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Abstract

In the framework of green chemistry, it is fundamental to further investigate the inter-

molecular interactions that define the dynamics and structure of liquids and their mix-

tures. Among those, the hydrogen bond in particular has a remarkable influence on the

structure and properties of condensed matter. A better insight into the principles and

processes that govern the hydrogen bond network will allow the design and tuning of novel

sustainable solvents in the foreseeable future.

The binary quantum cluster equilibrium method (bQCE) allows to model the liquid and

gas phase of both, neat systems and binary mixtures by using an ensemble of molecular

clusters generated and optimized via quantum chemical methods. In this thesis, a protocol

based on the bQCE theory is applied to investigate the intermolecular interactions in the

condensed phase of various organic solvent mixtures.

In the first part of the thesis, the mixtures of methanol with several small alcohols are

studied via cluster analysis. In particular, the investigation is focused on the effect of chain

length and branching over the thermodynamic properties of these mixtures. Vaporiza-

tion enthalpies, activity coefficients, and combined distribution functions of the hydrogen

bonds are evaluated with a combination of semi-empirical calculations and the bQCE

approach. It is shown how the branching and the chain length influence the geometric

features of the hydrogen bond network and how this affects the activity coefficients of the

different species. Overall, a large deviation from ideality is observed when increasing the

size of the alcohol; on the other hand, an increase in the branching of the alcohol leads to

a more ideal mixture.

In the second part of the thesis, the hydrogen bond networks of the binary mixtures of

hexafluoroisopropanol with methanol and acetone are investigated using a combination of
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Abstract

both classical molecular dynamics and bQCE. The densities of the mixtures at different

temperatures are obtained from simulations and subsequently used as reference for the

optimization of bQCE parameters. This removes the requirement for experimental refer-

ence data and allows the application of the bQCE method to complex systems with little

to no available reference data. The bQCE theory is extended to include the temperature

dependent adjustment of parameters. The structure of the hydrogen bond network is an-

alyzed for both mixtures; their vaporization enthalpies and entropies are calculated and

discussed. In both systems mixed clusters are favored even at low concentrations of hex-

afluoroisopropanol, and tetrameric and pentameric ring structures are strongly populated

also in the neat systems.

In summary, the present thesis investigates the structure and dynamics of binary organic

solvent mixtures with a special focus on their hydrogen bond networks. A variety of

classical and quantum chemical methods are used with a general aim for computational

efficiency. This allows the application of the presented approaches to complex systems.

Therefore, the results discussed in this thesis represent a starting point in the investigation

of multi-component solvent systems that will be needed to develop sustainable compounds

in accordance to the principles of green chemistry.

x



Contents

Publications vii

Abstract ix

1. Introduction 1

1.1. The Hydrogen Bond Network in Fluids . . . . . . . . . . . . . . . . . . . . 2

1.2. The Quantum Cluster Equilibrium Theory . . . . . . . . . . . . . . . . . . 3

1.3. Scope of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2. Methodology 7

2.1. Static Quantum Chemical Calculations . . . . . . . . . . . . . . . . . . . . 7

2.1.1. Principles of Density Functional Theory . . . . . . . . . . . . . . . 7

2.1.2. Semi-Empirical Methods . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2. Principles of Quantum Cluster Equilibrium Theory . . . . . . . . . . . . . 12

2.2.1. Principles of Statistical Thermodynamics . . . . . . . . . . . . . . . 12

2.2.2. Binary Quantum Cluster Equilibrium Theory . . . . . . . . . . . . 14

2.2.3. Peacemaker2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3. Principles of Classical Molecular Dynamics . . . . . . . . . . . . . . . . . . 22

3. Activity coefficients of binary methanol alcohol mixtures 25

3.1. Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3. Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.1. Hydrogen Bond Analysis . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.2. Thermodynamic Properties of Neat Systems . . . . . . . . . . . . . 41

xi



Contents

3.3.3. Thermodynamic Properties of Binary Mixtures . . . . . . . . . . . 42

3.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4. Hydrogen bonding in HFIP-acetone and -methanol mixtures 53

4.1. Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3. Computational Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.1. Classical Molecular Dynamics Simulations . . . . . . . . . . . . . . 58

4.3.2. Cluster Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4. Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4.1. Classical Molecular Dynamics Simulations . . . . . . . . . . . . . . 63

4.4.2. Cluster Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4.3. Thermodynamic Properties of Neat and Mixed Systems . . . . . . . 80

4.5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5. Conclusions 83

Appendix 88

A. Supporting Information to Chapter 3 88

A.1. BP86 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A.2. Number of Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

A.3. Interaction Energies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

B. Supporting Information to Chapter 4 92

B.1. Molecular Dynamics Simulations . . . . . . . . . . . . . . . . . . . . . . . 92

B.1.1. Force Field Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 92

B.1.2. Number of Molecules in the Molecular Dynamics Simulations . . . . 96

B.1.3. Cell Volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

B.1.4. Neat Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

B.1.5. Molecular Dynamics Analysis at Different Temperatures . . . . . . 100

B.2. Clusters Interaction Energies . . . . . . . . . . . . . . . . . . . . . . . . . . 109

xii



Contents

B.3. Thermodynamic Properties of the Neat Systems . . . . . . . . . . . . . . . 113

B.4. Activity Coefficients of Mixed Systems . . . . . . . . . . . . . . . . . . . . 113

B.5. Calculated Boiling Point of Neat and Mixed Systems . . . . . . . . . . . . 115

B.6. Cluster Pictures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

B.7. Cluster Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Bibliography 127

Acknowledgments 141

xiii



List of Figures

3.1. Ball-and-stick models of selected clusters . . . . . . . . . . . . . . . . . . . 33
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1. Introduction

The development of novel sustainable solvents is a top priority in scientific research.5 This

is due to the increasing demand for industrial processes that respect the conditions of green

chemistry.6 Many studies, both experimental and computational, focus on this field. In

the recent decades, organic solvents have been progressively substituted by novel kinds of

compounds, e.g. ionic liquids and deep eutectic solvents (DESs), which allow—to some

extent—to fulfill the sustainability requirement.7–9 In particular, ionic liquids and DESs

consist of mixtures of ionic compounds that can be complicated to synthesize.8 Moreover,

the fact that they often exhibit hydrophilic properties hinders their application in some

fields, such as the liquid-liquid extraction of metals.10 In the case of DESs, typically two

components interact via strong hydrogen bonds.8,9,11 A new kind of DESs,12 was recently

developed, that is formed by neutral rather than ionic compounds, thereby avoiding the

hydrophilicity of other DESs, and features a structure closer to the mixtures of organic

solvents. As the hydrogen bond network seems to have a significant influence on the

properties of the resulting DES system, it is imperative to better understand its structure

in binary liquid state mixtures. This first step could then allow to model and tune a wide

range of both traditional organic and novel sustainable solvents.

It is important to recall that the modeling of the liquid phase presents some challenges.

In fact, in the liquid state hydrogen bonds are continuously broken and formed anew, so

most of the analysis requires a statistical treatment. In this thesis the prevalent approach

applied is the binary quantum cluster method, which will be explained in more detail in

this and in the next chapter.
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1. Introduction

1.1. The Hydrogen Bond Network in Fluids

The study of hydrogen bonds is an extremely common motif in literature as it determines

the structure and dynamics of a large variety of liquids.13–16 Nevertheless, the definition

of what constitutes a hydrogen bond remains vague even 100 years after its discovery

by Latimer and Rodebush.17 In 1920, their first work on hydrogen bonds described the

hydrogen bond as an intermolecular interaction in which “a free pair of electrons on one

water molecule might be able to exert sufficient force on a hydrogen held by a pair of

electrons on another water molecule to bind the two molecules together”;17 in the same

work, still discussing about liquid water, the authors speculate that the liquid structure

“may be made up of large aggregates of molecules, continually breaking and reforming”.17

From this first description, the hydrogen bond seemed electrostatic in nature; however, it

is now recognized as a more complicated interaction, which can present different grades of

bond strength and directionality.16 It shows similarities to both van der Waals interactions

and covalent bonds.15,18 In 2011, the International Union of Pure and Applied Chemistry

(IUPAC) gave an updated definition of the hydrogen bond as “an attractive interaction

between a hydrogen atom from a molecule or a molecular fragment X–H in which X is

more electronegative than H, and an atom or a group of atoms in the same or a different

molecule, in which there is evidence of bond formation.” 19 This definition is still broad

and can lead to multiple possible interpretations; however, what the scientific community

generally agrees on is its strong influence over the structure of liquids.14,15 Therefore, it

is fundamental to investigate this intermolecular interaction. In particular, the features

that make it a key ingredient to fully describe the properties of liquids are its direction-

ality and the possibility to easily break and reform anew.20–22 Computational tools, in

particular molecular dynamics, have been employed to obtain insights on hydrogen bonds,

in particular in water, and describe its effect on dynamics and structure.23–27 Other hy-

drogen bond-based liquids have been investigated both experimentally – e.g. via NMR

spectroscopy28,29 or X-ray scattering30–36 – and theoretically, via classical and ab-initio

molecular dynamics.37–40 In this thesis, the hydrogen bond network will be investigated

with a novel method, called the quantum cluster equilibrium (QCE) theory.

2



1.2. The Quantum Cluster Equilibrium Theory

1.2. The Quantum Cluster Equilibrium Theory

The simulation and modeling of the liquid phase presents various challenges. While clas-

sical molecular dynamics is able to describe large systems, the results are often limited

by the low level of theory offered by the force fields applied. On the other end, higher

levels of theory, such as ab-initio molecular dynamics, are unfeasible to describe large

systems due to their computational cost. Hence, a method based on a different approach

has been developed in the last decades to investigate the liquid state. This method aims

to describe the liquid phase as an ensemble of molecular clusters. Even though the gas

phase and the liquid phase are distinct aggregate states with different properties, there is

a continuous transition between them, proven by the existence of the gas-liquid critical

point.41 Molecular clusters can be seen as the intermediate state between the vapor phase

populated by monomers or small clusters of a few molecules, and the fully aggregated

liquid state. Starting from this assumption, the QCE method was developed by Frank

Weinhold, who published its theory in 199842 but had already demonstrated its effective-

ness in describing hydrogen bond-based liquids in the years before.43,44 Within the QCE

theory, the molecular clusters are weighted by their relative population in the canonical

ensemble of the classical statistical thermodynamics. The theory was further developed

and expanded extensively by the Kirchner group in 200527 and the years thereafter.2,3,45

In 2011 it was rewritten to comprehend and describe binary mixtures instead of only neat

systems.45 This new extended theory takes the name of binary QCE (bQCE) and it has

been used extensively in the present thesis.

The group has implemented the bQCE method in the publicly available Peacemaker

code, released in 2005. The bQCE theory has been added in the second release of the

software in 2018, as Peacemaker2, which can be freely downloaded from the webpage

of the research group under the GNU general public license.

This method has been applied in various studies to different solvents and mixtures,

such as water,27,46–56 alcohols,57–63 amides,43,44,64,65 hydrogen halides,66–69 ammonia,70,71

and weak acids.72–74 The bQCE method has been used to calculate the ionic product of

water,75 to cluster-weight vibrational circular dichroism (VCD) spectra,76,77 and to cal-

culate the mixing thermodynamics of binary mixtures.1,4,45,65,78,79 These types of analyses

3



1. Introduction

are also presented in Chapter 3 of this thesis.1

The bQCE method relies on geometrically optimized clusters whose frequencies have

been previously calculated. The advantage of this approach is that it reduces the size

of the problem from hundreds or thousands of molecules, to clusters of less than twenty

molecules which can be modeled at a higher level of theory. The problem, however, is

shifted on how those clusters need to be defined. Many approaches have been used in the

last decades: they have been based on experimentally observed molecular configurations,80

derived from computational parameters,4,81 or designed in accordance to the chemical

intuition of the author.49,82 In this thesis, a more objective approach has been used. The

clusters are built from a genetic algorithm at force field level and then further optimized

at an higher level of theory. This approach avoids any kind of subjective bias on the

clusters and allows the user to dispose of a great number of clusters; as a downside, the

highest levels of theory are not accessible due to computational cost. Nevertheless, recent

works3,4 have shown the reliability of this approach. Further details on the method are

presented in Chapter 2.

1.3. Scope of the Thesis

Up to recent times, the bQCE theory has been used to reproduce experimental data, or

well known properties of neat liquids. Only in the last few years this method has been used

as a predictive tool for the properties of mixtures of small molecules. This thesis aims to

use the bQCE theory to investigate the thermodynamic properties of mixtures composed

by small organic molecules, varying their geometries and minimizing the request of exper-

imental data from literature. A second goal of it, is to extensively investigate the behavior

and effect of the hydrogen bond network in mixtures of small organic solvents. As pre-

viously discussed, it is fundamental to investigate the intermolecular interactions in the

liquid state in order to design novel mixtures of solvents or tune their properties. Using

all the tools at disposal (bQCE theory, classical MD, quantum mechanics calculations),

Chapter 3 of this thesis focuses on the hydrogen bond networks of small alcohols mixtures,

while Chapter 4 takes an additional step, and investigates the mixtures of hexafluoroiso-

4
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propanol (HFIP) with a hydrogen bond acceptor (acetone) and a hydrogen bond donor

and acceptor (MeOH). These studies on small systems are important to fully understand

the possibilities of novel methods and the nature of the intermolecular interactions in the

liquid phase.

5





2. Methodology

In this chapter, the main methods used in this thesis will be briefly described. First,

the fundamentals of Density Fuctional Theory (DFT) – necessary to the full understand-

ing of the dissertation – will be delineated. This is a necessary step for the geometry

optimization and frequency calculations of small molecular clusters, key element of the

Quantum Cluster Equilibrium Theory (QCE), explained in detail in par. 2.2. In the end,

keys elements of classical molecular dynamics (MD) will be described.

2.1. Static Quantum Chemical Calculations

The main target of static quantum chemistry is to determine the correct geometries,

the total energy, and properties of molecular systems. Electronic structure methods are

the most reliable, accurate, and used in this field. In this thesis the Density Functional

Theory (DFT), formulated by Pierre Hohenberg and Walter Konh in 1964,83 is employed

in Chapter 4, and it will be briefly explained in this section. A short description of

semi-empirical methods, used in Chapter 3, is also included.

2.1.1. Principles of Density Functional Theory

The present description takes inspiration from The handbook of computational quantum

chemistry by David B. Cook.84 According to DFT, in the case of a non-degenerate ground

state, its energy and related molecular properties are uniquely determined by the electron

density ρ0(x, y, z). The time-independent, non-relativistic Schrödinger equation reads

ĤΨ = EΨ, (2.1)

7



2. Methodology

where E is the eigenvalue of the non-relativistic and non-magnetic Hamiltonian operator

(Ĥ), applied to the wave function Ψ. (Ĥ can be written as the sum of two terms

Ĥ = T̂ + V̂ , (2.2)

where T̂ and V̂ are the kinetic and potential energy operators, respectively. Since in this

thesis heavy atoms are not calculated, relativistic effect are not considered, therefore the

Born-Oppenheimer approximation,85 which considers the motion of the electrons to be

separated from the motion of the nuclei, can be applied. This approximation considers the

nuclei to be stationary with respect to the motions of the electrons, so that it is possible

to evaluate only the electronic wave function Ψe in a stationary configuration of nuclei.

The electronic Hamiltonian can be described as:

Ĥelec = −1

2

n∑
i=1

∇2 −
n∑

i=1

υ(ri) +
n∑

i,j<i=1

1

rij
, (2.3)

in atomic units, where ria = |ri−RA| , rij = |ri− rj|, and υ(ri) =
∑M

A
ZA

ria
. The first term

is the kinetic energy operator Te, the second the nucleus-electron interaction VNe, and the

third one the electron-electron interaction Vee.

The Schrödinger equation has infinite solutions. To find the lowest energy solution,

corresponding to the ground state, some kind of assumptions are required. The most

common is the variation principle: considering the mean value of the energy related to

the many-electron wave function Ψ̃ =
∑∞

j=1BjΨj described as

Ẽ =
⟨Ψ̃|Ĥ|Ψ̃⟩
⟨Ψ̃|Ψ̃⟩

; (2.4)

it is possible to apply on it the variational principle, that states

Ẽ =
⟨Ψ̃|Ĥ|Ψ̃⟩
⟨Ψ̃|Ψ̃⟩

≥ E1, (2.5)

which means the energy of the ground state E1 is always lower than the energy of any

trial wave function Ψ̃ that can be imagined.
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2.1. Static Quantum Chemical Calculations

Different strategies can be considered to calculate the energy of the electronic structure;

all of them are based on finding suitable approximations of the Schrödinger equation

with an appropriate description of the wave function and the Hamiltonian. The most

common methods are the Wave Function Theory (WFT) and the DFT. The first family

of methods uses the Hartree-Fock (HF) approach,86,87 which is based on a self-consistent

field procedure where the electron-electron interaction is approximated by the motion

of an electron in the mean-field created by the other electrons. The wave function is

described by a single Slater determinant of the one-electron wave functions; the electron

correlation is not taken into account. The second approach, DFT, is instead based on the

electron density, reducing the problem from the 3N coordinates of an N -electron system

of the WFT to a function of three coordinates. Every wave function generates a density

matrix, but the opposite is not always true. This can lead to non-physical solutions, so

some considerations and restrictions must be applied. DFT is based on the two theorems

formulated by Hohenberg and Kohn. In the first one, it is proven that the ground-state

wave function and energy are determined by the ground-state electron density. The second

theorem states that the variational principle can be applied to the energy defined by a

specific electron density. Kohn and Sham have then developed a method to make use of

these theorems, defining the strategy to obtain the ground state electron density.88 In their

approach, they considered a fictitious reference system consisting of n non-interacting

electrons, all experiencing the same external potential energy function, constructed to

reproduce the ground-state electron density. The eigenvalue problem related to each

non-interacting electron reads

ĥKS
i θKS

i = ϵKS
i θKS

i , (2.6)

where ϵKS
i is the orbital energy, ĥKS

i is the one electron Hamiltonian and θKS
i is the spatial

part of each spin-orbital.

The energy—which is a functional of the electron density—E[ρ] can be divided into its

different contributions:

E[ρ] = T [ρ] + Eee[ρ] + Ene[ρ] (2.7)
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2. Methodology

where Ene[ρ] represents the nucleus-electron interactions, T [ρ] is the kinetic component

and Eee[ρ] the electron-electron interactions. This last term can be separated in a Coulomb

J [ρ] and an exchange part K[ρ]. Since the system is generated only by the non-interacting

electrons, T [ρ] is not known outside for the one-electron contribution. A new term ∆T =

T [ρ]−Ts[ρ] can be defined where Ts[ρ] is the kinetic energy of the non-interacting electrons’

system. ∆T is then incorporated with the exchange contribution K[ρ] into the exchange-

correlation function Exc[ρ]. Now the energy expression reads

E[ρ] = Ts[ρ] + J [ρ] + Ene[ρ] + Exc[ρ] (2.8)

where all the terms are known except for the exchange correlation contribution; this

formulation is an exact expression, and the problem is moved on the definition of Exc[ρ].

Various different functional have been defined, and they are categorized into the so-called

Jacob’s ladder which is represented by the following steps:89

• the Local Density Approximation (LDA). The density depends only on the spatial

coordinates x, y, z.

• The Generalized Gradient Approximation (GGA). The density is not defined only

from the spatial coordinates but also on their gradients ∇x, ∇y, ∇z. The BP86

functional, used extensively in this thesis, belongs to this category.

• Meta GGA. These functionals include an explicit dependence on the kinetic energy.

• Hybrid functionals. They incorporate an exact HF exchange rate on the occupied

KS orbitals; e.g. the B3LYP functional used in this thesis includes 20% exact HF

exchange.

• In the fifth step, fully not local treatment with a partial exact correlation term is

included.

