
Connection weight changes and learning dynamics
in models of neural networks

Dissertation
zur

Erlangung des Doktorgrades (Dr. rer. nat.)
der

Mathematisch-Naturwissenschaftlichen Fakultät
der

Rheinischen Friedrich-Wilhelms-Universität Bonn

von
Christian Klos

aus
Groß-Gerau

Bonn, 2021

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen
Friedrich-Wilhelms-Universität Bonn

1. Gutachter: Prof. Dr. Raoul-Martin Memmesheimer
2. Gutachter: Prof. Dr. Dr. h.c. Ulf-G. Meißner

Tag der Promotion: 04.04.2022
Erscheinungsjahr: 2022

Abstract

The brain can be considered as a complex system of interacting neurons. As many other complex
systems, neural circuits can be understood as networks of linked model units. The dynamics of the
model units are often on their own rather simple. However, many interesting phenomena emerge from
their interaction. In the case of neural network models, these interactions are typically mediated by
weighted connections. The weights specify the strength of the coupling between the simple dynamical
systems that model the neurons. In the brain, the connection sites between neurons are called synapses
and are subject to a realm of plasticity mechanisms that affect their properties. Yet, the roles that
synaptic plasticity plays for the functioning of neural circuits are in general poorly understood.

In this thesis, we use neural network models to numerically and analytically study four aspects of
biologically inspired forms of connection weight changes. First, synaptic plasticity can effectively
change the dynamics of neural networks and thus underlies many types of learning. We develop a novel
scheme which uses weight changes to even endow neural networks with the ability to learn with static
weights. Such dynamical learning is faster and less laborious than weight learning and thus has a high
potential for applications in physics, biology and engineering. We illustrate our scheme by constructing
networks that can dynamically learn dynamics ranging from simple oscillations to chaotic dynamical
systems. Further, we analyze the underlying network mechanisms using dynamical systems theory.
Second, recent results indicate that seemingly random weight changes are a ubiquitous phenomenon in
the brain. A learning method called weight perturbation, which performs a random search in weight
space, could be the cause for such plasticity. However, it is widely considered to perform poorly due
to the high dimensionality of the weight space. By taking the temporal extension and the typically low
dimensionality of neural dynamics into account, we show numerically and analytically that it performs
much better than expected in biologically realistic settings. Third, while weight changes can allow
the learning of new tasks, they may also interfere with previously acquired memories that are stored
in the weights. For example, weight changes may destroy strongly connected assemblies of neurons
that represent an associative memory. We show how this can be avoided in a model where noisy
weight changes only lead to switches of neurons between different assemblies. These noise-induced
transitions between meta-stable states can be tracked by the network, thus avoiding the forgetting of
the memory. To further elucidate the underlying network mechanisms, we construct a random walk
model of the weight dynamics. Fourth, synaptic plasticity is affected by neurological diseases such as
epilepsy. Based on experimental data, we construct a model of a network motif that is potentially
important for the spread of epileptic seizures. In doing so, we determine how short-term synaptic
plasticity, which affects the synapses of the motif, and other network properties change in epilepsy. In
addition, we predict how these changes influence the spread of epilepsy-associated activity.

iii

List of publications

[1] C. Klos, Y. F. Kalle Kossio, S. Goedeke, A. Gilra and R.-M. Memmesheimer
Dynamical Learning of Dynamics
Phys. Rev. Lett. 125 (2020) 088103

[2] P. Züge, C. Klos and R.-M. Memmesheimer
Weight perturbation learning outperforms node perturbation on broad classes of temporally
extended tasks
bioRxiv (2021):2021.10.04.463055

[3] Y. F. Kalle Kossio, S. Goedeke*, C. Klos* and R.-M. Memmesheimer
(* equal contribution)
Drifting assemblies for persistent memory: Neuron transitions and unsupervised compensation
PNAS 118 (2021) e2023832118

[4] L. Pothmann*, C. Klos*, O. Braganza*, S. Schmidt, O. Horno, R.-M. Memmesheimer, H. Beck
(* equal contribution)
Altered Dynamics of Canonical Feedback Inhibition Predicts Increased Burst Transmission in
Chronic Epilepsy
Journal of Neuroscience 39 (2019) 8998–9012

v

https://doi.org/10.1103/PhysRevLett.125.088103
https://doi.org/10.1101/2021.10.04.463055
https://doi.org/10.1073/pnas.2023832118
https://doi.org/10.1523/JNEUROSCI.2594-18.2019

Contents

Abstract iii

List of publications v

1 Introduction 1

2 Foundations 5
2.1 Neurobiology . 5

2.1.1 Neurons . 5
2.1.2 Synapses . 7
2.1.3 Synaptic plasticity . 7
2.1.4 Populations of neurons . 9
2.1.5 Neural representations . 10

2.2 Neural network modeling . 11
2.2.1 Single-neuron and synapse models . 11
2.2.2 Neural network models . 16
2.2.3 Learning in neural networks . 18

3 Dynamical learning of dynamics 23
3.1 Introduction . 23
3.2 Network model . 24

3.2.1 Pretraining . 25
3.2.2 Dynamical learning and testing . 26

3.3 Applications . 26
3.4 Analysis . 29
3.5 Discussion . 29
3.A Appendix . 31

3.A.1 Reservoir computing and FORCE learning 31
3.A.2 Additional detail on the applications . 32
3.A.3 Quantification of learning performance . 34
3.A.4 Analysis of dynamical learning of chaotic dynamics 42
3.A.5 Learning speed of dynamical learning . 43
3.A.6 Robustness of learning performance . 45
3.A.7 Induction of unseen signal outputs by a context-like external input 48
3.A.8 Pretraining with weight perturbation . 49
3.A.9 Supplementary discussion . 53

vii

4 Perturbation-based learning of temporally extended tasks 55
4.1 Introduction . 55
4.2 Learning rules . 56
4.3 Theoretical analysis . 59

4.3.1 Error dynamics for a single input pattern 59
4.3.2 Error dynamics for multiple input patterns 66

4.4 Simulated learning experiments . 72
4.4.1 Delayed non-match-to-sample task . 72
4.4.2 MNIST . 73

4.5 Discussion . 80
4.A Appendix . 82

4.A.1 Dependence of weight update variance on error baseline 82
4.A.2 Numerical results for MNIST . 83

5 Drifting assemblies for persistent memory 87
5.1 Introduction . 87
5.2 Model . 88

5.2.1 Networks . 88
5.2.2 Simulations . 89

5.3 Results . 90
5.3.1 Drifting memory representations . 90
5.3.2 Analysis of drifting assemblies . 91
5.3.3 Simplified model of neuron switching and assembly drift 93

5.4 Discussion . 95
5.A Appendix . 98

5.A.1 Parameters of models used for the simulations 98
5.A.2 Details on the network analysis . 99
5.A.3 Associative memory property and input-output functionality of assemblies . 100
5.A.4 Assembly drift in a network without periphery neurons 102
5.A.5 Spontaneous development of drifting assemblies 103
5.A.6 Analysis of neuron transitions between assemblies for a network with three

assemblies . 104

6 Modeling feedback inhibition in epilepsy 105
6.1 Introduction . 105
6.2 Material and Methods . 106

6.2.1 Experiments . 106
6.2.2 Computational model . 107

6.3 Results . 112
6.3.1 Altered activation of CA1 interneurons within feedback microcircuits 112
6.3.2 Altered firing behavior of interneurons . 113
6.3.3 Altered recruitment of feedback inhibition onto pyramidal cells in chronic

epilepsy . 115
6.3.4 Generation of a computational model of the feedback circuit 115

viii

6.3.5 Consequences of altered feedback circuits: altered burst transmission from
CA3 via CA1 . 118

6.4 Discussion . 120

7 Summary and outlook 123

Bibliography 127

Acknowledgments 143

ix

CHAPTER 1

Introduction

The brain is the seat of intelligence in higher animals. It underlies perception, learning, reasoning
and complex behavior. Its capabilities, especially the generality and flexibility of human intelligence,
remain largely unmatched by artificial intelligence. Further, many severe diseases, such as epilepsy
and Alzheimer’s, affect the brain. This has motivated great research efforts to understand its
functioning. Today, we know that the basic functional units of the brain are cells called neurons,
which communicate with each other via electrical impulses called spikes or action potentials [5, 6].
The mostly unidirectional connection sites between neurons are termed synapses and its properties
determine the effect a presynaptic neuron can exert on a postsynaptic neuron. Furthermore, almost all
neurons are either purely excitatory or inhibitory. Excitatory neurons facilitate and inhibitory neurons
suppress the spiking of the neurons they project to. Importantly, the neural networks in the brain
are not static. This holds in particular for the connections between neurons. Individual synapses
can appear or disappear and their strength is variable. On the other hand, neurons are not newly
created after birth apart from a few rare exceptions. However, the number of neurons declines with
age. Further, neurons can be lost and their properties altered as a result of injury or disease. Due to
the vast complexity of the brain, ranging from the intricate molecular machinery at a single synapse to
the interplay of up to billions of neurons [7] organized in plastic neural networks, it has become clear
that a full understanding of the brain cannot come from the biological sciences alone but necessitates
tools from theoretical disciplines such as physics, computer science and mathematics.

An important and widely used tool are networks [8]. Networks consist of a set of units, called
nodes or vertices, that are joined together. Mostly, the links are between pairs of nodes and are called
edges or simply connections. Many different systems, for example power grids, the World Wide Web,
social networks and neural circuits, can be represented as networks. In the case of neural circuits,
nodes correspond to individual or groups of neurons and the connections between them to synapses [9,
10]. In most neural networks1, individual units exhibit rather simple dynamics and the connections
between them are unidirectional and weighted, i.e. a real number, termed the connection weight, is
assigned to each directed connection and determines the coupling strength between the neurons it
joins together. In other words, neural networks are, usually nonlinear, dynamical systems of, typically
many, coupled differential equations. An important motivation for the use of neural networks is the
assumption that the brain’s information processing and dynamical properties largely emerge from
the interaction of neurons. This is a defining feature of all complex systems [11]. Hence, one often

1 For simplicity, we mostly omit explicitly mentioning that we refer to a model of a biological entity and not the entity itself.

1

Chapter 1 Introduction

omits many intricate biological details of neurons, which simplifies simulations and enables analytical
investigations (e.g. [12–15]). Neural networks come in many different variations: They differ, for
example, in how neuronal activity is modeled, as discrete spikes or continuous spike rates, or in the
dynamics of the neuronal connections, which can be static or plastic. Apart from being models of the
neural circuits in the brain, neural networks form the basis of a majority of the modern approaches in
machine learning [16, 17]. Interestingly, insights from machine learning research have also influenced
neuroscience [18, 19]. For example, it has been shown that neural networks originally developed for
image classification can quite accurately explain the responses of neurons in the visual system of the
brain [20]. Thus, neural networks have proven numerous times that they are helpful and arguably
necessary to understand the workings of the brain.

In this thesis, we use neural network models to study different forms of synaptic plasticity and their
roles in the functioning of neural circuits. Synaptic plasticity refers to changes of synaptic properties
and is a ubiquitous phenomenon in the brain [5, 6, 9, 10]. Much experimental and theoretical research
on synaptic plasticity has focused on activity-dependent forms of it. They are activity-dependent in
the sense that the synaptic changes depend on the spiking activity of pre- and postsynaptic neurons.
Often, one primarily considers modifications of the strength of a synapse, which corresponds to the
connection weight in network models. Activity-dependent synaptic plasticity is commonly assumed to
underlie learning in the brain. An important example is spike-timing dependent plasticity (STDP) [21],
which modifies synaptic strengths based on the relative timing of spikes of pre- and postsynaptic
neurons. Besides activity-dependent synaptic plasticity, spontaneous synaptic plasticity, i.e. synaptic
changes that are independent of neuronal activity, can be observed in the brain. Recent work has
shown that such plasticity can be of similar magnitude as activity-dependent plasticity [22–24]. Its
function, however, is much less clear. Furthermore, neurological diseases can be associated with
changes in the number and properties of both neurons and synapses. Taken together, synaptic plasticity
has a strong influence on the functioning of the brain. Yet, many open questions remain. The goal of
this thesis is to extend our understanding on the workings, functions and consequences of biologically
inspired forms of weight changes in neural networks with the help of methods from physics. In the
following, we outline the specific questions we address.

In Chapter 3, we consider the role of connection weight changes for learning with little availability
of time or experience. In biology, such learning is potentially necessary to quickly attain new
movements [25] or to store temporal sequences in short-term memory [26]. Learning via synaptic
plasticity is hard to reconcile with such quick learning, however, as experiments on STDP show that it
can take several minutes for synaptic strengths to change [27]. Further, a recent experiment in monkeys
indicates quick learning without weight changes [28]. Simply speaking, neural network learning can
often be thought of as follows: Distinguished output neurons, which, for example, control a muscle,
have to exhibit appropriate dynamics for the network to achieve the task at hand. During learning, the
network receives some form of feedback on its task performance. The learning mechanism uses this
feedback to change the network dynamics such that the output exhibits the appropriate, possibly input
dependent, dynamics. After the feedback has stopped, the network should still be able to achieve the
task. Usually, the feedback is used to change the connection weights. However, as neural networks
can exhibit very general dynamics [29], it is also possible to include a learning algorithm in the
dynamics of a network with static weights [30, 31]. To differentiate such learning from learning via
weight modifications, we refer to it as dynamical learning. Such dynamical learning is potentially very
fast. Yet, it has only recently attracted attention as a biologically plausible learning mechanism [32,
33]. In addition, previous approaches on dynamical learning suffer from problems with the stability

2

of the learned network dynamics, which they circumvent by continuously providing the network
with feedback on how it performs [33–46]. This substantially restricts the applicability of these
approaches, however, as a central goal of learning is to make such feedback unnecessary. Hence,
we develop and analyze a novel scheme to perform dynamical learning that stabilizes the network
dynamics after learning without the necessity of continuous target feedback. To illustrate our scheme,
we consider a standard model for neural networks, which is related to spin glasses and exhibits rich
dynamics [13]. We show that a low-rank correction of its weights endows it with the ability to learn
to generate required target dynamics. In particular, our scheme can be used to quickly learn output
dynamics ranging from simple oscillations to chaotic dynamical systems. Furthermore, we carefully
analyze the underlying network mechanisms using dynamical systems theory. Besides providing
a novel candidate mechanism for learning in the brain, our approach may also be useful for other
applications in physics, such as the prediction of chaotic dynamics [47, 48] and physical reservoir
computing [49–53]. Briefly, physical reservoir computing is a computational framework for temporal
data processing using high-dimensional systems that can consist of a wide range of physical substrates
such as photons and electron spins.

In Chapter 4, we turn to activity-independent weight changes and the question if they have a function.
They may be a result of weight perturbation (WP) [54, 55], which is an often overlooked learning
mechanism. WP and the closely related node perturbation (NP) [56, 57] use random perturbations
of connection weights and neuronal activity, respectively, for learning. Their underlying idea is to
correlate the perturbations with the change in performance of the perturbed neural network compared
to the unperturbed network or an estimate of it. Then the weights are updated such that they reproduce
or contrast the perturbations depending on the sign and magnitude of the performance difference.
However, WP has been widely disregarded as a potential learning mechanism as it is considered to
perform badly, in particular relative to NP [19, 56–62]. The underlying reasoning is based on the
fact that weights drastically outnumber nodes in typical neural networks. Thus, the perturbation
dimensions or, equivalently, the dimension of the search space, is much larger for WP compared to
NP, which supposedly leads to slower learning for WP. We show that this argument ceases to hold
when considering that tasks are extended in time and that they are low-dimensional, two properties
that are common in biologically relevant settings. Specifically, we derive analytical expressions for
the error dynamics of WP and NP for simple, time-extended tasks with the help of Wick’s theorem,
which is commonly used in field theories. We find that WP performs much better than expected, even
outperforming NP in biologically relevant situations. We also show numerically that the analytical
results largely extend to more complex networks and tasks. Thus, our results suggest learning via WP
as a potential function of activity-independent weight changes.

In Chapter 5, we consider the effects of continuously ongoing synaptic plasticity. The basic variant
of STDP is constantly changing synaptic weights even if there is no obvious task to be learned.
The same holds for spontaneous synaptic plasticity. As memories are thought to be stored in the
connection weights, this poses the question of how they can persist. Similarly, recent experimental
observations show that neural representations change over time, i.e. that memories are represented
by different ensembles of neurons at different points in time [63–65]. Such ensembles of neurons
form the basis of a standard memory model, where they are termed neural assemblies [10, 66].
Assemblies are characterized by large intra- and small inter-assembly connection weights. So far, it
has been assumed that they are static, i.e., that they consist of the same neurons at different points
in time [67]. We show that, given appropriate plasticity mechanisms, neurons can switch between
assemblies, thereby giving rise to the observed representational drift. Importantly, the plasticity

3

Chapter 1 Introduction

mechanisms together with the network activity also keep the assemblies consistently connected to the
same in- and output neurons, thus preventing the forgetting of memories. From a physics perspective,
the weight dynamics of a single neuron can be considered to be governed by a potential, whose
minima correspond to the different assemblies in the network. In previous models, these minima
would be stable, while in our model they are meta-stable with noise-induced transitions between the
minima [68]. To demonstrate the viability of our approach, we use network simulations. To further
elucidate the network mechanisms underlying the neuron switching, we construct a simplified random
walk model of the weight dynamics and approximate it by a diffusion process. This also allows us to
semi-analytically compute the stationary probability density of the weights. In addition, it allows us to
show that the noise of the weight changes without including their drift already suffices to generate
meta-stable states. This phenomenon is known as noise-induced multistability, which can also be
observed in other systems such as electrical oscillations and foraging behavior [69–72].

Finally, in Chapter 6, we study how short-term synaptic plasticity and other neuron properties are
affected in epilepsy. Epilepsy is defined to be the predisposition to have epileptic seizures, which result
from abnormal excessive or synchronous neuronal activity [73, 74]. It exists in many different variants,
one of which being temporal lobe epilepsy. In temporal lobe epilepsy, seizures originate from one of
the subregions of the medial temporal lobe of the brain and subsequently spread to large parts of the
brain. Temporal lobe epilepsy accounts for about 25 % of all cases of epilepsy [74]. Yet, the underlying
network mechanisms are not well understood. In physiological conditions, inhibition is crucial for
controlling excitatory activity, especially during oscillatory activity [75]. As epilepsy is characterized
by pathological high-frequency oscillations, it could be that altered inhibition plays a significant role in
epilepsy. Previous work indicates that, for example, the cell number [76] and the number of excitatory
neuron-targeting synapses [77] of some types of inhibitory neurons is indeed reduced. However, the
effect of these and other epilepsy-associated changes on network activity, especially during seizures,
is unclear. This holds in particular for the functioning of feedback inhibition, i.e. local recurrent
loops between excitatory and inhibitory neurons, and synaptic plasticity that acts on fast timescales
and thus may be important for the spread of seizures. Hence, we investigate how the dynamics of
excitatory-inhibitory feedback-loops are affected in epilepsy. Therefore, we consider the CA1 region
of the hippocampus, which is part of the temporal lobe and is important for the spread of seizures (see
Introduction in ref. [78]). Based on experimental data obtained from epileptic animals, we construct
a model of the feedback-loops. The connection weights in our model are additionally modulated
by fast variables that capture the effect of short-term synaptic plasticity. This allows us to estimate
neuronal and synaptic properties that were not directly attainable in the experiment. Importantly, it
also allows us to predict how the feedback-loops respond to external stimulation. In particular, we
probe the network model with stimuli representing input from upstream regions. We find that the
epilepsy-induced changes indeed appear to facilitate the spread of epileptic bursts. Thus, altered
feedback inhibition might be an important factor for the spreading of epileptic activity.

This thesis is structured as follows. In Chapter 2, we summarize fundamental and recent findings
from neurobiology that are relevant for this thesis, provide a brief introduction into neural network
modeling and introduce important terminology. Thereafter, we show how weight learning can be used
to construct networks that learn dynamically in Chapter 3. In Chapter 4, we present our analysis of
perturbation-based learning methods. Afterwards, in Chapter 5, we show how weight changes due to
noisy spiking give rise to drifting assemblies while preserving memories. In Chapter 6, we present
our model for altered feedback inhibition in epilepsy together with the underlying experimental results.
Finally, in Chapter 7, we summarize our results and give an outlook.

4

CHAPTER 2

Foundations

In this chapter, we summarize foundations of and recent findings from neurobiology and neural
network modeling that underlie this thesis and introduce important notations. We start with some of
the fundamental findings of neurobiology, primarily following the textbooks by Kandel et al. [5] and
Bear et al. [6]. Specifically, we describe the functioning of neurons, how they communicate with each
other via synapses, how synaptic connections change over time and the organization of connectivity
and activity in populations of neurons. As the properties of all of these aspects vary across species,
brain regions and neuron type, we focus on the mammalian cortex and the most common neurons
therein. The cortex underlies the highest cognitive functions [5, 6]. Most of the described findings
extend at least qualitatively to other species and brain regions, however. Thereafter, we introduce some
of the mathematical tools used for neural network modeling and learning, primarily following the
textbooks by Dayan and Abbott [9] and Gerstner et al. [10]. We describe spike- and rate-based point
neuron models, current-based synapse models, different plasticity mechanisms, some fundamental
network models and different types of learning. These tools will be extensively used in the remaining
chapters.

2.1 Neurobiology

2.1.1 Neurons

Neurons are specialized cells that underlie the transmission and processing of spikes in the brain.
Most types of neurons consist of three parts: Dendrites, which are branch-like processes that receive
inputs from other neurons, mostly at small protrusions called spines, and route them to the soma. The
soma or cell body, which integrates the incoming signals over space and time and generates spikes.
Finally, the axon, which is a projection that conducts the spikes to other neurons or muscles.

There exist many different types of neurons. Generally, they can be divided into excitatory and
inhibitory neurons. Excitatory neurons constitute most of the principal neurons, whose axons often
project to brain regions other than the region where their somas are located. Inhibitory neurons
polarize their targets. They constitute most of the interneurons, whose axons are restricted to the
brain region where the neuron is located [79]. The most common type of excitatory neurons in the
cortex are pyramidal cells, which possess a characteristic pyramidal shape (Fig. 2.1a). Inhibitory
neurons are much more diverse. They can be classified based on their morphology, the expression of

5

Chapter 2 Foundations

certain proteins or other molecules and their firing patterns [80]. A prominent inhibitory cell type are
basket cells. They possess a distinctive branch-like axon, which encloses the somas of pyramidal cells
(Fig. 2.1b). In the hippocampal region CA1, they have a strong impact on the activity of excitatory
neurons [75, 81], likely because of their axonal structure and their abundance [82]. In Chapter 6, we
examine their role in epilepsy. Other examples for inhibitory neurons are bistratified cells, trilaminar
cells and oriens-lacunosum moleculares (OLM) cells (Fig. 2.1c) [80]. These neurons also occur in
CA1 and target the dendrites of pyramidal cells. Their effect on the spiking of their target neurons is
more indirect by controlling the excitatory input arriving at the dendrites [79].

a) b) c)

Figure 2.1: Morphological reconstructions of different cell types in the CA1 of rats.
Specifically, a pyramidal cell (PC, a), basket cell (BC, b) and OLM cell (c) is shown. For the BC and OLM cell,
axons are colored in blue and green, respectively, and dendrites in black. SLM: stratum lacunosum-moleculare,
SR: stratum radiatum, SP: stratum pyramidiale, SO: stratum oriens, Alv: Alveus. Figure adapted from ref. [4],
see also Chapter 6.

Neurons are electrically charged, i.e., there is a potential difference between the in- and outside
of the cell membrane. This membrane potential results from concentration gradients of a range of
different ions, which are established and maintained by ion channels and pumps. For example, the ions
responsible for spiking are sodium and potassium cations. At rest, the membrane potential is about
−65 mV. Neurons generate a spike if the membrane potential at the axon hillock, the part of the soma
at which the axon starts, raises above a threshold, which typically lies about 10 mV above the resting
potential. Specifically, a thresholds crossing leads to the opening of fast, voltage-dependent channels
for sodium ions. The following influx of sodium ions depolarizes the cell even more, leading to a
positive feedback process as more and more voltage-dependent sodium channels open. It is eventually
stopped by delayed, temporary closing of the sodium channels and the opening of slower ion channels
for potassium ions. The latter leads to an outflux of potassium ions, which hyperpolarizes the neuron,
typically even below its resting potential. In summary, this process leads to an about 100 mV large and
a few ms long voltage deflection that constitutes a spike, which is also known as an action potential.
Directly after a neuron has spiked, the generation of another spike is virtually impossible as the sodium
channels stay closed for a few ms, This period is called the absolute refractory period and is followed
by the tens of ms long relative refractory period during which spiking is still less likely. Spikes have
several important properties. First, they are relatively short and large, which renders them clearly
distinct from any background fluctuations. Second, they are stereotypical all-or-none processes, i.e.,

6

2.1 Neurobiology

all spikes of the same neuron type have near-identical time-courses. Third, they are the only type of
voltage deflection that can travel along the axon over long distances to other neurons, because they are
actively regenerated.

2.1.2 Synapses

Synapses are the connection sites of the axon of the presynaptic neuron and the dendrites, soma or, on
rare occasions, axon of the postsynaptic neuron. Their properties largely determine the effect that
an incoming spike has on the postsynaptic neuron. In addition, they are plastic and their strength is
believed to store memories. There exist two types of synapses, electrical and chemical synapses. As
chemical synapses are much more common in the cortex, we focus on them and refer to them only as
synapse from here on.

Synapses consist of three parts: an axonal or presynaptic terminal, a specialized region of the
postsynaptic neuron and an about 20 nm to 40 nm wide synaptic cleft in between (Fig. 2.2a). The
transmission of signals via synapses is mediated by chemical messengers called neurotransmitters. For
excitatory neurons, the most common neurotransmitter is glutamate, while for inhibitory neurons it is
𝛾-aminobutyric acid (GABA). In the resting state of a synapse, the neurotransmitters are assembled in
synaptic vesicles in the axonal terminals. A significant fraction of all vesicles cluster at the active
zone of a presynaptic terminal. These vesicles constitute the readily releasable pool (RRP) of vesicles.
When a spike arrives at an axonal terminal, voltage-dependent ion channels at the active zone open,
which leads to an influx of calcium ions, which in turn triggers the fusing of the vesicles in the
RRP with the cell membrane and, thus, the release of neurotransmitters into the synaptic cleft. This
process, called exocytosis, is stochastic. It may even happen that a spike arrival at the synapse leads to
barely any release of neurotransmitters, in which case one speaks of a synaptic failure. Such synaptic
unreliability may underlie the perturbation-based learning methods that we study in Chapter 4 (see
also [83]). The released neurotransmitters then bind to receptors at the postysnaptic membrane, which,
either directly or indirectly, lead to the opening of ion channels and the influx of ions such as sodium
ions. Eventually, the neurotransmitters unbind from the receptors and are transported back to the
presynaptic terminal. If the presynaptic neuron is excitatory, the ion influx into the postsynaptic
neuron is an excitatory postsynaptic current (EPSC) leading to an excitatory postsynaptic potential
(EPSP, depolarizing voltage deflection). Accordingly, if the presynaptic neuron is inhibitory, the
influx is an inhibitory postsynaptic current (IPSC) leading to an inhibitory postsynaptic potential
(IPSP, hyperpolarizing voltage deflection). When the synapse is positioned at a dendrite, the EPSP
or IPSP then travels to the soma, where all incoming PSPs are integrated. Mostly, PSPs deteriorate
while traveling to the soma, meaning synapses located at or close to it have a stronger effect on spike
generation.

2.1.3 Synaptic plasticity

Many properties of synapses are not static but change over time. Such plasticity mechanisms underlie
learning and short- and long-term memory, are important to keep neuronal activity in a healthy
regime, but are partly also without a known function. Among the different forms of plasticity,
activity-dependent synaptic plasticity stands out as it is most widely studied and as it is considered to
underlie many forms of learning and memory formation [85]. In the following, we present classical
forms of activity-dependent synaptic plasticity mechanisms together with more recent results on

7

Chapter 2 Foundations

Presynaptic/axonal
terminal

Postsynaptic cell

Neurotransmitter

RRP

Synaptic
vesicle

a) b)

c)

Figure 2.2: Synapses and STDP.
(a) Schematic of a synapse. Some synaptic vesicles gather in the readily releasable pool (RRP) in the presynaptic
terminal. If an action potential arrives at the synapse, exocytosis is triggered, i.e. vesicles fuse with the membrane
and release neurotransmitters into the synaptic cleft, as depicted on the right. The released neurotransmitters
then bind to receptors on the postsynaptic membrane, which causes the opening of ion channels.
(b,c) STDP at synapses between pyramidal cells in the CA3 of rats.
(b) Repetitive spike pairings (gray bar) induce an increase of the EPSP amplitude. Note that it takes about
20 min to 30 min after the spike pairings have finished until the EPSP change is completed. Spike pairs consist
of a presynaptic spike followed by a postsynaptic spike with a delay of Δ𝑡post-pre = 10 ms.
(c) Change in EPSP amplitude as a function of the time difference between post- and presynaptic spike Δ𝑡post-pre.
In contrast to the classical time window, where the synapse is potentiated for Δ𝑡post-pre > 0 ms and depressed for
Δ𝑡post-pre < 0 ms, here it is symmetric.
Panels (b,c) adapted from ref. [84].

spontaneous, activity-independent synaptic plasticity.
Short-term plasticity (STP) describes changes in synaptic efficacy that last on the order of hundreds

to thousands of ms [86]. It depends on the history of presynaptic activity and comes in two variations.
Short-term depression (STD) refers to a temporary reduction of PSP size. It is caused by the depletion
of vesicles from the RRP in the axonal terminal after the arrival of one or more spikes at the synapse. If
an additional spike arrives at the synapse before the RRP is refilled, there are fewer neurotransmitters
available to be released into the synaptic cleft and, thus, to cause a PSP. Short-term facilitation (STF)
refers to a temporary increase in PSP size. It is caused by residual calcium available in the axonal
terminal resulting from previous spike arrivals. If an additional spike arrives at the synapse, the
probability for the fusing of vesicles with the membrane is increased due to the higher level of available
calcium. Which of STD or STF dominates depends on the types of pre- and postsynaptic neuron and
the brain region. STP is thought to be important for, e.g., motor control, short-term memory and the
control of population activity. In Chapter 6, we study how it is changed in epilepsy.

Long-term plasticity describes changes in synaptic efficacy that last from tens of minutes to days or
even longer. As for STP, one distinguishes between long-term potentiation (LTP) and depression (LTD).

8

2.1 Neurobiology

They result from, for example, the creation or removal of receptors at the postsynaptic membrane and
occur in different variations. One such variation is spike-timing dependent plasticity (STDP), which
refers to changes in the synaptic efficacy that depend on the precise timing of pre- and postsynaptic
spikes [21, 87]. Often it is assumed that it only depends on the time difference between doublets of
post- and presynaptic spikes, though it can also depend on the timing of spike triplets and other factors.
The relationship between change in synaptic efficacy and spike-time difference is called the STDP
or learning window. The learning window is typically largest for small time differences and decays
within tens of ms. Often, the learning window is positive (negative) if the postsynaptic neuron spikes
after (before) the presynaptic neuron. However, the properties of STDP depend on synapse type and
brain region. In CA3, for example, the learning window for connections between excitatory neurons is
symmetric (Fig. 2.2b,c) [84]. STDP thus allows neurons to learn about correlations in their input and
is considered to be one of the primary mechanisms underlying learning.

Another type of long-term plasticity is synaptic scaling [88]. Synaptic scaling is triggered by
changes in a neuron’s average firing rate and regulates the total number of its synaptic receptors
to counteract the rate changes. In addition, there is evidence that the total strength of all outgoing
synapses is similarly scaled [89].

Long-term plasticity has traditionally been studied indirectly by observing how the amplitude of
PSPs change after external stimulation of the pre- and postsynaptic neuron [21]. More recently,
however, some experimentalists have begun to take a more direct approach and imaged dendritic
spines, which indicate the existence of a synapse and whose size appears to correlate well with synaptic
efficacy [22, 23, 90]. These experiments have revealed that synapses can appear newly and disappear
completely, a process called structural plasticity. They also found that structural plasticity as well
as the fluctuations in spine size, and thus synaptic efficacy, are ongoing even if neural activity is
prohibited [22, 24]. What the function of this activity-independent plasticity is and how it can be
reconciled with the proven relationship between activity-dependent synaptic plasticity and memory
formation is an open research question (see Chapters 4 and 5 for possible answers to these questions).

2.1.4 Populations of neurons

So far, we considered individual neurons and synapses, but much of the capabilities of neural networks
are thought to arise through their interactions. Here, we summarize the high-level organization of the
cortex, general principles of neural network connectivity and common patterns of neural population
activity.

The cortex is the outer mantle of the cerebrum, which makes up large parts of the brain. It consists
of a few layers, defined by the neuron types in them and their connectivity, and can be divided into
two parts: the neocortex, usually and from now on only referred to as cortex, and the allocortex. The
neocortex, which only exists in mammals, is the evolutionary youngest part of the brain and seat of
our highest cognitive functions. Although it takes over diverse functions and receives input from
almost all sensory organs, it has a rather uniform structure. About 80 % of all neurons in the cortex are
excitatory and 20 % are inhibitory. Their connectivity is characterized by a high degree of recurrence,
i.e., starting from a single neuron there are many loops of connected neurons that end up at the starting
neuron. Furthermore, each neuron receives input from thousands of others. Each excitatory neuron
connects to about 10 % of all other excitatory neurons in its local neighborhood. The cortex can be
further subdivided into regions with specialized function. As mentioned above, excitatory neurons in
the cortex are principal cells and make connections both within and across these different regions,

9

Chapter 2 Foundations

while inhibitory neurons are interneurons and make only local connections.
The allocortex is evolutionary older than the cortex. It consists of the olfactory system and the

hippocampus. The latter is necessary for the formation of new memories, though if memories stay
hippocampus-dependent or are fully conveyed to the cortex for long-term storage is a matter of
ongoing debate [74, 91]. In addition, it is crucial for spatial navigation, with recent results indicating
that it is also important for navigation in non-spatial behaviorally relevant dimensions. Finally,
the hippocampus is involved in some of the most common neuronal diseases such as epilepsy and
Alzheimer’s. The structure of the hippocampus is less uniform than that of the cortex and differs
substantially between its subparts dentate gyrus (DG), cornu Amonis regions 1–3 (CA1–3) and
subiculum. They are connected to each other in a directed manner: the in- and output region of the
cortex that connects to the hippocampus is the entorhinal cortex. The entorhinal cortex projects to
all subregions of the hippocampus via the perforant path. The DG connects to CA3 via the mossy
fibers, CA3 connects to CA1 via the Schaffer collaterals, CA1 then connects to the Subiculum, which
connects back to the entorhinal cortex. As CA1, and to a lesser extent CA3, are important for parts
of this thesis, we explain here their structure in more detail. All CA subregions have a very similar
laminar structure (Fig. 2.1). The central layer is the pyramidal cell layer, which contains the somas of
pyramidal cells and some interneuron types, especially basket cells. Below it is the stratum oriens and
above it are the stratum radiatum and the stratum lacunosum-moleculare. These layers contain the
dendrites of the pyramidal cells as well as diverse types of interneurons. For example, the somas of
OLM cells are located in the stratum oriens and its axonal terminals are mostly located in the stratum
lacunosum-moleculare.

Cortical and hippocampal networks exhibit a range of different activity patterns. In awake, behaving
animals, they generally fire asynchronously and irregular, i.e., neurons in a population spike at different
times and the time between spikes of individual neurons is highly random [92–94]. In fact, their
interspike interval distribution decays approximately exponentially for times larger than the refractory
period, as for Poisson processes with homogenous rate. Typically, neurons spike a few times per
second with inhibitory neurons often having a larger firing rate than excitatory neurons. On top of that
and in other brain states, for example during phases of sleep, cortical and in particular hippocampal
networks exhibit oscillations in different frequency bands ranging from 0.05 Hz to 500 Hz [95]. An
example for such oscillations are sharp wave/ripples (SPW/Rs), which originate in CA3, from where
they spread via CA1 to the cortex [75]. SPW/Rs are characterized by highly active, localized neuronal
populations (sharp wave) with high-frequency oscillations of about 140 Hz to 200 Hz on top. They
last about 100 ms and are important for memory consolidation and planning of future actions. While
the precise mechanisms for their generation are a matter of ongoing research, they likely are a result of
the recurrent interaction between pyramidal and basket cells [81].

Furthermore, some neurological diseases give rise to salient activity patterns. Epilepsy, for example,
is characterized by seizures, which are pathological high-frequency oscillations entraining often large
parts of the brain [73, 74]. In addition, temporal lobe epilepsy is accompanied by pathological SPW/Rs,
which are typically stronger and have higher frequencies than their physiological counterpart [96–99].

2.1.5 Neural representations

We end this section with a few general observations on how behaviorally relevant stimuli and memories
are represented by populations of neurons. Recordings from a variety of different brain regions have
shown that neuronal representations, more precisely the manifolds in neural state space occupied by

10

2.2 Neural network modeling

neuronal activity for some task, have a low intrinsic as well as embedding dimension [100–104]. This
means that most of the variability of neuronal activity is restricted to a low-dimensional subspace
of the full neuronal state space. Remarkably, it appears that brain regions specified for a certain
computation make it possible for downstream regions to read out results of this computation with a
linear readout [100, 101]. For example, in a cycling task that demanded the animal to keep track of
the number of cycles, the number of cycles could be read out linearly from the supplementary motor
area [105]. The low dimensionality of neuronal representations is also in accordance with a classical
and experimentally verified idea for the storage of memories by means of neuronal assemblies [66].
Assemblies are groups of neurons that collectively encode a well-specified concept, such as an apple.
They are associative in the sense that an increased activity of only part of an assembly, maybe because
only a part of an apple is visible, will activate all neurons in the assembly. Recent results, however,
indicate that the individual neurons that make up an assembly change over time [63–65], posing the
question on how the memory is not forgotten. In Chapter 5, we provide a possible solution based on
compensatory learning induced by STDP and synaptic scaling.

2.2 Neural network modeling

2.2.1 Single-neuron and synapse models

There exist many different models for single neurons differing in their complexity and in how accurately
they capture the dynamics of real neurons. One distinguishes between single-compartment (or point
neuron) models and multi-compartment models. Single-compartment models largely ignore the
morphological structure of neurons and describe the membrane potential of a neuron by a single
variable. Multi-compartment models use multiple variables to describe the potential of the neuron in
its different sections. Further one distinguishes between spiking neurons, whose outputs are spikes,
and rate neurons, whose outputs are spike rates. Thus, spiking neurons communicate via discrete
signals while rate neurons communicate via continuous signals. Similarly, synapses can be modeled
with various degrees of complexity, for example, synapse models can exclude or include plasticity.
One typically chooses the neuron and synapse model based on how detailed the underlying biological
mechanisms needs to be modeled, whether analytical calculations should be performed and how many
computational resources are available for simulations. In this thesis, we use rather simple spiking
and rate-based point neuron models, because we are mostly interested in the dynamics and learning
capabilities arising from the interactions of neurons.

Integrate-and-fire neurons

Integrate-and-fire (IF) neurons are probably the most widely used spiking neuron models and underlie
the model of Chapter 5. They model the subthreshold dynamics of the membrane potential at the
soma, denoted with 𝑉 (𝑡), as a leaky integration of the input, while the spiking is modeled as a separate
mechanism. The simplest type of IF neuron model is the leaky integrate-and-fire (LIF) neuron. It
assumes that a neuron can be considered as a simple 𝑅𝐶-circuit: Cations accumulate at the outside
surface and anions at the inside surface of the cell membrane, resembling a capacitor 𝐶. The ion
channels in the membrane lead to a leak current, which can be modeled with a resistor 𝑅 in parallel
to the capacitance. The resting potential is held up by a battery with potential 𝑉rest in line with the

11

Chapter 2 Foundations

resistor. Thus, the subthreshold dynamics of 𝑉 (𝑡), except for the refractory period, are given by

𝜏𝑚
𝑑𝑉

𝑑𝑡
(𝑡) = 𝑉rest −𝑉 (𝑡) + 𝑅𝐼 (𝑡), (2.1)

where 𝜏𝑚 = 𝑅𝐶 is the membrane time constant and 𝐼 (𝑡) is a potential input current stemming from
other neurons or an external source. In this chapter, Chapter 6 and as in many research articles, we
define 𝐼 (𝑡) = 𝑅𝐼 (𝑡) and, for simplicity, call it input current as well. When 𝑉 (𝑡) reaches a threshold
𝑉Θ, the neuron fires a spike, and 𝑉 (𝑡) is reset to a reset potential 𝑉0, where it is fixated for the duration
of the refractory period 𝜏ref (Fig. 2.3a). Given that spikes are very short and have a stereotypical form,
it is customary to represent them by Dirac 𝛿-functions. A neuron’s spike sequence, also called spike
train, can thus be represented by a sum of 𝛿-functions: 𝑆 𝑓 (𝑡) =

∑
𝑡 𝑓
𝛿(𝑡 − 𝑡 𝑓), where the 𝑡 𝑓 are the

spike or firing times, i.e. the times of threshold crossings. The LIF neuron is the most widely used
integrate-and-fire neuron, as its simplicity allows for long simulations, some analytical tractability
(e.g. [15]), and easy interpretability of simulation results. However, it neglects the nonlinear parts of
the membrane potential dynamics of real neurons, which are especially important near the threshold
and are caused by the voltage-dependent ion channels. Nonlinear IF models attempt to capture these
parts by replacing the leak term 𝑉rest −𝑉 (𝑡) in Eq. (2.1) with a nonlinear function 𝑓 (𝑉 (𝑡)). Widely
used nonlinear IF models are quadratic or exponential IF models.

Current-based synapses

As for neurons, there exist different models for synapses, i.e., for the effect that spikes of presynaptic
neurons have on the membrane potential of a postsynaptic neuron. Throughout this thesis, we employ
current-based synapses, for which presynaptic spikes increment the input current 𝐼 (𝑡). Another
important synapse type are conductance-based synapses, for which presynaptic spikes increment the
conductance of modeled ion channels at the synapse. For a single, current-based synapse, at which a
spike train 𝑆𝑠 (𝑡) =

∑
𝑡𝑠
𝛿(𝑡 − 𝑡𝑠) arrives, the input current at the postsynaptic neuron obeys

𝜏𝑠
𝑑𝐼

𝑑𝑡
(𝑡) = −𝐼 (𝑡) + 𝜏𝑠𝑤𝑠𝑆𝑠 (𝑡). (2.2)

Here, 𝜏𝑠 is the synaptic timescale and 𝑤𝑠 the synaptic or connection weight. Integrating Eq. (2.2)
and inserting the result into Eq. (2.1) yields 𝐼 (𝑡) = ∑

𝑡𝑠
PSC(𝑡; 𝑡𝑠) and, assuming 𝑉 (𝑡) stays below 𝑉Θ,

𝑉 (𝑡) = ∑
𝑡𝑠

PSP(𝑡; 𝑡𝑠) +𝑉rest, where

PSC(𝑡; 𝑡𝑠) = 𝑤𝑠 exp
(
− 𝑡 − 𝑡𝑠

𝜏𝑠

)
Θ(𝑡 − 𝑡𝑠) (2.3)

is the postsynaptic current and

PSP(𝑡; 𝑡𝑠) =
𝑤𝑠𝜏𝑠

𝜏𝑚 − 𝜏𝑠

(
exp

(
− 𝑡 − 𝑡𝑠

𝜏𝑚

)
− exp

(
− 𝑡 − 𝑡𝑠

𝜏𝑠

))
Θ(𝑡 − 𝑡𝑠) (2.4)

is the postsynaptic potential in response to a presynaptic spike at 𝑡𝑠 (Fig. 2.3a). In Chapter 5, we
specify 𝑤𝑠 in terms of the peak PSP �̂�𝑠 a spike evokes. If the PSP is a double exponential function as

in Eq. (2.4), �̂�𝑠 = max𝑡 PSP(𝑡; 𝑡𝑠) =
(
𝜏𝑠
𝜏𝑚

) 𝜏𝑚
𝜏𝑚−𝜏𝑠

𝑤𝑠.

12

2.2 Neural network modeling

b)a)

Figure 2.3: LIF neuron dynamics and STDP.
a) Dynamics of a LIF neuron in response to a single input spike. Left column shows the PSC (top) and
membrane potential (bottom), i.e. the PSP plus the resting potential, in response to a single input spike assuming
a connection weight of �̂�𝑠 = 1 mV. Right column shows the PSC (top) and membrane potential (bottom) in
response to a single input spike assuming a connection weight of �̂�𝑠 = 11 mV. The weight is set to a very large
value to drive the membrane potential across the threshold (dashed black line). Thus, the LIF neuron spikes and
its membrane potential is reset to the reset potential, at which it is held constant during the refractory period.
Parameters: 𝑉rest = −65 mV, 𝑉Θ = −55 mV, 𝑉0 = −75 mV, 𝜏𝑚 = 10 ms, 𝜏𝑠 = 2 ms, 𝜏ref = 5 ms.
b) Typical STDP window functions for asymmetric STDP (blue) and symmetric STDP (orange). Parameters:
[LTP = 0.5 mV ([LTP = 1 mV for symmetric STDP), [LTD = −0.25 mV ([LTD = −0.5 mV for symmetric STDP),
𝜏LTP = 20 ms, 𝜏LTD = 40 ms.

Short-term plasticity

In Chapter 6, we model STP with the phenomenological model by Markram and Tsodyks [86, 106]. It
introduces two new variables: the fraction of available neurotransmitters in the RRP, 𝑥(𝑡), and the
fraction of available neurotransmitters that is ready to be used, 𝑢(𝑡), i.e., the release probability of the
available vesicles in the RRP. Hence, 𝑥(𝑡−𝑠)𝑢(𝑡−𝑠), where 𝑓 (𝑡−) = lim𝑠→𝑡− 𝑓 (𝑠), is the fraction of all
possible neurotransmitters in the RRP that is released upon spike arrival at the synapse at 𝑡𝑠. The
input current therefore obeys

𝜏𝑠
𝑑𝐼

𝑑𝑡
(𝑡) = −𝐼 (𝑡) + 𝜏𝑠𝑤𝑠𝑥(𝑡−)𝑢(𝑡−)𝑆𝑠 (𝑡). (2.5)

The depletion of neurotransmitters in the RRP after a spike arrival is modeled as a stepwise decrease
of 𝑥(𝑡) by the released fraction of neurotransmitters, 𝑥(𝑡−𝑠)𝑢(𝑡−𝑠). The RRP is then gradually refilled,
i.e. 𝑥(𝑡) grows back to its baseline value of one. Thus, 𝑥(𝑡) obeys

𝜏RRP
𝑑𝑥

𝑑𝑡
(𝑡) = 1 − 𝑥(𝑡) − 𝜏RRP𝑥(𝑡−)𝑢(𝑡−)𝑆𝑠 (𝑡), (2.6)

where 𝜏RRP is the depression time constant. Eq. (2.6) models STD. On the other hand, the influx of
calcium ions into the axonal terminal after a spike arrival is modeled by a stepwise increase of the

13

Chapter 2 Foundations

release probability 𝑢(𝑡), which afterwards decreases exponentially back to its baseline value:

𝜏fac
𝑑𝑢

𝑑𝑡
(𝑡) = 𝑢0 − 𝑢(𝑡) + 𝜏fac𝑢 𝑓 (1 − 𝑢(𝑡−))𝑆𝑠 (𝑡). (2.7)

Here, 𝜏fac is the facilitation time constant, 𝑢0 is the asymptotic release fraction and 𝑢 𝑓 determines
the increase of 𝑢(𝑡) after a spike arrival. Both 𝑢0 and 𝑢 𝑓 are restricted to lie between 0 and 1, which
together with the factor (1 − 𝑢(𝑡−)) ensures that 0 ≤ 𝑢(𝑡) ≤ 1 and 0 ≤ 𝑥(𝑡) ≤ 1. Eq. (2.7) models
STF. Note that in the original STP model by Markram and Tsodyks [86, 106], 𝑢 𝑓 is equal to 𝑢0, which
is not always justifiable from experimental data. Like for synapses without STP, one often gives 𝑤𝑠 in

terms of the peak PSP a spike evokes assuming 𝑥(𝑡) = 1 and 𝑢(𝑡) = 𝑢0: �̂�𝑠 =

(
𝜏𝑠
𝜏𝑚

) 𝜏𝑚
𝜏𝑚−𝜏𝑠 𝑤𝑠

𝑢0
.

