavevector q.

For the largest vertical tunnelling amplitude shown, we do not expect to observe off-site
magnetic correlations, and indeed, our experimental data for the uniform and staggered magnetic
structure mostly agree within errors. However, they both deviate from the local moment, which
is indicated by the dashed line and which is lower for almost all data points with t⊥/t = 5.2(3).
The approximately linearly increasing trend, as expected from DQMC data, is clearly visible
on the staggered magnetic structure factor, although the slope seems lower.

There are several possible explanations for the deviations that we observe in Figure 6.21 at
large t⊥ (black data points). As discussed above, the experimental timescales in this case are
extremely fast. This implies a reduced upper bound on the freezing timescale and as discussed
above if the freezing occurs too slowly we will overestimate the amount of singles and hence the
local moment. Unfortunately we can not easily reduce the time for freezing further in order to
check whether it has a significant effect. However, it is also possible that we systematically
overestimate the magnitude of the magnetic structure factors for all values of t⊥, for example
due to errors in the magnification, the detection fudge factors or the summation point of the
spin correlations. These, error sources would however drag down both the uniform and the
staggered structure factor, which would render them asymmetric around the local moment for
medium and small t⊥. This would in turn indicate that the spin spiral does not properly rotate
all the spin correlators, which however can not be linked to decoherence since we verified that
Szq=2π = Szq=0.
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6.4 Interlayer Spin Correlations in the Bilayer Fermi-Hubbard Model

To complement the investigation of magnetic order in the bilayer Fermi-Hubbard model, this
section will focus on the determination of the interlayer spin correlations. Measuring the spin-
resolved occupation of both coupled layers is not possible in a single realization, therefore the
autocorrelation analysis presented in the previous chapter is not feasible. Instead, the general
idea is to adiabatically remove the barrier along the vertical direction and hence transform the
double-well potential into a single well [173]. According to the quantum adiabatic theorem [53],
the eigenstates of these two extreme cases are connected smoothly to each other, if the system
has enough time to adapt to the change in the Hamiltonian. In particular, the spin singlet
ground-state of the double-well potential transforms to a double occupancy with both particles
in the lowest band of the single well [153]. In simple terms, the measurement of the interlayer
spin correlations therefore simplifies to the determination of the doubles filling in a single layer.

In this section, I will discuss the implementation of this so-called merging procedure and
explain how to extract the spin correlator along the vertical lattice direction.

6.4.1 Merging along the Double-Well Direction

To detect the interlayer spin correlations we employ a scheme that was successfully implemented
in the group of T. Esslinger [59, 153] to measure the singlet-triplet imbalance in both dimerized
and anisotropic cubic two-dimensional lattices. A similar technique was already applied in 2010
to a bosonic system [173].

In Figure 6.22 the protocol is shown that allows us to measure the overlap of our experimentally
prepared state with the double-well ground state. After having split the long-wavelength lattice
layer into two coupled planes by ramping up the green z-lattice, we quickly freeze the motion
within the planes by ramping to Vxy,r = 30Erec within 1 ms. This projects the wavefunction
onto the double-well eigenstates if the ramp is fast enough. Next, we remove the barrier of the
double-well potential by slowly ramping down the green z-lattice to zero within 20 ms. This
step is called merging and was previously used to detect the left-right imbalance by switching
to an asymmetric double-well configuration prior to detection [174, 175]. In the symmetric case,
however, there is no distinction between left and right sites. Instead the ground state of the
double-well, which is a spin-singlet state for fermions, is mapped onto the two-particle ground
state of the underlying long-wavelength lattice well. Hence, by detecting the amount of double
occupancies averaged over the two in-plane directions, we obtain the ground state overlap of
our experimentally prepared state. In contrast, the spin triplet states require one particle to
occupy a higher band after merging, and will be detected as single occupancies as their spatial
wavefunction is antisymmetric and hence they do not experience an on-site energy shift, U = 0.

After slowly merging the vertical double-well potential, we further increase the in-plane
lattice depth to its final value, Vxy,r = 60Erec. At this point we could in principle proceed to
the detection part, however, we hand over the atoms to the short-wavelength vertical lattice to
facilitate the separate detection of singly and doubly occupied lattices sites.

Handover to the Short-Wavelength Lattice It is preferable to transfer the atoms from the
long- to the short-wavelength vertical lattice, where due to the smaller lattice spacing the
wavefunction is squeezed more tightly. Consequently, the on-site interaction is stronger, which
facilitates the distinction of singly and doubly occupied sites. In Figure 6.23 we compare the
resonance position of the doubly occupied sites as obtained from RF spectroscopy for the
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Figure 6.22: Schematic of the experimental sequence to merge the bilayer lattice. After splitting the
initial band insulating state into a bilayer lattice configuration, the xy-lattice depth is quickly increased
to 30Erec to freeze the motion within the layers. Consecutively, the symmetric double-well along the
vertical direction is transformed to a single well by slowly turning off the green z-lattice. The phase
of the vertical superlattice φg is adjusted to facilitate the transfer to the short-wavelength lattice, for
detection purposes. The laser powers for the optical lattices are given in their respective recoil energies
while the DMD power is given in arbitrary units.

infrared and the green vertical lattice. In the lattice configuration that is routinely used for
detection, i.e. Vxy,r = 60Erec and Vz,g = 120Erec, the singles and doubles peak (red data points)
are separated by around 1.8 kHz, which is easily resolvable by an RF sweep with ∆RF = 1.3 kHz.
For the infrared z-lattice, we try to compensate the larger lattice spacing by increasing the
lattice depth to Vz,r = 200Erec, however, the separation is still only on the order of a few
hundred Hz and we can not resolve the transfer of doubly occupied sites with the standard
sweep width.

To facilitate the transfer to the short-wavelength lattice after merging, we ramp the infrared
z-lattice to Vz,r = 200Erec, see Figure 6.22. Furthermore, it is crucial to shift the frequency of
the Verdi, once the short-wavelength lattice has been turned off, to adjust the phase of the
vertical superlattice for the handover. Note that we exploit the whole range of the offset lock
for this purpose, therefore the ramp has to be sufficiently slow. Once the frequency of the
Verdi lattice laser has been adjusted, the green z-lattice is slowly ramped up to Vz,g = 120Erec,
followed by turning off the infrared z-lattice. In Figure 6.24 we show the amount of singly and
doubly occupied sites that end up in every other plane of the short-wavelength lattice after the
handover has taken place. It is evident from the data that the superlattice configuration needs
to be sufficiently asymmetric, at least φg ≈ 0.04π. However, even when properly adjusting the
superlattice configuration according to Figure 6.24, the handover was not fully efficient, but we
lost around 15% of the doubles signal, while the number of singles remained approximately
constant.7 It was only later that we realized that there are no losses if we perform the handover
at a smaller depth of the vertical long-wavelength lattice, e.g. Vz,r = 120Erec.

7
This was quantified by imaging the whole cloud without applying the monolayer tomography and the
singles-doubles spectroscopy, once in OD1 without the MW and once in OD2 with the MW transfer.
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Figure 6.23: Comparison of the singles-doubles separation in the green and in the infrared vertical
lattice. We separate singly and doubly occupied sites with an RF sweep of width ∆RF = 1.3 kHz.
The transferred atoms appear in the first image, OD1, and the residuals end up in OD2. In the
short-wavelength vertical lattice, the doubles peak is shifted by around 1.8 kHz to the left of the singles
peak. In contrast, for the long-wavelength lattice the separation is reduced to only a few hundred
Hz. Therefore, it is much more difficult to obtain a clean and stable transfer of only doubly occupied
sites and we are not able to resolve the singles and doubles peak with the standard sweep width of
∆RF = 1.3 kHz.

While the interlayer correlation results from directly merging the double-well were still taken
in the short-wavelength lattice with the loss process in the doubles filling, we opted for the
detection in the infrared z-lattice for the singlet-triplet oscillation experiment, presented in
Section 6.4.2. To separate the signals of singly and doubly occupied lattice sites in the infrared
z-lattice, we had to reduce the width of the RF sweep by nearly a factor of two to ∆RF = 700 Hz.
The resulting RF spectroscopy signal is shown in Figure 6.25. The transferred atoms appear in
OD1 and the residuals in OD2. Even though the peaks corresponding to the transfer of either

Figure 6.24: Dependence on the superlattice phase for the handover. We vary the endpoint of the ramp
of the superlattice phase φg, see lower panel of 6.22, and observe that if we ramp up the short-wavelength
lattice too close to the symmetric double-well configuration we split all the doubles into singles. Note
that for the data set presented, we did not use the offset lock of the vertical superlattice, but instead we
directly tuned the voltage of the slow Verdi piezo to increase the accessible range.
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singly or doubly occupied sites (blue data points) are not clearly discernible, we still claim to
fully separate the two contributions as the amount of singles in the residual data (red points)
is not reduced at the resonance position of the doubles peak. However, as the window with a
high transfer efficiency is only around 300 Hz wide, magnetic field drifts of merely 1 mG will
already greatly affect the transfer. Therefore, the centre frequency of the sweep needs much
more frequent adjustment.

−2.0 −1.5 −1.0 −0.5 0.0 0.5

(νRF - 46.412MHz)/kHz

0.0

0.5

1.0

1.5

D
en

si
ty

[a
.u

.]

OD1

OD2

OD1+OD2

Figure 6.25: Singles-doubles separation in the long-wavelength vertical lattice. In the infrared z-lattice
even for the maximum lattice depth of Vz,r = 200Erec, the singles and doubles peak are separated by
around 800 Hz only. We set the sweep width to ∆RF = 700 Hz to obtain a rather flat plateau of around
300 Hz, where the transferred amount of doubles is constant and contains a negligible contribution from
singly occupied lattice sites. We reconstruct the individual doubles and singles peaks (black dashed lines)
by subtracting the constant offset from a Gaussian fit to the sum signal OD1+OD2 and by inverting
the singles dip visible in OD2, respectively.

Energy Eigenstates During Merging

I have already argued in simple terms that during the adiabatic removal of the barrier between
the two horizontal layers, the double-well ground state is mapped onto the ground state of a
single site, i.e. both particles occupying the lowest band. In the following, I want to investigate
the eigenstates of the initial and final configuration in more detail. In particular, as the mirror
symmetry of the double-well potential is conserved during merging, so are both the spatial and
spin symmetry of the wavefunction. Therefore, these symmetries serve as an indicator to connect
the eigenstates in the two limiting cases. Furthermore, I will discuss the on-site interaction
shift in the final state, which decides whether we detect a single or a double occupancy with
the narrow RF spectroscopy.

In Section 3.2 and in particular in Table 3.1, I have already investigated the double-well
Hamiltonian and its eigenstates in detail. For fermions the ground state is a spin-singlet
with a spatially symmetric wavefunction. In case of strong repulsive interactions the gap to
the threefold degenerate triplet energy is given by the superexchange constant J = 4t2⊥/U .
The spatial wavefunction of the spin triplet states is antisymmetric, and hence they do not
experience an interaction shift mediated via s-wave collisions, E3 = 0. The other two states,
E4 and E2, hardly contribute at low temperatures, see Figure 6.26.

In the ground state of two (interacting) fermions in a single-well, both particles occupy
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Figure 6.26: Sketch of the energy eigenstates during merging. When merging the double-well potential
into a single site by ramping down the short-wavelength lattice (faint blue), the eigenenergies transform
smoothly from Ei to Ẽi. The symmetry of both, the spatial (φ) and the spin (χ) wavefunction are
conserved. The second lowest energy eigenstate is a spin triplet and hence, threefold degenerate.

the lowest (ground) band,8 |↑↓, 0〉ge. If we are able to spectroscopically separate the double
occupancy in the ground band of a single well, from the other eigenstates, we indirectly measure
the ground state probability of our experimentally prepared state projected on individual
double-wells. We therefore need to calculate the on-site interaction shift for the eigenstates of
a single well including higher bands.

