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1. Introduction 

Mammalian fertilization relies on sperm finding the egg and penetrating the egg vestments. 

All steps in a sperm’s lifetime crucially rely on changes in the second messenger cAMP (cyclic 

adenosine monophosphate). In recent years, it has become clear that signal transduction in 

the sperm is not a continuum, but rather organized in subcellular domains, e.g. the sperm 

head and the sperm flagellum, with the latter being further separated into the midpiece, 

principal piece, and endpiece. To understand the underlying signaling pathways controlling 

sperm function in more detail, experimental approaches are needed that allow to study sperm 

signaling with spatial and temporal precision. Here, we will give a comprehensive overview on 

cAMP signaling in mammalian sperm, describing the molecular players involved in these 

pathways and the sperm functions that are controlled by cAMP. Furthermore, we will highlight 

recent advances in analyzing and manipulating sperm signaling with spatial-temporal 

precision using light.  

2. cAMP signaling in mammalian sperm – cAMP synthesis 

cAMP is synthesized by adenylate cyclases (ACs), which catalyze the conversion of ATP into 

cAMP. In mammals, there are two different types of ACs: the transmembrane ACs (tmACs) 

and the membrane-associated soluble AC (SACY) (Fig. 1). To date, nine different tmAC 

isoforms have been identified, displaying different cell-type specific expression patterns and 

different modes of regulation (Cali et al., 1994; Feinstein et al., 1991; Gao & Gilman, 1991; 

Katsushika et al., 1992; Krupinski et al., 1989; Watson et al., 1994; Yoshimura & Cooper, 1992). 

All tmAC isoforms possess the same primary structure, consisting of two transmembrane 

domains with six transmembrane segments each, and two cytoplasmic catalytic domains. The 

activity of tmACs is determined by G proteins, which can be circumvented by direct activation 

through the diterpene forskolin (Dessauer et al., 1997) or its water-soluble analog NKH477 

(Hosono et al., 1992) (Fig. 2). The presence of tmACs in mammalian sperm has been 

controversially discussed (Brenker et al., 2012; Defer et al., 1998; Fraser et al., 2005; Fraser & 

Duncan, 1993; Leclerc & Kopf, 1995; Livera et al., 2005; Spehr et al., 2003; Strünker et al., 

2011; Wertheimer et al., 2013): Some studies failed to report an increase in cAMP levels after 

stimulating sperm with forskolin or NKH477(Brenker et al., 2012; Hess et al., 2005; Jaiswal & 

Conti, 2003; Rojas & Bruzzone, 1992; Strünker et al., 2011), whereas others demonstrated 

elevated cAMP levels after drug stimulation (Baxendale & Fraser, 2005; Livera et al., 2005). 

Taken into account that forskolin or its analogs have been proven to reliably stimulate tmAC 

activity in many different cell types (Kamenetsky et al., 2006), lack of forskolin-dependent 

stimulation of tmAC activity has to be taken seriously. Apart from pharmacological 

approaches, genetic mouse models have been analyzed to reveal the role of tmAC function 

for sperm physiology. So far, only AC3 knockout-mice turned out to be infertile: AC3 knockout-

sperm were only able to fertilize the egg in vitro after removal of the zona pellucida (Livera et 

al., 2005). None of the other knockout mouse-models that have been analyzed so far (AC1, 

AC5, AC6, AC8) show a fertility defect in male knockout mice (Chien et al., 2010; Iwamoto et 

al., 2003; Li et al., 2006). We have recently developed a mouse model expressing a cAMP 

biosensor in sperm flagella (Mukherjee et al., 2016) (Fig. 2). The sensor is equally distributed 
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along the flagellum, allowing to reliably determine changes in cAMP levels in the different 

compartments of the flagellum, but not in the sperm head. After stimulation with NKH477 to 

activate tmACs, no change in cAMP levels were observed, ruling out the presence of tmACs in 

the sperm flagellum of mice (Mukherjee et al., 2016). In fact, cAMP signaling seems to be 

compartmentalized with tmACs and the corresponding stimulatory G protein Gs being present 

in the sperm head, but not in the flagellum (Wertheimer et al., 2013). In contrast to the tmACs, 

the presence of SACY has been unequivocally confirmed in mammalian sperm. SACY was 

cloned and purified from 950 rat testis by Levin & Buck (Buck et al., 1999), following up on the 

discovery of a soluble AC activity in cytosolic extracts from testis (Braun & Dods, 1975; Braun 

et al., 1977; Neer, 1978). The SACY gene encodes for a protein of Mr ~ 187,000 with low specific 

activity and an alternatively spliced isoform of Mr ~ 50,000 with high specific activity (Buck et 

al., 1999; Jaiswal & Conti, 2001). The full-length protein consists of two catalytic domains in 

the N terminus, which display higher homology to cyanobacterial ACs than to the catalytic 

domains of tmACs (Buck et al., 1999), suggesting a high conservation of SACY throughout 

evolution. The shorter isoform consists almost exclusively of the two catalytic subunits. The C 

terminus of the full-length protein contains additional putative regulatory domains, such as 

an autoinhibitory region (Chaloupka et al., 2006) and canonical P-loop and leucine zipper 

sequences (Buck et al., 1999). Both isoforms are insensitive to G proteins and forskolin (Buck 

et al., 1999), but are directly stimulated by bicarbonate (Chen et al., 2000; Garbers et al., 1982; 