The inclusion of terms and parameters can lead to a better definition of Exc[ρ]. However,

higher steps can have an important computational cost that does not directly correlate

to a better result.
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2.1. Static Quantum Chemical Calculations

2.1.2. Semi-Empirical Methods

Semi-empirical quantum methods (SQMs) can be considered as a bridge between classical

(e.g. force fields) and ab-initio approaches.90 They typically use minimal, valence-only

basis sets; they are based on self-consistent fields derived from HF or DFT, with drastic

integrals approximations. Since they can be up to two orders of magnitude faster than ab-

initio methods, the loss in robustness and accuracy is balanced; if the SQM is correctly

parameterized, the calculated properties and geometrical structure are reliable.91 Even

if SQMs are typically applied to large molecular systems, the low computational time

required makes them also suitable for the calculation of a great number of smaller-sized

clusters. Therefore, they can be applied in combination with cluster weighting methods,

such as the Quantum Cluster Equilibrium approach (QCE). In this thesis the extended

tight binding method GFN2-xTB 6.0.191,92 has been used, because of its following features:

• its basis set consists of a minimal, valence-only basis set of atom centered, contracted

Gaussian functions, where a single 1s function is assigned to the hydrogen atom;

• its Hamiltonian – which resembles the one in the DFTB3 method93 – includes

electrostatic interactions and exchange-correlation effects up to second order in the

multipole expansion;

• it includes D4 dispersion correction,94,95 that accounts for the London dispersion

energy.

Since this SQM focuses on the calculation of ground state properties – such as vibra-

tional frequencies and geometrical structure – it is well-suited for the purposes of this

thesis.
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2.2. Principles of Quantum Cluster Equilibrium

Theory

QCE has been first introduced by Weinhold et al.42 in 1998. According to this approach, it

is possible to define molecular clusters as intermediate between the monomeric description

of the vapor face and the fully aggregated condensed phase. A thermodynamic equilibrium

exists between liquid and vapor phase, and in principle clusters that can describe a dense

vapor phase must be able to do the same also in the condensed one by changing of

temperature and pressure. It is in principle possible to imagine a complete set of molecular

clusters – which can be investigated by quantum methods – that can give a quantitative

thermodynamics description of the liquid state. This complete cluster set is not realistic

to achieve, but it is possible to generate a set of dominant clusters that can provide an

accurate description of the liquid phase. In 2011, Barbara Kirchner has expanded this

theory past the study of neat solvents, to treat also binary mixtures under the name of

binary QCE (bQCE).27,45 This novel approach has been the basis of the work presented

in this thesis.

2.2.1. Principles of Statistical Thermodynamics

The energy state for every quantum-mechanical system is quantized. This holds true

for molecules, atoms, clusters of molecules, and their energy can be found solving the

Schrödinger equation. In a system consisting of different particles, it is important to

know which fraction falls in each specific state. For a system with N particles, at the

temperature T , and with volume V , the probability pj to find the system at a specific

energy Ej is proportional to the Boltzmann factor

pj ∝ e
−

Ej
kBT , (2.9)

where kb is the Boltzmann constant and T is expressed in K. The bQCE theory operates

in the canonical ensemble, where N , T , V are fixed. The sum of all probabilities pj must
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2.2. Principles of Quantum Cluster Equilibrium Theory

be equal to 1:

Q(N, V, T ) =
∑
j

e
−

Ej(N,V,T )

kBT , (2.10)

so 1/Q(N, V, T ) is the normalization factor and Q(N, V, T ) is called partition function.

The partition function allows for the calculation of the thermodynamic state function of

the system – e.g. the mean energy can be derived as:

⟨E⟩ =
∑
j

Ej(N, V, T )pj(N, V, T )

=
∑
j

Ej(N, V, T )
e
−

Ej(N,V,T )

kBT

Q(N, V, T )
. (2.11)

It is possible to differentiate lnQ(N, V, T ) with respect the temperature to get:

(
∂ lnQ(N, V, T )

∂T

)
=

1

Q(N, V, T )

(
∂Q(N, V )

∂T

)

=
1

kBT 2

∑
j

Ej(N, V ) · e
−

Ej(N,V )

kBT

Q(N, V )
. (2.12)

By replacing the sum in ref 2.12 in eq. 2.11, the ⟨E⟩ becomes

⟨E⟩ = kBT
2

(
∂ lnQ(N, V, T )

∂T

)
. (2.13)

For a system of indistinguishable particles the partition function can be written as

Q(N, V, T ) =
1

N !
q(N, V )N , (2.14)

where q(N, V ) is the single particle partition function. It must be noted that this equation

is valid only for a number of particles smaller than the number of possible states with

value kBT
2. Fortunately, this is usually the case for fluids at room temperature. The

energy ε of a single particle can be written as the sum of its translational, rotational,

vibrational and electronic components:

ε = εtrans + εrot + εvib + εelec. (2.15)

13
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The partition function of the single particle can therefore be rewritten as

q = qtrans qrot qvib qelec, (2.16)

where qtrans, qrot, qvib, qelec are the translational, rotational, vibrational, and eletrical par-

tition function respectively. For the purpose of the bQCE theory, qtrans can be described

by the particle in a box

qtrans =
V

Λ3
, (2.17)

where Λ =
√

h2

2πmkBT
, h is the Planck constant, and m the mass of the particle.

qrot can be described by the rigid rotor:

qrot =
π1/2

σ

√
T 3

Θrot
A Θrot

B Θrot
C

, (2.18)

where Θrot
j = h2

8π2IjkB
, σ is the rotational symmetry number, and Ij the moment of inertia.

qvib can be described by the harmonic oscillator

qvib =
3N−x∏
i=1

e−Θvib
i /2T

1− e−Θvib
i /T

, (2.19)

where Θvib
i = hνi

kB
, 3N − x is the number of vibrational degrees of freedom, and νi the

vibrational frequency of the ith normal mode.

qelec is calculated assuming that all the particles are, under certain conditions, in the

ground state, with energy εelec1 :

qelec = g1e
− εelec1

kBT , (2.20)

where g1 is the degeneracy of the ground state.

2.2.2. Binary Quantum Cluster Equilibrium Theory

The bQCE theory has been explored and extended in different works;2,3,45 The assump-

tion is to describe the liquid state as a dense gas phase composed of different clusters

of interacting molecules. The main concepts and key equations of this theory will be
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presented and explained. The molecular clusters that compose the system, according to

the bQCE theory, are built starting from the monomers of one or two components. The

first scenario corresponds to a neat system, the second one to a binary system. This

cluster gas is assumed to be in thermodynamic equilibrium between the aggregated and

disaggregated forms, according to the following reactions:

i(P)C1 + j(P)C2 GGGBFGGG CP , (2.21)

where i(P) and j(P) represent the number of monomers of the components C1 and C2

in the cluster P . This generic allows to consider different conformers and motifs for the

cluster P , e.g. chains or rings that coordinate the different monomers that compose the

structure of the cluster.

Given a volume V , a temperature T , and a total particle number defined by N tot =

N tot
1 + N tot

2 , the bQCE method aims to find a particle distribution {Ni} that minimizes

the free energy of the system:

F = −kBT lnQ, (2.22)

where Q is the total partition function of the distinguishable molecular clusters system,

and it is given by

Q =
M∏
i

1

Ni!
qNi
i . (2.23)

Here, Ni is the population of the i-cluster with partition function qi, and M being the

total number of clusters included in the selected finite cluster set. The cluster partition

function follows Eq. 2.16, and the translational, rotational and vibrational components

are calculated according to Eqs. 2.17–2.19. The electronic partition function is calculated

from the adiabatic binding energy

∆bindε
elec
i = εeleci − n1

i ε
elec
1 − n2

i ε
elec
2 , (2.24)

where εeleci is the electronic energy of the cluster’s ground state Pi, n1
i and n2

i are the

number of monomers of the components 1 and 2 of the cluster, respectively, εelec1 and

εelec2 are the corresponding ground states energies. This term is not enough to describe
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the electronic partition function, as it does not take into account the inter-cluster inter-

action energy. For this reason, an additional term in the form of a mean-field energy is

introduced, namely amf , weighted by the volume and cluster size; it has the dimension

of an energy over volume and describes the average inter-cluster interaction. The final

expression of qeleci reads

qeleci = exp

{
−
∆bindε

elec
i − (n1

i + n2
i )

amf

V

kBT

}
. (2.25)

Since the particles in the molecular clusters are not punctiform, a fraction of the volume

is not accessible by translation, and a correction term is required to describe the full

volume of the molecule. This volume takes the name of exclusion volume (Vex) and reads:

Vex = bxv

L∑
i

Nivi = bxv

L∑
i

Ni(n
1
i v1 + n2

i v2)

= bxv(v1N
tot
1 + v2N

tot
2 ), (2.26)

where v1 and v2 are the cluster volumes of the components 1 and 2, respectively, and

bxv is a dimensionless empirical parameter needed to correctly scale the particle volumes.

This scaling is required due the high sensitivity of cluster volume schemes to the choice

of atomic radii.96 In Eq. 2.26 the translation partition function can be extended as

qtransi =
V − bxv(v1N

tot
1 + v2N

tot
2 )

Λ3
. (2.27)

Now all the pieces needed to fully describe the cluster gas are given. At this point,

the partition function must be calculated in order to get meaningful thermodynamic

data. To achieve this goal, all the independent quantities that characterize the canonical

ensemble, as well as the empirical parameters, must be known. amf and bxv are optimized

to minimize the deviation of the bQCE results from experimental references, typically

density and boiling points. In order to determine the independent quantities ({Ni}, V, T ),

the canonical ensemble condition that requires the conservation of the particle numbers,
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will be considered:

N tot
1 +N tot

2 =
L∑
i

(n1
i + n2

i )Ni,

0 =
L∑
i

(n1
i + n2

i )Ni

N tot
1 +N tot

2

− 1 =
L∑
i

Ñi − 1, (2.28)

where Ñi is the normalized cluster population of the component i. It is important to

notice that the exclusion volume does not introduce any population dependency to the

cluster equilibrium function. The second condition of the canonical ensemble is now

applied, which states that the system must be in thermodynamic equilibrium, and any

infinitesimal change in the population of any cluster i cannot effect the free energy:

0 =
L∑
i

na
i

∂F

∂N1

dλ +
L∑
i

nb
i

∂F

∂N2

dλ −
L∑
i

∂F

∂Ni

dλ; (2.29)

in this equation dλ has the meaning of the reaction’s progression. This condition must

be fulfilled for every dλ and for each cluster independently. Therefore, it is possible to

simplify Eq. 2.29 as
∂F

∂Ni

= n1
i

∂F

∂N1

+ n2
i

∂F

∂N2

. (2.30)

Recalling Eq. 2.22 and considering

lnQ = ln

(
L∏
i

1

Ni!
qNi
i

)
=

L∑
i

(Ni ln qi − lnNi!) , (2.31)

it is possible to rearrange Eq. 2.30 to

∂

∂Ni

L∑
i

(Ni ln qi − lnNi!) = n1
i

(
∂

∂N1

L∑
i

(Ni ln qi − lnNi!)

)

+ n2
i

(
∂

∂N2

L∑
i

(Ni ln qi − lnNi!)

)
. (2.32)

Applying the Stirling approximation∗, it is possible to solve these differential equations

∗ln(n!) ≈ n · ln(n)− n
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to directly express the relationship between the total cluster population and the monomer

populations as:

ln
qi
Ni

= na
i ln

q1
N1

+ nb
i ln

q2
N2

,

Ni = qi

(
N1

q1

)n1
i
(
N2

q2

)n2
i

. (2.33)

The problem is now reduced from finding the whole set of cluster populations to deter-

mine only the ones of the neat components. By including Eq. 2.33 into Eq. 2.28 we get

the so-called population polynomials,

0 =
L∑
i

na
i + nb

i

N tot
1 +N tot

2

· qi
(
N1

q1

)na
i
(
N2

q2

)nb
i

− 1, (2.34)

which is one of the key equations of the bQCE theory. For neat systems it can be solved

easily to find the monomer population N1, since N tot
2 = 0 and n2

i = 0. This is not the

case for a binary system, where another condition must be defined in order to obtain the

two populations N tot
1 and N tot

2 . This additional equation used in the bQCE theory is the

conservation of mass:

M1N
tot
1 +M2N

tot
2 =

L∑
i

(n1
iM1 + n2

iM2)Ni,

0 =
L∑
i

n1
iM1 + n2

iM2

M1N tot
1 +M2N tot

2

Ni − 1, (2.35)

where M1 and M2 are the molecular masses for the components 1 and 2, respectively. As

for the population, a so-called mass polynomial in the form of

0 =
L∑
i

na
iM1 + nb

iM2

M1N tot
1 +M2N tot

2

· qi
(
N1

q1

)na
i
(
N2

q2

)nb
i

− 1 (2.36)

can be defined. This non-linear system of equations is solved employing the Newton-

Raphson algorithm.97 If the volume is given, these equations are sufficient to calculate

the partition function of the system at any temperature. However, the volume is obtained

from the cluster populations as an intrinsic property. Considering the calculation of the

18



2.2. Principles of Quantum Cluster Equilibrium Theory

pressure p from the partition function:

p = −∂F

∂V
,

0 = −p+ kBT
∂ lnQ

∂V
, (2.37)

only the electronic and translational partition function are volume dependent, so the other

partition functions disappear when a partial differentiation of Eq. 2.37 with respect to

the volume is carried out. As a result, the so-called volume polynomial reads

0 =− pV 3 +

(
L∑
i

kBTNi + p bxv(v1N
tot
1 + v2N

tot
2 )

)
V 2

−

(
L∑
i

Ni(n
1
i + n2

i )amf

)
V

+
L∑
i

Ni(n
1
i + n2

i )amf · bxv(v1N tot
1 + v2N

tot
2 ). (2.38)

Since the cluster population must be known to solve Eq. 2.38 with respect to the volume,

and it must be known to solve the population polynomial in Eq. 2.34, the equations are

solved iteratively. The first step consist in solving the population polynomial with a

starting guess for the volume. As convergence criterion, the absolute difference in the

Gibbs energy |∆G| is used. In the case of multiple solutions (V ,{Ni}) the one that

minimizes the Gibbs energy is selected:

G = −kBT lnQ+ V kBT
∂ lnQ

∂V

′
. (2.39)

More thermodynamic functions, such as the inner energy U , the enthalpy H, and the

entropy S can be derived as:

U = kBT
2 ∂ lnQ

∂T
, (2.40)

H = U + pV = kBT
2 ∂ lnQ

∂T
+ V kBT

∂ lnQ

∂V
, (2.41)

S =
U − F

T
= kBT

∂ lnQ

∂T
+ kB lnQ. (2.42)
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2.2.3. Peacemaker2

The bQCE theory is implemented in the open-source code Peacemaker 2, publicly

available under the GNU general Public License.3 The code is written in Fortran 2008,

and it does not make use of external libraries with the exception of Townsend’s varying

string module,98 under GNU Lesser General Public License. The cluster set is written in

an input file, where for each cluster the geometry, adiabatic binding energy, and vibra-

tional frequencies are listed. In a second input file, the temperature range and pressure

are defined by the user. Other instructions, and the experimental reference data to opti-

mize the bQCE calculation can be included in this file, if necessary. The user can either

specify the empirical parameters amf and bxv in the input file or define a grid to obtain

them through stepwise sampling. In the latter case, the sampling is based on the experi-

mental reference data of densities, volumes, and boiling points. An additional strategy is

introduced in Chapter 4 of this thesis, consisting in the definition of a linear dependence

of bxv on the temperature:

bxv(T ) = T · βxv + b0xv. (2.43)

Here, βxv is the exclusion volume expansion coefficient and b0xv is the ideal value of the

parameter at 0 K. Since the grid sampling algorithm cannot be used with the inclusion

of this additional parameter, the Differential Evolution algorithm99 implemented in the

SciPy library100 for Python 3.4 is interfaced with the Peacemaker code. The Peace-

maker 2 code follows the following steps (in the main iteration the parameters are kept

constant):

1. the initial volume V 0 = V is estimated from the ideal gas law.

2. All the cluster partition functions qi are calculated at the phase volume V and

temperature T for all clusters Pi.

3. The cluster distributions {Ni} are determined solving the polynomial population

described in Eq. 2.34.

4. From {Ni}, a new phase volume V is obtained from the volume polynomial of

Eq. 2.38.
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5. The relative change in the Gibbs energy is used as convergence criterion. If ∆G >

εG, the code returns to Step 2.

6. If multiple solutions [{Ni}, V ] exist, the one that minimizes the Gibbs energy is

chosen.

This procedure is repeated for every temperature in the specified temperature range.

At every new T , the volume obtained in the previous cycle is used as a starting guess.

To prevent meta-stable solutions, the Peacemaker 2 main iteration is repeated two

times at any given temperature; the first one accounts for the so-called gas phase in-

teraction, while the second accounts for the liquid phase interaction.65 In the first one

the ideal gas volume V id is used as initial volume guess and the mean-field parameter

amf is set to 0, to cancel all inter-cluster interactions. The liquid phase iteration uses

instead V 0 = V id/100 as initial volume guess and keeps the amf parameter constant. The

solution with the lowest Gibbs energy is chosen if both iterations converge; this allows

Peacemaker 2 to model a realistic phase transition. If experimental reference data

are provided, Peacemaker 2 will compare the QCE results to the available reference.

As experimental input Peacemaker 2 can accept an isobar of the molar volume V , a

density ρ at a specific temperature, a boiling point temperature Tb, or any combination

of them. Peacemaker 2 calculates the error as difference between the QCE results and

the experimental data. During the parameter sampling, Peacemaker 2 (or the Python

external script, in the modification described in Chapter 4) will use this error as criterion

to determine the best values for the empirical parameters. The error equation reads

error = wρ

(
ρ− ρexp

ρexp

)2

+ wV
1

N

N∑
i=1

(
Vi − V exp

i

V exp
i

)2

+ wT

(
Tb − T exp

b

T exp
b

)2

, (2.44)

where wρ, wV , and wT are weighting parameters for the individual errors of density, isobar,

and boiling point, respectively, and N is the number of volumes Vi included in the isobar;

these weighting parameters are set to 1 by default, but can be changed by the user.
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2.3. Principles of Classical Molecular Dynamics

Molecular dynamics (MD) is a computational method to describe the physical motion

of particles, usually atoms or molecules. In the classical MD, the Newton’s equation of

motion is solved to describe the equilibrium, structure, and various properties of a many-

body system. The main advantage of this method lies in the velocity of the calculation

and the relatively small computational cost even when a large number of particles are

included. At the same time, this method is strongly dependent on parameters fitted on

empirical data. For this reason only well-known and established models are reliable to

make good predictions about the system investigated. The classical equation of motion

reads:

fi = mia, (2.45)

where fi is the force acting on the particle i with mass mi and acceleration a. At the

same time the force is related to the potential energy of the system (U) by the following

relation:

fi = −∂U

∂ri
(2.46)

with ri being the position of the particle i. What has been described so far is related

to a simple system of one particle. In a system with N particles, the potential energy is

a function of r3N , which denotes the 3N coordinates necessary to define the system. In

the classical molecular dynamics, U(r3N) is described by a force-field defined by empirical

parameters. Usually, a force field has the form of a functional that includes terms for

covalent bonds and non-bonded interactions. Hence, there are two main components of

the potential energy of the system: one describes the intramolecular (bonded, Ub), and

the other one the intermolecular (non-bonded, Unb) contributions. The bonded part can

itself be written as a sum of smaller terms as:

Ub = Ubonds + Uangles + Udihedral + Uimproper, (2.47)

where Ubonds describes the stretches of the bond, Uangles the angle flexing, Udihedral the

torsional rotations, and Uimproper the improper interactions.
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2.3. Principles of Classical Molecular Dynamics

The unbonded potential energy of the force fields considered in this thesis take into

account only the two-body interactions – i.e. the pair potential –, since three body and

higher terms are expensive to calculate. The pair potential used in this thesis takes the

form of a Lennard-Jones potential, and it reads

vLJ = 4ϵ

[(
σ

r

)12

−
(
σ

r

)6
]
, (2.48)

where ϵ is the well depth, σ the diameter and r the pair-wise distance. The electrostatic

interaction is calculated using the Coulomb potential

vCoulomb(r) =
q1q2
4πϵ0r

, (2.49)

where q1 and q2 are the charges of the two interacting particles, and ϵ0 is the permittivity

in the void.

