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Introduction

Science is the discovery of knowledge. The process of this discovery is based on two
ingredients: hypothesizing – often guided by theoretical abstraction and deductive
reasoning – and testing in the form of empirical investigation and experimentation.
The cadence of theoretical and empirical inquiry builds the cornerstone of today’s un-
derstanding of the natural world and has fueled remarkable scientific achievements.
Modern economic research in many aspects strives to emulate these principles orig-
inally pioneered by the natural sciences.

Economists today seek not only a better understanding of the origins and con-
sequences of individual and societal economic decision making, but frequently find
themselves drawn upon to harness their insight and to provide evidence and rec-
ommendation for practical policy design. While our profession devotes considerable
care in separating positive analysis from normative judgements it has become evi-
dent that sound evidence-based policy advice – much like science itself – stands on
two pillars: theory and empirics.

This thesis uses the toolkit of modern microeconomic analysis to contribute to
three broad policy-relevant areas of economics: unemployment, immigration and
voting. How should we design targeted unemployment insurance that mitigates
some of the adverse consequences of job loss? What is the impact of immigration on
productivity in the economy? And, are there better ways to organize collective deci-
sion making than voting by simple Majority rule? The content of this work is moti-
vated by a deep belief that economic research stands to gain from a close integration
of theoretical and empirical analysis. Accordingly, the work below draws on meth-
ods from applied microeconomic theory, sufficient statistics, quasi-experimental and
observational methods, voting theory and mechanism design.

In this vain, chapter 1 studies the design of optimal targeted social insurance
both from a theoretical and empirical perspective. Motivated by an ever increas-
ing amount of available information and strained government budgets, tying pub-
lic benefits to observable individual characteristics holds the potential to increase
cost-effectiveness while helping those most in need. Indeed, the targeting of public
policies on the basis of observable individual characteristics is ubiquitous in OECD
countries. Governments tax individuals based on their marital status, provide wel-
fare payments which depend on the number of children in the household, and tie



2 | Introduction

disability insurance to particular medical conditions. The theoretical desirability for
targeting based on immutable tags has long been recognized (Akerlof (1978)). In
practice however, policy makers often rely on endogenous tags, which leave room
for strategic manipulation and selection into benefit schemes. Yet we lack a tractable
framework to think about optimal policy in this context.

Chapter 1, which is joint work with Luca Citino and Vincenzo Scrutinio, pro-
poses a sufficient statistic framework to guide the design of optimal targeted social
insurance in the presence of manipulation opportunities through which individuals
select into policies not intended for them. Our theory reveals three effects through
which manipulation alters the desirability of differentiated social insurance: (i) the
extent to which unintended recipients are selected on moral hazard as measured by
the behavioral to mechanical cost ratio, (ii) the extent to which they are selected
on consumption smoothing value and (iii) a manipulation externality capturing the
extent to which more differentiation induces more manipulation. Importantly, our
theoretical formula is expressed in terms of a few high-level elasticities and selection
effects that can be credibly estimated empirically.

We implement our framework in the context of Italian Unemployment Insurance
(UI) which features a discontinuous jump from eight to twelve months of potential
UI coverage around an age-at-layoff threshold. Using novel bunching techniques
we document pervasive manipulation in the form of strategically delayed layoffs.
Affected workers collect significantly more UI benefits through manipulation. How-
ever, most of the estimated increase is the mechanical result of longer UI coverage
because manipulators are highly selected on long-term nonemployment risk. The
implied responsiveness to UI benefits is modest and, in particular, not higher than
for non-manipulators, implying that the presence of manipulation does not alter the
design of optimal differentiated policy through the moral hazard selection effect in
the Italian context.

Chapter 2 focuses on one of the most divisive and contentiously debated topic in
the public sphere: the effects of immigration. Acknowledging that immigration is far
from a purely economic phenomenon, the economic literature has thus far predomi-
nantly focused on its effect on the labor market (e.g. Card (2009), Borjas (2014) and
Dustmann, Schönberg, and Stuhler (2016) among others). Chapter 2 contributes to
a better understanding of the consequences of immigration by studying its effect on
productivity and thus economic growth. While immigration undeniably increases
total gross domestic product (GDP), its impact on productivity, that is, output per
worker, is far from obvious. In Chapter 2, Alan Manning and I use newly released,
spatially dis-aggregated county by sector GDP data from the US to shed new light
on the impact of immigration on productivity. Our empirical analysis is theoretically
guided by a production function approach at the commuting zone level in which
inputs into production are different types of labor differentiated by native vs. im-
migrant status and skill level. We find robust evidence that increasing the share of
high-skill immigrants while reducing the share of low-skill natives raises output per
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worker, with estimates generally larger than for the impact of increasing the share of
high-skill natives. Further, we find small and mostly insignificant effects of low-skill
immigration on productivity. We address concerns about the selection of workers
into sectors and areas using a shift-share IV strategy. Comparing the impact of im-
migration on productivity with its impact on wages, we provide evidence that most
of the increase appears to be captured by the workers themselves.