Long-term plasticity

If one models long-term plasticity, synaptic weights become time-dependent. Since such weight
changes are typically happening either slowly or stepwise, one often does not make the time-dependence
explicit, i.e. one writes 𝑤𝑠 instead of 𝑤𝑠 (𝑡). Models for long-term plasticity are much more diverse
compared to models for STP, which is why we here only mention two commonly used models for
STDP and synaptic scaling that are relevant for Chapter 5. First, we consider pair-based STDP with
all-to-all spike interaction [21]. For this mechanism all pairs of pre- and postsynaptic spikes lead to a
stepwise change of the weight by Δ𝑤(Δ𝑡), where Δ𝑤(·) is the STDP window function and Δ𝑡 is the
time difference of the spike pair. Specifically, if the presynaptic (postsynaptic) neuron spikes, the sum
of these weight updates of pairs involving the current spike and all previous spikes of the postsynaptic
(presynaptic) neuron is added to the weight. Thus, the weight changes according to

𝑑𝑤𝑠

𝑑𝑡
(𝑡) = 𝑆𝑠 (𝑡)

(∫ 𝑡

−∞
𝑑𝑠Δ𝑤(𝑠 − 𝑡)𝑆 𝑓 (𝑠)

)
+ 𝑆 𝑓 (𝑡)

(∫ 𝑡

−∞
𝑑𝑠Δ𝑤(𝑡 − 𝑠)𝑆𝑠 (𝑠)

)
. (2.8)

For asymmetric STDP (Fig. 2.3b blue line), the STDP window function is typically

Δ𝑤(Δ𝑡) = [LTP exp
(
− |Δ𝑡 |
𝜏LTP

)
Θ(Δ𝑡) + [LTD exp

(
− |Δ𝑡 |
𝜏LTD

)
Θ(−Δ𝑡). (2.9)

For symmetric STDP (Fig. 2.3b orange line), which we employ in Chapter 5, it is often

Δ𝑤(Δ𝑡) = [LTP exp
(
− |Δ𝑡 |
𝜏LTP

)
+ [LTD exp

(
− |Δ𝑡 |
𝜏LTD

)
. (2.10)

Here, [LTP ≥ 0 and [LTD ≤ 0 determine the window amplitudes and 𝜏LTP and 𝜏LTD the timescales
of potentiation and depression. In network simulations, using such STDP rules without restrictions
usually produce instabilities. This is because strongly connected neurons exhibit more correlated
spiking, which leads to further strengthening of their connection weights and ultimately unbounded
growth of the weights. Another problem is the potential loss of selective responsiveness to different
presynaptic neurons or, more generally, different input spike patterns due to independent growth of all
synapses. A solution to the first problem is the introduction of bounds for 𝑤𝑠. A solution to the second
problem, which partly also solves the first problem, is provided by homeostatic plasticity mechanisms
that introduce synaptic competition. A particularly important example of such a mechanism is weight

14

2.2 Neural network modeling

normalization, which is a simple model of synaptic scaling as observed in the cortex. It ensures
that the sum of the weights of all incoming or, less often, outgoing connections of a neuron stays at
least approximately equal to some value 𝑤sum at all times. This is achieved by scaling the weights
by 𝑤sum divided by the sum of all incoming or outgoing connection weights. Such scaling may be
applied in regular intervals, typically ranging from seconds to minutes, or after each weight update.
Note, however, that it is a matter of debate if such timescales, which are likely necessary to ensure
the stability of networks with realistic STDP rules, are not too fast to be considered biologically
plausible [107, 108]. In the model of Chapter 5, we perform input and output normalization after each
weight update.

Rate neurons

Rate neurons, which we use in Chapters 3, 4 and 6, output and communicate with each other via
continuous firing rates. Compared to spiking neurons, this usually makes them simpler to simulate and
more amenable to theoretical analysis [9]. In addition, they are advantageous for population-averaged
simulations of groups of neurons as performed in Chapter 6. Specifically, to simplify network
simulations one often represents neurons whose activities are sufficiently correlated with a single
model unit. Averaging the rates of the summarized neurons and representing the average by a single
rate neuron is straightforward. How actual spikes of the summarized neurons could be averaged is
much less clear, however. In particular, due to the voltage reset and refractory period after a spike,
a single spike of a spiking model unit would already be similar to the synchronous spiking of all
summarized neurons. On the other hand, rate neurons cannot account for spike timing correlations,
which may be crucial for the workings of populations of neurons in the brain.

In rate neurons, neuronal spike trains 𝑆(𝑡) = ∑
𝑡𝑠
𝛿(𝑡−𝑡𝑠) are replaced by firing rates 𝑟 (𝑡). Performing

this replacement in Eq. (2.2), one gets the input current for a single synapse,

𝜏𝑠
𝑑𝐼

𝑑𝑡
(𝑡) = −𝐼 (𝑡) + 𝜏𝑠𝑤𝑠𝑟𝑠 (𝑡), (2.11)

where 𝑟𝑠 (𝑡) is the rate of the presynaptic neuron. To get the rate of the postsynaptic neuron,
there exist different possibilities. First, one can compute the membrane potential 𝑉 (𝑡) using the
subthreshold dynamics of IF neurons (Eq. (2.1) for LIF neurons) and subsequently compute the rate
as 𝑟 (𝑡) = 𝑓 (𝑉 (𝑡)), where 𝑓 (𝑉) is a nonlinear function. We use this approach in parts of Chapter 6,
where we additionally subtract 𝜏𝑚𝑉 (𝑡)𝑟 (𝑡) from the right-hand side of Eq. (2.1) to account for the
voltage resets after spikes. 𝑓 (𝑉) is typically a rectified linear (𝑓 (𝑉) = max(0, 𝛼(𝑉 −𝑉Θ)) with 𝛼 > 0)
or softplus (𝑓 (𝑉) = 𝑟 log

(
1 + exp

(
𝑉−𝑉Θ

𝑉w

))
with 𝑟,𝑉w > 0) function.

Second, one can compute the rate directly from the input current as 𝑟 (𝑡) = 𝜎(𝐼 (𝑡)), where 𝜎(𝐼) is a
nonlinear, often sigmoidal function. This approach is used in Chapters 3, 4 and 6. Neglecting the
potentially important voltage dynamics can be justified in situations where the input current varies less
rapidly than the membrane potential would. There are several reasons for using this approach: The
frequency-current curve (f-I curve), i.e. the rate of a neuron in response to a constant input current,
is an often measured relation in single-cell experiments. It saturates for large input currents due to
the refractoriness of neurons, which motivates the use of sigmoidal functions for the computation of
the spike rate. Further, it includes fewer parameters and is amenable to analytical considerations. In
particular, it is popular for more abstract studies of neuronal network dynamics (Chapters 3 and 4),

15

Chapter 2 Foundations

where it is usually used with the following notation with dimensionless quantities:

𝜏
𝑑𝑥

𝑑𝑡
(𝑡) = −𝑥(𝑡) + 𝑤𝑟𝑠 (𝑡), (2.12)

𝑟 (𝑡) = 𝜎(𝑥(𝑡)). (2.13)

Most neuron models employed in machine learning are technically also rate neurons. However, they
are only distantly related to real neurons because of their high level of abstraction.

2.2.2 Neural network models

Models of single neurons can be connected to form neural network models. While the properties of
individual neurons and synapses even of the same type vary in the brain, one usually models at most a
few neuron types each possessing the same parameters. To model the input from multiple presynaptic
neurons, one typically assumes that the input currents stemming from different presynaptic neurons
sum linearly, in line with having multiple input currents in the equivalent circuit used to derive LIF
neurons. Thus, for, e.g., spiking neurons with current-based synapses described by Eq. (2.2), the total
input current from a population of presynaptic neurons to a postsynaptic neuron obeys

𝜏𝑠
𝑑𝐼𝑖

𝑑𝑡
(𝑡) = −𝐼𝑖 (𝑡) + 𝜏𝑠

∑︁
𝑗

𝑤𝑖 𝑗𝑆 𝑗 (𝑡). (2.14)

Here, 𝑖 indexes the postsynaptic and 𝑗 the presynaptic neurons, 𝑤𝑖 𝑗 is the weight between neurons 𝑗

and 𝑖 and 𝑆 𝑗 (𝑡) is the spiketrain of neuron 𝑗 . For simplicity, we assume that there is no conduction
delay of the spike transmission. Besides neuron, synapse and plasticity models, network connectivity
is an important, distinguishing feature of neural networks. Connectivity refers to the existence and
non-existence of connections but also the distribution of weights of existing connections. Important
connectivity types are feedforward and recurrent connectivity. Feedforward networks consist of
ordered layers of neurons, where all neurons in each layer only project to neurons in subsequent layers.
Thus, external input is successively transported through all layers until it reaches the output layer.
Unlike feedforward networks but as cortical networks, recurrent networks (RNNs) possess directed
cycles, i.e. external input reverberates in them. In the following, we briefly introduce some of the
network models used in this thesis.

Spiking excitatory-inhibitory networks and the balanced state

Many spiking models of cortical networks share the following structure and components, which capture
important properties of real neural networks: They consist of two populations of LIF neurons, 𝑁E
excitatory neurons, whose outgoing weights are positive, and 𝑁I inhibitory neurons, whose outgoing
weights are negative. 𝑁E is typically on the order of tens to tens of thousands of neurons, while 𝑁I
is roughly around 5 % to 30 % of that. The connectivity between all neurons is characterized by a
high degree of recurrence. Often, network neurons additionally receive external input, which should
model stimuli or input from other, not explicitly modeled, brain regions. Such input can be a constant
current, randomly generated spike trains or current or voltage noise.

Depending on parameter values and connectivity, such networks can exhibit one of four types of
network activity: Synchronous regular, synchronous irregular, asynchronous regular or asynchronous

16

2.2 Neural network modeling

irregular activity [10, 15]. Here, regularity refers to how regular individual neurons spike and
synchrony to how synchronous the spiking is on a network level. As mentioned above, in their ground
state, cortical neurons spike asynchronously and irregular. The question of how such activity can
arise used to be a problem due to the following observations. The irregular spiking of neurons means
they are driven by fluctuations in their input. However, they receive thousands of inputs from other
neurons, which spike irregularly and are only weakly correlated. On first sight, input fluctuations
should therefore average out and thus lead to regular spiking. A possible solution to this conundrum
is what is called the balanced state [14, 15, 94, 109]. It posits that excitatory input is balanced by
inhibitory input such that the average input vanishes and synaptic weights can be large enough to yield
voltage fluctuations that generate spikes. In Chapter 5, we use networks with an approximate balance
between excitation and inhibition.

Standard networks of rate neurons

In Chapter 3 and partly also Chapter 4, we use networks of simple rate neurons. Such networks serve
as the basis of many studies concerned with more general properties of neural network dynamics and
computations. For a network consisting of 𝑁 neurons, the activation vector 𝑥(𝑡) obeys

𝜏
𝑑𝑥

𝑑𝑡
(𝑡) = −𝑥(𝑡) + 𝐴𝑟 (𝑡), (2.15)

𝑟 (𝑡) = 𝜎(𝑥(𝑡)). (2.16)

Here, the activation function 𝜎(𝑥) is applied element-wise and 𝐴 is the matrix of connection weights,
weight matrix in short. Often the network neurons are augmented with additional input, output and
feedback units (see below and Chapters 3 and 4). The entries of the weight matrix may be learned but
are also often chosen randomly. In a prominent scheme [13], one sets the connection probability to 𝑝,
i.e. an individual weight is zero with probability (1 − 𝑝) or if it corresponds to a self-connection, and
then draws the weights of existing connections from a Gaussian distribution with mean 0 and variance
𝑔2

𝑝𝑁
, where 𝑔 is the so-called gain parameter. In the limit of large 𝑁 , the eigenvalues of such a weight

matrix are distributed in the complex plane on a disk that has radius 𝑔 and that is centered at the
origin. If 𝜎(𝑥) = tanh(𝑥), the dynamics of such networks undergo a phase transition from fixed-point
(𝑔 < 1) to chaotic (𝑔 > 1) behavior [13] (Fig. 2.4). In the chaotic regime, such RNNs provide rich
dynamics. For example, different timescales are present in the dynamics, which can also be observed
in the cortex. The RNNs do not, however, capture the separation in excitatory and inhibitory neurons
(but see, e.g., ref. [110] for an alternative construction scheme for 𝐴 including this separation). In
addition, they allow for negative rates, which may be interpreted to represent the difference of the
actual firing rate compared to some baseline rate. They further underlie a rather novel learning scheme
called reservoir computing, which we will describe below.

Perceptrons

In large parts of Chapter 4, we consider perceptrons [16]. Perceptrons are feedforward neural networks
and started the overwhelming success of neural networks in machine learning. In contrast to the
previous examples, they neglect the temporal dynamics of neurons. Thus, their connection to real
neural networks is rather abstract. Generally, a multi-layer perceptron consists of 𝐿 layers of neurons,

17

Chapter 2 Foundations

a)

b)

Figure 2.4: Dynamics in networks of rate neurons given by Eqs. (2.15) and (2.16) with tanh(𝑥)-nonlinearity.
Such networks can exhibit fixed-point (a, 𝑔 = 0.75) and chaotic (b, 𝑔 = 1.5) behavior, depending on the
eigenvalues of the weight matrix. The eigenvalues lie mostly inside a circle with radius 𝑔 (left, blue circle).
If the real part of an eigenvalue gets greater than one (left, gray dashed), the origin (𝑥 = 0) becomes linearly
unstable and the dynamics transition from fixed-point to chaotic behavior (right, rates of twenty randomly
selected network neurons). Parameters: 𝑁 = 100, 𝑝 = 0.1, 𝜏 = 1.

which themselves are sometimes called perceptrons, plus an input layer. The rate or activation vector
of all neurons in layer 𝑙, 𝑙 = 1, . . . , 𝐿, is given by

𝑟 (𝑙) = 𝜎 (𝑙)
(
𝑤 (𝑙)𝑟 (𝑙−1) + 𝑏 (𝑙)

)
, (2.17)

where 𝑤 (𝑙) is the weight matrix, 𝑏 (𝑙) the vector of biases and 𝜎 (𝑙) (·) the activation function (applied
element-wise) of layer 𝑙. 𝑟 (0) is the input vector and 𝑟 (𝐿) the output vector. After learning the weight
matrices, multi-layer perceptrons can be used for function-approximation and classification problems.

2.2.3 Learning in neural networks

Learning means shaping neuronal dynamics such that a network, or sometimes a single neuron, solves
a given task. A typical task is that a network augmented with external input and output units should
generate a certain target output depending on the input. Modifying connection weights is by far the
most widely used way of shaping neuronal dynamics. Besides this weight learning, learning can be
implemented, e.g., via modification of neuronal gains [111] or purely dynamical without changing
parameters (see Chapter 3).

Learning can be differentiated into three categories. First, unsupervised learning shapes dynamics
without any feedback on how well the network performs. STDP may act as such a learning mechanism
and can be used to form assemblies and the auto-associative memories they encode. Second, supervised
learning shapes dynamics based on precise feedback on how well the network performs. Specifically,

18

2.2 Neural network modeling

the learning rule has access to the exact target output. Third, reinforcement learning shapes dynamics
based on delayed feedback in the form of reward or punishment. Thus, the network learns via
trial-and-error. In the following, we briefly introduce the learning paradigms of gradient descent and
reservoir computing, which are used Chapter 4 and Chapter 3, respectively.

Gradient descent

The most widely used training algorithm in machine learning is gradient descent. It can be used for
all three types of learning but is most often employed for supervised learning. It updates connection
weights at discrete time points by adding Δ𝑤𝑖 𝑗 = − 𝜕𝐸

𝜕𝑤𝑖 𝑗
, where 𝐸 is the error, to the weights. Its

success in machine learning has led to the belief that the brain also implements it in some way [19].
However, it is hard to reconcile with restrictions imposed by the working of real neural networks in
the brain. Specifically, gradient descent assumes that 𝐸 is differentiable with respect to the weights,
but the spiking leads to discontinuities. In addition, biologically plausible weight learning rules
require locality, i.e. weight changes can only depend on quantities that are locally available at the
synapse. Backpropagation, the most common algorithm to compute the gradients, fulfills the locality
requirement by propagating the error from the output node back to network nodes [112]. However,
this backward pass has to be done with the same weights as the forward pass meaning the weights
have to be symmetric (𝑤𝑖 𝑗 = 𝑤 𝑗𝑖). Also, the backward pass should not alter neural activity arising
during the forward pass and, in recurrent networks, the backward pass is computed backwards in time.
Recently, many ideas, such as surrogate gradients for spiking networks, the replacement of symmetric
by random weights and elaborate synapse models, have been developed to circumvent these problems
(e.g. [19, 113–116]).

Reservoir computing

Another more recent approach for learning of time-dependent tasks is reservoir computing [117, 118].
Reservoir computing is a general computing paradigm specified by only a few simple rules: the input
stimulates a reservoir, the reservoir’s state includes a high-dimensional nonlinear transformation of its
input history, the output is a linear readout of the reservoir, learning happens (almost) exclusively by
adjusting the linear readout. The idea is that due to the nonlinear expansion of the input, the dynamics
of the target output arise naturally in linear dimensions of the reservoir, which can be easily found
during the learning of the linear readout. This idea also underlies kernel methods in machine learning
and can be more formally justified by Cover’s theorem, which, roughly, states that two sets of random
vectors are more likely to be linearly separable if they are nonlinearly cast into a high-dimensional
space [16, 119]. The reservoir can in principle be of any kind fulfilling the above stated properties. It
can be a physical substrate such as photons or even a bucket of water [49], but also an RNN, for which
reservoir computing was originally introduced under the name of liquid-state machines for spiking
networks [120] and under the name of echo-state networks for rate networks [121, 122] based on
previous work [123, 124].

Here we focus on rate networks in an example supervised learning setting, where the task is to first
learn and then autonomously generate a trajectory that is periodic or generated from some dynamical
system. The reservoir is an RNN of the type introduced in Eqs. (2.15) and (2.16). It consists of 𝑁
neurons with connection probability 𝑝 and 𝑤𝑖 𝑗 ∼ N(0, 𝑔2

𝑝𝑁
) for existing connections and an additional,

19

Chapter 2 Foundations

𝑀-dimensional output 𝑧(𝑡). The complete network evolves according to the following equations:

𝜏
𝑑𝑥

𝑑𝑡
(𝑡) =

{
−𝑥(𝑡) + 𝐴𝑟 (𝑡) + 𝑤𝑧𝑧(𝑡) (open loop),
−𝑥(𝑡) + 𝐴𝑟 (𝑡) + 𝑤𝑧𝑧(𝑡) (closed loop),

(2.18)

𝑟 (𝑡) = tanh(𝑥(𝑡)), (2.19)
𝑧(𝑡) = 𝑜𝑧𝑟 (𝑡). (2.20)

Here, 𝑧(𝑡) is the target available for learning, 𝑜𝑧 is the matrix of output weights, which is to be learned
and 𝑤𝑧 is the matrix of feedback weights. The network can operate in two modes: in the open loop
setting the target drives the reservoir and in the closed loop setting the reservoir receives output
feedback. The feedback of target or output is necessary for the reservoir to “echo” the target or output
enabling it to predict how the target signal evolves. For learning, one can use, for example, the ridge
regression error function

𝐸 (𝑜𝑧) =
𝑛∑︁

𝑘=1
∥𝑧(𝑡𝑘) − 𝑧(𝑡𝑘)∥2

2 + 𝛼∥𝑜𝑧 ∥2
2, (2.21)

where 𝑘 indexes the recording time steps, which are usually also the simulation time steps. 𝑛 is the
number of recording time steps during learning. The term 𝛼∥𝑜𝑧 ∥2

2, where ∥ · ∥2 is the Frobenius norm
and 𝛼 > 0 the so-called regularization factor, regularizes the solution by biasing the output weights
towards small values.

The open loop setting is used when learning happens offline, i.e. 𝑜𝑧 is modified only after the
reservoir has been driven by the target for some time. Minimizing Eq. (2.21) yields

𝑜𝑇𝑧 =

(
𝑅𝑇𝑅 + 𝛼𝐼

)−1
𝑅𝑇 𝑧, (2.22)

where 𝑅 is the 𝑛 × 𝑁 design matrix, whose 𝑘th row is equal to 𝑟𝑇 (𝑡𝑘) and 𝑧 is the 𝑛 × 𝑀-dimensional
matrix of target outputs, whose 𝑘th row is equal to 𝑧𝑇 (𝑡𝑘). A prerequisite for the offline learning to
work is that the network fulfills the so-called echo-state property, which essentially states that the
influence of previous input, which is in this example the target feedback, and previous reservoir states
on future reservoir states should gradually vanish with time. Without input, the echo-state property is
fulfilled if 𝑔 < 1. Although external input can stabilize the dynamics for 𝑔 > 1, in practice one often
initializes the reservoir with 𝑔 < 1 for offline learning. After learning the feedback loop is closed
(closed loop setting) and the network should continue to generate the target output.

Another possibility is online learning of the output weights, with 𝑜𝑧 (𝑘) being the current output
weight matrix at 𝑡𝑘 . A particularly successful way to do so is FORCE (first-order reduced and
controlled error) learning [125]. It uses the closed loop setting already during learning, but ensures
that 𝑧(𝑡) always stays close to 𝑧(𝑡) by means of fast and large updates to 𝑜𝑧 (𝑘). Thus, the dynamics of
the reservoir stay close to the dynamics in the open loop setting and allows the learning to converge.
Nevertheless, the feedback contains small errors, which may sample previously unstable directions in
state space. The learning procedure can then stabilize these directions. Because the small errors are
intrinsically generated, this procedure of stabilizing output dynamics is more effective than injecting
external noise into the target feedback in the case of offline learning. Furthermore, FORCE learning
allows using reservoirs with 𝑔 > 1, i.e. with chaotic activity in the absence of input, as the strong

20

2.2 Neural network modeling

weight updates rapidly lead to output that suppresses the chaos. One can use different weight-update
algorithms for FORCE learning. A natural candidate is recursive least-squares, which is an online
version of ridge regression. It can be derived from Eq. (2.22) with the help of the Woodbury matrix
identity and updates the output weights according to:

𝑜𝑇𝑧 (𝑘) = 𝑜𝑇𝑧 (𝑘 − 1) − 𝑔(𝑘) (𝑧(𝑡𝑘) − 𝑧(𝑡𝑘)), (2.23)

𝑔(𝑘) = 𝑃(𝑘 − 1)𝑟 (𝑡𝑘)
1 + 𝑟𝑇 (𝑡𝑘)𝑃(𝑘 − 1)𝑟 (𝑡𝑘)

, (2.24)

𝑃(𝑘) =
(
𝐼 − 𝑔(𝑘)𝑟𝑇 (𝑡𝑘)

)
𝑃(𝑘 − 1). (2.25)

Here, 𝑔(𝑘) is the vector of learning rates for the 𝑁 output weights. 𝑃(𝑘) =
(∑𝑘

𝑗=1 𝑟 (𝑡 𝑗)𝑟𝑇 (𝑡 𝑗) + 𝛼𝐼

)−1

is a running estimate of the inverse of the sum of the rate correlation matrix and the regularization
term. It is initialized as 𝑃(0) = 𝐼

𝛼
with 𝛼−1 determining the initial learning rates.

Compared to gradient descent, reservoir computing is much less computationally expensive and
allows faster learning, because linear regression is a fairly simple procedure. However, as computational
resources got significantly cheaper during the last decades, gradient descent has proven to be more
effective in real-world applications. This might change in the future as recent research on reservoir
computing tries to take advantage of the fact that the reservoir need not be changed during learning
and can be of any physical substrate [49]. Photonic reservoirs, for example, are in principle much
faster than silicon-based computers and have a low power consumption [50]. Another reason to study
reservoirs are their relation to cortical neural networks. Cortical networks exhibit rich dynamics,
which is advantageous for reservoir computing. For example, widely different timescales are present,
ranging form a few ms for spikes to seconds for STP. Furthermore, as mentioned above linear outputs
often suffice to read out task-relevant information from cortical networks [100, 101]. But there are
also some complications with using standard reservoir computing as a model for learning in cortical
networks. First, synaptic weights are, at least when one considers timescales of minutes or more, not
static but plastic. Recent studies have shown, however, that using biologically plausible, unsupervised
plasticity rules for connections between reservoir neurons can increase network performance [126].
Second, the well-performing learning algorithms for the output weights are not biologically plausible,
because connections are updated with information that is not locally available to them. Furthermore,
FORCE learning requires unrealistically strong and fast weight updates.

21

CHAPTER 3

Dynamical learning of dynamics

This chapter consists of the following published article:

[1] C. Klos, Y. F. Kalle Kossio, S. Goedeke, A. Gilra and R.-M. Memmesheimer
Dynamical Learning of Dynamics
Phys. Rev. Lett. 125 (2020) 088103
© 2020 American Physical Society

The following sections contain the complete article with minor editorial changes. My contributions
were the development and simulation of the models for tasks (i-iv and vi) (Figs. 3.1 to 3.3 except
Fig. 3.3c,d) including the corresponding quantification of learning performance (Section 3.A.3, except
Fig. 3.9), the analysis of the learning speed (Section 3.A.5), the investigation of the robustness of
learning (Section 3.A.6), the construction of a model for generalization (Section 3.A.7) and the
pretraining with weight perturbation (Section 3.A.8). Further, I wrote large parts of the article and the
supplemental material/appendix (Section 3.A) and helped with the analysis of the underlying network
mechanisms (Figs. 3.4 and 3.11).

3.1 Introduction

Humans and animals can learn wide varieties of tasks. The predominant paradigm assumes that
their neural networks achieve this by slow adaptation of connection weights between neurons [9,
10]. Neurobiological experiments, however, also indicate fast learning with static weights [28]. Our
study addresses how neural networks may quickly learn to generate required output dynamics without
weight-learning.

The goal of neural network learning is ultimately to appropriately change the activity of the output
neurons of the network. In supervised learning, it should match a target and continue doing so
during subsequent testing; in reinforcement learning, it should maximize a sparsely given reward (see
Section 2.2.3). In our study, the networks adapt their weights during a pretraining phase [127–129] such
that thereafter with static weights they achieve supervised learning of desired outputs, by adapting only
their dynamics (dynamical learning). Adapting the static network’s weights during pretraining is thus a
kind of meta-learning or learning-to-learn. There is a recent spurt of interest in learning-to-learn [128,

23

https://doi.org/10.1103/PhysRevLett.125.088103

Chapter 3 Dynamical learning of dynamics

129], focusing mainly on learning of reinforcement learning [32, 130, 131]. Studies on learning of
supervised dynamical learning showed prediction of a time series at the current time step given the
preceding step’s target [33–35, 37–43] and control of a system along a time-varying target [36, 44–46].
The studies assume that a target is present during testing to avoid unlearning. This limits applicability
and renders the dynamics necessarily non-autonomous; it is conceptually problematic for supervised
settings and at odds with the common concept of teacher-free recall.

We therefore develop a scheme for fast supervised dynamical learning and subsequent teacher-
free generation of long-term dynamics. We consider models for biological recurrent (reciprocally
connected) neural networks, where leaky rate neurons interact in continuous time [9, 10]. Such
models are amenable to learning, computation and phase space analysis [9, 10, 125, 132, 133]. After
appropriate pretraining using the reservoir computing scheme (where only the weights to output
neurons are trained (see Sections 2.2.3 and 3.A.1 and refs. [120, 122, 125])), all weights are fixed.
The networks can nevertheless learn to generate new, desired dynamics. Furthermore, they continue
to generate them in self-contained manner during subsequent testing. We illustrate this with a variety
of trajectories and dynamical systems and analyze the underlying mechanisms.

3.2 Network model

We use recurrent neural networks, where each neuron (or neuronal subpopulation) 𝑖, 𝑖 = 1, ..., 𝑁 , with
𝑁 between 500 and 3000 depending on the task (Section 3.A.2), is characterized by an activation
variable 𝑥𝑖 (𝑡) and communicates with other neurons via its firing rate 𝑟𝑖 (𝑡), a nonlinear function of
𝑥𝑖 (𝑡) [9, 10] (see Section 2.2.2). In isolation 𝑥𝑖 (𝑡) decays to zero with a time constant 𝜏𝑖 . This combines
the decay times of membrane potential and synaptic currents. The network has two outputs, which can
be interpreted as linear neurons: signal 𝑧𝑘 (𝑡), 𝑘 = 1, ..., 𝑁𝑧 , and context 𝑐𝑙 (𝑡), 𝑙 = 1, ..., 𝑁𝑐 (Fig. 3.1).
After learning, 𝑧(𝑡) generates the desired dynamics while 𝑐(𝑡) indexes it. They are continually fed
back to the network, allowing their autonomous generation [122]. The networks are temporarily also
informed about their signal’s difference from its target 𝑧(𝑡) by an error input Y(𝑡) = 𝑧(𝑡) − 𝑧(𝑡). Taken
together, for constant weights the network dynamics are given by

𝜏 ¤𝑥(𝑡) = −𝑥(𝑡) + 𝐴𝑟 (𝑡) + 𝑤𝑧𝑧(𝑡) + 𝑤𝑐𝑐(𝑡)
+ 𝑤YY(𝑡) + 𝑤𝑢𝑢(𝑡),

𝑧(𝑡) = 𝑜𝑧𝑟 (𝑡), 𝑐(𝑡) = 𝑜𝑐𝑟 (𝑡),
(3.1)

with recurrent weights 𝐴, the diagonal matrix of time constants 𝜏, signal and context output weights
𝑜𝑧 , 𝑜𝑐, feedback weights 𝑤𝑧 , 𝑤𝑐, input weights 𝑤Y , 𝑤𝑢 and a drive 𝑢(𝑡) absent for most tasks. We
choose 𝑟𝑖 (𝑡) = tanh(𝑥𝑖 (𝑡) + 𝑏𝑖) [122, 125, 134]; offsets 𝑏𝑖 are drawn from a uniform distribution
between −0.2 and 0.2 and break the 𝑥 → −𝑥 symmetry without input. Unless mentioned otherwise,
we set 𝜏𝑖 = 1 fixing the overall time scale. Recurrent weights 𝐴𝑖 𝑗 are set to zero with probability 1 − 𝑝

(𝑝 = 0.1 or 𝑝 = 0.2 depending on the task). Nonzero weights are drawn from a Gaussian distribution
with mean 0 and variance 𝑔2

𝑝𝑁
, where 𝑔 = 1.5 [125]. 𝑤𝑧,𝑖 𝑗 , 𝑤𝑐,𝑖 𝑗 and 𝑤Y,𝑖 𝑗 , 𝑤𝑢,𝑖 𝑗 are drawn from a

uniform distribution between −�̃� and �̃� (�̃� = 1 or �̃� = 2).

24

3.2 Network model

(b)

(a) Pretraining

Dynamical Learning

Figure 3.1: Pretraining and learning.
(a) During pretraining, the output weights (left, different reds) of the network are adapted using the output errors
Y(𝑡) = 𝑧(𝑡) − 𝑧(𝑡) (right, red) and 𝑐(𝑡) − 𝑐(𝑡) (light red), such that 𝑧(𝑡) (blue, different scale for clarity) and
𝑐(𝑡) (light blue) match their targets. Different members of the target family are weight-learned in the training
periods (dashed vertical). At their beginnings, Y(𝑡) is fed also as input (purple).
(b) Dynamical learning. The output weights are now fixed. The network receives the signal error Y(𝑡) as input
(purple). It adapts its dynamics to generate 𝑧(𝑡) ≈ 𝑧(𝑡) (blue). During testing, an error is no longer provided and
𝑐(𝑡) is fixed to its previous average (right, dashed vertical, left, dashed weights). 𝑧(𝑡) continues to approximate
𝑧(𝑡).

3.2.1 Pretraining

The aim of our pretraining (Fig. 3.1a) is twofold. First, it should enable the resulting static networks
to learn signals of a specific class given only the error input Y(𝑡). Second, after removing the error
input the static networks should be able to continue to generate the desired dynamics. Therefore, the
networks have to learn to minimize Y(𝑡) and, as explained in the Analysis section, to associate unique
contexts with the different target dynamics.

To achieve this, we present different trajectories 𝑧(𝑡) of the target class to the networks, together
with associated, straightforwardly chosen constant indices 𝑐. The output weights 𝑜𝑧,𝑖 𝑗 and 𝑜𝑐,𝑖 𝑗 learn
online according to the FORCE rule (see Sections 2.2.3 and 3.A.1 and ref. [125]) to minimize the
output errors Y(𝑡) and 𝑐(𝑡) − 𝑐. In short, they are modified using the supervised recursive least-squares
algorithm with high learning rate. This provides a least-squares optimal regularized solution for the
output weights given the past network states and targets [135]. Signals and indices are presented for a
time 𝑡wlearn (30000 or 50000) as a continuous, randomly repeating sequence of training periods of
duration 𝑡stay (between 200 and 1000). During each training period’s first part, a network receives
Y(𝑡) as input. Because of the various last states of the previous learning periods, it thus learns to
approach 𝑧(𝑡) from a broad range of initial conditions given this input. In most of our tasks, after a
time 𝑡fb = 100, when 𝑧(𝑡) is close to 𝑧(𝑡), Y(𝑡) is switched off and 𝑐(𝑡) is fixed to its constant target,
matching the testing paradigm. This often helps the network to learn generation of 𝑧(𝑡) ≈ 𝑧(𝑡) without
error input.

25

Chapter 3 Dynamical learning of dynamics

3.2.2 Dynamical learning and testing

The weights now remain static and the error input teaches the network new tasks of the pretrained
target class (Fig. 3.1b), i.e. the networks dynamically learn to generate 𝑧(𝑡) ≈ 𝑧(𝑡) for previously
unseen 𝑧(𝑡). The learning time 𝑡learn (between 50 and 200) is short, a few characteristic timescales of
the target dynamics (Section 3.A.2). 𝑐(𝑡) is moderately fluctuating.

Thereafter the test phase begins, where no more teacher is present (𝑤Y → 0). In weight-learning
paradigms, during such phases the weights are fixed [110, 120, 122, 125, 136]. We likewise fix
𝑐(𝑡) to a temporally constant value, an average of previously assumed ones, 𝑐(𝑡) = 𝑐. This may be
interpreted as indicating that the context is unchanged and the same signal is still desired. We find
in our applications, that the network dynamics continue to generate a close-to-desired signal 𝑧(𝑡),
establishing the successful dynamical learning of the task.

3.3 Applications

We illustrate our approach by learning a variety of trajectories (tasks (i-iv)) and dynamical systems
(tasks (v,vi)). First, we consider a family 𝑧(𝑡; 𝑘) of target trajectories, parameterized by 𝑘 . The
networks are pretrained on a few of them, where the context target 𝑐 is a linear function of 𝑘 . Thereafter
the networks dynamically learn to generate a previously unseen trajectory as output and perpetuate
it during testing. We start with the simple, instructive target family of oscillations with different
periods (task (i)): 𝑧(𝑡;𝑇) = 5 sin(2𝜋

𝑇
𝑡). We use three different teacher trajectories for pretraining,

with 𝑇 = 10, 15, 20. After pretraining, our networks can precisely dynamically learn oscillations with
unseen periods within and slightly beyond the pretrained ones (Fig. 3.2a,b, see Section 3.A.3 for
further detail and analysis of the learning performance of all tasks). Next, in (ii), we generalize (i) to
higher order Fourier series. Specifically, we consider the target family of superpositions of two random
Fourier series with weighting factor _: 𝑧(𝑡;_) = (1 − _)𝑧1(𝑡;_) + _𝑧2(𝑡;_). Here, 𝑧𝑙 (𝑡;_), 𝑙 = 1, 2,
are Fourier series of order 𝑂 and period 𝑇 (_) = (1 − _)𝑇1 + _𝑇2. 𝑇𝑙 and the Fourier coefficients are
drawn randomly. We use seven different teacher trajectories for pretraining, with weighting factors
distributed equidistantly between 0 and 1. After pretraining, we test the dynamical learning for
thirteen weighting factors also distributed equidistantly between 0 and 1. To quantify the learning
performance, we determine the fraction of these targets that can be successfully learned (RMSE below
given threshold (0.4) and below RMSE between signal and (other) pretrained targets). We find that
networks of increasing size can learn Fourier series with increasing order (Fig. 3.2c,d). Networks with
3000 neurons learn Fourier series of order 10 with a median fraction of successes of close to 90%.
Hence, very general periodic functions can be learned. The highest producible frequency is limited by
the available neuronal time scales 𝜏𝑖. We thus expect that larger networks containing smaller 𝜏𝑖 can
learn even higher order targets.

To check if our approach also works for a target family with more than one parameter and
multidimensional trajectories, we consider in (iii) a superposition of sines with different amplitude
and period (consequently 𝑘, 𝑐 are two-dimensional vectors) and in (iv) a set of fixed points along a
curve in three-dimensional space. We find that, after pretraining, our networks are able to dynamically
learn unseen members of these target families with multidimensional context or signal, as shown in
Fig. 3.3a,b for example trajectories.

Second, we consider a family ¤̃𝑧(𝑡) = 𝐹 (𝑧(𝑡), 𝑢(𝑡); 𝑘) of target dynamical systems. The networks are
pretrained on a few representative systems. Thereafter, an unseen one is dynamically learned. Learning

26

3.3 Applications

(a) (b)

(c) (d)

R
M
S
E

Figure 3.2: Dynamical learning of periodic trajectories.
(a,b) Testing after dynamical learning of sinusoids. (a) Signal (blue) matches the example testing target (orange,
mostly covered by signal) well. Pretraining targets (gray traces) are clearly distinct. (b) For many different
targets the root-mean-square error (RMSE) between signal and target is low (top) and the signal’s period tracks
the target’s period well (bottom). Gray and orange verticals indicate periods of pretrained targets and target in
(a). Dots show median value and errorbars interquartile range, using 10 network instances.
(c,d) Testing after dynamical learning of Fourier series. (c) Like (a), for a random Fourier series with 𝑂 = 6.
Only the two closest pretrained dynamics are displayed for clarity. (d) Learning success for different network
sizes and orders of the Fourier series. Color encodes median fraction of success, using 40 network instances
and random Fourier series.

is in both phases based on imitation of trajectories. However, in contrast to tasks (i-iv) the networks
now need to generate unseen output trajectories during testing. To demonstrate dynamical learning of
a driven system, we consider task (v) of approximating the trajectory of an overdamped pendulum
with drive 𝑢(𝑡) and different masses 𝑚: ¤̃𝑧(𝑡) = 𝐹 (𝑧(𝑡), 𝑢(𝑡);𝑚). During pretraining and dynamical
learning, we use low-pass filtered white noise as drive (Fig. 3.3c, left of dashed vertical). During
testing, we use a triangular wave (Fig. 3.3c, right of dashed vertical). As our networks nevertheless
generate the correct qualitatively different signal (Fig. 3.3c,d), they must have learned the underlying
vector field 𝐹 (𝑧, 𝑢;𝑚). (v) also shows that learning goes beyond interpolation of trajectories (compare
blue and gray traces in Fig. 3.3d). Finally, in task (vi) we show dynamical learning of chaotic dynamics,
considering autonomous Lorenz systems with different dissipation parameter 𝛽 of the 𝑧-variable. For
chaotic dynamics, even trajectories of similar systems quickly diverge. The aim in this task is thus
only to generate during testing signals of the same type as the trajectories of the target system. We
test this by comparing the limit sets of the dynamics and the tent-map relation between subsequent
maxima of the 𝑧-coordinate (Fig. 3.3e,f). The reproduction of the tent-map relation further shows that
our approach can generate not explicitly trained quantitative dynamical features. We note that the
networks also dynamically learn the fixed point convergence of some of the targets in the considered
parameter space, even though they were pretrained on chaotic dynamics only (Section 3.A.3).

27

Chapter 3 Dynamical learning of dynamics

(a) (b)

(c)

(e) (f)

(d)

Figure 3.3: Dynamical learning of different tasks.
Testing phase after dynamical learning of an example (a) two-parametric superposition of sines, (b) fixed point,
(c,d) driven overdamped pendulum, and (e,f) Lorenz system. (a-d) Signals (blue) match testing targets (orange,
mostly covered by signal) well. Pretraining targets (gray traces or spheres) are clearly distinct. (a) displays only
the four closest pretrained dynamics for clarity. (b) Signal transients (blue, green) of subsequent dynamical
learning of two targets (orange spheres). (c) Signal, target and drive (green) during dynamical learning and
subsequent testing (dashed vertical). (d) Dynamically learned approximations of two different pendulums
(continuous, dashed), driven by the same triangular input. (e) Limit sets of signal (blue) and target (orange). (f)
Tent maps of signal (blue) and dynamical (orange) and pretrained targets (gray).

28

3.4 Analysis

3.4 Analysis

In the following we analyze the different parts of our network learning and its applicability. One
interpretation of the pretraining phase is that the network learns a negative feedback loop, which
reduces the error Y(𝑡). For another interpretation, we split Y(𝑡) and regroup the 𝑧-dependent part
of Eq. (3.1) as (𝑤𝑧 + 𝑤Y)𝑧(𝑡) − 𝑤Y𝑧(𝑡): feeding back Y(𝑡) is equivalent to adding a teacher drive
𝑧(𝑡), except for a specific change in the feedback weights 𝑤𝑧 . For the 𝑧-output alone the network thus
weight-learns an autoencoder 𝑧(𝑡) → 𝑧(𝑡). This is usually an easy task for reservoir networks [137].
To simultaneously learn the constant output 𝑐(𝑡) = 𝑐, the network has to choose an appropriate 𝑜𝑐
orthogonal to the subspaces in which the different 𝑧(𝑡)-driving 𝑟-dynamics take place. Orthogonal
directions are available in sufficiently large networks, since the subspaces are low-dimensional [138].

After the correct 𝑧-dynamics are assumed, we have Y(𝑡) ≈ 0. Since remaining fluctuations in Y(𝑡)
could stabilize the dynamics, we usually include ensuing learning phases with 𝑤Y → 0 and 𝑐(𝑡) = 𝑐.
These teach the network to generate the correct dynamics in stable manner under conditions similar to
testing. To analyze the principles underlying dynamical learning and testing, we consider task (i). The
similarity of the network and learning setups suggests that the same principles underlie all our tasks.
We additionally confirm this for (vi) (Section 3.A.4). Viewing the network dynamics in the space of
firing rates 𝑟, we choose new coordinates with first axis along 𝑜𝑐 and the principal components of
the dynamics orthogonal to 𝑜𝑐. The dynamics are then given by 𝑐(𝑡) = 𝑜𝑐𝑟 (𝑡), 𝑟PC1(𝑡), 𝑟PC2(𝑡), ...
(Fig. 3.4). We focus on the first three coordinates, which describe large parts of the dynamics and
output generation.

We find that during dynamical learning, the error feedback drives the dynamics towards an orbit
that is shifted in 𝑐 but similar to pretrained ones. The network therewith generalizes the pretrained
reaching and generation of orbits together with corresponding, near-constant 𝑐(𝑡), while Y(𝑡) is fed in.
We note that the combination of current state and error input is important (see Fig. 3.4a for 𝑤Y → 0
and a mismatched 𝑧(𝑡) = 𝑧(𝑡0) for 𝑡 > 𝑡0).

During testing, the network generalizes the pretrained characteristics that feeding back 𝑤𝑐𝑐 leads
to 𝑐(𝑡) ≈ 𝑐. Clamping 𝑤𝑐𝑐(𝑡) to 𝑤𝑐𝑐 thus results in an approximate restriction of 𝑟 (𝑡) to an 𝑁 − 1-
dimensional hyperplane with 𝑐(𝑡) = 𝑜𝑐𝑟 (𝑡) ≈ 𝑐 (Fig. 3.4b). The resulting trajectory is for task (i)
a stable periodic orbit that generates the desired signal, because the vector field projected to the
𝑐(𝑡) = 𝑐-hyperplane is similar to the vector field projected to the 𝑐(𝑡) = 𝑐-hyperplanes embedding
nearby pretrained periodic orbits (Fig. 3.4c).

3.5 Discussion

We have introduced a scheme how neural networks can quickly learn dynamics without changing
their weights and without requiring a teacher during testing. It relies on a weight-learned mutual
association, quasi an entanglement, between contexts and targets. This enables the latter to fix the
former during dynamical learning and vice versa during testing.

Previous approaches to supervised dynamical learning with continuous signal space required a
form of the teaching signal also during testing. They further differ in network architecture, learning
algorithm, task and/or assumption of discrete time from ours (Section 3.A.9 and refs. [33–46, 139–
141]). In networks with external input unseen, interpolating input can lead to interpolating dynamics
(Section 3.A.7 and ref. [142]). In contrast, our networks learn new dynamics, by imitation.

29

Chapter 3 Dynamical learning of dynamics

(a)

(b) (c)

Figure 3.4: Network dynamics during dynamical learning (a) and testing (b,c) of task (i), in 𝑐, 𝑟PC1, 𝑟PC2-
coordinates.
(a) During dynamical learning, the error input drives the network to a periodic orbit (light blue trajectory) and
keeps it there (blue). Without input, the dynamics converge to a stable orbit (gray) whose signal approximates a
pretrained one. Freezing 𝑧(𝑡) = 𝑧(𝑡0) drives the dynamics to a fixed point off the orbit (green).
(b) During testing, the assumed orbit (blue) in the 𝑐-𝑟PC,1-plane is similar to the error driven one (light blue,
closest pretrained orbits with 𝑐(𝑡) fixed to their 𝑐: gray). The constant feedback 𝑐 prevents the dynamics to
leave the region where 𝑐(𝑡) ≈ 𝑐, compare ¤𝑟 (𝑟) (black vectors, 𝑟 on/nearby trajectory) with ¤𝑟 (𝑟) for variable
feedback 𝑐(𝑡) (red vectors).
(c) All four orbits are similar in the 𝑟PC,1-𝑟PC,2-plane. The dynamically learned orbit has an attracting projected
vector field (black vectors) like the pretrained orbits.

Our scheme is conceptually independent of the network and weight-learning model. The pretraining
implements a form of structure learning, i.e. learning of the structure underlying a task family [25,
129]. Animals and humans employ it frequently, but little is known about its neurobiology. We thus
realize it by a simple reservoir computing scheme with FORCE learning [125]. We checked that we
can use biologically more plausible weight perturbation learning for a simple fixed point learning task
(Section 3.A.8).

Dynamical learning is biologically plausible: it is naturally local, causal and does not require
fast synaptic weight updates. Continuous supervision could be generated by an inverse model [143]
and might be replaceable by a sparse, partial signal. Our dynamical learning is fast (Section 3.A.5)
(cf. also [32, 34, 35, 38, 39, 140]). Even for more complicated tasks convergence requires only a few
multiples of a characteristic time scale of the dynamics. Further, we find robustness against changes
in network and task parameters (Section 3.A.6). The above points suggest a high potential of our
scheme for applications in biology, physics and engineering such as neuromorphic computing and the
prediction of chaotic systems (Section 3.A.9).