In the classical molecular dynamics, the atoms are treated by means of classical me-

chanics and the electronic energy is described only by a parametric function depending

solely on the atomic position. The parameters are usually fitted to experimental refer-

ences or to data obtained at higher level of theory. Each atoms is assigned an atom type

that depends mainly on the atomic number, the atom mass and the type of chemical bond

they are involved in. All the force fields used in this thesis are “all-atoms”, which means

that all atoms in the system are parameterized, and not grouped together. The explicit

functional form can differ greatly between force fields. In this thesis the OPLS-AA force

field101 has been used in Chapter 4. The OPLS-AA force field functional reads

EOPLS-AA
tot =

∑
bonds

Kr(r − r0)
2 +

∑
angles

Kθ(θ − θ0)
2

+
∑

dihedrals

4∑
n=1

Vϕ,n

2
[1 + (−1)n cos (nϕ)]

+
∑
i<j

{
4ϵij

[(
σij

rij

)12

−
(
σij

rij

)6
]
+

qiqj
εrij

}
. (2.50)

In both chapters 3 and 4, the AMBER102 force field has been interfaced with the
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2. Methodology

OGOLEM genetic algorithm,103,104 which relies on the force-field-based description of the

molecular interactions. The AMBER force functional is generally represented by:

EAMBER
tot =

∑
bonds

Kr(r − r0)
2 +

∑
angles

Kθ(θ − θ0)
2

+
∑

dihedrals

Vϕ[1 + d cos (nϕ)]

+
∑
i<j

{
4ϵij

[(
σij

rij

)12

−
(
σij

rij

)6
]
+

qiqj
εrij

}
. (2.51)

In both force field expressions, K is the force constant, r0 and θ0 are the reference

values, V is the Fourier coefficient, d and n are prefactors. To obtain the parameters

describing the interaction of the atoms i and j (σij and ϵij), different mixing rules can

be applied—e.g. the Lorentz–Berthelot mixing rules—105,106employed in this thesis. Both

the force fields describe the stretching and bending of bonds employing the harmonic

expressions, while the non-bonded interactions are described using Lennard-Jones and

Coulomb electrostatic potentials. The torsional energy of the dihedrals is instead treated

differently by the two fuctionals. In the OPLS-AA framework, it is possibile to consider up

to n = 4 different energy profiles, while in the AMBER functional only one contribution

is allowed. It can be noticed, for simple torsion energy profiles (no combination), both

frameworks will provide the same dihedral energy term.

In this thesis, the AMBER force field has been used to generate a first guess of molecular

cluster set for bQCE application, has described in both chapters 3 and 4. Classical

molecular dynamics calculations, using the OPLS-AA force field, have been carried out

in Chapter 4. The calculated densities at different temperatures has been then employed

as reference data for following bQCE calculations.
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3. Activity coefficients of binary methanol alcohol mixtures

Summary

In the following chapter, the bQCE theory is used to investigate the thermodynamic

properties and hydrogen bond network of small alcohols mixtures. In particular, the

authors focus on the binary mixtures of methanol with other alcohols with the aliphatic

carbon chain ranging in length from two to four atoms, taking branching into account.

The scope of this investigation is to understand how the chain length and the branching of

these compounds can affect their properties. This is particularly relevant as these effects

play an important role in different fields, especially in the extraction of solvents or metals

in the liquid phase.107 Due to the large number and size of the clusters considered for

the bQCE calculations, the semi-empirical method GFN2-xTB91,92 has been used for the

geometry optimization and frequencies calculations. This method has been used in the

past and has been proven to lead to reliable results even if it is at a low level of theory, with

the advantage of the small computational cost, which allows to optimize a great number

of clusters. In this study, dimer clusters are calculated also at DFT level of theory, and

the hydrogen bond length, angles, and interaction energies are compared between the

different methods and functionals. The interaction energies – normalized on the number

of monomers – are presented for neat systems of increasing cluster size, and their trend is

compared both by chain weight and branching. The cooperativity of pure methanol and

n-butanol is presented with respect to the increasing cluster size. After these analyses

based on quantum chemical calculations, the clusters optimized at semi-empirical level of

theory are used as input for the bQCE calculations. For this step, the Peacemaker 2.8

code was used. The cluster populations and the thermodynamic properties are calculated

and presented; in particular, the Gibbs energy of mixing at a temperature of 298.15 K

and pressure of 1 atm is shown for all the binary systems. The activity coefficients of

methanol in each solvent—and vice-versa—are calculated from the excess Gibbs energy

of mixing. The activity coefficients give an indication of the deviation from ideality of

the mixtures. Finally, combined distribution functions of the distances against the angles

of the hydrogen bonds are calculated for both neat and mixed clusters, using the same

cluster set used for the bQCE calculations, and weighting each cluster by the equilibrium

population employed. In conclusion, increasing the chain length of the alcohol, a larger
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deviation from ideality is noticeable; the presence of branching, on the other hand, leads

to a mixture closer to ideality.

27





Activity coefficients of binary

methanol alcohol mixtures from

cluster weighting

Gwydyon Marchelli∗ Johannes Ingenmey∗

Prof. Dr. Barbara Kirchner∗

Received: 07 June 2020, Revised: 16 June 2020, Published: 23

July 2020

3.1. Abstract

The hydrogen bond network of different small alcohols is investigated via cluster analysis.

Methanol/alcohol mixtures are studied with increasing chain length and branching of the

molecule. Those changes can play an important role in different fields, including solvent

and metal extraction. The extended tight binding method GFN2-xTB allows the evalu-

ation and geometry optimization of thousands of clusters built via a genetic algorithm.

Interaction energies and geometries are evaluated and discussed for the neat systems.

Thermodynamic properties, such as vaporization enthalpies and activity coefficients, are
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3. Activity coefficients of binary methanol alcohol mixtures

calculated with the binary quantum cluster equilibrium (bQCE) approach using our in-

house code Peacemaker 2.8. Combined distribution functions of the distances against

the angles of the hydrogen bonds are evaluated for neat and mixed clusters and weighted

by the equilibrium populations achieved from bQCE calculations.

3.2. Introduction

Aliphatic alcohols are readily accessible low cost solvents, which are easy to extract and

recover. Due to those properties their applications are considered and investigated in

different fields such as alternative fuel production, solvometallurgy, hydrometallurgy, and

solvent extraction. A potential extraction solvent must meet many criteria for a successful

implementation, such as extraction performance, chemical stability, solvent regeneration,

safety, and low environmental risk.107–111 Since they well match those criteria, for a long

time, alcohols have been used to extract different metal ions. For example, Co(II) and

Tl(I) chelat complexes are easily extracted by aliphatic alcohols in aqueous solvents.110

Indium forms a chelat with pyridylazonaphthol that can be extracted by butyl and pentyl

alcohols.111 Gold(I) can be extracted from cyanide solutions such as Au(CN)2 by various

alcohols.111 Vanadium and Niobium can be extracted from n-octanol.112 Aliphatic alcohols

are also known for their applications in the field of liquid/liquid solvent extractions.107,109

There is evidence in literature, that the branching of an alcohol as well as the location of

the hydroxyl group within the molecule does affect the extraction’s capacity.107,113,114 If

the branching of an alcohol is increased while the molecular weight stays constant, it was

found that the separation factor increases as well.107

Offeman et al.107 proved that the position of the hydroxyl group, as well as the branching

and chain length are important parameters that affect the ethanol extraction performance.

From these considerations, it can be seen that the size and branching of alcohols affect

their properties as hydrogen bond donors/acceptors. It is fundamental to understand how

the hydrogen donor effect is related with the molecular configuration of alcohols.

Infrared and Raman spectroscopy were used to investigate the hydrogen network in

alcohols and how it is affected by the alcohol’s branching. Both experimental and quantum
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3.2. Introduction

mechanical techniques were employed.115–117

Fourier transform microwave spectroscopy has been used in the past to investigate clus-

ters of simple alcohols. In particular, many works investigated chiral dimers of methanol,

ethanol, propanol, and butanol.118–122 These works found that the possible conformations

of alcohol dimers involve significant dispersion interactions.

Classical molecular dynamics simulations123 and Monte Carlo simulations124 have been

performed in the past, in order to investigate the hydrogen bond networks formed in

different linear and branched alcohols. The results have shown systematic differences in

their hydrogen-bonded structures, depending both on hydroxyl group position and the

molecular weight.

The hydrogen bond network of alcohols was investigated in the past with quantum

mechanical approaches. Many works on this topic are present in literature, for instance,

the conformation of 1-butanol in the liquid phase was already studied in 1994 by Ohno et

al.,125 wherein they demonstrated the importance of taking into account different confor-

mations. The donor/acceptor configuration was investigated by Finneran et al.126 for the

ethanol/methanol dimer. Rowley et al.127 analyzed the potential surface of many small

alcohols, and Vargas et al.128 showed how the global minimum of the ethanol dimer is

stabilized by the hydrogen bond.

An alternative approach to face the challenge is based on the binary quantum cluster

equilibrium (bQCE) theory.4,45,65 bQCE is an extension of Weinhold’s quantum cluster

method for pure liquids27,42,129–131 and has been successfully applied to predict the mis-

cibility of binary mixtures, the ionic product of water, activity coefficients, and mole

fraction dependent dissociation for weak acids.4,74,75,132,133

By applying models of statistical thermodynamics to quantum chemically calculated

clusters, the thermodynamic description of neat liquids and their mixtures at non-zero

temperature and pressure is possible in the condensed and gaseous phase. Self-consistent-

field calculations lead to equilibrium populations of these clusters and thus an ensemble of

different structural states is generated similar to molecular dynamics simulations.45,65,129

A first step in order to study hydrogen bond donor/acceptor systems was done by Brüssel

et al. investigating the dimethyl sulfoxide/water system.45 Later, Matisz et al. were
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3. Activity coefficients of binary methanol alcohol mixtures

the first to study the binary methanol/water system.78 They found that cubic and spiro

clusters are the dominant motifs in the mixed phase. Studies on methanol found that the

liquid phase is formed mainly by cyclic ring structures.60–62 Liquid ethanol was found to

be comprised mainly of the monomer, cyclic tetramer, and cyclic pentamer.134

From the quantum cluster approach we are able to evaluate the activity coefficients of

binary mixtures.4 Those values are needed to determine phase equilibria,135,136 and they

are directly related to different phenomena, such as vapor pressure lowering and freezing

point depression.135,136 Activity coefficients are a convenient indicator for the deviation

from ideal behavior137 and their theoretical determination is desirable, since in many cases

they are not easily accessible experimentally. In particular, activity coefficients can be an

important tool in the investigation and design of novel solvent mixtures. One example are

deep eutectic solvents (DES),138 which since the beginning of last decade generated great

interest139 and find a wide range of applications, such as metal extraction processes.10

In this article, we apply the quantum cluster approach to binary mixtures of methanol

with different alcohols. In particular, we investigate the effect of molecule size and branch-

ing on the deviation from ideal behavior for small size alcohols (one to four carbon atoms).

Our methodology can be found in the appendix, including details on the theoretical deriva-

tion of the binary quantum cluster equilibrium approach and the properties obtained from

it, the computational details, and the generation of cluster sets.

3.3. Results and Discussion

Here, a large range of alcohols and their binary mixtures with methanol are investigated.

The alcohols are chosen considering two factors: the number of carbon atoms (ranging

from two to four) and the branching. Hence, both propanol isomers, n-propanol and

iso-propanol, are considered as well as three isomers of butanol, namely n-, iso-, and

tert-butanol. Figure 3.1 shows a selection of clusters used in this work. Displayed are

methanol clusters at different cluster sizes, dimers of all neat alcohols, and a set of mixed

methanol/iso-propanol clusters with different compositions. In total, 5760 cluster struc-

tures where quantum chemically optimized, and subsequently 1144 of them where selected
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3.3. Results and Discussion

Figure 3.1. Ball-and-stick models of some selected clusters. Top: methanol clusters at the size
of 1–6 molecules. Center: Dimer geometries of the different alcohols. Bottom:
Mixed methanol/iso-propanol pentamers at different compositions. Please note
that this selection shows only a small excerpt of all 1144 clusters.
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3. Activity coefficients of binary methanol alcohol mixtures

by geometric and vibrational criteria (see the appendix for further explanations of the se-

lection methodology). The binary mixture methanol/ethanol was already studied with

the quantum cluster approach in an earlier work.4

Our results are mainly obtained via the extended tight binding method GFN2-xTB91

(henceforth called xTB, see the appendix for details), which includes the D4 dispersion

correction94,95 accounting for the London dispersion energy and is an improved revision of

the GFN-xTB method,92 which we successfully employed for the calculation of activities

and vaporization enthalpies in the past.4 xTB is a highly efficient method optimized

for the calculation of geometries, vibrational frequencies, and noncovalent interactions,

allowing the evaluation of thousands of cluster conformations which would not be feasible

on DFT level. Additionally, xTB was found to perform well at computing the interaction

energies of hydrogen-bonded water clusters, outperforming even some GGA and hybrid

DFT functionals such as BLYP and PBE0.91 Hence, we find this method is optimally

suited for our approach.

3.3.1. Hydrogen Bond Analysis

Cluster Analysis

Here, we will consider the interaction energy per monomer ∆intĒ = ∆intE/n, where ∆intE

is the total adiabatic interaction energy in a cluster of the size of n molecules. Figure 3.2

shows the averaged interaction energies ∆intĒ plotted against the cluster size n for the

neat alcohols, as obtained from xTB. This average is taken from up to ten clusters per

cluster size. The exact numbers of clusters per cluster size are included in the supporting

information.

In the case of the linear systems, depicted in the left panel, an increase in the cluster

size leads to stronger (i.e. lower) interaction energies per monomer. In the middle panel

n-propanol and iso-propanol are compared, but no particular differences are present. The

right panel shows the different isomers of butanol investigated in this article. Whereas

less stable in the case of the dimer, increasing the cluster size, the unbranched alcohol

has slightly lower interaction energies compared to its more branched isomers. Table 3.1

shows the interaction energies of the global minimum methanol and n-butanol clusters
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3.3. Results and Discussion
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Figure 3.2. Interaction energy ∆intĒ per monomer for the neat alcohols, averaged over multiple
geometries at each cluster size. The left panel shows the effect of increasing chain
length, the center and right panels display the effect of branching. Lines are meant
to guide the eye.

in more detail, along with the dispersion energy ∆dispĒ and remaining energy ∆remĒ

where ∆intĒ = ∆dispĒ + ∆remĒ. The set of global minimum structures of methanol

is displayed in Fig. 3.1. Again, we can observe that ∆intĒ increases with the cluster

size. With each additional molecule there’s a gain in interaction strength that can be

attributed to cooperativity effects, calculated as coop. = ∆intĒn/∆intĒn−1 where ∆intĒn

is the average interaction energy per monomer in a cluster of size n. This cooperative gain

decreases rapidly and seems to be mostly saturated at a cluster size of four molecules.

In comparison, whereas ∆remE is of similar size in methanol and n-butanol, dispersion

forces are considerably stronger in the latter. While smaller in magnitude, ∆dispE levels

out less rapidly than ∆remE and benefits from cooperative effects even in larger clusters.

Table 3.2 lists the interaction energies of the global minimum structures of (ROH)2

dimers, in order to compare the performance of xTB against GGA methods. The complete

list of interaction energies ∆intE of all the 1144 clusters are given in the supporting

information. The interaction energies obtained via the xTB method are compared to

those obtained from single point calculations on the same geometries employing DFT

methods, namely the GGA functional BP86 and the hybrid functional B3LYP. Overall,

xTB interaction energies are weaker for unbranched alcohols and stronger for branched

ones with respect to the DFT methods energies. Nevertheless, the trends are similar.
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3. Activity coefficients of binary methanol alcohol mixtures

Table 3.1. Average interaction energies ∆intĒ, remaining energies ∆remĒ, and dispersion en-
ergies ∆dispĒ per molecule in kJ/mol for the global minimum of methanol and
n-butanol clusters of size n, as obtained on the xTB level of theory, as well as the
relative cooperative gain in %.

Methanol n-Butanol

n ∆intĒ ∆dispĒ ∆remĒ coop. ∆intĒ ∆dispĒ ∆remĒ coop.

2 -10.2 -1.7 -8.8 -12.2 -5.4 -6.8

3 -20.0 -3.4 -16.9 97.5 -30.6 -8.6 -22.0 150.7

4 -26.8 -4.2 -22.6 33.4 -38.8 -12.8 -26.0 26.7

5 -28.5 -5.5 -23.0 6.1 -40.6 -13.9 -26.8 4.8

6 -29.5 -5.9 -23.6 3.7 -41.0 -15.8 -25.2 1.0

7 -30.2 -6.2 -23.9 2.3 -42.8 -15.4 -27.4 4.3

8 -31.4 -6.4 -25.0 4.0 -41.8 -16.4 -25.4 -2.4

9 -31.3 -7.0 -24.3 -0.3 -42.3 -18.2 -24.1 1.3

Regardless of the method, the lowest and highest interaction energies are found for i-

BuOH and MeOH, respectively.

The differences in interaction energies become less pronounced for the mixed dimers

formed by methanol and an additional alcohol, listed in Table 3.2. Increasing the branch-

ing of the molecule, the differences between the methods become smaller. The intermolec-

ular hydrogen-oxygen distances and the complementary O-H· · ·O angle within the dimers

are listed in Table 3.3, for both xTB and BP86 optimized geometries. Overall, the dis-

tances are in good agreement, whereas the angles are slightly different. In the following,

we will focus on our xTB results, exclusively, based on the 1144 calculated clusters opti-

mized on that level. We observe that xTB can reproduce energetic and geometric features

with sufficient accuracy and find that the ability to quantitatively evaluate a wide range

of potential cluster geometries justifies the use of this method. Results obtained via the

GGA method BP86 are available in the supporting information.

Increasing either chain length or branching of the molecule, the interaction energy is

decreasing, both for the mixed methanol/alcohols dimers and the pure systems. No similar

trend is observed for the hydrogen bond distance and angle. Nevertheless, the methanol

dimer shows both a larger distance and wider angle as compared to the other dimers. The
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3.3. Results and Discussion

Table 3.2. Interaction energies ∆intE (kJ/mol) of alcohol dimer geometries optimized at xTB
level, as obtained from single point calculations at different levels of theory. The
energies correspond to the global minimum geometries of the pure ROH-ROH and
mixed MeOH-ROH dimers.

∆intE(ROH-ROH) ∆intE(MeOH-ROH)

ROH xTB BP86 B3LYP xTB BP86 B3LYP

MeOH -20.4 -22.7 -23.8 − − −
EtOH -23.8 -26.1 -27.4 -23.9 -25.8 -27.1

n-PrOH -24.0 -26.6 -27.7 -23.9 -26.1 -27.4

i-PrOH -29.4 -27.3 -28.4 -27.5 -27.4 -28.4

n-BuOH -24.4 -27.0 -28.1 -24.2 -26.5 -27.7

i-BuOH -33.8 -28.1 -28.8 -24.7 -26.0 -27.3

t-BuOH -30.4 -27.5 -28.7 -27.8 -27.8 -28.8

iso-propanol containing dimers show a wider hydrogen bond angle compared to the other

alcohols except methanol. The tert-butanol containing dimers show the widest angle of

the investigated butanol isomers. The hydrogen bond distance of 188.8 pm in the neat

ethanol dimer is lower than the literature value of 191.0 pm found by Vargas et al.128 This

difference can be imputed to the different level of theory. Nevertheless, both results are

in acceptable agreement. The distance of 189.6 pm in the neat methanol dimer is in good

agreement with the MP2 value of 187.2 pm reported by Provencal et al.140

Population-weighted Analysis

In earlier works, we presented sophisticated methods for detecting and quantifying hydro-

gen bonds.141,142 From a geometrical perspective, hydrogen bonds are often characterized

by their length and angle.140,143 Different bond lengths and angles can bring to light dis-

tinct behaviors of the investigated species forming the hydrogen bonds. For this reason,

we show combined distribution functions (CDF) of the different alcohols, constructed

from the intermolecular hydrogen-oxygen distances and the angular distribution of the

complementary O-H· · ·O angle. Since our cluster sets not only include global minimum

structures but also those more distant from the enthalpically optimal binding situation,

by combining the collected data of all investigated clusters, in total 1144, and weighting
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3. Activity coefficients of binary methanol alcohol mixtures

Table 3.3. Hydrogen bond distances r (pm) and the complementary O-H· · ·O angles α (◦) of
geometry optimized dimer structures at xTB and BP86 level of theory. The distances
and angles correspond to the global minimum geometries of the pure ROH-ROH and
mixed MeOH-ROH dimers.