Garty & Salomon, 1987; Visconti et al., 1990) and Ca2+ (Garbers et al., 1982; Jaiswal & Conti, 

2003; Litvin et al., 2003). Binding of bicarbonate stimulates the enzyme’s Vmax by fostering an 

allosteric change that closes the active site and rearranges the phosphates in the bound ATP 

(Litvin et al., 2003; Steegborn et al., 2005). For activation, SACY requires two divalent cations 

in the catalytic active site to coordinate binding and cyclizing of ATP. In vitro, SACY is five to 

ten times more effective in the presence of Mn2+ than Mg2+ (Buck et al., 1999; Rojas & 

Bruzzone, 1992). However, it is not clear whether the physiological intracellular Mn2+ 

concentration would support SACY activity, suggesting that, under physiological conditions, 

SACY rather binds Mg2+/ATP than Mn2+/ATP. Moreover, in the presence of Ca2+, the affinity to 

Mg2+/ATP is increased so that physiological cellular ATP is sufficient for SACY activation 

(Jaiswal & Conti, 2003; Rojas & Bruzzone, 1992). SACY expression accumulates to high levels 

in developing germ cells (Sinclair et al., 2000), and it is predominantly expressed in the 

midpiece of mature sperm (Hess et al., 2005). Importantly, bicarbonate-dependent cAMP 

synthesis through SACY cannot only be recovered in the soluble, but also in the particulate 

fraction, associated with the plasma membrane (Visconti et al., 1990; Xie & Conti, 2004). In 

fact, in mature sperm, a two-fold higher SACY activity can be recovered in the particulate 

compared to the soluble protein fraction (Hess et al., 2005). In sperm, the interaction with the 

sNHE (see below) is supposed to localize SACY to the plasma membrane ((Wang et al., 2007). 

Of note, in somatic cells, SACY is mainly found in the soluble fraction (Xie & Conti, 2004).

                  



4 
 

3. cAMP signaling in mammalian sperm - cAMP hydrolysis  

Cyclic nucleotide phosphodiesterases (PDEs) are the enzymes underlying the hydrolysis of 

cAMP into 5’-adenosine monophosphate (AMP). In mammals, eleven PDE families (PDE1 - 

PDE11) with multiple, tissue-specific isoforms encoded by more than 20 different genes have 

been identified. Considering all the splice variants, mammals express more than 100 different 

PDEs (Conti & Beavo, 2007). PDEs share a conserved catalytic domain proximal to the C 

terminus, whereas regulatory domains are often located near the N terminus. The regulatory 

domains include binding sites for cyclic nucleotides, protein-protein interaction domains, and 

phosphorylation sites. PDE families are grouped according to their specificity to hydrolyze 

cAMP (PDEs 4, 7, and 8), cyclic guanosine monophosphate (cGMP) (PDEs 5, 6, and 9), or both 

cAMP and cGMP (PDEs 1, 2, 3, 10, and 11) (Mehats et al., 2002; Soderling & Beavo, 2000). In 

mammalian sperm, a member of almost every PDE family has been identified by 

immunocytochemistry (PDE1A, PDE4D, PDE6, PDE8A, PDE10A, PDE11A) (Baxendale & Fraser, 

2005) or by pharmacological approaches. For example, in mouse sperm, the majority of PDE 

activity was attributed to PDE4 and PDE1 using specific inhibitors for PDE4 (rolipram) and PDE1 

(MMPX), respectively, (Baxendale & Fraser, 2005). In bovine sperm, PDE activity was mainly 

attributed to PDE10 and to a lesser extent to PDE3, PDE4, and PDE8 family members (Bergeron 

et al., 2017; Goupil et al., 2016). Not only cAMP synthesis, but also cAMP degradation through 

PDEs seems to be compartmentalized in mammalian sperm (Bajpai et al., 2006; Bergeron et 

al., 2017), underlining the fact that cAMP signaling controls specific sperm functions through 

an organization into microdomains (Fig. 1).  

4. cAMP downstream targets in mammalian sperm 

Changes in cAMP signaling are transduced into a downstream response by engaging cAMP 

target proteins. Most commonly, they belong to the family of cyclic nucleotide-binding 

proteins containing a cyclic nucleotide-binding domain (CNBD). In the following, the different 

CNBD-containing cAMP targets in mammalian sperm will be described.  