30

3.A Appendix

3.A Appendix

3.A.1 Reservoir computing and FORCE learning

Reservoir computing (see also Section 2.2.3) has been introduced several times at different levels of
elaborateness and in different flavors, in machine learning and in neuroscience [120, 122–124]. A
reservoir computer consists of a high-dimensional, nonlinear dynamical system, the reservoir or liquid,
and a comparably simple readout. The reservoir, often a recurrent neural network, “echoes” the input
in a complicated, nonlinear way; it acts like a random filter bank with finite memory as each of its
units generates a nonlinearly filtered version of the current input and its recent past while forgetting
more remote inputs [120, 122, 123, 144]. The simple, often linear readout can then be weight-trained
to extract the desired results while the reservoir remains static. Only a fraction of the neural network
weights are therefore used for task-related adaptation.

We use a reservoir computing scheme for pretraining. The output weights of our networks, the
weights 𝑜𝑧 and 𝑜𝑐 to 𝑧 and 𝑐, learn online according to the FORCE rule [125], which is well suited
for reservoir computers with output feedback [134]. This is because it assumes fast learning of the
output weights with a powerful algorithm and thereby ensures that the output and thus the feedback
input always match the desired ones up to a small error. The recurrent network is thus largely
driven by the correct feedback signals and generates appropriate dynamics already during training.
The remaining fluctuations are intrinsically generated and therefore efficiently immunize the system
against fluctuations that will occur during testing, leading to dynamically stable generation of desired
dynamics. The output weights are trained using the supervised recursive least-squares algorithm.
This higher order algorithm provides a least-squares optimal, usually regularized result given the past
network states and the targets. Concretely, the version used in ref. [125] and in this chapter starts
the recursion with 𝑜𝑧,𝑖 𝑗 (0) and 𝑜𝑐,𝑖 𝑗 (0) for the signal and context output weights and with an 𝑁 × 𝑁

matrix 𝑃(0) = 𝛼−1𝐼, where 𝐼 is the identity matrix and 𝛼−1 acts as a learning rate parameter. In
learning step 𝑛 at time 𝑡𝑛 the output weights 𝑜𝑧 (𝑛) and 𝑜𝑐 (𝑛) and the matrix 𝑃(𝑛) are recursively
updated via

𝑜𝑧,𝑖 𝑗 (𝑛) = 𝑜𝑧,𝑖 𝑗 (𝑛 − 1) − 𝑔 𝑗 (𝑛)Y𝑖 (𝑡𝑛), (3.2)
𝑜𝑐,𝑖 𝑗 (𝑛) = 𝑜𝑐,𝑖 𝑗 (𝑛 − 1) − 𝑔 𝑗 (𝑛)𝑒𝑖 (𝑡𝑛), (3.3)

𝑃(𝑛) = (𝐼 − 𝑔(𝑛)𝑟𝑇 (𝑡𝑛))𝑃(𝑛 − 1), (3.4)

where 𝑇 denotes transposition, 𝑟 (𝑡𝑛) the outputs of the neurons at time 𝑡𝑛 and Y(𝑡) = 𝑧(𝑡) − 𝑧(𝑡) and
𝑒(𝑡) = 𝑐(𝑡) − 𝑐(𝑡) the errors of the signal and the context. 𝑔(𝑛) =

(
1 + 𝑟𝑇 (𝑡𝑛)𝑃(𝑛 − 1)𝑟 (𝑡𝑛)

)−1
𝑃(𝑛 −

1)𝑟 (𝑡𝑛) specifies the learning rates of 𝑜𝑧,𝑖 𝑗 and 𝑜𝑐,𝑖 𝑗 . They depend on the presynaptic neuron 𝑗 and on
the dynamical history of the entire reservoir, which renders the algorithm causal but non-local. The
recursion ensures that 𝑜𝑧 (𝑛) and 𝑜𝑐 (𝑛) minimize the “ridge regression” error functions

𝐸𝑧,𝑖 (𝑛) =
𝑛∑︁

𝑘=1

(∑︁
𝑗

𝑜𝑧,𝑖 𝑗 (𝑛)𝑟 𝑗 (𝑡𝑘) − 𝑧𝑖 (𝑡𝑘)
)2

+ 𝛼

𝑁∑︁
𝑗=1

(
𝑜𝑧,𝑖 𝑗 (𝑛) − 𝑜𝑧,𝑖 𝑗 (0)

)2
, (3.5)

𝐸𝑐,𝑖 (𝑛) =
𝑛∑︁

𝑘=1

(∑︁
𝑗

𝑜𝑐,𝑖 𝑗 (𝑛)𝑟 𝑗 (𝑡𝑘) − 𝑐𝑖 (𝑡𝑘)
)2

+ 𝛼

𝑁∑︁
𝑗=1

(
𝑜𝑐,𝑖 𝑗 (𝑛) − 𝑜𝑐,𝑖 𝑗 (0)

)2
, (3.6)

31

Chapter 3 Dynamical learning of dynamics

i.e. the individual signal and context errors are kept small with weights that ideally do not deviate
far from the initial ones (weight regularization) [135]. The non-locality and the assumed fast weight
changes are considered biologically implausible [60, 125].

3.A.2 Additional detail on the applications

In the following, we detail the parameters, setups and targets used in the different applications.
We denote the duration of the pretraining phase by 𝑡wlearn. Each training period (individual target
presentation) in it lasts for 𝑡stay. If not mentioned otherwise, in the beginning of each period until 𝑡fb
the network receives error input Y(𝑡) and the context signal evolves freely. Thereafter, 𝑤Y → 0 and
𝑐(𝑡) is fixed to its target value. The intervals between updates of the output weights have length 𝑑𝑡 for
task (ii) and random lengths with an average of 0.5 for the other tasks [145]. The parameter of the
FORCE rule is 𝛼 = 1. Dynamical learning lasts for 𝑡learn. During dynamical learning, we determine 𝑐

by averaging the context signal with an exponentially forgetting kernel (𝜏forget = 50 for task (v) and
𝜏forget = 5 for the other tasks). Testing lasts for 𝑡test.

In all applications, recurrent weights 𝐴𝑖 𝑗 are set to zero with probability 1 − 𝑝. Nonzero weights
are drawn from a Gaussian distribution with mean 0 and variance 𝑔2

𝑝𝑁
, where 𝑔 = 1.5 [125]. We

draw the feedback weights 𝑤𝑧,𝑖 𝑗 , 𝑤𝑐,𝑖 𝑗 and the input weights 𝑤Y,𝑖 𝑗 , 𝑤𝑢,𝑖 𝑗 from a uniform distribution
between −�̃� and �̃�, set all initial output weights 𝑜𝑧,𝑖 𝑗 (0) and 𝑜𝑐,𝑖 𝑗 (0) to 0 and draw the biases 𝑏𝑖
from a uniform distribution between −0.2 and 0.2. The number of external inputs is 𝑁𝑢. We use
the standard Euler method for our simulations, with an integration time step of 𝑑𝑡 = 0.1, except for
Figs. 3.4 and 3.11, where we use 𝑑𝑡 = 0.01 and 𝑑𝑡 = 0.025, respectively. We implement the model
using Python and NumPy [146] (see [147] for example code for task (i)).

Further settings in the individual tasks are as follows:
Task (i): 𝑁 = 500, 𝑁𝑧 = 1, 𝑁𝑐 = 1, 𝑁𝑢 = 0, 𝑝 = 0.1, �̃� = 1, 𝑡stay = 500, 𝑡fb = 100, 𝑡wlearn =

50000, 𝑡learn = 50, 𝑡test = 5000. The network learns to generate sinusoidal oscillations with period 𝑇 .
The family of target trajectories is 𝑧(𝑡;𝑇) = 5 sin(2𝜋

𝑇
𝑡). We use three different teacher trajectories for

pretraining, with periods 𝑇 = 10, 15, 20 and corresponding context targets 𝑐 = 2, 2.5, 3. The target of
dynamical learning in Fig. 3.2a and Fig. 3.12 has 𝑇 = 12.5.

Task (ii): 𝑁 = 500–3000, 𝑁𝑧 = 1, 𝑁𝑐 = 1, 𝑁𝑢 = 0, 𝑝 = 0.1, �̃� = 1, 𝑡stay = 500, 𝑡fb = 100, 𝑡wlearn =

50000, 𝑡learn = 100, 𝑡test = 500. We do not update the output weights during a time interval of 20 at
the beginning of each training period. The network learns to generate a superposition of two Fourier
series with weighting factor _. The family of target trajectories is 𝑧(𝑡;_) = (1 − _)𝑧1(𝑡;_) + _𝑧2(𝑡;_)
with 𝑧𝑙 (𝑡) = 1

𝐶𝑙
(�̃�𝑙,02 + ∑𝑂

𝑜=1 �̃�𝑙,𝑜 sin(2𝜋𝑜
𝑇 (_) 𝑡 + �̃�𝑙,𝑜)), 𝑙 = 1, 2, and 𝑇 (_) = (1 − _)𝑇1 + _𝑇2. We draw

the �̃�𝑙,0, �̃�𝑙,𝑜, �̃�𝑙,𝑜 and 𝑇𝑙 from uniform distributions between −10 and 10, 0 and 10, 0 and 2𝜋, and
20 and 50, respectively. 𝐶𝑙 is drawn from a uniform distribution to normalize the maximal value of
|𝑧𝑙 (𝑡) | to a random value between 3 and 7. We use seven different teacher trajectories for pretraining,
with weighting factors _ distributed equidistantly between 0 and 1. The corresponding context targets
are distributed equidistantly between 2 and 3. The target of dynamical learning in Fig. 3.2c has
𝑁 = 2000, 𝑂 = 6, _ = 7

12 .
Task (iii): 𝑁 = 1000, 𝑁𝑧 = 1, 𝑁𝑐 = 2, 𝑁𝑢 = 0, 𝑝 = 0.2, �̃� = 1, 𝑡stay = 500, 𝑡fb = 100, 𝑡wlearn =

50000, 𝑡test = 1000. The network learns to generate a superposition of sinusoidal oscillations with
amplitude 𝑎 and period𝑇 . The family of target trajectories is 𝑧(𝑡; 𝑎, 𝑇) = 𝑎

(
sin(2𝜋

𝑇
𝑡) + cos(4𝜋

𝑇
𝑡)
)
. We

use sixteen different teacher trajectories for pretraining, with four amplitudes 𝑎 distributed equidistantly

32

3.A Appendix

between 3 and 7 and four periods 𝑇 distributed equidistantly between 10 and 20. The corresponding
context targets are distributed equidistantly between 2 and 3 for both parameters. The target of
dynamical learning in Fig. 3.3a and Fig. 3.12 has 𝑎 = 5 and 𝑇 = 15.

Task (iv): 𝑁 = 500, 𝑁𝑧 = 3, 𝑁𝑐 = 1, 𝑁𝑢 = 0, 𝑝 = 0.1, �̃� = 1, 𝑡stay = 200, 𝑡fb = 100, 𝑡wlearn =

50000, 𝑡learn = 50, 𝑡test = 1000. The network learns to generate a constant output positioned on a
curve in three-dimensional space parameterized by 𝑠. The family of target trajectories (fixed points)
is 𝑧(𝑡; 𝑠) =

(
𝑠3

2 + 𝑠off, 2(𝑠 − 1
2)

2 + 𝑠off,
𝑠
2 + 𝑠off

)
, where the offset 𝑠off = 2.5 ensures that the network

feedback is strong enough to entrain the reservoir network. We use ten different teacher trajectories
for pretraining with parameters 𝑠 chosen between 0 and 1 such that the corresponding 𝑧(𝑡; 𝑠) lie
equidistantly on the target curve {𝑧(𝑡; 𝑠) |𝑠 ∈ [0, 1]}. The corresponding context targets are distributed
equidistantly between 2 and 3. The targets of dynamical learning in Fig. 3.3b have 𝑠 = 0.10 and
𝑠 = 0.92.

Task (v): 𝑁 = 1000, 𝑁𝑧 = 1, 𝑁𝑐 = 1, 𝑁𝑢 = 1, 𝑝 = 0.2, �̃� = 2, 𝑡stay = 1000, 𝑡wlearn = 30000, 𝑡learn =

200, 𝑡test = 500. We choose 𝜏𝑖 from a uniform distribution between 0.3 and 2.5. During pretraining,
we always provide error input Y(𝑡) to the network and do not fix 𝑐(𝑡), i.e. 𝑡fb = 𝑡stay = 1000. The
network learns to predict the angle of a driven overdamped pendulum with mass 𝑚. The family of
target dynamical systems is given by ¤̃𝑧(𝑡) = 𝐹 (𝑧(𝑡), 𝑢(𝑡);𝑚) = −𝑚 sin(𝑧(𝑡)) + 𝑢(𝑡) − exp((𝑧(𝑡) −
0.65𝜋)/0.65𝜋) + exp(−(𝑧(𝑡) + 0.65𝜋)/0.65𝜋). The last two terms provide a soft barrier preventing the
pendulum from undergoing full rotations. During pretraining and dynamical learning, the pendulum
is driven by low-pass filtered white noise ¤𝑢wlearn(𝑡) = −𝑢wlearn(𝑡) + 0.2𝑑𝑊/𝑑𝑡 (see Fig. 3.9b), which
allows a comprehensive sampling of the pendulum’s dynamics. During testing the pendulum is driven
by a triangular wave with unit amplitude and period 𝑇= 50. We use three different teacher dynamical
systems for pretraining, with 𝑚 = 0.5, 1.0, 1.5 and corresponding context targets 𝑐 = 0.7, 0.95, 1.2.
The targets of dynamical learning in Fig. 3.3c,d have 𝑚 = 0.8 (continuous trace) and 𝑚 = 1.2 (dashed
trace).

Task (vi): 𝑁 = 1000, 𝑁𝑧 = 3, 𝑁𝑐 = 1, 𝑁𝑢 = 0, 𝑝 = 0.1, �̃� = 2, 𝑡stay = 1000, 𝑡fb = 100, 𝑡wlearn =

50000, 𝑡learn = 50, 𝑡test = 10000. The network learns a Lorenz system with dissipation parameter 𝛽.
During pretraining, we always provide error input Y(𝑡) to the network, but fix 𝑐(𝑡) after 𝑡fb. The family
of target dynamical systems is given by ¤̃𝑧(𝑡) = 𝐹 (𝑧(𝑡); 𝛽) = 𝐹Lorenz(𝐶Lorenz𝑧(𝑡); 𝛽)/(𝐶Lorenz𝜏Lorenz),
where 𝐶Lorenz = 40 and 𝜏Lorenz = 20 determine the spatial and temporal scale of the dynamics and
𝐹Lorenz(𝑥(𝑡); 𝛽) = (𝜎(𝑥2 − 𝑥1), 𝑥1(𝜌 − 𝑥3) − 𝑥2, 𝑥1𝑥2 − 𝛽𝑥3) is the vector field of the standard Lorenz
system, with 𝜎 = 10 and 𝜌 = 70. We use four teacher dynamical systems for pretraining, with
parameters 𝛽 distributed equidistantly between 2 and 6 and corresponding context targets distributed
equidistantly between 2 and 3. The target of dynamical learning in Fig. 3.3e,f and Fig. 3.12 has 𝛽 = 4.

33

Chapter 3 Dynamical learning of dynamics

3.A.3 Quantification of learning performance

To quantify the performance of our model, we measure for each application the errors between signal
outputs and targets during testing, for different network instances and targets. Except for task (vi), we
compute the testing error as the root-mean-square error between signal output and target during a
period of length 50 in the middle of the testing phase. The measure is chosen to ignore phase shifts
that occur over long testing times, as they are unavoidable in periodic autonomous dynamics (tasks
(i,ii)), due to the accumulation of small errors in the period.

Task (i)

Fig. 3.5a shows the testing error for the learning of sinusoidal oscillations. It is small for targets with
periods within and slightly beyond the range spanned and interspersed by pretrained targets. Fig. 3.5b
shows the good agreement between the periods of the output signals and the targets. We determine the
periods from the maxima of the output signals’ power spectra, after discarding the initial interval of
length 100 of the testing phase to allow for equilibration.

(a) (b)

Figure 3.5: Quality of dynamical learning of the sinusoidal oscillations in task (i).
(a) Testing error between signal output and target and (b) period of the signal output, as a function of the period
of the target. Vertical gray lines indicate the periods of the pretrained targets and vertical orange lines indicate
the period of the target used in Fig. 3.2a. Dots show median value and errorbars represent the interquartile
range between first and third quartile, using 10 network instances.

34

3.A Appendix

Task (ii)

Fig. 3.6 shows the testing error for four different combinations of network size 𝑁 and order 𝑂 together
with the signal and target in time and frequency domain for example instances of task (ii), i.e., for
specific realizations of the random Fourier series described above. The testing error is low within the
range of pretrained weighting factors, especially for the targets used during pretraining.

35

Chapter 3 Dynamical learning of dynamics

(a) (b)

(c) (d)

Figure 3.6: Quality of dynamical learning of the superposition of Fourier series in task (ii).
(a) 𝑁 = 1000, 𝑂 = 2 (a, top left) Signal (blue) and target (orange) together with the two closest pretrained
dynamics (gray) during testing after dynamical learning of an unseen target. (a, bottom) Power spectral
density of signal (blue) and target (orange) during testing. Gray lines show the power of the individual Fourier
components of the target family within the range of pretrained targets. Gray dots indicate the targets used during
pretraining. (a, top right) Testing error between signal output and target as a function of the target weighting
factor. Vertical gray lines indicate the weighting factors of the pretrained targets and vertical orange lines
indicate the weighting factors of the targets used in the other subpanels. Dots show median value and errorbars
represent the interquartile range between first and third quartile, using 40 network instances and random Fourier
series.
(b-d) Same as (a) but with (b) 𝑁 = 2000, 𝑂 = 6, (c) 𝑁 = 2500, 𝑂 = 8, (d) 𝑁 = 3000, 𝑂 = 10.

36

3.A Appendix

Task (iii)

Fig. 3.7a shows the testing error for the learning of superpositions of sines. Again, the error is low
within and slightly beyond the range of the parameters of the pretrained targets. Similarly, the averaged
local maxima of the signal outputs agree well with the averaged local maxima of their targets, Fig. 3.7b.
The measurement of maxima starts at time 100 after the beginning of testing.

(a) (b)

Figure 3.7: Quality of dynamical learning of the superpositions of sines in task (iii).
(a) Median testing error between signal output and target as a function of the maximum and the period of the
target function. Gray crosses indicate parameters of the pretrained targets and the orange cross indicates the
parameters used in Fig. 3.3a.
(b) Averaged local maxima of the signal output as a function of the averaged local maxima of the target, for a
target period of 𝑇 = 15. Vertical gray lines indicate the maxima of the pretrained targets and the vertical orange
line indicates the maximum of the target used in Fig. 3.3a. Dots show median value and errorbars represent
the interquartile range between first and third quartile. Results in (a) and (b) are obtained using 10 network
instances for each parameter pair.

37

Chapter 3 Dynamical learning of dynamics

Task (iv)

Fig. 3.8a shows the testing error for the learning of fixed points. It is low for target positions within
and slightly beyond the range of the positions of the pretrained targets. Fig. 3.8b shows signal outputs
for different targets dynamically learned by a single network instance.

(a) (b)

Figure 3.8: Quality of dynamical learning of the fixed points in task (iv).
(a) Testing error between signal output and target as a function of the target position. Vertical gray lines indicate
the positions of the pretrained targets and vertical orange lines indicate the positions of the targets used in
Fig. 3.3b. Dots show median value and errorbars represent the interquartile range between first and third
quartile, using 10 network instances.
(b) Single network instance learning the same set of dynamical learning targets as in (a). Blue spheres indicate
the last signal outputs during testing after the different instances of dynamical learning. Yellow spheres indicate
the position of the corresponding targets. They are mostly covered by blue spheres, except in the regions of
larger error. The black tube shows the curve 𝑧(𝑡; 𝑠) on which the targets lie.

38

3.A Appendix

Task (v)

Fig. 3.9a shows the testing error for the learning of driven overdamped pendulums. It is small for
pendulums with masses within and slightly beyond the range spanned and interspersed by pretrained
pendulums. Fig. 3.9b illustrates the dynamical learning and testing phases.

(a) (b)

Figure 3.9: Quality of dynamical learning of the overdamped pendulums in task (v).
(a) Error between signal output and target, as a function of the target pendulum’s mass. Vertical gray lines
indicate the masses of the pretrained targets and vertical orange lines indicate the masses of the targets used in
Fig. 3.3d,e. Dots show median value and errorbars represent the interquartile range between first and third
quartile, using 10 network instances.
(b) Dynamical learning and testing. The network and the target receive the same low-pass filtered white noise as
input drive during dynamical learning and triangular wave input during testing (lower subpanel). The network
response (upper subpanel, blue trace) agrees well with the response of the target (upper subpanel, orange trace,
nearly completely covered by the blue trace).

39

Chapter 3 Dynamical learning of dynamics

Task (vi)

Since the Lorenz system is chaotic for most of the parameter range that we consider, the signal output
trajectory quickly deviates from the target system’s trajectory during testing. This holds also if the
network approximates the target dynamical system well. Hence, instead of using the root-mean-square
error, we compute the testing error as the discrepancy of the limit set 𝑀net generated by the network
and the limit set 𝑀tar generated by the target dynamics. For the comparison, we use the Averaged
Hausdorff Distance [148],

𝑑AHD(𝑀net, 𝑀tar) =max

[
1

| 𝑀net |
∑︁

𝑚net∈𝑀net

𝑑 (𝑚𝑛𝑒𝑡 , 𝑀tar),
1

| 𝑀tar |
∑︁

𝑚tar∈𝑀tar

𝑑 (𝑚𝑡𝑎𝑟 , 𝑀net)
]
, (3.7)

𝑑 (𝑚, 𝑀) = min
𝑚′∈𝑀

∥ 𝑚 − 𝑚′ ∥,

which is robust against outliers. Fig. 3.10a shows that the testing error is low within the range of
parameters 𝛽 spanned and interspersed by pretrained targets. In addition, we find that the relation
between subsequent maxima of the z-coordinate of the signal output correctly forms the shape of a
tent for most tested parameters (Fig. 3.10b). The behavior of our model also reproduces a bifurcation
occurring for large 𝛽: The target Lorenz system changes from chaotic behavior to fixed point behavior
for the largest value of 𝛽 we consider. Our networks dynamically learn to generate the fixed point
dynamics from this target, although they were only pretrained in the chaotic regime. We note that
some network instances, for example the one shown in Fig. 3.10b, generate fixed point behavior
during testing, if the target has the second largest value of 𝛽 and is thus still chaotic. However, also
in these cases the signal output converges to one of the two fixed points appearing for the largest 𝛽.
This suggests that due to a shift in the averaged context parameter, the dynamical regime beyond the
bifurcation is generated during testing.

40

3.A Appendix

(a) (b)

Figure 3.10: Quality of dynamical learning of the Lorenz systems in task (vi).
(a) Testing error comparing the limit sets of signal output and target, as a function of the target’s parameter 𝛽.
Vertical gray lines indicate the parameters of the pretrained targets and the vertical orange line indicates the
parameter of the target used in Fig. 3.3e,f. Dots show median value and errorbars represent the interquartile
range between first and third quartile, using 10 network instances.
(b) Tent maps of subsequent maxima in the z-coordinate for the signal output (dots, colored differently for
different targets) and for the target dynamics (crosses, light coloring alike corresponding dots). The parameters
𝛽 of the targets are the same as in (a). Dynamical learning of all targets with a single network instance. Blue
data correspond to the signal and target used in Fig. 3.3e,f; gray data indicate pretrained targets. Tent maps of
the target dynamics move from bottom left to top right for increasing 𝛽 except for the largest 𝛽 (brown, bottom
left), for which the target dynamics converge to a fixed point. Inset show close-up of results for the smallest
considered value of 𝛽. The signal output goes to a fixed point for the two largest, but also for the smallest
considered value of 𝛽, leading to a focusing of the maxima relation to a small region.

41

Chapter 3 Dynamical learning of dynamics

3.A.4 Analysis of dynamical learning of chaotic dynamics

To show that the mechanisms underlying dynamical learning and testing that we worked out using
task (i) also hold for a qualitatively different, chaotic system, Fig. 3.11 analyzes them for task (vi).
As expected, we observe that during dynamical learning, the error feedback drives the dynamics
towards an orbit generalizing the pretrained ones and keeps it there. During testing, the network
generalizes the pretrained characteristics to autoencode 𝑐 such that the dynamics stay near the 𝑐-plane
in 𝑟-space when the feedback 𝑤𝑐𝑐 is clamped to 𝑤𝑐𝑐. The trajectory is for task (vi) usually chaotic and
generates the desired output signal, because the vector field projected to the 𝑐(𝑡) = 𝑐-hyperplane inter-
or extrapolates nearby vector fields of other 𝑐-hyperplanes, which embed pretrained orbits generating
Lorenz dynamics with neighboring parameters.

100-10
1

2

-10

0

10

c

c

8/3

7/3

-10 0 10

(a)

(b) (c) 10

0

-10

-10 0 10

Figure 3.11: Recurrent network dynamics during dynamical learning (a) and testing (b,c) of task (vi), in
𝑐, 𝑟PC1, 𝑟PC2-coordinates (see Fig. 3.4 for task (i)).
(a) During dynamical learning, the error input drives the network to an orbit whose signal output approximates
the desired Lorenz system and keeps it there (light blue and blue trajectories). Without input, the dynamics
converge to a stable fixed point, after a transient that yields a Lorenz system-like signal (gray). Freezing
𝑧(𝑡) = 𝑧(𝑡0) drives the dynamics quickly to a fixed point (green).
(b) During testing, the assumed orbit (blue) resembles the error driven one in the 𝑐-𝑟PC,1-plane (light blue,
closest pretrained orbits with 𝑐(𝑡) fixed to their 𝑐: gray). The constant feedback 𝑐 prevents the dynamics to
leave the region where 𝑐(𝑡) ≈ 𝑐, compare ¤𝑟 (𝑟) (black vectors, 𝑟 on/nearby trajectory) with ¤𝑟 (𝑟) for variable
feedback 𝑐(𝑡) (red vectors).
(c) All four orbits are similar in the 𝑟PC,1-𝑟PC,2-plane, since the dynamically learned orbit has a similar projected
vector field (black vectors) as the nearby pretrained ones.

42

3.A Appendix

3.A.5 Learning speed of dynamical learning

In the following we quantitatively assess the speed of dynamical learning. We compare it with
that of standard FORCE weight-learning, which uses reservoirs with only a signal output 𝑧(𝑡) and
output weight-learning. As example tasks we consider learning of the sinusoidal oscillation, task
(i), of the superposition of sines, task (iii), and of the Lorenz system, task (vi). The reservoirs for
standard FORCE learning have our standard parameters, except that the biases are drawn from a
uniform distribution between -5 and 5. Further, the output weight-learning parameters are adapted;
we apply weight updates on every integration time step and set 𝛼 to 0.001. Both changes improve
performance and are for some combinations of configuration and task even necessary for convergence.
We consider three different configurations of standard FORCE learning (Fig. 3.12a): First, the typical
configuration of a reservoir without input and initialization of 𝑜𝑧 to 0. In the second configuration
𝑜𝑧 is initialized instead to the signal output weights obtained at the end of pretraining for dynamical
learning. This accounts for the possibility that these output weights are beneficial initial conditions for
weight-learning and that our structural learning facilitates subsequent FORCE learning despite the lack
of context input, which was present during pretraining. In the third configuration 𝑜𝑧 is initialized to 0
and the reservoir receives an error input Y(𝑡) = 𝑧(𝑡) − 𝑧(𝑡) during learning, because this might also
facilitate FORCE learning. To evaluate performance after different learning durations, we compute
testing errors as described in Section 3.A.3. As usual, we stop weight modifications and, if present,
error input during testing. For a fair comparison, for dynamical learning with 𝑡learn = 0 we fix the
context to 0.

We find that dynamical learning is similarly fast or faster than FORCE (Fig. 3.12b). For tasks (i)
and (iii), both dynamical learning and FORCE learning converge within approximately two periods of
the target dynamics (𝑇 = 12.5 and 𝑇 = 15). FORCE learning converges to smaller errors. For task
(vi), dynamical learning converges in about five cycles (maxima of the 𝑧-coordinate) of the target
system. FORCE learning is about five times slower and yields similar errors. The similar convergence
speed of the first two configurations in all considered tasks indicates that FORCE weight-learning
does not profit from our form of pretraining.

Taken together, we observe that dynamical learning converges within a few characteristic timescales
of the target dynamics and is thus on par with FORCE learning for simple and faster converging for
complex tasks. This held for both the standard and the hand-tuned parameter sets. The observation is
plausible since for complicated tasks FORCE learning needs to gather information that dynamical
learning already possesses due to the previous pretraining. It is especially interesting because
dynamical learning may be considered biologically plausible and because FORCE is a recommended
reservoir computing scheme [134].

43

Chapter 3 Dynamical learning of dynamics

(a)

(b)
Task (i) Task (iii) Task (vi)

Dynamical learning FORCE FORCE

(input)

FORCE
(pretrained)()

Figure 3.12: Learning speed of dynamical learning and FORCE weight-learning.
(a) Schematics of the different learning schemes. Style of drawing has same meaning as in Fig. 3.1.
(b) Testing error as a function of learning time for dynamical learning (black), FORCE learning with 𝑜𝑧
initialized to zero (red), FORCE learning with 𝑜𝑧 initialized to the signal output weights after pretraining
(brown) and FORCE learning with error input and 𝑜𝑧 initialized to 0 (purple, colors are alike frame colors in
(a)). Connected points represent median value and errorbars represent the interquartile range between first and
third quartile, using 10 network instances.

44

3.A Appendix

3.A.6 Robustness of learning performance

To check the robustness of our dynamical learning scheme against changes in task family parameters,
we determine its performance for different families of sinusoidal oscillations, task (i). Specifically, we
vary the number of pretrained targets, the amplitude of the oscillations, the difference between the
maximal and minimal period of the pretrained targets (period range) as well as the minimal period of
the weight-learned targets. For each combination of these task family parameters, we pretrain the
networks as before. Afterwards, we dynamically learn a set of targets with periods ranging from the
smallest to the largest pretrained period, where the period increases by one between neighboring targets.
We compute a normalized error for each target and take the average to quantify the performance of the
network for the considered task family. The normalized error is the root-mean-square error during a
period in the middle of the testing phase, with length three times the target period, divided by the
corresponding root-mean-square error assuming that the signal output is zero.

To compute and interpret the errors in high-dimensional parameter space, we cut out slices where we
keep all but at most two of the task family parameters at their standard values specified in Section 3.A.2.
We find that dynamical learning works robustly for large parameter regions. In particular, the number
of targets and the period range can often be changed over an order of magnitude, see Fig. 3.13.
Increasing the network size to 1000 neurons and the number of pretrained targets to five instead of
three further increases robustness against changing other parameters, see Fig. 3.14. Taken together,
we may conclude that our scheme works well for a wide range of task families.

45

Chapter 3 Dynamical learning of dynamics

Figure 3.13: Performance over a broad range of task family parameters.
Panels on and above the diagonal show the average normalized errors taken over sets of testing targets. All
but the indicated parameters are set to their standard values. White lines in panels above the diagonal indicate
the parameter values of the one-dimensional slices shown on the diagonal. Dots and color represent median
value and errorbars in panels on the diagonal represent the interquartile range between first and third quartile,
using 10 network instances. Panels below the diagonal show representative dynamically learned example signal
outputs (blue) and corresponding targets (orange) for the three different parameter combinations indicated by
numbered crosses in the panels above the diagonal.

46

3.A Appendix

Figure 3.14: Same as Fig. 3.13 for networks with 1000 neurons and five pretrained targets unless the number of
pretrained targets is varied.

47

Chapter 3 Dynamical learning of dynamics

3.A.7 Induction of unseen signal outputs by a context-like external input

We test whether changing a context-like input 𝑢𝑐 (𝑡) allows to generate sinusoidal oscillations with
previously unseen frequencies. Like 𝑐(𝑡), 𝑢𝑐 (𝑡) connects to the neurons in the network with a weight
matrix 𝑤𝑐. However, 𝑢𝑐 (𝑡) is never generated by a network output, but a purely external input. There
is no further context variable 𝑐(𝑡) and no error input Y(𝑡) in the network. Apart from this, the network
is setup like in task (i). The output weights 𝑤𝑧 are learned using the FORCE rule, similar to pretraining
in task (i): during each training period, we teach the network to generate a sinusoidal oscillation
𝑧(𝑡;𝑇) with a period 𝑇 = 10, 15, 20, in response to a constant 𝑢𝑐 (𝑡) = 2, 2.5, 3, analogous to teacher
forcing with 𝑐. We find that the system can interpolate between the pretrained output signals, if driven
by previously unseen 𝑢𝑐 (𝑡), cf. Fig. 3.15. See ref. [149] for a similar finding when morphing between
conceptor weight matrices. (The recent ‘conceptor’ approach fixes reservoir dynamics by weight
changes [149, 150].)

(a)

(b)

Figure 3.15: Induction of unseen signal outputs by a context-like external input.
The network has been trained similar to pretraining in task (i) to generate sinusoidal oscillations with three
different frequencies in response to three constant external context inputs 𝑢𝑐 (𝑡). After training, the weights are
fixed and the network receives a continuously rising 𝑢𝑐 (𝑡) (b). This results in a sinusoidal signal output with
continuously rising period, which interpolates between the trained signals (a).

48

3.A Appendix

3.A.8 Pretraining with weight perturbation

Introduction. Throughout this chapter reservoir computing with FORCE learning is used for pretraining.
In the following we show dynamical learning of simple tasks in networks that are pretrained with a
biologically more plausible rule. Specifically, we use reservoir computing with weight perturbation [54,
55, 83, 151] to learn network structures that enable the dynamical learning of fixed points in two-
dimensional space. We note that the direct application of a recent node perturbation scheme [60] to
the output or all neurons was hindered by difficulties with learning multiple targets (cf. also [152]).
Weight perturbation is, in short, a local reinforcement learning rule that consists of three steps: (i)
randomly perturbing the connection weights, (ii) comparing the obtained reward with the reward
expected without perturbation, and (iii) changing the connection weights into the direction (opposite
direction) of the perturbation if the actual reward is higher (lower) than the expected one. In Chapter 4,
we perform a thorough comparison between weight and node perturbation.

Structure learning with weight perturbation. We use batch learning, i.e the pretraining phase
consists of 𝑁trials trials, each of which is comprised of the presentation of all 𝑁tar pretraining members
of the task family 𝑧(𝑡; 𝑠) for a time 𝑡stay. The signal output weights 𝑜𝑧 learn as follows: At the beginning
of trial 𝑛, the weights 𝑜𝑧,𝑘𝑖 (𝑛 − 1) from the end of the previous trial receive small perturbations
Δ𝑜

pert
𝑧,𝑘𝑖

(𝑛) [55]. The perturbations are drawn from a normal distribution with zero mean and standard
deviation 𝜎. We define the reward 𝑅𝑧 (𝑛) as the negative sum of the mean squared errors between
the signals and their targets during an evaluation period that starts 𝑡off after the beginning of the
trial. Further, we approximate the reward of the unperturbed network on the training batch by an
exponentially weighted average �̄�𝑧 (𝑛 − 1) = 𝛼�̄�𝑧 (𝑛 − 2) + (1 − 𝛼)𝑅𝑧 (𝑛 − 1) of previous rewards with
timescale 𝛼 [60]. This gives the estimate

𝐺𝑘𝑖 (𝑛) =
Δ𝑜

pert
𝑧,𝑘𝑖

(𝑛)
𝜎2 (𝑅𝑧 (𝑛) − �̄�𝑧 (𝑛 − 1)) (3.8)

for the weight gradient [55]. When we obtain the weight updates Δ𝑜𝑧,𝑘𝑖 (𝑛) directly from this estimate,
in our model we observe poor performance. It improves markedly when we combine the estimate with
the Adam algorithm [153]. Adam introduces a momentum term 𝑣𝑘𝑖 (𝑛) and an individual learning rate
1/

√︁
𝑔𝑘𝑖 (𝑛) + ` for each connection such that our weight update equations read

𝑜𝑧,𝑘𝑖 (𝑛) =𝑜𝑧,𝑘𝑖 (𝑛 − 1) + Δ𝑜𝑧,𝑘𝑖 (𝑛), (3.9)

Δ𝑜𝑧,𝑘𝑖 (𝑛) =[
𝑣𝑘𝑖 (𝑛)√︁
𝑔𝑘𝑖 (𝑛) + `

, (3.10)

𝑣𝑘𝑖 (𝑛) =𝛽𝑣𝑘𝑖 (𝑛 − 1) + (1 − 𝛽)𝐺𝑘𝑖 (𝑛), (3.11)

𝑔𝑘𝑖 (𝑛) =𝛾𝑔𝑘𝑖 (𝑛 − 1) + (1 − 𝛾)𝐺2
𝑘𝑖 (𝑛). (3.12)

Here, [is the global learning rate, ` a constant preventing overly large weight updates and 𝛽 and 𝛾

are the timescales of the exponential averaging of the momenta and the learning rates, respectively.
Learning of the context output weights is implemented likewise.

Results. At the end of the pretraining trials, our networks have learned to produce (in response to
the signal error input) signal and context outputs that are close to the pretrained targets within the
evaluation period, see Fig. 3.16. The established underlying network structures also enable the network
to dynamically learn previously unseen targets. Like for the networks pretrained with FORCE, a short

49

Chapter 3 Dynamical learning of dynamics

presentation of the (here constant) target signal via the error input teaches the network to imitate it
and to choose an appropriate context. During a subsequent testing period, the network autonomously
continues the desired signal stabilized by the fixated context. Fig. 3.17a shows the testing error after
dynamical learning of different signals. It is low for target positions within and slightly beyond the
range of the pretrained targets. Fig. 3.17b shows signal outputs, which were dynamically learned by a
single network instance.

Discussion. We have shown that for a simple task pretraining can also be performed with a learning
rule that satisfies main criteria for biological plausibility, as it is local and causal. Further, it relies on
delayed, sparse rewards and updates the weights at a low rate at the end of a trial. It is biologically
plausible that synapses tentatively change their weights and then consolidate or reverse the change,
depending on reward [154]. To improve learning, we have employed momentum and individual,
history dependent learning rates for each connection. Supported by experimental findings it has
already been argued that the brain could realize learning with momentum [155]. Furthermore there
is ample evidence for a complex history dependence of learning rates in individual synapses [156].
While our weight modifications do not rely on a continuous supervisory signal anymore, such a signal
is still present in the error input, like during dynamical learning. Future work may investigate how it
can be replaced by sparse supervision.

Task details. 𝑁 = 1000, 𝑁𝑧 = 2, 𝑁𝑐 = 1, 𝑁𝑢 = 0, 𝑝 = 0.1, �̃� = 1, 𝑡stay = 100, 𝑡fb = 50, 𝑡learn =

50, 𝑡test = 1000, 𝑡off = 25, 𝑁trials = 105, 𝑁tar = 5, 𝜎 = 10−4, 𝛼 = 1/3, 𝛽 = 0.99, 𝛾 = 0.99, ` = 10−8,
[= 50 × 10−5 for the first 5000 trials, [= 10 × 10−5 for trials 5000 to 50000, [= 1 × 10−5 afterwards.
The model and application details described in Sections 3.A.2 and 3.2 also apply to the current setting,
except for those concerning the weight-learning rule. At the beginning of each pretraining trial for
each member of the batch we draw the initial activation variables 𝑥𝑖 from a uniform distribution
between −0.1 and 0.1. The network learns to generate a constant output positioned on a curve
in two-dimensional space parameterized by 𝑠. The family of target trajectories (fixed points) is
𝑧(𝑡; 𝑠) =

(
𝑠3

2 + 𝑠off,
𝑠
2 + 𝑠off

)
, where the offset 𝑠off = 2.5 ensures that the network feedback is strong

enough to entrain the reservoir network. We use four different teacher trajectories for pretraining with
parameters 𝑠 chosen between 0 and 1 such that the corresponding 𝑧(𝑡; 𝑠) lie equidistantly on the target
curve {𝑧(𝑡; 𝑠) |𝑠 ∈ [0, 1]}. The corresponding context targets are distributed equidistantly between 2
and 3.

50

3.A Appendix

(a) (b)

Figure 3.16: Pretraining using weight perturbation.
(a) Signal and context outputs for the different batch members early (left) and late (right) during pretraining for
a single network instance. In late trials the networks’ error input induces a quick convergence of the outputs
(strong colors) to their targets (light colors). At 𝑡 = 50, the context variable is fixed to its desired value.
(b) Negative reward for the signal (top) and context (bottom) output. Black line shows median value of 10
network instances and gray area indicates interquartile range between first and third quartile.

51

Chapter 3 Dynamical learning of dynamics

(a) (b)

Figure 3.17: Quality of dynamical learning after pretraining with weight perturbation.
(a) Testing error between signal output and target as a function of the target position. Vertical gray lines indicate
the positions of the pretrained targets. Dots show median value and errorbars represent the interquartile range
between first and third quartile, using 10 network instances.
(b) Single network instance learning the same set of targets as in (a). The inset shows signal outputs (blue)
versus time during dynamical learning and truncated testing periods for one of the targets (orange). In the
main panel blue dots indicate the last signal outputs during testing. Yellow crosses indicate the position of the
corresponding targets. They are mostly covered by blue dots, except in the regions of larger error. The orange
cross indicates the position of the target shown in the inset. Gray crosses indicate the positions of the pretrained
targets. The black line shows the curve 𝑧(𝑡; 𝑠) on which the targets lie.

52

3.A Appendix

3.A.9 Supplementary discussion

We conclude with an extended discussion of our findings, previous literature and possible future
applications. Overall, we have shown how neural networks can quickly learn trajectories and dynamical
systems without changing their weights and without requiring a teacher during testing. During the
pretraining (learning-to-learn), the networks are taught several dynamics from the same family as the
later dynamically learned ones, as well as a corresponding constant context. The process is supervised
by an error signal to the synapses and, part of the time, by an error input to the network. During
dynamical learning, a short presentation of the latter alone suffices to teach the desired dynamics.
The network then also generates a context, which fluctuates around some temporal mean. When
subsequently testing the generation of the dynamics, the error input is removed and the context is fixed
to its average, telling that the learned dynamics should be continued.

Our analysis indicates that the scheme works due to an interplay of generalization and stabilization:
During pretraining, the networks adapt to perform a negative feedback/autoencoder task. During
dynamical learning, they generalize this, by generating a new desired signal when receiving its error as
input. Simultaneously they choose a consistent context. During testing, this context is externally kept
constant, which stabilizes the learned signal. This is possible because a mutual association between
contexts and targets has been weight-learned during pretraining.

Approaches to supervised dynamical learning in the literature consider the one-step prediction of
time series [34, 35] and input-output maps [33, 37–39, 41, 43], where the correct previous output
is fed in. Other networks could adapt to provide negative feedback for control [36, 45, 46, 157],
a pretrained oscillation [141], periodic sequences of discrete states [140] or the parameters of a
dynamical system [139]. The studies use simple recurrent neural networks [34–36, 41, 45, 46, 139,
157], gated [38, 39, 43] or spiking ones [33], trained by backpropagation [33, 38, 39, 43] or extended
Kalman filtering [34–36, 40, 44–46, 139, 157]. The simple networks are similar to ours but use
non-leaky neurons, different learning and often assume discrete time. To our knowledge, all the
systems with continuous signal space were fed a form of the temporally variable teaching signal also
during testing.

Earlier work showed that sufficiently large recurrent neural networks with static weights can
approximate any smooth input-output dynamics relation with bound-restricted inputs for finite
time [29, 158, 159]. This implies that a network with static weights can in principle approximate the
output of another, weight-learning one. The static network’s dynamics thereby include the effects of
the other network’s learning algorithm and thus learns dynamically [30, 31]. Our networks with static
weights are not pretrained to approximate during dynamical learning the outputs of weight-learning
networks. In particular they do not approximate the outputs of a FORCE weight-learning reservoir
computer, as illustrated by the different convergence properties in Fig. 3.12.

In our networks, fixing the intrinsically chosen context 𝑐(𝑡) indicates that the dynamics are to be
continued. This is analogous to fixing the weights during testing in weight-learning paradigms. It is
necessary to avoid convergence to other dynamics (if the system has discrete attractors) or diffusion
(for marginally stable dynamics). The instruction to fix 𝑐(𝑡) is independent of the task and much
simpler than task specific teacher and target signals. The constant 𝑐(𝑡) can be stored and kept up by
biologically plausible circuits [160]. For long times, weight-learning may consolidate it. 𝑐(𝑡) may be
understood as a (continuous) memory variable [133, 161]. In contrast to previous ones it is neither a
pure feedback output [161, 162] nor an external input (cf. Section 3.A.7 and [136]) and it does not
facilitate weight-learning [136, 161, 162]. One can also drive networks with external input such that

53

Chapter 3 Dynamical learning of dynamics

unseen, interpolating input leads to interpolating dynamics (cf. Section 3.A.7 and [142]). In contrast
to such generalization, our networks learn their new dynamics by imitating a teacher. In particular,
they adopt the phase of an oscillatory target.

Our pretraining implements a form of structure learning [25, 129], i.e. learning of the structure
(concepts) underlying a family of tasks, which in general facilitates subsequent learning of new
representatives. In our networks it enables learning of representatives without synaptic modification.
Experiments indicate that animals and humans employ structure learning for example for motor
tasks, which requires presentation of a variety of representative tasks and involves a reduction of the
dimensionality of the search space, as in our model [25, 129]. Evolution or network plasticity should
implement structure learning in biology. Since their functioning is largely unknown, we employ a
simple reservoir computing scheme and comparably small neural networks. Only the readout weights,
a small fraction of the network weights, are trained. Our dynamically learned tasks have similar
difficulty as those used to introduce FORCE weight learning [125]. They are low-dimensional; this
may often be the relevant case for biological neural networks, e.g., when learning movements [103].

In experimental physics and engineering, our scheme may find application in neuromorphic
computing. Here, intrinsically plastic weights are costly and often difficult to realize, while outsourcing
the learning to external controllers introduces computational bottlenecks [163]. As an example, in
analog, photonic neuromorphic computing, network weights are externally set to generate desired
output dynamics [51–53]. Our scheme may allow such systems to intrinsically learn and thereby fully
reap their speed benefits. For spiking hardware, our networks may be efficiently translated into spiking
ones [164]. Dynamical learning may reduce the size and power consumption of such hardware, for
example in autonomous robots [165].

Our approach suggests a new method for the prediction of chaotic systems [47, 48], which searches
for similarity within a predefined family of dynamics and leaves the networks structurally invariant
and flexible.

A possible example for dynamical learning in biology is the quick learning of new movements [25,
28], perhaps with subsequent consolidation by plasticity. Another example may be short-term memory
of single items and temporal sequences [26, 166]. Our theory predicts that even complicated dynamics
may be memorized in biological neural networks without synaptic modification.

54

CHAPTER 4

Perturbation-based learning of temporally
extended tasks

Parts of this chapter are included in the following manuscript:

[2] P. Züge, C. Klos and R.-M. Memmesheimer
Weight perturbation learning outperforms node perturbation on broad classes of temporally
extended tasks
bioRxiv (2021):2021.10.04.463055

The following sections contain the parts of this work that include significant contributions from me.
I modified and extended them substantially compared to the manuscript. The theoretical analysis
presented in the following was conceptualized by all authors and originally performed by Paul Züge.
I modified, condensed and partly simplified it to better fit the scope of the chapter. The simulated
learning experiments presented in the following were conceptualized by all authors and performed by
me. I extended them substantially compared to the manuscript.