Pure dimers ROH-ROH Mixed dimers MeOH-ROH

r(xTB) r(BP86) α(xTB) α(BP86) r(xTB) r(BP86) α(xTB) α(BP86)

MeOH 189.6 190.1 9.3 7.6 − − − −
EtOH 188.7 189.2 2.4 10.7 188.4 189.2 2.3 10.2

n-PrOH 188.3 188.8 2.4 10.4 182.2 189.1 1.8 10.0

i-PrOH 188.0 190.1 6.1 13.2 186.2 188.8 7.8 12.3

n-BuOH 188.7 189.0 3.0 10.7 188.4 189.2 1.5 9.7

i-BuOH 190.0 189.6 1.9 6.7 188.0 189.1 0.3 10.3

t-BuOH 187.9 190.1 4.5 14.2 185.5 188.0 6.5 12.4

them by their bQCE populations (see appendix for method), we obtain CDFs similar in

appearance to those of a MD simulation. Through the weighting by population, these

CDFs are accessible for any temperature and pressure investigated in the bQCE calcu-

lation. Here, we investigate methanol, ethanol, n-butanol, and tert-butanol in order to

include both linear and branched alcohols. For all of them, the complete cluster set is

analyzed with our in-house trajectory analysis code Travis;144 then, the data of each

cluster is collected and weighted by the cluster population at 298.15 K, as obtained by

bQCE calculations.

In Fig. 3.3 the CDFs of the neat systems are reported. The color scale is relative and

referenced to the maximum value of all systems. The average of the hydrogen bond dis-

tance is in the range of 170–180 pm, which is in good agreement with the literature values

of methanol of both ∼180 pm143 (obtained by a combined experimental and molecular dy-

namics investigation). Several ab-initio molecular dynamics studies employing the BLYP

functional find the first peak of the radial distribution function of the O–H· · ·O distance

around 190 pm,145,146 in good agreement with our results of 189.6 pm for methanol dimer

(Table 3.3). Our CDFs show a range lower than this value, but are still in good agreement.

Comparing the different alcohols in Figure 3.3, it can be seen that the CDFs become

more localized with increasing size of the alcohol, from methanol to n-butanol and tert-
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3.3. Results and Discussion

Figure 3.3. Combined distribution functions of the intermolecular hydrogen-oxygen distance
against the complementary of the O-H· · ·O angle in (left to right) methanol,
ethanol, n-butanol, and (bottom) tert-butanol.

Figure 3.4. Combined distribution functions of the intermolecular hydrogen-oxygen distance
against the complementary of the O-H· · ·O angle of n-butanol, at the temperature
(from left to right) 248.15 K, 298.15 K, 348.15 K.

butanol, with an increasingly distinct maximum observable in the distribution. Compar-

ing the other alcohols to tert-butanol, a shift of this maximum from 1–2◦ to a wider angle

of 9–10◦ can be observed, which can be attributed to the different steric restrictions in

the branched alcohol.

Figure 3.4 shows the CDFs of n-butanol at a temperature of 248.15 K, 298.15 K, and

348.15 K, comprising a large span within the liquid range of n-butanol. While the overall

structure of the distributions remains the same, as expected, with increasing temperature,

the hydrogen bonds become less localized in the lower range of angles and an increased

distribution over the range of 8–12◦ is observed. Thus, with rising temperature, the

average hydrogen bond angle increases.
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3. Activity coefficients of binary methanol alcohol mixtures

a) methanol/ethanol

b) methanol/n-butanol

c) methanol/tert-butanol

Figure 3.5. Combined distribution functions of the intermolecular hydrogen-oxygen distance
against the complementary of the O-H· · ·O angle for the mixtures of methanol
with ethanol (a), n-butanol (b), and tert-butanol (c) at mole fractions of methanol
of (from left to right) 0.2, 0.5, and 0.8.

Figure 3.5 shows the CDFs of methanol/ethanol (a), methanol/n-butanol (b), and

methanol/tert-butanol (c) for increasing mole fractions of methanol of 0.2, 0.5, and 0.8. In

general, for small mole fractions of methanol the systems show a more localized maximum

of the hydrogen bond distribution. For the methanol/tert-butanol system, it is visible

that the preferred angle is shifting from larger to smaller values with an increasing mole

fraction of methanol. Even more, compared to the other binary systems, this mixture is
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3.3. Results and Discussion

less localized due to the branching of tert-butanol.

3.3.2. Thermodynamic Properties of Neat Systems

In earlier works, we established our approach of calculating ∆vapH from QCE, by perform-

ing so-called QCE0 calculations wherein amf is set to 0, as reference for the gas phase.4,81

For QCE0 calculations, the cluster sets are reduced to clusters up to the size of three

molecules. ∆vapH can then be obtained for any temperature simply as difference of the

total enthalpies in the liquid and gaseous phase respectively. In Table 3.4 our calculated

enthalpies of vaporization at 298.15 K are listed next to their experimental reference value

for every neat system investigated in this work. A good agreement with experimental data

can be seen for most systems. For ethanol, an improved result with respect to the previ-

ous work4 (44.09 kJ mol−1) is obtained, due to the increased size and number of clusters.

Our approach appears more accurate for the non-branched systems methanol, ethanol,

n-propanol and n-butanol. The system that deviates most from experiment is also the

most branched, namely tert-butanol. In general a larger deviation from experimental

results can be seen with an increased branching of the molecule.

Table 3.4. Calculated and experimental enthalpies of vaporization ∆vapH and ∆vapH
exp in

kJ mol−1 for the neat systems at standard conditions. Experimental enthalpies of
vaporization are taken from the NIST Chemistry WebBook.147

∆vapH ∆vapH
exp

methanol 39.33 37.60

ethanol 43.36 42.30

n-propanol 47.17 47.00

iso-propanol 47.49 45.00

n-butanol 51.37 52.00

iso-butanol 49.81 51.00

tert-butanol 46.71 39.70
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3. Activity coefficients of binary methanol alcohol mixtures

3.3.3. Thermodynamic Properties of Binary Mixtures

As shown in earlier works, via the quantum cluster approach we are able to reproduce

quantitatively the experimental Gibbs energies of mixing ∆mixG, using the density and

phase transition temperature as only experimental input data.4,65,79 The Gibbs energy

of mixing at 328.15 K is depicted in Figure 3.6 for the binary mixtures of methanol

with ethanol, n-propanol, iso-propanol , n-butanol, iso-propanol, tert-butanol. Of all the

investigated systems, methanol/ethanol is the one that most resembles an ideal mixture.

In contrast, methanol/n-butanol is the system deviating the strongest from ideality. In

general, an increase in the deviation from ideality can be seen with an increasing size

of the molecule, from ethanol to butanol. In order to investigate the deviation from the

ideal mixture in more depth, activity coefficients are calculated. Activity coefficients are

directly connected to the excess Gibbs energy of mixing ∆mixG
e as shown in Equation 3.9.

In Table 3.5, activity coefficients of all mixtures are shown over the complete mixing range.

As described before and in our previous work,4 the mixture methanol/ethanol is the most

ideal system; the activity coefficients fMeOH and fEtOH of both methanol in ethanol and

the opposite respectively are near to one for every mole fraction. An increase in the

activity coefficient at infinite dilution can be observed with increasing size of the alcohol;
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Figure 3.6. Calculated Gibbs energies of mixing ∆mixG for binary mixtures of methanol with
an alcohol ROH at 298.15 K. xm indicates the mole fraction of methanol.
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3.3. Results and Discussion

Table 3.5. Activity coefficients fROH of both components in mixtures of methanol (MeOH) with
an alcohol ROH, where xm is the molar fraction of methanol.

ethanol n-propanol iso-propanol n-butanol iso-butanol tert-butanol

xm fMeOH fEtOH fMeOH fnPrOH fMeOH fiPrOH fMeOH fnBuOH fMeOH fiBuOH fMeOH ftBuOH

0.00 1.03 1.00 4.39 1.00 2.03 1.00 148.21 1.00 21.09 1.00 2.49 1.00

0.10 0.99 1.00 2.58 1.03 1.51 1.01 20.01 1.10 6.99 1.06 1.87 1.01

0.20 0.99 1.00 1.83 1.09 1.31 1.04 5.82 1.36 3.40 1.20 1.53 1.05

0.30 0.99 1.00 1.45 1.18 1.21 1.07 2.77 1.74 2.12 1.40 1.33 1.10

0.40 0.99 1.00 1.24 1.28 1.14 1.10 1.78 2.20 1.56 1.64 1.21 1.16

0.50 1.00 1.00 1.13 1.39 1.09 1.14 1.37 2.72 1.29 1.92 1.13 1.23

0.60 1.00 0.99 1.06 1.49 1.05 1.19 1.18 3.27 1.15 2.21 1.07 1.30

0.70 1.01 0.98 1.03 1.57 1.03 1.24 1.08 3.85 1.07 2.51 1.04 1.38

0.80 1.01 0.97 1.02 1.64 1.02 1.30 1.03 4.44 1.03 2.81 1.02 1.47

0.90 1.01 1.00 1.01 1.73 1.01 1.37 1.00 4.99 1.01 3.19 1.01 1.58

1.00 1.00 1.16 1.00 1.98 1.00 1.55 1.00 5.43 1.00 3.82 1.00 1.76

methanol at infinite dilution in n-propanol and n-butanol shows activity coefficients of

4.39 and 148.21 respectively as compared to 1.03 in ethanol. Increasing the branching

of the molecule, the activity coefficients are decreasing to values closer to one; this is in

good agreement with the Gibbs energies of mixing in Figure 3.6, where the most branched

system, methanol/tert-butanol, is the closest to ideality second to only methanol/ethanol.

The activity coefficients of methanol in iso-propanol compared to methanol in n-propanol

confirm this behavior. For a better visualization, the activity coefficients are shown in

Figure 3.7 and Figure 3.8 with respect to the methanol mole fraction. From these graphs

it can be seen that for low mole fractions of methanol its activity coefficient in alcohols

is increasing with the size of the solvent and decreasing with its branching. The same

behavior can be found for the activities of alcohols diluted in methanol. We can conclude

that in mixtures of methanol with an alcohol, increasing the size of the alcohol leads

to a larger deviation from ideality. On the other hand, an increase in the branching

of the alcohol leads to a more ideal mixture. The same behavior can be found in the

experimentally calculated excess Gibbs energy of mixing from Polak et al.148 for isomeric

43



3. Activity coefficients of binary methanol alcohol mixtures

 0

 5

 10

 15

 20

 25

 0  0.2  0.4  0.6  0.8  1

f m

xm

EtOH
n-PrOH
n-BuOH

 0  0.2  0.4  0.6  0.8  1

xm

n-PrOH
i-PrOH

 0  0.2  0.4  0.6  0.8  1

xm

n-BuOH
i-BuOH
t-BuOH

Figure 3.7. Activity coefficients of methanol in binary mixtures with an alcohol ROH at
298.15 K. xm indicates the mole fraction of methanol.
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butanol, where n-butanol shows the largest deviation from ideality, and tert-butanol the

lowest.

3.4. Conclusions

In order to understand the liquid behavior we optimized 5760 cluster geometries of which

1144 were further analyzed. The average interaction energies per monomer have been

evaluated for all neat dimers and stronger interactions with increasing chain length and

branching of the molecule are found. Combined distribution functions of distances and

angular distributions of hydrogen bonds are calculated for several neat and mixed sys-
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tems, demonstrating how the different size and branching of the alcohol lead to different

geometrical conditions of the hydrogen bonds. In this article we applied the quantum

cluster approach to calculate the activity coefficient of different methanol/alcohol mix-

tures. This approach relies on the binary quantum cluster equilibrium theory.3,4,45,65 With

respect to our previous work,4 we increased the maximal size of the clusters from six to

nine molecules, ensuring a better accuracy in the quantum cluster approach simulations.

Furthermore, we studied a much wider range of MeOH-alcohol mixtures. The vaporiza-

tion enthalpies of all pure substances were calculated at room temperature; while overall

a good agreement with experimental data can be observed, the deviation increases with

the alcohol’s branching, with tert-butanol showing the largest deviation. Using Redlich–

Kister polynomials and calculating their derivatives allows access to the activity coeffi-

cients, further establishing the bQCE approach as a novel and conceptually outstanding

method of computing such quantities. In this article we demonstrated that in mixtures

of methanol with an alcohol, increasing the size of the alcohol leads to a larger deviation

from ideality. On the other hand, an increase in the branching of the alcohol leads to a

more ideal mixture. This case study will help to move our approach to complex solvent

media, adding to the tools used in application driven solvent design.

Appendix

The bQCE Method

The bQCE method has been established and its underlying theory detailed in depth in

many earlier works.4,27,45,65 Here, we will present only a short overview of the key equations

of bQCE.

First, we consider a system of non-interacting clusters in thermodynamic equilibrium,

built up from one (neat substances) or two (binary systems) monomers. The equilibrium

reaction between clusters of a binary system can be written as

i(℘)C1 + j(℘)C2 ⇌ C℘, (3.1)
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3. Activity coefficients of binary methanol alcohol mixtures

where i(℘) and j(℘) are the number of monomers of each component C1 and C2 that form

the cluster ℘. The system’s total partition function Qtot at volume V and temperature T

is given by

Qtot({N℘}, V, T ) =
N∏

℘=1

1

N℘!

[
qtot℘ (V, T )

]N℘
, (3.2)

where qtot℘ is the partition function corresponding to the single cluster ℘ and {N℘} is the

full set of total cluster populations N℘. From calculating Qtot all the thermodynamic

properties of the system are accessible. Each cluster partition function qtot℘ can be evalu-

ated as product of partition functions corresponding to the cluster’s different degrees of

freedom:

qtot℘ (V, T ) = qtrans℘ (V, T )qrot℘ (T )qvib℘ (T )qelec℘ (T ), (3.3)

where qtrans℘ , qrot℘ , and qvib℘ are the translational, rotational, and vibrational partition func-

tion. They can be calculated from standard equations for the particle in a box, rigid

rotator, and harmonic oscillator respectively.27,149 The electronic partition function qelec℘

is calculated from the adiabatic binding energy ∆bindE
elec
℘ of the cluster.150

In order to describe qtrans℘ , the phase volume V must account for an exclusion volume

Vex which attributes a volume v℘ to the non-punctiform clusters. The exclusion volume

is calculated as

Vex = bxv

N∑
℘=1

N℘v℘, (3.4)

wherein v℘ is the cluster volume. Since cluster volumes are sensitive to the choice of

atomic radii, a scaling parameter bxv must be introduced. Additionally, qelec℘ is extended

by a correction term to account for the interactions between clusters in form of a volume

and cluster size dependent mean-field energy. The electronic partition function then reads

qelec℘ (V, T ) = exp

{
−
∆intE

elec
℘ − [i(℘) + j(℘)]amf

V

kBT

}
, (3.5)

where kB is the Boltzmann constant and the mean-field parameter amf (Jm3/mol2) is a

second empirical parameter, that is scaling the strength of inter cluster interactions. In

an optimized bQCE calculation, the parameters are chosen such that the deviation of

the bQCE results from a given experimental input, such as densities and phase transition
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temperatures, becomes minimal.

To calculate Qtot, all independent variables ({N℘}, V, T ) need to be known. The tem-

perature must be set by the user and the volume is restricted with respect to an externally

applied pressure

p = kBT

(
∂ lnQtot

∂V

)
T,{N℘}

. (3.6)

If several combinations of V and {N℘} exist that fulfill this condition, then the solution

with the lowest Gibbs energy

G = −kBT lnQtot + V kBT

(
∂ lnQtot

∂V

)
T,{N℘}

(3.7)

is chosen. Using this approach, good performance has been demonstrated for mixed

systems in several studies.4,65,81

Activity Coefficients from bQCE

An accurate and detailed description of the calculation of activity coefficients via the

quantum cluster approach can be found in a previous work.4

For a binary mixture, the excess Gibbs energy of mixing ∆mixG
e can then be calculated

as

∆mixG
e = ∆mixG−∆mixG

id, (3.8)

where ∆mixG and ∆mixG
id are the Gibbs energy and the ideal Gibbs energy of mixing

respectively. Activity coefficients fi are directly related to the excess Gibbs energy of

mixing (labeled as Ge) by

fi = exp

(
1

RT

∂Ge

∂Ni

)
, (3.9)

where R is the ideal gas constant, T is the temperature, and Ni is the particle number of

component i. Since no analytical expression for Ge is available, we calculate its derivative

numerically through a Redlich–Kister (RK) style polynomial fit which smooths out all

local inconsistencies.151 We denote the Gibbs energy Ge
RK(xi) with

Ge
RK(xi) = xi(1− xi)

∑
n

gn(1− 2xi)
n, (3.10)
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3. Activity coefficients of binary methanol alcohol mixtures

wherein gn are the Redlich–Kister parameters.151 In this work we used up to five pa-

rameters (0 ≤ n < 5). With xi =
Ni

Ni+Nj
we can write Ge

RK as function of Ni and Nj:

Ge
RK = Ni(1−

Ni

Ni +Nj

)
∑
n

gn

(
1− 2

Ni

Ni +Nj

)n

. (3.11)

Equation 3.11 gives an analytical expression for Ge that can be differentiated with respect

to the number of particles Ni:

∂Ge
RK

∂Ni

= x2
j

∑
n

gn (1− 2xi)
n − 2 · xi · x2

j

∑
n

n · gn (1− 2xi)
n−1 .

Analogously, we can evaluate

∂Ge
RK

∂Nj

= x2
i

∑
n

gn (2xj − 1)n + 2 · xj · x2
i

∑
n

n · gn (2xj − 1)n−1 .

wherein xi =
Ni

Ni+Nj
and xj =

Nj

Ni+Nj
. Inserting these expressions into Equation 3.9 allows

the evaluation of the activity coefficients.

Computational Details and Cluster Search

The selection of the cluster set is a crucial step of the quantum cluster equilibrium ap-

proach.45,129 In this work, we increased the cluster size (up to nine molecules) compared to

our previous work,4 in order to increase the accuracy of the calculations. In Figure 3.9 the

cluster generation procedure is explained. In the first step, the global minimum structure

of each cluster composition is searched for by running a genetic structure optimization

algorithm at the classical force field level of theory. For this purpose the Ogolem frame-

work,103,104 interfaced with the Amber 2016 molecular dynamics package152 and the

general amber force filed (GAFF),102 is used. During the optimization, the number of

individuals in each generation as well as the total number of individuals are set accord-

ingly with the cluster size. For each cluster a number between 2000 and 6000 structures

are evaluated, with each generation consisting of 100 to 300 individual structures. For

each respective cluster composition, fifteen clusters are chosen from the final generation

in order to sample a set of energetically and geometrically diverse individuals, which
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represent the global and local minima of that structure. These clusters are geometri-

cal optimized at semi-empirical level of theory, using the extended tight binding method

GFN2-xTB 6.0.1,91,92 which includes the D4 dispersion correction94,95 accounting for the

London dispersion energy. Frequency calculations are performed with the same method.

All the clusters with a first normal mode below a threshold (in this case, 10 cm−1) are

removed from the cluster pool in order to avoid imaginary or low frequencies that could

affect the simulations. Likewise, structural duplicates of already existing clusters are re-

moved from the cluster set. The conformational similarity of two clusters is quantified by

their geometrical distance d:153

d(℘, ℘′) =

[(
IA − I ′A

IA

)2

+

(
IB − I ′B

IB

)2

+

(
IC − I ′C

IC

)2
] 1

2

, (3.12)

wherein I and I ′ are principal moments of inertia of the clusters ℘ and ℘′ respectively.

Clusters ℘′ with a geometrical distance of d℘, ℘′ < 0.01 were removed from the cluster set.