Protein kinase A (PKA) 

The principal action of cAMP in sperm is mediated through activation of the cAMP-dependent 

protein kinase (PKA), a ubiquitously expressed, broad specificity Ser/Thr kinase conserved in 

all eukaryotes (Burton & McKnight, 2007) (Fig. 1). The inactive PKA holoenzyme is tetrameric, 

consisting of two regulatory subunits (R) and two catalytic (C) subunits. Mammals harbor five 

different genes for the catalytic subunit (PRKACA, PRKACB, PRKACG, PRKX, and PRKY, encoding 

Cα, Cβ, Cɣ, PRKX, and PRKY) and four different genes for the regulatory subunit (RIα, RIβ, RIIα, 

and RIIβ) (Soberg et al., 2013). For many years, PKA activation was thought to rely on two 

molecules of cAMP cooperatively binding to the CNBDs located at the C terminus of each R 

subunit, causing dissociation of the holoenzyme into a regulatory subunit homodimer and two 

free active catalytic subunits (Kim et al., 2007; Kim et al., 2005). However, recent reports 

demonstrate that catalytically active PKA stays intact as a holoenzyme, which allows the 

proteins to stay proximal to anchoring sites and substrates (Smith et al., 2017). The catalytic 

subunit phosphorylates substrate proteins, altering their functional properties. To confine PKA 
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activity to a relevant subset of potential substrates, scaffolding proteins, referred to as A-

kinase anchoring proteins (AKAPs), bind to the dimerized regulatory subunits of PKA, targeting 

the protein to specific subcellular locations (Beene & Scott, 2007; Carnegie et al., 2009). In 

vitro, AKAPs bind to the RII subunit, which allowed to identify two sperm-specific AKAPs, 

AKAP3 and 4 (Carr et al., 2001; Vijayaraghavan et al., 1999). Loss of AKAP4 in sperm results in 

infertility with sperm showing morphological defects and reduced sperm motility (Miki et al., 

2002). In mammalian sperm, PKA and AKAPs are located in the flagellum (Wertheimer et al., 

2013). During sperm development, sperm switch from expressing the somatic Cα1 catalytic 

subunit of PKA to the unique sperm-specific Cα2 subunit, which contains a distinct N terminus 

and lacks the post-translational myristoylation found in Cα1 (San Agustin & Witman, 2001). 

Knocking out both isoforms in mice results in postnatal lethality with only a few knockout mice 

surviving until adulthood (Skalhegg et al., 2002). Spermatogenesis in these knockout mice 

progressed normally, but sperm motility is impaired (Skalhegg et al., 2002). Knocking out the 

sperm-specific Cα2 subunit causes infertility in male mice with no detectable PKA activity in 

mature sperm (Nolan et al., 2004). The molecular mechanisms underlying this defect will be 

discussed later in this review. The main regulatory subunit in mature sperm is the RIIα subunit 

(Burton & McKnight, 2007; Landmark et al., 1993). Loss of RIIα results in a compensatory 

increase in the RIα subunit (Burton et al., 1999). In turn, RIIα knockout-mice are fertile and do 

not show any sperm defects (Burton et al., 1999). Apart from creating knockout mice, 

analyzing PKA function in vivo is limited by the lack of highly specific inhibitors that can be 

used in primary cells or in whole animals. Genetically-modifying the mouse Prkaca gene in 

combination with Cre-mediated recombination in vivo allowed to express a PKA Cα mutant 

(CαM120A), containing a mutation in the ATP-binding pocket, while at the same time turning 

off the expression of the wild-type protein (Morgan et al., 2008). This mutation confers 

sensitivity to the pyrazolo[3,4-d]pyrimidine inhibitor, 1NM-PP1, which allows to specifically 

block PKA activity (Morgan et al., 2008). Application of 1NM-PP1 to sperm abolished certain 

sperm functions, which will be discussed later in this review. 

Epac – a guanine-nucleotide exchange factor 

The Rap-specific guanine-nucleotide exchange factor Epac (exchange protein directly 

activated by cAMP) contains a CNBD and a guanine nucleotide-exchange factor (GEF) domain 

(de Rooij et al., 1998; Kawasaki et al., 1998). Thereby, Epac couples cAMP signaling to the 

activation of the Rap subfamily of RAS-like small GTPases. So far, two isoforms of Epac, namely 

Epac1 and Epac2 have been identified (de Rooij et al., 1998; Kawasaki et al., 1998). Epac1 and 

Epac2 both contain a regulatory and a catalytic domain in their N and C terminus, respectively. 