4.1 Introduction

In the previous chapter, we have presented a scheme for biologically plausible fast learning. It relies on
pretrained connection weights, which store acquired knowledge of similar tasks. For the pretraining,
we primarily used the biologically implausible FORCE learning, but also employed weight perturbation
(WP) [54, 55], a biologically plausible, activity-independent learning rule, in an example task. WP
and in particular the related node perturbation (NP) [56, 57] are widely used models for reinforcement
learning in the brain [54, 56–60, 167]. From a biological perspective, they are favorably because (i)
they make use of the ubiquitous noise in the brain, (ii) they are local learning rules, (iii) they are,
especially in the case of WP, potentially relatively simple to implement, and (iv) they are applicable to
a wide variety of tasks. From a theoretical perspective, they are additionally popular because they
allow for analytical exploration and are optimal in the sense that the perturbation-averaged weight
change is to linear order equal to the exact weight gradient.

Briefly, in WP learning, random perturbations are added to the weights, or other network parameters.
Then, the weights are changed into the (in the opposite) direction of the perturbation if the perturbation

55

https://doi.org/10.1101/2021.10.04.463055

Chapter 4 Perturbation-based learning of temporally extended tasks

leads to increased (decreased) reward compared to the unperturbed network. In NP learning, on the
other hand, random perturbations are added to the summed weighted inputs of each neuron. Then
the weights are updated according to the change in network performance and a perturbation- and
activity-dependent eligibility trace assigned to each weight. Hence, for WP the dimension of the
perturbation space is equal to the number of weights. For NP it is equal to the typically much smaller
number of neurons. The latter only holds for trials without temporal extent, however. To find the
direction of the true gradient, one thus needs to search for it in a much larger space in the case
of WP compared to NP. Therefore, NP is considered to be superior for reinforcement learning in
neural networks [19, 56–62]. Werfel et al. [56] confirmed this argument analytically for single-layer
networks consisting of 𝑀 linear perceptrons (see Section 2.2.2) with 𝑁 random inputs that performed
a student-teacher task. Specifically, the task was to adjust the connection weights such that the network
reproduces the output of a teacher network with given weights for any input. In other words, the task
was to learn the teacher weights. They found that the optimal error convergence rate of WP is worse
than that of gradient descent (GD) by a factor equal to the number of weights (𝑁𝑀) in the network.
On the other hand, for NP the convergence rate is worse than that of GD by a factor equal to the
number of neurons (𝑀). So WP is worse than NP by a factor equal to the number of input nodes (𝑁).

However, this reasoning assumes that tasks are not extended in time and that inputs are high-
dimensional. In biologically relevant settings, the opposite is the case (see Section 2.1.5 and refs. [9,
10, 57, 60, 168, 169]). Further, recent experimental studies show strong spontaneous weight changes,
which could underlie WP [22–24]. Finally, our results from the previous chapter indicate that WP
can be employed for complicated, temporally extended tasks. In this chapter, we thus investigate
systematically how WP and NP perform on temporally extended tasks with variable dimensionality.
Specifically, using Wick’s theorem, we derive analytical expressions for the error dynamics in such
tasks in linear, single-layer perceptrons, the same networks as used by Werfel et al. [56]. We find
that the relative performance of WP and NP shifts in favor of WP. For some task settings, WP
even outperforms NP. To test if these results extend to more complicated tasks and networks, we
then apply WP and NP to a delayed non-match-to-sample task (DNMS), which serves as a simple
nonlinear, working memory-reliant decision making task in both experiments [5, 6] and neural network
modeling [60, 170]. Further, we apply it to MNIST, which is a standard benchmark task in machine
learning [17, 171]. We find that WP also often outperforms NP in these settings. In fact, NP appears
to be more susceptible to deviations of the network architecture from linear, single-layer networks as
used for our theoretical investigation.

This chapter is structured as follows. In Section 4.2, we formally introduce the WP and NP learning
rules. In Section 4.3, we analytically derive the error dynamics in simplified settings. In Section 4.4,
we apply WP and NP to a DNMS task and MNIST. Finally, in Section 4.5, we discuss our results.

4.2 Learning rules

To introduce the learning rules, we consider a layer of 𝑀 rate neurons with no intrinsic time dynamics.
They receive 𝑁 inputs. This layer may be part of a multi-layer perceptron, but could also be part of a
network with a different architecture. We consider the learning of tasks that are temporally extended.
At the end of each trial of the task, the neural networks receive feedback about their performance
in the form of a scalar error (negative reward) feedback 𝐸 [55, 57, 60, 61, 172]. For the upcoming
theoretical analysis, we assume that time is split into discrete steps, indexed by 𝑡 = 1, . . . , 𝑇 , where 𝑇

56

4.2 Learning rules

is the duration of a trial. Thus, the output firing rate of a neuron 𝑖, 𝑖 = 1, . . . , 𝑀 , at the 𝑡-th time bin in
response to inputs 𝑟 𝑗𝑡 , 𝑗 = 1, . . . , 𝑁 , is given by

𝑧𝑖𝑡 = 𝑔(𝑦𝑖𝑡) = 𝑔
©«

𝑁∑︁
𝑗=1

𝑤𝑖 𝑗𝑟 𝑗𝑡
ª®¬ . (4.1)

Here, 𝑤𝑖 𝑗 is the connection weight, 𝑦𝑖𝑡 is the total input current and 𝑔 is the generally nonlinear
activation function. We note that the linear summation of the individual synaptic input currents 𝑤𝑖 𝑗𝑟 𝑗𝑡
is a requirement for the NP scheme [56, 57, 151, 173].

Weight perturbation

In the standard form of WP learning (Fig. 4.1a), each trial of the task is performed once with
unperturbed weights and once with perturbed weights. In the latter case, one adds before the start of
the trial temporally static weight perturbations bWP

𝑖 𝑗
, which are independent and identically distributed

(iid) Gaussian random variables with zero mean and variance 𝜎2
WP, to the weights 𝑤𝑖 𝑗 [55, 172]. The

output of neuron 𝑖 in the perturbed trial then reads

𝑧
pert,WP
𝑖𝑡

= 𝑔
©«

𝑁∑︁
𝑗=1

(𝑤𝑖 𝑗 + bWP
𝑖 𝑗)𝑟pert,WP

𝑗𝑡

ª®¬ . (4.2)

Here, the inputs 𝑟
pert,WP
𝑗𝑡

may be perturbed because of upstream weights that are perturbed. The
difference 𝐸pert − 𝐸 between the errors of the perturbed and unperturbed trial can then be used to
estimate the gradient. If it is negative (positive), the projection of the weight perturbation onto the
reward gradient − 𝜕𝐸

𝜕𝑤𝑖 𝑗
is positive (negative). Thus, one updates the weights in the (opposite) direction

of the perturbation if the error difference is negative (positive). Specifically, after the trial

Δ𝑤WP
𝑖 𝑗 = − [

𝜎2
WP

(𝐸pert − 𝐸)bWP
𝑖 𝑗 , (4.3)

where [is the learning rate, is added to weight 𝑤𝑖 𝑗 for all 𝑖 and 𝑗 . Assuming 𝐸 is differentiable with
respect to the weights, 𝐸pert − 𝐸 ≈ ∑𝑀

𝑚=1
∑𝑁

𝑘=1
𝜕𝐸

𝜕𝑤𝑚𝑘
bWP
𝑚𝑘

to linear order. Inserting this expression into
Eq. (4.3) shows that the WP updates are on average parallel to the reward gradient:

⟨Δ𝑤WP
𝑖 𝑗 ⟩ ≈ −[𝜕𝐸

𝜕𝑤𝑖 𝑗

, (4.4)

where ⟨·⟩ denotes the average over the perturbations. This also holds if one would use a different
baseline in Eq. (4.3) than 𝐸 . Using the error of the unperturbed trial as the baseline has the advantage
that it minimizes the variance of Δ𝑤WP

𝑖 𝑗
(Section 4.A.1). In the brain, 𝐸 is not available, however,

because there is always only one set of weights. For the DNMS task, we thus use an average over the
previous, perturbed errors as the baseline for biological plausibility.

WP can be applied to any system that maps parameters 𝑤 onto a scalar error function 𝐸 . This makes
it very widely applicable, but leaves room for improvement by taking the specifics of the network
structure into account. However, WP does take into account that the parameters are fixed during a

57

Chapter 4 Perturbation-based learning of temporally extended tasks

trial, as the weight perturbations are constant during a trial.

a) WP

r1

r2

rN
T

NP

r1

r2

rN
T

z1

zM

z1

zM

b)

Figure 4.1: Schematic setup of WP and NP for a linear, single-layer network. Specifically, the 𝑀 outputs 𝑧𝑖 are
a weighted sum of the 𝑁 inputs 𝑟 𝑗 .
(a) WP perturbs the weights at the beginning of a trial; the resulting perturbations of the weighted sums of the
inputs and thus the outputs reflect the dimensionality and smoothness of the inputs (blue).
(b) NP perturbs the weighted sum of the inputs with dynamical noise (orange).

Node perturbation

Similar to WP, in the standard form of NP learning (Fig. 4.1b), each trial of the task is performed once
with unperturbed nodes and once with perturbed nodes. In the latter case, one adds node perturbations
bNP
𝑖𝑡

, which are independent and identically distributed (iid) Gaussian random variables with zero
mean and variance 𝜎2

NP, at each time step to the total input current [56, 57]. In contrast to WP, the
perturbations have to be time dependent, because for temporally static perturbations only the temporal
mean of the total input current would be varied. The output of neuron 𝑖 in the perturbed trial then reads

𝑧
pert,NP
𝑖𝑡

= 𝑔
©«

𝑁∑︁
𝑗=1

𝑤𝑖 𝑗𝑟
pert,NP
𝑗𝑡

+ bNP
𝑖𝑡

ª®¬ . (4.5)

As for WP, the inputs 𝑟pert,NP
𝑗𝑡

may be perturbed because of upstream nodes that are perturbed and the
difference 𝐸pert − 𝐸 between the errors of the perturbed and unperturbed trial can be used to estimate
the gradient. To do so, one computes for each weight an eligibility trace

∑𝑇
𝑡=1 b

NP
𝑖𝑡

𝑟 𝑗𝑡 and updates the
weights according to

Δ𝑤NP
𝑖 𝑗 = − [

𝜎2
NP

(𝐸pert − 𝐸)
𝑇∑︁
𝑡=1

bNP
𝑖𝑡 𝑟 𝑗𝑡 . (4.6)

For differentiable 𝐸 , one can approximate the error difference between the perturbed and the
unperturbed trial to linear order with 𝐸pert − 𝐸 ≈ ∑𝑀

𝑖=1
∑𝑇

𝑡=1
𝜕𝐸
𝜕𝑦𝑖𝑡

bNP
𝑖𝑡

. Inserting this expression into
Eq. (4.6) and averaging over the distribution of the perturbations shows that also the NP updates are
on average parallel to the reward gradient:

⟨Δ𝑤NP
𝑖 𝑗 ⟩ ≈ −[𝜕𝐸

𝜕𝑤𝑖 𝑗

. (4.7)

As for WP, this also holds for any error baseline, but using 𝐸 minimizes the update noise (Section 4.A.1).
In contrast to WP, NP utilizes the fact that the inputs sum linearly in the networks we consider. It does

58

4.3 Theoretical analysis

so by effectively incorporating an error backpropagation step, i.e. 𝜕𝐸
𝜕𝑤𝑖 𝑗

=
∑

𝑡
𝜕𝐸
𝜕𝑦𝑖𝑡

𝜕𝑦𝑖𝑡
𝜕𝑤𝑖 𝑗

=
∑

𝑡
𝜕𝐸
𝜕𝑦𝑖𝑡

𝑟 𝑗𝑡 .
Hence, one can perturb only the total input currents instead of individual weights, which led to the
expectation that NP’s learning performance is superior compared to WP’s [19, 57, 60, 61].

4.3 Theoretical analysis

4.3.1 Error dynamics for a single input pattern

For our theoretical analysis, we consider linear, single-layer feed-forward networks consisting of 𝑀
linear perceptrons with 𝑁 inputs. The task is to learn the mapping of a single fixed input pattern 𝑟 of
duration 𝑇 with elements 𝑟 𝑗𝑡 to a target output pattern 𝑧∗ with elements 𝑧∗

𝑖𝑡
generated by a teacher

network. Thus, the input and target is the same for each trial. This can be motivated by three arguments:
First, some biological motor tasks require such a mapping (see Section 4.5). Second, it is the opposite
extreme to the case considered by Werfel et al. [56], who assumed that trials are not extended in time
and that input changes in each trial (see Section 4.1). Third, our findings can be relatively easily
extended to settings where the inputs vary between different trials (Section 4.3.2).

The output of the network is given by Eq. (4.1) with 𝑔 equal to the identity function,

𝑧 = 𝑤𝑟, (4.8)

where 𝑤 is the weight matrix. The target output 𝑧∗ can be generated with target weights 𝑤∗, i.e.
𝑧∗ = 𝑤∗𝑟 and the error is given by the quadratic deviation of each output from its target,

𝐸 = 1
2𝑇 ∥𝑧 − 𝑧∗∥2

2 = 1
2𝑇 tr[(𝑧 − 𝑧∗) (𝑧 − 𝑧∗)𝑇] = 1

2 tr[𝑊𝑆𝑊𝑇] . (4.9)

Here, 𝑊 = 𝑤 − 𝑤∗ is the weight mismatch matrix and 𝑆 = 1
𝑇
𝑟𝑟𝑇 is the input correlation matrix [9].

Note that with this quadratic error function, the average weight updates (see Eqs. (4.4) and (4.7)) are
exactly equal to the gradient for both WP and NP.

To investigate the influence of the dimensionality of the inputs, we assume that they are composed
of 𝑁eff orthogonal latent inputs, i.e. that 𝑆 has 𝑁eff nonzero eigenvalues. In the following we refer to
𝑁eff as the effective input dimension. Note that 𝑁eff is bounded from above by 𝑇 , because there are at
most 𝑇 linearly independent vectors of length 𝑇 . For clarity, we assume that the first 𝑁eff inputs are
the latent inputs while all other inputs are zero (Fig. 4.2). In other words, we hypothetically “rotate”
the inputs. Since the error is invariant under rotations, this has no effect on the learning dynamics.
Therefore, the weight space can be divided into an 𝑀𝑁eff-dimensional subspace of task-relevant and
an 𝑀 (𝑁 − 𝑁eff)-dimensional subspace of task-irrelevant weights. This distinction will prove valuable
for the interpretation of our theoretical results. To simplify the theoretical analysis, we further assume
that the input strength of all nonzero inputs is 𝛼2 = 1

𝑇

∑𝑁
𝑡=1 𝑟

2
𝑗𝑡

, i.e. the 𝑁eff nonzero eigenvalues of 𝑆
are the same.

Derivation of error dynamics

In the following, we derive the evolution of the expected error ⟨𝐸 (𝑛)⟩, where 𝑛 indexes the trial, for
WP, NP and for comparison also GD. To this end, we determine a recurrence relation for the error

59

Chapter 4 Perturbation-based learning of temporally extended tasks

wrel

wirrel

r2

r3

rN

rN-1

r1

z

Figure 4.2: Hypothetical rotation of inputs.
The inputs (left, black) of linear networks can be rotated such that for our tasks the first 𝑁eff inputs are nonzero
and agree with the latent inputs (middle black). The remaining inputs are then zero (middle red) and their
weights irrelevant for the output (right, red).

based on an expansion of 𝐸 (𝑛) in terms of Δ𝑤:

⟨𝐸 (𝑛)⟩ =
〈 1

2 tr[𝑊 (𝑛)𝑆𝑊𝑇 (𝑛)]
〉

=
〈 1

2 tr[(𝑊 (𝑛 − 1) + Δ𝑤(𝑛 − 1)) 𝑆 (𝑊 (𝑛 − 1) + Δ𝑤(𝑛 − 1))𝑇]
〉

= ⟨𝐸 (𝑛 − 1)⟩ +
〈
tr[𝑊 (𝑛 − 1)𝑆Δ𝑤𝑇 (𝑛 − 1)]

〉
+ 1

2
〈
tr[Δ𝑤(𝑛 − 1)𝑆Δ𝑤𝑇 (𝑛 − 1)]

〉
= ⟨𝐸 (𝑛 − 1)⟩ +

〈
tr[𝑊𝑆Δ𝑤𝑇]

〉︸ ︷︷ ︸
≡⟨Δ𝐸 lin

Δ𝑤⟩

+
〈 1

2 tr[Δ𝑤𝑆Δ𝑤𝑇]
〉︸ ︷︷ ︸

≡
〈
Δ𝐸

quad
Δ𝑤

〉 . (4.10)

Here, Δ𝑤(𝑛) is the matrix of weight updates after trial 𝑛. In the last line of the above expression
and in the following, we omit the dependence on the trial number for clarity if it is unambiguous
to do so. To evaluate Δ𝐸 lin

Δ𝑤
and Δ𝐸

quad
Δ𝑤

, in addition to 𝑆 = 1
𝑇
𝑟𝑟𝑇 we will use that 𝑆2 = 𝛼2𝑆 and

tr[𝑆] = 𝛼2𝑁eff = 𝛼2
tot, where 𝛼2

tot is the total input strength. This follows from our assumptions about
the structure of 𝑆.

For WP and NP, we will encounter terms of the form
〈
. . . tr[b𝑋𝑇] . . . tr[b𝑌b𝑇] . . .

〉
, where b is

the matrix of weight or node perturbations and 𝑋 and 𝑌 are matrices with compatible dimensions.
Such terms can be evaluated with the help of Wick’s theorem (also known as Isserlis’ theorem) [174].
It states how the expected value of a product of 𝑘 zero-mean Gaussian random variables can be
computed: If 𝑘 is odd, the expected value is 0. If 𝑘 is even, it is equal to the sum over all possible
ways to partition the random variables into distinct pairs, where each summand (Wick contraction)
is the product of the covariances of the pairs. Thus, the above given terms are 0 if there is an odd
number of bs. Otherwise one needs to combine the bs into pairs. If the two bs of a pair are in different
traces, these traces are merged, e.g.

〈
tr[𝑋𝑇b𝑇]tr[b𝑋]

〉
= 𝜎2tr[𝑋𝑇𝑋]. If they are in the same trace,

one gets a prefactor equal to the number of summands of the trace, e.g.
〈
tr[b𝑌b𝑇]

〉
= 𝜎2𝑀tr[𝑌].

Next, we evaluate Eq. (4.10) by inserting the respective weight updates into Δ𝐸 lin
Δ𝑤

and Δ𝐸
quad
Δ𝑤

. In
doing so, we omit the specifiers GD, WP and NP for clarity.

60

4.3 Theoretical analysis

Gradient descent. For GD, the weight update reads

Δ𝑤 = −[𝜕𝐸
𝜕𝑤

= −[𝑊𝑆. (4.11)

As the update is deterministic, the perturbation-averaging in Eq. (4.10) can be omitted and one gets

Δ𝐸 lin
Δ𝑤 = tr[𝑊𝑆Δ𝑤𝑇]

= −[tr[𝑊𝑆2𝑊𝑇]
= −2[𝛼2𝐸 (𝑛 − 1), (4.12)

Δ𝐸
quad
Δ𝑤

= 1
2 tr[Δ𝑤𝑆Δ𝑤𝑇]

= 1
2[

2tr[𝑊𝑆3𝑊]
= [2𝛼4𝐸 (𝑛 − 1). (4.13)

Inserting these expressions into Eq. (4.10) yields

𝐸 (𝑛) = 𝐸 (𝑛 − 1)𝑎, (4.14)
𝐸 (𝑛) = 𝐸 (0)𝑎𝑛, (4.15)

where 𝑎 is the convergence factor given by

𝑎 = (1 − [𝛼2)2. (4.16)

Weight perturbation. For WP, the error of the perturbed trial is

𝐸pert = 1
2 tr[(𝑊 + b)𝑆(𝑊 + b)𝑇]

= 𝐸 + tr[𝑊𝑆b𝑇] + 1
2 tr[b𝑆b𝑇] . (4.17)

Thus, the weight update reads

Δ𝑤 = − [

𝜎2 (𝐸
pert − 𝐸)b

= − [

𝜎2 (tr[𝑊𝑆b𝑇] + 1
2 tr[b𝑆b𝑇])b. (4.18)

Inserting into Δ𝐸 lin
Δ𝑤

yields〈
Δ𝐸 lin

Δ𝑤

〉
=

〈
tr[𝑊𝑆Δ𝑤𝑇]

〉
= − [

𝜎2

(〈
tr[𝑊𝑆b𝑇]2〉 + 1

2
〈
tr[𝑊𝑆b𝑇]tr[b𝑆b𝑇]

〉)
= − [

𝜎2

〈
tr[𝑊𝑆b𝑇]tr[b𝑆𝑊𝑇]

〉
= −[𝛼2 〈

tr[𝑊𝑆𝑊𝑇]
〉

= −2[𝛼2 ⟨𝐸 (𝑛 − 1)⟩ . (4.19)

61

Chapter 4 Perturbation-based learning of temporally extended tasks

For Δ𝐸quad
Δ𝑤

, we obtain〈
Δ𝐸

quad
Δ𝑤

〉
= 1

2
〈
tr[Δ𝑤𝑆Δ𝑤𝑇]

〉
=

[2

2𝜎4

〈(
tr[𝑊𝑆b𝑇] + 1

2 tr[b𝑆b𝑇]
)2

tr[b𝑆b𝑇]
〉

=
[2

2𝜎4

(〈
tr[𝑊𝑆b𝑇]2tr[b𝑆b𝑇]

〉
+ 1

4
〈
tr[b𝑆b𝑇]3〉)

=
[2

2𝜎4

(
𝜎4 〈

𝑀tr[𝑊𝑆2𝑊𝑇]tr[𝑆] + 2tr[𝑊𝑆3𝑊𝑇]
〉

+1
4𝜎

6
(
𝑀3tr[𝑆]3 + 6𝑀2tr[𝑆2]tr[𝑆] + 8𝑀tr[𝑆3]

))
= [2𝛼4

(
(𝑀𝑁eff + 2) ⟨𝐸 (𝑛 − 1)⟩ + 1

8𝛼
2𝜎2

(
𝑀3𝑁3

eff + 6𝑀2𝑁2
eff + 8𝑀𝑁eff

))
. (4.20)

To get from the third to the fourth line, we evaluate the expectation value over the perturbation in the
present trial. The expectation value over the perturbations of the previous trials remains. Inserting
Eqs. (4.19) and (4.20) into Eq. (4.10) then yields

⟨𝐸 (𝑛)⟩ = ⟨𝐸 (𝑛 − 1)⟩ 𝑎 + 𝑏, (4.21)
⟨𝐸 (𝑛)⟩ =

(
⟨𝐸 (0)⟩ − 𝐸 𝑓

)
𝑎𝑛 + 𝐸 𝑓 , (4.22)

𝐸 𝑓 =
𝑏

1 − 𝑎
, (4.23)

where 𝐸 𝑓 is the final (residual) error. 𝑎 is the convergence factor and 𝑏 the per-update error increase
given by

𝑎 = 1 − 2[𝛼2 + [2𝛼4(𝑀𝑁eff + 2), (4.24)

𝑏 = 1
8[

2𝜎2𝛼6
(
𝑀3𝑁3

eff + 6𝑀2𝑁2
eff + 8𝑀𝑁eff

)
. (4.25)

Node perturbation. As the difference between output and target matrix for the perturbed trial of NP
is 𝑧pert − 𝑧∗ = 𝑊𝑟 + b, one obtains for the error of the perturbed trial

𝐸pert = 1
2𝑇 tr[(𝑊𝑟 + b) (𝑊𝑟 + b)𝑇]

= 𝐸 + 1
𝑇

tr[𝑊𝑟b𝑇] + 1
2𝑇 tr[bb𝑇] . (4.26)

Thus, the weight update reads

Δ𝑤 = − [

𝜎2 (𝐸
pert − 𝐸)b𝑟𝑇

= − [

𝑇𝜎2 (tr[𝑊𝑟b𝑇] + 1
2 tr[bb𝑇])b𝑟𝑇 . (4.27)

62

4.3 Theoretical analysis

Inserting into Δ𝐸 lin
Δ𝑤

yields〈
Δ𝐸 lin

Δ𝑤

〉
=

〈
tr[𝑊𝑆Δ𝑤𝑇]

〉
= − [

𝑇𝜎2

(〈
tr[𝑊𝑆𝑟b𝑇]tr[𝑊𝑟b𝑇]

〉
+ 1

2
〈
tr[𝑊𝑆𝑟b𝑇]tr[bb𝑇]

〉)
= − [

𝑇𝜎2

〈
tr[𝑊𝑆𝑟b𝑇]tr[b𝑟𝑇𝑊𝑇]

〉
= −[𝛼2 〈

tr[𝑊𝑆𝑊𝑇]
〉

= −2[𝛼2 ⟨𝐸 (𝑛 − 1)⟩ . (4.28)

For Δ𝐸quad
Δ𝑤

, we obtain〈
Δ𝐸

quad
Δ𝑤

〉
= 1

2
〈
tr[Δ𝑤𝑆Δ𝑤𝑇]

〉
=

[2

2𝜎4𝑇2

〈(
tr[𝑊𝑟b𝑇] + 1

2 tr[bb𝑇]
)2

tr[b𝑟𝑇𝑆𝑟b𝑇]
〉

=
[2

2𝜎4𝑇2

(〈
tr[𝑊𝑟b𝑇]2tr[b𝑟𝑇𝑆𝑟b𝑇]

〉
+ 1

4
〈
tr[bb𝑇]2tr[b𝑟𝑇𝑆𝑟b𝑇]

〉)
=

[2

2𝜎4

(
𝜎4 〈

𝑀tr[𝑊𝑆𝑊𝑇]tr[𝑆2] + 2tr[𝑊𝑆3𝑊𝑇]
〉
+ 1

4𝜎
6
(
𝑀3𝑇 + 6𝑀2 + 8𝑀

1
𝑇

)
tr[𝑆2]

)
= [2𝛼4

(
(𝑀𝑁eff + 2) ⟨𝐸 (𝑛 − 1)⟩ + 1

8𝜎
2
(
𝑀3𝑁eff𝑇 + 6𝑀2𝑁eff + 8𝑀

𝑁eff

𝑇

))
. (4.29)

Inserting Eqs. (4.28) and (4.29) into Eq. (4.10) yields

⟨𝐸 (𝑛)⟩ = ⟨𝐸 (𝑛 − 1)⟩ 𝑎 + 𝑏, (4.30)
⟨𝐸 (𝑛)⟩ =

(
⟨𝐸 (0)⟩ − 𝐸 𝑓

)
𝑎𝑛 + 𝐸 𝑓 , (4.31)

𝐸 𝑓 =
𝑏

1 − 𝑎
, (4.32)

where 𝐸 𝑓 is the final (residual) error. 𝑎 is the convergence factor and 𝑏 the per-update error increase
given by

𝑎 = 1 − 2[𝛼2 + [2𝛼4(𝑀𝑁eff + 2), (4.33)

𝑏 = 1
8[

2𝜎2𝛼4
(
𝑀3𝑁eff𝑇 + 6𝑀2𝑁2

eff + 8𝑀
𝑁eff

𝑇

)
. (4.34)

Comparison of error dynamics

As we have shown, the error dynamics for GD, WP and NP are given by

⟨𝐸 (𝑛)⟩ =
(
⟨𝐸 (0)⟩ − 𝐸 𝑓

)
𝑎𝑛 + 𝐸 𝑓 . (4.35)

For 0 < 𝑎 < 1, the average error ⟨𝐸 (𝑛)⟩ thus converges exponentially at a rate − ln(𝑎) > 0 towards a
final error of 𝐸 𝑓 =

𝑏
1−𝑎 . The convergence rate can be approximated by − ln(𝑎) ≈ 1 − 𝑎 if 𝑎 is close to

63

Chapter 4 Perturbation-based learning of temporally extended tasks

1, which is typically the case for WP and NP in our settings. To compare the learning rules and for the
remainder of this section, we set [to the optimal learning rate [∗, which is defined to minimize 𝑎.
This definition is chosen because it is conceptually straightforward and turns out to be relevant for the
MNIST task. We further set the perturbation strengths 𝜎2

WP and 𝜎2
NP such that they yield the same

total output variance 𝜎2
eff = 1

𝑀𝑇

〈
∥𝑧pert − 𝑧∥2

2
〉
, which we refer to as effective perturbation strength.

This results in 𝜎2
NP = 𝜎2

eff and 𝜎2
WP = 1

𝛼2𝑁eff
𝜎2

eff.

For GD, the optimal learning rate is [∗GD = 1
𝛼2 , leading to 𝑎∗GD = 0. Hence, the error decays to

𝐸 𝑓 = 0 after the first update. For WP and NP, one finds

[∗WP = [∗NP =
1

(𝑀𝑁eff + 2)𝛼2 , (4.36)

leading to

𝑎∗WP = 𝑎∗NP = 1 − 1
𝑀𝑁eff + 2

. (4.37)

Thus, the learning rate is by a factor of (𝑀𝑁eff + 2) worse than that of GD. This factor, which also
determines the convergence rate of WP and NP, is generally smaller than the number of weights and
larger than the number of nodes. Hence, unlike conjectured by the intuitive argument explained in
Section 4.1, these quantities are insufficient to predict the performance of WP and NP. The scaling
of the learning and the convergence rate can be explained by considering the fluctuations of the
weight updates. They originate from the credit assignment problem of finding the gradient direction.
WP cannot identify this direction and, thus, equally amplifies the perturbations of all 𝑀𝑁 weights
(Eq. (4.18)). Therefore, all weights, including the 𝑀𝑁eff relevant weights, which affect the error,
fluctuate. On the other hand, NP partially solves the credit assignment problem, as the eligibility
traces are zero for connections starting at zero inputs (Eq. (4.27)). It projects the (𝑀) 𝑇-dimensional
node perturbations onto the 𝑁eff-dimensional inputs, thereby restricting the weight updates to the
𝑀𝑁eff-dimensional subspace of relevant weights. Since only these relevant weights influence the
error, the learning and convergence rate is the same for both WP and NP.

Furthermore, the per-update error increase 𝑏 and the final error 𝐸 𝑓 are nonzero for WP and NP. This
is because the error function is nonlinear, which leads to reward noise due to finite size perturbations.
The effects become particularly apparent when the error is close to zero. In this case, any finite
perturbation leads to a positive error difference 𝐸pert − 𝐸 and in turn to a weight update into the
opposite direction of the perturbation. Therefore, the weights do not reach their optimal values and a
nonzero final error 𝐸 𝑓 remains. At the optimal learning rate, the leading order term of the final error is

𝐸WP
𝑓 =

𝑏∗WP
1 − 𝑎∗

≈ 1
8𝜎

2
eff𝑀

2𝑁eff, (4.38)

𝐸NP
𝑓 =

𝑏∗NP
1 − 𝑎∗

≈ 1
8𝜎

2
eff𝑀

2𝑇, (4.39)

i.e. the final error of WP is smaller by a factor 𝑁eff/𝑇 ≤ 1 compared to the final error of NP. Hence, a
longer trial duration harms NP, while a larger effective input dimensionality harms WP. In short, the
different scaling of the final errors is because for WP only 𝑀𝑁eff of the 𝑀𝑁 perturbations bWP

𝑖 𝑗
affect

the perturbed error, while for NP all 𝑀𝑇 perturbations bNP
𝑖𝑡

affect it (see our manuscript [2] for more

64

4.3 Theoretical analysis

details). The additional factor of 𝑀 is a result of the general scaling of the error with 𝑀 (Eq. (4.9)).
Taken together, we find that WP works just as well as or better than NP for the learning of a single

temporally extended input-output mapping. The convergence rate is the same for WP and NP, but the
final error is smaller or equal for WP compared to NP. The results are summarized in Table 4.1. We
also confirm our results numerically for different values of 𝑁eff and 𝑇 in an example setting. We find
that the simulation results agree well with our theoretical predictions (Fig. 4.3).

GD WP NP

[∗ 1
𝛼2

1
(𝑀𝑁eff+2)𝛼2

1
(𝑀𝑁eff+2)𝛼2

𝑎∗ 0 1 − 1
𝑀𝑁eff+2 1 − 1

𝑀𝑁eff+2

𝐸∗
𝑓

0 ≈ 1
8𝜎

2
eff𝑀

2𝑁eff ≈ 1
8𝜎

2
eff𝑀

2𝑇

⟨𝐸 (𝑛)⟩ =
(
⟨𝐸 (0)⟩ − 𝐸 𝑓

)
𝑎𝑛 + 𝐸 𝑓 𝐸 𝑓 =

𝑏
1−𝑎

Table 4.1: Theoretical results for the error dynamics of a network consisting of linear perceptrons that learn a
single temporally extended input-output mapping. GD, WP and NP lead to an exponential decay of the error
with convergence factor 𝑎, per-update increase 𝑏 and final error 𝐸 𝑓 (bottom section). Top section shows results
for optimal learning rates [∗, yielding the fastest convergence, and weight and node perturbations with the same
effective perturbation strength 𝜎eff. The final error 𝐸∗

𝑓
is given in leading order. Other parameters: 𝑀: number

of output neurons, 𝑁eff: effective input dimensionality, 𝑇 : trial length, 𝛼2: input strength.

b) c)

WP
NP

Neff 100 50

WP
NP

T 200 150 100 50
a)

r1

r2

rN
T

z1

zM

Figure 4.3: Learning of a single temporally extended input-output mapping in linear networks.
(a) Schematic of the linear network consisting of 𝑀 output neurons and 𝑁 inputs.
(b) WP (blue) works just as well or, in terms of the final error, better than NP (orange). The error decay time
decreases for WP and NP likewise with decreasing 𝑁eff. In contrast, the residual error only decreases for WP.
Error curves from simulations (10 runs, shaded) agree well with analytical curves for the decay of the expected
error (solid). For WP and 𝑁eff = 50 the decay rate (− ln(𝑎)) and the final error (dashed line) are highlighted.
Parameters: 𝑀 = 10, 𝑁 = 𝑇 = 100, 𝑁eff ∈ {100, 50}, 𝜎eff = 4 × 10−2, 𝛼2 = 𝑁/𝑁eff.
(c) Increased trial duration 𝑇 does not change the progress of WP learning. In contrast, increasing 𝑇 hinders
NP learning by increasing the residual error. If 𝑇 decreases 𝑁eff (gray curves), convergence is faster and to a
lower residual error in both WP (because of the decrease in 𝑁eff) and NP (because of the decrease in 𝑁eff and
𝑇). Again, simulations (10 runs, shaded) agree well with analytical curves. Parameters: 𝑀 = 10, 𝑁 = 100,
𝑇 ∈ {200, 150, 100, 50}, 𝑁eff is set to 100 but cannot be greater than 𝑇 , so that 𝑇 = 50 forces 𝑁eff = 50,
𝜎eff = 4 × 10−2, 𝛼2 = 𝑁/𝑁eff.

65

Chapter 4 Perturbation-based learning of temporally extended tasks

4.3.2 Error dynamics for multiple input patterns

In the previous section, we considered the task of learning the mapping of a single input pattern to a
single output pattern. In general learning tasks, however, inputs and targets may vary from trial to
trial. Put differently, the network has to learn multiple subtasks. To examine how this affects WP
and NP, we extend our theoretical analysis. For this purpose, we consider the same type of network
as before, i.e. a single-layer feed-forward network consisting of 𝑀 linear perceptrons with 𝑁 inputs
and output 𝑧 = 𝑤𝑟, where 𝑤 is the weight matrix. The task is to learn multiple subtasks of the type
described in the previous section. Specifically, for each subtask 𝑝, 𝑝 = 1, . . . , 𝑃, the goal is to learn
the mapping of an input pattern 𝑟𝑝 of duration 𝑇 to a target output pattern 𝑧∗𝑝 = 𝑤∗𝑟𝑝, where 𝑤∗ is the
target weight matrix. For the full task, the learning goal is to reduce the task-averaged quadratic error

𝐸 =
〈
𝐸𝑝

〉
𝑝
=

〈 1
2𝑇 ∥𝑧𝑝 − 𝑧∗𝑝 ∥2

2
〉
𝑝
=

〈 1
2 tr[𝑊𝑆𝑝𝑊

𝑇]
〉
𝑝
= 1

2 tr[𝑊𝑆𝑊𝑇] . (4.40)

Here, ⟨·⟩𝑝 denotes the expectation value over the subtasks, 𝑊 = 𝑤 − 𝑤∗ is again the weight mismatch
matrix, 𝑆𝑝 = 1

𝑇
𝑟𝑝𝑟

𝑇
𝑝 is the input correlation matrix of pattern 𝑝 and 𝑆 =

〈
𝑆𝑝

〉
𝑝

is the task-averaged
correlation matrix.

We again assume that the inputs of each subtask are composed of 𝑁 trial
eff orthogonal and equally

strong latent inputs, i.e. all 𝑆𝑝 have 𝑁 trial
eff nonzero eigenvalues given by 𝛼2. Furthermore, we assume

that the subtasks are pairwise orthogonal, 1
𝑇
𝑟𝑝𝑟

𝑇
𝑞 = 𝑆𝑝𝛿𝑝𝑞 . Thus, the effective input dimension of the

full task is 𝑁 task
eff = 𝑃𝑁 trial

eff and 𝑆 has 𝑁 task
eff nonzero eigenvalues given by 𝛼2/𝑃. As done above, for

clarity we will hypothetically rotate the inputs, such that for each input pattern there is a distinct group
of 𝑁 trial

eff input units that are nonzero and equal to the latent inputs. For the same arguments as given
above, this does not affect WP or NP learning. Therefore, there are 𝑀𝑁 task

eff task-relevant and 𝑀𝑁 trial
eff

trial-relevant weights for each trial or subtask.

The precise order in which the different input patterns are presented only has a marked effect on the
error dynamics if the timescale on which the error changes, − ln(𝑎)−1 ≈ (1 − 𝑎)−1 (see Eq. (4.35)), is
not much larger than 𝑃. If it is much larger, all subtasks are presented numerous times before the error
changes substantially and the ordering of the input patterns is largely irrelevant. It turns out the latter
is the case for WP and NP, but not necessarily for GD.

Finally, we note that the learning of multiple input patterns can also be considered as splitting a
single task into multiple subtasks. For slowly changing errors, the content of the input pattern can be
chosen randomly in each trial without significantly affecting the error dynamics. In other words, the
input pattern presented in each trial may be constructed from a randomly chosen subset of 𝑁 trial

eff out of
the 𝑁 task

eff latent inputs. In this case, 𝑃 is defined as 𝑃 = 𝑁 task
eff /𝑁 trial

eff .

Derivation of error dynamics

In the following, we derive the evolution of the expected error ⟨𝐸 (𝑛)⟩, where 𝑛 indexes the trial, for
WP, NP and GD. Assuming that the subtask presented in trial 𝑛 − 1 is indexed by 𝑞, we split the task

66

4.3 Theoretical analysis

error into two parts:

⟨𝐸 (𝑛)⟩ = 1
𝑃

©«
〈
𝐸𝑞 (𝑛)

〉
+

𝑃∑︁
𝑝=1
𝑝≠𝑞

〈
𝐸𝑝 (𝑛)

〉ª®®®¬ . (4.41)

As before,
〈
𝐸𝑝 (𝑛)

〉
can be expanded in terms of the weight update Δ𝑤 of the previous trial. Omitting

the trial numbers if possible, we obtain〈
𝐸𝑝 (𝑛)

〉
=

〈
𝐸𝑝 (𝑛 − 1)

〉
+

〈
tr[𝑊𝑆𝑝Δ𝑤

𝑇]
〉︸ ︷︷ ︸

≡
〈
Δ𝐸 lin

𝑝,Δ𝑤

〉 +
〈 1

2 tr[Δ𝑤𝑆𝑝Δ𝑤
𝑇]

〉︸ ︷︷ ︸
≡
〈
Δ𝐸

quad
𝑝,Δ𝑤

〉 . (4.42)

If 𝑝 = 𝑞, Δ𝐸 lin
𝑝,Δ𝑤

and Δ𝐸
quad
𝑝,Δ𝑤

are the same as in the single input pattern case with 𝑁eff = 𝑁 trial
eff . To

evaluate Δ𝐸 lin
𝑝,Δ𝑤

and Δ𝐸
quad
𝑝,Δ𝑤

when 𝑝 ≠ 𝑞, we use the same kind of relations as for the derivation in
the single input pattern case.

Gradient descent. Inserting the weight update

Δ𝑤 = −[
𝜕𝐸𝑞

𝜕𝑤
= −[𝑊𝑆𝑞 (4.43)

into Eq. (4.42) yields

𝐸𝑝 (𝑛) =
{
𝐸𝑝 (𝑛 − 1) (1 − [𝛼2)2 if 𝑝 = 𝑞,

𝐸𝑝 (𝑛 − 1) if 𝑝 ≠ 𝑞,
(4.44)

where we used in the last line that 𝑆𝑝𝑆𝑞 = 0 for 𝑝 ≠ 𝑞. Inserting this expression into Eq. (4.41) gives

𝐸 (𝑛) = 𝐸 (𝑛 − 1) − 𝐸𝑞 (𝑛 − 1) 2[𝛼2 − [2𝛼4

𝑃
. (4.45)

If [is close to 1/𝛼2, the timescale of the error dynamics is not much larger than 𝑃 and the precise
ordering of the input patterns matters. Assuming cyclic subtask selection and that the initial error on
all subtasks is relatively similar, 𝐸𝑝 (0) ≈ 𝐸 (0), one finds

𝐸 (𝑛) = 𝐸 (0)
(
1 − 𝑛

𝑃
(2[𝛼2 − [2𝛼4)

)
(4.46)

for 𝑛 ≤ 𝑃. Thus, the error dynamics are linear. If [has a value for which the error changes slowly,
𝐸𝑝 (0) ≈ 𝐸 (0) implies 𝐸𝑝 (𝑛 − 1) ≈ 𝐸 (𝑛 − 1) in Eq. (4.45), which leads to

𝐸 (𝑛) = 𝐸 (0)𝑎𝑛, (4.47)

𝑎 = 1 − 2[𝛼2

𝑃
+ [2𝛼4

𝑃
. (4.48)

67

Chapter 4 Perturbation-based learning of temporally extended tasks

Weight perturbation. For WP, the weight update reads

Δ𝑤 = − [

𝜎2 (𝐸
pert
𝑞 − 𝐸𝑞)b

= − [

𝜎2 (tr[𝑊𝑆𝑞b
𝑇] + 1

2 tr[b𝑆𝑞b𝑇])b. (4.49)

Inserting the weight update into Eq. (4.42) and using our results from the single input pattern case
yields 〈

𝐸𝑞 (𝑛)
〉
=

〈
𝐸𝑞 (𝑛 − 1)

〉
(1 − 2[𝛼2 + [2𝛼4(𝑀𝑁 trial

eff + 2))

+ 1
8[

2𝜎2𝛼6
(
𝑀3𝑁 trial

eff
3 + 6𝑀2𝑁 trial

eff
2 + 8𝑀𝑁 trial

eff

)
.

(4.50)

For 𝑝 ≠ 𝑞, we obtain for Δ𝐸 lin
𝑝,Δ𝑤

and Δ𝐸
quad
𝑝,Δ𝑤

the following equations:〈
Δ𝐸 lin

𝑝,Δ𝑤

〉
=

〈
tr[𝑊𝑆𝑝Δ𝑤

𝑇]
〉
= 0, (4.51)〈

Δ𝐸
quad
𝑝,Δ𝑤

〉
= 1

2
〈
tr[Δ𝑤𝑆𝑝Δ𝑤

𝑇]
〉

= [2𝛼4
(
𝑀𝑁 trial

eff
〈
𝐸𝑞 (𝑛 − 1)

〉
+ 1

8𝛼
2𝜎2

(
𝑀3𝑁 trial

eff
3 + 2𝑀2𝑁 trial

eff
2
))

. (4.52)

Inserting these expressions into Eq. (4.42) yields〈
𝐸𝑝 (𝑛)

〉
=

〈
𝐸𝑝 (𝑛 − 1)

〉
+

〈
𝐸𝑞 (𝑛 − 1)

〉
[2𝛼4𝑀𝑁 trial

eff

+ 1
8[

2𝜎2𝛼6
(
𝑀3𝑁 trial

eff
3 + 2𝑀2𝑁 trial

eff
2
)
.

(4.53)

Finally, inserting Eqs. (4.50) and (4.53) into Eq. (4.41) and assuming that the error on all subtasks is
relatively similar,

〈
𝐸𝑝 (𝑛 − 1)

〉
≈ ⟨𝐸 (𝑛 − 1)⟩, gives

⟨𝐸 (𝑛)⟩ =
(
⟨𝐸 (0)⟩ − 𝐸 𝑓

)
𝑎𝑛 + 𝐸 𝑓 , (4.54)

𝐸 𝑓 =
𝑏

1 − 𝑎
, (4.55)

𝑎 = 1 − 2[𝛼2

𝑃
+
[2𝛼4(𝑃𝑀𝑁 trial

eff + 2)
𝑃

, (4.56)

𝑏 = 1
8[

2𝜎2𝛼6

(
𝑀3𝑁 trial

eff
3 + 2

𝑃 + 2
𝑃

𝑀2𝑁 trial
eff

2 + 8
𝑀𝑁 trial

eff
𝑃

)
. (4.57)

Node perturbation. For NP, the weight update reads

Δ𝑤 = − [

𝜎2 (𝐸
pert
𝑞 − 𝐸𝑞)b𝑟𝑇𝑞

= − [

𝑇𝜎2 (tr[𝑊𝑟𝑞b
𝑇] + 1

2 tr[bb𝑇])b𝑟𝑇𝑞 . (4.58)

68

4.3 Theoretical analysis

Inserting the weight update into Eq. (4.42) and using our results from the single input pattern case
yields 〈

𝐸𝑞 (𝑛)
〉
=

〈
𝐸𝑞 (𝑛 − 1)

〉
(1 − 2[𝛼2 + [2𝛼4(𝑀𝑁 trial

eff + 2))

+ 1
8[

2𝜎2𝛼4

(
𝑀3𝑁 trial

eff 𝑇 + 6𝑀2𝑁 trial
eff

2 + 8𝑀
𝑁 trial

eff
𝑇

)
.

(4.59)

For 𝑝 ≠ 𝑞, we have Δ𝐸 lin
𝑝,Δ𝑤

= 0 and Δ𝐸
quad
𝑝,Δ𝑤

= 0 and therefore〈
𝐸𝑝 (𝑛)

〉
=

〈
𝐸𝑝 (𝑛 − 1)

〉
. (4.60)

Finally, inserting Eqs. (4.59) and (4.60) into Eq. (4.41) and assuming that the error on all subtasks is
relatively similar,

〈
𝐸𝑝 (𝑛 − 1)

〉
≈ ⟨𝐸 (𝑛 − 1)⟩, gives

⟨𝐸 (𝑛)⟩ =
(
⟨𝐸 (0)⟩ − 𝐸 𝑓

)
𝑎𝑛 + 𝐸 𝑓 , (4.61)

𝐸 𝑓 =
𝑏

1 − 𝑎
, (4.62)

𝑎 = 1 − 2[𝛼2

𝑃
+
[2𝛼4(𝑀𝑁 trial

eff + 2)
𝑃

, (4.63)

𝑏 = 1
8𝑃[

2𝜎2𝛼4

(
𝑀3𝑁 trial

eff 𝑇 + 6𝑀2𝑁 trial
eff

2 + 8𝑀
𝑁 trial

eff
𝑇

)
. (4.64)

Comparison

For GD and cyclic subtask selection, the error decays (piecewise) linearly (Eq. (4.46)). The optimal
learning rate is [∗GD = 1

𝛼2 , for which the error decays to zero in exactly 𝑃 trials. This is because
in each trial, the error gradient and therefore also the weight update (Eq. (4.43)) only has nonzero
components for the weights relevant to the current subtask. Hence, one can choose the same learning
rate as for the single input pattern case. The error of the current subtask thus decays to zero while the
errors of all other subtasks are unchanged. The trial-dependent change of the gradient direction is
known as gradient noise in machine learning and also affects WP and NP. Although it underestimates
the performance of GD (at least for cyclic subtask selection), it is instructive to also consider the
exponential approximation of GD’s error dynamics (Eq. (4.47)) with optimal learning rate [∗GD = 1

𝛼2 .
This results in 𝑎∗GD = 1 − 1

𝑃
and a convergence rate of approximately − ln(𝑎) ≈ 1/𝑃 for large 𝑃.