For the geometrical investigation of hydrogen bonds, the cluster sets were analyzed with

our in-house trajectory analysis code Travis.144 Note, that the all cluster geometries can

be obtained from the authors upon request.

Additionally, a select set of systems were optimized on the DFT level of theory. Here,

we used the Orca 4.0.0154 quantum chemical code employing the GGA functional BP86

with the 6-31G* basis set, D3 dispersion correction, and geometrical counter-poise cor-

rection.155 Due to the increased computational cost, we reduced the cluster set size to

a maximum of six molecules. We observed no improvement in the results, hence, we

excluded the analysis of those clusters in this article. However, interaction energies and

thermodynamic results of those systems are presented in the supporting information. Ad-

ditionally, single point simulations where also performed employing the hybrid functional

B3LYP, using the same 6-31G* basis set.

bQCE calculations were performed with the Peacemaker 2.8 program package3 which

has successfully been used to describe binary mixtures previously.4,65,78,79 All calculations

were performed at a fixed pressure of 1.01325 bar and temperature ranging from 273

to 500 K. Cluster volumes were calculated employing van der Waals volumes. The pa-
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Figure 3.9. Cluster generation procedure.
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rameters amf and bxv were fitted so that the deviation of bQCE results to experimental

boiling points and densities taken from literature148,156–160 become minimal. Different to

our earlier works, here, we employed the Nelder–Mead optimization algorithm.161
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Summary

In the following chapter, the hydrogen bond networks of binary mixtures of hexafluoroiso-

propanol with either methanol or acetone are analyzed with a combination of quantum

mechanical calculations, classical molecular dynamics (MD) simulations, and the bQCE

approach. hexafluroisopropanol is extensively studied in literature,162–164 and already used

in different fields,164–168 but its intermolecular interactions with acetone or methanol were

nonetheless never investigated in detail.166,169 Since acetone is a hydrogen bond acceptor

and methanol is both an acceptor and a donor, they are a good model systems to be com-

bined with hexafluoroisopropanol as these mixtures present a first necessary step to model

and simulate more complicated systems. In contrast to to the strategy used in Chapter 3,

here the cluster size for both the neat and the mixed system is reduced to 6, but all the

clusters are geometrically optimized at the DFT level of theory, improving the results.

Since the experimental data to fit the bQCE calculations are not available in this case,

classical MD simulations are performed in the temperature range of 298–338 K with a step

size of 10 K for the two mixed systems, and the simulated densities are used as input for

the bQCE calculations. These calculations are performed with the in-house code Peace-

maker 2.8, here upgraded with temperature dependent parameters, as explained in the

methodology section. The radial distribution fuctions, the coordination numbers, the an-

gular distribution functions, and the lifetime of the hydrogen bond for both mixtures are

evaluated, to fully describe the inter-molecular interactions. In general, both the systems

hexafluoroisopropanol/acetone and hexafluoroisopropanol/methanol are showing a highly

coordinating structure. The populations at 298 K for the systems are calculated via the

bQCE approach, and the most populated clusters are shown and discussed. The mixed

clusters appear to be preferred even at small concentrations of hexafluoroisopropanol. Fi-

nally, enthalpies and entropies of vaporization are calculated for both the neat and mixed

systems, and show a good agreement with the experimental values available in literature.
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4. Hydrogen bonding in HFIP-acetone and -methanol mixtures

tions. In particular, their populations and thermodynamic properties are investigated

with the binary quantum cluster equilibrium method, using our in-house code Peace-

maker 2.8, upgraded with temperature-dependent parameters. A novel approach, where

the final density from classical molecular dynamics, has been used to generate the nec-

essary reference isobars. The hydrogen bond network in both type of mixtures at molar

fraction of hexafluoroisopropanol of 0.2, 0.5, and 0.8 respectively is investigated via the

molecular dynamics trajectories and the cluster results. In particular, the populations

show that mixed clusters are preferred in both systems even at 0.2 molar fractions of

hexafluoroisopropanol. Enthalpies and entropies of vaporization are calculated for the

neat and mixed systems and found to be in good agreement with experimental values.

4.2. Introduction

The investigation of the mechanisms and interactions that regulate both neat fluids as

well as their mixtures plays a fundamental role in the design of novel solvents. Over the

last decades the interest in developing sustainable chemical processes has grown, and with

it the need for new solvents that follow the fundamentals of green chemistry.6 For example

liquid-liquid – i.e. solvent – metal extraction offers a number of advantages compared to

other techniques,170 but the employed solvents are often toxic and expensive to dispose of.

The last few years have seen an increasing demand of novel sustainable solvents for metal

ions extraction.171 Another approach is the use of the so-called deep eutectic solvents

(DES), which are low-melting eutectics formed by the mixture of two or more substances

whose eutectic point temperature is much lower than that of an ideal mixture.8,138 With

properties similar to those of ionic liquids, such as a low vapor pressure, low melting

point, high thermal stability,172,173 and they have come to be known as an economic and

eco-friendly alternative for conventional organic solvents. A new kind of DESs, called

Type V DESs, has recently been introduced.12 It is formed by the combination of two

non-ionic moieties which establish a strong hydrogen bond network, and has been proven

to be more sustainable than traditional organic solvents.12 In recent works, hydrophobic

DES formed by menthol with different organic acids have been proved to present a strong
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hydrogen bond between the two components, stronger than the hydrogen bond network

in the neat system.174,175 Different hydrogen bond donors and acceptors have been in-

vestigated as components of hydrophobic or Type V DESs,12 such as decanoic acid and

lidocaine,176 menthol with different natural acids,177 and 1,1,1,3,3,3-hexafluoroisopropanol

(HFIP) with betaine and L-carnitine.178 HFIP in particular is an extraordinary solvent

used in many different applications, including the activation of organic functionalities

such as the intramolecular Schmidt reaction using a Lewis acid in HFIP,165 the activation

of carbonyl and epoxide substrates,164,166 or the activation of hydrogen peroxide in the

Baeyer–Villiger oxidation reaction.167,168 It can also serve as a proton donor in dihydrogen

bonding with different transition metal hydrides, as non-classical hydrogen bond.164,179 Its

widespread use is due to a number of beneficial properties, such as its thermal stability,

transparency to UV radiation, as well as to its remarkable solvent properties, allowing

it to dissolve a wide range of polymers, as well as most common polar and non-polar

solutes.162,163 In aqueous solutions, its acidity range is comparable to the one of formic

acid.164 Furthermore, its low boiling point facilitates its recovery via distillation. However

computational studies on HFIP remain sparse. For instance HFIP has been investigated

with molecular dynamics by some of the present authors to prove its catalytic effect on

C,C coupling reactions on aromatic compounds with positive results.166 In 2019, Deng

et al˙ were the first to study HFIP-based DESs as the non-polar phase in liquid-liquid

micro-extractions.178 To be able to understand the mechanisms behind the formation of

novel mixtures it is imperative to study their structure and in particular the hydrogen

bond network which may exist in these liquids. From an experimental prospective, hydro-

gen bonds can be investigated via IR and NMR.180,181 However, since their experimental

detection and analysis can still be challenging and expensive, computational tools may

be valuable for this kind of investigation.182–184 We were able to calculate the activity

coefficients of methanol in its binary mixtures with a set of small alcohols, which allowed

some insight into how the chain length and branching modify the hydrogen bond network

and consequently affect their behavior.1 Since it is fundamental to study the hydrogen

bond network in binary organic solvents, it is interesting to investigate the behavior of

HFIP with both an hydrogen bond acceptor (acetone) and a compound able to work
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both as hydrogen bond acceptor and donor (methanol). The binary mixtures of HFIP

with acetone or methanol have already been investigated experimentally in the past, but

so far their liquid structure has never been investigated in detail.166,169 In the current

article, we investigate the intermolecular interactions present in the binary mixtures of

HFIP with either solvents. The study is based on a combined computational procedure of

both classical molecular dynamics simulations (MD) and quantum chemical calculations.

Furthermore, we use the binary quantum cluster equilibrium (bQCE) method to inves-

tigate the distribution of intermolecular interaction motifs in the system. The method

assigns populations to a set of clusters, enabling the weighting of properties according to

the cluster distribution similar to Boltzmann weighting. In contrast to it, however, the

bQCE method can weight clusters of different sizes and compositions and considers not

only their electronic energies but also the particle volume and inter-cluster interactions.

Boltzmann and bQCE weighting were compared in the past by our group in the field of the

computational calculation of vibrational circular dichroism spectra of bulk phase, showing

the advantages of our method over Boltzmann weighting.77 For this purpose we use our

in-house code Peacemaker 2.8, which has proven to be a valuable tool to investigate

the thermodynamic properties of both neat and mixed systems.1,3,4,65,74,75,78,79,132,133 The

standard bQCE method involves optimization of two empirical parameters by fitting them

to a set of experimental data such as boiling points or isobars; however, even for simple

mixtures of organic solvents, these data are often unavailable in the literature. Hence we

follow a different approach, namely, the isobars are instead obtained via MD simulations.

In the following we will first outline and discuss the computational methods used, after

which we will present and investigate the results we have obtained.

4.3. Computational Details

4.3.1. Classical Molecular Dynamics Simulations

Initial configurations of the different systems were generated using the PACKMOL pack-

age (version 17.039).185 Molecules were randomly placed in a cell with an initial cell vector

of 40–50 Å, depending on the composition of the system. MD simulations were performed
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using the LAMMPS program package (version 11 Aug 2017).186 OPLS-AA force field pa-

rameters were used for methanol (MeOH) and acetone, whereas for HFIP we adopted the

force field developed by Fioroni et al., which was optimized to reproduce the experimental

density.187 A Lennard-Jones 6–12 potential was used to describe van der Waals (vdW)

interactions. Lorentz–Berthelot mixing rules were used to describe non-bonded interac-

tions.188 A cutoff of 1 nm was applied for vdW and Coulombic interactions. In the first

step the SHAKE algorithm189 was used to constrain the bonds involving hydrogen atoms

and followed by energy minimization. This process was repeated 3–5 times to let the

systems mix correctly and eliminate energetic hot spots in order to stabilize the systems.

Afterwards, the boxes were deformed to reach a preliminary and fixed cell volume, calcu-

lated to reflect a density of 0.8 g/cm3 for each system. Following this, the systems were

simulated for 1.5 ns in the NpT ensemble, using Nosé–Hover thermostat and barostat,

to let the volume converge. The cell volumes over the last 0.5 ns were found to remain

constant, as can be seen in Fig. S2 in the SI. The system volume was then set to the aver-

age volume taken over the last 0.5 ns in the NpT ensemble. A further 1 ns of simulation

time in the NVT ensemble was performed to further equilibrate the system. Finally, a

production run of 20 ns was performed in the NVT ensemble using the same conditions

as during equilibration. The time step was set to 0.5 fs for the pre-equilibration processes

(shake, minimization, and deformation of the box) and increased to 1 fs afterwards. The

simulations were analyzed with our in-house trajectory analysis code Travis.144,190 The

angular distribution functions (ADFs) were calculated using the cone correction included

in Travis with a cut off of 250 pm as maximum distance between the reference and

observed molecules.191 Along with the Radial Distribution Functions (RDFs), the coor-

dination numbers (CN) are calculated as well (CN = ρbulk
∫
g(r)r2dr), where g(r) is the

RDF’s intensity and ρbulk is the bulk density of the system. Please note that, since the

RDF is strictly dependent on the number of molecules that respect the given condition,

the intensity of the systems cannot be compared. The peak’s position, however, is not de-

pendent on the number of molecules and they can be compared. Hydrogen bond lifetimes

are analyzed using the dimer existence auto correlation function (DACF) implemented in

the Travis code with the default curve fitting and approximations included in the code
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and described in literature.192 For this analysis, the distance condition of 350 pm for the

O–O distance and an angular condition of 135◦–180◦ for the O-H–O angle were applied.

4.3.2. Cluster Generation

The construction of a cluster set that is representative of the investigated system is a cru-

cial step in the bQCE procedure and has been discussed in previous works.1,3,4,45,129 As a

first step, to find clusters, we performed a global minimum structure search for each clus-

ter size and composition by running the genetic optimization algorithm OGOLEM103,104

at the force field level of theory, using the AMBER 2016 program package152 and the

GAFF force field102 implemented therein. The AMBER/OGOLEM combination is op-

timized to screen a great number of individual clusters.1,3,4 The number of individuals

per generation was varied between 80 and 240 in accordance to the cluster size to adjust

for the increasing complexity. In total, a number of 2000–6000 individuals, i.e. clusters,

were generated and evaluated for every possible composition up to a cluster size of six

molecules. As the search for the global minimum structure by a genetic algorithm is per-

formed on the classical force field level and the enormous configuration space poses a great

challenge, the obtained structures are not necessarily identical to the global minimum on

the quantum chemical level of theory. Instead, they can be understood as good candidate

solutions to the global minimum and generally represent stable clusters that cover a range

of enthalpically or entropically favored configurations. In addition, many of the obtained

structures are expected to collapse towards the same geometry during quantum chemical

optimization. Therefore, we select a number of ten clusters evenly distributed in the ener-

getic range of the final generation for subsequent quantum chemical optimization for each

cluster size. These clusters were then optimized at the BP86/def2-TVZP193 level of the-

ory with Turbomole (version 7.41) and an energy convergence threshold of 10−9.194 The

BP86 functional is proven to deliver good structural parameters results and, if combined

with a basis set triple-ζ, to reproduce with good accuracy the measured vibrational fun-

damentals.195,196 The London dispersion energy was taken into account by applying the

D3 dispersion correction.197,198 Frequency calculations were performed for all clusters and

those with imaginary frequencies were excluded. To avoid duplicate clusters in the cluster
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set, the structural similarity of all optimized clusters is quantified by their geometrical

distance153 d:

d(P ,P ′) =

[(
IA − IA′

IA

)2

+

(
IB − IB′

IB

)2

+

(
IC − IC′

IC

)2
] 1

2

, (4.1)

wherein I and I ′ are the principal moments of inertia of the clusters P and P ′, respectively.

Clusters P ′ with a geometrical distance of d(P ,P ′) < 0.01 were removed from the cluster

set. At the end of this procedure, 10 clusters of neat HFIP, 11 of neat acetone, 13 of neat

methanol, 45 of the mixed HFIP–acetone system and 73 of HFIP–methanol were ready

to be analyzed and to be included as inputs for the further bQCE calculations. Their

interaction energy, size, and composition are tabulated in the supporting information. In

the following, clusters will be given unique labels of the form hXsY–Z, where h stands

for HFIP, s can be either acetone (a) or methanol (m), X is the number of monomers of

HFIP, Y is the number of monomers of s, and Z is a label to differentiate clusters of the

same composition.

The bQCE Method

The theory of bQCE methods has been extensively detailed in several earlier works.3,27,45,65

Through this method, we are able to calculate the cluster distribution and the thermo-

dynamic properties of the system (for instance vaporization enthalpies) for a selected

temperature range. Here, only a short overview of the bQCE method will be presented.

As a first step, a system of non-interacting clusters in thermodynamic equilibrium is con-

sidered. Each cluster in that system is built up from either one (neat systems) or two

(binary systems) monomers.

In thermodynamic equilibrium these clusters can transform into each other. We can

write the equilibrium reaction between the clusters as

i(P)C1 + j(P)C2 ⇌ CP , (4.2)

where i(P) and j(P) are the number of monomers of each component C1 and C2 that form

the cluster P . The system’s total partition function Qtot at volume V and temperature
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T is given by

Qtot({NP}, V, T ) =
N∏

P=1

1

NP !

[
qtotP (V, T )

]NP , (4.3)

where qtotP is the partition function of the single cluster P and {NP} is the full set of total

cluster populations NP . This cluster partition function can be evaluated as product of

partition functions corresponding to the different degrees of freedom:

qtotP (V, T ) = qtransP (V, T )qrotP (T )qvibP (T )qelecP (T ). (4.4)

Here, qtransP is the translational, qrotP the rotational, and qvibP the vibrational partition

function. They are calculated from standard equations for the particle in a box, rigid

rotator, and harmonic oscillator, respectively.27,149 The electronic partition function qelecP

is calculated from the adiabatic binding energy ∆bindE
elec
P of the cluster.150

Until here, we considered our system to consist of non-interacting clusters. However, in

order to describe a liquid, not only the binding energy within a cluster but also the inter-

cluster interactions must be considered. First, in order to take the volume into account

that is taken up by the clusters themselves and is inaccessible to translation, an exclusion

volume Vex must be subtracted from the phase volume V in qtransP . The exclusion volume

is calculated as

Vex = bxv

N∑
P=1

NPvP , (4.5)

wherein bxv is the empirical exclusion volume parameter to correctly scale the cluster

volume vP , which is sensitive to the choice of the volume method and the atomic radii

used therein. In previous works, bxv was treated as temperature independent.1,3,4,65,74

Here, we introduce a linear temperature dependence of bxv

bxv(T ) = T · βxv + b0xv, (4.6)

where βxv is the exclusion volume expansion coefficient and b0xv is the base of the intercept.

A similar approach was used in the past by Kelterer and coworkers.199

Finally, the inter-cluster interactions must be taken into account. The electronic par-

tition function qelecP is extended by a volume dependent mean-field-like correction term:
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qelecP (V, T ) = exp

{
−
∆intE

elec
P − [i(P) + j(P)]amf

V

kBT

}
, (4.7)

where kB is the Boltzmann constant and the mean-field parameter amf is an empirical

parameter, that scales the strength of the inter-cluster interactions.

When performing a bQCE calculation, the empirical parameters b0xv, βxv, and amf are

chosen such that the deviation from a given reference property, such as densities and

phase transition temperatures, is minimized. In earlier works, a simple grid sampling

algorithm was used to optimize the empirical parameters. With the introduction of a

third parameter βxv this method is no longer feasible. Here, the Differential Evolution

algorithm99 as implemented in the SciPy library100 for Python 3.4 is interfaced with the

Peacemaker 2.8 code to find the best solution. The script is available upon request.

4.4. Results and Discussion

Here, we will discuss the results of our investigation of the binary mixtures of HFIP

with acetone and methanol, respectively. These were obtained by employing the bQCE

method to a set of quantum chemically optimized clusters depicting different binding

motifs, that are representative for the specific interactions in each system. Instead of

employing experimental data, in this work, we use isobars obtained from a set of classical

molecular dynamics simulations of the mixed systems that we conducted at different

temperatures and mixture compositions as detailed in the computational details section.

4.4.1. Classical Molecular Dynamics Simulations

Classical molecular dynamics simulations of both mixed systems HFIP/acetone and

HFIP/methanol were carried out at defined temperatures ranging from 298.15–338.15 K

in intervals of 10 K. These simulations were repeated at different compositions with mole

fractions of HFIP of 0.2, 0.5, and 0.8. The results are listed in Tab. 4.1 for HFIP/methanol

(top) and HFIP/acetone (bottom). Both binary mixtures show similar behavior. Due to

the high density of HFIP, the density increases with the mole fraction of HFIP but de-

creases with rising temperature. In addition, Tab. 4.1 lists the experimental densities of
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Table 4.1. Top: Calculated densities ρcalc of the HFIP/methanol mixture in g/cm3 at different
temperatures and mole fractions.
Bottom: Experimental169 densities ρexp and calculated densities ρcalc of the
HFIP/acetone mixture in g/cm3 at different temperatures and mole fractions.

HFIP/MeOH

xHFIP ρexp298 ρcalc298 ρcalc308 ρcalc318 ρcalc328 ρcalc338

0.2 – 1.044 1.028 1.013 0.993 0.975

0.5 – 1.290 1.270 1.252 1.232 1.216

0.8 – 1.513 1.492 1.471 1.446 1.427

HFIP/Acetone

xHFIP ρexp298 ρcalc298 ρcalc308 ρcalc318 ρcalc328 ρcalc338

0.2 0.996 0.971 0.957 0.943 0.927 0.914

0.5 1.274 1.140 1.124 1.101 1.089 1.066

0.8 1.479 1.320 1.298 1.273 1.251 1.231

the HFIP/acetone mixture at 298.15 K, which were measured by Evans et al˙ using a

single neck capillary tube pycnometer.169 No experimental density could be found for the

system HFIP/methanol. Our calculated densities for the system HFIP/acetone deviate

by 2.5%, 10.5%, and 10.8% from the experimentally measured values at mole fractions

0.2, 0.5, and 0.8, respectively. This deviation can have an impact on the thermodynamic

properties of mixing calculated via the bQCE approach, however we demonstrate in the

supporting information (SI) that a deviation in this range only slightly affects the cluster

population and thermodynamic properties such as entropies and enthalpies of vaporiza-

tion. Approximated thermodynamics properties of mixing are included in the SI for sake

of completeness.