The catalytic domain harbors the GEF domain, the regulatory domain contains the CNBD, 

which, in the absence of cAMP, inhibits the catalytic activity (Rehmann et al., 2008; Rehmann 

et al., 2006; Rehmann et al., 2003). Epac2 additionally contains a second low-affinity CNBD; 

however, its function is rather unclear (de Rooij et al., 2000). Experimental evidence suggests 

that Epac proteins play a role in the sperm head (Branham et al., 2009; Branham et al., 2006; 

Lucchesi et al., 2016), which we will describe later (Fig. 1). 
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Other cAMP target proteins in mammalian sperm 

Apart from PKA and Epacs, other CNBD-containing cAMP target-proteins have been identified 

in mammalian sperm or sperm precursor cells. However, their role in mammalian sperm 

function is not well understood. Cyclic nucleotide-gated (CNG) channels are nonselective 

cation channels, which are opened by direct binding of cyclic nucleotides (Kaupp & Seifert, 

2002). Of note, a CNG channel was the first ion channel cloned from mammalian testis 

(Weyand et al., 1994). CNG channels are encoded by six different genes, four α subunits (α1- 

α4) and two β subunits (β1 and β3). A combination of two α subunits and two β subunits form 

heterotetrameric CNG channel complexes (Kaupp & Seifert, 2002). However, the role of CNG 

channels in mammalian sperm physiology is still ill-defined. Although CNG channel subunits 

were identified in the flagellum of mouse sperm (Wiesner et al., 1998), to date, no sperm 

function has been attributed to mammalian CNG channels (Biel et al., 1999). The role of CNG 

channels in controlling sperm function is mainly based on pharmacological studies using 

membrane-permeable cAMP analogs. Incubation of sperm with 8-Br-cAMP or 8-Br-cAMP 

evokes a Ca2+ influx that has been attributed to CNG channel opening (Kobori et al., 2000). 

However, we now know that this Ca2+ influx is carried by the CatSper channel complex (Ren et 

al., 2001; Xia et al., 2007; Xia & Ren, 2009) and that 8-Br-cAMP or 8-Br-cAMP directly activates 

CatSper from the outside (Brenker et al., 2012). Furthermore, photorelease of cAMP from 

caged cAMP fails to evoke a Ca2+ influx (Strünker et al., 2011). Thus, CNG channels do not seem 

to play a role in mammalian sperm physiology. In sea urchin and zebrafish sperm, the atypical 

K+-selective CNGK channels control sperm signaling (Bönigk et al., 2009; Fechner et al., 2015). 

However, these channels do not seem to be present in mammalian sperm, underlining that 

CNG channels do not play a major role in mammalian sperm physiology. Another member of 

the CNBD-containing protein family is the atypical sperm-specific sodium proton exchanger 

(sNHE, Slc9a10), which is expressed in the principal piece of mouse sperm (Wang et al., 2003) 

(Fig. 1). Apart from the CNBD, the sNHE also contains a putative voltage-sensor motif, similar 

to the one found in voltage-gated ion channels (Catterall, 2000), indicating that sNHE function 

could be regulated by cyclic nucleotides and changes in membrane potential Vm  (Wang et al., 

2003). The physiological function of sNHE in sperm is still enigmatic. Knocking out sNHE in 

mice renders male mice infertile due to a defect in sperm motility (Wang et al., 2003). 

However, the sNHE is found in a complex with SACY and the phenotype of sNHE knockout-

mice is mainly due to concomitant loss of SACY and not the loss of sNHE (Jansen et al., 2015; 

Wang et al., 2007). It has been suggested that cAMP controls the intracellular pH of 

mammalian sperm (pHi) by controlling sNHE function (Lishko et al., 2012). Future studies will 

reveal whether the sNHE in fact controls pHi in mammalian sperm. Last but not least, a new 

CNBD-containing protein called CRIS (cyclic nucleotide receptor involved in sperm function) 

has been identified in sperm precursor cells (Krähling et al., 2013). However, CRIS is not 

expressed in mature sperm and seems to play a predominant role in sperm development 

(Krähling et al., 2013).  
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5. The role of cAMP in sperm physiology – sperm capacitation 

Sperm physiology crucially relies on cAMP signaling. A deficiency in most of the molecular 

players in sperm cAMP signaling (see above) results in male sub- or infertility. In the following, 

we will highlight the main sperm functions that are controlled by cAMP and describe how the 

cAMP-signaling components integrate into the signaling pathways controlling sperm 

physiology. When leaving the male reproductive tract after ejaculation, sperm cells are 

morphologically, but not functionally mature and thus cannot fertilize the egg. To acquire 

fertilization competence, sperm need to undergo a maturation process called capacitation – 

a process that was first described in the 1950’s by two independent reports (Austin, 1952; 

Chang, 1951). Increasing evidence points towards a crucial role of cAMP in sperm capacitation 

by controlling sperm motility and the ability to undergo the acrosome reaction, which we will 

describe in more detail in the following chapters.  Our knowledge about the molecular 

mechanisms underlying capacitation is based on in vitro analysis. Here, capacitation is induced 

by incubating sperm in medium containing Ca2+, bicarbonate (HCO3
-), an energy source (e.g. 

lactate, glucose), and a cholesterol acceptor (e.g. bovine serum albumin, BSA) (Suarez, 2008). 