While a theoretical framework and empirical evidence provide invaluable guid-
ance for policy design, the ultimate policy choice also critically depends on the po-
litical process and rules that govern collective decision making. Liberal democracies
cherish individual freedoms, political participation and fairness. In practice almost
all decisions end up being made by means of simple Majority rule. We overwhelm-
ingly base decisions on how many individuals favor or oppose a reform rather than
howmuch everyone cares. This inherent weakness of direct democracy based on Ma-
jority Rule has long been recognized as the Tyranny of the Majority (De Tocqueville
(1835)), and raises the question whether there are better ways to make collective
decisions.

Chapter 3, which is joint work with Justus Winkelmann, gives an affirmative
answer to this question if one is willing to bundle decision problems together rather
than to decide on them separately. We illustrate that bundling provides the opportu-
nity for a simple and intuitive class of mechanisms, which we label Ranking Mecha-
nisms, to outperform Majority rule substantially. The key idea is to allow agents to
rank decision problems themselves to communicate which topic they care relatively
more about. These rankings are then used to assign weights to agents’ votes in a
classical voting mechanism. Our theoretical analysis proves that agents indeed find
it in their own self-interest to report their preferences truthfully as long as all other
agents do so too. We derive a closed form solution for the ex-ante efficient weight
vector. The optimal Ranking Mechanism ex-ante Pareto dominates Separate Major-
ity Voting for an arbitrary number of individuals and decision problems. In the final
step, we illustrate how the idea of ranking can be extended to non-identical distribu-
tions of preferences between agents and across problems. While our work focuses
on establishing the theoretical properties of Ranking Mechanisms, their ultimate
potential lies in their intuitive appeal and practical applicability.

In sum, this thesis demonstrates the scope of modern microeconomic research,
its methodological and conceptual breadth and its practical value for real world
policy making and applications.

References

Akerlof, George A. 1978. “The Economics of “Tagging” as Applied to the Optimal Income Tax, Wel-
fare Programs, and Manpower Planning.” American Economic Review 68 (1): 8–19. [2]

Borjas, George J. 2014. Immigration economics. Harvard University Press. [2]
Card, David. 2009. “Immigration and Inequality.” American Economic Review 99 (2): 1–21. [2]
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Chapter 1

Manipulation, Selection and the
Design of Targeted Social Insurance?

1.1 Introduction

The looming COVID-19 pandemic, the ensuing economic crisis and an ever increas-
ing amount of available information have resulted in an unprecedented demand
for targeted government interventions. Tying public benefits to observable informa-
tion holds the potential to increase cost-effectiveness while providing assistance and
support to those most in need. Even in less extreme times, the targeting of public
policies on the basis of observable individual characteristics is ubiquitous in OECD
countries. Governments tax individuals based on their marital status, provide wel-
fare payments which depend on the number of children in the household, and tie
disability insurance to particular medical conditions. The theoretical desirability for
targeting based on immutable tags has long been recognized (Akerlof, 1978). In
practice however, policy makers often rely on endogenous tags, which leave room
for strategic manipulation and selection into benefit schemes.

? This chapter is a revised version of an earlier paper which circulated under the title “Happy
Birthday? Manipulation and Selection in Unemployment Insurance”. For valuable comments and dis-
cussions we are grateful to Andrea Alati, Andres Barrios Fernandez, Miguel Bandeira, Fabio Bertolotti,
Rebecca Diamond, François Gerard, Simon Jäger, Felix König, Camille Landais, Attila Lindner, Stephen
Machin, Alan Manning, Clara Martinez-Toledano, Matteo Paradisi, Michele Pellizzari, Frank Pisch,
Jörn-Steffen Pischke, Michel Serafinelli, Enrico Sette, Johannes Spinnewijn, Martina Zanella, Josef
Zweimüller, and seminar participants at briq, EUI, INPS and the LSE. This project was carried out
while Kilian Russ was visiting the London School of Economics as part of the European Doctoral Pro-
gramme in Quantitative Economics. Financial support from the London School of Economics and the
Bonn Graduate School of Economics is gratefully acknowledged. The realization of this project was pos-
sible thanks to the VisitInps initiative. We are very grateful to Massimo Antichi, Elio Bellucci, Mariella
Cozzolino, Edoardo Di Porto, Paolo Naticchioni and all the staff of Direzione Centrale Studi e Ricerche
for their invaluable support with the data.
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How should we design targeted public policies in the presence of manipulation
opportunities? In particular, how does manipulation alter the desirability of differ-
entiated policy? Finally, once we know which empirical moments are relevant, how
do we estimate them in practice?