In order to characterize the hydrogen bonds present in the mixtures, additional analyses

were carried out including Radial Distribution Functions (RDFs), Coordination Numbers

(CNs), and Angle Distribution Functions (ADFs) of the simulated systems at 298.15 K

averaged over 19.8 ns of production run.

Fig. 4.1 shows (from top to bottom) the RDF, the CN, and ADF of the O-H· · ·O

hydrogen bond between HFIP and acetone (left side) and between HFIP and HFIP (right

side). Please note, HFIP is treated as the reference molecule. The observed molecule
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Figure 4.1. Radial distribution function, coordination number, and angular distribution func-
tion of the hydrogen bond for the system HFIP/acetone increasing the molar frac-
tion of HFIP at 298.15 K with HFIP bond donor and acetone acceptor (left) or
HFIP (right).

can be either acetone or another molecule of HFIP. The reference atom is the hydrogen

of the hydroxy group, and the observed atom is the oxygen of the observed molecule.

First, the inter-species hydrogen bond between HFIP and acetone will be considered. A

sharp peak is present in the RDF at 161 pm at mole fractions of 0.2 and 0.5. The bond

length decreases to 159 pm at a mole fraction of 0.8. An additional peak emerges around
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350 pm at high concentrations of HFIP. The coordination number (CN) displayed in

Fig. 4.1 provides insight into the average number of molecules participating in a hydrogen

bond. A single hydrogen bond is possible between the two molecules. At a distance of

250 pm, which is the location of the first minimum in the RDF and can be considered

the maximum hydrogen bond length, the CN is 1.0 for the mole fraction of 0.2, meaning

all the possible hydrogen bonds are filled by this interaction. With an increasing mole

fraction of HFIP of 0.5 and 0.8, the CN decreases to 0.83 and to 0.26, respectively. In

the RDF of the same-species hydrogen bond between two molecules of HFIP, a peak

is present at 164 pm, which becomes sharper as the mole fraction of HFIP increases.

At mole fractions of 0.5 and 0.8 an additional peak is visible at 326 pm, indicating an

involved hydrogen bond network. From the CN plot, it is immediately clear that inter-

species interactions are preferred over neat ones at mole fractions of 0.2 and 0.5, whereas

same-species interactions become predominant at a mole fraction of 0.8. In particular,

at a mole fraction of 0.2 same-species interactions are almost absent with a CN close to

0, but the CN increases to 0.17 and 0.73 at mole fractions of 0.5 and 0.8, respectively.

This is due to a smaller number of acetone molecules able to be coordinated by the HFIP,

forcing the same-species interaction to happen more frequently. The CNs for different

binding motifs sum up neatly to 1.0, excluding the possibility of a significant presence of

non-associated monomeric species in the system. Considering the CNs at 450 pm, which

is the location of the second minimum in the RDFs, the inter-species interactions are

preferred with a value of 1.3 against 0.9 of the H(HFIP)-O(HFIP) interaction at a mole

fraction of 0.5. However at a mole fraction of 0.8 the situation is different, with the same-

species interaction winning over the mixed ones with CNs of 2.2 and 0.6, respectively. A

third peak is not visible at larger distances (RDFs up to 15 Å are included in the SI).

This might indicate circular configurations of neat HFIPs are present and maybe even

preferred over chains at this mole fraction; however, this argument cannot exclude the

presence of these linear formations. The bottom panels in Fig. 4.1 show the ADFs of

the hydrogen bond angle. Both the inter-species and same-species hydrogen bonds show

similar behavior and a clear preference for a linear arrangement.

In contrast to the HFIP/acetone mixture, both compounds in the HFIP/methanol
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Figure 4.2. Radial distribution function, coordination number, and angular distribution func-
tion of the hydrogen bond for the system HFIP/methanol increasing the molar
fraction of HFIP at 298.15 K with HFIP bond donor and MeOH acceptor (left), or
MeOH donor and HFIP acceptor (right).

can act as hydrogen bond donor or acceptor. Fig. 4.2 shows the RDFs of the inter-

species hydrogen bond length with HFIP acting as donor and acceptor, respectively.

Looking at the (H)HFIP-(O)MeOH interaction first, the average hydrogen bond length is

located at 160 pm. A second peak emerges at 340 pm as the mole fraction increases from

0.2 to 0.5, showing the possible presence of MeOH in the second structure coordination
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Figure 4.3. Radial distribution function, coordination number, and angular distribution func-
tion of the hydrogen bond for the system HFIP/methanol increasing the molar
fraction of HFIP at 298.15 K, with HFIP donor and acceptor (left) or MeOH donor
and acceptor (right).

shell of HFIP. This peak shifts to a slightly larger distance of 360 pm at higher HFIP

concentrations. Here, the CNs are 0.98, 0.82, and 0.25 at mole fractions 0.2, 0.5, and

0.8 respectively, showing a similar behavior with an increasing concentration of HFIP as

in the HFIP/acetone system. The ADFs show a similar preference for linear hydrogen

bonds as observed for the HFIP/acetone mixture. Moving on to the (H)MeOH-(O)HFIP
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interaction, which has HFIP acting as hydrogen bond acceptor and methanol as donor, it is

immediately clear that interactions of this kind are much less prevalent in the mixture than

hydrogen bonds of the opposite direction. At all three mole fractions two peaks are present

at 181 pm and 333 pm, showing the first and second solvation shell of HFIP, respectively.

The larger distance of 181 pm shows that the hydrogen bond donated by methanol is

weaker than that donated by HFIP. Their position remains the same independent of

the mixture’s compisition. The left and right side of Fig. 4.3 show the RDF, CN, and

ADF of the same-species hydrogen bonds shared between two molecules of HFIP and two

molecules of methanol, respectively. The RDF of the (H)HFIP-(O)HFIP hydrogen bond

shows a prominent peak at 161 pm and, similar to the same interaction in the mixture

HFIP/acetone, as well as an additional peak at 324 pm at mole fractions of 0.5 and 0.8.

Also similar to the previous mixture, the CN plot shows that only at mole fractions greater

than 0.5 this interaction becomes predominant. In the RDF of the (H)MeOH-(O)MeOH

interaction a peak is present at 180 pm, which decreases in intensity as the content of HFIP

rises. A second peak at 340 pm can be observed at mole fractions of 0.2 and 0.5. This peak

is still weakly present at 0.8 around 380 pm. With an increasing mole fraction of HFIP,

the same-species interaction of methanol with itself are concentrated in the first solvation

shell, with a second solvation shell being present but less populated. The CN suggests

that the MeOH-MeOH hydrogen bond is more significant in the equimolar mixture than

the HFIP-HFIP hydrogen bond. As for the previous system, the CN values for the biding

motifs sum up to 1. The CNs of the different interaction motifs sum up neatly to 1.0,

which shows that non-associated monomeric species aren’t present in significant amounts.

Considering the CNs at 400 pm, which is the location of the second minimum in the RDFs

shown in Figs. 4.2 and 4.3, it is possible to get some insight over the geometric structures of

these interactions, as for the previous system. At a mole fraction of HFIP of 0.2, the CNs

the inter-species interactions H(HFIP)-O(MeOH) and H(MeOH)-O(HFIP) are 2.0 and 0.4,

respectively, whereas the CN of the same-species interaction H(MeOH)-O(MeOH) is 2.4.

The same-species interaction between two molecules of HFIP is negligible. The situation

is different at a mole fraction of 0.5, where the CNs of both the mixed interactions show

similar values of 1.6 for H(HFIP)-O(MeOH) and 1.5 for H(MeOH)-O(HFIP). The same-
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species hydrogen bonds formed by pairs of HFIP or methanol have a CN of 0.6 and 1.0,

respectively. At a mole fraction of 0.8, the CN of the H(HFIP)-O(MeOH) interaction drops

to 0.6 and the CN of the H(HFIP)-O(HFIP) interaction has a value of 2.0. For this reason

it is possible to assume that at this mole fraction, the neat interaction of HFIP with itself

is dominant; however, a high CN of 1.8 for the H(MeOH)-O(HFIP) interaction suggests

the presence of clusters where a single or several methanol molecules are coordinated by

a larger number of HFIP molecules. As for the HFIP/acetone system, circular clusters

seem to be a good description of the system; however, linear oligomers cannot be ruled

out, and there is proof in literature of chain configuration in pure methanol.200

Overall, all the ADFs of this mixture at all mole fractions show that linear interactions

are preferred.

The lifetimes τ of the hydrogen bonds in both mixtures were calculated as explained

in the computational details and are presented in Tab. 4.2. A longer lifetime means

a stronger bond, as it requires more time to break. In the top part of the table, the

lifetimes of hydrogen bonds for the system HFIP/Acetone are listed. The H(HFIP)-

O(Ace) hydrogen bond has a lifetime of 9 ps, whereas the same-species H(HFIP)-(O)HFIP

hydrogen bond has a significantly shorter lifetime of 3 ps. With an increasing mole

fraction of HFIP, the lifetimes of the inter-species hydrogen bonds increase, meanwhile

the same-species interaction remains stable. In the bottom part of Tab. 4.2, the hydrogen

bond lifetimes for the system HFIP/MeOH are presented. All four interaction types are

considered. At a mole fraction of 0.2, the inter-species H(HFIP)-O(MeOH) hydrogen

bond has a lifetime of 48 ps and it indicates this interactions as the preferred one in this

system. With an increasing mole fraction of HFIP, the lifetime of this hydrogen bond

decreases. The (H)MeOH-(O)MeOH hydrogen bond lifetimes are in good agreement with

both experimental and calculated data from literature.37,201,202 H(MeOH)-O(HFIP) is

confirmed to be weaker than the other inter-species interaction.

4.4.2. Cluster Analysis

Multiple clusters are optimized following the procedure described in the computational

details section above to build the cluster sets which serve as input for the bQCE method.
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Table 4.2. Lifetimes of the hydrogen bonds in both HFIP/acetone and HFIP/MeOH increasing
the molar fraction of HFIP at 298.15 K.

HFIP/Acetone

τ/ps(0.2) τ/ps(0.5) τ/ps(0.8)

H(HFIP)-O(Ace) 9 11 16

H(HFIP)-O(HFIP) 3 4 4

HFIP/MeOH

τ/ps(0.2) τ/ps(0.5) τ/ps(0.8)

H(HFIP)-O(MeOH) 48 45 43

H(MeOH)-O(HFIP) 2 2 2

H(HFIP)-O(HFIP) 11 11 11

H(MeOH)-O(MeOH) 4 4 2

One of the most important features of the bQCE method is that it assigns populations to

all clusters in the cluster set. The goal is to find the equilibrium distribution of all clusters

so that they reproduce the reference isobars. The monomer-normalized population gives a

measure of the importance of specific clusters and interaction motifs in the system. These

populations are available for each temperature in the investigated temperature range.

In Fig. 4.4 the most populated clusters in neat systems of pure HFIP, methanol, and

acetone are shown for the temperature of 298.15 K. In the HFIP system, the tetramers

h4-1 and h4-5 dominate the neat solvent, with populations of 0.57 and 0.37, respectively.

In acetone the cyclic trimer a3-1 is the highest populated cluster with a population of

0.71. However, a significant amount of acetone molecules in the system exist in the form of

non-associated monomers. The methanol system is dominated by ring formations, where

the cyclic pentamers m5-1, m5-10, and hexamer m6-11 are the preferred geometries with

values 0.37, 0.28, and 0.26 respectively.

Figures 4.5 and 4.6 show visualizations of the most populated clusters in the binary

mixtures HFIP/acetone and HFIP/methanol at 298.15 K, respectively. Since dozens of

clusters have been considered for both systems, here only the most populated ones are

presented. Cartesian coordinates and visualizations of all cluster geometries are available

in the supporting information. Focusing on Fig. 4.5 first, at the mole fraction 0.2 the neat
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HFIP Clusters and populations

h4-1 (0.57) h4-5 (0.37) h1 (0.01)

Acetone

a3-1 (0.71) a1 (0.14) a2-1 (0.09)

Methanol

m5-1 (0.37) m5-10 (0.28) m6-11 (0.26)

Figure 4.4. Structures and relative populations of the most populated clusters of the neat
systems acetone (a), HFIP (h), methanol (m) at 298.15 K.

acetone trimer a3-1, which consists of three acetone molecules arranged in a triangular

ring structure, is the most populated cluster with a value of 0.33, followed by the mixed
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xm Clusters and populations

0.2

a3-1 (0.33) h3a3-9 (0.27) h1a5-1 (0.12)

0.5

h3a3-9 (0.76) h3a2-4 (0.05) h3a2-2 (0.04)

0.8

h4-1 (0.25) h4-5 (0.17) h4a2-2 (0.11)

Figure 4.5. Structures and relative populations of the most populated clusters of the system
HFIP/acetone at the molar fraction of HFIP 0.2, 0.5, 0.8 at 298.15 K.

hexamer h3a3-9 with 0.27. The same cluster, which can be described as aggregation of

three alternating hydrogen bonded HFIP/acetone dimers, is the most populated cluster

in the equimolar mixture of HFIP and acetone with a population of 0.76. Please note

that clusters with compositions that differ from the system’s molar composition can be

populated as the bQCE method will automatically find a cluster distribution that is

consistent with the system’s molar composition. In agreement with the CNs measured
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xm Clusters and populations

0.2

h2m3-7 (0.34) m5-1 (0.16) m5-10 (0.12)

0.5

h2m3-7 (0.43) h3m3-8 (0.11) h3m3-4 (0.09)

0.8

h4m1-6 (0.37) h4m1-7 (0.14) h4m1-8 (0.13)

Figure 4.6. Structures and relative populations of the most populated clusters of the system
HFIP/methanol at the molar fraction of HFIP 0.2, 0.5, 0.8 at 298.15 K.

from MD simulations of the same system (Fig. 4.1), there are no same-species bonds of

HFIP in this cluster.

In contrast, at the higher mole fraction of 0.8, the neat HFIP tetramers are the most

populated, which feature four HFIP molecules arranged in a quadratic ring of hydrogen

bonds, each acting as both acceptor and donor. This indicates a mixture in which at lower

concentrations of HFIP the inter-species hydrogen bond between HFIP and acetone is the
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most common interaction, in agreement with the CN plots in Fig. 4.1. There is a good

agreement between the CN at 400 pm and the RDF of the neat HFIP interactions and the

most populated clusters at this mole fraction; already the classical simulation suggests the

presence of neat HFIP rings at a mole fraction of 0.8. The distance between one H atom

and the O atom on the molecule opposite to it in the tetramer is 327 pm, really close to

the second RDF peak for the same-species interaction at 326 pm in Fig. 4.1. At higher

concentrations of HFIP, cooperative effects between multiple HFIP molecules become

more important and the system is dominated by hydrogen bonded ring formations, while

mixed interactions are still significant.

In Fig. 4.6 the most populated clusters of the HFIP/methanol mixture are displayed.

At low concentration of HFIP, the highly coordinated hydrogen bond ring formations of

the neat methanol pentamers dominate the system. But already at the low mole fraction

of 0.2, the mixed h2m3-7 cluster, which contains hydrogen bonded HFIP and methanol

molecules forming a ring in an alternating pattern, is highly populated. The possible

presence of these kind of clusters was already suggested when discussing Figs. 4.2 and 4.3.

The significance of the mixed h2m3-7 cluster carries over to the equimolar mixture, where

it is still the highest populated cluster and more populated than the stoichiometrically

favored clusters h3m3-8 and h3m3-4, which are the second and third highest populated

clusters. At high concentrations of HFIP, and in contrast to the HFIP/acetone mixture,

the system is dominated by the mixed clusters h4m1-6, h4m1-7, and h4m1-8. This is in

good agreement with the conclusions drawn from Figs. 4.2 and 4.3.

Overall, there is a good agreement for both systems between the classical MD simula-

tions and the populations calculated via the bQCE approach.

For now, the most significant clusters were considered only at room temperature. How-

ever, as the temperature changes other cluster formations might emerge and begin to

dominate the bulk structure. The bQCE model provides such information and allows

insight into the temperature dependence of the cluster equilibrium distribution in the

selected temperature range of 298.15–338.15 K. Here, we will take a look at the popula-

tions of neat and mixed clusters and their evolution with temperature, which are shown

in Figs. 4.7 and 4.8 for different mole fractions of HFIP in the mixtures HFIP/acetone
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4. Hydrogen bonding in HFIP-acetone and -methanol mixtures

Figure 4.7. Populations of neat acetone (a), MeOH (m), and HFIP (h) (from top to bottom)
in the temperature range of 298.15-338.15 K.

and HFIP/methanol, where their population is significant (higher than 0.05). The top

panel in Fig. 4.7 shows the cluster populations in neat acetone. The trimeric a3-1 cluster

dominates the system, but with rising temperature its population decreases in favor of

the acetone monomer. In the center panel, cluster populations in the methanol system
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4.4. Results and Discussion

are presented. The pentamers m5-1 and m5-10 together with the hexamer m6-11 domi-

nate the system until the boiling point is reached. Several research groups investigated

neat methanol with the QCE approach. A recent work from Teh and coworkers,203 which

extensively investigates methanol cluster populations with both DFT and MP2 geometry

optimization, states the most populated cluster is the octamer, which is not investigated

in this article due to the computational time required, as explained in the computational

details section. An older work by Kelterer and coworkers199 finds instead that the most

populated cluster size is the hexamer, followed by the pentamer, regardless that also clus-

ters up to the octamer were investigated. The differences between those works and this

article can be imputed to the geometry optimization and frequency calculation at differ-

ent levels of theory,203 or to a different procedure to generate the clusters.199 However,

there is a general agreement that multi-molecular cyclic clusters are preferred until the

boiling point, while in the gas phase the monomer dominates the population. In the bot-

tom panel, the cluster populations in neat HFIP show that the tetramers h4-1 and h4-5

dominate the system until the boiling point.

Fig. 4.8 shows the cluster populations in the mixed systems at different mole fractions

of HFIP. At low concentrations of HFIP, the neat acetone trimer is the preferred cluster at

298.15 K, whereas the monomer population increases significantly with rising temperature.

This is due to the breaking of the enthalpically favored inter-species hydrogen bonds

(calculated interaction energy of -53.6 kJ/mol) and the rise of entropically favored small

clusters such as the acetone dimer (calculated interaction energy of -26.8 kJ/mol) and the

non-associated acetone monomer. Pure HFIP clusters are not populated even at higher

temperature. Instead, HFIP is bound in mixed clusters, of which the hexamer h3a3-9 is the

most populated. In the equimolar HFIP/acetone mixture, the hexamer h3a3-9 is highly

populated at 298.15 K, but with rising temperature decreases in population in favor of the

acetone monomer and smaller mixed clusters dominated by HFIP. At high concentrations

of HFIP, neat acetone clusters are almost absent. Meanwhile, the tetrameric neat HFIP

clusters h4-1 and h4-5 are significantly populated, which is in agreement with earlier

observations of the emergence of cooperativity effects at high HFIP concentrations. With

rising temperature, the population of mixed clusters increases.
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4. Hydrogen bonding in HFIP-acetone and -methanol mixtures

Figure 4.8. Populations of acetone (a), HFIP (h), MeOH (m) and mixed clusters at (from top
to bottom) 0.2, 0.5, and 0.8 HFIP molar fraction, in the temperature range of
298.15-338.15 K.

The right column of Fig. 4.8 shows the cluster populations in the HFIP/methanol. In

contrast to the other mixture, the methanol-dominated mixed cluster h2m3-7 is more

populated at low concentrations of HFIP and the populations are nearly constant over
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4.4. Results and Discussion

Table 4.3. Hydrogen bond distances, angles, and interaction energy of different dimers ∆E at
the BP86/TZVP level of theory in kJ/mol. The hydrogen bond donor is written
before the acceptor.