For bicarbonate entry, which initiates the signaling cascade, the presence of CFTR (cystic 

fibrosis transmembrane conductance regulator) is necessary (Hernandez-Gonzalez et al., 

2007; Puga Molina et al., 2017) and might be conveyed through SLC26A3 (Chan & Sun, 2014; 

Chen et al., 2009). In turn, the intracellular cAMP concentration increases through 

bicarbonate-dependent stimulation of SACY activity in the presence of millimolar extracellular 

Ca2+ (Carlson et al., 2007; Chen et al., 2000; Jaiswal & Conti, 2003; Litvin et al., 2003; 

Mukherjee et al., 2016; Wennemuth et al., 2003). The kinetics of the bicarbonate-induced 

cAMP changes vary among species (Battistone et al., 2013; Brenker et al., 2012; Harrison & 

Miller, 2000; Mukherjee et al., 2016). However, to interpret these results, the different 

experimental methods used to measure changes in cAMP levels have to be considered. The 

most frequently applied technique to determine total cAMP levels was based on an ELISA 

assay (Battistone et al., 2013; Brenker et al., 2012; Harrison, 2004). Recently, the generation 

of a mouse model expressing a cAMP biosensor in sperm flagella allowed to determine free 

cAMP levels, i.e. the cAMP that evokes a downstream response, rather than total cAMP levels 

as measured by an ELISA-based assay (Mukherjee et al., 2016). In fact, comparing the 

dynamics of the changes in total and free cAMP levels after exposing sperm to capacitating 

conditions revealed a difference in kinetics: whereas total cAMP levels increased within 1 min 

and decreased straight after, the levels of free cAMP remained constantly high after 1 min 

over at least 20 min (Mukherjee et al., 2016). Thus, in future experiments, it is important to 

take changes in free rather than total cAMP levels into account. 

The bicarbonate-dependent increase in cAMP levels after exposing sperm to capacitating 

conditions immediately activates PKA, leading to downstream protein phosphorylation, which 

drives the maturation process (Harrison & Miller, 2000; Kaneto et al., 2008; Morgan et al., 

2008) (Fig. 2). Mice lacking the sperm-specific Cα2 PKA catalytic subunit are infertile and do 

not capacitate (Nolan et al., 2004). Downstream of PKA, the main hallmark of capacitation is 

an increase in protein tyrosine phosphorylation (Visconti et al., 1995). In fact, Cα2 PKA 
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knockout-mice lack the increase in capacitation-induced protein tyrosine phosphorylation 

(Nolan et al., 2004). However, PKA-dependent protein phosphorylation is readily observed 

after an increase in cAMP levels, whereas changes in protein tyrosine phosphorylation are 

only observed after 30-60 min (Morgan et al., 2008). Indeed, application of the PKA inhibitor 

1NM-PP1 to sperm during capacitation revealed that bicarbonate-stimulated PKA activity is 

required for at least 30 min to initiate downstream protein tyrosine phosphorylation (Morgan 

et al., 2008). Thus, the action of PKA on the downstream signaling cascade underlying protein 

tyrosine phosphorylation seems to be rather indirect. Although a number of candidates have 

been proposed, the tyrosine kinase underlying protein tyrosine phosphorylation during 

capacitation has been enigmatic. Only recently, the kinase has been identified: the tyrosine 

kinase FER was identified in a proteomic approach as a target for tyrosine phosphorylation in 

sperm (Chung et al., 2014) (Fig. 1). In fact, FER is auto-phosphorylated in its activation loop 

upon capacitation (Alvau et al., 2016; Chung et al., 2014). Most importantly, FER knockout-

mice do not show an increase in protein tyrosine phosphorylation under capacitating 

conditions, but strikingly, male mice were fertile, challenging the current concept of the 

molecular mechanisms underlying sperm capacitation under physiological conditions (Alvau 

et al., 2016).  

In addition to increasing cAMP levels, incubating sperm under capacitating conditions has also 

been proposed to result in i) Changes in the lipid content of the plasma membrane, ii) An 

increase in the intracellular pH, iii) Hyperpolarization of the membrane potential Vm, and iv) 

An increase in the intracellular Ca2+ concentration. In fact, all these changes might be closely 

related to cAMP. The change in lipid content, when sperm are capacitated in vitro, was shown 

to be mediated by bicarbonate-dependent cholesterol uptake through BSA, whereby the 

plasma membrane becomes more fluidic (Ehrenwald et al., 1990; Flesch et al., 2001; Gadella 

& Harrison, 2000; van Gestel et al., 2005). In turn, protein-protein and protein-lipid 

interactions in the plasma membrane are reorganized, which might alter cellular signaling. The 

increase in intracellular pH seems to be a pre-requisite for capacitation (Parrish et al., 1989; 

Vredenburgh-Wilberg & Parrish, 1995). However, the molecules underlying sperm alkalization 

during capacitation are ill-defined. It has been proposed that the sNHE might underlie the 

increase in pH in a cAMP-dependent manner (Wang et al., 2007; Wang et al., 2003). However, 

since the sNHE is found in a complex with SACY and all defects associated with the loss of sNHE 

in knockout mice have been attributed to the concomitant loss of SACY, the role of sNHE 

during capacitation is still debated. Other reports demonstrated that a Na+/Cl-/HCO3
--

dependent acid-efflux pathway underlies sperm alkalization during capacitation (Zeng et al., 