On-Site Interaction in the Presence of Higher Bands For large enough lattice depths we
may approximate a localized state in an optical lattice by the eigensolutions of the harmonic
oscillator potential, which are the Hermite-Gaussian polynomials [176]

φn(z) =
1√

2nn!
·
(mω
π~

)1/4
· e−

mωz
2

2~ ·Hn

(√
mω

~
z

)
, n = 0, 1, 2, ... (6.17)

Using this approximate solution we can estimate the on-site interaction felt by atoms in two
arbitrary bands, a and b. Note that even though the corresponding eigenfunctions φa(x) and
φb(x) might be orthogonal, they will in general still experience an on-site energy

Uab ∝
∫ ∞
−∞
|φa(z)|2|φb(z)|2dz, (6.18)

if there is a finite overlap of their probability densities [177]. The on-site interaction energy for
two atoms in arbitrary bands in units of the standard Hubbard on-site shift U00 ≡ U follows as

Uab
U00

=

∫∞
−∞ |φa(z)|

2|φb(z)|2dz∫∞
−∞ |φ0(z)|4dz

. (6.19)

If we insert the definition of the Hermite-Gaussian polynomials, we find that the relative
interaction strength Uab/U is independent of the experimental parameters such as the mass m
and the eigenfrequency ω, which represents the lattice depth in the harmonic approximation.
The numerical values are given in Figure 6.27.

8
Due to Pauli’s exclusion principle this is only possible for two particles with opposite spin.
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Figure 6.27: Band-dependent on-site energy. If the lattice depth is large enough, here V = 60Erec, the
localized states of an optical lattice potential (grey) are well approximated by the lowest harmonic
oscillator states n = 0, 1, 2 (black). Atoms residing in different band combinations experience a band-
dependent on-site energy shift (not shown), which is given in units of U00 ≡ U . Note that for two
atoms with opposite spin, which reside in different bands, the spatial wavefunction has to be properly
antisymmetrized according to the spin-statistics theorem. This drastically affects the on the on-site
interaction (see main text).

However, a proper many-body state has to conform to the spin-statistics theorem, and
therefore the states φab(z) = φa(z)⊗ φb(z) and φba(z) = φb(z)⊗ φa(z) will get mixed to form a
symmetric (+) and an antisymmetric (−) spatial wavefunction

φ±ab(z) =
1√
2

(φa(z)⊗ φb(z)± φa(z)⊗ φb(z)) , for a 6= b. (6.20)

There is a peculiarity about the on-site energy shift experienced by two atoms, which are
in a superposition state of two different bands. If we consider both the symmetric and the
antisymmetric superposition of two atoms in different bands a and b, we will find that the
on-site interaction is given by

U±ab
U

=

∫∞
−∞ |φ

±
ab(z)|2dz∫∞

−∞ |φ0(z)|4dz
=

1

2

∫∞
−∞(2± 2)|φa(z)φb(z)|2dz∫∞

−∞ |φ0(z)|4dz
=

{
2Uab/U for φ+

ab,

0, for φ−ab.
(6.21)

While the symmetric superposition seems to experience an enhancement in on-site energy by
a factor of two, the antisymmetric superposition does not have any on-site energy shift at
all. This was expected, since two ultracold fermions interact via s-wave collisions only, which
requires a spatially symmetric wavefunction [178].

This effect may also be understood using the Fock state description for a single site. For this
purpose we employ a set of basis states {|↑↓, 0〉ab , |↑, ↓〉ab , |↓, ↑〉ab , |0, ↑↓〉ab}

9 where the first
(second) entry specifies the occupation of the lower (higher) lying band with index a (b), as
indicated by the subscript. In a multi-band description of the Hubbard model for a single site,
the contact interaction does not only lead to an on-site energy shift, but extended Hubbard
parameters have to be considered, such as a spin flip process [178], which couples the two Fock
states |↑, ↓〉ab and |↓, ↑〉ab. The Hamiltonian in the restricted space, where the two particles

9
Similar to the description of the double-well (see Equation 3.24) we choose the ordering of the fermionic
creation operators in the basis state definition as ĉb↓ĉb↑ĉa↓ĉa↑ |0〉.
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reside in different bands, is given by10(
Uab −Uab
−Uab Uab

)
. (6.22)

By diagonalising this matrix we obtain the same result as above, namely that the on-site energy
vanishes for the triplet states. In Table 6.1 we summarize the results for the lowest four states
of a single well, including the on-site energy, the symmetries of the wavefunction and the state
description in second quantization.

Eigenenergy |φ〉 |χS,MS
〉 |ψ〉

Ẽ1 = ~ω + U00 φ00 (+) |χ0,0〉 (−) |↑↓, 0〉01

Ẽ2 = 3~ω + 2U01 φ+
01 (+) |χ0,0〉 (−) 1√

2
(|↑, ↓〉01 − |↓, ↑〉01)

|χ1,−1〉 (+) |↓, ↓〉01

Ẽ3 = 3~ω φ−01 (−) |χ1,0〉 (+) 1√
2

(|↑, ↓〉01 + |↓, ↑〉01)

|χ1,1〉 (+) |↑, ↑〉01

Ẽ4 = 5~ω + U11 φ11 (+) |χ0,0〉 (−) |0, ↑↓〉01

Table 6.1: Eigenstates of two interacting fermions in a single well. We approximate the eigenenergies
of a single deep well by the harmonic oscillator levels, the ground (0) and the first excited (1) band.
The spatial symmetry and the spin wavefunction match the corresponding eigenstate in a double-well
potential, compare Table 3.1 and Figure 6.26.

From the analysis of the on-site interaction we can draw the following conclusion: The
ground state of the double-well, |ψ1〉 is mapped to a double occupancy in the lowest band of
the single well with an on-site shift of Eint = U00 = U . The spin triplet state |t0〉 features an
antisymmetric spatial part. The symmetry is conserved during the merging process, hence
it will be transformed to φ−01, for which the on-site energy shift vanishes. Therefore, we will
detect particles that are in the triplet state in the initial double-well configuration as singles
after merging. The same holds for the other two triplet states |t+〉 and |t−〉, which also possess
a spatially antisymmetric wavefunction. For strong repulsive interactions the remaining two
states of the double-well are gapped by the on-site energy as they mostly contain doubles.
Therefore, it is unlikely that they are populated, at least in the case of low t⊥. The on-site
energy shift corresponding to the initial |d−〉 state is Eint = 2U01 = U and hence, we would
detect it as a double, while for the highest energy state considered Eint = U11 = 0.75U the
energy shift is reduced and we should observe an additional peak in the spectrum. This is
however not the case and hence, we assume that the excited states |ψ2〉 and |ψ4〉 do not play
a significant role. Therefore, we can conclude that we are able to distinguish the double-well
ground state from the triplet states by selectively detecting single and double occupancies after
merging.

10
In our case, pair hopping may be neglected as the band separation of the lowest two bands is much larger for
a single site than for a double-well.
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Data Analysis and Results

In the following, I will briefly explain how we analysed the density obtained after merging along
the vertical direction and how to extract an estimate on the amount of spin correlations within
the double-well. More details may be found in the PhD thesis of my colleague M. Gall [137].

Our aim is to calculate the interlayer spin correlator, Cz, which quantifies magnetic correla-
tions between opposing sites of the two bilayer planes, labelled as m = {1, 2}. It is defined as
an average over the in-plane directions

Cz = − 1

N

N∑
i=1

[
〈Ŝz1iŜz2i〉 − 〈Ŝz1i〉 〈Ŝz2i〉

]
. (6.23)

The ground state of the double-well potential approaches the spin singlet state, |s〉, in the
U/t⊥ →∞ limit. For this state the spin correlator assumes its maximum value

Cz = −〈s|Ŝz1 Ŝz2 |s〉 =
1

4
. (6.24)

However, as we learnt in the last section, the merging protocol accesses the ground state overlap,
which is proportional to the singlet fraction only in the U/t⊥ → ∞ limit. In general, even
the ground state contains a finite double admixture in form of the |d+〉 state. Therefore, if
we estimate the vertical spin correlator Cz via the ground state fraction from the merging
procedure, we would overestimate the amount of spin correlations, as the doubles do not possess
magnetization and hence

Cz = −〈d+|Ŝz1 Ŝz2 |d+〉 = 0. (6.25)

To account for the finite doubles admixture of the double-well ground state, we subtract the
amount of doubles that are present in either plane before merging from the doubles filling
after merging11. In Figure 6.28 we show the total doubles filling of both coupled layers before
merging, n0

D, and compare it to the doubles filling after merging, nD. From the simple estimate,
we expect the difference (red shading) to be proportional to the interlayer correlator according
to

Cz =
1

4
(nD − n0

D). (6.26)

The factor 1/4 arises, since we obtain a doubles filling of nD − n0
D = nD = 1 after merging, if

each double-well was occupied by a spin singlet state, |s〉. Figure 6.28 b) shows the measured
interlayer correlations as a function of the interlayer tunnel coupling strength. We observe that
increasing t⊥ enhances the interlayer correlations, which are a key feature of the band insulator
phase. We compare our results to DQMC data and find nice agreement over the investigated
range, with minor deviations at very small and very large t⊥. Furthermore, the interlayer
correlations show the opposite behaviour to that of the intralayer correlations discussed in Figure
6.19. Therefore, we conclude that by tuning the interlayer coupling, we observe the crossover
from the antiferromagnetic Mott insulator to the band insulator at elevated temperatures [171].

11
In the following section we will see that this is not entirely correct, but it still yields a good estimate.
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Figure 6.28: Interlayer spin correlations by merging the double-well. a) We plot the singles and doubles
filling before and after merging for a single unit cell of the vertical lattice. Note that the “singles filling”
after merging also includes sites where two particles occupy different bands (triplets). In b) we plot the
interlayer spin correlator, Cz, which is inferred from the difference in doubles filling before and after
merging (indicated by the red shaded area in the left plot). We compare the interlayer correlator to
DQMC data (shaded area) with n = 0.42, kBT/t = 1.0t− 1.4t and U/t = 8. These results have been
published in [171].

Investigating the Offset Correlations

So far, we subtracted the amount of doubles that we had in both planes before merging to account
for the discrepancy between ground state overlap and antiferromagnetic interlayer correlations.
In the following I will investigate whether these offset correlations are indeed related to double
occupancies before merging. For this purpose, we implement two additional RF sweeps, which
transfer the population from |mF = −7/2〉 to |mF = −3/2〉 to get rid off the double occupancies.
Since the RF sweeps change the combination of magnetic hyperfine states, the on-site interaction
strength changes, see Figure 4.2. Therefore, they have to take place when the many-body state
cannot react to this change in U . This is achieved by quickly freezing the motion along all lattice
directions by ramping the lattice depths to {Vxy,r, Vz,g} = {30, 110}Erec directly after splitting,
which projects onto the strongly interacting Hubbard eigenstates, {|s〉 , |t0〉 , |d−〉 , |d+〉}. The
two additional sweeps are inserted after freezing, and we consecutively merge two neighbouring
z-lattice planes by ramping down the short-wavelength lattice to zero. In Figure 6.29 we show
the effect on the filling of both singly and doubly occupied sites after merging. We do not
apply the RF tomography scheme to resolve the filling of a single layer, which reduces the
measurement time. On the contrary, the data can only provide a qualitative assessment, as we
average over several layers with different filling. There is a significant discrepancy in the amount
of doubles, if t⊥/t > 2. This matches the expectation from a single double-well potential, where
the admixture of the |d+〉 state to the ground state quickly decreases as a function of U/t⊥, see
Figure 3.3. For the largest value of t⊥, the on-site interaction is on the order of U/t⊥ ≈ 1.5, and
the corresponding doubles contribution (at half-filling) is around 30%. This nicely matches our
results on the difference in doubles filling with and without doubles removal. In contrast, for
low interlayer coupling the effective on-site interaction U/t⊥ is large and therefore the ground
state overlap with the |d+〉 nearly vanishes. Even though, it is not ideal to compare the bilayer
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Figure 6.29: Effect of the removal of double occupancies. We investigate the filling of doubles (a)
and singles (b) after merging without applying the RF tomography scheme. If we remove the double
occupancies before merging the double-well, the doubles filling changes drastically for large t⊥/t > 2,
while it is essentially unchanged for weak interlayer coupling. The legend applies to the whole figure.
The error bars represent the standard deviation including around six repetitions.

lattice to the double-well at low t⊥, we find also experimentally that the doubles filling after
merging is hardly affected by the removal of the doubles, if t⊥/t < 1. As expected, the singles
filling after merging is not affected by the removal of double occupancies before merging. This
is reasonable as only the triplet states of the double-well potential, which do not possess a
doubles admixture, merge to a single occupancy.