Dimer ∆E r(pm) α(◦)

(HFIP)2 -21.6 184 168.74

(MeOH)2 -23.6 183 169.78

(Ace)2 -23.1 − −
HFIP-MeOH -36.8 170 175.44

MeOH-HFIP -12.8 201 165.52

HFIP-Ace -37.6 170 170.46

temperature. The equimolar mixture is again composed mainly by mixed clusters, in

particular the methanol-dominated h2m3-7, whereas neat clusters are absent. At high

concentrations of HFIP, the HFIP-dominant mixed cluster h4m1-6 dominates the system,

but with rising temperature its population decreases in favor of pure HFIP clusters. Neat

HFIP clusters are significantly populated, but less than in the HFIP/acetone mixture.

For both systems, the formation of close inter-species interactions is favored over inter-

actions of the same species. This behavior is more pronounced for the HFIP/methanol

mixture.

To complete the quantum cluster equilibrium analysis, the interaction energies, the

hydrogen bond lengths, and the hydrogen bond angles of the dimers, are presented in

Tab. 4.3, wherein for mixed dimers the first named species is the hydrogen bond donor and

the last named species is the hydrogen bond acceptor. It is apparent that the interaction

energies of the mixed dimers, where HFIP acts as the donor, are significantly stronger

than that of any neat dimer. Both the bond lengths and interaction energies of the

isolated dimers indicate the importance of inter-species interactions over same-species

interactions if HFIP is the hydrogen bond donor, in line with the MD results presented

before, where there are exclusively H(HFIP)-O(Ace) and H(HFIP)-O(MeOH) interactions

at mole fractions of HFIP of 0.2 and 0.5.
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4. Hydrogen bonding in HFIP-acetone and -methanol mixtures

4.4.3. Thermodynamic Properties of Neat and Mixed Systems

Through calculating the system’s total partition function based on the equilibrium distri-

bution of a set of representative clusters, the bQCE method grants access to the absolute

thermodynamic functions such as the Gibbs energy G, enthalpy H, and entropy S at any

investigated temperature. Using the bQCE method, we can thus calculate properties such

as the enthalpy and entropy of vaporization ∆Hvap and ∆Svap as simple difference of the

liquid phase and a gas phase reference. Already in earlier works we were able to establish

our procedure of using a so-called QCE0 calculation, wherein amf is set to 0 removing

all inter-cluster interactions, as gas phase reference.1,4,81 Tab. 4.4 compare the calculated

vaporization enthalpies and entropies of the neat systems to their experimental reference

values at room temperature and the boiling point. Overall, good to excellent agreement

with the experimental reference is achieved for all systems. This is true both at room

temperature and at boiling points of the solvents. In all cases, ∆vapH is slightly overesti-

mated, possibly indicating an over-stabilization of the liquid phase. The largest deviation

is observed for methanol at its boiling point. A likely explanation is the experimentally

observed aggregation of methanol molecules to small clusters in the gas phase,204 which

is not properly sampled by the QCE0 calculation, as the monomers are populated with

99%. This is in agreement with our already published calculated ∆vapH of 39.33 kJ/mol of

methanol at room temperature presented in a previous work, calculated at the same level

Table 4.4. Calculated and experimental enthalpy ∆vapH (kJ/mol) and entropy ∆vapS
(J/mol K) of vaporization of the neat substances at 298.15 K and at the boiling
point temperature. Experimental values, where present, were taken from the NIST
Chemistry WebBook.147

Solvent T ∆calc
vapH ∆exp

vapH ∆calc
vapS ∆exp

vapS

Acetone 298.15 32.65 31.27 98.38 95.00

329.30 30.11 29.10 91.45 88.37

HFIP 298.15 42.25 41.60 126.42 −
331.35 40.96 − 123.62 −

Methanol 298.15 40.14 37.6 99.45 114.89

337.70 39.89 35.21 114.23 104.26
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4.5. Conclusions

Table 4.5. Enthalpies and entropies of vaporization at 298.15 K for the HFIP/Acetone mixture
(left) and the HFIP/MeOH mixture (right) at the xm molar fraction of HFIP. En-
thalpies in kJ/mol, entropies in J/(mol K).

HFIP/Acetone HFIP/MeOH

xm ∆Hcalc
vap ∆Scalc

vap ∆Hcalc
vap ∆Scalc

vap

0.2 43.39 111.75 35.75 102.12

0.5 46.57 125.08 55.62 111.37

0.8 46.01 121.06 42.65 119.51

of theory.1 Here, we obtain a slightly different value due to the changes in methodology.

Enthalpies and entropies of vaporization at 298.15 K were calculated for the mixed

systems as well, see Tab. 4.5. For HFIP/acetone the calculated vaporization enthalpies

are higher than those of the neat components, with the highest value calculated for a mole

fraction of 0.5. In contrast, the entropies of vaporization are always higher than that of

pure acetone, but lower than that of pure HFIP. In HFIP/methanol at a mole fraction of

0.2 the calculated enthalpy of vaporization is lower than those of the neat components.

At higher mole fractions, the enthalpy of vaporization is higher than those in either of the

neat components, similar to the HFIP/acetone system. The same behavior is observed

for the entropy of vaporization.

4.5. Conclusions

The mixtures of HFIP with methanol and acetone were investigated. First, molecular

dynamics simulations were performed to get the isobars of the systems for the temper-

atures 298.15, 308.15, 318.15, 328.15, and 338.15 K at mole fractions of HFIP of 0.2,

0.5, and 0.8, respectively. Then the structure of the hydrogen bond from the simulations

were analyzed and discussed. Molecular dynamics simulations and hydrogen bond eval-

uation from the dimer clusters calculated at DFT level are in good agreement. Together

with the population analysis and the evaluation of the most populated clusters, we are

presenting two strongly interacting mixtures, with some hints that the HFIP/methanol

system presents a stronger hydrogen bond framework. Clusters of up to six molecules
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4. Hydrogen bonding in HFIP-acetone and -methanol mixtures

were optimized at DFT level for both the mixtures and the neat systems. The hydrogen

bonds of the dimers were analyzed. The calculated clusters, from simulated isobars and

experimental data, where available, were used as input for the binary quantum cluster

equilibrium method to get the thermodynamic properties. The enthalpies and entropies

of vaporization of the neat systems are in good agreement with previous theoretical results

and with experimental values. In addition, enthalpies and entropies of vaporization were

calculated for the mixed systems.
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5. Conclusions

To investigate the liquid phase, mixtures of solvents in particular, it is imperative to

understand and model their behavior and intermolecular interactions. Among them, the

hydrogen bond (HB) network that can be formed between an HB donor and an acceptor

is the most important one. At the same time, the tools and models currently used to in-

vestigate liquids are either computationally expensive or dependent on experimental data;

therefore novel approaches must be adopted to address this problem more specifically.

In this thesis the binary Quantum Cluster Equilibrium (bQCE) approach, that relies on

the description of the liquid and vapor phase as an ensemble of molecular clusters, has been

applied to mixtures of small organic solvents with remarkable results. In Chapter 3, this

approach has been applied to the mixture of methanol with small alcohols. A chain length

ranging from two to four carbon atoms was considered, as well as the different branching of

the isomers, to understand their respective influence on the hydrogen bond network. The

semi-empirical extended tight binding method GFN2-xTB91,92 was used to geometrically

optimize thousands of clusters calculated via the genetical algorithm OGOLEM103,104

interfaced with the AMBER152 package for molecular dynamics. The resulting clusters

were used as inputs for the bQCE calculations, and the activity coefficients of methanol

in the alcohols – and viceversa – were calculated from the excess Gibbs energy of mixing.

The activity coefficients measure a mixture’s deviation from ideality. Increasing the chain

length of the solvent, a larger deviation from ideality can be seen; the branching, on the

other hand, brings the systems closer to an ideal mixture. These results show clearly

that the mixture methanol/tert-butanol is closer to an ideal mixture than methanol/n-

butanol. These studies can be extended to more complex systems, and they are a good

indication on how to tune or develop novel mixtures, depending on the properties desired
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5. Conclusions

for the specific problem. The same cluster set used to calculate the thermodynamic

properties via the bQCE approach was employed also to determine the average length and

angle of the hydrogen bond in the mixture methanol/tert-butanol. Combined distribution

functions (CDFs) of the distance against the angle were calculated. These CDFs were

weighted using the populations calculated with the bQCE approach, giving a more reliable

description of the hydrogen bond network of the systems. Additionally, the intensity

maximum in the CDFs moves to smaller values, i.e. the average hydrogen bond distance

and angle, decreases with increasing molar fraction of methanol. This approach can be

applied to bigger systems and the same analysis can be done to describe the intermolecular

interactions of a binary system more precisely.

In Chapter 4, the binary mixtures of hexafluoroisopropanol (HFIP) with acetone and

methanol were simulated via classical molecular dynamics at different temperatures, and

their simulated densities were used as input for the subsequent bQCE calculations. The

choice of the solvents was not randomly made: while the previous work aimed to be a

benchmark for future steps in the description of the intermolecular interactions in organic

solvents, this study’s purpose was to describe two systems already known in literature

whose inter molecular interactions were never deeply investigated. HFIP is a remark-

able solvent used in different fields,164–168 while acetone is a hydrogen bond acceptor, and

methanol is both an acceptor and a donor. Both organic solvent mixtures are described

with a combination of bQCE and molecular dynamics, and the results can be considered

as a model case study to understand and describe the intermolecular interactions – in

particular the hydrogen bond network – of novel solvents mixtures, e.g. deep eutectic sol-

vents, whose interesting properties rely deeply on the hydrogen bond interactions between

their components. The two mixtures are simulated with classical molecular dynamics in

the temperature range of 298.15–338.15 K with a step of 10 K for molar fractions of HFIP

of 0.2, 0.5, and 0.8 in order to calculate their densities. The hydrogen bond network of

both systems is analyzed at 298.15 K, considering HFIP the hydrogen bond donor and, for

the HFIP/methanol mixture, both donor and acceptor. The coordination numbers – cal-

culated as the integral of the radial distribution function of the hydrogen bonds multiplied

by the bulk density – provide insights on the average number of molecules participating
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in the hydrogen bond network. In both the mixtures it is clear that there is no significant

presence of non-interacting monomers. The situation where HFIP acts as hydrogen bond

donor and the respective second compound acts as an acceptor shows to be preferred even

at low concentrations of the solvents. Additionally, the analysis of the molecular dynamics

trajectories shows that both mixtures are typically found in a long distance interaction

structure. A more quantitative approach was desired for this investigation. For this rea-

son the clusters used for the bQCE calculations have been geometrically optimized at

DFT level instead of employing semi-empirical methods. The downside of this approach

lies in the necessity to downsize the cluster size to a maximum of six molecules due to

the increased computational cost. In addition, the bQCE theory has been expanded, as

explained in Section 2.2.2, to include temperature dependent parameters. The popula-

tions of the neat systems and the mixtures with 0.2, 0.5, and 0.8 molar fractions of HFIP

have been calculated. The most populated clusters are presented and the corresponding

population plots are reported for a temperature ranging from 298.15 to 338.15 K with a

step size of 1 K. The mixed clusters are populated even at low molar fractions of HFIP,

in good agreement with the molecular dynamics analysis. Finally, the enthalpies and

entropies of vaporization are calculated via the bQCE approach, and the values obtained

for the neat systems show a good agreement with the data available in literature. As

no experimental data for the mixed systems could be found, this bQCE study presents

the first attempt to measure them. Since the systems were first simulated via classical

molecular dynamics and the resulting densities have then been used as reference for the

bQCE calculations, it is important to remark that no experimental reference data were

required in this investigation.

These works are a first step in a wider field. Thanks to the now validated and expanded

bQCE approach, the description of the intermolecular interactions is computationally ac-

cessible for a multitude of solvents and binary mixtures, such as ionic liquids or deep

eutectic solvents (DES). In particular, some HFIP-based type V DESs have already been

experimentally investigated, and their structure can now be studied with the approach

tested in this thesis. The future developments of the work presented lead in this di-

rection. As molecular dynamics simulations can provide the data needed for the bQCE
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calculations, this combination can free the modeling of new solvents from the necessity to

rely on experimental reference values, which might be not available from literature. This

approach can be found especially useful to develop and investigate novel mixtures in the

context of green chemistry.

In conclusion, this thesis presents the results obtained via the bQCE approach, com-

bined with quantum chemical calculations and classical molecular dynamics simulations,

on mixtures of organics solvents. Their thermodynamic properties were calculated and

their populations at different temperatures are presented. The bQCE theory was ex-

panded to include temperature dependent parameters and a novel approach, combin-

ing the model with classical molecular dynamics simulations, was tested. A new pro-

tocol to generate the data necessary for the bQCE calculations starting from classical

molecular dynamics simulations was developed. The mixtures of HFIP/methanol and

HFIP/acetone, already studied in literature but never deeply analyzed before, were suc-

cessfully investigated with this procedure in order to describe their intermolecular inter-

actions.
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A. Supporting Information to

Chapter 3

A.1. BP86 Data

Table A.1. Calculated and experimental enthalpies of vaporization ∆vapH and ∆vapH
exp in

kJ mol−1 for the neat systems at standard conditions. Experimental enthalpies of
vaporization are taken from the NIST Chemistry WebBook.147

∆vapH ∆vapH
exp

methanol 34.11 37.60

ethanol 40.00 42.30

n-propanol 44.41 47.00

iso-propanol 44.18 45.00
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Figure A.1. Calculated Gibbs energies of mixing ∆mixG
e for binary mixtures of methanol with

ethanol (e), n-propanol (np), iso-propanol (ip), n-butanol (nb), iso-butanol (ib),
and tert-butanol (tb) at 298.15 K. xm indicates the mole fraction of methanol.
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A.1. BP86 Data
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Figure A.2. Activity coefficients of methanol fm in binary mixtures with ethanol (e), n-
propanol (np), iso-propanol (ip), n-butanol (nb), iso-butanol (ib), and tert-
butanol (tb) at 298.15 K. xm indicates the mole fraction of methanol.
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Figure A.3. Activity coefficients fx of ethanol (e), n-propanol (np), iso-propanol (ip), n-
butanol (nb), iso-butanol (ib), and tert-butanol (tb) in binary mixture with
methanol. xm indicates the mole fraction of methanol.
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A. Supporting Information to Chapter 3

A.2. Number of Clusters

Table A.2. Number of clusters per size for pure alcohols.

1 2 3 4 5 6 7 8 9

MeOH 1 2 1 2 2 6 6 11 5

EtOH 1 1 5 3 4 4 3 4 9

n-PrOH 1 1 3 3 5 7 4 3 4

i-PrOH 1 1 1 1 4 7 11 6 7

n-BuOH 1 2 4 1 1 3 6 8 4

i-BuOH 1 3 3 1 3 5 1 2 1

t-BuOH 1 1 1 1 3 1 5 8 7

90



A.3. Interaction Energies

Table A.3. Number of clusters per size for mixed alcohols.

EtOH n-PrOH i-PrOH

MeoH 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1 1 4 5 6 3 4 3 1 2 3 3 3 1 1 7 4 1 4 2 1 3 11 14 9

2 4 1 3 3 4 5 5 4 2 6 8 3 2 4 3 2 4 3 11 8 10

3 4 7 2 5 7 6 2 8 4 4 4 2 2 2 6 5 10 11

4 9 9 6 7 5 4 5 7 4 6 4 6 4 2 12

5 5 3 7 6 6 6 5 1 5 2 5 7

6 4 6 5 5 2 2 4 6 5

7 10 4 6 9 5 6

8 4 3 4

n-BuOH i-BuOH t-BuOH

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1 2 2 2 3 2 1 6 2 1 3 2 2 1 1 4 6 1 1 1 7 7 5 2 7

2 3 3 4 2 6 2 5 3 1 3 2 2 4 6 3 2 3 8 7 10 6

3 3 5 6 5 4 5 5 4 3 4 4 3 2 3 3 9 9 8

4 6 1 5 6 1 4 2 7 6 8 3 3 4 8 10

5 3 2 5 3 6 6 6 3 5 3 11 11

6 4 4 4 7 7 4 5 6 12

7 2 5 8 5 6 5

8 2 7 3

A.3. Interaction Energies

The interaction energies of all the quantum optimized clusters used in Chapter 3 are

available free of charge from the online version of the Supporting Information at:
https://chemistry-europe.onlinelibrary.wiley.com/action/downloadSupplement?doi=10.

1002%2Fopen.202000171&file=open202000171-sup-0001-misc_information.pdf
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B. Supporting Information to

Chapter 4

B.1. Molecular Dynamics Simulations

B.1.1. Force Field Parameters

Table B.1. Force field bond coefficients.

Kr (kcal/(molÅ2)) r (Å) Bond type

HFIP

734.000 1.3600 CT-F

268.000 1.5300 CT-CT

320.000 1.3600 CT-OH

2000.000 1.0900 CT-HC (must be fixed)

2000.000 1.0000 OH-HO (must be fixed)

Acetone

317.000 1.5220 C - CT

570.000 1.2290 C - O

340.000 1.0900 CT - HC

MeOH

320.000 1.4100 CT-OH

340.000 1.0900 CT-HC

553.000 0.9600 OH-HO
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B.1. Molecular Dynamics Simulations

Table B.2. Force field pair coefficients.

ϵ (kcal/mol) σ (Å) atom type

HFIP

0.097098 3.3611 CT

0.071041 3.1578 F

0.000000 0.0000 HO

0.028321 2.3734 HC

0.203255 2.9548 OH

Acetone

0.105000 3.7500 C

0.066000 3.5000 CT

0.030000 2.5000 HC

0.210000 2.9600 O

MeOH

0.066000 3.5000 CT

0.170000 3.1200 OH

0.000000 0.0000 HO

0.030000 2.5000 HC
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B. Supporting Information to Chapter 4

Table B.3. Force field angle coefficients.

Kr (kcal/(mol rad2)) r (θ) Angle type

HFIP

55.048 107.600 F -CT- F

55.048 111.000 F -CT-CT

55.048 110.000 CT-CT-CT

55.048 111.000 CT-CT-OH

55.048 109.500 CT-CT-HC

47.548 109.500 OH-CT-HC

47.548 109.500 CT-OH-HO

Acetone

70.000 116.000 CT - C - CT

80.000 120.400 O - C - CT

35.000 109.500 C - CT - HC

33.000 107.800 HC - CT - HC

MeOH

50.000 109.500 OH-CT-HC

35.000 109.500 HC-CT-HC

55.000 108.500 CT-OH-HO

Table B.4. Force field dihedral coefficients.

HFIP

all dihedrals set as harmonic 0 1 0

Acetone

Style V1 V2 V3 V4 torsion type

opls 0.000 0.000 0.275 0.000 CT - C - CT - HC

opls 0.000 0.000 0.000 0.000 O - C - CT - *

MeOH

opls 0.000 0.000 4.500 0.000 HO-OH-CT-HC
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B.1. Molecular Dynamics Simulations

Table B.5. Force field charges.

q (Coulomb) atom type

HFIP

0.60000 CT

-0.20000 F

-0.07000 CT

-0.59500 OH

0.17000 HC

0.49500 HO

Acetone

0.47000 C

-0.18000 CT

0.06000 HC

-0.47000 O

MeOH

0.14500 CT

-0.68300 OH

0.41800 HO

0.04000 HC
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B. Supporting Information to Chapter 4

B.1.2. Number of Molecules in the Molecular Dynamics

Simulations

Table B.6. Number of molecules of neat and mixed simulated systems at each molar fraction
of HFIP.

System xm HFIP molecules Ace molecules MeOH molecules

HFIP − 350 − −
MeOH − − − 1720

Ace − − 950 −
HFIP/Ace 0.2 100 400 −
HFIP/Ace 0.5 210 210 −
HFIP/Ace 0.8 280 70 −
HFIP/MeOH 0.2 192 − 768

HFIP/MeOH 0.5 480 − 480

HFIP/MeOH 0.8 768 − 192
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B.1. Molecular Dynamics Simulations

B.1.3. Cell Volumes
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Figure B.1. Cell volume with respect to the simulation time in the last 0.5 ns of npt run for
the systems HFIP/acetone
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Figure B.2. Cell volume with respect to the simulation time in the last 0.5 ns of npt run for
the systems HFIP/methanol
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B.1.4. Neat Systems

Table B.7. Experimental densities ρexp and calculated densities ρcalc of the neat systems HFIP,
MeOH, and acetone in g/cm3. The densities are calculated from molecular dynamics
simulations, at the same conditions as described in the computational details.