1996). Future studies will have to reveal the molecule(s) underlying an increase in pHi during 

capacitation. Further downstream, an increase in cAMP levels and sperm alkalization 

increases the membrane conductance for both Ca2+ and K+ carried by CatSper and KSper (the 

latter formed by Slo3), respectively (Brenker et al., 2014; Chavez et al., 2014; Lopez-Gonzalez 

et al., 2014; Navarro et al., 2007; Ren et al., 2001; Santi et al., 2010; Stival et al., 2015; Zeng et 

al., 2011). However, it is important to emphasize again that an increase in cAMP does not 

directly evoke a Ca2+ influx (see discussion above). The Ca2+ influx and membrane 
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hyperpolarization evoke other behavioral responses during sperm capacitation, e.g. a change 

in sperm motility and the acrosome reaction.  

6. The role of cAMP in sperm physiology – sperm motility 

The main signaling pathways controlling the motility of mammalian sperm are regulated by 

Ca2+ and cAMP.  The first relay station integrating both Ca2+ and cAMP is SACY (Fig. 1). SACY 

knockout-sperm lack cAMP synthesis, are immotile, and cannot fertilize the egg, resulting in 

male infertility ((Esposito et al., 2004; Hess et al., 2005; Xie et al., 2006). Incubation with 

bicarbonate stimulates SACY activity and, in turn, increases the flagellar beat frequency more 

than 2-fold (Carlson et al., 2007; Wennemuth et al., 2003) (Fig. 1), which is abolished in SACY 

knockout-sperm (Xie et al., 2006). In vivo, this increase in motility occurs when sperm come 

into contact with reproductive fluids in the male and/or female genital tract, containing high 

bicarbonate levels (Miki & Clapham, 2013). Applying 1NM-PP1 to sperm revealed that 

bicarbonate-evoked PKA-dependent protein phosphorylation and an increase in flagellar beat 

frequency occurs within 90 s (Morgan et al., 2008). The increase in beat frequency does not 

change the symmetry of the flagellar beat, allowing vigorous swimming on a rather linear 

trajectory (Wennemuth et al., 2003). In addition, SACY is regulated by Ca2+ and reducing the 

extracellular Ca2+ concentration to the low micromolar range abolishes the bicarbonate-

dependent stimulation of SACY activity and the increase in flagellar beat frequency (Carlson 

et al., 2007; Mukherjee et al., 2016). Downstream of cAMP, the main target controlling sperm 

motility is PKA (Nolan et al., 2004). However, loss of PKA activity does not result in a complete 

loss of sperm motility: the proportion of motile sperm and the flagellar beat amplitude is 

reduced, but sperm re not immotile like SACY knockout-sperm. However, in absence of PKA 

activity, the bicarbonate-dependent increase in sperm motility is fully abolished (Nolan et al., 

2004). Hence, PKA predominantly controls the cAMP-dependent increase in flagellar beat 

frequency. On a molecular level, this is controlled through PKA-dependent phosphorylation of 

flagellar motor proteins in the axoneme (Lackey & Gray, 2015) (Fig. 1). Although it is widely 

accepted that PKA-dependent protein phosphorylation controls sperm motility, very little is 

known about the identities of PKA substrates in sperm. So far, mainly flagellar motor proteins 

have been identified as PKA targets. One protein that has been identified is FSCB, a calcium-

bindin protein that interacts with CABYR, which is involved in fibrous sheath biogenesis 

(Kaneto et al., 2008; Li et al., 2007; Liu et al., 2011). Other targets are the septin SEPT12 (Shen 

et al., 2017) and SPIF and TCP11 (Stanger et al., 2016). How these proteins modulate sperm 

beating, is ill-defined. For other motile cilia, it has been proposed that phosphorylation of 

dyneins increased the velocity of microtubule gliding across outer arm dynein–coated surfaces 

and, thereby, increases the beating frequency (Salathe, 2007). In contrast to cAMP, Ca2+ influx 

does not change the flagellar beat frequency, but rather evokes an asymmetric flagellar beat, 

representing a swimming mode called hyperactivation (Ishijima et al., 2002; Suarez, 2008). 

Hyperactivation allows sperm to generate the propulsive forces that are needed to penetrate 

the egg’s vestments. Sperm lacking any subunit of CatSper (Fig. 1) do not hyperactivate and 

cannot fertilize the egg (Chung et al., 2017; Chung et al., 2011). Furthermore, hyperactivated 

motility is only observed in capacitated sperm and relies on PKA-dependent protein 
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phosphorylation, since sperm that lack the Cα2 PKA subunit do not show hyperactivated 

motility (Nolan et al., 2004). However, the cAMP-dependent control of sperm motility can be 

bypassed  by exposing sperm to a Ca2+ pulse using the Ca2+ ionophore A23817 (Navarrete et al., 

2016; Tateno et al., 2013). In fact, a short A23817 pulse is sufficient to overcome the infertility 

phenotype of a number of knockout mouse-models, including CatSper1, SACY, and Slo3 

(Navarrete et al., 2016). In conclusion, a temporarily elevation of intracellular Ca2+ levels might 

prime the sperm for hyperactivation, bypassing the need for other signaling pathways 

required to increase Ca2+ levels in sperm during capacitation. In fact, in permeabilized sea 

urchin sperm flagella, it has been shown years ago that addition of ATP and Ca2+ is sufficient 

to induce asymmetric flagellar beating (Brokaw, 1979). 