I conclude that the doubles fraction before merging only significantly affects the inferred
interlayer correlator for large values of t⊥. The inaccuracy in the previous reasoning was to
assume that for U > T all doubles that are present before merging stem from the double-well
ground state. While this is indeed a reasonable assumption for large t⊥, where the experimentally
prepared state has a large overlap with the double-well eigenstates, this assumption fails at
small t⊥, where the double-well is essentially uncorrelated. Therefore, subtracting the initial
doubles filling n0

D, as done in Figure 6.28, was unjustified at small t⊥, as they would not
merge to doubles. This in turn means that in the discussion so far we have overlooked another
source contributing to the offset correlations in particular at low interlayer coupling, since it is
unphysical to obtain interlayer spin correlations when there is negligible tunnel coupling along
the double-well direction.

6.4.2 Interlayer Correlations via Singlet-Triplet Oscillations

From the last section it still remains unclear why we observe a significant amount of doubles for
low interlayer coupling after merging. Therefore, in this part I will start by investigating how a
state that is uncorrelated along the double-well direction is represented in the double-well basis.

Interlayer Correlations versus Singlet Fraction

There are two aspects about the procedure presented in the last paragraph that complicate
the measurement of the interlayer correlations: We have shown experimentally that the finite
amount of double occupancies in the state that is prepared by splitting the bilayer will increase
the amount of doubles that we measure after merging. However, even when setting this aside,
there remains one problem, namely that we measure the singlet fraction and deduce the vertical

136



6.4 Interlayer Spin Correlations in the Bilayer Fermi-Hubbard Model

spin correlator from it. In general there are two cases, where the system does not exhibit any
spin correlations along the vertical direction, even though there is a finite probability to occupy
the singlet state: Either the temperature is much larger than the superexchange energy scale,
T � J = 4t2/U and therefore the singlet and triplet states will be equally populated, or the
correlations form along another bond that is more strongly coupled, e.g. for t⊥ � t. In the
following, I will focus on the latter scenario and study a four site plaquette with strong coupling
along the x-direction and negligible tunnelling along the perpendicular, z-direction, as sketched
in Figure 6.30. At low temperature and strong repulsive interactions, I expect the ground state

Figure 6.30: Spin correlations in contrast to singlet fraction. The approximate ground state for strong
repulsive interactions, U � t, and negligible perpendicular tunnelling, t⊥, is the direct product of
two singlets oriented along the x-direction. While we do not expect to observe correlations along the
perpendicular bond, in general a finite amount of singlet fraction will be observed. In the particular
case shown, the overlap with a singlet along the vertical bond is | 〈s13|ψ〉 |2 = 0.25.

to show antiferromagnetic correlations along the two bonds that are parallel to the x-direction,

|ψ〉 =
1√
2

(|↑, ↓〉12 − |↓, ↑〉12)⊗ 1√
2

(|↑, ↓〉34 − |↓, ↑〉34) (6.27)

=
1

2
[|↑, ↑〉13 |↓, ↓〉24 + |↓, ↓〉13 |↑, ↑〉24 − |↑, ↓〉13 |↓, ↑〉24 − |↓, ↑〉13 |↑, ↓〉24] . (6.28)

For simplicity, the finite doubles admixture is neglected. I compute the reduced density matrix
of the subsystem including sites 1 and 3 in the basis {|↑, ↑〉13 , |↓, ↓〉13 , |↑, ↓〉13 , |↓, ↑〉13} by
performing a partial trace

ρ13 = Tr24 |ψ〉 〈ψ| =
1

4


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (6.29)

This reduced density matrix describes a mixed state with equal probabilities for obtaining the
singlet or either of the three triplet states12

ρ13 = 0.25 · [|s〉 〈s|+ |t0〉 〈t0|+ |t+〉 〈t+|+ |t−〉 〈t−|] . (6.30)

12
Density matrices of the singlet and triplet state are given by

|s〉 〈s| = 1

2


0 0 0 0
0 0 0 0
0 0 1 −1
0 0 −1 1

 , |t0〉 〈t0| =
1

2


0 0 0 0
0 0 0 0
0 0 1 +1
0 0 +1 1

 .
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Therefore I have shown that a state with perfect singlet correlations along the x-direction, may
be described along the z-direction by equal probabilities for the singlet and the three triplet
states. As shown in Table 6.2, for negligible tunnel coupling along the vertical lattice direction,
the spin correlator of the corresponding bond vanishes, as expected. Hence, a finite singlet
fraction, as quantified by merging the double-well into a single well, does not imply a finite
spin correlator.

|s〉 |t0〉 |↑, ↑〉 |↓, ↓〉 |t+〉 |t−〉
〈Ŝx1 Ŝx2 〉 −1

4 +1
4 0 0 +1

4 −1
4

〈Ŝy1 Ŝy2 〉 −1
4 +1

4 0 0 −1
4 +1

4

〈Ŝz1 Ŝz2〉 −1
4 −1

4 +1
4 +1

4 +1
4 +1

4

Table 6.2: Spin correlations on the double-well. The spin singlet state is SU(2) symmetric by its own,
therefore the three correlators are equal. In contrast, the triplet states need to be weighted equally to
conform to SU(2) symmetry. If in addition all four states are equally populated, the spin correlations
vanish along all directions in spin space. This is for example the case, if the temperature is much larger
than the superexchange constant or if the tunnel coupling is much stronger along a different lattice
direction, as sketched in Figure 6.30.

Principle of Singlet-Triplet Oscillations

In the last section it has become clear that a system containing an equal amount of the singlet
and each triplet state does not possess spin correlations. Only if the number of singlets exceeds
the amount of triplets, we will find antiferromagnetic correlations. Therefore, we implemented
an experimental scheme, which induces oscillations between the singlet, |s〉, and the triplet
state, |t0〉, in order to access their imbalance via the oscillation amplitude [153, 173]. The
protocol is explained in detail in the PhD thesis of D. Greif [59], and I will only summarize the
main important aspects in the following.

The principle of singlet-triplet oscillations (STO) relies on the ability to rotate a singlet into
a triplet state and vice versa, by applying a magnetic field gradient. This effect was already
successfully exploited for the coherent manipulation of spin correlations in Chapter 5 with
an in-plane magnetic field gradient. In contrast, to extract the interlayer spin correlator, we
need to apply the gradient along the vertical direction. If there is a differential energy shift
for the two spin states, i.e. if the slopes in the Breit-Rabi diagram are not the same, then
the degeneracy of |↑, ↓〉 and |↓, ↑〉 is lifted13. Consequently, these two basis states will acquire
different time evolution phase factors, which will ultimately rotate a singlet into a triplet state
and vice versa. If we start from a singlet state |s〉 along the vertical double-well direction at
time tSTO = 0, the state evolves in the presence of a magnetic field gradient ∇zBz that was
suddenly turned on14 according to

|ψ(tSTO)〉 =
1√
2

[
|↑, ↓〉 e−

i
2~(∆E↑−∆E↓)tSTO − |↓, ↑〉 e

i
2~(∆E↑−∆E↓)tSTO

]
, (6.31)

13
In addition the magnetic field gradient breaks the SU(2) symmetry.

14
The experimental timescales in the frozen lattice configuration are rather long, therefore this is not a very
restrictive requirement.
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where ∆E↑ = γ↑∇zBzaz. After a certain time tSTO = tπ, neighbouring sites have acquired a
relative phase of π in the equatorial plane of the Bloch sphere,

∆E↑ −∆E↓
~

tπ = π (6.32)

and consequently the singlet state has transformed into the |t0〉 state. By making use of√
2 |↑, ↓〉 = |t0〉+ |s〉 and

√
2 |↓, ↑〉 = |t0〉 − |s〉, we can express the time-evolved state as

|ψ(tSTO)〉 = cos

(
∆E↑ −∆E↓

2~
tSTO

)
|s〉+ i sin

(
∆E↑ −∆E↓

2~
tSTO

)
|t0〉 . (6.33)

Therefore, we conclude that a magnetic field gradient oriented along the double-well direction
rotates the singlet state |s〉 into the triplet state |t0〉 and vice versa. If initially only the singlet
state is populated, we expect to observe singlet-triplet oscillations (STO) with full contrast. In
general, the STO amplitude is proportional to the amount of excess singlets in the system.15

In the limiting case, when there is an equal mixture of singlet and triplet states initially, the
amplitude of the STO signal vanishes, which is the indicator for an uncorrelated bond.

To observe these oscillations in the populations induced by the vertical gradient, we con-
secutively merge the double-well similar to Section 6.4.1 in order to differentiate singlet and
triplet states by their on-site interaction shift in the final state.

Observable in the STO Measurement Before proceeding to the implementation of the STO
scheme into our experimental setup, I will review in the following that by measuring the
imbalance of singlet and triplet states we indeed access the transverse spin correlator [59, 69],

C⊥z , which typically is defined as the sum of the xx- and yy-correlators

C⊥z = 〈Ŝx1 Ŝx2 〉+ 〈Ŝy1 Ŝy2 〉 =
1

2

〈
ĉ†1↓ĉ1↑ĉ

†
2↑ĉ2↓ + ĉ†1↑ĉ1↓ĉ

†
2↓ĉ2↑

〉
. (6.34)

For this purpose we need to define two operators creating either the singlet or the triplet state
along the double-well direction16

|s〉 = ŝ† |0〉 =
1√
2

(
ĉ†2,↓ĉ

†
1,↑ − ĉ

†
2,↑ĉ
†
1,↓

)
|0〉 , (6.35)

|t0〉 = t̂†0 |0〉 =
1√
2

(
ĉ†2,↓ĉ

†
1,↑ + ĉ†2,↑ĉ

†
1,↓

)
|0〉 . (6.36)

Then the corresponding observables, the singlet fraction nS and the triplet fraction nT , follow
from the general definition of the occupation number in second quantization as

nS = 〈ŝ†ŝ〉 =
1

2

〈
n̂2↓n̂1↑ + n̂2↑n̂1↓ − ĉ†2↑ĉ

†
1↓ĉ1↑ĉ2↓ − ĉ†2↓ĉ

†
1↑ĉ1↓ĉ2↑

〉
, (6.37)

nT = 〈t̂†0t̂0〉 =
1

2

〈
n̂2↓n̂1↑ + n̂2↑n̂1↓ + ĉ†2↑ĉ

†
1↓ĉ1↑ĉ2↓ + ĉ†2↓ĉ

†
1↑ĉ1↓ĉ2↑

〉
. (6.38)

15
In principle, also an excess of triplet states could be detected this way. This is, however, not relevant for this
thesis.