This chapter breaks new grounds on these questions in the context of optimal
social insurance and makes three main contributions. First we propose a simple, yet
robust, theoretical framework to study the design of optimal differentiated social
insurance in the presence of manipulation. To this end we introduce differentia-
tion and manipulation opportunities into a classical Baily-Chetty framework (Baily,
1978; Chetty, 2006). In its simplest form, our sufficient statistic formula reveals
three effects through which manipulation alters the desirability of tagging: (i) the
extent to which unintended recipients, henceforth manipulators, are selected on
moral hazard as measured by the behavioral to mechanical cost ratio, (ii) the extent
to which they are selected on consumption smoothing value and (iii) a manipulation
externality capturing the extent to which more differentiation induces more manip-
ulation. The latter makes insurance under manipulation more costly and thus calls
for less insurance overall. However, selection effects might work to amplify, mitigate
or reverse these conclusions depending on their sign and strength. Intuitively, if ma-
nipulators value additional benefits more than their social cost, more differentiation
– inclusive of manipulation – might be welfare improving. Conversely, if manipula-
tors are adversely selected on moral hazard, manipulation exacerbates the cost of
differentiation.

Our second contribution is to develop novel bunching techniques that allow us
to estimate several key parameters. Building on Diamond and Persson (2016), our
methodology exploits the local nature of manipulation and combines traditional
bunching and regression discontinuity design (RDD) estimates to uncover selection
on both observables and unobservables. We illustrate how the latter can reveal selec-
tion effects and treatment effect heterogeneity. In particular, our methodology lets
us directly estimate the extent to which manipulators are selected on risk and moral
hazard, which links to our theoretical results. Estimating selection on moral hazard
has proven notoriously difficult in practice, resulting in relatively little empirical
work on the topic, with Einav, Finkelstein, Ryan, Schrimpf, and Cullen (2013) and
Landais, Nekoei, Nilsson, Seim, and Spinnewijn (2021) representing two notable
exceptions in the context of health and unemployment insurance, respectively. Our
methodology requires neither knowledge about manipulators’ identity nor reform-
induced policy variation over time, making it readily applicable in other settings.

As a third contribution, we apply our methodology in the context of Italian un-
employment insurance (UI) and connect the empirics to our theory. Exploiting a
discontinuous jump from eight to twelve months of UI coverage around an age-at-
layoff threshold, we provide clear graphical evidence of manipulation in the form
of systematic delays in the exact timing of layoffs. We find that over 15% of all
layoffs occurring within six weeks before workers’ fiftieth birthday are strategically
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delayed. Over the subsequent nonemployment spell affected workers collect on av-
erage 2,239 additional Euro each, which correspond to a 38,5% increase in total UI
benefit receipt. A survival analysis reveals that approximately 80% of this increase
in UI benefit receipt is mechanically due to higher coverage, while the remaining
20% is the result of a decrease in job search effort. This implies that the government
pays an additional 25 cents for each euro of mechanical UI transfer to manipulators.
Interestingly, we find virtually the same result when studying non-manipulators, i.e.
individuals who were laid off just before their fiftieth birthday. This implies that ma-
nipulators are not adversely selected on moral hazard and that selection on moral
hazard does not alter the design of optimal policy in our setting.

From a positive perspective our findings mitigate concerns about anticipated
moral hazard being the prime motive for selection into manipulation. Rather, we
document that manipulators are highly selected on long-term nonemployment risk.
Even absent manipulation, manipulators would have exhausted eight months of UI
benefits with 16.8 p.p. higher probability than non-manipulators. The underlying
firm-worker collusion decision to delay the date of layoff thus acts as an effective
screening mechanism for long-term nonemployment risk, while preventing selection
on moral hazard. In the last part of the chapter we investigate this mechanism fur-
ther by documenting observable worker and firm characteristics that are associated
with manipulation. Manipulation is pervasive among permanent contract workers
in private sector firms. We find no evidence of manipulation in public sector firms
or among temporary contracts. It is relatively more prevalent among female, part-
time, white-collar workers and in firms with less than 50 employees. This suggests
that lower adjustment costs and proximity between workers and supervisors may
facilitate manipulation in our context.

Our work relates to several strands of the literature. The theoretical model in-
troduces the concept of tagging (Akerlof, 1978) into the design of optimal social
insurance, in the spirit of Baily (1978) and Chetty (2006) on UI benefit levels and
Schmieder, von Wachter, and Bender (2012) and Gerard and Gonzaga (2021) for
potential UI duration.1 In particular, we study the case of endogenous tags which
are perfectly observable at zero cost but subject to manipulation. Importantly, we
assume the absence of any verification technology that would allow the government
to learn about individuals’ (un-manipulated) types. This is in contrast to a large
literature on tagging in optimal transfer programs and disability insurance which
focuses on imperfect tags that are noisy signals about individual types, but verifi-
able (at some cost) by the planner, see e.g. Stern (1982), Diamond and Sheshinski
(1995), Parsons (1996), Kleven and Kopczuk (2011) among others.