System ρexp298 ρcalc298

HFIP 1.596 1.521

MeOH 0.792 0.753

Acetone 0.784 0.777
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B.1.5. Molecular Dynamics Analysis at Different Temperatures

Figure B.3. Radial distribution function, numbers of integral, and angular distribution function
of the hydrogen bond for the system HFIP/acetone at molar fraction of HFIP 0.2
at the temperatures 298.15 K, 308.15 K, 318.15 K, 328.15 K, and 338.15 K with
HFIP bond donor and acetone acceptor (left) or HFIP (right).
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B.1. Molecular Dynamics Simulations

Figure B.4. Radial distribution function, numbers of integral, and angular distribution function
of the hydrogen bond for the system HFIP/acetone at molar fraction of HFIP 0.5
at the temperatures 298.15 K, 308.15 K, 318.15 K, 328.15 K, and 338.15 K with
HFIP bond donor and acetone acceptor (left) or HFIP (right).
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Figure B.5. Radial distribution function, numbers of integral, and angular distribution function
of the hydrogen bond for the system HFIP/acetone at molar fraction of HFIP 0.8
at the temperatures 298.15 K, 308.15 K, 318.15 K, 328.15 K, and 338.15 K with
HFIP bond donor and acetone acceptor (left) or HFIP (right).
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Figure B.6. Radial distribution function, numbers of integral, and angular distribution function
of the hydrogen bond for the system HFIP/methanol at molar fraction of HFIP 0.2
at the temperatures 298.15 K, 308.15 K, 318.15 K, 328.15 K, and 338.15 K with
HFIP bond donor and MeOH acceptor (left), or MeOH donor and HFIP acceptor
(right).
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Figure B.7. Radial distribution function, numbers of integral, and angular distribution function
of the hydrogen bond for the system HFIP/methanol at molar fraction of HFIP 0.5
at the temperatures 298.15 K, 308.15 K, 318.15 K, 328.15 K, and 338.15 K with
HFIP bond donor and MeOH acceptor (left), or MeOH donor and HFIP acceptor
(right).
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B.1. Molecular Dynamics Simulations

Figure B.8. Radial distribution function, numbers of integral, and angular distribution function
of the hydrogen bond for the system HFIP/methanol at molar fraction of HFIP 0.8
at the temperatures 298.15 K, 308.15 K, 318.15 K, 328.15 K, and 338.15 K with
HFIP bond donor and MeOH acceptor (left), or MeOH donor and HFIP acceptor
(right).
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Figure B.9. Radial distribution function, numbers of integral, and angular distribution function
of the hydrogen bond for the system HFIP/methanol at molar fraction of HFIP
0.2 at the temperatures 298.15 K, 308.15 K, 318.15 K, 328.15 K, and 338.15 K
with HFIP donor and acceptor (left) or MeOH donor and acceptor (right).
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B.1. Molecular Dynamics Simulations

Figure B.10. Radial distribution function, numbers of integral, and angular distribution func-
tion of the hydrogen bond for the system HFIP/methanol at molar fraction of
HFIP 0.5 at the temperatures 298.15 K, 308.15 K, 318.15 K, 328.15 K, and 338.15
K with HFIP donor and acceptor (left) or MeOH donor and acceptor (right).
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Figure B.11. Radial distribution function, numbers of integral, and angular distribution func-
tion of the hydrogen bond for the system HFIP/methanol at molar fraction of
HFIP 0.8 at the temperatures 298.15 K, 308.15 K, 318.15 K, 328.15 K, and 338.15
K with HFIP donor and acceptor (left) or MeOH donor and acceptor (right).
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B.2. Clusters Interaction Energies

Table B.8. Interaction energies Eint and interaction energies per monomer Eint/m of the system
HFIP, in kJ/mol.

cluster size Eint Eint/m

h2-10 2 -25.2 -12.6

h3-1 3 -62.4 -20.8

h3-2 3 -62.3 -20.8

h3-6 3 -56.2 -18.7

h3-10 3 -61.6 -20.5

h4-1 4 -129.0 -32.2

h4-5 4 -129.0 -32.3

h5-1 5 -169.1 -33.8

h6-1 6 -207.6 -34.6

h6-2 6 -207.5 -34.6

Table B.9. Interaction energies Eint and interaction energies Eint/m per monomer of the system
acetone, in kJ/mol.

cluster size Eint Eint/m

a2-1 2 -26.8 -13.4

a3-1 3 -53.6 -17.9

a4-1 4 -81.2 -20.3

a5-1 5 -114.7 -22.9

a5-8 5 -111.0 -22.2

a6-1 6 -143.8 -24.0

a6-4 6 -139.2 -23.2

a6-5 6 -139.9 -23.3

a6-8 6 -138.7 -23.1

a6-9 6 -135.3 -22.6

a6-10 6 -137.7 -23.0
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Table B.10. Interaction energies Eint and interaction energies Eint/m per monomer of the
system methanol, in kJ/mol.

cluster size Eint Eint/m

m2-1 2 -27.4 -13.7

m2-14 2 -27.4 -13.7

m3-1 3 -86.5 -28.8

m4-1 4 -152.3 -38.1

m4-7 4 -149.0 -37.2

m5-1 5 -201.3 -40.3

m5-10 5 -201.0 -40.2

m6-1 6 -246.6 -41.1

m6-2 6 -248.9 -41.5

m6-3 6 -248.8 -41.5

m6-4 6 -249.0 -41.5

m6-6 6 -247.5 -41.3

m6-11 6 -247.7 -41.3
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Table B.11. Interaction energies Eint and interaction energies Eint/m per monomer of the
system HFIP/acetone, in kJ/mol.

cluster size HFIP Ace Eint Eint/m cluster size HFIP Ace Eint Eint/m

h1a1-1 2 1 1 -43.6 -21.8 h2a4-2 6 2 4 -190.3 -31.7

h1a1-2 2 1 1 -38.0 -19.0 h2a4-9 6 2 4 -181.1 -30.2

h1a2-10 3 1 2 -71.0 -23.7 h3a1-1 4 3 1 -120.1 -30.0

h1a3-1 4 1 3 -108.2 -27.0 h3a1-4 4 3 1 -120.0 -30.0

h1a3-9 4 1 3 -108.2 -27.0 h3a1-10 4 3 1 -120.1 -30.0

h1a3-10 4 1 3 -108.2 -27.0 h3a2-1 5 3 2 -174.6 -34.9

h1a4-1 5 1 4 -134.1 -26.8 h3a2-2 5 3 2 -174.6 -34.9

h1a4-4 5 1 4 -138.4 -27.7 h3a2-4 5 3 2 -174.6 -34.9

h1a4-5 5 1 4 -138.5 -27.7 h3a2-10 5 3 2 -172.8 -34.6

h1a5-1 6 1 5 -180.9 -30.2 h3a3-4 6 3 3 -202.0 -33.7

h1a5-3 6 1 5 -173.6 -28.9 h3a3-7 6 3 3 -202.1 -33.7

h1a5-4 6 1 5 -165.5 -27.6 h3a3-8 6 3 3 -207.0 -34.5

h1a5-7 6 1 5 -175.1 -29.2 h3a3-9 6 3 3 -221.1 -36.9

h2a1-1 3 2 1 -84.1 -28.0 h4a1-1 5 4 1 -166.0 -33.2

h2a1-6 3 2 1 -82.8 -27.6 h4a1-3 5 4 1 -166.0 -33.2

h2a1-10 3 2 1 -85.2 -28.4 h4a1-4 5 4 1 -166.3 -33.3

h2a2-1 4 2 2 -117.1 -29.3 h4a1-5 5 4 1 -166.2 -33.2

h2a2-4 4 2 2 -117.2 -29.3 h4a1-6 5 4 1 -166.2 -33.2

h2a2-6 4 2 2 -117.1 -29.3 h4a2-1 6 4 2 -228.4 -38.1

h2a2-7 4 2 2 -117.1 -29.3 h4a2-2 6 4 2 -228.2 -38.0

h2a2-10 4 2 2 -117.2 -29.3 h5a1-1 6 5 1 -204.4 -34.1

h2a3-1 5 2 3 -164.8 -33.0 h5a1-3 6 5 1 -203.5 -33.9

h2a4-1 6 2 4 -187.2 -31.2
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Table B.12. Interaction energies Eint and interaction energies Eint/m per monomer of the
system HFIP/methanol, in kJ/mol.

cluster size HFIP MeOH Eint Eint/m cluster size HFIP MeOH Eint Eint/m

h1m1-1 2 1 1 -42.7 -21.3 h2m3-1 5 2 3 -197.7 -39.5

h1m1-3 2 1 1 -42.7 -21.3 h2m3-2 5 2 3 -197.7 -39.5

h1m1-6 2 1 1 -42.7 -21.3 h2m3-6 5 2 3 -197.7 -39.5

h1m2-1 3 1 2 -85.0 -28.3 h2m3-7 5 2 3 -204.5 -40.9

h1m2-2 3 1 2 -85.0 -28.3 h2m3-8 5 2 3 -199.8 -40

h1m2-6 3 1 2 -85.0 -28.3 h2m4-1 6 2 4 -256.6 -42.8

h1m2-7 3 1 2 -84.2 -28.1 h2m4-4 6 2 4 -251.2 -41.9

h1m2-8 3 1 2 -84.2 -28.1 h2m4-6 6 2 4 -256.7 -42.8

h1m3-1 4 1 3 -150.6 -37.6 h2m4-7 6 2 4 -252.8 -42.1

h1m3-2 4 1 3 -150.6 -37.7 h3m1-1 4 3 1 -121.6 -30.4

h1m3-3 4 1 3 -147.8 -37 h3m1-6 4 3 1 -121.6 -30.4

h1m3-4 4 1 3 -150.6 -37.7 h3m1-7 4 3 1 -120.4 -30.1

h1m3-5 4 1 3 -150.6 -37.7 h3m2-1 5 3 2 -194.6 -38.9

h1m3-6 4 1 3 -150.6 -37.7 h3m2-3 5 3 2 -195.2 -39.0

h1m3-7 4 1 3 -150.9 -37.7 h3m2-4 5 3 2 -194.0 -38.8

h1m3-8 4 1 3 -150.9 -37.7 h3m2-7 5 3 2 -190.1 -38.0

h1m4-1 5 1 4 -202.8 -40.6 h3m2-8 5 3 2 -191.0 -38.2

h1m4-2 5 1 4 -202.8 -40.6 h3m3-1 6 3 3 -249.6 -41.6

h1m4-4 5 1 4 -202.8 -40.6 h3m3-3 6 3 3 -246.9 -41.1

h1m4-5 5 1 4 -202.8 -40.6 h3m3-4 6 3 3 -246.9 -41.1

h1m4-6 5 1 4 -202.8 -40.6 h3m3-8 6 3 3 -246.9 -41.1

h1m4-7 5 1 4 -201.9 -40.4 h4m1-1 5 4 1 -160.5 -32.1

h1m4-8 5 1 4 -199.5 -39.9 h4m1-2 5 4 1 -182.4 -36.5

h1m5-1 6 1 5 -256.5 -42.8 h4m1-6 5 4 1 -185.1 -37.0

h1m5-2 6 1 5 -255.6 -42.6 h4m1-7 5 4 1 -183.4 -36.7

h1m5-3 6 1 5 -255.6 -42.6 h4m1-8 5 4 1 -185.1 -37.0

h1m5-6 6 1 5 -255.7 -42.6 h4m2-1 6 4 2 -224.8 -37.5

h2m1-1 3 2 1 -78.6 -26.2 h4m2-2 6 4 2 -225.7 -37.6

h2m1-6 3 2 1 -78.6 -26.2 h4m2-4 6 4 2 -225.7 -37.6

h2m2-1 4 2 2 -123.5 -30.9 h4m2-6 6 4 2 -225.6 -37.6

h2m2-3 4 2 2 -123.5 -30.9 h4m2-7 6 4 2 -231.2 -38.5

h2m2-5 4 2 2 -123.5 -30.9 h4m2-8 6 4 2 -230.2 -38.4

h2m2-6 4 2 2 -122.1 -30.5 h5m1-2 6 5 1 -219.1 -36.5

h2m2-7 4 2 2 -122.1 -30.5 h5m1-5 6 5 1 -219.0 -36.5

h2m2-8 4 2 2 -122.1 -30.5 h5m1-6 6 5 1 -219.0 -36.5
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B.3. Thermodynamic Properties of the Neat Systems

Table B.13. Enthalpies of vaporization ∆Hvap at 298.15 K for the neat substances calculated
at experimental density, and with the decrease of 1%,5%, 10% in kJ/mol.

Solvent ∆Hexp
vap ∆Hvap ∆H99%

vap ∆H95%
vap ∆H90%

vap

Acetone 31.27 32.65 32.69 32.84 33.03

HFIP 41.60 42.25 42.26 42.30 42.37

Methanol 37.60 40.14 40.15 40.18 40.22

As can be seen in table in B.13, with small variations of the density for each system,

the enthalpy of vaporization remains constant within 0.02-0.1 % (1 %), 0.1-0.5 % (5 %)

and 0.3-1 (10 %) .

B.4. Activity Coefficients of Mixed Systems

Table B.14. Activity coefficients fHFIP and fAcetone, Gibbs energy Gmix, enthalpy Hmix and
entropy Smix of mixing for the system HFIP/acetone at 298.15 K increasing the
molar fraction of HFIP.

xm Gmix Hmix Smix fHFIP fAcetone

0.00 0.00 0.00 0.00 0.000 1.000

0.20 -7.85 -10.30 -8.22 0.011 0.110

0.50 -7.24 -11.96 -15.81 0.171 0.068

0.80 -6.97 -7.77 -2.68 0.153 0.017

1.00 0.00 0.00 0.00 1.000 0.000

Via binary quantum cluster approach we are able to calculate the Gibbs energy of

mixing Gmix, the enthalpy of mixing Hmix, and the entropy of mixing Smix. As explained

in 3 the activity coefficients can be calculated from the excess Gibbs energy of mixing Ge.

Since no experimental boiling point is present in literature for the mixture HFIP acetone

and HFIP methanol, with the exception of the boiling point at 0.5 molar fraction of HFIP

for the system HFIP acetone, the isobars calculated via molecular dynamics are used as

input for the calculations. Since there is not experimental value of activity coefficient nor
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Table B.15. Activity coefficients fHFIP and fMeOH, Gibbs energy Gmix, enthalpy Hmix and
entropy Smix of mixing for the system HFIP/methanol at 298.15 K increasing the
molar fraction of HFIP.

xm Gmix Hmix Smix fHFIP fMeOH

0.00 0.00 0.00 0.00 0.000 1.000

0.20 -1.38 -1.55 -0.55 0.000 300.720

0.50 -19.49 -21.27 -5.98 0.001 0.003

0.80 -3.77 -4.53 -2.54 124.264 0.000

1.00 0.00 0.00 0.00 1.000 0.000

the other properties in literature, our results are to be considered as qualitatively and

not quantitatively. In tables B.14 and B.15 the calculated Gmix, Hmix, Smix and activity

coefficients are shown for the systems HFIP acetone and HFIP methanol respectively. In

both cases the strong negative values of Gmix means the systems are strongly interactive,

and the activity coefficients shows strong interactions of one solvent within the other one.
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B.5. Calculated Boiling Point of Neat and Mixed

Systems

Table B.16. Experimental and calculated boiling points of the neat and mixed systems.

System xm Tcalc
bol (K) Texp

bol (K)

HFIP 1.0 342 331

MeOH 0.0 438 337

Ace 0.0 392 329

HFIP-ACE 0.2 385 −
HFIP-ACE 0.5 382 367

HFIP-ACE 0.8 369 −

HFIP-MeOH 0.2 338 −
HFIP-MeOH 0.5 449 −
HFIP-MeOH 0.8 349 −

At each investigated temperature the Peacemaker code performs two full QCE itera-

tions with either a gas-like or liquid-like initial volume guess, respectively. The iterations

will typically converge to different solutions of the population and volume polynomial,

one resembling the gas-phase state and one resembling the liquid-phase state. At each

temperature, the Gibbs energies of gas and liquid phase are compared. When the Gibbs

energy of the gas phase becomes lower than that of the liquid phase, the Newton-Raphson

algorithm is used to find the temperature at which G(g)−G(l) = 0. This temperature is

then treated as the QCE boiling point.
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B.6. Cluster Pictures

a1 a2-1 a3-1 a4-1

a5-1 a5-8 a6-1 a6-4

a6-5 a6-8 a6-9 a6-10

Figure B.12. Pure acetone clusters after BP86/TZVP optimization.
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m1 m2-1 m2-14 m3-1

m4-1 m4-7 m5-1 m5-10

m6-1 m6-2 m6-3 m6-4

m6-6 m6-11

Figure B.13. Pure methanol clusters after BP86/TZVP optimization.
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h1 h2-10 h3-1 h3-2

h3-6 h3-10 h4-1 h4-5

h5-1 h6-1 h6-2

Figure B.14. Pure HFIP clusters after BP86/TZVP optimization.
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h1a1-1 h1a1-2 h1a2-10 h1a3

h1a3-9 h1a3-10 h1a4-1 h1a4-4

h1a4-5 h1a5-1 h1a5-3 h1a5-4

h1a5-7 h2a1-1 h2a1-6 h2a1-10

Figure B.15. HFIP/acetone clusters after BP86/TZVP optimization (1/3).
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h2a2-1 h2a2-4 h2a2-6 h2a2-7

h2a2-10 h2a3-1 h2a4-1 h2a4-2

h2a4-9 h3a1-1 h3a1-4 h3a1-10

h3a2-1 h3a2-2 h3a2-4 h3a2-10

Figure B.16. HFIP/acetone clusters after BP86/TZVP optimization (2/3).
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h3a3-4 h3a3-7 h3a3-8 h3a3-9

h4a1-1 h4a1-3 h4a1-4 h4a1-5

h4a1-6 h4a2-1 h4a2-2 h5a1-1

h5a1-3

Figure B.17. HFIP/acetone clusters after BP86/TZVP optimization (3/3).
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h1m1-1 h1m1-3 h1m1-6 h1m2-1

h1m2-2 h1m2-6 h1m2-7 h1m2-8

h1m3-1 h1m3-2 h1m3-3 h1m3-4

h1m3-5 h1m3-6 h1m3-7 h1m3-8

h1m4-1

Figure B.18. HFIP/methanol clusters after BP86/TZVP optimization (1/4).
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h1m4-2 h1m4-4 h1m4-5 h1m4-6

h1m4-7 h1m4-8 h1m5-1 h1m5-2

h1m5-3 h1m5-6 h2m1-1 h2m1-6

h2m2-1 h2m2-3 h2m2-5 h2m2-6

h2m2-7 h2m2-8

Figure B.19. HFIP/methanol clusters after BP86/TZVP optimization (2/4).
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h2m3-1 h2m3-2 h2m3-6 h2m3-7

h2m3-8 h2m4-1 h2m4-4 h2m4-6

h2m4-7 h3m1-1 h3m1-6 h3m1-7

h3m2-1 h3m2-3 h3m2-4 h3m2-7

h3m2-8 h3m3-1

Figure B.20. HFIP/methanol clusters after BP86/TZVP optimization (3/4).
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h3m3-3 h3m3-4 h3m3-8 h4m1-1

h4m1-2 h4m1-6 h4m1-7 h4m1-8

h4m2-1 h4m2-2 h4m2-4 h4m2-6

h4m2-7 h4m2-8 h5m1-1 h5m1-2

h5m1-5 h5m1-6

Figure B.21. HFIP/methanol clusters after BP86/TZVP optimization (4/4).
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B.7. Cluster Structures

The quantum chemically optimized clusters used in Chapter 4 are available upon request

from the authors.
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