16
Fermionic ordering ĉ2↓ĉ2↑ĉ1↓ĉ1↑ |0〉.
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If we now compare the definition of the transverse spin correlator C⊥z with the singlet and
triplet fractions, we obtain the final relation [59, 69]

C⊥z = −nS − nT
2

. (6.39)

For an SU(2) symmetric state the spin correlators are equal [166]

〈Ŝxi Ŝxj 〉 = 〈Ŝyi Ŝ
y
j 〉 = 〈Ŝzi Ŝzj 〉 , (6.40)

therefore the interlayer correlator in the z-basis of the spin follows as

Cz = −nS − nT
4

. (6.41)

This is the quantity that will be computed in the following to compare the results of the
STO measurement to the interlayer correlations inferred by directly merging the double-well
potential.

Implementation of the Singlet-Triplet Oscillations

The main ingredient for the implementation of the singlet-triplet oscillations is the vertical
magnetic field gradient, which we generate by the fast Feshbach coils connected in anti-Helmholtz
configuration. This creates a quadrupole field with the magnetic field zero located somewhere
below the atom cloud and slightly shifted in the xy-direction. Therefore, the magnetic field
gradient will obtain a finite in-plane component, which we do not compensate, as it will only
lead to minor dephasing within the layer.

After splitting the single-band band insulator, we quickly freeze the motion along all directions
within 150µs, see Figure 6.31 and consecutively remove the double occupancies by spin-changing
collisions as they do not contribute to spin correlations. At this point, with the motion frozen,
we ramp up the current ISTO generating the magnetic quadrupole field within 1 ms. To observe
the oscillations in the population of singlets, we decided to scan the strength of the magnetic
field gradient instead of the hold time. This minimizes the impact of time-dependent field
drifts.17 The atoms experience the full gradient strength over a hold time of 20 ms. After
ramping down the current, we merge the double-well into a single site. If the vertical bond is
occupied by two atoms in the spin singlet state, |s〉, they are both mapped to the lowest band of
the merged lattice, see Figure 6.31. In contrast, for a triplet state, the spatial wavefunction of
the two atoms has to remain antisymmetric during the merging procedure, i.e. one of the atoms
has to end up in the first excited band of the merged lattice. Due to the isotropic character of
the s-wave scattering potential, the on-site interaction shift vanishes in this case. We resolve
the on-site interaction shift by a narrow RF pulse, see Figure 6.25. The doubles filling after
merging is shown in the top row of Figure 6.32 for varying interlayer tunnel coupling strength.
We apply a sinusoidal fit without damping to the double occupancy where both the frequency
and phase are fixed by the results for large t⊥. In principle, it is not necessary to sample a full
period of the oscillation, as we can infer the difference in singlet and triplet filling from the two

17
In contrast, for the measurement of intralayer correlations, the time is varied. As the dissipated power scales
quadratically with current, but only linear in time, it is in general more sensible to scan the time if the coil is
limited by the power it may dissipate. This is, however, not a problem for the measurement of the interlayer
correlations.
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Figure 6.31: Experimental scheme for the detection of singlet-triplet oscillations. We start by preparing
a band insulator in the lowest band of the long-wavelength lattice, which is split by ramping up the
short-wavelength lattice. After freezing the motion along both the vertical and the in-plane directions
(latter not shown), we remove double occupancies. Consecutively, the magnetic field gradient ∇zBz is
ramped up and induces singlet-triplet oscillations (STO). After a hold time tSTO, the short-wavelength
lattice is slowly turned off within 40 ms. This merges the double-well into a single site and enables us to
differentiate between singlet and triplet states according to their distinct shift of the on-site energy in
the final state.

extreme cases, where the doubles filling after merging is minimal/maximal. However, the result
from a sinusoidal fit is much more reliable, as we do not have to calibrate and readjust the
π-point of the oscillation. Note that atoms, which are in the triplet state |t0〉 at the end of the
STO, seem to get lost. Therefore, the singles filling after merging is approximately constant
and does not show oscillations as we would have expected. Since we have verified that the
atoms are completely lost from the trap, it might be that they are transferred to higher energy
bands, which become untrapped at some point in the detection scheme.

For low interlayer coupling strength the doubles filing after merging does not oscillate. This is
a clear indicator for vanishing interlayer spin correlations. Nevertheless, the offset at ISTO = 0,
represents singlet bonds. However, since there are as many triplet bonds, |t0〉, in the system,
the spin correlations cancel each other, see Equation 6.41. When the tunnel coupling in the
double-well direction exceeds the one within the layer, pronounced oscillations are visible in the
doubles filling after merging, see Figure 6.32 b) and c). While the amplitude of the STO (faint
blue area) increases with the ratio t⊥/t, signalling enhanced spin correlations, the amount of
triplet states decreases significantly (faint red area). Therefore, evaluating spin correlations
along the double-well direction by simply measuring the singlet fraction overestimates the
interlayer correlator, Cz mostly at low t⊥.

In Figure 6.32 d) we compare the increase in singlet bonds starting from the uncorrelated
regime at t⊥ ≈ 0 to the reduction in the triplet state, |t0〉. As the quantum many-body
state has to conform to SU(2) symmetry before starting the singlet-triplet oscillations, the
occupation of the triplet states |t+〉 and |t−〉 is expected to be equal to the |t0〉 state. The
total reduction of the triplet states is mirrored by an increase in the ground state fraction
including the contributions from |s〉 and |d+〉. However, the relative occurrence of |d+〉 and |s〉
is determined by the interplay of the on-site interaction and the kinetic energy and precludes
the determination of the interlayer correlator by the triplet reduction alone. Therefore, we
need the additional measurement of the singlet fraction at ISTO = 0 to determine the interlayer
correlator.
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Figure 6.32: Analysis of the singlet-triplet oscillations. We investigate the doubles filling after merging
for varying interlayer coupling strength, t⊥. For low t⊥, the number of singlet and triplet states are
equal, see Equation 6.30, therefore, we do not observe singlet-triplet oscillations. In contrast, when
increasing the coupling strength within the double-well, the number of singlet (and doublon) bonds
grows at the expense of the triplet states, as the state tries to minimize its kinetic energy. For each
realization, we average the local doubles filling within the central region over several thousand individual
double-well potentials and obtain a tiny standard error on the mean filling for each realization. The
error bars in a) - c) represent the standard deviation of around three repetitions. From the singlet-triplet
oscillations we infer the amount of excess singlets, which is proportional to the interlayer correlator,
compare Equation 6.41, as well as the reduction in triplet states for increasingly strong coupling along
the double-well direction. The error bars in d) are deduced from the 95% confidence interval of the
STO fit parameters.

Dependence on the Freezing Timescale After preparing the bilayer lattice configuration at
a certain interaction strength U/t and tunnel amplitudes t⊥/t, we want to quickly freeze the
density distribution, see Figure 6.31. If the ramp to the deep lattice configuration is only
slightly adiabatic, we do not project onto the double-well eigenstates as intended, but instead
the quantum many-body state will adjust to the increased interaction strength, which enhances
the singlet contribution of the ground state, |ψ1〉, compare Figure 3.3. Therefore, if we freeze
the distribution too slowly, we will overestimate the amount of interlayer spin correlations.

For the data presented so far, the motion has been frozen as quickly as the PID regulation in
combination with the discretized ramp of the laser powers allows, which is approximately 150µs.
The maximum tunnelling amplitude realized along the vertical direction is t⊥/h ≈ 900 Hz. In
Figure 6.33 we investigate the effect of the freezing time on the STO signal and observe that
the amplitude of the oscillation (excess singlets) increases significantly with tfreeze. The increase
in STO amplitude is directly related to the singlet fraction, which is given by the doubles
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Figure 6.33: Dependence on freezing timescale. a) For t⊥/t = 5.2, we investigate the dependence of the
STO amplitude on the time, tfreeze, during which we freeze the motion both within and in between the
layers. Note that the absolute values are not comparable with the STO data presented so far, as the
detection was performed in the green z-lattice and we lost some of the doubles after merging during the
handover. The trend in the STO amplitude should however, not be affected by this loss process. b)
While the filling of triplet states is not affected by the freezing time, we observe an exponential decay
(solid blue line) of the singlet probability with inverse freezing timescale, compare Figure 6.18 a). The
dashed line and the blue shaded region indicate the settling value of the singlet filling as obtained from
the exponential fit and its standard error, respectively.

filling after merging at ISTO = 0. In contrast, the triplet fraction, |t0〉, does not depend on the
freezing timescale at all. This was to be expected, as all the triplet states do not change their
composition as a function of U/t⊥ and therefore, their occupation probability does not depend
on tfreeze. Unfortunately, it is not possible to infer the interlayer spin correlator merely from (the
reduction in) the triplet fraction as a function of t⊥, since both the singlet and doublon fraction
grow when coupling the double-well more strongly, while only the singlet state contributes to
the increase in interlayer spin correlations.18 Choosing the optimum time scale for freezing
the density distribution is further complicated by the risk of populating higher bands when
increasing the lattice depth too quickly. If higher bands were excited during the ramp up19, we
would expect the singlet fraction, which we measure by merging along the double-well direction,
to decrease as the ground state overlap is reduced. Therefore, we are not able to disentangle
the effects from the imperfect non-adiabaticity of the ramp and the probability to excite higher
bands. In contrast, when detecting the filling directly after freezing the density distribution
along all directions, see Figure 6.18, the doubles filling would decrease when exciting higher
bands, while the opposite behaviour was observed when increasing the ramp speed to the
detection lattice. Hence, we conclude, that for all the freezing times investigated, the probability
to excite higher bands is negligible. Therefore the fastest ramp speed was chosen.

18
The reduction in triplet fraction quantifies the increase in the overlap of the experimentally prepared state
with the double-well ground state.

19
Note that only bands with the same parity may be excited when ramping up the lattice depth due to the even
parity of the excitation.
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Lifetime of the Singlet-Triplet Oscillations In the following, we will investigate how the STO
amplitude decreases over time. For recording the long-term behaviour, we apply a magnetic
gradient strength of around 0.7 G/cm generated by a fast Feshbach current of ISTO = 2.3 A
and scan the hold time, see Figure 6.34.
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Figure 6.34: Lifetime of the singlet-triplet oscillations. Singlet-triplet oscillation for long oscillation
times, tSTO, in a deep double-well bilayer lattice with

[
Vxy,r, Vz,g, Vz,r

]
= [30, 33, 120]Erec and a magnetic

field gradient strength of around 0.7 G/cm. We fit an exponentially damped sinusoidal function and
obtain a time constant of τSTO = 0.7(2) s.

We fit an exponentially damped sinusoidal function to extract the time constant of the decay,
τSTO = 0.7(2) s. The uncertainty on the fit parameter seems quite large considering that the fit
reproduces our data nicely. A likely explanation is the limited sample region as we take data to
around half the 1/e-time only. The exponential decay is most likely related to local dephasing,
as our signal is averaged over several thousand individual double-well potentials. Therefore, if
there is an in-plane component of the magnetic field gradient or magnetic field curvature, the
STO frequency will vary locally [59]. In principle, also the photon scattering induced by lattice
lasers limits the coherence time of entangled states, see supplementary material of [169]. To
separate the effects of dephasing and decoherence a π-pulse may be added in the middle of the
STO evolution time. However, as the signal loss over our experimental timescale is very small,
we did not investigate this further. For the data presented in Figures 6.32 and 6.35, we chose
tSTO = 20 ms, and hence expect a signal loss of around 3% only.