Our setup is both empirically relevant and theoretically interesting. Many poli-
cies do indeed tag on perfectly observable individual characteristics – such as marital

1. See Spinnewijn (2020) for a discussion on the importance of more conceptual work on opti-
mal differentiated social insurance as well as for suggestions on how to get started.
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status, number of dependents or, as in our case, age – with often no ability of infer-
ring manipulation at the individual level. Second, our setting gives rise to both selec-
tion on risk and moral hazard, which have traditionally been analysed separately.2
Recent efforts to integrate the two are presented in Landais et al. (2021), Hendren,
Landais, and Spinnewijn (2020) and Marone and Sabety (2021). All three contribu-
tions study the welfare implications of offering some form of choice in (regulated)
insurance markets.3 Importantly, and conceptually different from our setup, these
papers focus on policies that do not discriminate between different individuals but
rely on self-selection through market prices.⁴

It is worth pointing out that our focus is on how to design optimal differenti-
ated policy under manipulation based on a given (endogenous) tag, in our case, age
at layoff. Although interesting in its own right, we do not directly speak to the ap-
propriateness of tagging on age per se, nor do we empirically evaluate how much
differentiation would be optimal. Notably, tagging on age has been discussed in
several contexts, including in UI from a life-cycle perspective Michelacci and Ruffo
(2015) and in optimal Mirrlessian taxation, see Weinzierl (2011), Best and Kleven
(2013), among others.

The fact that we find positive selection on long-term nonemployment risk also
speaks to a recent literature studying the role of private information and adverse se-
lection in unemployment insurance, see e.g. Hendren (2017). This literature studies
the role of private information about job loss risk in shaping the market for UI. Our
results indicate that individuals hold information about their expected duration of
unemployment at the point of layoff. Understanding to what degree this information
is held privately is beyond the scope of this paper.

From a methodological perspective, our empirical strategy is most closely re-
lated to recent work by Diamond and Persson (2016), who study manipulation in
Swedish high-stakes exams. They propose a bunching estimator to estimate the ef-
fect of teacher discretion in grading around important exam thresholds on students
future labor market outcomes. They also show how these techniques can be used
to study selection on observables. We extend their methodology to investigate selec-
tion on unobservables and to uncover treatment effect heterogeneity. We borrow sev-
eral ideas from standard bunching techniques recently surveyed by Kleven (2016).
Conceptually, our empirical insights also relate to the literature on “essential hetero-
geneity” in instrumental variable settings, in which individuals select into treatment

2. Whilemoral hazard is the key concept inmost of thework on unemployment insurance design,
adverse selection has received a lot of attention in the context of health insurance, in particular, in the
US context.

3. In their work Landais et al. (2021) provide the first assessment of the desirability of a UI
mandate in the Swedish context. Adverse selection under a universal mandate has also been studied
in the context of health insurance, see Hackmann, Kolstad, and Kowalski (2015).

4. Barnichon and Zylberberg (2021) show that it might be theoretically desirable to offer a
menu of contracts to the unemployed screening individuals by how they trade lump-sum severance
payments with UI benefits.
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in part based on their anticipated treatment effect, see e.g. Heckman, Urzua, and
Vytlacil (2006).

On the empirical side, a large body of work studies the disincentives effects of UI
exploiting similar policy variation, see e.g. Card, Chetty, and Weber (2007), Lalive
(2007), Schmieder, von Wachter, and Bender (2012), Landais (2015), Nekoei and
Weber (2017), Johnston and Mas (2018) among others. Contrary to our setting,
these papers rely on the absence of manipulation to identify the treatment effects of
interest, whereas we study the effect of manipulation in a setting where it does occur.
Two recent contributions by Doornik, Schoenherr, and Skrastins (2020) and Khoury
(2019) also study manipulation in UI systems around an eligibility and seniority
threshold in Brazil and France, respectively. Doornik, Schoenherr, and Skrastins
(2020) provide evidence of strategic collusion between workers and firms who time
layoffs to coincide with workers’ eligibility for UI in Brazil. Khoury (2019) exploits
a discontinuity in benefit levels for workers laid off for economic reasons and esti-
mates an elasticity of employment spell duration with respect to UI benefits of 0.014.
While both of these papers suggest that manipulation in social insurance contexts
are widespread, neither studies the welfare consequences of manipulation or esti-
mates selection effects as we do.

The remainder of this chapter is organized as follows: Section 1.2 covers the
theoretical analysis for which Section 1.2.1 introduces the formal model, Section
1.2.2 discusses the main assumptions, Section 1.2.3 derives our main results and
Section 1.2.4 connects our theory to the data; Section 1.3 contains our empirical
application with Section 1.3.1 presenting the institutional setting and data, Section
1.3.2 outlining the empirical strategy and Section 1.3.3 reporting our results and
robustness checks; Section 1.4 concludes.