7. The role of cAMP in sperm physiology – acrosome reaction 

The acrosome, a Golgi-derived vesicle filled with enzymes, resides as a cap on the sperm head. 

As a prerequisite for fertilization, the acrosome needs to undergo exocytosis, the so-called 

acrosome reaction (Austin & Bishop, 1958) (Fig. 1). Only capacitated sperm can undergo the 

acrosome reaction. However, in vitro, not all sperm in a population are capacitated, making it 

rather difficult to study the acrosome reaction in sperm populations in vitro (Yanagimachi, 

2011). In vivo, one way of visualizing the acrosome reaction is to use transgenic mice, 

expressing eGFP under the control of the acrosin promoter (Baibakov et al., 2007; Hasuwa et 

al., 2010; Nakanishi et al., 1999). Using these mice, it was demonstrated that the majority of 

sperm underwent the acrosome reaction before even contacting the zona pellucida, the outer 

layer of the egg, which has been widely accepted as a physiological stimulus that induces the 

acrosome reaction (Hirohashi et al., 2011; Jin et al., 2011; La Spina et al., 2016). Thus, it has 

been questioned whether the acrosome reaction indeed is a prerequisite to penetrate the 

egg’s vestments, although it is required for interaction and membrane fusion of sperm and 

oocyte during fertilization. On a molecular level, both cAMP and Ca2+ are required for the 

acrosome reaction. Here, the main target for cAMP is Epac (Lucchesi et al., 2016). Epac 

exchanges GDP from GTP on Rap1, which in turn activates PLCε, producing IP3 and DAG from 

PIP2 (Lucchesi et al., 2016). IP3 is supposed to mobilize Ca2+ from internal stores, which triggers 

the acrosome reaction (Lucchesi et al., 2016) (Fig. 1). However, so far, genetic mouse models 

have not revealed a role for PLCε in controlling sperm function. In fact, only PLC knockout-

mice have been demonstrated to be subfertile because this isoform is supposed to regulate 

the acrosome reaction (Fukami et al., 2001). Recently, PKA-dependent phosphorylation of 

proteins that regulate actin dynamics have also been proposed to control the acrosome 

reaction (Romarowski et al., 2015). Here, PKA-dependent protein phosphorylation determines 

the activity of the small Rho GTPases RhoA/C and Rac1, which in turn affects the 

phosphorylation status of LIMK1 and cofilin and controls actin polymerization (Romarowski et 

al., 2015). Blocking actin polymerization dramatically reduces the ability of sperm to undergo 

the acrosome reaction (Romarowski et al., 2015). In fact, the role of actin polymerization in 

controlling the acrosome reaction has already been described years ago (Breitbart & 

Finkelstein, 2015; Spungin et al., 1995). Furthermore, a change in membrane potential is 

important for sperm to undergo the acrosome reaction (Arnoult et al., 1999; De La Vega-



11 
 

Beltran et al., 2012; Zeng et al., 1995). Sperm hyperpolarization, which occurs during 

capacitation, is sufficient to prepare sperm for the acrosome reaction (De La Vega-Beltran et 

al., 2012; Zeng et al., 1995). Sperm lacking Slo3 undergo a depolarization rather than 

hyperpolarization under capacitating conditions, whereby the acrosome reaction is abolished 

(Santi et al., 2010). It has been proposed that PKA-dependent activation of a member of the 

Src kinase family, cSrc, regulates Slo3-mediated KSper currents and, thereby, controls the 

membrane potential of sperm during capacitation (Stival et al., 2015). Blocking cSrc activity 

decreased Slo3-mediated currents and blocked the acrosome reaction, underlining the fact 

that a hyperpolarized membrane potential set by the Slo3 channel is required to prepare 

sperm for the acrosome reaction (Stival et al., 2015). 

8. Analyzing and manipulating sperm function by light 

The sperm cell itself and the intracellular signaling pathways underlying sperm function are 

highly compartmentalized. On the signaling level, compartmentalization is achieved by 

tethering signaling components to certain domains in the sperm head or along the sperm 

flagellum. For the cAMP signaling cascade, AKAPs cluster proteins in signaling complexes, 

thereby facilitating signal transduction and limiting cAMP signaling to a specific microdomain 

(Wertheimer et al., 2013). The importance of localized signaling domains for mammalian 

sperm function has been demonstrated for the CatSper signaling complex, which forms a Ca2+ 

signaling domain along the flagellum that is organized into four columns (Chung et al., 2014). 