Results and Discussion According to Equation 6.41, the interlayer correlator may be inferred
from the singlet-triplet oscillations as a fourth of the peak-to-peak amplitude. In Figure 6.35
the experimental results obtained from directly merging the double-well potential (blue data
points) are compared to the STO data (red). While the general trend looks very similar for
the two detection protocols, there are some systematic deviations, which I will discuss in the
following. The earlier data where the double-well was directly merged was taken at slightly
higher total density, n = 0.42 as compared to n = 0.4. This however, can not explain the finite
offset from zero at low interlayer tunnel coupling. As we have discussed before, it is not possible
to properly infer the interlayer correlator merely from the singlet fraction after merging, in
particular, when the atoms are uncorrelated along the double-well direction. Therefore, a
deviation in particular at low t⊥ was to be expected. If we calculate Cz via the STO amplitude,
we find that at low t⊥ the interlayer correlations indeed vanish. At high t⊥, our data suggests a
larger amount of spin correlations than the DQMC theory comparison, while for intermediate
coupling strength the opposite trend is observed. These opposing deviations might be linked to
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Figure 6.35: Comparison of the interlayer correlation results. We compare the interlayer correlator
as inferred from the STO measurement to the results obtained by directly merging the double-well.
The grey shaded area represents DQMC theory data with n = 0.4, kBT/t = 1.0t− 1.4t and U/t = 8.
The error bars on the interlayer correlator inferred from the STO measurement follow from the 95%
confidence interval of the fitted peak-to-peak amplitude.

the finite freezing timescale, which is limited in the experiment to around 150µs. If freezing the
density distribution occurs too slowly, we will overestimate the spin correlator. In Figure 6.18
we have seen that we are particularly sensitive on this freezing time if the tunnelling amplitude
along the double-well direction is large. From the exponential fit to the STO amplitude for
t⊥/t = 5.2, shown in Figure 6.33, we estimate the deviation to the instantaneous ramp to
amount to around 4% only. However, since the settling behaviour of the STO amplitude was
only investigated for the largest tunnel coupling, I did not take its effect into account for the
data presented in Figure 6.35.

Due to the narrow RF sweep that needs to resolve the on-site interaction shift (see Figure
6.25), we are very sensitive to magnetic field drifts. In general, fluctuations around the optimal
RF centre frequency will decrease the number of doubles that we detect, and in turn the
inferred spin correlator will be reduced. Therefore, it would be beneficial to transfer the atoms
to the short-wavelength lattice, where the separation of the spectral features is significantly
larger. This, as we figured out after the data was taken is possible even without transfer losses,
if the long-wavelength lattice depth is chosen small enough.

To conclude, we have measured magnetic correlations between the two coupled layers of a
bilayer lattice configuration, which complements the characterization of the intralayer spin
correlations discussed above. The significant increase in singlet bonds along the vertical
direction is a signature of the bilayer band insulator phase, and we observe that in the strongly
coupled regime on average nearly every second double-well is occupied by a singlet state.
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CHAPTER 7

Compressibility in the Bilayer Fermi-Hubbard
Model

In the previous chapter we have observed that the tunnel coupling between two Hubbard layers
induces a crossover from a state with antiferromagnetic correlations within the layer to a band
insulating state of singlets forming along the vertical bonds. In the case of the well-known
band insulator in a simple cubic lattice configuration, where each lattice site is occupied by
two fermions, the lowest band of the optical lattice is fully filled and the large band gap in
combination with Pauli’s exclusion principle guarantees a strong insulating character at low
temperatures. In contrast, the bilayer band insulator phase occurs at half-filling in the case
of strong interlayer coupling and therefore the underlying physical picture of the insulating
nature is slightly different, as I will discuss in detail in this chapter.

The compressibility is a thermodynamic variable that quantifies the response of the density of
a system when exerting an external pressure. Therefore, it is a suitable observable to quantify
the insulating character of a certain state independent of its physical origins. We show both
experimentally and by performing DQMC calculations that the bilayer Fermi-Hubbard system
with intermediate repulsive interactions is the most insulating at strong interlayer coupling.
While we obtain a clear signature in the thermodynamic variable, the microscopic understanding
is more complicated and I will investigate the relevant microscopic states and their energies by
comparing to an isolated double-well system.

This chapter is organized as follows. First I will present the DQMC predictions on the
compressibility of a bilayer Fermi-Hubbard system. These results will be discussed and
compared to the limiting case of a double-well potential to obtain a more intuitive picture. The
experimental scheme for measuring the compressibility relies on a magnetic field gradient that
is applied within the plane in order to quantify how reluctant the atoms are to adjusting their
density to the tilt in the potential landscape.

7.1 Definition of the Compressibility for Quantum Gases in Optical
Lattices

The compressibility is known from standard thermodynamics as the rate of change of a system’s
volume with pressure. Its definition differentiates between the isothermal and the adiabatic
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compressibility [179]. We will focus on the isothermal compressibility

κT = − 1

V

(
∂V

∂p

)
T,N

, (7.1)

where both the temperature T and the total particle number N are kept constant during the
relaxation/compression. Since clouds of fermionic atoms are typically confined in a harmonic
potential, the pressure is not uniform but instead increases to the trap centre. This stabilizes
the cloud against the trap confinement that tries to squeeze the cloud. In thermal equilibrium
and for vanishing magnetization the Gibbs-Duhem relation simplifies to

Ndµ = V dp. (7.2)

In this case the pressure may be inferred from the integral over the density equation of state

p(µ) =

µ∫
−∞

n(µ′)dµ′, (7.3)

where n = N/V . This enables us to rewrite the isothermal compressibility in terms of the
density and the chemical potential, quantities that we readily access in our system [80, 108],

κT = − 1

V

(
∂V

∂µ

∂µ

∂p

)
T,N

= − 1

nV

(
∂V

∂µ

)
T,N

= −
(
∂(1/n)

∂µ

)
T,N

=
1

n2

(
∂n

∂µ

)
T,N

. (7.4)

For the remainder of this thesis, we define the compressibility as

κ =

(
∂n

∂µ

)
T,N

(7.5)

without the prefactor that references the density response to the local density. Note that as a
consequence, the compressibility will be particle-hole symmetric κ(µ) = κ(−µ).

7.2 DQMC Simulation of the Compressibility

As for the spin correlation results presented in Chapter 6, we employ the Quantum Electron
Simulation Toolbox (QUEST) [17] to obtain DQMC theory data for the compressibility. For
the simulation, the chemical potentials of both layers are fixed to be equal, and we assume a
spin-balanced mixture throughout this chapter,

µ↑1 = µ↓1 = µ↑2 = µ↓2 ≡ µ. (7.6)

Following the definition given in Equation 7.5, the compressibility of the bilayer Fermi-Hubbard
model is obtained by repeating the simulation of the total filling factor (proportional to the
local density) for varying chemical potential µ and performing a numerical derivative on the
equation of state n(µ)1. This requires a fine sampling of the chemical potential µ and we chose
a spacing of ∆µ = 0.25t. Since the difference in the filling factor when simulating the bilayer

1
In principle, we could have investigated the density response upon introducing a chemical potential difference
between the layers. This however would have required to measure the density of both layers, which effectively
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7.2 DQMC Simulation of the Compressibility

system at T/t = 1 as two 4×4, 6×6 or 8×8 grids amounts to less than one percent, we decided
to speed up the calculations and decreased the system size for the DQMC compressibility
simulations to 6× 6, as compared to the spin correlation data, where a larger grid of 8× 8 was
used. Note that this conclusion strongly depends on the chosen temperature, and in general
larger systems have to be considered when simulating colder temperatures, where correlations
extend over several lattice sites. We perform 20000 measurement sweeps for each data point
and the number of imaginary time slices is set to 25. The total filling factor of an individual
spin component comprises contributions from doubly and singly occupied lattice sites. While
the singles filling is connected to the local moment C00 (see Equation 5.13), the doubles filling is
extracted from the DQMC results as the lowest order of the density-density correlation function

n = 〈n̂↑n̂↓〉+ s↑ = 〈n̂↑n̂↓〉+ 2C00. (7.7)

We exploit the full particle-hole symmetry as discussed in Section 3.3.2 to infer the probability of
singly and doubly occupied sites above half-filling µ > 0 from the probabilities below half-filling
according to

s↑(µ) = s↑(−µ), (7.8)

〈n̂↑n̂↓〉 (µ) = 〈(1− n̂↑)(1− n̂↓)〉 (−µ). (7.9)

This significantly reduces the computation time.

In Figure 7.1 a) and b) we separately plot both contributions to the equation of state, i.e.
doubles and singles, for varying tunnel coupling t⊥ between the layers. At t⊥ = 0, where
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Figure 7.1: DQMC results for the filling of singly and doubly occupied sites. DQMC results for the
filling factor in a bilayer system with a repulsive on-site interaction, U/t = 7, at a temperature of
kBT/t = 1. We distinguish the contributions of doubly-occupied sites (a) and singly-occupied sites of
one spin component (b). The legend applies to the whole figure.

the two layers completely decouple from each other, the simulations match the results of the
two-dimensional Hubbard model, as expected: For an intermediate repulsive on-site interaction
U/t = 7 and at low temperature kBT/t = 1, as chosen in Figure 7.1, the system near half-filling
is close to the Mott insulating regime and most sites are occupied by a single spin. This changes

doubles the amount of experimental data.
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Chapter 7 Compressibility in the Bilayer Fermi-Hubbard Model

when introducing a finite tunnel coupling between the layers. The additional tunnelling channel
effectively reduces the significance of the on-site repulsion and drives the system away from the
Mott insulating behaviour as apparent from the reduction in the singles filling. In Figure 7.2
we show both the total density equation of state for either of the two spin components, as well
as the compressibility κ, which we obtained as the derivative of a third-order polynomial fit to
the total density n(µ). Surprisingly, the bilayer system near half-filling is the most insulating
for large tunnel coupling t⊥, as indicated by the minimum in the compressibility.
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Figure 7.2: DQMC results for the equation of state and the compressibility. a) DQMC results for the
total filling factor n in a bilayer configuration with repulsive on-site interaction U/t = 7 at a temperature
of kBT/t = 1. b) The compressibility is inferred from the equation of state by a third-order polynomial
fit over a chemical potential range of ∆µ = 1.5t. The error bars on the density only contain the statistical
error from the DQMC code and are not visible in the figure, since δnstat/n ≈ 10−4. The legend applies
to the whole figure.

7.2.1 Bilayer Fermi-Hubbard Model at Low Filling

Introducing a finite tunnel coupling between the layers for strong repulsive interactions does
not only significantly reduce the compressibility at half-filling, the bimodal distribution is also
modified for higher and lower chemical potentials as shown in Figure 7.2 b). In particular,
two small dips appear at quarter and three-quarter filling, signalling the opening of additional
charge gaps within the upper and lower Hubbard band, respectively. These dips are the more
prominent, the larger both the on-site interaction and the interlayer tunnelling amplitude, which
is emphasized in Figure 7.3. For 2t⊥ > U � t, the charge gaps at quarter and three-quarter
filling are predominantly interaction driven, similar to the Mott gap of the 2D Fermi-Hubbard
model at half-filling.

We can estimate the charge gap by considering the microscopic states involved. Deep in the
bilayer band insulator regime and for strong repulsive interactions, all double-well bonds get
occupied by the state

|ψ〉σ =
1√
2

(|σ, 0〉+ |0, σ〉) (7.10)

up to quarter filling. Note that the corresponding spatial wavefunction is symmetric, hence it
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7.2 DQMC Simulation of the Compressibility

minimizes the kinetic energy in the vertical direction, E|ψ〉σ = −t⊥. To avoid forming double

occupancies the spins do not delocalize within the layer and at quarter filling2 one can think
of this state, as a Mott insulator that is smeared across two neighbouring planes. If we now
intend to fill more particles into the bilayer system, the on-site interaction will compete with
the delocalization energy t⊥. If the latter is significantly stronger, then we will continue to fill
states with a symmetric superposition of the left and right lattice sites, |ψ〉σ, at the expense of
forming double occupancies

|ψ〉↑ ⊗ |ψ〉↓ =
1

2
(|↑, ↓〉 − |↓, ↑〉+ |↑↓, 0〉+ |0, ↑↓〉) . (7.11)

By comparing to the discussion of the double-well eigenstates in Section 3.2, we can identify
this state as the ground state of two fermions in a double-well potential at U = 0. Whereas
when introducing repulsive interactions the amount of doubles will decrease (see Table 3.1)
and the approximate energy of the interacting two-particle state will increase according to
E ≈ −2t⊥ + U/2. The approximate eigenenergy3 reflects that we obtain the delocalization
energy of t⊥ for both particles and have to pay U/2, since the probability to form a double
occupancy is 50%. Therefore, we expect that the two peaks forming either the bonding or
antibonding band are separated by ∆µ = U/2. In Figure 7.3 we show the compressibility for

Figure 7.3: DQMC results for the compressibility for varying interaction strength. Compressibility
κ(µ) for t⊥/t = 8 and varying interaction strength U . The arrows indicate the value U/2 for the
respective data set.

increasing repulsive interaction and observe how the additional “Mott” dips at quarter and
three-quarter filling get more prominent. Using arrows, we indicate the expected distance of
U/2, which nicely matches the DQMC results.