1.2 Theory: Optimal Targeted Social Insurance with Manipulation

This section lays out a model for the design of optimal differentiated social insurance
in the presence of manipulation opportunities. We stay deliberately close to our
empirical setting to facilitate the connection between the theoretical and empirical
part of the paper. Although the model is derived in the context of unemployment
insurance duration, our results readily extend to other social insurance settings.

1.2.1 The Model

1.2.1.1 Setting

We assume there are two groups of individuals, referred to as the “young” and the
“old” and denote their exogenous share in the population by G and 1−G, respec-
tively. Young and old individuals differ in their utility of consumption, job search
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costs and their ability to manipulate (more on this below). All individuals are unem-
ployed in t= 0, retire at a finite time horizon T and are hand-to-mouth consumers.⁵

The government provides unemployment benefits b, financed through a lump-
sum UI tax τ. Young and old individuals enjoy consumption cu + b when unem-
ployed and covered by UI, cu when unemployed and not covered, and ce = w−τ
when employed, where w denotes the exogenous wage rate. The governments sets
two separate UI schemes of varying generosity characterized by two different po-
tential benefit durations Py and Po, with Po ≥ Py. It targets the longer potential UI
benefit duration Po to the old. When doing so it faces a challenge: young individuals
have the ability to manipulate their eligibility status (at some cost) and might en-
dogenously select into the more generous scheme intended for the old.⁶ In order to
study how a benevolent government should optimally set Py and Po in this context,
we begin by formally stating individuals’ job search problems.

1.2.1.2 The Old

Preferences and Job Search. Old workers are homogeneous, always eligible for longer
potential benefit duration Po, and face the standard job search problem. They enjoy
flow utility uo(c) at consumption level c and choose job search intensity so

t at time
t, normalized to the arrival rate of job offers, at utility cost φo

t (so
t ). Formally, old

individuals maximize:

Vo(Po) = max
so
t

¨

∫ Po

0

So
t uo(cu + b) +

∫ T

Po

So
t uo(cu) +

∫ T

0

�

1 − So
t

�

uo(ce) −
∫ T

0

So
tφ

o
t (so

t )

«

,

where So
t = exp

�

−
∫ t

0 so
t′dt′

�

denotes the nonemployment survival probability at
time t and all integrals are taken w.r.t. dt. We denote the old’s implied benefit and
nonemployment duration by

Bo(Po) =

∫ Po

0

So
t (Po)dt and Do(Po) =

∫ T

0

So
t (Po)dt.

1.2.1.3 The Young

Preferences and Job Search. Young individuals have heterogeneous preferences and
are characterized by utility of consumption ui, job search cost function φi and fixed

5. The model setup closely follows previous work on optimal potential benefit duration in UI,
e.g. Schmieder, von Wachter, and Bender (2012) and Gerard and Gonzaga (2021).

6. Since the two policies differ only in terms of their potential benefit duration, with Po ≥ Py,
we w.l.o.g. restrict attention to one-sided manipulation.
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cost qi. Conditional on eligibility for potential benefit duration P̃, young individuals
maximize search effort as follows:

Ṽi(P̃) = max
si
t

(

∫ P̃

0

Si
tu

i(cu + b) +

∫ T

P̃
Si

tu
i(cu) +

∫ T

0

�

1 − Si
t

�

ui(ce) −
∫ T

0

Si
tφ

i
t(s

i
t)

)

,

where Si
t = exp

�

−
∫ t

0 si
t′dt′

�

denotes individuals’ nonemployment survival probability
at time t and all integrals are w.r.t. dt. Denote an individual’s implied benefit and
nonemployment duration by:

Bi(P̃) =

∫ P̃

0

Si
t(P̃)dt and Di(P̃) =

∫ T

0

Si
t(P̃)dt.

Manipulation. At time zero, young individuals can engage in manipulation by in-
curring a fixed cost qi ≥ 0 to become eligible for potential benefit duration Po rather
than Py, with Po ≥ Py. Formally, a young individual i with fixed cost qi maximizes:

Vi(Po, Py) = max
ai∈{0,1}

��

Ṽi(Po) − qi
�

· 1ai=1 + Ṽi(Py) · 1ai=0

	

= Ṽi(Py) + max
ai∈{0,1}

��

Ṽi(Po) − Ṽi(Py) − qi
�

· 1ai=1

	

,

where ai encodes the choice of whether (ai = 1) or not (ai = 0) to manipulate.
Thus, young individual i manipulates if and only if

qi ≤ q̄i(Po, Py) ≡ Ṽi(Po) − Ṽi(Py). (1.1)

Preferences and fixed costs are distributed according to a continuously differen-
tiable pdf f(ui,φi, qi). We denote the share of young individuals who manipulate –
henceforth manipulators – by M(Po, Py)) and the benefit and nonemployment dura-
tions of manipulators and non-manipulators respectively by:

Bm(Po, Py) = E
�

Bi(Po)|ai(Po, Py)) = 1
�

and Dm(Po, Py)) = E
�

Di(Po)|ai(Po, Py)) = 1
�

,

Bn(Po, Py)) = E
�

Bi(Py)|ai(Po, Py)) = 0
�

and Dn(Po, Py)) = E
�

Di(Py)|ai(Po, Py)) = 0
�

.