As for the single input pattern case, WP and NP exhibit exponential error dynamics, ⟨𝐸 (𝑛)⟩ =(
⟨𝐸 (0)⟩ − 𝐸 𝑓

)
𝑎𝑛 + 𝐸 𝑓 . To compare the learning rules, we again set [to the optimal learning rate [∗,

which minimizes 𝑎. Further, we set 𝜎WP and 𝜎NP such that they lead to the same effective perturbation
strength 𝜎2

eff = 1
𝑀𝑇

〈
∥𝑧pert

𝑝 − 𝑧𝑝 ∥2
2
〉

in each trial. This results in 𝜎2
NP = 𝜎2

eff and 𝜎2
WP = 1

𝛼2𝑁 trial
eff

𝜎2
eff.

69

Chapter 4 Perturbation-based learning of temporally extended tasks

For WP, one finds

[∗WP =
1

(𝑀𝑁 task
eff + 2)𝛼2

, (4.65)

𝑎∗WP = 1 − 1
𝑃(𝑀𝑁 task

eff + 2)
. (4.66)

Thus, the learning rate and, approximately, the convergence rate is by a factor of (𝑀𝑁 task
eff + 2) worse

than that of GD’s exponential approximation. Again, this can be linked to the fluctuations of the
weight updates. WP updates all weights such that the weights that are irrelevant for the current subtask,
but potentially relevant for other subtasks, change randomly (Eq. (4.49)). Hence, while the error of the
current subtask can improve (Eq. (4.50)), it deteriorates for the other subtasks (Eq. (4.53)). As there
are 𝑀𝑁 task

eff task-relevant weights, the learning and convergence rate worsen by approximately this
factor compared to GD’s exponential approximation. The final error is 𝐸WP

𝑓
=

𝑏∗WP
1−𝑎∗ ≈ 1

8𝜎
2
eff𝑀

2𝑁 trial
eff ,

similar to the single input pattern case.
For NP, one finds

[∗NP =
1

(𝑀𝑁 trial
eff + 2)𝛼2

, (4.67)

𝑎∗NP = 1 − 1
𝑃(𝑀𝑁 trial

eff + 2)
. (4.68)

NP only updates the weights that are relevant for the current subtask (Eq. (4.58)). Thus, the error of
the current subtask can improve (Eq. (4.59)), while the errors of the other subtasks are unchanged
(Eq. (4.60)). As there are 𝑀𝑁 trial

eff trial-relevant weights, the learning and convergence rate worsen
by approximately this factor compared to GD’s exponential approximation. The final error is
𝐸NP

𝑓
=

𝑏∗NP
1−𝑎∗ ≈ 1

8𝜎
2
eff𝑀

2𝑇 , similar to the single input pattern case.
Our results also have important implications for learning of multiple actions such as sequences of

movements [175]. They can be learned by splitting them into subsets, which are called (mini-)batches
in machine learning. In our terminology, each batch corresponds to a subtask, the number of batches
to 𝑃, the dimensionality of the input data to 𝑁 task

eff and the batch size 𝑁batch to 𝑁 trial
eff , assuming for

simplicity that individual data points are pairwise orthogonal and have no time dimension. For
𝑀𝑁 trial

eff ≫ 2, Eqs. (4.66) and (4.68) thus imply that the convergence rate of NP is independent of the
batch size while that of WP is proportional to the batch size and reaches NP’s convergence rate for full
batch learning. The same holds for the optimal learning rates as 𝛼2 scales inversely with the batch size.
As for the single input pattern case, longer trial durations 𝑇 harm NP and larger effective trial input
dimensionalities 𝑁 trial

eff harm WP by linearly increasing 𝐸∗
𝑓
. The results are summarized in Table 4.2.

Again, we confirm our theoretical results with numerical simulations for different values of 𝑃 in an
example setting (Fig. 4.4).

70

4.3 Theoretical analysis

GD GD (exp. approx.) WP NP

[∗ 1
𝛼2

1
𝛼2

1
(𝑀𝑁 task

eff +2)𝛼2
1

(𝑀𝑁 trial
eff +2)𝛼2

𝑎∗ - 1 − 1
𝑃

1 − 1
𝑃 (𝑀𝑁 task

eff +2) 1 − 1
𝑃 (𝑀𝑁 trial

eff +2)

𝐸∗
𝑓

- 0 ≈ 1
8𝜎

2
eff𝑀

2𝑁 trial
eff ≈ 1

8𝜎
2
eff𝑀

2𝑇

𝐸 (𝑛) = 𝐸 (0)
(
1 − 𝑛

𝑃

)
⟨𝐸 (𝑛)⟩ =

(
⟨𝐸 (0)⟩ − 𝐸 𝑓

)
𝑎𝑛 + 𝐸 𝑓 𝐸 𝑓 =

𝑏
1−𝑎

Table 4.2: Theoretical results for the error dynamics of a network consisting of linear perceptrons learning
multiple temporally extended input-output mappings. Assuming cyclic subtask selection, GD leads to a linear
decay of the error (bottom section). WP and NP lead to an exponential decay of the error with convergence
factor 𝑎, per-update increase 𝑏 and final error 𝐸 𝑓 (bottom section). Top section shows results for optimal
learning rates [∗, yielding the fastest convergence, and weight and node perturbations with the same effective
perturbation strength 𝜎eff. The final error 𝐸∗

𝑓
is given in leading order. Other parameters: 𝑀: number of output

neurons, 𝑁 trial
eff : effective input dimensionality in each trial, 𝑁 task

eff : effective input dimensionality of the full task,
𝑇 : trial length, 𝛼2: input strength.

WP
NP

P 8 2 1

Figure 4.4: Learning of multiple temporally extended input-output mappings in linear networks.
Error dynamics scale differently for WP and NP when splitting the input into different patterns for different
trials. The network is the same as the one used in Fig. 4.3 (𝑁 = 100, 𝑀 = 10, 𝜎eff = 4 × 10−2). The task is to
reproduce the output of a teacher network in response to input with a dimensionality of 𝑁 task

eff = 80, which we
split into 𝑃 non-overlapping input patterns each having dimensionality 𝑁 trial

eff = 𝑁 task
eff /𝑃 (hence 𝑃𝑁 trial

eff = 80).

For simplicity, we use input patterns where at each timestep a different input unit has the value
√︃
𝑁/𝑁 task

eff , while
all other input units are zero. This implies 𝑇 = 𝑁 trial

eff . The figure shows error curves for WP (blue) and NP
(orange) from simulations (10 runs, shaded) together with analytical curves for the decay of the expected error
(solid) for different values of 𝑃 (simulation results for NP with 𝑃 = 8 are mostly covered by the analytical curve).
Theoretical curves and simulations agree well.

71

Chapter 4 Perturbation-based learning of temporally extended tasks

4.4 Simulated learning experiments

In the following, we investigate numerically how WP and NP perform in more complicated settings
with nonlinear and partly recurrent networks and compare the results to our analytical predictions.
Specifically, we consider a biologically relevant delayed non-match-to-sample task (DNMS) and
MNIST, which is a standard task in machine learning.

4.4.1 Delayed non-match-to-sample task

To ensure analytical tractability and for simplicity, so far we made a few biologically implausible
assumptions. Specifically, only connection weights to linear units were trained and each trial consisted
of a perturbed and an unperturbed run. In the following we show that our findings generalize to
settings without these assumptions. To this end, we consider the learning of a DNMS task (temporal
XOR) by nonlinear recurrent networks. DNMS tasks and closely related variants are widely used both
in experiment [6] and theory [60, 170], where they serve as simple nonlinear, working memory-reliant
decision making tasks.

Model

We use the same setting as [60], which shows that a new variant of NP is able to solve the DNMS task.
In particular, the setting is not adjusted to WP. The network is initialized as a network of rate neurons
of the type introduced in Section 2.2.2. It consists of 𝑁 = 200 nonlinear rate neurons receiving input
from two external units 𝑢1(𝑡) and 𝑢2(𝑡). One of the network neurons, whose rate we denote with 𝑧(𝑡),
serves as its output (Fig. 4.5a). In each trial, the network receives two input pulses, where each pulse
is a 200 ms long period with either 𝑢1(𝑡) or 𝑢2(𝑡) set to 1, and subsequently has to output 1 for 200 ms
if different inputs were presented and -1 if the same inputs were presented (Fig. 4.5b). There is a
200 ms long delay period after each input pulse.

More specifically, the dynamics of neuron 𝑖, 𝑖 = 4, . . . , 𝑁 , are governed by

𝜏 ¤𝑥𝑖 = −𝑥𝑖 (𝑡) +
𝑁∑︁
𝑗=1

𝑤rec
𝑖 𝑗 𝑟 𝑗 (𝑡) +

2∑︁
𝑞=1

𝑤in
𝑖𝑞𝑢𝑞 (𝑡), (4.69)

with time constant 𝜏 = 30 ms. The constant activations 𝑥1(𝑡) = 𝑥2(𝑡) = 1 and 𝑥3(𝑡) = −1 provide
biases [60]. The rate of each neuron 𝑖, 𝑖 = 1, . . . , 𝑁 , is given by 𝑟𝑖 (𝑡) = tanh(𝑥𝑖 (𝑡)). 𝑧(𝑡) = 𝑟4(𝑡) is the
network output. We use the forward Euler-method with stepsize 𝑑𝑡 = 1 ms to simulate the dynamics
and draw the initial activations from a uniform distribution, 𝑥𝑖 (0) ∼ U(−0.1, 0.1) for 𝑖 = 4, . . . , 𝑁 .
Recurrent weights are drawn from a Gaussian distribution, 𝑤rec

𝑖 𝑗
∼ N(0, 𝑔2/𝑁), with 𝑔 = 1.5. Input

weights are drawn from a uniform distribution, 𝑤in
𝑖𝑞

∼ U(−1, 1).
We train all recurrent weights 𝑤rec

𝑖 𝑗
using the usual update rules (Eqs. (4.3) and (4.6)), but replace

the error of the unperturbed trial by an exponential average of the errors of the previous trials of the
same trial type [58–60]. Hence, each trial now only consists of a perturbed and not additionally an
unperturbed run. The error function is the mean squared difference between the output 𝑧(𝑡) and the
target within the last 200 ms of each trial. For each of the different trial types 𝑘 , 𝑘 = 1, . . . , 4, we use
an exponential average of the previous errors 𝐸pert(𝑛𝑘) for this trial type (𝑛𝑘 indexes the trials of type

72

4.4 Simulated learning experiments

𝑘) as the error baseline:

𝐸𝑘 (𝑛𝑘) = 𝐸𝑘 (𝑛𝑘 − 1) + 1
𝜏𝐸

(𝐸pert(𝑛𝑘) − 𝐸𝑘 (𝑛𝑘 − 1)) , (4.70)

where 𝜏𝐸 = 4. To get the best performing learning parameters, we performed a grid search, which
yielded [WP = 1 × 10−5, 𝜎WP = 4.64 × 10−3, [NP = 1 × 10−5, 𝜎NP = 4.64 × 10−1.

For both WP and NP, the exact perturbations b have to be accessible for the weight update,
which seems biologically plausible for WP (see Section 4.5), but less so for NP (see Section 4.5
and [60]). Therefore we also compare WP and NP to the biologically plausible version of NP
proposed by [60], which avoids this assumption: in the weight update rule, it approximates the
exact node perturbations bNP with a nonlinearly modulated difference between the momentary
input to a neuron and its short term temporal average. For the details of this version of NP, see
ref. [60]. Here we briefly mention the main differences to the vanilla NP version (Eq. (4.6)):
For each network neuron a node perturbation is applied at a simulation time step only with a
probability of 0.3 % and is drawn from a uniform distribution, b ∼ U(−16, 16). The error is
given by the absolute difference between output and target. Weight updates are computed via
Δ𝑤rec

𝑖 𝑗
(𝑛𝑘) = −[𝐸𝑘 (𝑛𝑘 − 1)

(
𝐸pert(𝑛𝑘) − 𝐸𝑘 (𝑛𝑘 − 1)

) ∑𝑇
𝑡=1

[
(𝑥𝑖𝑡 − 𝑥𝑖𝑡) 𝑟 𝑗 ,𝑡−1

]3, and clipped when
they exceed ±3×10−4 (see code accompanying ref. [60]). 𝑡 indexes the simulation time step of each
trial, 𝑇 is the total number of simulation time steps per trial and 𝑥𝑖𝑡 = 𝑥𝑖,𝑡−1 + 1

𝜏𝑥
(𝑥𝑖𝑡 − 𝑥𝑖,𝑡−1) is an

exponential average of past activations. Parameter values are [= 0.1, 𝜏𝑥 = 20
19 .

We implement the model using Python and NumPy [146].

Results

Fig. 4.5c shows the performance of the three update rules in terms of their accuracy over the last
100 trials, where a trial is considered successful if the mean absolute difference between 𝑧 and the
target output is smaller than 1. We find that all update rules learn the task comparably well and
reach perfect accuracy within at most 2000 trials when considering the median of network instances.
Thus, our previous findings that WP can perform as well as or better than NP in simplified settings
extend to the considered biologically plausible setup. That means WP can perform well for nonlinear
neuron models, recurrent connectivity and when the error of the unperturbed network is not available.
Furthermore, the results indicate that approximating the perturbation as in ref. [60] only mildly impacts
the performance of NP for the considered task.

4.4.2 MNIST

Finally, we consider MNIST classification [17]. The MNIST dataset consists of images of handwritten
single-digit numbers. The associated classification problem is to correctly link the images to the
corresponding numbers. It is one of the most widely used benchmarks in machine learning. Here, we
use WP and NP to train neural networks on batches of images. Each time step thereby corresponds to
the presentation of one image and the networks receive error feedback only at the end of a batch. This
allows us to test how well WP and NP work on a more complicated, temporally extended task and in
networks with a multi-layer structure. In addition, it allows us to study how our analytical results for
the learning of multiple input patterns (Table 4.2) extend to real-world tasks.

73

Chapter 4 Perturbation-based learning of temporally extended tasks

u1

u2

z

a) b)

c)

Figure 4.5: WP performs as well as NP on a DNMS task.
(a) Schematic of the recurrent network with inputs 𝑢1 and 𝑢2 and output 𝑧. All network weights are learned, i.e.,
for WP, all network weights (blue) are perturbed and for NP all network nodes (orange) are perturbed.
(b) Inputs and outputs during example trials. Top row: Inputs 𝑢1 (green) and 𝑢2 (purple) for the four different
trial types. Bottom row: Outputs for WP (blue), NP (orange) and the version of NP proposed by ref. [60] (black)
for trials 1000–1003 for the inputs shown above. Gray bars show target outputs.
(c) Accuracy during training. WP (blue) performs similarly well as NP (orange) and the version of NP used by
ref. [60] (black). There is a noticeable transient slowdown at an accuracy of 75 %, which corresponds to the
successful learning of three out of the four different trial types. Solid lines show the median and shaded areas
represent the interquartile range between first and third quartile using 100 network instances.

Model

We use single-, two-, or three-layer, fully-connected feed-forward networks of nonlinear perceptrons
(see also Section 2.2.2). The input layer consists of 784 units encoding the grayscale pixel values
of the data. The hidden layers consist of 100 neurons with tanh activation function and biases. The
output layer consists of 10 neurons, one for each single-digit number, with softmax activation function
and biases. Specifically, the rates and input currents are given by

𝑟 (0) = 𝑢, (4.71)

𝑦 (𝑙) = 𝑤 (𝑙)𝑟 (𝑙−1) + 𝑏 (𝑙) , (4.72)

𝑟 (𝑙) =

tanh(𝑦 (𝑙)) if 𝑙 ≠ 𝐿,

exp(𝑦 (𝑙))∑𝑁 (𝑙)
𝑖=1 exp(𝑦 (𝑙)

𝑖
)

if 𝑙 = 𝐿.
(4.73)

Here, 𝑢 is the input vector, 𝑤 (𝑙) is the weight matrix, 𝑏 (𝑙) the vector of biases, 𝑦 (𝑙) the input current
vector and 𝑟 (𝑙) the rate or activation vector of layer 𝑙, 𝑙 = 1, . . . , 𝐿, where 𝐿 = 1, 2 or 3. 𝑁 (𝑙) is the
number of neurons in layer 𝑙. The output of the network is the activation of the last layer, 𝑧 = 𝑟 (𝐿) . Its
𝑖th element can be considered to encode the probability that the image label is 𝑖 − 1. We initialize the
weights and biases using standard LeCun initialization, i.e. weights and biases of layer 𝑙 are drawn
from a uniform distribution U(−

√︁
1/𝑁 (𝑙) ,

√︁
1/𝑁 (𝑙)).

74

4.4 Simulated learning experiments

We employ vanilla WP (Eq. (4.3)), NP (Eq. (4.6)) or stochastic GD (SGD) to train all parameters
of the networks. 𝑇 is equal to the batch size 𝑁batch ∈ {1, 10, 100, 1000}. Hence, the perturbation is
different for each image in a batch in the case of NP, while it is the same for WP. Updating the biases
with WP is straightforward, while for NP we have to assume a presynaptic activity of 1 in Eq. (4.6).
Unless noted otherwise, the error function for a single input image is the cross-entropy loss

𝐸 = −
10∑︁
𝑖=1

𝑝(𝑧 = 𝑖 − 1|𝑢) log(𝑧𝑖), (4.74)

where 𝑝(𝑧 = 𝑖 − 1|𝑢) = 𝛿𝑖−1, �̃� (𝑢) is a one-hot encoding of the target label 𝑧(𝑢). The error for an input
batch is the cross-entropy loss averaged over the batch. We also tried to combine the gradient estimates
obtained from WP and NP with Momentum, RMSProp or Adam [17], but did not find an improvement
of performance compared to the vanilla versions with carefully tuned parameters. The same holds for
SGD. This may be because of the rather simple network architecture.

We use the standard training and test data set, but split the standard training data set into a training
data set of 50 000 images and a validation data set of 10 000 images. No preprocessing is done on
the data. To obtain the best-performing parameters (the learning rate [for all three algorithms and
the perturbation strengths 𝜎2

WP and 𝜎2
NP for WP and NP), we perform a grid search for each of the

considered batch sizes and network structures: For each parameter set we train the network for 50 000
trials (i.e.: weight updates) on the training data set. We then select the best-performing parameter sets
based on the final accuracy on the validation data set and apply them to the test data set. We find that
high final accuracy appears to concur with fast convergence speed (Fig. 4.6), such that a comparison
to our analytical results (where learning rate optimizes the convergence speed) seems justified. In
addition, the perturbation strength has little impact on performance, indicating that the final error is
not restricted by reward noise due to finite size perturbations (Table 4.2).

We implement the model using Python and PyTorch [176].

Results

Fig. 4.7 shows the performance of WP, NP and SGD on the test data set for the different considered
network architectures and batch sizes (see Section 4.A.2 for numerical values of network performance
after learning and direct comparisons of the learning performance for fixed 𝐿 or 𝑁batch). For WP the
performance improves drastically with increasing batch size. The final test accuracy is only about
65 %–70 % (depending on 𝐿) for 𝑁batch = 1 but reaches 91 %–93 % for 𝑁batch = 1000. Simultaneously
the optimal learning rate increases strongly, by a factor of roughly 100 (Fig. 4.6 and Tables 4.3
to 4.5). For comparison: the biologically implausible stochastic gradient descent (SGD) rule reaches
accuracies of 91 %–98 % for the considered batch sizes. In contrast, the learning curves of NP appear
to be entirely independent of the batch size; for, e.g., two-layer networks, the final test accuracy is
always about 86 % and the optimal learning rate is roughly constant as well (Fig. 4.6 and Table 4.4).
Hence, WP often outperforms NP, especially for large batch sizes.

The improvement of WP with batch size and NP’s independence of it are in agreement with our
theoretical analysis (Table 4.2). However, from this analysis we also expected that WP’s learning
rate can reach at most that of NP for large batch size. NP’s slower convergence suggests that it is
more susceptible to deviations of the network architecture from linear, single-layer networks. Indeed,
increasing the number of network layers has a comparably small effect on the performance of WP,

75

Chapter 4 Perturbation-based learning of temporally extended tasks

while NP’s performance decreases considerably (final test accuracy decreases from 89 % to 78 %
when increasing 𝐿 from 1 to 3, Fig. 4.10).

For single-layer networks there still remains a noticeable performance difference between WP and
NP (91 % vs. 89 % final test accuracy for 𝑁batch = 1000). This remaining discrepancy from our theory
might be a result of the unrealizable part of the output targets. The targets are most likely not fully
realizable because it is impossible for the networks to exactly output the one-hot encoded target and
because the MNIST dataset contains images that are very hard to classify, even for humans, due to poor
handwriting. Unrealizable targets are harmful for NP, as it perturbs the nodes with white noise, leading
to a perturbed network output 𝑧pert that might be impossible to reproduce by the unperturbed network
given the input. This unrealizable part of the perturbed output can, however, make the unrealizable
part of the targets seem realizable. The resulting change of 𝐸pert is non-instructive and represents
reward noise to the updates. Consequently, the final error of NP is expected to increase. WP does
not suffer from unrealizable targets as its perturbations always lead to network outputs that are also
realizable by the unperturbed network. Our manuscript includes a theoretical analysis of this effect for
linear, single-layer perceptrons [2].

To check if unrealizable output targets are a possible explanation for the remaining performance
difference between WP and NP, we modify the learning task to make the targets realizable. In a first
step, we change the original target labels to target labels determined by the maximal output of a teacher
network that was trained on MNIST using SGD (Fig. 4.8). This should negate the unrealizable target
outputs stemming from poor handwriting. As WP still outperforms NP, we additionally change the
cross-entropy loss with one-hot encoded targets to a mean-squared error loss with targets given by the
raw output of the same teacher network. We find that this recovers the prediction of our analysis: NP
performs better than WP even for large batch sizes (Fig. 4.8).

Thus, our results show that WP can work better than NP on realistic tasks and for multi-layer
networks. This is particularly remarkable when naively comparing the number of perturbed nodes
and weights: For, e.g. the two-layer network, there are only 110 output and hidden nodes, but 79 510
weights (including biases). Nevertheless, WP can clearly outperform NP. Also a comparison of the
actual perturbation dimensions cannot explain the better performance of WP for, e.g., 𝑁batch = 100
(WP pert. dim.: 79 510, NP pert. dim.: 110 × 𝑇 = 11 000).

76

4.4 Simulated learning experiments

a) Single-layer network

Two-layer network

Three-layer network

b)

c)

WP NP

WP NP

WP NP

Figure 4.6: Grid search results for WP and NP.
(a) Validation classification error (one minus validation accuracy) for different learning parameters for WP
(left) and NP (right) for single-layer networks (𝐿 = 1). Both WP and NP perform similarly well for a wide
range of perturbation strengths 𝜎 indicating that the final error is not restricted by reward noise due to finite size
perturbations (Table 4.2). Increasing the batch size makes it possible to increase the learning rate in the case of
WP but not NP. Errors are averaged over 5 network instances.
(b, c) Same as (a) but for two-layer (b, 𝐿 = 2) and three-layer (c, 𝐿 = 3) networks.

77

Chapter 4 Perturbation-based learning of temporally extended tasks

a)

Input

Output 910

Input

Hidden

Output 910

Input

Hidden

Output 910

Hidden

b)

c)

Figure 4.7: WP can outperform NP on MNIST.
(a) Results for single-layer networks (𝐿 = 1). Left: Network schematic. All network weights are learned, i.e., for
WP all network weights (blue) are perturbed and for NP all network nodes (orange) are perturbed. Right: Test
accuracy as a function of the number of weight updates for WP (blue), NP (orange) and SGD (black) for different
batch sizes. NP does not profit from increasing the batch size and always reaches a final accuracy of ∼89 %.
WP improves considerably with increasing batch sizes and reaches a final accuracy of ∼91 % for 𝑁batch = 1000.
Solid lines show the mean and shaded areas show the standard deviation using 5 network instances.
(b) Same as (a) but for two-layer networks (𝐿 = 2). NP’s final accuracy decreases compared to single-layer
networks, reaching ∼86 % independent of batch size. WP’s final accuracy stays relatively constant, reaching
∼92 % for 𝑁batch = 1000.
(c) Same as (a) but for three-layer networks (𝐿 = 3). NP’s final accuracy further decreases to ∼78 % independent
of batch size. WP again reaches a final accuracy of ∼92 % for 𝑁batch = 1000.

78

4.4 Simulated learning experiments

a)

b)

Figure 4.8: Learning performance and grid search results for four variations of the MNIST task. Specifically,
for a two-layer network trained on MNIST using cross-entropy loss (2 layers, MNIST, CE loss), a single-layer
network trained the same way (1 layer, MNIST, CE loss), a single-layer network with the MNIST images as
input but with target labels determined by the maximal output of a teacher network (1 layer, TN, CE loss) and a
single-layer network with the MNIST images as input using mean-squared error loss with targets given by the
raw output of the same teacher network (1 layer, TN, MSE loss). 𝑁batch = 1000.
a) Test accuracy (upper row) and loss (lower row) for WP (blue), NP (orange) and SGD (black) for the best
performing learning parameters. Removing the hidden layer worsens the performance of WP and SGD but
improves it for NP (compare first to second column). Using a teacher network to create the target labels does
not change the relative performance of WP and NP, indicating that potentially unrealizable target labels do not
significantly harm NP (compare third to second column). Further removing all nonlinearities from the networks
leads to better performance of NP compared to WP (compare fourth to third column). Lines show the mean and
shaded areas the standard deviation using 5 network instances.
b) Grid search results for WP and NP as given by the mean classification error for 5 instances on a validation
data set not used for training. The error is clipped at 0.3 for better visualization.

79

Chapter 4 Perturbation-based learning of temporally extended tasks

4.5 Discussion

Our results show that WP performs better than NP for tasks where long trials capture most of the
task’s content. This might seem paradoxical as NP incorporates more structural knowledge on the
network, namely the linear summation of inputs. However, WP accounts for the fact that the weights
in a neural network are (approximately) static. Further, by perturbing the weights it implicitly accounts
for low input dimensionality and generates only realizable output changes. Therefore it generates
better tentative perturbations. This leads to less noise in the reward signal and better performance
(smaller final error and sometimes faster convergence) in the tasks where WP is superior to NP.

Our theoretical analysis shows that the relative performance of WP and NP highly depends on
the effective input dimensionality and duration of the task, i.e. 𝑁eff and 𝑇 . In biology, task-related
neural dynamics appear to be confined to a low-dimensional space (see Section 2.1.5), indicating low
effective input dimensionality 𝑁eff. For example, the dynamics for simple movements as investigated
in typical experiments are embedded in spaces of dimension of order 10 [102]. Furthermore, neurons
under in vivo conditions can faithfully follow input fluctuations on a timescale of 10 ms [177] and
significant changes in neuronal trajectories happen on a timescale of 100 ms [102, 103, 178]. For the
learning of a movement of duration 1 s, this suggests a number of time bins 𝑇 of about 10 to 100.
Thus, 𝑁eff and 𝑇 are roughly on the same order suggesting both WP and NP as promising candidates
for the learning of simple movements. If the movements are longer lasting, our results indicate that
WP will be superior.

As another concrete example, consider the learning of the single song in certain birds. A single,
stereotypical input sequence in a “conductor area” (HVC) may drive the circuit [179, 180]. The
effective input dimension 𝑁eff is thus at most as large as the temporal dimension 𝑇 of the task. Based
on recent experiments, ref. [180] proposed that the output of the tutor/experimenter area (LMAN) is
modified by reinforcement learning via NP, such that it guides the motor area (RA) to learn the right
dynamics. Our analytical results predict that WP is as well or better suited to achieve this task since
𝑁eff ≤ 𝑇 . Earlier work suggested that WP [172] or NP [61] may directly mediate the learning of the
connections from HVC to RA. Reward-based learning of mappings between conductor sequences
and downstream neural networks may also be important for different kinds of precisely timed motor
activity [181, 182] and for sequential memory [183, 184].

For WP and NP to be potential mechanisms for learning in the brain, they need to have possible
biologically plausible implementations. In the case of NP, this necessitates that synapses can keep
track of their input, which seems unproblematic, and of perturbations at the soma of the postsynaptic
neuron, where the spatial input integration happens. Previous work proposed that the latter may
happen by subtracting a short term temporal average of the past from the present overall input [58, 59].
Assuming the perturbations fluctuate more quickly than the other input, this difference approximates
the perturbations and can be used to replace them in the eligibility trace. In the case of WP, the
biological implementation may be even simpler. It requires random weight changes that can be tracked,
that are approximately constant during a task trial and that can be enhanced, deleted or reversed
by a subsequent reward signal. Spontaneous synaptic plasticity, which is observed in experiments
on timescales ranging from minutes to days (see Section 2.1.3, e.g. ref. [24]), could produce the
weight perturbations. As suggested by previous work [83], synaptic unreliability may also provide
such perturbations. If neurons only spike during a short part of the trial, corresponding to a single
time bin in our analysis, a failure of synaptic transmission translates to a weight perturbation that
is constant during a trial. Further, fluctuations of activity-dependent plasticity may provide weight

80

4.5 Discussion

perturbations, while the deterministic baseline acts as a useful prior. In addition, experiments have
shown the existence of reward-modulated weight changes [154, 185] and of modulations of past weight
changes [154, 186].

Previous work proposed WP [54–56, 83, 151, 167, 172, 187] in many variants, which differ in, for
example, the temporal extension of the task, the perturbation scheme, where all weights or only one
weight are perturbed in a trial, or the form of the weight update. A similar diversity of variants exists
for NP [56, 58–60, 62, 173, 188]. In this chapter, we use variants of WP that are similar to the ones
studied in refs. [55, 56] and variants of NP similar to the ones studied in refs. [56, 57]. Specifically,
all weights are perturbed, the reward of the perturbed network is compared with the reward of an
unperturbed network or an estimate of it, and the weight update is proportional to the measured
success in order to ensure that it occurs on average parallel to the reward gradient. Refs. [55, 57]
considered temporally extended tasks. Ref. [56] considered tasks without temporal extension and
derived analytical expressions for the error dynamics. In this chapter, we derive analytical expressions
for the error dynamics in temporally extended tasks and take the dimensionality of the input into
account. Our results show that the long-standing belief that NP is to be preferred over WP is often
wrong. Importantly, our numerical experiments show that this also holds for standard networks and
tasks used in biology and machine learning.

NP is studied in various concrete neurobiological settings. Previous work used feedforward networks
with NP to model the learning of coordinate transforms in the visual system [189], birdsong [61,
180] and motor output [58, 190]. Ref. [59] shows that reservoir computers with NP trained, fed back
readouts can learn periodic inputs, routing and working memory tasks. Ref. [60] uses a fully plastic
recurrent network for the learning of a delayed non-match-to-sample, a selective integration and a
motor control task. Finally, NP is employed for reference and comparison [113, 191–196]. WP is
considered less in studies of neurobiological learning. It is implemented in early feedforward network
models for birdsong [197] and binary output task learning [83, 187]. Further, it is occasionally used
for comparison [192, 194]. The results of this chapter suggest that for many neurobiological tasks WP
is at least as suitable as NP, while the neurobiological implementation may be even simpler. They
further suggest that WP might often be the better choice for reference and comparison.

81

Chapter 4 Perturbation-based learning of temporally extended tasks

4.A Appendix

4.A.1 Dependence of weight update variance on error baseline

Using the error 𝐸 of the unperturbed trial as baseline in the weight updates (Eqs. (4.3) and (4.6))
minimizes the variance ⟨⟨Δ𝑤WP

𝑖 𝑗
⟩⟩ of the weight update. To show this for WP, we compute the variance

using 𝐸 plus a potentially trial- and connection-dependent term �̃�𝑖 𝑗 as the error baseline. In linear
approximation, one then has

⟨⟨Δ𝑤WP
𝑖 𝑗 ⟩⟩ ≈ [2

𝜎4
WP

〈[(
𝑀∑︁
𝑚=1

𝑁∑︁
𝑙=1

𝜕𝐸

𝜕𝑤𝑚𝑙

bWP
𝑚𝑙 − �̃�𝑖 𝑗

)
bWP
𝑖 𝑗

]2〉
− [2

(
𝜕𝐸

𝜕𝑤𝑖 𝑗

)2

= [2
𝑀∑︁
𝑚=1

𝑁∑︁
𝑙=1

(
𝜕𝐸

𝜕𝑤𝑚𝑙

)2
+ [2

(
𝜕𝐸

𝜕𝑤𝑖 𝑗

)2
+ [2

𝜎2
WP

�̃�2
𝑖 𝑗 . (4.75)

Thus, the variance is minimal if �̃�𝑖 𝑗 = 0 for all 𝑖 and 𝑗 .
In the case of NP, we add a potentially trial- and neuron-dependent term �̃�𝑖 to the usual error

baseline 𝐸 . In linear approximation, one then has

⟨⟨Δ𝑤NP
𝑖 𝑗 ⟩⟩ ≈

[2

𝜎4
NP

〈[(
𝑀∑︁
𝑚=1

𝑇∑︁
𝑠=1

𝜕𝐸

𝜕𝑦𝑚𝑠

bNP
𝑚𝑠 − �̃�𝑖

)
𝑇∑︁
𝑡=1

bNP
𝑖𝑡 𝑟 𝑗𝑡

]2〉
− [2

(
𝜕𝐸

𝜕𝑤𝑖 𝑗

)2

= [2
𝑀∑︁
𝑚=1

𝑇∑︁
𝑠=1

(
𝜕𝐸

𝜕𝑦𝑚𝑠

)2 𝑇∑︁
𝑡=1

𝑟2
𝑗𝑡 + [2

(
𝜕𝐸

𝜕𝑤𝑖 𝑗

)2
+ [2

𝜎2
NP

�̃�2
𝑖

∑︁
𝑡

𝑟2
𝑗𝑡 . (4.76)

Again, the variance is minimal if �̃�𝑖 = 0 for all 𝑖.

82

4.A Appendix

4.A.2 Numerical results for MNIST

Algorithm 𝑁batch [Test loss Test accuracy

WP 1 1.00×10−4 0.988(32) 0.696(14)
10 2.15×10−4 0.630(7) 0.840(5)

100 1.47×10−3 0.401(5) 0.884(2)
1000 4.64×10−3 0.331(6) 0.907(3)

NP 1 1.47×10−3 0.407(2) 0.885(3)
10 2.15×10−3 0.396(11) 0.886(4)

100 2.15×10−3 0.399(13) 0.887(5)
1000 2.15×10−3 0.395(9) 0.887(6)

SGD 1 5.62×10−3 0.320(3) 0.910(2)
10 3.16×10−2 0.289(8) 0.920(3)

100 1.00×10−1 0.274(7) 0.923(3)
1000 1.00×10−1 0.281(8) 0.923(3)

Table 4.3: Performance of single-layer networks (𝐿 = 1) for SGD, WP and NP on a held-out test set, after
training, for the MNIST task. Third column shows the best learning rate obtained from the grid search. Values
in the last two columns are the mean loss and the accuracy after 50 000 weight updates, averaged over five
instances (standard deviation in brackets).

83

Chapter 4 Perturbation-based learning of temporally extended tasks

Algorithm 𝑁batch [Test loss Test accuracy

WP 1 6.80×10−5 1.158(55) 0.690(20)
10 2.15×10−4 0.613(15) 0.839(9)

100 6.81×10−4 0.390(8) 0.890(3)
1000 3.16×10−3 0.270(7) 0.923(2)

NP 1 6.81×10−4 0.515(26) 0.856(7)
10 4.64×10−4 0.541(19) 0.860(11)

100 6.81×10−4 0.510(36) 0.860(14)
1000 4.64×10−4 0.545(25) 0.859(5)

SGD 1 1.00×10−2 0.165(7) 0.952(3)
10 5.62×10−2 0.083(6) 0.976(1)

100 5.62×10−1 0.098(7) 0.977(1)
1000 5.62×10−2 0.079(8) 0.977(2)

Table 4.4: Performance of two-layer networks (𝐿 = 2) for SGD, WP and NP on a held-out test set, after training,
for the MNIST task. Third column shows the best learning rate obtained from the grid search. Values in the
last two columns are the mean loss and the accuracy after 50 000 weight updates, averaged over five instances
(standard deviation in brackets).

Algorithm 𝑁batch [Test loss Test accuracy

WP 1 6.80×10−5 1.383(47) 0.646(20)
10 2.15×10−4 0.640(21) 0.829(3)

100 6.81×10−4 0.389(9) 0.887(3)
1000 2.15×10−3 0.258(12) 0.925(4)

NP 1 3.16×10−4 0.775(40) 0.784(19)
10 3.16×10−4 0.795(54) 0.786(18)

100 3.16×10−4 0.802(40) 0.791(35)
1000 2.15×10−4 0.844(34) 0.778(9)

SGD 1 1.00×10−2 0.162(16) 0.951(4)
10 5.62×10−2 0.092(14) 0.975(3)

100 1.78×10−1 0.107(11) 0.978(2)
1000 5.62×10−2 0.095(4) 0.977(1)

Table 4.5: Performance of three-layer networks (𝐿 = 3) for SGD, WP and NP on a held-out test set, after
training, for the MNIST task. Third column shows the best learning rate obtained from the grid search. Values
in the last two columns are the mean loss and the accuracy after 50 000 weight updates, averaged over five
instances (standard deviation in brackets).

84

4.A Appendix

a) b)

Figure 4.9: WP’s performance on MNIST increases with batch size, while NP’s does not.
(a) Test classification error (one minus test accuracy) as a function of the number of weight updates for WP
(blue), NP (orange) and SGD (black) for different batch sizes 𝑁batch. Top: single-layer network, middle:
two-layer network, bottom: three-layer network. Solid lines show the mean and shaded areas show the standard
deviation using 5 network instances.
(b) Same as (a) but for the test loss.

85

Chapter 4 Perturbation-based learning of temporally extended tasks

a) b)

Figure 4.10: NP’s performance on MNIST is harmed by increasing the number of network layers, while WP’s
performance is relatively constant.
(a) Test classification error (one minus test accuracy) as a function of the number of weight updates for WP
(blue), NP (orange) and SGD (black) for different numbers of network layers 𝐿. Rows show results for different
batch sizes (𝑁batch = 1, 10, 100, 100 from top to bottom). Solid lines show the mean and shaded areas show the
standard deviation using 5 network instances.
(b) Same as (a) but for the test loss.

86

CHAPTER 5

Drifting assemblies for persistent memory

Parts of this chapter are included in the following published article:

[3] Y. F. Kalle Kossio, S. Goedeke*, C. Klos* and R.-M. Memmesheimer
(* equal contribution)
Drifting assemblies for persistent memory: Neuron transitions and unsupervised compensation
PNAS 118 (2021) e2023832118

The following sections contain the parts of this article that include significant contributions from me.
I modified them substantially compared to the article. My contributions were the development and
simulation of the LIF networks where noisy autonomous activity drives the drift, based on the LIF
network where spontaneous synaptic turnover drives the drift (see article). Further, I performed most
of the analysis, which was conceptualized by all authors, of the simulation results for these networks.
The random walk model based on statistics of weight changes was also conceptualized by all authors; I
contributed large parts of the derivation and semi-analytical computation of the stationary probability
densities and performed the Markov simulations.

5.1 Introduction

In the previous chapters, we considered weight changes that directly allow to learn a task (Chapter 4) or
have the goal of pretraining a network to allow it to dynamically learn a task (Chapter 3). For this, we
partly used WP learning, which leads to a diffusion of weights that are irrelevant for the current task.
However, these seemingly irrelevant weights may be relevant for other tasks or memories. Similarly,
many of the other plasticity mechanisms, such as the basic variants of STDP, continuously affect
synapses. Furthermore, experimental studies have shown that neural representations of memories
change spontaneously [63–65]. These observations raise the question of how memories can persist
despite ongoing representational as well as weight and connectivity changes. Previous work suggested
that memories can be maintained because the changes are rather weak, because they only happen in a
subspace of the full weight space that does not affect behavior or because they can be compensated
with the help of external supervision [64, 65, 90, 198, 199].

In this chapter, we propose a novel memory model that explains the representational drift based on

87

https://doi.org/10.1073/pnas.2023832118

Chapter 5 Drifting assemblies for persistent memory

weight and connectivity changes and preserves memories. It does not assume that the changes are
weak, that they only happen in the irrelevant part of the weight space or that an external supervisory
signal is available. Specifically, we consider the standard memory model based on assemblies (see
Section 2.1.5). So far, these assemblies have been assumed to consist of the same neurons for
faithful memory storage [67]. In our model, neurons constantly transition between assemblies, i.e.
the assemblies drift (Fig. 5.1). The transitions are induced by noisy autonomous (without receiving
external stimulation or feedback) network activity. In our article, we also show that the transitions can
be induced by spontaneous (activity-independent) synaptic changes [3]. As this happens only gradually,
in- and output neurons can learn about the changed assembly compositions in an unsupervised fashion,
thus keeping memories intact. We refer to the neurons that make up the assemblies as interior neurons
and to the in- and output neurons as periphery neurons. To illustrate our scheme, we simulate a
recurrent network of LIF neurons consisting of a few assemblies. We carefully track the weight
dynamics to show the assembly drift. Based on the statistics of weight changes, we also construct a
simplified random walk model of the neuron transitions. This allows us to understand the transitions
in greater detail.

This chapter is structured as follows. In Section 5.2, we introduce our network model. In Section 5.3,
we present our simulation results, analyze them and construct the effective model for the neuron
transitions. Finally, in Section 5.4, we discuss our results.

t

Figure 5.1: Schematics of drifting assemblies.
Snapshots of a network at three different points in time. (Left) The assembly consists of an ensemble of
strongly-connected neurons (blue), which form the neural representation of a memory. Input (green) and output
(orange) neurons are connected to it. For example, the memory may be that of a soccer ball. Seeing it activates
the input neurons, which triggers the assembly. In turn, the assembly activates the output neurons, which initiate
the kicking of the ball. (Middle) With time, the ensemble of neurons that constitute the assembly changes.
Since this happens only gradually, the periphery neurons can learn about the changed assembly compositions.
(Right) After a long enough time, the assembly consists of a completely different ensemble of neurons, which is
only indirectly related to the neural ensemble from the beginning via the ensembles forming the assembly at the
time in between.

5.2 Model

5.2.1 Networks

We consider networks of LIF neurons that consist of excitatory and inhibitory neurons. The excitation
and inhibition approximately balance each other (see Section 2.2.2). The networks consist of on the

88

5.2 Model

order of a hundred neurons and store between two and four assemblies in the plastic connections
between excitatory neurons. The remaining connections are homogeneous and static.

The networks consist of 𝑁𝐸 excitatory and 𝑁𝐼 inhibitory neurons. 𝑁int of the excitatory neurons
are interior neurons. For most of our simulations, we initially group the interior neurons into 𝑛asbly
assemblies consisting of 𝑁asbly(0) neurons each. Further, we assign either no or 𝑁peri = 4 periphery
neurons to each assembly. If an assembly has periphery neurons, two of them are designated input,
and the other two are designated output neurons. All neurons are current-based LIF neurons (see
Section 2.2.1). The membrane potential 𝑉𝑖 (𝑡) of neuron 𝑖 obeys

𝜏𝑚
𝑑𝑉𝑖 (𝑡)
𝑑𝑡

= 𝑉rest −𝑉𝑖 (𝑡) + 𝑅𝐼𝐸𝑖 (𝑡) + 𝑅𝐼 𝐼𝑖 (𝑡) +
√︁

2𝜏𝑚𝜎b𝑖 (𝑡), (5.1)

𝑅𝐼𝐸𝑖 (𝑡) =
∑︁
𝑗∈𝑀𝐸

𝑤𝑖 𝑗

∑︁
𝑡 𝑗 ≤𝑡

𝑒
−

𝑡−𝑡 𝑗
𝜏𝐸 , 𝑅𝐼 𝐼𝑖 (𝑡) =

∑︁
𝑗∈𝑀𝐼

𝑤𝑖 𝑗

∑︁
𝑡 𝑗 ≤𝑡

𝑒
−

𝑡−𝑡 𝑗
𝜏𝐼 . (5.2)

Here, 𝜏𝑚 is the membrane time constant, 𝑉rest the resting membrane potential, 𝑅 the input resistance,
𝐼𝐸
𝑖
(𝑡) the total input current generated by the excitatory neurons, 𝐼 𝐼

𝑖
(𝑡) the total input current generated

by the inhibitory neurons and b𝑖 (𝑡) is standard Gaussian white noise. 𝜎2 is equal to the variance of the
stationary distribution of the membrane potential in absence of a threshold and input from the other
neurons, in which case the membrane potential follows an Ornstein-Uhlenbeck process. The resting
potential is 𝑉rest = 10 mV, the spike threshold is 𝑉\ = 20 mV and the reset potential is 𝑉0 = 0 mV, at
which the membrane potential is held constant during the 𝜏ref = 5 ms long absolute refractory period.
Further, 𝜏𝐸 is the time constant of excitatory and 𝜏𝐼 the time constant of inhibitory synapses. 𝑡 𝑗 are the
spike times of neuron 𝑗 , 𝑀𝐸 is the set of all 𝑁𝐸 excitatory and 𝑀𝐼 that of all 𝑁𝐼 inhibitory neurons.

Except for self-connections and connections between periphery neurons, all connections are present.
The periphery neurons are not connected, because they might lie in distinct brain areas with little
interconnectivity. Previous theoretical work has shown that a combination of STDP and homeostatic
plasticity (see Section 2.2.1) can enable the learning [200, 201] and spontaneous emergence [202, 203]
of static assemblies. We also use these plasticity mechanisms for the connections between excitatory
neurons. Specifically, we use pair-based STDP with all-to-all spike interaction and a symmetric
STDP window function (Fig. 5.2). Such symmetric STDP can be found in CA3 [84] (Fig. 2.2),
which is assumed to serve as an associative memory network and to store assemblies [66]. We use
weight normalization for both in- and output weights. After each spike of an excitatory neuron in the
network, we divisively normalize both the columns and rows of the weight matrix to a total weight of∑

𝑗∈𝑀𝐸
𝑤𝑖 𝑗 =

∑
𝑗∈𝑀𝐸

𝑤 𝑗𝑖 = 𝑤sum for interior and to a total weight of 𝑤sum,peri for periphery neurons.
There is substantial experimental evidence for input normalization [88] and indications that also a
neuron’s output is normalized [89] (see Section 2.1.3). The weights of the connection between interior
neurons are bounded by 0 mV and 𝑤max, for connections from or to periphery neurons the upper bound
is 𝑤max,peri. These bounds are enforced by clipping weights before and after weight normalization.
See Section 5.A.1 for the numerical values of all model parameters.