The analogy of the state at quarter filling to the Mott insulator of the 2D Fermi-Hubbard
model can be extended even beyond the charge sector. In Figure 7.4, we show the amount
of antiferromagnetic spin correlations within the layer quantified by the difference of the
staggered structure factor to the local moment for the whole range of the filling factor n. For
decoupled layers and at U/t = 7 and T/t = 1, we predominantly obtain spin correlations at

2
i.e. one particle per vertical double-well

3
We may also obtain this estimate on the energy by performing a Taylor expansion of E1 around U = 0,
compare Table 3.1.
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Chapter 7 Compressibility in the Bilayer Fermi-Hubbard Model

half-filling, where the amount of singly occupied sites is largest. Upon introducing the tunnel
coupling t⊥ between the layers, this peak disappears and instead we find antiferromagnetic spin
correlations at quarter and three quarter filling. This signals that the finite amplitude of the
intralayer tunnel coupling, t, still leads to delocalization within the layer, at least in the form of
second-order tunnelling events. Therefore, the spins that are smeared out over the double-well
due to the large interlayer tunnelling amplitude, order antiferromagnetically within the layer.
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Figure 7.4: DQMC results for antiferromagnetic spin correlations. The difference of the staggered
magnetic structure factor to the local moment is plotted versus the filling factor n for a single horizontal
layer at U/t = 7 and T/t = 1. We observe that the intralayer spin correlations at half-filling for two
decoupled layers continuously decrease with the tunnel coupling t⊥, until they completely vanish in the
regime of the bilayer band insulator. We still observe spin correlations in this case, however, at quarter
and three quarter filling.

Summarising the discussion above, we have seen that the bilayer lattice configuration offers
new intriguing states, by adding yet another energy scale, t⊥, which competes with the on-site
interaction and the delocalization energy within the layer. If both U and t⊥ are large, additional
charge gaps appear at quarter and three-quarter filling. The physical intuition will be helpful
for the following discussion of the half-filled bilayer lattice, which is the more relevant case for
the comparison to our experimental data.

7.2.2 Bilayer Fermi-Hubbard Model at Half-Filling

In Figure 7.1 we have seen that the amount of singles at half-filling decreases with the interlayer
tunnel coupling t⊥. Still, the compressibility is lowest in the strongly coupled regime and we
draw the conclusion that the insulating nature of the bilayer band insulator phase is very
different from the one of the Mott insulator, which relies on the large repulsive interaction energy
favouring singly occupied sites over doubles and holes. In contrast, for the band insulating
phase at large t⊥, we instead observe an increase in the number of doubles and holes. This
can be understood in an intuitive picture: since the dominant energy scale of the bilayer band
insulator is the tunnelling amplitude, the most important goal of the particles is to reduce their
kinetic energy. For the double-well potential the reduction in the kinetic energy is the largest for
an equal amount of |s〉 and |d+〉, as in this case the intrinsic density fluctuations are the most
dominant (compare Figure 3.3). In conclusion, the bilayer band insulator minimizes its energy
by delocalizing the particles along the double-well direction, which works best at half-filling.
Therefore, if we apply a potential gradient along any lattice direction, the atoms will oppose
the density redistribution in order to preserve the energy gain from tunnel delocalization. In

152



7.2 DQMC Simulation of the Compressibility

the following, I will investigate why the compressibility is lowest in the band insulating regime
by comparing to the double-well case and identifying the relevant microscopic states.

Double-Well Comparison Already in the discussion away from half-filling we have seen that
for a strong tunnel coupling in the vertical direction, the particles mostly delocalize within the
double-well. Therefore a comparison to the exactly solvable double-well physics is reasonable.
The main idea is to compute the mean density of a symmetric double-well potential as a
function of the chemical potential, which we discretize in steps of ∆µ = 0.25t as for the
DQMC calculation. From the density equation of state, we can derive the compressibility either
analytically or numerically. The thermal average of an operator Ô is given by

〈Ô〉 =
1

Z
Tr
(
e−β(Ĥ−µN̂)Ô

)
(7.12)

with the grand canonical partition function

Z = Tr
(
e−β(Ĥ−µN̂)

)
. (7.13)

To obtain the mean density, we trace over all 16 eigenstates including the spin-polarized ones of
the two-site Fermi-Hubbard model in the single-band approximation. In Figure 7.5 we compare
the compressibility of the double-well system to the DQMC results for a 6 × 6 × 2 bilayer
lattice configuration. Surprisingly, the qualitative behaviour is quite similar and even the
numerical values are close. In particular when comparing the corresponding false-colour maps
in the lower row, we do not observe a significant deviation in the general trend. However, the
approximation of a bilayer lattice by a single double-well potential consistently underestimates
the compressibility, since it does not account for the finite bandwidth W of the bilayer system.
Instead, the double-well description considers flat bands and therefore the charge gap is larger
for all parameters U and t⊥ considered.

The compressibility is a thermodynamic variable that quantifies the (macroscopic) density
response of a many-body state when exposed to a potential gradient. To obtain a thorough
understanding of the insulating (or metallic) nature of a system we need to identify its relevant
microscopic states and processes. By comparing the results in Figure 7.5 a) and b), we have
observed that the double-well calculation reproduces the key features of the compressibility
in a bilayer system as predicted by DQMC calculations. We will therefore investigate the
microscopic properties of a double-well in the following. The ground state energy E1 of two
interacting fermions in a double-well is given in Table 3.1 and the corresponding state is a spin
singlet with contributions both from singly occupied sites as well as doubles and holes, |s〉
and |d+〉, respectively. If we apply a strong enough in-plane gradient, the mean density per
double-well will change, and the corresponding microscopic states are 1√

2
(|↑↓, ↑〉+ |↑, ↑↓〉) and

1√
2

(|0, ↓〉+ |↓, 0〉), with energies −t⊥ + U and −t⊥, respectively.4 Therefore, the charge gap

for an in-plane gradient may be approximated as

Egap = −t⊥ + U − t⊥ − 2E1 =

√
16t2⊥ + U2 − 2t⊥. (7.14)

In the two limiting cases of non-interacting particles, U = 0, and negligible tunnel coupling,

4
If we applied the gradient along the vertical direction, the compressibility would likely be even lower, since the
relevant microscopic state on the double-well would be |↑↓, 0〉 with energy U .
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Figure 7.5: Theory comparison of the compressibility. Left column: DQMC results for the compressibility
in a bilayer lattice with repulsive on-site interactions U/t = 7 at a temperature of kBT/t = 1. The
compressibility is inferred from the density equation of state by a third-order polynomial fit, compare
Figure 7.2. Middle column: Within the double-well description we compute the mean density in the
grand-canonical ensemble and derive the compressibility as for the DQMC data using a numerical
derivative on the discretized equation of state. Right column: We estimate the compressibility in a
double-well via the approximate formula for the charge gap given in Equation 7.14.

t⊥ = 0, we recover the scaling dependence as obtained in Sections 3.3.3 and 3.4.1, namely that
the Mott gap is directly given by the on-site interaction energy and that the single particle
gap responsible for the bilayer band insulator phase is equal to 2t⊥. From this handwavy
estimate of the charge gap it is evident that if we realize a strongly coupled band insulator
at an intermediate repulsive interaction strength, the compressibility has to be lower than
in the uncoupled regime, t⊥ ≈ 0, as both the kinetic and the interaction energy oppose the
density redistribution in a potential gradient. Unfortunately, we can not directly compare the
charge gap estimate to the compressibility. Instead, we assume an exponential dependence of
the compressibility on the charge gap and after adjusting the coefficients we obtain the result
shown in the third column of Figure 7.5. Even though neglecting the finite temperature does
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7.3 Measuring the Compressibility in a Homogeneous Hubbard System

seem to have a significant effect on some of the features of the compressibility in particular at
low t⊥ the rough trend as a function of both U and t⊥ is similar to the two cases discussed
before. Therefore, we assume that the microscopic picture used to estimate the charge gap
given in Equation 7.14, is sensible.

7.3 Measuring the Compressibility in a Homogeneous Hubbard
System

Previously we have measured the compressibility within the harmonic trapping potential that
appears as a consequence of the finite waist of the lattice laser beams [34]. This confining
potential has the advantage that we sample the density equation of state over a broad range of
chemical potentials in a single realization. The compressibility, which depends on the local
density, is obtained as the numerical derivative κ = ∂n/∂µ. For the realization of the bilayer
Fermi-Hubbard model in our experiment, the trap confinement is compensated by the repulsive
DMD potential to create a flat core region. Therefore, probing the insulting nature is not as
straight-forward and we need to engineer a potential gradient, which serves as the equivalent of
an electric voltage applied to a solid-state material.

In principle, it would be sensible to employ a potential gradient generated by optical means,
since for a far-detuned laser source the gradient strength is independent of the magnetic
hyperfine state. However, the DMD potential introduces disorder in the local potential strength
on the order of four to nine lattice sites and as a consequence strongly suppresses the mobility of
the atoms if the DMD intensity is too large [152]. Therefore, we decided to employ an in-plane
magnetic field gradient instead, even though it suffers from the drawback of introducing a
slightly spin-dependent gradient strength. So far we have used magnetic field gradients mostly
for their differential effect on the spin state in a frozen lattice configuration, see Chapter 5 and
Section 6.4.2. However, if tunnelling is allowed, a magnetic field gradient will lead to density
redistribution according to the respective magnetic moment of the atoms, which is given by the
slope in the Breit-Rabi diagram, see Figure 4.1. For the measurement of the compressibility we
will make use of this (slow) density redistribution in order to quantify how easily the atoms
adjust to a tilt in the potential landscape while being in the bilayer lattice configuration for
different values of t⊥.

7.3.1 Experimental Sequence

For probing the compressibility in the bilayer Fermi-Hubbard model we slightly modify the
experimental sequence shown in Figure 6.6, which was used to create the bilayer Hubbard
system and to measure magnetic intralayer correlations. Firstly, we ramp up the current of
the two gradient coils in parallel with the depth of the short-wavelength z-lattice, which splits
a single layer into the coupled bilayer system. It is not problematic to expose the atoms to
the in-plane magnetic field gradient already before the bilayer lattice has reached its final
configuration, since we expect the compressibility to be lowest for small barrier heights and
therefore it is unlikely that the atoms will redistribute much. We hold the atoms at a fixed
gradient strength in the bilayer lattice realizing a broad range of tunnelling amplitudes from
t⊥/t ≈ 0 to 5 until we quickly freeze the density distribution in all three directions within
approximately tfreeze = 150µs. At this point we can remove the in-plane magnetic field gradient,
as the atoms are not able to tunnel any more. In order to prevent the two coils, which are not
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water-cooled, from overheating we removed the ramps for the spin spiral part, as we are not
interested in measuring spin correlations anyway. Instead, to infer the compressibility of the
bilayer system we need to measure the density equation of state by separately detecting the
contributions from singly and doubly occupied lattice sites.