The average benefit and nonemployment durations for the young are

By(Po, Py)) = M(Po, Py)) · Bm(Po, Py)) +
�

1 −M(Po, Py))) · Bn(Po, Py))
�

Dy(Po, Py)) = M(Po, Py)) · Dm(Po, Py)) +
�

1 −M(Po, Py))) · Dn(Po, Py))
�

,

and we denote by Vy(Po, Py)= E
�

Vi(Po, Py)
�

the average utility of the young and
use superscripts to denote conditional expectation operators.
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1.2.1.4 The Planner’s Problem

A benevolent social planner sets (Po, Py) to maximize ex-ante social welfare taking
into account the incentive constraints, including the fact that manipulation might
occur. Concretely, the planner’s objective is given by:

W(Po, Py) = (1 − G) · Vo(Po) + G · Vy(Po, Py),

subject to the budget constraint:

L · τ = U · b + R,

with total labor supply L= (1−G)(T −Do(Po))+G(T −Dy(Py))+
GM(Dm(Py)−Dm(Po)), total unemployment covered by unemployment benefits
U = (1−G)Bo(Po)+GBy(Py)+GM(Bm(Po)− Bm(Py)) and exogenous government
spending R.

1.2.2 Simplifying Assumptions

We assume that the planner’s optimization problem is well-behaved warranting a
first-order approach. In order to ease the exposition and gain tractability, we impose
two additional simplifying assumptions: The first corresponds to a constant elasticity
assumption while the second restricts dynamic screening opportunities. The formal
derivations in Appendix 1.A make explicit how each assumption is used and how our
results generalize. To state our assumptions precisely we introduce two key concepts
for the analysis.

The first is a measure of the disincentive or moral hazard effect of UI in the
context of extended potential benefit duration (PBD). Note that in the case of PBD,
extra statutory coverage may mechanically lead to higher benefit receipts if individu-
als stay unemployed during the additional months with and without extra coverage.
This cost increase for the government is not due to distorted job search incentives
but simply reflects nonzero exhaustion risks during the relevant months of nonem-
ployment. Because there is no distortion, such mechanical transfer is not, by itself,
welfare relevant. What matters is by how much individuals change their behavior,
and thereby increase the cost of UI, for each dollar of such mechanical transfers.

Concretely, we follow Schmieder and von Wachter (2017) and define the be-
havioral to mechanical cost ratio for individual i when marginally increasing PBD P
as:

BCi
P

MCi
P

=
b ·
∫ P

0
dSi

t
dP dt + τ ·

∫ T
0

dSi
t

dP dt

b · Si
P

. (1.2)

The above BC/MC ratio has a classical leaking bucket interpretation. It captures
by how many additional dollars total UI expenditure goes up for each dollar of
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mechanical transfer from the government to the unemployed.⁷ We illustrate BC/MC
ratios graphically in Figure 1.1 and refer to it simply as moral hazard throughout.

Note: The figure displays two hypothetical nonemployment survival curves for manipulators, namely, under
eight months of PBD (solid line) and twelve months of PBD (dashed line). The dashed line is above the solid
line assuming that higher PBD lowers the exit hazard rate from nonemployment. The curves are simulated
as negative exponentials with a constant hazard rate of 5% and 3%, respectively. The total increase in UI
benefit receipt due to higher coverage (shaded areas) consists of two components: (1) a mechanical part
(light grey area) which captures additional UI benefit payments that would occur even absent any behavioral
change; (2) a behavioral component (dark grey area) which is due to a shift in the survival curve. The BC/MC
ratio defined in equation (1.2) is given by the ratio of (2) and (1).

Figure 1.1. The Moral Hazard Cost of Extended UI Coverage

Second, we define the “marginal” utility of individual i at the point of benefit
exhaustion ũ′i as

ũ′i =
1
b

∫ b

0

(ui)′(cu + x)dx =
ui(cu + b) − ui(cu)

b
. (1.3)

Since we are working with benefit duration extensions, the relevant utility gap
is between receiving and not receiving UI benefits during unemployment (which

7. An important property of this measure of moral hazard is its comparability across different
(groups of) individuals. This is especially important in the context of unemployment duration because
individuals might have heterogeneous exhaustion risk and thus face different incentives to respond to
PBD extensions. As in previous work, it turns out that it is precisely this re-scaled moral hazard effect
that is relevant for optimal policy in our setting.
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are the numeraire in the right-most term in equation (1.3)). We conveniently re-
cast this gap into the appropriately weighted marginal utility. Note that neither con-
sumption nor utilities are time dependent in the current setup which makes (1.3)
time-invariant. However, it is straightforward to allow for time dependence in utility
and consumption.