5.2.2 Simulations

To simulate our networks, we use Python and the Brian simulator for spiking neural networks [204]
(see [205] for example code). We initialize the networks by setting connection weights between
neurons within an assembly and between an assembly and its periphery neurons to 1 mV and all

89

Chapter 5 Drifting assemblies for persistent memory

200 100 0 100 200
ti tj (ms)

0.2

0.0

0.2

0.4

w
ST

DP
ij

 (m
V)

Figure 5.2: STDP rule.
STDP windows used in the network model with three assemblies (see Section 5.A.1) for synapses between
interior neurons (blue) and for synapses between interior and periphery neurons (orange). Weight change is
given in terms of the change of the peak EPSP that a presynaptic spike evokes in a resting neuron. Black dotted
line indicates border between potentiation and depression.

others to 0 mV, then we apply weight normalization and clipping. We perform five alike simulations
with long durations (Section 5.A.1) and different random realizations of the noise to check that the
representational structure is conserved over time, i.e. that assemblies continuously drift and that
their periphery neurons faithfully follow them. To detect the assemblies at later stages during the
simulations, we cluster the weight matrices with the Louvain clustering algorithm [206] as implemented
in ref. [207].

5.3 Results

5.3.1 Drifting memory representations

Our scheme posits that assemblies consist of different neurons at different points in time and that
periphery neurons can keep track of this representational drift (Fig. 5.3a). To demonstrate it, we
simulate networks with three assemblies. Each of them is initialized with 30 interior neurons and
connected to two in- and two output neurons. The assembly drift can be visualized by considering the
weight matrix (between excitatory neurons) at different points in time (Fig. 5.3b). The indices of the
neurons are ordered according to their initial assembly membership, i.e. the weights of the connections
between, for example, the neurons of assembly 1 take up the upper left corner of the weight matrix. At
the beginning of the simulation the three assemblies are clearly visible in the weight matrix (Fig. 5.3b
left). Then, the neurons start to gradually switch assemblies. This results in strong connections with
the assembly they transition to and weak connections with their original assembly (Fig. 5.3b middle).
After a sufficiently long simulation of the network, no clear structure in the weight matrix is visible
anymore (Fig. 5.3b right). However, reindexing the neurons using a clustering algorithm shows that
the assemblies are preserved (Fig. 5.3c). It also shows that the periphery neurons stay connected to
the assembly they were connected to in the beginning.

The network neurons exhibit asynchronous irregular background activity interspersed with oc-
casional, synchronous spiking of all neurons that form an assembly (Fig. 5.3d). In the following,

90

5.3 Results

we refer to the latter as assembly reactivations. Further, the membrane potentials of the neurons
fluctuate irregularly. A partial excitation of the assembly neurons leads to the activation of the whole
assembly and a strong stimulation of the input neurons leads to the activation of the output neurons
(Section 5.A.3). Thus, the assemblies possess the associative memory property and are suitable for
memory recall (see Section 2.1.5).

0.0

1.5

0.0

1.2

0.0

1.2

5

17

29

41

5

17

29

41

5

17

29

41

0 8
V0

Vθ

0 8
V0

Vθ

0 8
V0

Vθ

W
e

ig
h

t

a)

S
o

rt
e

d

b)

Time (s) Time (s)

V
N

e
u

ro
n

5

c)

Time (s)

E
P

S
P

 (m
V

)

Figure 5.3: Drifting assemblies in a network model of LIF neurons.
(a) Weight matrices of the connections between interior neurons (blue), of the connections from input and
output neurons to interior neurons (green and orange vertical) and of the connections from interior to input and
output neurons (green and orange horizontal). For clarity, only the weights from and to the periphery neurons
attached to assembly 1 are shown. The network is initialized with three assemblies (first column). After 27 min
of simulated time, a few interior neurons have switched assemblies (second column) After 30 h, the weight
matrix is completely remodeled as the assemblies have drifted away (third column).
(b) Like (a), but the neurons are reindexed with the help of a clustering algorithm. This shows that the assemblies
persist and that the periphery neurons follow their drift.
(c, top) Spike trains (colored ticks indicate the spike times) of the input (green) and output (orange) neurons of
assembly 1 and the first twelve interior neurons of each assembly (blue) sorted according to their initial assembly
membership. Further, the spike trains of four inhibitory neurons are shown (black). (c, bottom) Membrane
potential and spikes (vertical lines) of the first interior neuron.

5.3.2 Analysis of drifting assemblies

To characterize the assembly drift, we take a closer look at the weight dynamics in the network. For
single interior neurons, they are characterized by relatively long times of membership to the same

91

Chapter 5 Drifting assemblies for persistent memory

assembly and quick transitions between them (Fig. 5.4a). Periphery neurons do not transition between
assemblies (Fig. 5.4b).

a) b) d)

f)

c)

e)

Figure 5.4: Analysis of drifting assemblies.
(a) Adhesion to and quick transitions between assemblies of interior neurons. Curves show normalized sums of
weights between an interior neuron and assemblies 1, 2 and 3 (dark to light blue).
(b) Constant attachment of periphery neurons to the same assembly. Curves show normalized sums of weights
between a periphery neuron and assemblies 1, 2 and 3 (dark to light green).
(c) Close-up view of the switching event marked with an arrow in (a). Raster plots show spikes of assembly
1 (first subpanel), assembly 2 (fourth subpanel) and assembly 3 (fifth subpanel). Second subpanel shows the
normalized sums of weights and third subpanel the spikes of the neuron that switches. It initially belongs to
assembly 1, but transitions to assembly 2 primarily due to coincident spiking with reactivations of assembly 2
(red dashed) and failures to spike together with reactivations of assembly 1 (light red).
(d) Complete remodeling of connection weights. Pearson correlation between initial and later weights between
interior neurons (blue) and between interior and periphery neurons (green) decay to chance level (black dashed).
(e) Complete remodeling of assemblies. Normalized summed weights within initial assemblies 1, 2 and 3 (dark
blues) decay to chance level (black dashed). Normalized summed weights between initial assemblies 1 and 2, 1
and 3, and 2 and 3 (light blues) increase to chance level. Inset: Normalized summed weights within current
assembly 1 (dark blues) and between current assemblies 1 and 2 and 1 and 3 (light blues) stay approximately
constant, indicating that the assemblies persist.
(f) Continuously ongoing assembly drift. Overlap of the neuron ensemble forming assembly 1 at reference
times (dashed verticals) with the ensembles at past and future times repeatedly falls to chance level (black,
mostly covered). Reference times are selected based on when the assembly has completely remodeled with
respect to the previous reference time (brown curves), starting with the initial assembly (blue).
See Section 5.A.2 for more details.

To consider in detail how an interior neuron transitions between assemblies, we track its weight
dynamics during a switching event (Fig. 5.4c). The switching is induced by several mechanisms:
First, if a neuron spikes by chance near-synchronously with a reactivation event of an assembly it
does not belong to, STDP strengthens the connection weights between the neuron and this assembly.
In addition, the weight normalization leads to a weakening of the connection weights between the

92

5.3 Results

neuron and its original assembly. The strengthened connections to the assembly that reactivated
increases the tendency of the neuron to spike together with the neurons of this assembly, which further
strengthens the connections. Second, if a neuron does not spike during a reactivation event of the
assembly it belongs to, STDP strengthens the connections between the reactivated neurons. Weight
normalization then weakens the connections between the neuron that did not spike and the reactivated
neurons and thereby strengthens its connections to the other assemblies. Third, if the spike timing of
a neuron relative to a reactivation of the assembly it belongs to falls into the depression-dominated
regime of STDP (Fig. 5.2), the connection weights between the neuron and the assembly are weakened.
Fourth, the asynchronous, irregular background spiking induces small weight fluctuations. The first
mechanism is the most important for neuron switches as it leads to the largest weight changes. Because
STDP is weaker for the connections involving periphery neurons, they do not switch assemblies. The
continued switching of neurons leads to a complete remodeling of the connection weights (Fig. 5.4d)
and assemblies (Fig. 5.4e). Further, the assembly drift goes on continuously (Fig. 5.4f).

The neuron transitions are rather rare events as usually a neuron spikes together with the other
neurons of its assembly when it reactivates. STDP then leads to the strengthening of intra-assembly
connection weights. As our STDP rule is depression-dominated, the inter-assembly connection weights
are on average weakened due to the uncorrelated activity of neurons belonging to different assemblies.
These are similar mechanisms to the ones that kept static assemblies intact in previous models [84,
200–202, 208, 209]. Furthermore, the synaptic competition induced by the weight normalization
weakens inter-assembly connections, because they get potentiated less by STDP [126, 210, 211].

The neuron transitions lead to moderately fluctuating assembly sizes (Fig. 5.5a), but no assembly
vanishes. An important factor for this is likely the size dependence of the reactivation rate of the
assemblies. Reactivations tend to strengthen the intra-assembly weights and increase the chance of
recruitment of neurons from other assemblies. Assemblies that have less than the average number of
neurons have a higher reactivation rate compared to large assemblies (Fig. 5.5b) since the average
connection weight in small assemblies is larger. Thus, fewer neurons of a small assembly need to spike
coincidentally to initiate its reactivation. The average connection weight is larger in small assemblies
because there are fewer intra-assembly connections, which take up most of the total weight 𝑤sum that
is available for the in- or output connections of each neuron in the assembly.

Finally, we note that assemblies can also emerge spontaneously for random initial weight matrices
(Section 5.A.5). The same was found for static assemblies [202, 203, 211].

5.3.3 Simplified model of neuron switching and assembly drift

To get a better understanding of the mechanisms that underlie the neuron switches, we collect summary
statistics of the weight dynamics. For this, we consider a network with two assemblies and without
periphery neurons for simplicity (see Section 5.A.6 for the same analysis in a network with three
assemblies). In a network simulation, we then track the change Δ𝑤1 of the normalized summed input
weight 𝑤1 from assembly 1 to a neuron, Fig. 5.6a. Focusing on the inputs is justified as the output of a
single neuron has only a small influence on assembly membership. We measure the change Δ𝑤1 that
occur between regular time points separated by the typical inter-spike-interval as a function of the
weight 𝑤1. Afterwards, we compute the average Δ𝑤1(𝑤1) and standard deviation Std(Δ𝑤1) (𝑤1) of
all recorded weight changes (see Section 5.A.2 for details). The results are shown in Fig. 5.6a-d. If
𝑤1 is close to 1, the neuron is part of assembly 1 and is on average drawn closer to 1 (Δ𝑤1(𝑤1) > 0,
Fig. 5.6b). If 𝑤1 is close to 0, it is part of assembly 2 and on average drawn to 0 (Δ𝑤1(𝑤1) < 0). To

93

Chapter 5 Drifting assemblies for persistent memory

a) b)

Figure 5.5: Assembly size distribution and reactivation rate.
(a) Distribution of assembly sizes, which we record every 270 s during a 75 h long simulation.
(b) Reactivation rate of the assemblies as a function of assembly size. Smaller assemblies tend to reactivate
more often. A reactivation is defined as an event where the number of spikes emitted by assembly neurons
within 15 ms exceeds 50 % of the assembly size. We measure the reactivation rates during 60 s long intervals
starting every 270 s. Squares show the mean and error bars the standard deviation over the measuring intervals
for assembly sizes that are observed at least 50 times.

further visualize the dynamics, we think of Δ𝑤1(𝑤1) as being evoked by a force 𝐹 (𝑤1) = Δ𝑤1(𝑤1),
similar to classical mechanics system where friction dominates over inertia. Thus, 𝑈 (𝑤1) determines
the force by 𝐹 (𝑤1) = −𝑑𝑈 (𝑤1)/𝑑𝑤1. The potential has two wells near 𝑤1 ≈ 1 or 𝑤1 ≈ 0, which
correspond to the two assemblies. Hence, the neuron switches between the assemblies rely on the
noise of the weight changes (Std(Δ𝑤1) (𝑤1), Fig. 5.6d). The assembly drift thus appears to be a result
of noise-induced transitions between meta-stable state [68].

To verify this interpretation of the neuron switching and to selectively study the impact of the noise
or the average of the weight updates on the neuron transitions, we construct a simplified random walk
model. It is based on the observed statistics of the weight changes and makes use of the Markov
assumption, i.e. we assume that the change in 𝑤1 depends only on its previous value. This can be
justified by the sufficient length of the sampling intervals. We further assume for simplicity that the
weight change fluctuations are normally distributed. Thus, the simplified weight dynamics are given
by

𝑤1(𝑡 + 1) = 𝑤1(𝑡) + Δ𝑤1(𝑤1(𝑡)) + Std(Δ𝑤1) (𝑤1(𝑡))b (𝑡), (5.3)

where the b (𝑡)s are normally distributed random variables with zero mean and unit variance, and 𝑤1(𝑡)
is clipped to the interval [0, 1] after each step. We compare the random walk model with the full model
by considering their stationary probability densities. It can be obtained from the random walk model
via simulations but also analytically by using a diffusion approximation. For the latter, we interpret
Eq. (5.3) as the Euler-Maruyama discretization with timestep equal to one of the drift-diffusion
process 𝑑𝑤1

𝑑𝑡
(𝑡) = Δ𝑤1(𝑤1(𝑡)) + Std(Δ𝑤1) (𝑤1(𝑡))b (𝑡) with drift Δ𝑤1(𝑤1) and diffusion coefficient

Std(Δ𝑤1)2(𝑤1)/2 [68]. The stationary solution of the corresponding Fokker-Planck equation is thus

94

5.4 Discussion

given by

𝑝FP(𝑤1) =
N

Std(Δ𝑤1)2(𝑤1)
exp

[
2
∫ 𝑤1

0
𝑑𝑢

Δ𝑤1(𝑢)
Std(Δ𝑤1)2(𝑢)

]
, (5.4)

where N is a normalization constant and where we assume reflecting boundary conditions.
We find acceptable agreement between the stationary probability densities of the full model and the

random walk model (Fig. 5.6e), with the remaining deviations likely resulting from the non-Gaussianity
of the weight change distributions in the full model. Further, the analytical approximation of the
stationary probability density of the random walk model agrees well with the results of the simulations
(Fig. 5.6e). The deviations at the boundaries originate from the clipping of 𝑤1 in the Markov
simulations. If we do not clip but reflect the overshooting of the increments at the boundaries, the
densities also agree there. Thus, our interpretation of the neuron switching as a random walk is
justified.

To examine the contribution of weight update fluctuations, we repeat the above analysis, but without
including the effect of the mean in Eq. (5.3), 𝑤1(𝑡 + 1) = 𝑤1(𝑡) + Std(Δ𝑤1) (𝑤1(𝑡))b (𝑡). We find that
the noise alone is sufficient to generate the meta-stable states and the switching (Fig. 5.6f). Such noise-
induced multistability can also be observed for, e.g., electrical and chemical oscillations, populations
dynamics and foraging behavior [69–72]. Finally, to examine the contribution of the mean weight
change, we replace the state-dependent noise strength Std(Δ𝑤1) (𝑤1(𝑡)) with the state-independent
average noise strength Std(Δ𝑤1) (𝑤1) =

∫ 1
0 Std(Δ𝑤1) (𝑤1)𝑝full(𝑤1)𝑑𝑤1, where 𝑝full is the stationary

probability density of the full model. With this noise, the neuron does not leave the potential well
it started in within the simulated periods (Fig. 5.6g). Thus, the mean weight change is sufficient to
generate states that are almost stable. In conclusion, both drift and noise inhomogeneity contribute to
the neuron transitions.

5.4 Discussion

In this chapter, we have considered how continuously ongoing weight changes can give rise to
changing neural representations and how memories can persist despite such changing weights and
representations. To this end, we considered assemblies of neurons that store associative memories.
In our model, the fluctuations of the weight changes lead to fast transitions of neurons between
assemblies. Thus, the assemblies drift. Nevertheless, the memories stay intact, because STDP and
weight normalization allows the input and output neurons to follow their assembly. By considering the
statistics of the weight changes and constructing an effective random walk model for the switches,
we found that they can be understood as noise-induced transitions between meta-stable states. The
meta-stable states arise from both the mean weight changes and the inhomogeneity of the weight
change fluctuations.

Previous computational work that addressed how ongoing weight and connectivity fluctuations can
be reconciled with persistent memory often focused on how neural representations can stay stable
despite such fluctuations. Specifically, refs. [209, 212, 213] suggest that the fluctuations are fully
compensated by unsupervised plasticity mechanisms and reactivations, refs. [199, 214, 215] suggest
that they are compensated by retraining the network and refs. [64, 216–218] suggest that there is a
preserved core of neurons that keeps memories stable.

95

Chapter 5 Drifting assemblies for persistent memory

a)

b)

c)

d)

Assembly 1

Assembly 2

e)

f)

g)

Figure 5.6: Weight dynamics and simplified model of neuron transitions between assemblies.
(a–d) Weight dynamics and summary statistics of it.
(a) Dynamics of the normalized summed input weight 𝑤1 from assembly 1 to a neuron. Large (small) 𝑤1
indicates membership to assembly 1 (assembly 2).
(b) Average weight change Δ𝑤1 as a function of 𝑤1. It draws the neurons closer to either one of the assemblies.
(c) Potential 𝑈 (𝑤1) for Δ𝑤1. Its minima correspond to the membership to assembly 1 or 2.
(d) Standard deviation Std(Δ𝑤1) of the weight change as a function of 𝑤1. It induces neuron transitions between
the assemblies.
See Section 5.A.2 for more details on panels (b–d).
(e–g) Stationary probability densities of 𝑤1 as observed in a network simulation (black histograms), as observed
in simulations of a simplified, Markovian random walk model of the neuron transitions (colored histograms)
and as computed from an analytical diffusion approximation of the random walk model (colored curves).
(e) Results for the random walk model with drift and noise (orange). Both simulation and analytical results
show acceptable agreement with the results from the network simulations.
(f) Results for the random walk model with noise only (green). The noise alone is sufficient to generate the
meta-stable states and the switching.
(g) Results for the random walk model with drift and homogenized noise. The mean weight change is sufficient
to generate states that are almost stable. In the Markov simulations, switching does not occur within the used
simulation time. Thus, the distribution depends on the initial condition (𝑤1 (0) = 0 (red) and 𝑤1 (0) = 1 (pink)).
Despite the low probability, the analytical approximation accounts for the switching (purple).

96

5.4 Discussion

In addition, a few modeling studies considered how weight and connectivity fluctuations give rise
to changing neural representations. In the models of refs. [219, 220] assemblies change but also
merge and break down, i.e. they are not suitable to store persistent memories. Ref. [199] shows that
connectivity remodeling leads to fluctuations of the preferred direction of neurons in a model of the
motor cortex. In the model of ref. [218], adding a fluctuating part to otherwise stable connection
weights leads to partial changes of the neural representations of sequences.

Further, a few modeling studies, including some of the above, addressed how memories can persist
despite changing neural representations. They assumed supervised retraining of outputs [221], that
the neural representations change in a subspace that does not affect behavior [199] or the neural
representations changes are only partial and thus allow for stable memory [218].

In contrast to these studies, in our networks the weight fluctuations lead to a complete remodeling of
the weight matrix and neural representation, while the memories persist due to unsupervised plasticity
mechanisms. Thus, there is no preserved core of network structure. The interior neurons encode
different memories at different time points. Further, no external supervision is necessary to preserve
the memories. STDP and weight normalization keeps the periphery neurons attached to their assembly.
We suggest that drifting assemblies are the basis of associative memory and make the experimentally
verifiable prediction that the remodeling of neural representations is complete, i.e. that the overlap of
the realizations of assemblies at different time points decreases to chance level.

By themselves, drifting assemblies are functionally neutral. However, the drift may be helpful for
the storage of memories as new memories may be easy to store in a highly plastic region of the brain
(for example the hippocampus). Afterwards, they may drift away to less plastic regions (for example
parts of the cortex). This would be in line with the two-stage model for memory [66]. Furthermore,
static assemblies may be difficult to realize in the brain because of the noisy activity and ongoing
synaptic changes. The latter could result from both activity-dependent or -independent plasticity.
Since drifting assemblies still allow for persistent memories, there would be no evolutionary pressure
to develop static assemblies.

In this thesis, we did not consider the learning of new memories, but it could be implemented by
imprinting new assemblies with the help of strong input. This may result in the vanishing or merging
of existing assemblies, which would lead to the forgetting or generalization of existing memories.
Another possibility for the learning of novel memories in our model would be if specific inputs
and outputs are assigned to preexisting assemblies. Such preexisting assemblies may form during
development [222].

97

Chapter 5 Drifting assemblies for persistent memory

5.A Appendix

5.A.1 Parameters of models used for the simulations

Network model with three assemblies

Neuron numbers: excitatory neurons: 𝑁𝐸 = 102; interior neurons: 𝑁int = 90; periphery neurons: 12;
inhibitory neurons: 𝑁𝐼 = 20.

Network structure: all connections are present except for connections between periphery neurons
and self-connections.

Neuron parameters: spike threshold: 𝑉\ = 20 mV; reset potential: 𝑉0 = 0 mV; resting
potential: 𝑉rest = 10 mV; membrane time constant: 𝜏𝑚 = 10 ms; absolute refractory period:
𝜏ref = 5 ms; sum of input and sum of output weights of an interior neuron: 𝑤sum = 256.25 mV =
1
2
[(
𝑁asbly − 1

)
𝑤max + 𝑁peri𝑤max,peri

]
, the angular bracketed term is the expected input of an in-

terior neuron from a typical size assembly and its periphery neurons, if all weights were at
their individual maximum; sum of input and sum of output weights of a periphery neuron:
𝑤sum,peri = 225.0 mV = 1

5
[
𝑁asbly𝑤max,peri

]
, the angular bracketed term is the expected input of

a periphery neuron from a typical size assembly, if all weights are at their individual maximum; noise
input strength: 𝜎 = 3.5 mV.

Excitatory synapses: time constant: 𝜏𝐸 = 2 ms; maximal synaptic strength of synapses between
interior neurons: 𝑤max = 12.5 mV, evoking a peak EPSP of 1.67 mV in a resting postsynaptic neuron;
maximal synaptic strength of synapses between interior and periphery neurons: 𝑤max,peri = 37.5 mV,
evoking a peak EPSP of 5.02 mV in a resting postsynaptic neuron; strength of synapses to inhibitory
neurons: 𝑤E→I = 5.02 mV, evoking a peak EPSP of 0.67 mV in a resting postsynaptic neuron.

Inhibitory synapses: time constant: 𝜏𝐼 = 5 ms; strength of synapses to excitatory neurons:
𝑤I→E = −5.13 mV, evoking a peak inhibitory postsynaptic potential (IPSP) of −1.28 mV in a resting
postsynaptic neuron; strength of synapses to inhibitory neurons: 𝑤I→I = −5.39 mV evoking a peak
IPSP of −1.35 mV in a resting postsynaptic neuron.

STDP window: Δ𝑤𝑖 𝑗 (Δ𝑡) = [

𝑎−𝑏 (1+𝛿) [𝑎 exp(−𝑎 |Δ𝑡 |) − 𝑏(1 + 𝛿) exp(−𝑏 |Δ𝑡 |)], where Δ𝑡 = 𝑡𝑖 − 𝑡 𝑗
is the time difference between the postsynaptic and the presynaptic spike; window amplitude for
connections between interior neurons: [= 3.75 mV; window amplitude for connections between
interior and periphery neurons: [= 1.25 mV; LTP decay rate: 𝑎 = 1

𝜏LTP
= 1

20 ms , where 𝜏LTP = 20 ms;
LTD decay rate: 𝑏 = 1

𝜏LTD
= 1

40 ms , where 𝜏LTD = 40 ms; ratio of integrated LTD and LTP: 1+ 𝛿 = 1+ 1
3 ;

in terms of the induced change of peak EPSP, peak LTP is 0.5 mV (0.17 mV), at 0 ms, peak LTD is
−0.17 mV (−0.06 mV), at ±44 ms, for connections between interior neurons (connections from or to
periphery neurons).

Memory representation: number of assemblies: 𝑛asbly = 3; initial number of interior neurons per
assembly: 𝑁asbly(0) = 30; periphery neurons per assembly: 𝑁peri = 4.

Simulation: time step: 0.25 ms; total simulated time: 75 hours.

Network model with two assemblies and without periphery neurons

Same parameters as before with the following exceptions:
Neuron numbers: excitatory neurons: 𝑁𝐸 = 68; interior neurons: 𝑁int = 68; periphery neurons: 0;

inhibitory neurons: 𝑁𝐼 = 13.

98

5.A Appendix

Neuron parameters: sum of input and sum of output weights of an interior neuron: 𝑤sum =

309.375 mV = 3
4
[(
𝑁asbly − 1

)
𝑤max

]
.

Excitatory synapses: strength of synapses to inhibitory neurons: 𝑤E→I = 9.10 mV, evoking a peak
EPSP of 1.22 mV in a resting postsynaptic neuron.

Inhibitory synapses: strength of synapses to excitatory neurons: 𝑤I→E = −9.52 mV, evoking a peak
inhibitory postsynaptic potential (IPSP) of −2.38 mV in a resting postsynaptic neuron; strength of
synapses to inhibitory neurons: 𝑤I→I = −10.31 mV evoking a peak IPSP of −2.58 mV in a resting
postsynaptic neuron.

STDP window: window amplitude: [= 5 mV; in terms of the induced change of peak EPSP, peak
LTP is 0.67 mV at 0 ms, peak LTD is −0.22 mV at ±44 ms,.

Memory representation: number of assemblies: 𝑛asbly = 2; initial number of interior neurons per
assembly: 𝑁asbly(0) = 34.

Simulation: total simulated time: 50 hours.

Network model with three assemblies and without periphery neurons

Same parameters as for simulations with three assemblies and periphery neurons with the following
exceptions:

Neuron numbers: excitatory neurons: 𝑁𝐸 = 102; interior neurons: 𝑁int = 102; periphery neurons:
0; inhibitory neurons: 𝑁𝐼 = 20.

Neuron parameters: sum of input and sum of output weights of an interior neuron: 𝑤sum =

247.5 mV = 3
5
[(
𝑁asbly − 1

)
𝑤max

]
.

Excitatory synapses: strength of synapses to inhibitory neurons: 𝑤E→I = 4.85 mV, evoking a peak
EPSP of 0.65 mV in a resting postsynaptic neuron.

Inhibitory synapses: strength of synapses to excitatory neurons: 𝑤I→E = −4.95 mV, evoking a
peak inhibitory postsynaptic potential (IPSP) of −1.24 mV in a resting postsynaptic neuron; strength
of synapses to inhibitory neurons: 𝑤I→I = −5.21 mV evoking a peak IPSP of −1.30 mV in a resting
postsynaptic neuron.

STDP window: window amplitude: [= 3.75 mV; in terms of the induced change of peak EPSP,
peak LTP is 0.50 mV at 0 ms, peak LTD is −0.17 mV at ±44 ms,.

Memory representation: initial number of interior neurons per assembly: 𝑁asbly(0) = 34.
Simulation: total simulated time: 50 hours.

5.A.2 Details on the network analysis

Analysis of drifting assemblies

Panel (a) of Fig. 5.4 depicts the normalized sum of the weights between the second interior neuron
(index 6 in Fig. 5.3d) and the three assemblies in the networks. The normalization constant is 2𝑤sum,
which is equal to the total input plus the total output weight. Panel (b) depicts the normalized sum of
the weights between the first input neuron and all three assemblies in the network. The normalization
constant is 2𝑤sum,peri. Panel (d) shows the Pearson correlation between weight matrices at times 0 and

99

Chapter 5 Drifting assemblies for persistent memory

𝑡. Specifically, it is given by

Corr(𝑡) =
∑

𝑖 𝑗 �̃�𝑖 𝑗 (0)�̃�𝑖 𝑗 (𝑡)√︃∑
𝑖 𝑗 �̃�𝑖 𝑗 (0)2

√︃∑
𝑖 𝑗 �̃�𝑖 𝑗 (𝑡)2

, (5.5)

where �̃�𝑖 𝑗 = 𝑤𝑖 𝑗 − �̄� are the weights centered by their average �̄�. Panel (e) shows the normalized
sums of the connection weights between the neurons that form the initial assemblies 1, 2 and 3
(dark blue colors). The normalization constant is the maximal sum 𝑁asbly(0)𝑤sum. It also shows
the normalized sums of the connection weights between the neurons that form the initial assemblies
1 and 2, 1 and 3, and 2 and 3 (light blue colors). The normalization constant is the maximal sum
2𝑁asbly(0)𝑤sum. The inset in panel (e) shows these quantities (but only those involving assembly 1) for
the assemblies at the current time. The normalization constants are adjusted according to the current
assembly sizes. The chance level is the normalized sum of all weights between interior neurons. The
normalization constant is 𝑛asbly𝑁int𝑤sum. Panel (f) depicts the overlap of the ensemble of neurons that
form assembly 1 at the current time with the ensemble of neurons that form assembly 1 at different
reference times (different colors). The overlap is computed as the number of neurons shared by the
ensembles, divided by the number of neurons in the reference ensemble. We also use the overlap
to define the complete remodeling of an assembly and the network: If the overlap with respect to a
previous reference ensemble has decreased to chance level, we say that the assembly is completely
remodeled with respect to the reference. If this happens for all assemblies with respect to their original
realization, we say that the network is completely remodeled.

Statistics of weight changes

To collect the weight change statistics, we record for all interior neurons the change Δ𝑤1 of their
normalized summed input weight 𝑤1 from assembly 1. The normalization constant is 𝑤sum. The
sampling time is 0.5 s, which is approximately equal to the average single neuron interspike interval.
We divide the range of possible values of 𝑤1, which lie between 0 and 1, into 50 equally-sized bins.
Then, we calculate for each bin the average Δ𝑤1 and standard deviation Std(Δ𝑤1) of the changes
ensuing those 𝑤1 that fall in it. We compute the potential 𝑈 (𝑤1) by integrating −Δ𝑤1(𝑤1) over 𝑤1.

5.A.3 Associative memory property and input-output functionality of assemblies

To test that the assemblies possess the associative memory property, we suppress the activity of the
periphery neurons (Fig. 5.7a). The partial activation of an assembly by the background activity is
still sufficient to elicit assembly reactivations, as is required for associative memory (see Section 2.1).
Assembly reactivations occur more frequently when the activity of periphery neurons is not suppressed
(Fig. 5.7b), because the additional background spiking of the periphery neurons amplify assembly
activity. To test if the circuits of inputs, assemblies and outputs are functional, we strongly stimulate
the input neurons of assembly 1 (Fig. 5.7c). This leads to the activation of assembly 1 and subsequently
to the activation of the output neurons of assembly 1. Thus, the circuits provide basic input-output
functionality. The other assemblies and periphery neurons are not activated, i.e. the activation is
specific.

The simulations shown in Fig. 5.7 are done after the first complete remodeling of the network. To
prevent the weight changes that would otherwise compensate the missing activity from the periphery

100

5.A Appendix

neurons in Fig. 5.7a,b, we freeze the connection weights. To activate the input neurons in Fig. 5.7c,
we use externally stimulate them such that they are highly active for 0.5 s after 𝑡 = 4.75 s. The circuit
structure is not destroyed by the resulting network activity.

a) b) c)

Figure 5.7: Associative memory property and basic input-output functionality of assemblies.
(a) The background activity of only the interior neurons is already sufficient to elicit assembly reactivations,
which is required for associative memory.
(b) Assembly reactivations occur more frequently when the activity of periphery neurons is not suppressed.
(c) Assemblies provide basic input-output functionality. Stimulating a pair of input neurons (neurons 1,2)
activates their assembly (neurons 13–24), which in turn specifically activates its output neurons (neurons 3,4).
Spike trains are sorted according to their assembly membership at 𝑡 = 0 s, starting with the periphery neurons of
assemblies 1,2,3 (green: input neurons, orange:output neurons) and followed by the first twelve interior neurons
of each assembly (blue). The spike trains of four inhibitory neurons are shown in black.

101

Chapter 5 Drifting assemblies for persistent memory

5.A.4 Assembly drift in a network without periphery neurons

1

13

25

37

1

13

25

37

1

13

25

37

0.0

1.5

0 10
V0
Vθ

0 10
V0
Vθ

0 10
V0
Vθ

N
e
u
ro

n

Time (s) Time (s) Time (s)

V
1

c)

S
o
rt

e
d

b)

W
e
ig

h
t

a)

E
P

S
P

 (m
V

)

Figure 5.8: Assembly drift in a network without periphery neurons. Display is like in Fig. 5.3 but without
periphery neurons and the second column shows simulation results after 15 minutes and the third column shows
simulation results after 12h.

102

5.A Appendix

5.A.5 Spontaneous development of drifting assemblies

b)a)

Figure 5.9: Spontaneous development of drifting assemblies.
(a) Four assemblies emerge spontaneously after randomly initializing networks with periphery neurons.
Specifically, we initialize the networks by randomly drawing the weights of the connections between excitatory
neurons from a uniform distribution and subsequently normalizing them (left column of top part, display like
Fig. 5.3a,b). Four assemblies emerge within 70 min of simulated time. They persist and drift as indicated by
the remodeled weight matrix after 75h of simulated time (right column of top part). Further, the assembly
sizes fluctuate (bottom panel). The periphery neurons connect only randomly to the assemblies because of the
random initial weights. The different number of periphery neurons per assembly is the reason why the mean
assembly sizes differ from each other.
(b) No clear assemblies emerge after randomly initializing a network without periphery neurons. Display like
the top part of (a).
These observations indicate together with Fig. 5.3 that not only the network parameters but also the initialization
determines the number of assemblies in our networks. We confirmed our observations for five different network
realizations. We note that while the periphery neurons mostly stayed connected to the same assemblies during
the simulations of these five realizations, we observed one instance of a switch of a periphery neuron from
an assembly originally connected to four periphery neurons to an assembly originally connected to only two
periphery neurons (at about 13.8h).

103

Chapter 5 Drifting assemblies for persistent memory

5.A.6 Analysis of neuron transitions between assemblies for a network with three
assemblies

a)

b)

c)

d)

e)

f)

g)

Assembly 1

Assemblies 2, 3

Figure 5.10: Weight dynamics and simplified model of neuron transitions between assemblies for a network
with three assemblies.
(a–d) Display like Fig. 5.6a–d. The underlying network dynamics are those of Fig. 5.8. Like in Fig. 5.6a–d,
𝑤1 ≈ 1 means that the neuron is part of assembly 1. However, 𝑤1 ≈ 0 means that it is part of assembly 2 or 3.
Thus, the summary statistics of the weight change are asymmetric.
(e–g) Display like Fig. 5.6e–g. For the same reason as for (a–d), the weightings of the high occupancy regions
are asymmetric.

104

CHAPTER 6

Modeling feedback inhibition in epilepsy

This chapter consists of the following published article:

[4] L. Pothmann*, C. Klos*, O. Braganza*, S. Schmidt, O. Horno, R.-M. Memmesheimer, H. Beck
(* equal contribution)
Altered Dynamics of Canonical Feedback Inhibition Predicts Increased Burst Transmission in
Chronic Epilepsy
Journal of Neuroscience 39 (2019) 8998–9012

The following sections contain the article with a shortened experimental part and further, minor
changes. I contributed most of the modeling part of the study. In particular, I developed large parts
of the model and the fitting procedure (Section 6.2.2), I performed the fitting (Section 6.3.4) and I
simulated the network model when probed with external input (Section 6.3.5). Furthermore, I wrote
large parts of the modeling related parts of the article.

6.1 Introduction

In the CNS, firing in neuronal ensembles is structured by the interaction of two fundamental categories
of neurons: a majority of excitatory principal neurons and a minority (∼ 10 % to 20 %) of inhibitory,
mostly GABAergic interneurons (see Sections 2.1.2 and 2.1.4). GABAergic interneurons mediate
most of the shunting or hyperpolarizing inhibition in the adult brain, thereby powerfully controlling
neuronal input-output behavior. Interneurons display a staggering diversity, with a large number of
subtypes [223]. These different interneuron types are organized into two fundamental categories of
inhibition. Feedforward inhibition of pyramidal neurons results from activation of interneurons by the
same synaptic pathway that excites the pyramidal neuron. Feedback inhibition, on the other hand, is
recruited by pyramidal cell firing and activation of recurrent inhibitory microcircuits. In the cortex
and hippocampus, feedback inhibition exerts powerful control on output generation of pyramidal
neurons [224, 225]. Different types of interneurons contribute to feedback inhibition, including
interneuron classes mediating distal dendritic inhibition targeting the fine apical and basal branches
of pyramidal neurons or proximal perisomatic inhibition. Intriguingly, somatically and dendritically
targeting interneurons can be differentially recruited by different input frequencies, giving rise to

105

https://doi.org/10.1523/JNEUROSCI.2594-18.2019

Chapter 6 Modeling feedback inhibition in epilepsy

timed and domain-specific inhibition of CA1 pyramidal neurons [226]. Although feedback inhibition
in the CA1 region is known to powerfully influence CA1 excitability, its alteration in chronic epilepsy
and the resulting consequences for CA1 input-output transformations are unknown. Indeed, effects
on CA1 input-output transformation may be particularly relevant under conditions of epileptiform
activity of the upstream CA3 region. We have therefore examined the function of feedback inhibitory
circuits in the normal and epileptic hippocampus. We find a pronounced change in the dynamics of
inhibition of CA1 neurons that is rooted in both synaptic and intrinsic changes within the feedback
circuit: Normally, synchronous activity of CA1 pyramidal cells recruits initially strong feedback
inhibition that shows use-dependent depression. In contrast, initial inhibition is strongly reduced
in chronic epilepsy. A biophysically constrained computational model suggests that these changed
properties of feedback circuits promote the transmission of synchronous activity from CA3 via CA1
to other brain regions.

6.2 Material and Methods

6.2.1 Experiments

Pilocarpine model of epilepsy

Briefly, male Wistar rats were injected with pilocarpine hydrochloride. Within 60 min of injection,
30 % to 50 % of the animals developed a limbic status epilepticus (SE) that was terminated 40 min
after SE onset. Only rats displaying at least one spontaneous seizure were included in this study.
Experiments were conducted 4 to 8 weeks following experimentally induced SE. Sham-control animals
were treated in an identical manner but were injected with saline instead of pilocarpine. Data from a
subset of cells in the sham-control condition have already been used in ref. [227].

Slice preparation and patch-clamp recording

Transverse 300 µm thick hippocampal slices were prepared on a vibratome. Interneurons or pyramidal
cells were visually identified under infrared difference interference contrast optics, and further
characterized functionally as well as morphologically by biocytin labeling and reconstruction. All
animal experiments were conducted in accordance with the guidelines of the Animal Care and Use
Committee of the University of Bonn.

Analysis of intrinsic properties

The properties of postsynaptic currents (PSCs)/postsynaptic potentials (PSPs) were analyzed from an
average of ∼ 10 sweeps. Input-output properties were assessed by applying successively increasing 1 s
current pulses up to 800 pA (0, 10, 20, 30, 40, 60, 80, 100, 125, 150, . . . ,775, 800 pA). The maximal
firing rate was determined as the maximally obtained rate with injections up to 800 pA. The current
for half-maximal firing was determined through sigmoidal fits.

Analysis of feedback inhibitory circuit

For activation of CA1 feedback microcircuits, we stimulated CA1 axons by placing a electrode into
the alveus adjacent to the subiculum and applying pulses with a duration of 0.1 ms. This stimulation

106

6.2 Material and Methods

leads to antidromic activation of CA1 axons and recruitment of feedback inhibitory circuits. To
prevent a direct monosynaptic excitation or inhibition, a cut was made at the CA1-subiculum border
through strata lacunosummoleculare, radiatum, pyramidale, and oriens with only the alveus left
intact [226]. A second cut was made at the CA1/CA3 border to limit spontaneous activity in CA1
neurons. Feedback EPSPs were recorded in inhibitory interneurons to monitor temporal summation.
Stimulation strength was set according to the following two criteria (identically in sham-control
and epileptic animals): (1) the stimulation should not elicit action potentials (APs), to allow proper
estimation of the EPSP amplitudes; and (2) stimulation strength should be sufficiently large to
elicit reliable EPSPs. The stimulation amplitudes were systematically varied at the beginning of
each experiment until a stimulation strength that matched both criteria was found. The resultant
stimulation strengths did not differ between sham-control and epileptic animals (mean(SD): 156(78) A
and 186(96) A for cells from sham and epileptic slices respectively; 𝑛 = 34 and 𝑛 = 37, respectively;
𝑝 = 0.156, unpaired Student’s t test). Only interneurons that could be unambiguously identified based
on morphology were included (81 of 171, see below). IPSCs were recorded from pyramidal neurons
that result from activation of feedback interneurons. In these experiments, PSCs (rather than PSPs)
were measured because they allowed to better distinguish individual IPSCs in train stimulations. IPSC
amplitudes were measured from pre-stimulus-train baseline.

Cell classification and morphological analysis

BCs were identified via their distinctive axon distribution in the pyramidal cell layer. PD cells comprise
cells whose axon ramified within stratum oriens and stratum radiatum (and potentially also stratum
pyramidale). OLM cells were identified based on soma location in stratum oriens and visible axon in
stratum lacunosum moleculare.

Statistical analysis

Average values in the text are expressed as mean ± SEM unless stated otherwise

6.2.2 Computational model

In the following, we give a detailed description of the models we used for the basket and pyramidal
cells and their synapses and of the model of the complete feedback motif. Furthermore, we describe
the fitting procedure we used. Model and fitting were implemented using MATLAB R2018a (The
MathWorks).

Model of BCs

To model the excitation of the BC population, we used a nonlinear leaky integrator neuron model
with a current-based synapse that exhibits short-term plasticity (STP). To model the STP, we used a
modified version of the model introduced by Markram and Tsodyks [106] (see also Section 2.2.1).
Specifically, the state of the population is represented by an effective average membrane voltage (or by
the membrane potential of one representative neuron) 𝑉BC(𝑡), whose dynamics are governed by the

107

Chapter 6 Modeling feedback inhibition in epilepsy

following:

𝜏d,BC
𝑑𝑉BC

𝑑𝑡
(𝑡) = −𝑉BC(𝑡) + _𝑉2

BC(𝑡) + 𝐼e,BC(𝑡), (6.1)

where 𝜏d,BC is the membrane time constant, _ specifies the strength of the nonlinearity, and 𝐼e,BC(𝑡) is
the input current. Since the BCs do not spike in the experimental setting, we did not include a term
covering spikes and resets in the model. The input current describes the effect of the synaptic input on
the BC population. For the fit to the experimental data, we assume that the population of neurons
receives similar inputs from a number of synapses that are excited in the same way by the stimulation.
The total input is the linear superposition of the individual synaptic currents. Like a single synaptic
current, it obeys the following:

𝜏e,BC
𝑑𝐼e,BC

𝑑𝑡
(𝑡) = −𝐼e,BC(𝑡) + 𝜏e,BC𝐼e,BC𝐼e,BC𝑢e,BC(𝑡−)𝑥e,BC(𝑡−)

∑︁
𝑡sp

𝛿(𝑡 − 𝑡sp), (6.2)

where 𝜏e,BC is the synaptic time constant, 𝑢e,BC(𝑡−) is the fraction of available neurotransmitters
released from the readily releasable pool when a spike arrives at the synapse, 𝑥e,BC(𝑡−) is the current
fraction of available neurotransmitters in the readily releasable pool when a spike arrives at the
synapse, 𝐼e,BC specifies the impact strength of the released fraction of neurotransmitters, and 𝐼e,BC is a
normalization constant, which ensures that the EPSP amplitude is 𝐼e,BC if _ = 0 and if 𝑢e,BC(𝑡−) and
𝑥e,BC(𝑡−) assume their asymptotic values (as after an infinitely long preceding interspike interval).
The 𝑡sp ’s are the times of spike arrival at the synapse, set according to the considered stimulation
protocol. 𝑥e,BC(𝑡−) introduces short-term synaptic depression and is determined by the following:

𝜏RRP,e,BC
𝑑𝑥e,BC

𝑑𝑡
(𝑡) = 1 − 𝑥e,BC(𝑡) + 𝜏RRP,e,BC𝑢e,BC(𝑡−)𝑥e,BC(𝑡−)

∑︁
𝑡sp

𝛿(𝑡 − 𝑡sp), (6.3)

where 𝜏RRP,e,BC is the time constant of the depression. 𝑢e,BC(𝑡) introduces short-term synaptic
facilitation and is determined by the following:

𝜏fac,e,BC
𝑑𝑢e,BC

𝑑𝑡
(𝑡) = 𝑢0,e,BC − 𝑢e,BC(𝑡) + 𝜏fac,e,BC𝑢f,e,BC(1 − 𝑢e,BC(𝑡−))

∑︁
𝑡sp

𝛿(𝑡 − 𝑡sp) (6.4)

Here, 𝜏fac,e,BC is the time constant of the facilitation, 𝑢0,e,BC is the asymptotic release fraction
corresponding to the release fraction of vesicles after an infinitely long preceding interspike interval,
and 𝑢f,e,BC characterizes the size of the jump toward 1 upon spike arrival. In the original version of
this model [106], the jump size was also set to 𝑢0,e,BC, such that it served a double role (jump size and
equilibrium fraction of released neurotransmitters), which does not seem justified for our data. All
parameter values were determined through the fitting procedure described below for both the control
and epileptic case.

Model of pyramidal cells

To model the pyramidal cell feedback inhibition, we first computed the effective membrane potential of
the BC population in response to the stimuli with a model extending the model we used to reproduce

108

6.2 Material and Methods

the BC data. The extended model incorporates a term that covers resets after spiking, depending on an
estimate of the population-averaged firing rate of a single BC. We then used a synapse model, which
again included STP, to determine the inhibitory current in the pyramidal cells as a function of the rate
of the BC population. We computed the input current of the mean BC with Eqs. (6.2) to (6.4). To
account for the reset of the membrane potential after spikes, we extended Eq. (6.1) to the following:

𝜏d,BC
𝑑𝑉BC

𝑑𝑡
(𝑡) = −𝑉BC(𝑡) + _𝑉2

BC(𝑡) + 𝐼e,BC(𝑡) − 𝜏d,BC𝑉BC(𝑡)𝑟BC(𝑡). (6.5)

Here, 𝑟BC(𝑡) is the estimate of the population-averaged instantaneous firing rate of the BCs. It is given
by the following:

𝑟BC(𝑡) = 𝑟BC log
(
1 + exp

(
𝑉BC(𝑡) −𝑉th,BC

𝑉w,BC

))
, (6.6)

where 𝑉th,BC is the firing threshold, 𝑉w,BC specifies the softness of the firing threshold, and 𝑟BC
determines how fast the firing rate increases with increasing 𝑉BC(𝑡). With the exception of 𝐼e,BC,
all parameters that occur already in Eqs. (6.1) to (6.4) were set to the values found by the fit of the
BC model to the cell-averaged BC data. We had to newly fit 𝐼e,BC, since the level of stimulation
of BCs was different (higher) in the current paradigm, such that they received a suprathreshold
input. Furthermore, instead of fitting the parameters occurring in Eq. (6.6) to the data, we preset
𝑉th,BC = 6 mV, 𝑉w,BC = 0.2 mV and 𝑟BC = 20 Hz as the quality of the fit to the pyramidal cell data is
highly insensitive to the exact values of these parameters. This is because some of the parameters
in the model have a similar effect on the output firing rate. For example, an increase of 𝐼e,BC and a
decrease of 𝑉th,BC both primarily led to a higher firing rate of the BCs. The fixed parameters could
thus be chosen within a broad range where the overall activity of the BCs during the stimulation
protocols is biologically plausible. In particular, while firing rates can be high during excursions of
the voltage above threshold, such excursions are brief in our data, indicating the generation of only a
few spikes. Using the firing rate of the BCs, we computed the inhibitory current in the pyramidal cells.
The inhibitory current in the pyramidal cells 𝐼i,PY(𝑡) is determined by the following:

𝜏i,PY
𝑑𝐼i,PY

𝑑𝑡
(𝑡) = −𝐼i,PY(𝑡) + 𝜏i,PY𝐼i,PY𝐼i,PY𝑢i,PY(𝑡)𝑥i,PY(𝑡)𝑟BC(𝑡), (6.7)

where 𝜏i,PY is the synaptic time constant, 𝑢i,PY(𝑡) is the release fraction of the neurotransmitters,
𝑥i,PY(𝑡) is the fraction of available neurotransmitters in the readily releasable pool, 𝐼i,PY specifies the
impact strength of the released fraction of neurotransmitters, and 𝐼i,PY is a normalization constant,
which ensures that the IPSC amplitude is 𝐼i,PY if 𝑢i,PY(𝑡) and 𝑥i,PY(𝑡) assume their asymptotic values.
𝑥i,PY(𝑡) introduces short-term depression and is determined by the following:

𝜏RRP,i,PY
𝑑𝑥i,PY

𝑑𝑡
(𝑡) = 1 − 𝑥i,PY(𝑡) + 𝜏RRP,i,PY𝑢i,PY(𝑡−)𝑥i,PY(𝑡−)𝑟BC(𝑡), (6.8)

where 𝜏RRP,i,PY is the time constant of the depression. 𝑢i,PY(𝑡) introduces short-term facilitation and is
determined by the following:

𝜏fac,i,PY
𝑑𝑢i,PY

𝑑𝑡
(𝑡) = 𝑢0,i,PY − 𝑢i,PY(𝑡) + 𝜏fac,i,PY𝑢f,i,PY(1 − 𝑢i,PY(𝑡−))𝑟BC(𝑡). (6.9)

109

Chapter 6 Modeling feedback inhibition in epilepsy

Here, 𝜏fac,i,PY is the time constant of the facilitation, 𝑢0,i,PY is the asymptotic release fraction
corresponding to the release fraction of vesicles after an infinitely long preceding interval with no
presynaptic activity, and 𝑢f,i,PY characterizes the increase of the release fraction of the neurotransmitters.
All so far unspecified parameter values were determined through the fitting procedure described below
for both the control and epileptic case.