Gradient Strength In order to obtain a quantitative estimate of the compressibility from the
density distribution of the atoms, we need to know the strength of the potential gradient.
Since we employ the same coils as for the spin spiral technique, we can make use of the precise
calibration of the gradient strength with the atoms, see Figure 5.6. If we run the spin spiral
at a magnetic bias field of B = 191.4 G, the difference between the π- and the 2π-point for
neighbouring sites is ∆tπ = 0.129s5. At this field, the differential slope of the lowest two
magnetic hyperfine states (compare Figure 4.1) is

∆γ =
∂E|7〉 − ∂E|9〉

h∂B
= −1.4

kHz

mG
+ 1.24

kHz

mG
= 160

Hz

mG
. (7.15)

The relative phase between nearest neighbours along the diagonal of the in-plane lattice, is
twice the phase between nearest neighbours along either of the two lattice directions. Therefore,
the gradient strength is given by

2π∆γ|∇Bz|adiag∆tπ
!

= 2π. (7.16)

The spacing between sites along the diagonal is adiag = 780.8 nm, which is larger than the

expectation for a square lattice
√

2a = 752 nm due to our slightly angled lattice configuration.
Finally, the gradient strength for ∆IRetro = 17.2 A and ∆IStage = 5.115 A leads to a difference
in the magnetic field strength between neighbouring sites of

|∇Bz| · a = |∇Bz| · 532 nm = 0.033 mG. (7.17)

The advantage of creating a potential gradient using magnetic fields is that it varies more
smoothly over the extent of the cloud as compared to a gradient generated by optical means,
such as a spatial light modulator. On the other hand, this approach suffers from the weakness
that the gradient strength felt by the atoms depends on the magnetic hyperfine state. Since we
only detect atoms in the |7〉 state, the maximum possible gradient strength that they experience
is given by

|∇V | = 0.033 mG

532 nm
· 1.24

kHz

mG
= 77

Hz

µm
. (7.18)

This, however, slightly underestimates the gradient strength felt by doubly occupied lattice
sites. Under the assumption that the doubles do not split up when applying the magnetic field
gradient, they experience a gradient strength that is around 6% larger.

Settling Behaviour of the Density Redistribution In order to determine the slope in the
density due to the in-plane gradient, our fitting routine consists of two steps. First, we obtain

5
Note that we cannot simply take the time of the π-point itself, since the phase evolution when the current of
the gradient coils is ramped up and down would be included in this time, and hence we would overestimate
the time that is needed at the full gradient.
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the direction of the in-plane gradient, which slightly deviates from the intended lattice diagonal,
by fitting a plane to the two-dimensional density distribution. In a second step, we bin the
density along this predetermined gradient direction and obtain the rate of change of the density
from a one-dimensional linear fit, see Figure 7.8 c) and f). For both parts of the analysis we do
not use the full centre region defined by the steep DMD barrier, but instead we exclude those
parts of the peripheral region, where the atoms do not follow the linear trend. The reason for
these deviations is likely given by the DMD potential, which increases in intensity when moving
away from the trap centre and which suppresses the mobility of the atoms due to disorder.
Even after restricting the region of interest, we still fit the slope in the density over around
50-60 lattice sites along the direction of the magnetic field gradient.
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Figure 7.6: Settling behaviour of the density gradient. While the gradient direction (a) is mostly
independent of the hold time, we observe an exponential settling behaviour in the slope of the total
density (b). We extrapolate the exponential decay (dotted line) to indicate the settling value for the
slope. Under the assumption that the exponential time constant scales roughly linearly with the gradient
strength, we also fit the dataset with the largest gradient. Still this extrapolation only serves as a rough
guess. The grey shaded region in (a) represents the direction of the lattice diagonal, which is what we
aimed for. The legend applies to the whole figure and specifies the gradient strength as the difference in
magnetic field over a distance of a = 532 nm.

To obtain a reliable estimate on the compressibility, we have to ensure that the density
distribution has settled according to the applied in-plane gradient. The density response is
the larger, the stronger the gradient. On the one hand, we are aiming for the largest signal
strength, on the other hand, however, we are limited by the dissipated power of the coils as
they are not water cooled. This restricts the maximum hold time for a certain coil current. In
Figure 7.6 we investigate the settling behaviour of the density response for different magnetic
field gradient strengths. For the maximum gradient strength, ∆B = 0.033 mG, the density
has not settled at all. Therefore, we need to reduce the current and the final parameters are
∆B = 0.013 mG and tHold = 1 s.

Note that the ratio of the settling values of the slope in the density for the lower two gradient
strengths in Figure 7.6 b) does not match the expectation inferred from the applied magnetic
field gradients. It seems that the density follows less the stronger the gradient. We take this
effect into account by rescaling the observed slope with the mismatch of the expected to the
observed ratio in the density slope.
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Furthermore, the direction of the density gradient does not match the lattice diagonal, as
intended, but deviates by around ten degree. To investigate the source of this discrepancy, we
change the amount of light that is sent to the DMD, see Figure 7.7. Interestingly enough, the
slope in the density is unaffected by changing the power of the compensation potential, however
the direction increases linearly with the optical DMD power. The DMD potential is designed to
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Figure 7.7: Effect of over/undercompensating the harmonic trap. We tune the optical power in the
DMD beam quantified by the voltage that is detected by the regulation photodiode to investigate
the effect of over/undercompensating the harmonic trap confinement on both the direction and the
amplitude of the resulting slope in the density. The grey line indicates the in-plane direction that we
expected to match. The red lines mark the situation, where we took the final data shown in Figure 5.11.

create a homogeneous lattice potential in the core region, and therefore mostly compensates the
strong confinement along the x-direction generated by the infrared z-lattice. A possible reason
that might explain why the DMD potential does not perfectly cancel the harmonic confinement
of the lattice lasers, is given by the alignment process. The DMD is typically aligned to the
centre of the cloud in the three-dimensional optical lattice configuration with Vxy,r = 6Erec

and Vz,g = 120Erec, while the infrared z-lattice is aligned to the centre of the imaging frame.
Typically there is a significant discrepancy in the position along the x-axis for these two cases
and therefore the centre of the DMD anti-confinement was likely misplaced with respect to the
centre of the trap confinement. When adding up a parabola and an inverted parabola whose
centres are shifted with respect to each other, the resulting potential is a straight line, which
might be the cause for the deviation in the observed gradient direction. For future experiments,
this problem may easily be circumvented by aligning the infrared z-lattice in the same way as
the DMD, i.e. to the centre of the cloud in the three-dimensional optical lattice configuration.

7.3.2 Discussion and Results

Having optimized the evaluation of the density slope for a setting, where we expect the bilayer
system to be the least insulating, we have measured the compressibility for varying strength of
the interlayer tunnel coupling. In the upper and lower row of Figure 7.8 we show the evaluation
steps for a large and an intermediate tunnel amplitude, t⊥ = 5.2t and t⊥ = 1.8t, respectively.
The mean density is close to, but slightly below half-filling, which is larger than what we would
expect when splitting a single-band band insulator with an initial filling of n = 0.85(1) into
two equally filled layers. This might indicate that the layer, which we probe, has a higher
average filling than the correlated neighbouring layer. When subtracting the mean filling, the
difference in the slope of the density distribution is already discernible, see Figure 7.8 b) and e).
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Figure 7.8: Density distribution in the band insulating and intermediate bilayer regime. We show the
total density (left column), the deviation from the mean density in the centre region (middle column)
and how the density varies as a function of the chemical potential within the plane (right column), both
for the band insulating regime t⊥ = 5.2t (top row) and for an intermediate coupling strength t⊥ = 1.8t
(bottom row) of a coupled bilayer system. For each interlayer tunnel coupling, we combine the data
of around 80 individual realizations. We have applied a Gaussian filter with σ = 2a to the density
deviation data n− 〈n〉 in order to facilitate detecting the difference in the density slope by naked eye.
The error bars on the binned density in c) and f) represent the standard error resulting from binning
the density in steps of ∆µ/h = 50 Hz.

From a linear fit to the density binned according to the expected chemical potential map of the
in-plane gradient, see subfigures c) and f), we obtain the compressibility in units of t−1, where
t/h = 174 Hz, which is shown in Figure 7.9 as a function of the interlayer tunnelling amplitude.
We compare our experimental results to DQMC calculations at U/t = 7 and kBT/t = 1.0..1.4.
To account for the varying density within the centre region, we average the theory data for the
compressibility over µ/t = −1.75 to µ/t = 1.0.

The atoms seem to suggest a lower compressibility than expected by DQMC theory data.
We should however keep in mind that apart from the statistical error shown in Figure 7.9, our
results are also affected by several systematic uncertainties on, for example, the interaction
strength, the detection fudges and most importantly the gradient strength felt by the atoms.
In particular, the interaction strength is not constant over the investigated range of vertical
tunnelling amplitudes, see Figure 6.16 b). Also, we should keep in mind that the density of
the two coupled layers might be different, which would increase the inferred compressibility
only in the intermediate to strong coupling regime. Furthermore, the disorder introduced by
the DMD potential might reduce the mobility of the atoms and thereby affect the inferred
compressibility.

When comparing our results on the compressibility in the bilayer Fermi-Hubbard model close
to half-filling in the crossover regime from a Mott insulator to the bilayer band insulator to
the simulations presented in Figure 7.2, we realize that the bilayer system remains insulating
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Figure 7.9: Compressibility in the bilayer Fermi-Hubbard model. We have measured the compressibility
as a function of the interlayer tunnelling amplitude t⊥ at U/t ≈ 7. The error bars represent the 95%
confidence interval of the corresponding fit parameter. The shaded region shows the DQMC calculations
for a temperature range of kBT = 1.0t..1.4t. These results have been published in [171].

over the whole range of interlayer tunnel coupling investigated. However, the physical nature
of the state changes drastically. At small interlayer coupling, t⊥ < t � U , the particles
hardly delocalize within the horizontal layer and even less over the double-well. The magnetic
order is dominated by localized spins and the insulating behaviour is linked to the repulsive
on-site interaction only. In contrast, at strong interlayer coupling, t⊥ > t, the energy gain
by delocalizing over the double-well is a dominant contribution as t⊥ is on the order of the
interaction strength. Therefore, any density redistribution would increase both the kinetic
as well as the interaction energy of the prepared state, see discussion in Section 7.2.2 and
consequently the repulsive interaction strength together with the delocalization energy of the
double-well cause the many-body state to be strongly insulating. For this reason we observe
that the bilayer band insulator has a lower compressibility.

In contrast to the standard single-band band insulator, where each lattice site is occupied
by two particles, the bilayer band insulator occurs at half-filling and may be thought of as
a standard band insulator that is spread out over two (coupled) layers. Both phases aim at
the reduction of their kinetic energy, either by only populating the lowest band or the lower
miniband of a superlattice band structure. The latter corresponds to a delocalization over the
double-well in the singlet configuration and leads to strong magnetic correlations between the
coupled layers due to Pauli’s exclusion principle even in the non-interacting case.
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CHAPTER 8

Conclusion and Outlook

Within the scope of this thesis I have investigated the Fermi-Hubbard model with ultracold
potassium atoms in a strongly anisotropic three-dimensional optical lattice configuration
with full control over the interaction strength between opposite spins and the tunnelling
amplitudes. We have implemented a novel scheme to measure magnetic correlations within a
single two-dimensional layer in a locally resolved manner. By coherently manipulating magnetic
correlations we probe the antiferromagnetic order at arbitrary quasimomentum. In particular
at qAFM = (π/a, π/a), we access the staggered magnetic structure factor, a quantity that probes
the alternating spin pattern “on resonance” and is hence directly linked to the order parameter
of the antiferromagnet. With the superb quasimomentum resolution we overcome our limited
optical resolution, which by itself precludes the detection of individual spatial spin correlators.
Furthermore, the staggered spin structure factor serves as a sensitive local thermometer and in
combination with the global density thermometry it allows us to identify a non-equilibrium
density distribution. We have utilized this to optimize the loading procedure into the in-plane
lattices and to characterize the background heating rate in the lattice.