Loss of one CatSper channel subunit results in loss of the quadrilateral organization and, in 

turn, impairs tyrosine phosphorylation, capacitation-associated signaling, and sperm motility 

(Chung et al., 2014). The analysis of signaling complexes in sperm has been mainly hampered 

by the lack of suitable tools. Most methods that have been used to interrogate sperm signaling 

events in vitro do not provide the spatial and temporal precision, which is needed to analyze 

the function of subcellular microdomains. To overcome these limitations, optogenetic tools 

and fluorescent biosensors have recently been employed to modulate and analyze cAMP 

signaling in mammalian sperm (Jansen et al., 2015; Mukherjee et al., 2016) (Fig. 2). 

Optogenetics allows to manipulate signaling processes in genetically-engineered cells by light. 

Different light-activated adenylate cyclases have been described, which differ in their activity, 

molecular structure, and spectral properties (Iseki et al., 2002; Jansen et al., 2017; Raffelberg 

et al., 2013; Ryu et al., 2014; Ryu et al., 2010; Stierl et al., 2011). The light-activated adenylate 

cyclase bPAC (bacterial photoactivated adenylate cyclase) from the bacterium Beggiatoa has 

been used to manipulate cAMP levels in mouse sperm using a transgenic approach (Jansen et 

al., 2015). Here, cAMP-dependent sperm functions were controlled by light: Stimulation of 

bPAC evoked phosphorylation of PKA targets, tyrosine phosphorylation, and the capacitation-

induced ability of sperm to undergo the acrosome reaction (Jansen et al., 2015). Furthermore, 

also the flagellar beat frequency, which is controlled by cAMP, could be increased by light-

dependent stimulation of bPAC activity. Of note, the light-evoked motility response could be 

modulated in a graded fashion: the higher the light dose, the faster the flagellar beat. To not 

only manipulate cAMP levels in sperm with spatial-temporal precision using optogenetics, but 

to also measure cAMP dynamics in microdomains along the sperm flagellum, a fluorescent 
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biosensor reporting changes in the intracellular cAMP concentration has been applied in 

mouse sperm. The mlCNBD-FRET biosensor is based on the CNBD of the MlotiK ion channel 

(Nimigean et al., 2004) and exhibits exquisite sensitivity for cAMP with a binding affinity in the 

low nanomolar range (Cukkemane et al., 2007; Mukherjee et al., 2016; Peuker et al., 2013). 

The expression of mlCNBD-FRET in mouse sperm allowed for the first time to analyze the 

changes in intracellular cAMP in the freely beating flagellum of mouse sperm and to exclude 

the presence of tmACs in the flagellum (Mukherjee et al., 2016). In addition, using mlCNBD-

FRET, it could be shown that the HCO3
--induced changes in intracellular cAMP occur with 

different kinetics in the midpiece and the principal piece (Mukherjee et al., 2016) (Fig. 1). This 

indicates that SACY stimulation by HCO3
- does not evoke a uniform cAMP response along the 

flagellum, but rather reveals that cAMP dynamics are differentially regulated along the sperm 

flagellum, presumably in a PDE-dependent manner. In addition to the light-activated 

adenylate cyclases described above, also a photoactivated phosphodiesterase has been 

engineered (Gasser et al., 2014), which could be used to control cAMP hydrolysis in the 

flagellum by light (Fig. 2).  

9. Concluding remarks 

In summary, the cAMP-based optogenetic tool kit has proven its use in sperm, allowing to 

control sperm function by light. Future applications will help to unravel how cAMP 

microdomains are regulated and how they control sperm function. Of note, all these tools are 

genetically-encoded and can therefor only be applied in mouse sperm. However, in the last 

couple of years, it has been demonstrate that sperm from different species use diverse 

repertoires of sperm-specific signaling molecules and even closely related protein isoforms 

feature different properties and serve different functions (Kaupp & Strünker, 2017; Wachten 

et al., 2017). Thus, each species has to be studied in its own right and caution has to be taken 

when transferring knowledge from one species to the other.  
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Figure legends 

Fig. 1 cAMP signaling in mammalian sperm. Different cAMP signaling components and their function 

in the sperm head and flagellum. The upper sperm image represents a FRET measurement to 

determine the intracellular cAMP concentration (from low to high) using the mlCNBD-FRET sensor. The 

dashed arrow pointing towards the acrosome reaction indicates that the acrosome reaction can be 

evoked by Ca2+ influx through a store-depletion operated pathway (O'Toole et al., 2000). For details, 

see text. 

Fig. 2 Manipulating and analyzing cAMP signaling in mammalian sperm.  The main cAMP signaling 

components can be stimulated (Forskolin, NKH477: tmACs) or inhibited (MDL12,330A: tmAC, LRE1, 

KH7: SACY, IBMX: PDE, H89: PKA) using pharmacological tools. Genetical engineering allows to 

manipulate cAMP levels by light using optogenetics (bPAC, LAPD) or analyze cAMP dynamics using 

FRET-based biosensors (mlCNBD-FRET). For details, see text. 
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Figures 
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Figure 2 
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