Model of the complete feedback motif

To determine how the complete inhibitory feedback loop reacts to input, we combined the basket
and pyramidal cell models. The two population models are recurrently connected and have firing
rates 𝑟BC(𝑡) and 𝑟PY(𝑡). The pyramidal cell population additionally receives as excitatory input a
firing rate 𝑟IN(𝑡) from CA3. We computed the firing rates of the basket and pyramidal cells using the
experimentally measured relations between input current and firing rate (see Fig. 4B).

Pyramidal cells

The firing rate of an average pyramidal neuron as a function of the input current 𝐼 𝑝𝑦(𝑡) is given by the
following:

𝑟PY(𝑡) = 𝑟0,PY + 𝑟1,PY

1 + exp
(
−

𝐼PY (𝑡)−𝐼 1
2 ,PY

𝐼w,PY

) (6.10)

For the control case, fitting the experimental data yielded the parameters 𝑟0,PY = 1.60 Hz, 𝑟1,PY =

23.03 Hz, 𝐼 1
2 ,PY = 259.91 pA and 𝐼w,PY = 96.38 pA. For the epileptic case, we obtained 𝑟0,PY =

1.74 Hz, 𝑟1,PY = 31.63 Hz, 𝐼 1
2 ,PY = 377.32 pA and 𝐼w,PY = 132.75 pA. The input current to the

pyramidal cells is the sum of an excitatory current −𝐼e,PY(𝑡) and an inhibitory current −𝐼i,PY(𝑡). As
there are no experimental data available about the STP of the excitatory synapses between CA3
neurons and CA1 in epilepsy, we assumed for simplicity that this synapse generally does not exhibit
STP. Thus, the excitatory current is governed by the following:

𝜏e,PY
𝑑𝐼e,PY

𝑑𝑡
(𝑡) = −𝐼e,PY(𝑡) + 𝜏e,PY𝐼e,PY𝑟IN(𝑡), (6.11)

where 𝜏e,PY is the synaptic time constant and 𝐼e,PY is the coupling strength between the external input
and the pyramidal cells. For both the control and the epileptic case, we set 𝜏e,PY = 5 ms in rough
accordance to experimental data [228, 229] and 𝐼e,PY = 2 000 pA. We selected the values of this
and all further coupling strengths to achieve biologically plausible activity levels, with the same
coupling strength in the control and epileptic case. To determine the inhibitory current 𝐼i,PY(𝑡), we
used Eqs. (6.7) to (6.9) with the parameters set to the values obtained from the fit to the cell-averaged
pyramidal cell data, except for 𝐼i,PY, as the inhibition is not a result of external stimulation anymore
but models biological neuronal activity. Specifically, we set 𝐼i,PY = 1 000 pA in both the control and
the epileptic case. We used the same value for both cases as the fit to the cell-averaged pyramidal cell
data also yielded similar values for 𝐼i,PY in the control and epileptic case.

110

6.2 Material and Methods

BCs

The firing rate of an average BC as a function of the input current 𝐼e,BC(𝑡) is given by the following:

𝑟BC(𝑡) = 𝑟0,PY + 𝑟1,BC

1 + exp
(
−

𝐼e,BC (𝑡)−𝐼 1
2 ,BC

𝐼w,BC

) (6.12)

For the control case, we obtained the parameters 𝑟0,BC = 12.15 Hz, 𝑟1,BC = 141.02 Hz, 𝐼 1
2 ,BC =

383.44 pA and 𝐼w,BC = 162.37 pA and for the epileptic case the parameters 𝑟0,BC = 1.09 Hz,
𝑟1,BC = 104.58 Hz, 𝐼 1

2 ,BC = 487.64 pA and 𝐼w,BC = 107.16 pA. We computed the input current
𝐼e,BC(𝑡) similarly to Eqs. (6.2) to (6.4). Specifically, we replaced

∑
𝑡sp 𝛿(𝑡 − 𝑡sp) with 𝑟PY(𝑡) in

Eqs. (6.2) to (6.4) and additionally replaced 𝐼e,BC𝐼e,BC with 𝐼e,BC/𝑢0,e,BC in Eq. (6.2). The parameters
are set to the values obtained from the fit to the cell-averaged BC data, except for the coupling strength
𝐼e,BC, for the same reason as before. We set 𝐼e,BC = 15 000 pA in the control case and 𝐼e,BC = 10 000 pA
in the epileptic case. We chose these different values as the coupling strength was ∼ 1.5 times higher
in the control compared with the epileptic case for the fit to the cell-averaged BC data. We extracted
the coupling strength from the fit to the cell-averaged BC data by dividing 𝐼e,BC𝐼e,BC by the mean input
resistance of the cells used for the fitting.

Fitting procedure

We fitted the BC model to the voltage traces measured in BCs and the pyramidal cell model to the
current traces measured in pyramidal cells during both the 50 Hz and theta burst protocol. As described
above, we used the fit to the cell-averaged data to describe the behavior of the cell populations as a
whole, which is the characteristic relevant for modeling the feedback circuit. The goal of the fitting
procedure was to minimize following model error:

𝐸 =

√︄
1
𝑁50

∑︁
𝑡50

(𝑌50(𝑡50) − 𝑋50(𝑡50))2 + 1
𝑁TB

∑︁
𝑡TB

(𝑌TB(𝑡TB) − 𝑋TB(𝑡TB))2, (6.13)

where 𝑡50 and 𝑡TB are the time steps in the 50 Hz and theta burst protocol and 𝑁50 and 𝑁TB are their
numbers. 𝑌50(𝑡50) is the experimentally observed potential of the BCs (current in the pyramidal cells)
at time step 𝑡50 in the 50 Hz protocol and 𝑋50(𝑡50) is the corresponding value in our model. Likewise,
𝑌TB(𝑡TB) is the experimentally observed potential of the BCs (current in the pyramidal cells) at time
step 𝑡TB in the theta burst protocol and 𝑋TB(𝑡TB) is the corresponding value in our model. To validate
the fitted parameter combinations in the biologically plausible range of parameters, we generated error
surfaces. This approach safeguards against local minima and allows to display the parameter region
that yields good fits and its localization (see Fig. 6.4C,D). The first step was to compute the model error
on a regular grid in the parameter space. This grid was located in a region of biologically plausible
parameter values (see Tables 6.1 and 6.2). In the case of the BC model, this grid consisted of 108

points, with 10 regularly spaced values for each of the 8 parameters; and in the case of the pyramidal
cell model, it consisted of 137 points, with 13 regularly spaced values for each of the 7 parameters (see
Fig. 6.4C,D). In the second step, we first determined the local minima of the model error on this grid.
Starting from each of the found minima, we then performed a localized grid search to further minimize
the model error. Typically, the grid search yielded two parameter sets with similarly small fitting

111

Chapter 6 Modeling feedback inhibition in epilepsy

error, whose only substantial differences were that one of the sets exhibited no short-term facilitation
whereas the other point exhibited a small amount of facilitation (e.g., large 𝑢f,e,BC but small 𝜏fac,e,BC).
This indicates that facilitation is negligible. We thus chose the point corresponding to the simpler
model without short-term facilitation for the further analysis.

6.3 Results

All canonical feedback circuits consist of the same key elements: excitatory connections from a
principal cell population that synaptically recruit inhibitory interneurons, which then inhibit the
principal cell population. We have systematically examined the properties of the key elements of
feedback circuits in the hippocampal CA1 region, and how they change in chronic epilepsy.

6.3.1 Altered activation of CA1 interneurons within feedback microcircuits

We first determined the properties of feedback activation of three categories of CA1 interneurons
targeting different areas of the somatodendritic axis of pyramidal cells (Fig. 6.1A,B). Only interneurons
that could be unambiguously classified into one of these three categories based on their axon morphology
were included in this study (see Materials and Methods). The first category consisted of BCs that
innervate pyramidal cell somata (Fig. 6.1A left). A second group included cells that target the proximal
dendrites of pyramidal cells in stratum radiatum and oriens (i.e., bistratified cells) [80], as well as cells
that additionally innervate stratum pyramidale (i.e., trilaminar cells) and were collectively termed PDs.
Third, we examined OLM interneurons with somata located in stratum oriens and axonal projections
innervating the distal pyramidal cell dendrites in stratum lacunosum moleculare. Finally, we also
examined CA1 pyramidal neurons in sham-control and epileptic animals (Fig. 6.1A right). As BCs
provide the dominant perisomatic inhibition to pyramidal neurons and showed the most robust changes
in feedback activation and intrinsic properties in chronic epilepsy, we focus on them in this thesis.

In the three groups of interneurons, we then asked how they are recruited by feedback excitatory
inputs from CA1 pyramidal neurons. Therefor, we first considered a 50 Hz stimulus train (10
stimulations; Fig. 6.1C left). Feedback excitation elicited with a stimulus electrode placed into the
alveus revealed distinctive forms of short-term plasticity in the different types of CA1 interneurons in
sham-control animals, as described previously [227]. BCs received a large amplitude excitatory input
at the beginning of a 50 Hz stimulus train (10 stimulations) that was followed by synaptic depression
(by −47.3(115) %, 𝑛 = 7; Fig. 6.1D top left). In chronically epileptic animals, BCs displayed no
depression in EPSP size over the stimulus train (0.1(118) %, 𝑛 = 13; Fig. 6.1D bottom left). Out of all
considered interneuron types, only BCs showed significant differences between control and epileptic
animals (𝑝 = 0.0084; Mann–Whitney U test).

During exploratory behavior and REM sleep, firing of hippocampal pyramidal cells is phase-locked
to the theta rhythm, a field potential oscillation of 5 Hz to 10 Hz [230]. We therefore explored the
excitation of the different types of interneurons within feedback circuits with a theta burst protocol
consisting of a high-frequency component (three stimuli at 100 Hz) repeated 10 times at a frequency
of 5 Hz (Fig. 6.1C right). The peak response obtained during theta patterned bursts decreased
strongly during the train in BCs of control animals (by −34.6(61) %, 𝑛 = 7; Fig. 6.1D top right). In
epileptic animals, BCs displayed a loss of depression during the theta stimulation train (−8.7(87) %,
𝑛 = 13; Fig. 6.1D bottom right). This significantly differed from sham control animals (𝑝 = 0.0123;

112

6.3 Results

Mann–Whitney U test).

A

50 Hz protocol

10th burst

Theta burst protocol

Basket cells

C

D

B

Figure 6.1: Epilepsy-associated changes in feedback recruitment of basket cells and feedback inhibition onto
pyramidal cells.
(A) Representative morphological reconstructions of a basket and pyramidal cells in sham animals (same as
Fig. 2.1). For the basket cell, axons are shown in blue and dendrites in black. No significant morphological
differences between sham and epileptic animals were found. SLM: stratum lacunosum-moleculare, SR: stratum
radiatum, SP: stratum pyramidiale, SO: stratum oriens, Alv: Alveus.
(B) Schematic diagram illustrating the recorded cell types as well as placement of the stimulus electrode.
(C) Schematics of the stimulation protocols.
(D) Cell-averaged EPSPs measured in basket cells used for the model fitting in response to the 50 Hz protocol
(left) and the theta burst protocol (right) (control and epileptic animals, respectively, 𝑛 = 5 and 𝑛 = 7; for
technical reasons, only a subset of all recorded cells could be used for the model fitting).

6.3.2 Altered firing behavior of interneurons

In addition to the dynamics of the synaptic excitatory drive, the recruitment of interneurons within
inhibitory networks also depends strongly on their intrinsic properties. We thus examined the firing
behavior induced by increasing 1 s current injections in sham-control and epileptic animals for each

113

Chapter 6 Modeling feedback inhibition in epilepsy

of the cell categories (Fig. 6.2; BCs: 𝑛 = 9 and 𝑛 = 6 for sham and epileptic animals, respectively).
The maximally obtained firing rate (with up to 800 pA current injections) was significantly increased
only in pyramidal neurons, but not interneurons (𝑛 = 13, 𝑛 = 14; 22.2(12) Hz vs 29.4(19) Hz for sham
and epileptic animals, respectively; 𝑝 = 0.0070; Student’s t test). We then determined the current
injection needed to achieve half-maximal discharge rates through sigmoidal fits to the individual
cells. We found a pronounced shift of the input-output relation in BCs (316(55) pA vs 519(55) pA
for sham and epileptic animals, respectively, 𝑝 = 0.0266; Student’s t tests). A similar change was
seen in pyramidal neurons (259(19) pA vs 382(26) pA for sham and epileptic animals, respectively,
𝑝 = 0.0009, Student’s t test). Thus, in addition to changes in the properties of excitatory synapses
driving them, there are large differences in intrinsic properties that reduce the ability of BCs to be
recruited synaptically. Furthermore, pyramidal cells in epileptic animals can in principle reach higher
activity levels.

A

B

Figure 6.2: Excitability of basket and pyramidal cells in epileptic animals is altered.
(A) Representative discharge responses of a basket (left) and pyramidal (right) cell to 1 s current injections in
sham (top) and epileptic (bottom) animals.
(B) Input-output relation of basket and pyramidal cells. The average firing rate was calculated and plotted
versus the current injection. Solid lines indicate sigmoidal fits to the average data.

114

6.3 Results

6.3.3 Altered recruitment of feedback inhibition onto pyramidal cells in chronic
epilepsy

How do these changes collectively impact the time course and magnitude of feedback inhibition onto
CA1 pyramidal cells? We directly examined this question by recording feedback inhibition elicited by
alveus stimulation in control and epileptic animals in CA1 pyramidal neurons (Fig. 6.3). During 50 Hz
stimulation (Fig. 6.3B,C left), the amplitude of IPSCs in control animals decreased strongly from the
first to the 10th stimulus, with an average decrease of −77.8(17) % (𝑛 = 25). In pilocarpine-treated
animals, the depression in amplitude was significantly diminished (average decrease: −44.9(76) %,
𝑛 = 15; 𝑝 = 0.0001, Mann–Whitney U test).

We next compared the absolute amplitude of the IPSCs elicited at the beginning and the end of the
stimulus trains in pilocarpine-treated and control animals. In control animals, the first IPSC had an
average amplitude of 197.5(237) pA, whereas in epileptic animals, IPSC amplitude was significantly
smaller (85.0(171) pA, 𝑝 < 0.0001, Bonferroni’s multiple-comparisons post test). In contrast, the
amplitude of the 10th IPSC in the stimulus train was not significantly changed in epileptic animals
(𝑝 > 0.9999, Bonferroni’s multiple-comparisons post test).

During theta patterned feedback stimulation, the differences in feedback inhibitory dynamics
between control and epileptic animals were even more pronounced than during 50 Hz stimulation
(Fig. 6.3B,C right). In control animals, the IPSC amplitude decreased by −51.44(381) % (𝑛 = 9)
from the first to the 10th burst. In epileptic animals, this phenomenon was strongly attenuated,
with an average reduction of peak IPSC amplitude of only −10.16(1101) % (𝑛 = 9, 𝑝 = 0.0040,
Mann–Whitney U test). As for the 50 Hz stimulation trains, epileptic animals displayed a strong
reduction of IPSC amplitudes at the first burst stimulation in the train, but not the last (Bonferroni’s
multiple-comparison post test of control vs treatment: 𝑝 < 0.0001 and 𝑝 = 0.6395 for first and 10th
stimulus, respectively). Thus, net inhibition of the feedback circuit shows markedly changed dynamics.

6.3.4 Generation of a computational model of the feedback circuit

Generation of a simple population model allowed us to further interpret our data. The changes between
the response properties of neuron populations in sham-control and epileptic animals were reflected
by quantitative and qualitative changes of model parameters. A mentioned earlier, we focused on
inhibitory BC populations because we expected them to be most influential for controlling spike output
of CA1 neurons.

The pyramidal neuron and BC population activities are represented by two population rates, 𝑟PY(𝑡)
and 𝑟BC(𝑡), respectively (see Fig. 6.5A; see Section 6.2). We first modeled the feedback excitatory
synapse activating BCs and the average BC population response to excitatory stimulation using a
current-based synapse that exhibits STP and a simple leaky integrator model of the BC population.
Short-term depression is modeled as depletion of a continuously replenishing pool of vesicles, where
the “asymptotic release fraction” corresponds to the release fraction of vesicles assuming an infinitely
long preceding interspike interval and the “timescale” measures how long replenishment takes. We
determined the values of the model parameters that best capture the dynamics of activation of BCs
by fitting the model to the average of the voltage traces measured in response to the stimulation of
feedback excitatory synapses (as shown in Fig. 6.1). This provided an accurate description of the
excitatory drive to the population of BCs (see Section 6.2).

The model allowed a good fit to the experimental data both in control animals and epileptic animals

115

Chapter 6 Modeling feedback inhibition in epilepsy

50 Hz protocol

10th burst

Theta burst protocol

Pyramidal cells

A

B

C

Figure 6.3: Epilepsy-associated changes in feedback inhibition onto pyramidal cells.
(A,B) Same as Fig. 6.1B,C.
(C) Cell-averaged IPSCs measured in pyramidal cells in response to the 50 Hz protocol (left) and the theta burst
protocol (right) (control and epileptic animals, respectively, 𝑛 = 9 and 𝑛 = 7; for technical reasons, only a subset
of all recorded cells could be used for the model fitting).

(Fig. 6.4A, left vs right; 𝑅2 = 0.98 for both control and epileptic animals) and yields quantitative
estimates for the effective characteristics of the BC population, such as the asymptotic release fraction
and the timescale of replenishment. To verify that the fitting procedure was not trapped in a local
minimum and to determine how sensitive the model error is to deviations from the found minimum, we
computed the model error on a coarse-grained grid in parameter space. To visualize this approximate
error surface, we projected the grid on the two key parameters describing short-term depression,
asymptotic release fraction and timescale of replenishment, where all other parameters are optimized
for a given combination of the two. The model only reproduces the data in control animals well
if the asymptotic release fraction and the replenishment timescale lie close to the minimum found
by the fit. In contrast, in the epileptic case, the model yields good results if either the asymptotic
release fraction or the replenishment timescale is near minimal (Fig. 6.4C). This qualitative difference
reflects the fact that short-term depression becomes negligible in epileptic animals. Incorporation of
synaptic facilitation did not markedly improve the fit in sham and epileptic animals, indicating that it
is negligible in the mean population output (Table 6.1).

Next, we considered the BC-to-pyramidal cell synapse, again using a current-based model including

116

6.3 Results

STP. The already obtained model for the BC responses to excitatory stimulation allowed us to fit the
model parameters describing the pyramidal cells and the BC-to-pyramidal cell synapse to the IPSC
traces measured in response to stimulation in the alveus (Fig. 6.3). Again, the fit to data obtained from
both control animals and epileptic animals was good (Fig. 6.4B; 𝑅2 = 0.95 and 𝑅2 = 0.93 for control
and epileptic animals, respectively). Using the same approach as before, we determined an approximate
error surface over the parameters describing the short-term depression of the BC-to-pyramidal cell
inhibitory synapse, which was not directly experimentally measured in this study (Fig. 6.4D, Table 6.2).
The results indicate that short-term depression is negligible in epileptic and weak in control animals.

A B

C D

Figure 6.4: Modeling of a feedback inhibitory circuit.
(A) Cell-averaged EPSPs measured in BCs (blue traces; control and epileptic animals, respectively, 𝑛 = 5 and
𝑛 = 7) and EPSPs obtained from the fit of the model to these data (orange traces). Data and fit for both the
50 Hz protocol (top) and the theta burst protocol (bottom) are shown. Scale bars hold for all EPSPs that are in
the same row.
(C) Error between experimentally measured EPSPs and EPSPs obtained from the model as a function of the
parameters describing short-term depression. Bottom, close-up view of the error surface around the parameters
obtained from the fit of the model to the data (crosses).
(B,D) Same as in (A,C), but for the IPSCs measured in pyramidal cells in control and epileptic animals (𝑛 = 9
and 𝑛 = 7).

117

Chapter 6 Modeling feedback inhibition in epilepsy

𝜏d,BC (ms) _ 𝜏e,BC (ms) 𝐼e,BC (mV) 𝜏RRP,e,BC (ms) 𝑢0,e,BC 𝜏fac,e,BC (ms) 𝑢f,e,BC Model error (mV)

Search space 10 – 100 -1 – 0 0.005 – 5 0.02 – 20 5 – 5000 0.001 – 1 5 – 5000 0 – 1

Sham-control 55.5 -0.952 1.790 6.82 841 0.185 5 0.000 0.212
Epileptic 56.8 -0.461 1.938 2.44 1856 0.018 5 0.000 0.219

Table 6.1: Parameters values found by the fitting procedure for the basket cell data in the control and epileptic
case. The first row shows the parameter bounds within which the parameter space was searched for optimal
values. 𝜏d,BC, Membrane time constant; _, strength of nonlinearity of membrane potential; 𝜏e,BC, synaptic time
constant; 𝐼e,BC, impact strength of released fraction of neurotransmitters; 𝜏RRP,e,BC, time constant of synaptic
depression; 𝑢0,e,BC, asynptotic release fraction; 𝜏fac,e,BC, time constant of synaptic facilitation; 𝑢f,e,BC, increase
of release fraction after a presynaptic spike; Model error, error between data and model. Parameters correspond
to the basket cell population or the pyramidal cell-to-basket cell synapse.

𝜏i,PY (ms) 𝐼i,PY (pA) 𝜏RRP,i,PY (ms) 𝑢0,i,PY 𝜏fac,i,PY (ms) 𝑢f,i,PY 𝐼e,BC (mV) Model error (mV)

Search space 0.015 – 15 0.1 – 500 5 – 5000 0.001 – 1 5 – 5000 0 – 1 3 – 300

Sham-control 12.88 33.0 57 0.194 5 0.0 74.3 3.792
Epileptic 9.66 30.2 561 0.064 5 0.0 33.5 3.711

Table 6.2: Parameters values found by the fitting procedure for the pyramidal cell data in the control and
epileptic case. The first row shows the parameter bounds within which the parameter space was searched for
optimal values. 𝜏i,PY, synaptic time constant; 𝐼i,PY, impact strength of released fraction of neurotransmitters;
𝜏RRP,i,PY, time constant of synaptic depression; 𝑢0,i,PY, asynptotic release fraction; 𝜏fac,i,PY, time constant of
synaptic facilitation; 𝑢f,i,PY, increase of release fraction after a presynaptic spike; Model error, error between
data and model. Parameters correspond to the pyramidal cell population or the basket cell-to-pyramidal cell
synapse.

6.3.5 Consequences of altered feedback circuits: altered burst transmission from CA3
via CA1

We then asked what the consequences of the observed changes in the feedback circuit are for input-
output conversion in the CA1 region. The experimental data show that recruitment of perisomatic
inhibition in feedback networks is substantially altered, via both changes in intrinsic interneuron
properties and their synaptic recruitment. These changes predict a substantial decrease in the initial
inhibition that can be recruited when the CA1 pyramidal ensemble begins to discharge synchronously.
Under conditions under which CA3 cells are synchronously active, as during epileptiform burst activity,
feedback inhibition may then be particularly inefficient in controlling CA1 pyramidal cell excitability.

To test this prediction, we generated a model of the complete inhibitory feedback motif for the control
and epileptic case, using the components described above (Fig. 6.5A; see Section 6.2). The feedback
circuit model was then probed with inputs from CA3 that were systematically varied. Specifically, the
input was represented by a rate, which increased with various degrees of steepness, and then stayed
constant for 80 ms, thereafter dropping to zero again (Fig. 6.5B; 𝑟IN, example for rate increase from
0 Hz to 70 Hz over 150 ms). These parameters were chosen based on the frequency and duration of
CA3 ripples or epileptic bursts [96, 97, 231]. The entirety of the epilepsy-induced changes led to
decreased BC activity and increased pyramidal cell activity (Fig. 6.5B; 𝑟BC and 𝑟PY, respectively;
Fig. 6.5C,D). These changes were robust over a wide range of input rise times and maximal rates
(Fig. 6.5C,D). Notably, the increase of pyramidal cell activity was especially pronounced for short rise
times, which are typical for the initial phase of epileptic bursts (Fig. 6.5D, right). Hence, these results

118

6.3 Results

predict that the changes in CA1 during development of epilepsy promote the transmission of epileptic
bursts from CA3 to other parts of the brain.

200 300

0 100
0

25
50
70

r IN
[H

z]

0

0.5

1

x BC

0

0.1

0.2

u BC

0

200

400

I BC
[p

A]
0

25

50

r BC
[H

z]

0

0.5

1

x PY

0

0.1

0.2

u PY

0
200
400

I PY
[p

A]

0 100 200 300
Time [ms]

0

10

20

r PY
[H

z]

Sham

0 150 500 1000
Rise time [ms]

1

50

70

100

M
ax

 r
IN

[H
z]

50 100 150
BC spikes

Post SE

0 150 500 1000
Rise time [ms]

1

50

70

100

0 150 500 1000
Rise time [ms]

1

50

70

100

0.2 0.6 1

BC spikes
post SE over sham

Sham

0 150 500 1000
Rise time [ms]

1

50

70

100

M
ax

 r
IN

[H
z]

50 100 150
PY spikes

Post SE

0 150 500 1000
Rise time [ms]

1

50

70

100

0 150 500 1000
Rise time [ms]

1

50

70

100

1.2 1.4 1.6

PY spikes
post SE over sham

Sham
Post SE

rBC

rIN

rPY

BA

C

D

150

Figure 6.5: Increased burst transmission caused by altered dynamics of feedback inhibition.
(A) Schematic diagram of the model components.
(B) Example time evolution of all model variables in the control (orange) and epileptic case (purple) for an
example input (top). 𝑥BC is the fraction of available neurotransmitter in the readily releasable pool of vesicles,
and 𝑢BC is the release fraction of neurotransmitter for the pyramidal cell-to-BC synapse. IBC is the total input
current to the BCs. 𝑥PY, 𝑢PY, and 𝐼PY are the corresponding quantities for the BC-to-pyramidal cell synapse
and the pyramidal cells (see Section 6.2).
(C) Number of spikes of the BCs in the epileptic case and in the control case (left subpanels) and their ratio for
different input rise times and maximal firing rates (right subpanel). Red lines indicate the parameters shown in
(B).
(D) Same as (C) but for pyramidal cells.

119

Chapter 6 Modeling feedback inhibition in epilepsy

6.4 Discussion

In this chapter, we demonstrate and quantify major functional changes in feedback inhibition in chronic
epilepsy, consisting of both intrinsic and synaptic changes. Collectively, these changes result in altered
dynamics of CA1 feedback inhibition and predict decreased filtering of burst-like activity from the
CA3 region.

Feedback inhibition plays a crucial role in controlling excitability of pyramidal neurons. Feedback
excitation of perisomatically inhibiting interneurons normally shows strong short-term depression,
as shown previously [226, 227, 232]. This is markedly changed in epilepsy, leading to a profound
reduction of initial perisomatic inhibition. To assess the consequences of these and the other observed
changes on the input-output properties of the CA1 region, we developed a simple, biologically plausible
CA1 circuit model of the feedback inhibitory motif. The model was systematically fitted to our
experimental data generated for the different elements in the feedback circuit. Probing it with inputs
from CA3, we find that the epilepsy-associated changes in the feedback inhibitory motif cause an
increased CA1 output. Notably, the increase is particularly pronounced in the case of steep rises of the
input signal from CA3, which are typical for the initial phase of epileptic bursts. This indicates that
the changes in CA1 during development of epilepsy foster the transmission of epileptic bursts from
CA3 to other parts of the brain.

These findings may also be relevant to burst-like inputs occurring during sharp-wave ripple
oscillations, which are driven by CA3 pyramidal neurons. In the normal brain, both basket and PD
interneurons are efficiently recruited by such activity patterns. Accordingly, feedback inhibition
impinging on the soma and proximal dendrites during these input patterns is strong. In epileptic animals,
sharp-wave ripples are also observed, with distinct and more variable spectral features [98, 99]. In
keeping with the predictions of our model, CA1 cells fired more in epileptic animals during sharp-wave
ripples, as well as participating indiscriminately in multiple types of sharp-wave ripple events [99].
Moreover, these changes seemed to be due to altered excitation-inhibition balance, according to
intracellular measurements of synaptic conductances, as well as pharmacological experiments. Thus,
the circuit abnormality we have demonstrated appears to be relevant in vivo. Moreover, the deficit
in inhibitory efficacy and timing of inhibition may interfere with proper ensemble selection of CA1
ensembles during sharp-wave ripples, which would be expected to degrade the information capacity
of CA1 networks [99]. Because precise activation of CA1 ensembles during sharp-wave ripples is
important for memory formation [75, 233], these findings are likely also relevant for impaired memory
formation in the epileptic hippocampus.

In addition to the changes in short-term dynamics, we describe a pronounced decrease in intrinsic
excitability of BCs. Notably, in contrast to the synaptic mechanisms described above, this change
will impact interneuron excitability regardless of whether they are being recruited in feedback or
feedforward circuits.

In the pilocarpine model, a number of studies have addressed the dysfunction of GABAergic systems.
Consistent with our results regarding GABAergic bouton density (see our article [4]), the number
of GABAergic boutons innervating CA1 pyramidal cell somata was not reduced in the pilocarpine
model [77] as well as human tissue [234]. There was also no loss of spontaneous GABAergic IPSCs
in CA1 pyramidal neurons [235–237]. However, there are more subtle effects regarding changes
in specific subtypes of perisomatic interneurons in this model. There is a selective reduction in
perisomatic CA1 pyramidal cell innervation from CCK-expressing BCs, with a loss of CCK and CB1
receptor-expressing boutons, whereas PV-expressing boutons [77] and PV-expressing somata in the

120

6.4 Discussion

pyramidal cell layer [76] were unchanged. We did not differentiate between PV and CCK BCs in our
analyses, but our finding of altered dynamics of feedback excitation may compound changes due to an
altered composition of perisomatic inhibition.

The changes we describe interact with changes in excitatory neurons. One prominent change in the
CA1 region is an increase in intrinsic bursting behavior [238–240]. This change is likely relevant
for seizure initiation because spontaneously occurring burst discharges precede seizure-like activity
in hippocampal slices [238]. Our results predict that synchronized bursting of pyramidal neurons
would be less controlled by recurrent inhibition. This would hold true if the bursting is driven by rapid
increases of CA3 activity.

In conclusion, we demonstrate multiple changes in interneurons involved in feedback inhibition and
in their recruitment. These conspire to cause pronounced impairment of a canonical inhibitory motif
in chronic epilepsy, which may be an important contributor to the generation and spread of aberrant
activity.

121

CHAPTER 7

Summary and outlook

In this thesis, we have investigated different forms of connection weight changes in network models of
neural circuits from a dynamical systems’ perspective. We considered the ability of weight changes
to shape network dynamics taking into account, for example, the stability and dimensionality of
the dynamics and emergent phenomena such as synchronous activity. Our results provide novel
insights for the roles of synaptic plasticity for learning, for the drift of neural representations and for
epilepsy-associated changes of neural dynamics.

In Chapter 3 we have developed a novel scheme for dynamical supervised learning. We constructed
networks that learn dynamically by pretraining their connection weights. Crucially and in contrast
to previous approaches [33–46], our scheme does not depend on continuous target feedback after
the dynamical learning has finished. We achieved this by stabilizing the network dynamics after
learning by fixing the feedback of a context neuron. We demonstrated the feasibility of our approach
by applying it to a set of example tasks, which are of comparable difficulty as those used to introduce
FORCE learning [125]. Further, we studied the mechanisms and thoroughly investigated the properties
of our dynamical learning.

Our scheme provides a novel candidate mechanism for learning in the brain when the usual paradigm
of weight learning might be too slow and/or when similar tasks have been experienced before. While
there is substantial evidence that the brain learns to learn [25, 129], there are rarely any experimental
studies that directly consider learning without weight changes [28]. Our results indicate that dynamical
supervised learning of complicated, even chaotic dynamics is possible. Further, previous work showed
that dynamical reinforcement learning is possible [32, 130, 131]. We thus think that dynamical
learning is an interesting field for future experimental studies. Theoretical studies on dynamical
learning have so far been conducted in rather abstract neural networks. Bringing them closer to real
neural networks is an important task for the future.

Besides being a model for biological neural networks, our scheme may also be useful for neuro-
morphic and physical reservoir computing, where it could replace the performance-limiting weight
learning [49–53, 163]. For this, it would be advantageous if the capabilities of our approach could
be expanded. This holds in particular for the learning of dynamics that differ considerably from the
pretrained ones or are variable in a high-dimensional parameter. A starting point could be to adjust
the network architecture, since recent work on similar networks indicate that a low-rank weight matrix
improves the generalization performance [241].

While much research on weight learning is focused on activity-dependent update rules, in Chapter 4

123

Chapter 7 Summary and outlook

we have considered WP learning, which utilizes random weight changes. We have shown that it
performs better than NP if the task consists of trials that have a long duration and capture most of
the task’s content. Specifically, using Wick’s theorem, we derived analytical expressions for the
error dynamics of WP, NP and gradient descent for single-layer linear perceptrons performing a
temporally extended, student-teacher task. We then demonstrated numerically that our analytical
results qualitatively extend to more complex networks and standard biological and machine learning
tasks. In fact, we find that WP’s performance is more robust to deviations of the network architecture
from single-layer linear networks compared to NP’s.

Our results dispute the long-standing belief that NP is to be preferred over WP with regard to
performance. NP is regularly used as a simple reference algorithm for other learning rules that are
suggested for biologically plausible learning and are typically more complex [113, 196]. Our findings
indicate that WP might often be the better choice. With regard to biological plausibility, WP is also
attractive as recent experimental studies indicate strong, spontaneous weight changes [22–24]. Such
weight changes may be caused by an implementation of WP in the brain.

Remarkably, we found that WP’s performance does not suffer much from increasing the number of
layers in the MNIST task. A natural next step would be to check how it performs for more complex
tasks in deep networks with more than three layers. While it is not to be expected that WP could
compete with gradient descent given our analytical and numerical findings, this would further elucidate
WP’s applicability for learning in the brain and learning in general.

In Chapter 5, we have shown how the combination of STDP and homeostatic normalization together
with noisy spiking can give rise to drifting assemblies. To this end, we first used numerical simulations
and analyzed the simulation results. Then, we constructed a simplified model of the weight dynamics,
which showed that the neuron switching dynamics can be viewed as a random walk between meta-stable
states with noise-induced transitions between them. It further showed that the inhomogeneous noise
alone is sufficient to induce multistability.

Our model stands in profound contrast to previous models of memories, which assume static
assemblies [67]. It accounts for the recent experimental observations that neural representations of
memories are changing while behavior is stable [63–65]. It is based on synaptic plasticity mechanisms,
which drive the assembly drift but also implement compensatory learning, thus keeping the assemblies
and associated memories intact. For the future, it would be important to study how novel memories
can be learned in our model. Imprinting novel assemblies into the network could provide a solution.
Another interesting question is if other neural structures than distinct assemblies, such as sequences,
can drift. This could be relevant, for example, for the learning of temporal visual sequences: In an
experimental study it was shown that the neural representations of such sequences vanish in primary
visual cortex [242], possibly due to ongoing synaptic plasticity as suggested by a modeling study [243].
It may be that the long-term storage of such sequences relies on the drift of the neural representations
into other brain regions, where they persist.

Finally, in Chapter 6, we have considered the feedback inhibitory motif in epilepsy. We constructed
an effective network model for feedback inhibition in CA1 based on experimental results from healthy
and epileptic rats. It consists of an excitatory-inhibitory feedback loop with synapses that exhibit
STP. We fitted its individual parts to the experimental data using a grid search in parameter space.
Afterwards, we tested how it behaves under external stimulation mimicking input from CA3. We
found that the epilepsy-associated changes appear to promote the transmission of burst-like activity
from CA3 to other parts of the brain.

Our combined experimental and theoretical approach is the first to show that altered feedback

124

inhibition might be a crucial component for the spread and generation of epilepsy-associated activity.
Experimentally, it would be interesting to check our model predictions directly by recording the output
of pyramidal cells in CA1 in response to burst-like input. Theoretically, one could take our results on
how model parameters change in epilepsy and use them in detailed models of SPW/Rs in CA1 (e.g.
ref. [81]). This would allow comparing in detail how SPW/Rs change in models with how they change
in experiments due to epilepsy [99].

125

Bibliography

[1] C. Klos et al., Dynamical Learning of Dynamics, Phys. Rev. Lett. 125 (2020) 088103.
[2] P. Züge, C. Klos, and R.-M. Memmesheimer, Weight perturbation learning outperforms node

perturbation on broad classes of temporally extended tasks, 2021,
bioRxiv: 2021.10.04.463055.

[3] Y. F. Kalle Kossio et al., Drifting assemblies for persistent memory: Neuron transitions and
unsupervised compensation, PNAS 118 (2021).

[4] L. Pothmann et al., Altered Dynamics of Canonical Feedback Inhibition Predicts Increased
Burst Transmission in Chronic Epilepsy, Journal of Neuroscience 39 (2019) 8998.

[5] E. R. Kandel et al., eds., Principles of Neural Science, 5th ed., Mcgraw-Hill, 2012.
[6] M. F. Bear, B. W. Connors, and M. A. Paradiso, Neuroscience — Exploring the Brain, 3rd ed.,

Wolters Kluwer, 2016.
[7] S. Herculano-Houzel, The remarkable, yet not extraordinary, human brain as a scaled-up

primate brain and its associated cost, PNAS 109 (2012) 10661.
[8] M. E. J. Newman, Networks, 2nd ed., Oxford University Press, 2018.
[9] P. Dayan and L. F. Abbott,

Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems,
1st ed., MIT Press, 2001.

[10] W. Gerstner et al.,
Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition, 1st ed.,
Cambridge University Press, 2014.

[11] M. E. J. Newman, Resource Letter CS–1: Complex Systems,
American Journal of Physics 79 (2011) 800.

[12] J. J. Hopfield,
Neural networks and physical systems with emergent collective computational abilities,
PNAS 79 (1982) 2554.

[13] H. Sompolinsky, A. Crisanti, and H. J. Sommers, Chaos in Random Neural Networks,
Physical Review Letters 61 (1988) 259.

[14] C. van Vreeswijk and H. Sompolinsky,
Chaos in Neuronal Networks with Balanced Excitatory and Inhibitory Activity,
Science 274 (1996) 1724.

[15] N. Brunel,
Dynamics of Sparsely Connected Networks of Excitatory and Inhibitory Spiking Neurons,
Journal of Computational Neuroscience 8 (2000) 183.

127

http://dx.doi.org/10.1103/PhysRevLett.125.088103
2021.10.04.463055
http://dx.doi.org/10.1073/pnas.2023832118
http://dx.doi.org/10.1523/JNEUROSCI.2594-18.2019
http://dx.doi.org/10.1073/pnas.1201895109
http://dx.doi.org/10.1119/1.3590372
http://dx.doi.org/10.1073/pnas.79.8.2554
http://dx.doi.org/10.1103/PhysRevLett.61.259
http://dx.doi.org/10.1126/science.274.5293.1724
http://dx.doi.org/10.1023/A:1008925309027

Bibliography

[16] S. Haykin, Neural Networks and Learning Machines, 3rd ed.,
Cambridge University Press, 2008.

[17] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, 1st ed.,
http://www.deeplearningbook.org, MIT Press, 2016.

[18] D. Hassabis et al., Neuroscience-Inspired Artificial Intelligence, Neuron 95 (2017) 245.

[19] T. P. Lillicrap et al., Backpropagation and the brain,
Nature Reviews Neuroscience 21 (2020) 335.

[20] D. L. K. Yamins and J. J. DiCarlo,
Using goal-driven deep learning models to understand sensory cortex,
Nature Neuroscience 19 (2016) 356.

[21] J. Sjöström and W. Gerstner, Spike-timing dependent plasticity,
Scholarpedia 5 (2010) 1362, revision #184913.

[22] H. Kasai et al., Spine dynamics in the brain, mental disorders and artificial neural networks,
Nature Reviews Neuroscience 22 (2021) 407.

[23] K. P. Berry and E. Nedivi, Spine Dynamics: Are They All the Same? Neuron 96 (2017) 43.

[24] N. E. Ziv and N. Brenner,
Synaptic Tenacity or Lack Thereof: Spontaneous Remodeling of Synapses,
Trends in Neurosciences 41 (2018) 89.

[25] D. A. Braun, C. Mehring, and D. M. Wolpert, Structure learning in action,
Behavioural Brain Research 206 (2010) 157.

[26] K. Oberauer, Is Rehearsal an Effective Maintenance Strategy for Working Memory?
Trends in Cognitive Sciences 23 (2019) 798.

[27] R. Froemke, D. Debanne, and G.-Q. Bi,
Temporal modulation of spike-timing-dependent plasticity,
Frontiers in Synaptic Neuroscience 2 (2010) 19.

[28] M. G. Perich, J. A. Gallego, and L. E. Miller,
A Neural Population Mechanism for Rapid Learning, Neuron 100 (2018) 964.

[29] K.-i. Funahashi and Y. Nakamura,
Approximation of dynamical systems by continuous time recurrent neural networks,
Neural Networks 6 (1993) 801.

[30] N. E. Cotter and P. R. Conwell, “Fixed-weight Networks Can Learn,”
1990 IJCNN International Joint Conference on Neural Networks, 1990 553.

[31] N. E. Cotter and P. R. Conwell, “Learning Algorithms and Fixed Dynamics,”
IJCNN-91-Seattle International Joint Conference on Neural Networks, 1991 799.

[32] J. X. Wang et al., Prefrontal cortex as a meta-reinforcement learning system,
Nature Neuroscience 21 (2018) 860.

[33] G. Bellec et al.,
Long short-term memory and learning-to-learn in networks of spiking neurons, 2018,
arXiv: 1803.09574 [cs.NE].

128

http://www.deeplearningbook.org
http://dx.doi.org/10.1016/j.neuron.2017.06.011
http://dx.doi.org/10.1038/s41583-020-0277-3
http://dx.doi.org/10.1038/nn.4244
http://dx.doi.org/10.4249/scholarpedia.1362
http://dx.doi.org/10.1038/s41583-021-00467-3
http://dx.doi.org/10.1016/j.neuron.2017.08.008
http://dx.doi.org/10.1016/j.tins.2017.12.003
http://dx.doi.org/10.1016/j.bbr.2009.08.031
http://dx.doi.org/10.1016/j.tics.2019.06.002
http://dx.doi.org/10.3389/fnsyn.2010.00019
http://dx.doi.org/10.1016/j.neuron.2018.09.030
http://dx.doi.org/10.1016/S0893-6080(05)80125-X
http://dx.doi.org/10.1038/s41593-018-0147-8
https://arxiv.org/abs/1803.09574

[34] L. Feldkamp, G. Puskorius, and P. Moore, “Adaptation from fixed weight dynamic networks,”
Proceedings of International Conference on Neural Networks (ICNN’96), vol. 1, 1996 155.

[35] L. Feldkamp, G. Puskorius, and P. Moore, Adaptive behavior from fixed weight networks,
Information Sciences 98 (1997) 217.

[36] L. Feldkamp and G. Puskorius, “Fixed-weight controller for multiple systems,”
Proceedings of International Conference on Neural Networks (ICNN’97), vol. 2, 1997 773.

[37] A. Younger, P. Conwell, and N. Cotter, Fixed-weight on-line learning,
IEEE Transactions on Neural Networks 10 (1999) 272.

[38] S. Hochreiter, A. S. Younger, and P. R. Conwell,
“Learning to Learn Using Gradient Descent,” Artificial Neural Networks — ICANN 2001,
ed. by G. Dorffner, H. Bischof, and K. Hornik, Springer Berlin Heidelberg, 2001 87.

[39] A. Younger, S. Hochreiter, and P. Conwell, “Meta-learning with backpropagation,” IJCNN’01.
International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222),
vol. 3, 2001 2001.

[40] L. A. Feldkamp, D. V. Prokhorov, and T. M. Feldkamp,
Simple and conditioned adaptive behavior from Kalman filter trained recurrent networks,
Neural Networks 16 (2003) 683.

[41] R. Santiago,
“Context discerning multifunction networks: reformulating fixed weight neural networks,”
2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541),
vol. 1, 2004 189.

[42] M. Lukoševičius, Echo State Networks with Trained Feedbacks,
tech. rep. Technical Report No. 4, Jacobs University Bremen, 2007.

[43] A. Santoro et al., “Meta-Learning with Memory-Augmented Neural Networks,”
Proceedings of The 33rd International Conference on Machine Learning,
ed. by M. F. Balcan and K. Q. Weinberger, vol. 48,
Proceedings of Machine Learning Research, PMLR, 2016 1842.

[44] L. Feldkamp and G. Puskorius, “Training of robust neural controllers,”
Proceedings of 1994 33rd IEEE Conference on Decision and Control, vol. 3, 1994 2754.

[45] L. Feldkamp and G. Puskorius, “Training controllers for robustness: multi-stream DEKF,”
Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN’94), vol. 4,
1994 2377.

[46] M. Oubbati and G. Palm, A neural framework for adaptive robot control,
Neural Computing and Applications 19 (2010) 103.

[47] J. Pathak et al., Model-Free Prediction of Large Spatiotemporally Chaotic Systems from Data:
A Reservoir Computing Approach, Phys. Rev. Lett. 120 (2018) 024102.

[48] R. S. Zimmermann and U. Parlitz,
Observing Spatio-temporal Dynamics of Excitable Media Using Reservoir Computing,
Chaos 28 (2018) 043118.

129

http://dx.doi.org/10.1016/S0020-0255(96)00216-2
http://dx.doi.org/10.1109/72.750553
http://dx.doi.org/10.1016/S0893-6080(03)00127-8
http://dx.doi.org/10.1007/s00521-009-0262-2
http://dx.doi.org/10.1103/PhysRevLett.120.024102
http://dx.doi.org/10.1063/1.5022276

Bibliography

[49] G. Tanaka et al., Recent advances in physical reservoir computing: A review,
Neural Networks 115 (2019) 100.

[50] M. Rafayelyan et al.,
Large-Scale Optical Reservoir Computing for Spatiotemporal Chaotic Systems Prediction,
Phys. Rev. X 10 (2020) 041037.