By implementing a superlattice along the vertical direction we have extended our Fermi-
Hubbard toolbox. In our most recent project we have realized the bilayer Fermi-Hubbard model
by splitting a single-band band insulator into two coupled layers. We have characterized the
magnetic order within one of the two-dimensional layers by probing both the uniform and the
staggered structure factor as before. To measure spin-correlations between horizontal layers we
induce coherent singlet-triplet oscillations along the vertical direction followed by an adiabatic
mapping to the eigenstates of a single well (merging). By tuning the coupling strength between
the two layers, t⊥, we have observed the crossover from predominantly antiferromagnetic
correlations within the layer at weak coupling to singlet bonds forming along the vertical
direction in the strong coupling regime. The corresponding low-temperature phases are given
by the two-dimensional antiferromagnet and the bilayer band insulator. In addition the local
moment, which is proportional to the singles filling, underlines that the physical nature changes
drastically from localized moments when t⊥, t� U to a delocalized state with increased density
fluctuations for t⊥ ≈ U � t. Although we find very different behaviour for the weakly and the
strongly coupled bilayer configuration, both states are insulating as we have verified by exposing
the atoms to an in-plane magnetic field gradient. The lowest compressibility is obtained in the
band insulating regime at the strongest interlayer coupling strength that we achieve t⊥/t ≈ 5.
While we have without doubt found signatures of both the two-dimensional antiferromagnetic
Mott insulator and the bilayer band insulator, there is room for improvement, particularly

161



Chapter 8 Conclusion and Outlook

concerning the preparation of the initial state and the splitting. Both parts will be discussed in
the following.

Suggestions for Further Improvements

For the starting point of the bilayer experiment we aim for a single-band band insulator,
however, the filling that we reach is on the order of 85%. Instead of merely cutting into the
density distribution within the harmonic trap (see Figure 6.5), we could try to squeeze more
atoms into the centre region by adjusting the slope of the barrier. If we start to ramp up the
power in the DMD beam path with a reduced slope steepness towards the centre region, atoms
sitting at the position of the slope might be slowly pushed into the centre and they would get
squeezed the more the larger the power of the DMD beam becomes. Another possibility might
be to increase the confinement of the dipole trap prior to loading the atoms into the in-plane
lattices.

The potential disorder introduced by the DMD light severely limits the flatness that we
achieve when splitting the single-band band insulator into the bilayer lattice configuration. We
have observed that further reducing the DMD power during the splitting process increases the
amount of singles and should thus in turn enhance the amount of spin correlations that we
obtain. This suggests that it is beneficial to accept a small harmonic confinement over the
extent of the cloud when in turn reducing the disorder on length scales of a few sites. While it
would be interesting by itself to further investigate the dependence of magnetic correlations on
the disorder strength, there are several possible routes to tackle the disorder problem. First, we
could try to improve on the atom density feedback by incorporating the point-spread function
in the feedback loop to possibly account for even smaller structures. Second, we could try
to get rid off the DMD potential during the splitting process. As the DMD mostly needs to
compensate the strong confinement from the running-wave component of the infrared z-lattice
beam, it might be sensible to increase its waist along the x-direction. Due to the rather large
lattice spacing of 2.13µm we do not need a lot of power to reach a certain lattice depth in units
of the corresponding recoil energy. Therefore we might even reduce the waist by a factor of four
without running into power issues for the splitting configuration. However, from the technical
standpoint it might be simpler to employ the green z-lattice beam as a source of deconfinement
and as for the infrared z-lattice its effect on the potential is strongest along the x-direction. As
we only need to reach around 30Erec during splitting we might add a motorized half-wave plate
in order to imbalance the power of the two interfering green lattice beams at this particular
point in the experimental sequence [137]. This would increase the running wave component
and in turn the deconfinement predominantly along the x-direction. In principle it would also
be possible to add an additional deconfinement beam for example via the dimple port.

Bilayer Configuration with Vertical Potential Bias

Concerning the measurement of the compressibility in the bilayer Fermi-Hubbard model it
would be interesting to complement the investigation presented in this thesis by employing
a potential gradient along the vertical direction. This is easily achieved by tuning the phase
of the optical superlattice, which will introduce a total site offset of 2∆, compare Equation
2.22 and Figure 6.8. This tilt is identical for both spin components, which is a clear benefit
over the measurement with the in-plane magnetic field gradient. Furthermore, systematic
uncertainties could be reduced as we can calibrate the potential energy offset by inducing Rabi
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oscillations between the two layers and the disorder should be less problematic since both layers
experience the same optical (disorder) potential. On the downside we have to measure the full
density sector in both layers, which might increase the required acquisition time. Introducing
a potential bias between the two horizontal layers also offers the prospect of investigating
new physics. K. Bouadim et al. have presented determinant quantum Monte Carlo (DQMC)
calculations of the self-doped bilayer Fermi-Hubbard model, where one layer is particle-doped
and the other one hole-doped with respect to half-filling [44]. They have found signatures of
d-wave pairing, however at temperatures about an order of magnitude smaller than the ones
currently realized in our experiment.

Entropy Cooling

Another incentive of implementing the superlattice along the vertical direction was to reach
low entropy states by preparing a band insulator and adiabatically splitting it into two layers.
A band insulator is an ideal starting point as its density of states vanishes due to the large
energy gap to the higher bands and therefore theoretically it features a vanishing entropy
[180]. However, we do not observe an increase in the amount of intralayer correlations as
compared to the study of the two-dimensional Fermi-Hubbard model and consequently we
can not identify a significant cooling effect. While this might be connected to the disorder
that is introduced by the DMD potential, another bottleneck of this approach is given by the
creation of the initial band insulating state as discussed above. Entropy cooling within a layer
was successfully employed in [180] and a low entropy band insulator was achieved through
entropy redistribution. However, in our case this scheme suffers from the larger system size of
several thousand lattice sites and as the redistribution takes time the system heats up due to
nonadiabaticities [139]. Therefore it might be beneficial to investigate cooling schemes where
the contact between the reservoir and the investigated system is maximised. One of the early
proposals suggests to employ a Bose-Einstein condensate covering the whole extent of the
fermionic cloud as a heat reservoir [181]. Another approach that is feasible for our experiment
involves the redistribution of entropy between two layers along the vertical direction, where
one layer acts as the entropy reservoir for the other one. This scheme was suggested by A.
Kantian et al. and they expect that the entropy in a single layer may be reduced by up to an
order of magnitude [182]. In a bosonic system a similar scheme was successfully implemented
with an in-plane bichromatic superlattice [169]. Introducing a potential energy offset leads to a
spatially alternating appearance of Mott insulators and superfluid regions, where the latter act
as the high-entropy reservoir.

Topology and Floquet Engineering

In addition to entropy cooling, the superlattice that was recently implemented along one of the
in-plane lattice directions offers a broad range of new projects. For example, it allows us to realize
the one-dimensional Su-Schrieffer-Heeger (SSH) model, which is one of the simplest paradigmatic
models with a symmetry-protected topological phase. By combining the superlattice potential
with sharp potential boundaries defined by the DMD beam, we aim at observing topologically
protected edge states. Beyond static experiments, the superlattice configuration also offers the
possibility of introducing dynamic variations to the potential landscape. In [183] the effect of
modulating the site offset was investigated for the two-site Hubbard model and a parameter
regime was identified where particles tunnel predominantly in pairs. Enhancing the pair over
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the standard single-particle tunnelling is an important prerequisite for the proposal of observing
Majorana quasiparticles in a two-leg ladder configuration [184]. This setting could be realized
in our experiment by modulating the frequency of the long-wavelength lattice laser that is
part of the x-superlattice, e.g. by setting up an AOM in double-pass configuration. While the
Floquet engineering of the site offset would suppress the single-particle tunnelling along the
x-direction, particles can still tunnel along the y-direction.

η-Pair Condensate via In-Plane Superlattice

Another interesting project involves the preparation of the η-pair state [185], a highly coherent
many-body state, which is formed by doubly occupied sites that experience a phase shift of π
between neighbouring lattice sites. We have already introduced the η-pair creation operator η̂†

in Equation 3.54 and if applied to an empty double-well system we obtain one of the excited
Hubbard eigenstates

η̂† |0〉 ∝ |d−〉 =
1√
2

(|↑↓, 0〉 − |0, ↑↓〉) , (8.1)

where the minus sign indicates the π-phase shift1. The pseudospin operators comply with
the spin algebra as defined by the commutation relations of their pseudospin components η̂x,
η̂y and η̂z, and at half-filling they all commute with the Fermi-Hubbard Hamiltonian. This
leads to the additional pseudo-spin SU(2) symmetry for simple cubic lattice configurations (at
half-filling only), which conserves the number of η-pairs and is linked to superfluid correlations
[39, 107]. As discussed in [186] the formation of an η-pair condensate is expected to give rise to
sharp peaks in the momentum distribution of the fermion pairs,

〈d̂†kd̂k〉 =
∑
m,n

ei(rm−rn)k 〈d̂†nd̂m〉 , (8.2)

where we have introduced the operator d̂†m = ĉ†m,↓ĉ
†
m,↑. The sign of the real-space pair correlator

〈d̂†nd̂m〉 alternates with the distance between the sites n and m and therefore when realizing an
η-condensate the peaks in the momentum distribution will be centred at k = (π/a, π/a). The

correlator 〈d̂†nd̂m〉 is an interesting quantity by itself as it quantifies off-diagonal long-range
order that is linked to the characteristic properties of superconducting states [187]. We can
express the real-space correlator in terms of the transverse pseudospin operators,

〈d̂†nd̂m〉 ∝ 〈η̂xnη̂xm〉+ 〈η̂ynη̂ym〉 , (8.3)

which do not have a classical analogue. Note that the transverse pseudospin correlators indicate
an s-wave superfluid phase of fermion pairs, while the longitudinal z-correlator 〈η̂znη̂zm〉 links to
charge-density wave ordering [104].

A. Kantian et al. have proposed a scheme that aims at creating an η-condensate using
ultracold atoms by employing a time-dependent superlattice potential [188]. They start in a
band insulating state with attractive interactions, where the doubles occupy only the lower sites
of a superlattice potential with a finite tilt, which breaks the pseudospin SU(2) symmetry. As

1
Note that for an arbitrary number of lattice sites L, the η-pair state at half-filling is defined as

(
η̂
†
)L/2

|0〉 up

to a normalization factor.
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an intuitive picture, the energy offset between left and right sites introduces a site-dependent
chemical potential, which makes it more favourable for doubles to occupy the lower lying
sites, while the other sites are empty. This acts in a similar way as a staggered magnetic
field term for spin-up and spin-down particles, which would violate the spin SU(2) symmetry.
Therefore, in analogy to the spin sector, introducing a finite tilt in the superlattice potential will
break the symmetry conserving the number of η-pairs, which is a prerequisite for creating an
η-condensate. Energy is pumped into the system by quickly switching the interaction strength
to a positive value. By adiabatically removing the long-wavelength lattice the doubles are
expected to delocalize over the lattice and build up global coherence. As we are interested in
the momentum distribution of the pairs, the detection of an η-condensate would require a short
RF pulse to switch the interaction strength from repulsive to attractive followed by a ramp
over the Feshbach resonance to associate doubly-occupied lattice sites to deeply bound dimers.
Then the momentum distribution may be obtained by the standard time-of-flight technique.
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