Equipped with the above concepts we impose the following assumptions. First,
we assume a constant, i.e. time-invariant, moral hazard cost for the young. Con-
cretely, we assume:

Assumption 1. Moral hazard is constant over the UI spell. Formally, for each I subset
of the young we have

BCI
P

MCI
P

=
BCI

P′

MCI
P′

for all P, P′.

Second, we assume that exhaustion risks and marginal utilities are uncorrelated.

Assumption 2. Exhaustion risks and marginal utilities are uncorrelated: Formally,
for all I subset of the young we have

CovI
�

Si
P̃
, ũ′i
�

= 0 for all P̃.

Assumption 1 is akin to a constant elasticity assumption. It requires that the
behavioral to mechanical cost ratio remains constant over the UI spell which intu-
itively assumes a time-invariant responsiveness to UI transfers. Assumption 2 im-
plies that exhaustion risks are uninformative of marginal utilities. On the one hand,
high-marginal utility individuals might have stronger incentives to find a job which
would violate assumption 2. However, to the extent that unemployed individuals
deplete their assets over the UI spell, marginal utilities might in fact increase over
the spell which would push the correlation in the opposite direction. Assumption
2 thus requires that such forces exactly offset each other. Both assumptions are as-
sumptions on individual behavior but also implicitly restrict the space of possible
selection pattern among the young because they have to hold for each subset of the
young.⁸ This makes the analysis considerably more tractable but rules out dynamic
screening possibilities. For instance, exhaustion risks cannot be used to dynamically
screen high marginal utility individuals. We regard our simplified setup as a natural
starting point for the analysis and leave its generalization to future work.

8. It suffices if assumptions 1 and 2 hold for all possible sets of manipulators and non-
manipulators.
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1.2.3 Characterizing Optimal Policies

We parameterize policy (Po, Py)= (P+∆P, P), such that P represents the level of
baseline coverage and ∆P≥ 0 reflects the amount of extra coverage. Before turn-
ing to the full optimum, we briefly focus on two related (sub-)problems that help
building intuition. First we look at the case without manipulation.

OptimumwithoutManipulation. In Appendix 1.Awe show that the optimal policy
in the absence of manipulation opportunities is given by:

Proposition 1 (Optimum without manipulation). The optimal policy (P∗o, P∗y) with-
out manipulation, i.e. M ≡ 0, satisfies:

ũ′o − ū′

ū′
=

BCo

MCo
and

ũ′y − ū′

ū′
=

BCy

MCy
,

where ū′ = (1−G) · (T −Do) · (uo)′(ce)+G · (T −Dy) · (uy)′(ce) is the average
marginal utility of the employed and ũ′j and BCj

MCj defined in (1.3) and (1.2) for
j= y, o.

Proposition 1 follows previous results in the literature on optimal UI benefit
duration, e.g. Schmieder and von Wachter (2017). As in the classical Baily-Chetty
formula, the optimal policy without manipulation equates consumption smoothing
benefits with moral hazard costs for the old and the young separately.⁹

Introducing Manipulation. To build further intuition, we now study the introduc-
tion of manipulation by first imagining a world without the old, i.e. G= 1. The extra
coverage ∆P now simply represents an alternative contract into which some of the
young might self-select. As we show in Appendix 1.A, the (re-scaled) welfare effect
of marginally increasing extra coverage ∆P starting from the case where there is
none ∆P= 0 is given by:

1
M ·MCm

Py
· ū
·

dW
d(∆P)

�

�

�

∆P=0
=

ũ′m − ū′

ū′
−

BCm

MCm
(1.4)

What matters for welfare at themargin is the insurance surplus, that is the difference
between the consumption smoothing benefits and the moral hazard cost, of manip-
ulators. It is instructive to evaluate this expression at the optimal manipulation-free
policy P∗y from Proposition 1.