[51] F. Duport et al., Fully analogue photonic reservoir computer,
Scientific Reports 6 (2016) 22381.

[52] A. N. Tait et al., Neuromorphic photonic networks using silicon photonic weight banks,
Scientific Reports 7 (2017) 7430.

[53] P. Antonik, M. Haelterman, and S. Massar, Brain-Inspired Photonic Signal Processor for
Generating Periodic Patterns and Emulating Chaotic Systems,
Phys. Rev. Applied 7 (2017) 054014.

[54] A. Dembo and T. Kailath, Model-free distributed learning,
IEEE Transactions on Neural Networks 1 (1990) 58.

[55] G. Cauwenberghs,
“A Fast Stochastic Error-Descent Algorithm for Supervised Learning and Optimization,”
Advances in Neural Information Processing Systems,
ed. by S. Hanson, J. Cowan, and C. Giles, vol. 5, 1993.

[56] J. Werfel, X. Xie, and H. S. Seung,
Learning Curves for Stochastic Gradient Descent in Linear Feedforward Networks,
Neural Computation 17 (2005) 2699.

[57] I. R. Fiete and H. S. Seung,
Gradient Learning in Spiking Neural Networks by Dynamic Perturbation of Conductances,
Phys. Rev. Lett. 97 (2006) 048104.

[58] R. Legenstein et al., A Reward-Modulated Hebbian Learning Rule Can Explain
Experimentally Observed Network Reorganization in a Brain Control Task,
Journal of Neuroscience 30 (2010) 8400.

[59] G. M. Hoerzer, R. Legenstein, and W. Maass, Emergence of Complex Computational
Structures From Chaotic Neural Networks Through Reward-Modulated Hebbian Learning,
Cerebral Cortex 24 (2012) 677.

[60] T. Miconi, Biologically plausible learning in recurrent neural networks reproduces neural
dynamics observed during cognitive tasks, eLife 6 (2017) e20899.

[61] I. R. Fiete, M. S. Fee, and H. S. Seung, Model of Birdsong Learning Based on Gradient
Estimation by Dynamic Perturbation of Neural Conductances,
Journal of Neurophysiology 98 (2007) 2038.

[62] H. Saito et al., Statistical mechanics of structural and temporal credit assignment effects on
learning in neural networks, Phys. Rev. E 83 (2011) 051125.

[63] L. A. DeNardo et al.,
Temporal evolution of cortical ensembles promoting remote memory retrieval,
Nature Neuroscience 22 (2019) 460.

130

http://dx.doi.org/10.1016/j.neunet.2019.03.005
http://dx.doi.org/10.1103/PhysRevX.10.041037
http://dx.doi.org/10.1038/srep22381
http://dx.doi.org/10.1038/s41598-017-07754-z
http://dx.doi.org/10.1103/PhysRevApplied.7.054014
http://dx.doi.org/10.1109/72.80205
http://dx.doi.org/10.1162/089976605774320539
http://dx.doi.org/10.1103/PhysRevLett.97.048104
http://dx.doi.org/10.1523/JNEUROSCI.4284-09.2010
http://dx.doi.org/10.1093/cercor/bhs348
http://dx.doi.org/10.7554/eLife.20899
http://dx.doi.org/10.1152/jn.01311.2006
http://dx.doi.org/10.1103/PhysRevE.83.051125
http://dx.doi.org/10.1038/s41593-018-0318-7

[64] C. Clopath et al., Variance and invariance of neuronal long-term representations,
Philosophical Transactions of the Royal Society B: Biological Sciences 372 (2017) 20160161.

[65] M. E. Rule, T. O’Leary, and C. D. Harvey, Causes and consequences of representational drift,
Current Opinion in Neurobiology 58 (2019) 141.

[66] G. Buzsáki, Neural Syntax: Cell Assemblies, Synapsembles, and Readers,
Neuron 68 (2010) 362.

[67] G. Mongillo, S. Rumpel, and Y. Loewenstein, Intrinsic volatility of synaptic connections — a
challenge to the synaptic trace theory of memory,
Current Opinion in Neurobiology 46 (2017) 7.

[68] C. W. Gardiner, Handbook of Stochastic Methods, 3rd ed., Springer, 2004.

[69] L. Arnold, W. Horsthemke, and R. Lefever,
White and coloured external noise and transition phenomena in nonlinear systems,
Zeitschrift für Physik B Condensed Matter and Quanta 29 (1978) 367.

[70] W. Horsthemke and R. Lefever, Noise-Induced Transitions, Springer, 1984.

[71] G. Jetschke, Mathematik der Selbstorganisation,
VEB Deutscher Verlag der Wissenschaften, 1989.

[72] T. Biancalani, L. Dyson, and A. J. McKane,
Noise-Induced Bistable States and Their Mean Switching Time in Foraging Colonies,
Physical Review Letters 112 (2014).

[73] R. S. Fisher et al., Epileptic Seizures and Epilepsy: Definitions Proposed by the International
League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE),
Epilepsia 46 (2005) 470.

[74] P. Andersen et al., eds., The Hippocampus Book, 1st ed., Oxford University Press, 2007.

[75] G. Buzsáki,
Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and planning,
Hippocampus 25 (2015) 1073.

[76] V. André et al., Alterations of hippocampal GABAergic system contribute to development of
spontaneous recurrent seizures in the rat lithium-pilocarpine model of temporal lobe epilepsy,
Hippocampus 11 (2001) 452.

[77] M. S. Wyeth et al., Selective Reduction of Cholecystokinin-Positive Basket Cell Innervation in
a Model of Temporal Lobe Epilepsy, Journal of Neuroscience 30 (2010) 8993.

[78] Leonie Pothmann, Changes of inhibitory micronetworks in the epileptic hippocampus and
their response to anticonvulsant drugs,
PhD thesis: Rheinische Friedrich-Wilhelms-Universität Bonn, 2015,
url: https://hdl.handle.net/20.500.11811/6555.

[79] T. Freund and S. Kali, Interneurons, Scholarpedia 3 (2008) 4720, revision #89023.

[80] P. Somogyi and T. Klausberger,
Defined types of cortical interneurone structure space and spike timing in the hippocampus,
The Journal of Physiology 562 (2005) 9.

131

http://dx.doi.org/10.1098/rstb.2016.0161
http://dx.doi.org/10.1016/j.conb.2019.08.005
http://dx.doi.org/10.1016/j.neuron.2010.09.023
http://dx.doi.org/10.1016/j.conb.2017.06.006
http://dx.doi.org/10.1007/bf01324036
http://dx.doi.org/10.1103/physrevlett.112.038101
http://dx.doi.org/10.1111/j.0013-9580.2005.66104.x
http://dx.doi.org/10.1002/hipo.22488
http://dx.doi.org/10.1002/hipo.1060
http://dx.doi.org/10.1523/JNEUROSCI.1183-10.2010
https://hdl.handle.net/20.500.11811/6555
http://dx.doi.org/10.4249/scholarpedia.4720
http://dx.doi.org/10.1113/jphysiol.2004.078915

Bibliography

[81] W. Braun and R.-M. Memmesheimer, High-frequency oscillations and replay in a
two-population model of hippocampal region CA1, 2021, bioRxiv: 2021.06.08.447523.

[82] M. J. Bezaire and I. Soltesz, Quantitative assessment of CA1 local circuits: Knowledge base
for interneuron-pyramidal cell connectivity, Hippocampus 23 (2013) 751.

[83] H. Seung,
Learning in Spiking Neural Networks by Reinforcement of Stochastic Synaptic Transmission,
Neuron 40 (2003) 1063.

[84] R. K. Mishra et al., Symmetric spike timing-dependent plasticity at CA3–CA3 synapses
optimizes storage and recall in autoassociative networks,
Nature Communications 7 (2016) 11552.

[85] Y. Humeau and D. Choquet, The next generation of approaches to investigate the link between
synaptic plasticity and learning, Nature Neuroscience 22 (2019) 1536.

[86] M. Tsodyks and S. Wu, Short-term synaptic plasticity,
Scholarpedia 8 (2013) 3153, revision #182521.

[87] G.-q. Bi and M.-m. Poo, Synaptic Modifications in Cultured Hippocampal Neurons:
Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type,
Journal of Neuroscience 18 (1998) 10464.

[88] G. Turrigiano, Homeostatic Synaptic Plasticity: Local and Global Mechanisms for Stabilizing
Neuronal Function, Cold Spring Harbor Perspectives in Biology 4 (2012) a005736.

[89] M. Letellier et al., Differential role of pre- and postsynaptic neurons in the activity-dependent
control of synaptic strengths across dendrites, PLOS Biology 17 (2019) e2006223.

[90] S. Rumpel and J. Triesch, The dynamic connectome, e-Neuroforum 7 (3 2016) 48.

[91] R. J. Sutherland et al., Has multiple trace theory been refuted? Hippocampus 30 (2020) 842.

[92] A. Renart et al., The Asynchronous State in Cortical Circuits, Science 327 (2010) 587.

[93] A. Kumar et al., The High-Conductance State of Cortical Networks,
Neural Computation 20 (2008) 1.

[94] Y. Ahmadian and K. D. Miller, What is the dynamical regime of cerebral cortex? 2019,
arXiv: 1908.10101 [q-bio.NC].

[95] G. Buzsáki and A. Draguhn, Neuronal Oscillations in Cortical Networks,
Science 304 (2004) 1926.

[96] G. Foffani et al., Reduced Spike-Timing Reliability Correlates with the Emergence of Fast
Ripples in the Rat Epileptic Hippocampus, Neuron 55 (2007) 930.

[97] P. Jiruska et al.,
Epileptic high-frequency network activity in a model of non-lesional temporal lobe epilepsy,
Brain 133 (2010) 1380.

[98] J. M. Ibarz et al., Emergent Dynamics of Fast Ripples in the Epileptic Hippocampus,
Journal of Neuroscience 30 (2010) 16249.

[99] M. Valero et al., Mechanisms for Selective Single-Cell Reactivation during Offline
Sharp-Wave Ripples and Their Distortion by Fast Ripples, Neuron 94 (2017) 1234.

132

2021.06.08.447523
http://dx.doi.org/10.1002/hipo.22141
http://dx.doi.org/10.1016/S0896-6273(03)00761-X
http://dx.doi.org/10.1038/ncomms11552
http://dx.doi.org/10.1038/s41593-019-0480-6
http://dx.doi.org/10.4249/scholarpedia.3153
http://dx.doi.org/10.1523/JNEUROSCI.18-24-10464.1998
http://dx.doi.org/10.1101/cshperspect.a005736
http://dx.doi.org/10.1371/journal.pbio.2006223
http://dx.doi.org/10.1007/S13295-016-0026-2
http://dx.doi.org/10.1002/hipo.23162
http://dx.doi.org/10.1126/science.1179850
http://dx.doi.org/10.1162/neco.2008.20.1.1
https://arxiv.org/abs/1908.10101
http://dx.doi.org/10.1126/science.1099745
http://dx.doi.org/10.1016/j.neuron.2007.07.040
http://dx.doi.org/10.1093/brain/awq070
http://dx.doi.org/10.1523/JNEUROSCI.3357-10.2010
http://dx.doi.org/10.1016/j.neuron.2017.05.032

[100] M. Jazayeri and S. Ostojic, Interpreting neural computations by examining intrinsic and
embedding dimensionality of neural activity, 2021, arXiv: 2107.04084 [q-bio.NC].

[101] S. Chung and L. F. Abbott, Neural population geometry: An approach for understanding
biological and artificial neural networks, 2021, arXiv: 2104.07059 [q-bio.NC].

[102] P. Gao et al., A theory of multineuronal dimensionality, dynamics and measurement, 2017,
bioRxiv: 214262.

[103] J. A. Gallego et al., Neural Manifolds for the Control of Movement, Neuron 94 (2017) 978.

[104] C. J. Cueva et al., Low-dimensional dynamics for working memory and time encoding,
PNAS 117 (2020) 23021.

[105] A. A. Russo et al., Neural Trajectories in the Supplementary Motor Area and Motor Cortex
Exhibit Distinct Geometries, Compatible with Different Classes of Computation,
Neuron 107 (2020) 745.

[106] H. Markram, Y. Wang, and M. Tsodyks,
Differential signaling via the same axon of neocortical pyramidal neurons,
PNAS 95 (1998) 5323.

[107] C. Tetzlaff et al., Synaptic Scaling in Combination with Many Generic Plasticity Mechanisms
Stabilizes Circuit Connectivity, Frontiers in Computational Neuroscience 5 (2011) 47.

[108] F. Zenke, W. Gerstner, and S. Ganguli,
The temporal paradox of Hebbian learning and homeostatic plasticity,
Current Opinion in Neurobiology 43 (2017) 166.

[109] C. van Vreeswijk and H. Sompolinsky,
Chaotic Balanced State in a Model of Cortical Circuits, Neural Computation 10 (1998) 1321.

[110] G. Hennequin, T. P. Vogels, and W. Gerstner, Optimal Control of Transient Dynamics in
Balanced Networks Supports Generation of Complex Movements, Neuron 82 (2014) 1394.

[111] J. P. Stroud et al.,
Motor primitives in space and time via targeted gain modulation in cortical networks,
Nature Neuroscience 21 (2018) 1774.

[112] D. E. Rumelhart, G. E. Hinton, and R. J. Williams,
Learning representations by back-propagating errors, Nature 323 (1986) 533.

[113] T. P. Lillicrap et al.,
Random synaptic feedback weights support error backpropagation for deep learning,
Nature Communications 7 (2016) 13276.

[114] F. Zenke and S. Ganguli,
SuperSpike: Supervised Learning in Multilayer Spiking Neural Networks,
Neural Computation 30 (2018) 1514.

[115] J. M. Murray, Local online learning in recurrent networks with random feedback,
eLife 8 (2019) e43299.

[116] G. Bellec et al., A solution to the learning dilemma for recurrent networks of spiking neurons,
Nature Communications 11 (2020) 3625.

133

https://arxiv.org/abs/2107.04084
https://arxiv.org/abs/2104.07059
214262
http://dx.doi.org/10.1016/j.neuron.2017.05.025
http://dx.doi.org/10.1073/pnas.1915984117
http://dx.doi.org/10.1016/j.neuron.2020.05.020
http://dx.doi.org/10.1073/pnas.95.9.5323
http://dx.doi.org/10.3389/fncom.2011.00047
http://dx.doi.org/10.1016/j.conb.2017.03.015
http://dx.doi.org/10.1162/089976698300017214
http://dx.doi.org/10.1016/j.neuron.2014.04.045
http://dx.doi.org/10.1038/s41593-018-0276-0
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1038/ncomms13276
http://dx.doi.org/10.1162/neco_a_01086
http://dx.doi.org/10.7554/eLife.43299
http://dx.doi.org/10.1038/s41467-020-17236-y

Bibliography

[117] M. Lukoševičius and H. Jaeger,
Reservoir computing approaches to recurrent neural network training,
Computer Science Review 3 (2009) 127.

[118] H. Jaeger, Echo state network, Scholarpedia 2 (2007) 2330, revision #196567.

[119] T. M. Cover, Geometrical and Statistical Properties of Systems of Linear Inequalities with
Applications in Pattern Recognition,
IEEE Transactions on Electronic Computers EC-14 (1965) 326.

[120] W. Maass, T. Natschläger, and H. Markram, Real-Time Computing Without Stable States: A
New Framework for Neural Computation Based on Perturbations,
Neural Computation 14 (2002) 2531.

[121] H. Jaeger, The “echo state” approach to analysing and training recurrent neural networks,
tech. rep. GMD Report 148,
German National Research Center for Information Technology, 2001.

[122] H. Jaeger and H. Haas, Harnessing Nonlinearity: Predicting Chaotic Systems and Saving
Energy in Wireless Communication, Science 304 (2004) 78.

[123] D. V. Buonomano and M. M. Merzenich, Temporal Information Transformed into a Spatial
Code by a Neural Network with Realistic Properties, Science 267 (1995) 1028.

[124] P. F. Dominey, Complex sensory-motor sequence learning based on recurrent state
representation and reinforcement learning, Biological Cybernetics 73 (1995) 265.

[125] D. Sussillo and L. Abbott,
Generating Coherent Patterns of Activity from Chaotic Neural Networks,
Neuron 63 (2009) 544.

[126] A. Lazar, G. Pipa, and J. Triesch, SORN: a self-organizing recurrent neural network,
Frontiers in Computational Neuroscience 3 (2009) 23.

[127] S. Thrun and L. Pratt, eds., Learning to Learn, 1st ed., Springer US, 1998.

[128] J. Vanschoren, Meta-Learning: A Survey, 2018, arXiv: 1810.03548 [cs.LG].

[129] B. J. Lansdell and K. P. Kording, Towards learning-to-learn,
Current Opinion in Behavioral Sciences 29 (2019) 45.

[130] Y. Duan et al., RL2: Fast Reinforcement Learning via Slow Reinforcement Learning, 2016,
arXiv: 1611.02779 [cs.AI].

[131] A. Nagabandi et al., Learning to Adapt in Dynamic, Real-World Environments Through
Meta-Reinforcement Learning, 2019, arXiv: 1803.11347 [cs.LG].

[132] H. Jaeger et al.,
Optimization and Applications of Echo State Networks with Leaky-integrator Neurons,
Neural Networks 20 (2007) 335.

[133] D. Sussillo and O. Barak, Opening the Black Box: Low-dimensional Dynamics in
High-dimensional Recurrent Neural Networks, Neural Comput. 25 (2013) 626.

[134] M. Lukoševičius, H. Jaeger, and B. Schrauwen, Reservoir Computing Trends,
KI - Künstliche Intelligenz 26 (2012) 365.

134

http://dx.doi.org/10.1016/j.cosrev.2009.03.005
http://dx.doi.org/10.4249/scholarpedia.2330
http://dx.doi.org/10.1109/PGEC.1965.264137
http://dx.doi.org/10.1162/089976602760407955
http://dx.doi.org/10.1126/science.1091277
http://dx.doi.org/10.1126/science.7863330
http://dx.doi.org/10.1007/s004220050182
http://dx.doi.org/10.1016/j.neuron.2009.07.018
http://dx.doi.org/10.3389/neuro.10.023.2009
https://arxiv.org/abs/1810.03548
http://dx.doi.org/10.1016/j.cobeha.2019.04.005
https://arxiv.org/abs/1611.02779
https://arxiv.org/abs/1803.11347
http://dx.doi.org/10.1016/j.neunet.2007.04.016
http://dx.doi.org/10.1162/NECO_a_00409
http://dx.doi.org/10.1007/s13218-012-0204-5

[135] M. Y. Ismail and J. C. Principe,
“Equivalence between RLS Algorithms and the Ridge Regression Technique,”
Proc. Systems and Computers Conf. Record of The Thirtieth Asilomar Conf. Signals, 1996
1083.

[136] V. Mante et al.,
Context-dependent Computation by Recurrent Dynamics in Prefrontal Cortex.,
Nature 503 (2013) 78.

[137] L. F. Abbott, B. DePasquale, and R.-M. Memmesheimer,
Building functional networks of spiking model neurons, Nature Neuroscience 19 (2016) 350.

[138] L. Abbott, K. Rajan, and H. Sompolinsky,
“Interactions between Intrinsic and Stimulus-Evoked Activity in Recurrent Neural Networks,”
The Dynamic Brain: An Exploration of Neuronal Variability and Its Functional Significance,
Oxford University Press, 2011.

[139] M. Oubbati, P. Levi, and M. Schanz,
“Meta-Learning for Adaptive Identification of Non-Linear Dynamical Systems,”
Proceedings of the 2005 IEEE International Symposium on, Mediterrean Conference on
Control and Automation Intelligent Control, 2005. 2005 473.

[140] H. Jaeger and D. Eck,
“Can’t Get You Out of My Head: A Connectionist Model of Cyclic Rehearsal,”
Modeling Communication with Robots and Virtual Humans,
ed. by I. Wachsmuth and G. Knoblich, Springer Berlin Heidelberg, 2008 310.

[141] F. wyffels et al., Frequency modulation of large oscillatory neural networks,
Biological Cybernetics 108 (2014) 145.

[142] K. J. Boström et al.,
Model for a flexible motor memory based on a self-active recurrent neural network,
Human Movement Science 32 (2013) 880.

[143] M. I. Jordan and D. E. Rumelhart,
Forward Models: Supervised Learning with a Distal Teacher,
Cognitive Science 16 (1992) 307.

[144] M. Westover, C. Eliasmith, and C. H. Anderson,
Linearly decodable functions from neural population codes,
Neurocomputing 44-46 (2002) 691.

[145] B. DePasquale et al., Full-force: A Target-based Method for Training Recurrent Networks,
PLoS One 13 (2018) e0191527.

[146] Array programming with NumPy, Nature 585 (2020) 357.
[147] https://github.com/chklos/dynamical-learning.
[148] O. Schütze et al., Using the Averaged Hausdorff Distance as a Performance Measure in

Evolutionary Multiobjective Optimization.,
IEEE Trans. Evolutionary Computation 16 (2012) 504.

[149] H. Jaeger, Controlling Recurrent Neural Networks by Conceptors, 2017,
arXiv: 1403.3369 [cs.NE].

135

http://dx.doi.org/10.1038/nature12742
http://dx.doi.org/10.1038/nn.4241
http://dx.doi.org/10.1007/s00422-013-0584-0
http://dx.doi.org/10.1016/j.humov.2013.07.003
http://dx.doi.org/10.1207/s15516709cog1603_1
http://dx.doi.org/10.1016/S0925-2312(02)00459-9
http://dx.doi.org/10.1371/journal.pone.0191527
http://dx.doi.org/10.1038/s41586-020-2649-2
https://github.com/chklos/dynamical-learning
http://dx.doi.org/10.1109/TEVC.2011.2161872
https://arxiv.org/abs/1403.3369

Bibliography

[150] H. Jaeger, Using Conceptors to Manage Neural Long-Term Memories for Temporal Patterns,
Journal of Machine Learning Research 18 (2017) 1.

[151] M. Jabri and B. Flower, Weight perturbation: an optimal architecture and learning technique
for analog VLSI feedforward and recurrent multilayer networks,
IEEE Transactions on Neural Networks 3 (1992) 154.

[152] C. Beer and O. Barak,
One step back, two steps forward: interference and learning in recurrent neural networks,
2019, arXiv: 1805.09603 [q-bio.NC].

[153] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
Proceedings of the 3rd International Conference on Learning Representations, vol. 3, 2015.

[154] R. L. Redondo and R. G. M. Morris,
Making memories last: the synaptic tagging and capture hypothesis,
Nature Reviews Neuroscience 12 (2011) 17.

[155] Z. Yu et al., CaMKII activation supports reward-based neural network optimization through
Hamiltonian sampling, 2018, arXiv: 1606.00157 [cs.NE].

[156] W. C. Abraham, Metaplasticity: tuning synapses and networks for plasticity,
Nat. Rev. Neurosci. 9 (2008) 387.

[157] G. Puskorius and L. Feldkamp,
Neurocontrol of nonlinear dynamical systems with Kalman filter trained recurrent networks,
IEEE Transactions on Neural Networks 5 (1994) 279.

[158] E. D. Sontag, “Neural Nets As Systems Models and Controllers,”
Proc. Seventh Yale Workshop on Adaptive and Learning Systems, 1992 73.

[159] K.-K. K. Kim, E. R. Patrón, and R. D. Braatz, Standard Representation and Unified Stability
Analysis for Dynamic Artificial Neural Network Models, Neural Networks 98 (2018) 251.

[160] S. Lim and M. S. Goldman,
Balanced Cortical Microcircuitry for Maintaining Information in Working Memory,
Nat. Neurosci. 16 (2013) 1306.

[161] W. Maass, P. Joshi, and E. D. Sontag, Computational Aspects of Feedback in Neural Circuits,
PLOS Computational Biology 3 (2007) 1.

[162] R. Pascanu and H. Jaeger, A neurodynamical model for working memory,
Neural Networks 24 (2011) 199.

[163] E. Chicca et al.,
Neuromorphic Electronic Circuits for Building Autonomous Cognitive Systems,
Proceedings of the IEEE 102 (2014) 1367.

[164] D. Thalmeier et al., Learning Universal Computations with Spikes,
PLOS Computational Biology 12 (2016) 1.

[165] C. D. Schuman et al.,
A Survey of Neuromorphic Computing and Neural Networks in Hardware, 2017,
arXiv: 1705.06963 [cs.NE].

136

http://dx.doi.org/10.1109/72.105429
https://arxiv.org/abs/1805.09603
http://dx.doi.org/10.1038/nrn2963
https://arxiv.org/abs/1606.00157
http://dx.doi.org/10.1038/nrn2356
http://dx.doi.org/10.1109/72.279191
http://dx.doi.org/10.1016/j.neunet.2017.11.014
http://dx.doi.org/10.1038/nn.3492
http://dx.doi.org/10.1371/journal.pcbi.0020165
http://dx.doi.org/10.1016/j.neunet.2010.10.003
http://dx.doi.org/10.1109/JPROC.2014.2313954
http://dx.doi.org/10.1371/journal.pcbi.1004895
https://arxiv.org/abs/1705.06963

[166] K. K. Sreenivasan and M. D’Esposito, The what, where and how of delay activity,
Nature Reviews Neuroscience 20 (2019) 466.

[167] R. J. Williams,
Simple statistical gradient-following algorithms for connectionist reinforcement learning,
Machine Learning 8 (1992) 229.

[168] D. M. Wolpert, J. Diedrichsen, and J. R. Flanagan, Principles of sensorimotor learning,
Nature Reviews Neuroscience 12 (2011) 739.

[169] R. Mooney, J. Prather, and T. Roberts, “Neurophysiology of birdsong learning,”
Learning and Memory, Elsevier, 2007 441.

[170] N. Y. Masse et al.,
Circuit mechanisms for the maintenance and manipulation of information in working memory,
Nature Neuroscience 22 (2019) 1159.

[171] Y. LeCun et al., Gradient-based learning applied to document recognition,
Proceedings of the IEEE 86 (1998) 2278.

[172] K. Doya and T. J. Sejnowski, “A Computational Model of Birdsong Learning by Auditory
Experience and Auditory Feedback,” Central Auditory Processing and Neural Modeling,
Springer US, 1998 77.

[173] B. Widrow and M. Lehr,
30 years of adaptive neural networks: perceptron, Madaline, and backpropagation,
Proceedings of the IEEE 78 (1990) 1415.

[174] M. Helias and D. Dahmen, eds., Statistical Field Theory for Neural Networks, 1st ed.,
Springer, 2020.

[175] R. Kawai et al., Motor Cortex Is Required for Learning but Not for Executing a Motor Skill,
Neuron 86 (2015) 800.

[176] A. Paszke et al., “PyTorch: An Imperative Style, High-Performance Deep Learning Library,”
Advances in Neural Information Processing Systems, ed. by H. Wallach et al., vol. 32, 2019
8024.

[177] A. Destexhe, M. Rudolph, and D. Paré,
The high-conductance state of neocortical neurons in vivo,
Nature Reviews Neuroscience 4 (2003) 739.

[178] J. D. Murray et al., A hierarchy of intrinsic timescales across primate cortex,
Nature Neuroscience 17 (2014) 1661.

[179] R. H. R. Hahnloser, A. A. Kozhevnikov, and M. S. Fee,
An ultra-sparse code underlies the generation of neural sequences in a songbird,
Nature 419 (2002) 65.

[180] T. Teşileanu, B. Ölveczky, and V. Balasubramanian,
Rules and mechanisms for efficient two-stage learning in neural circuits,
eLife 6 (2017) e20944.

[181] J. M. Murray and G. S. Escola,
Learning multiple variable-speed sequences in striatum via cortical tutoring,
eLife 6 (2017) e26084.

137

http://dx.doi.org/10.1038/s41583-019-0176-7
http://dx.doi.org/10.1007/BF00992696
http://dx.doi.org/10.1038/nrn3112
http://dx.doi.org/10.1038/s41593-019-0414-3
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1109/5.58323
http://dx.doi.org/10.1016/j.neuron.2015.03.024
http://dx.doi.org/10.1038/nrn1198
http://dx.doi.org/10.1038/nn.3862
http://dx.doi.org/10.1038/nature00974
http://dx.doi.org/10.7554/eLife.20944
http://dx.doi.org/10.7554/eLife.26084

Bibliography

[182] A. K. Dhawale, M. A. Smith, and B. P. Ölveczky, The Role of Variability in Motor Learning,
Annual Review of Neuroscience 40 (2017) 479.

[183] S. Cheng, The CRISP theory of hippocampal function in episodic memory,
Frontiers in Neural Circuits 7 (2013) 88.

[184] A. Maes, M. Barahona, and C. Clopath,
Learning spatiotemporal signals using a recurrent spiking network that discretizes time,
PLOS Computational Biology 16 (2020) 1.

[185] Ł. Kuśmierz, T. Isomura, and T. Toyoizumi,
Learning with three factors: modulating Hebbian plasticity with errors,
Current Opinion in Neurobiology 46 (2017) 170.

[186] Q. Zhou, H. W. Tao, and M.-m. Poo,
Reversal and Stabilization of Synaptic Modifications in a Developing Visual System,
Science 300 (2003) 1953.

[187] P. Suszyński and P. Wawrzyński,
“Learning population of spiking neural networks with perturbation of conductances,”
The 2013 International Joint Conference on Neural Networks (IJCNN), 2013.

[188] T. Cho et al., Node perturbation learning without noiseless baseline,
Neural Networks 24 (2011) 267.

[189] P. Mazzoni, R. A. Andersen, and M. I. Jordan,
A more biologically plausible learning rule for neural networks., PNAS 88 (1991) 4433.

[190] R. Darshan, A. Leblois, and D. Hansel,
Interference and Shaping in Sensorimotor Adaptations with Rewards,
PLOS Computational Biology 10 (2014) 1.

[191] E. Vasilaki et al., Learning flexible sensori-motor mappings in a complex network,
Biological Cybernetics 100 (2009) 147.

[192] K. Takiyama and M. Okada,
Maximization of Learning Speed in the Motor Cortex Due to Neuronal Redundancy,
PLOS Computational Biology 8 (2012) 1.

[193] M. N. Abdelghani, T. P. Lillicrap, and D. B. Tweed,
Sensitivity Derivatives for Flexible Sensorimotor Learning,
Neural Computation 20 (2008) 2085.

[194] B. B. Vladimirskiy et al.,
Stimulus sampling as an exploration mechanism for fast reinforcement learning,
Biological Cybernetics 100 (2009) 319.

[195] J. Friedrich, R. Urbanczik, and W. Senn,
Code-specific learning rules improve action selection by populations of spiking neurons,
International Journal of Neural Systems 24 (2014) 1450002.

[196] A. Payeur et al.,
Burst-dependent synaptic plasticity can coordinate learning in hierarchical circuits,
Nature Neuroscience 24 (2021) 1010.

138

http://dx.doi.org/10.1146/annurev-neuro-072116-031548
http://dx.doi.org/10.3389/fncir.2013.00088
http://dx.doi.org/10.1371/journal.pcbi.1007606
http://dx.doi.org/10.1016/j.conb.2017.08.020
http://dx.doi.org/10.1126/science.1082212
http://dx.doi.org/10.1016/j.neunet.2010.12.001
http://dx.doi.org/10.1073/pnas.88.10.4433
http://dx.doi.org/10.1371/journal.pcbi.1003377
http://dx.doi.org/10.1007/s00422-008-0288-z
http://dx.doi.org/10.1371/journal.pcbi.1002348
http://dx.doi.org/10.1162/neco.2008.04-07-507
http://dx.doi.org/10.1007/s00422-009-0305-x
http://dx.doi.org/10.1142/S0129065714500026
http://dx.doi.org/10.1038/s41593-021-00857-x

[197] K. Doya, “Bifurcations in the learning of recurrent neural networks,”
[Proceedings] 1992 IEEE International Symposium on Circuits and Systems, vol. 6, 1992
2777.

[198] A. R. Chambers and S. Rumpel, A stable brain from unstable components: Emerging
concepts and implications for neural computation, Neuroscience 357 (2017) 172.

[199] U. Rokni et al., Motor Learning with Unstable Neural Representations,
Neuron 54 (2007) 653.

[200] F. Zenke, E. Agnes, and W. Gerstner, Diverse synaptic plasticity mechanisms orchestrated to
form and retrieve memories in spiking neural networks,
Nature Communications 6 (2015) 6922.

[201] A. Litwin-Kumar and B. Doiron,
Formation and maintenance of neuronal assemblies through synaptic plasticity.,
Nat. Commun. 5 (2014) 5319.

[202] N. R. Tannenbaum and Y. Burak,
Shaping Neural Circuits by High Order Synaptic Interactions,
PLOS Comp. Biol. 12 (2016) e1005056.

[203] L. Montangie, C. Miehl, and J. Gjorgjieva,
Autonomous emergence of connectivity assemblies via spike triplet interactions,
PLOS Computational Biology 16 (2020) 1.

[204] M. Stimberg, D. F. M. Goodman, and R. Brette,
Brian 2, an intuitive and efficient neural simulator, eLife 8 (2019).

[205] https://github.com/fkalle/drifting-assemblies.

[206] V. D. Blondel et al., Fast unfolding of communities in large networks,
J. Stat. Mech.: Theory Exp. 2008 (2008) P10008.

[207] R. LaPlante et al., bctpy v0.5.2: Brain Connectivity Toolbox for Python,
url: https://github.com/aestrivex/bctpy.

[208] G. K. Ocker and B. Doiron,
Training and Spontaneous Reinforcement of Neuronal Assemblies by Spike Timing Plasticity,
Cereb. Cortex 29 (2018) 937.

[209] M. J. Fauth and M. C. van Rossum,
Self-organized reactivation maintains and reinforces memories despite synaptic turnover,
eLife 8 (2019).

[210] E. Bienenstock, L. Cooper, and P. Munro, Theory for the development of neuron selectivity:
orientation specificity and binocular interaction in visual cortex,
The Journal of Neuroscience 2 (1982) 32.

[211] I. R. Fiete et al., Spike-time-dependent plasticity and heterosynaptic competition organize
networks to produce long scale-free sequences of neural activity., Neuron 65 (2010) 563.

[212] D. Acker, S. Paradis, and P. Miller,
Stable memory and computation in randomly rewiring neural networks,
J. Neurophysiol. 122 (2019) 66.

139

http://dx.doi.org/10.1016/j.neuroscience.2017.06.005
http://dx.doi.org/10.1016/j.neuron.2007.04.030
http://dx.doi.org/10.1038/ncomms7922
http://dx.doi.org/10.1038/ncomms6319
http://dx.doi.org/10.1371/journal.pcbi.1005056
http://dx.doi.org/10.1371/journal.pcbi.1007835
http://dx.doi.org/10.7554/eLife.47314
https://github.com/fkalle/drifting-assemblies
http://dx.doi.org/10.1088/1742-5468/2008/10/p10008
https://github.com/aestrivex/bctpy
http://dx.doi.org/10.1093/cercor/bhy001
http://dx.doi.org/10.7554/elife.43717
http://dx.doi.org/10.1523/jneurosci.02-01-00032.1982
http://dx.doi.org/10.1016/j.neuron.2010.02.003
http://dx.doi.org/10.1152/jn.00534.2018

Bibliography

[213] J. Humble et al., Intrinsic Spine Dynamics Are Critical for Recurrent Network Learning in
Models With and Without Autism Spectrum Disorder, Front. Comput. Neurosci. 13 (2019).

[214] R. Ajemian et al., A theory for how sensorimotor skills are learned and retained in noisy and
nonstationary neural circuits, PNAS 110 (2013) E5078.

[215] D. Kappel et al., A Dynamic Connectome Supports the Emergence of Stable Computational
Function of Neural Circuits through Reward-Based Learning, eneuro 5 (2018) 0301.

[216] G. Mongillo, S. Rumpel, and Y. Loewenstein,
Inhibitory connectivity defines the realm of excitatory plasticity,
Nat. Neurosci. 21 (2018) 1463.

[217] L. Susman, N. Brenner, and O. Barak, Stable memory with unstable synapses,
Nat. Commun. 10 (2019).

[218] M. Gillett, U. Pereira, and N. Brunel, Characteristics of sequential activity in networks with
temporally asymmetric Hebbian learning, PNAS 117 (2020) 29948.

[219] M. A. Triplett, L. Avitan, and G. J. Goodhill, Emergence of spontaneous assembly activity in
developing neural networks without afferent input, PLOS Comp. Biol. 14 (2018) e1006421.

[220] N. Hiratani and T. Fukai,
Interplay between Short- and Long-Term Plasticity in Cell-Assembly Formation,
PLOS ONE 9 (2014) 1.

[221] M. E. Rule et al., Stable task information from an unstable neural population,
eLife 9 (2020) e51121.

[222] T. Pietri et al., The Emergence of the Spatial Structure of Tectal Spontaneous Activity Is
Independent of Visual Inputs, Cell Reports 19 (2017) 939.

[223] T. Freund and G. Buzsáki, Interneurons of the hippocampus, Hippocampus 6 (1996) 347.
[224] R. Miles, Synaptic excitation of inhibitory cells by single CA3 hippocampal pyramidal cells of

the guinea-pig in vitro., The Journal of Physiology 428 (1990) 61.
[225] C. W. Ang, G. C. Carlson, and D. A. Coulter, Hippocampal CA1 Circuitry Dynamically Gates

Direct Cortical Inputs Preferentially at Theta Frequencies,
Journal of Neuroscience 25 (2005) 9567.

[226] F. Pouille and M. Scanziani, Routing of spike series by dynamic circuits in the hippocampus,
Nature 429 (2004) 717.

[227] L. Pothmann et al., Function of Inhibitory Micronetworks Is Spared by Na+ Channel-Acting
Anticonvulsant Drugs, Journal of Neuroscience 34 (2014) 9720.

[228] N. Spruston, P. Jonas, and B. Sakmann,
Dendritic glutamate receptor channels in rat hippocampal CA3 and CA1 pyramidal neurons.,
The Journal of Physiology 482 (1995) 325.

[229] M. A. Smith, G. C. R. Ellis-Davies, and J. C. Magee, Mechanism of the distance-dependent
scaling of Schaffer collateral synapses in rat CA1 pyramidal neurons,
The Journal of Physiology 548 (2003) 245.

[230] A. Ylinen et al., Intracellular correlates of hippocampal theta rhythm in identified pyramidal
cells, granule cells, and basket cells, Hippocampus 5 (1995) 78.

140

http://dx.doi.org/10.3389/fncom.2019.00038
http://dx.doi.org/10.1073/pnas.1320116110
http://dx.doi.org/10.1523/eneuro.0301-17.2018
http://dx.doi.org/10.1038/s41593-018-0226-x
http://dx.doi.org/10.1038/s41467-019-12306-2
http://dx.doi.org/10.1073/pnas.1918674117
http://dx.doi.org/10.1371/journal.pcbi.1006421
http://dx.doi.org/10.1371/journal.pone.0101535
http://dx.doi.org/10.7554/eLife.51121
http://dx.doi.org/10.1016/j.celrep.2017.04.015
http://dx.doi.org/10.1002/(SICI)1098-1063(1996)6:4<347::AID-HIPO1>3.0.CO;2-I
http://dx.doi.org/10.1113/jphysiol.1990.sp018200
http://dx.doi.org/10.1523/JNEUROSCI.2992-05.2005
http://dx.doi.org/10.1038/nature02615
http://dx.doi.org/10.1523/JNEUROSCI.2395-13.2014
http://dx.doi.org/10.1113/jphysiol.1995.sp020521
http://dx.doi.org/10.1113/jphysiol.2002.036376
http://dx.doi.org/10.1002/hipo.450050110

[231] A. Oliva et al., Origin of Gamma Frequency Power during Hippocampal Sharp-Wave Ripples,
Cell Reports 25 (2018) 1693.

[232] C. Müller et al.,
Inhibitory Control of Linear and Supralinear Dendritic Excitation in CA1 Pyramidal Neurons,
Neuron 75 (2012) 851.

[233] G. Girardeau et al., Selective suppression of hippocampal ripples impairs spatial memory,
Nature Neuroscience 12 (2009) 1222.

[234] L. Wittner et al., Surviving CA1 pyramidal cells receive intact perisomatic inhibitory input in
the human epileptic hippocampus, Brain 128 (2004) 138.

[235] S. Williams, P. Vachon, and J.-C. Lacaille,
Monosynaptic GABA-mediated inhibitory postsynaptic potentials in ca1 pyramidal cells of
hyperexcitable hippocampal slices from kainic acid-treated rats, Neuroscience 52 (1993) 541.

[236] M. Esclapez et al., Operative GABAergic inhibition in hippocampal CA1 pyramidal neurons
in experimental epilepsy, PNAS 94 (1997) 12151.

[237] R. Cossart et al.,
Dendritic but not somatic GABAergic inhibition is decreased in experimental epilepsy,
Nature Neuroscience 4 (2001) 52.

[238] H. Su et al., Upregulation of a T-Type Ca2+ Channel Causes a Long-Lasting Modification of
Neuronal Firing Mode after Status Epilepticus, Journal of Neuroscience 22 (2002) 3645.

[239] Y. Yaari, C. Yue, and H. Su, Recruitment of apical dendritic T-type Ca2+ channels by
backpropagating spikes underlies de novo intrinsic bursting in hippocampal epileptogenesis,
The Journal of Physiology 580 (2007) 435.

[240] A. J. Becker et al., Transcriptional Upregulation of Cav3.2 Mediates Epileptogenesis in the
Pilocarpine Model of Epilepsy, Journal of Neuroscience 28 (2008) 13341.

[241] M. Beiran et al.,
Parametric control of flexible timing through low-dimensional neural manifolds, 2021,
bioRxiv: 2021.11.08.467806.

[242] S. Xu et al., Activity recall in a visual cortical ensemble, Nature Neuroscience 15 (2012) 449.

[243] C. Klos, D. Miner, and J. Triesch, Bridging structure and function: A model of sequence
learning and prediction in primary visual cortex, PLOS Computational Biology 14 (2018) 1.

141

http://dx.doi.org/10.1016/j.celrep.2018.10.066
http://dx.doi.org/10.1016/j.neuron.2012.06.025
http://dx.doi.org/10.1038/nn.2384
http://dx.doi.org/10.1093/brain/awh339
http://dx.doi.org/10.1016/0306-4522(93)90404-4
http://dx.doi.org/10.1073/pnas.94.22.12151
http://dx.doi.org/10.1038/82900
http://dx.doi.org/10.1523/JNEUROSCI.22-09-03645.2002
http://dx.doi.org/10.1113/jphysiol.2007.127670
http://dx.doi.org/10.1523/JNEUROSCI.1421-08.2008
2021.11.08.467806
http://dx.doi.org/10.1038/nn.3036
http://dx.doi.org/10.1371/journal.pcbi.1006187

Acknowledgments

First and foremost I would like to thank my advisor Raoul-Martin Memmesheimer for the opportunity
to do research in such an interesting field of study. I am grateful for his guidance and support and for
always having time to provide feedback on my research. In addition, he gave me the opportunity to
attend various conferences and a summer school, which have helped me to broaden my knowledge on
theoretical neuroscience. Further, I would like to thank Ulf-G. Meißner for agreeing to be the second
referee of my thesis.

Also, I am grateful to Heinz Beck, Oliver Braganza and Leonie Pothmann for the collaborative
work and the accompanying discussions that led to Chapter 6.

I would like to thank all current and former members of the Neural Network Dynamics and
Computation group for the fruitful collaboration, the pleasant working atmosphere and the common
activities unrelated to science. In particular, I am grateful to Yaroslav Felipe Kalle Kossio for the
productive collaboration on the projects that led to Chapters 3 and 5. For the collaboration on the
same projects and for proofreading parts of this thesis, I would like to thank Sven Goedeke. For the
cooperation on the project that led to Chapter 4 and for proofreading Chapter 4, I want to thank Paul
Züge. Further, I would like to thank Aditya Gilra for his help on the work that led to Chapter 3 and
Paul Manz for being an ejoyable office mate and for many valuable discussions. Additionally, I am
grateful to Simon Altrogge and Fabian Pallasdies for taking over my teaching duties when I had no
time and to Valèria Ribelles Pérez, whom I had the pleasure to supervise during her Bachelor’s project.
I am especially thankful to Wilhelm Braun, for the shared activities outside the university, in particular
the successful pub quizzes and the regular runs along the Rhine, which provided a welcome balance to
the daily research work.

Furthermore, I would like to thank the members of the Institute of Genetics for the welcoming
atmosphere, when our group, including myself, moved to Bonn.

For their enduring friendship despite diverging life paths, I would like to thank Alexander Brandt,
Yannik Haber and Patrick Kramer, whom I have known since high-school or before.

Finally, I would like to thank my family. I am grateful to my brother and his wife, my niece and my
nephew and, above all, my parents for their constant support and encouragement in all matters.

143

	Abstract
	List of publications
	1 Introduction
	2 Foundations
	2.1 Neurobiology
	2.1.1 Neurons
	2.1.2 Synapses
	2.1.3 Synaptic plasticity
	2.1.4 Populations of neurons
	2.1.5 Neural representations

	2.2 Neural network modeling
	2.2.1 Single-neuron and synapse models
	2.2.2 Neural network models
	2.2.3 Learning in neural networks

	3 Dynamical learning of dynamics
	3.1 Introduction
	3.2 Network model
	3.2.1 Pretraining
	3.2.2 Dynamical learning and testing

	3.3 Applications
	3.4 Analysis
	3.5 Discussion
	3.A Appendix
	3.A.1 Reservoir computing and FORCE learning
	3.A.2 Additional detail on the applications
	3.A.3 Quantification of learning performance
	3.A.4 Analysis of dynamical learning of chaotic dynamics
	3.A.5 Learning speed of dynamical learning
	3.A.6 Robustness of learning performance
	3.A.7 Induction of unseen signal outputs by a context-like external input
	3.A.8 Pretraining with weight perturbation
	3.A.9 Supplementary discussion

	4 Perturbation-based learning of temporally extended tasks
	4.1 Introduction
	4.2 Learning rules
	4.3 Theoretical analysis
	4.3.1 Error dynamics for a single input pattern
	4.3.2 Error dynamics for multiple input patterns

	4.4 Simulated learning experiments
	4.4.1 Delayed non-match-to-sample task
	4.4.2 MNIST

	4.5 Discussion
	4.A Appendix
	4.A.1 Dependence of weight update variance on error baseline
	4.A.2 Numerical results for MNIST

	5 Drifting assemblies for persistent memory
	5.1 Introduction
	5.2 Model
	5.2.1 Networks
	5.2.2 Simulations

	5.3 Results
	5.3.1 Drifting memory representations
	5.3.2 Analysis of drifting assemblies
	5.3.3 Simplified model of neuron switching and assembly drift

	5.4 Discussion
	5.A Appendix
	5.A.1 Parameters of models used for the simulations
	5.A.2 Details on the network analysis
	5.A.3 Associative memory property and input-output functionality of assemblies
	5.A.4 Assembly drift in a network without periphery neurons
	5.A.5 Spontaneous development of drifting assemblies
	5.A.6 Analysis of neuron transitions between assemblies for a network with three assemblies

	6 Modeling feedback inhibition in epilepsy
	6.1 Introduction
	6.2 Material and Methods
	6.2.1 Experiments
	6.2.2 Computational model

	6.3 Results
	6.3.1 Altered activation of CA1 interneurons within feedback microcircuits
	6.3.2 Altered firing behavior of interneurons
	6.3.3 Altered recruitment of feedback inhibition onto pyramidal cells in chronic epilepsy
	6.3.4 Generation of a computational model of the feedback circuit
	6.3.5 Consequences of altered feedback circuits: altered burst transmission from CA3 via CA1

	6.4 Discussion

	7 Summary and outlook
	Bibliography
	Acknowledgments