Proposition 2 (The marginal welfare effect of manipulation at P∗y). The marginal
budget-balanced welfare effect of increasing extra coverage at P∗y from Proposition

9. Note that the current setup imposes a common tax rate for the old and the young and the
problem is thus not entirely separable across groups. It is straightforward to allow for different tax
schedules across groups.
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1 is given by:

1
M ·MCm

Py
· ū
·

dW(P∗y)

d(∆P)

�

�

�

∆P=0
=

� ũ′m − ũ′y
ū′

�

︸ ︷︷ ︸

selection on consumption
smoothing value

−
�

BCm

MCm
−

BCy

MCy

�

︸ ︷︷ ︸

selection on moral
hazard cost

Proposition 2 shows that the welfare effect of additional coverage depends on
the extent to which manipulators are selected on consumption smoothing value and
moral hazard cost at the optimally set manipulation-free policy P∗y. If manipulators
have higher insurance surplus than the average young individual, manipulation in-
creases welfare and vice versa. This result mimics that of Hendren, Landais, and
Spinnewijn (2020) who study the welfare effect of allowing for choice in a social
insurance context.1⁰

It turns out that selection effects, like the one in Proposition 2, remain crucial
for determining the full optimal policy with manipulation which we turn to next.

Optimum with Manipulation.We now analyze the design of optimal policy in the
presence of both groups young and old, i.e. G ∈ (0, 1) and with (potential) nonzero
manipulation. At the optimum, small budget-neutral changes d∆P in extra coverage
∆P which cannot increase welfare. In Appendix 1.A we show that this implies

(1 − G) · So
Po
·
�

ũ′o − ū′

ū′
−

BCo

MCo

�

+ G ·M · Sm
Po
·
�

ũ′m − ū′

ū′
−

BCm

MCm

�

+G · (1 −M) · Sn
Py
· ε1−M,∆P = 0, (1.5)

where all variables are defined as above and ε1−M,∆P refers to the cost-weighted
elasticity of manipulation w.r.t. extra coverage ∆P which we define formally below.
Equation (1.5) generalizes equation (1.4) by introducing two additional terms (the
first and third term). The first term takes into account that the old, who are always
entitled to receiving higher coverage Po, have a direct welfare effect from increases
in extra coverage. The third terms captures the fact that marginal manipulators
might cause non-marginal changes in the government budget, because we are no
longer starting at a point without any additional coverage. Concretely, define the
fiscal externality from manipulation, that is the budgetary cost arising from higher
benefit receipt and lower tax revenue, of all individuals of type i= (ui,φi) as

FEi =
�

Bi(P +∆P) − Bi(P)
�

· b +
�

Di(P +∆P) − Di(P)
�

· τ (1.6)

10. While Hendren, Landais, and Spinnewijn (2020) are interested in price surcharges required
for extra coverage, a feature one could also include in our setup, we model manipulation as an entirely
private choice without any direct financial implications for the government. The manipulation fixed
cost qi is relevant for individual utilities but not for government revenue.
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and the share of these individuals who end up manipulating because their fixed cost
falls below the threshold q̄i in equation (1.1), as

Mi =

∫ q̄i

0

f(q|ui,φi)dq. (1.7)

Equipped with these two quantities we formally define the cost-weighted elasticity
of manipulation w.r.t. extra coverage introduced in equation (1.5) as follows

ε1−M,∆P = En





FEi

MCn
Py
·∆P

· ε1−Mi,∆P



 . (1.8)

Thus the elasticity term captures by how much each share Mi, as measured by 1−
Mi, responds to increases in extra coverage weighted by the cost that such changes
impose on the government budget.

Turning to the optimal level of baseline coverage, we again have that at the op-
timum, marginal budget-neutral changes dP in baseline coverage P cannot increase
welfare. As shown in Appendix 1.A, by the envelope theorem this implies

(1 − G) · So
Po
·
�

ũ′o − ū′

ū′
−

BCo

MCo

�

+ G · Sy
Py
·

�

ũ′y − ū′

ū′
−

BCy

MCy

�

+G ·M ·
�

Sm
Po
− Sm

Py

�

·
�

ũ′m − ū′

ū′
−

BCm

MCm

�

+ G · (1 −M) · Sn
Py
· ε1−M,P = 0, (1.9)

where ε1−M,P is the cost-weighted elasticity of manipulation w.r.t. baseline coverage
P, defined analogously as in equation (1.8) but with respect to baseline coverage
P. Intuitively, when deciding how much baseline coverage to provide, the planners
weighs the surplus from the old (first term), the young (second term), an adjustment
accounting for the fact that a subset of the young are in fact manipulators with now
different exhaustion risk (third term) and the effect of baseline coverage on the
extent of manipulation (fourth term).

Combining equations (1.5) and (1.9) leads to our main proposition regarding
the optimal policy under manipulation.

Proposition 3 (Optimum with manipulation). The optimal policy with manipula-
tion satisfies:



18 | 1 Manipulation, Selection and the Design of Targeted Social Insurance

ũ′y − ū′

ū′
−

BCy

MCy
= ε1−M,∆P

︸ ︷︷ ︸

manipulation externality
of extra coverage

− ε1−M,P
︸ ︷︷ ︸

manipulation externality
of baseline coverage

+M ·
�Sm

Py

Sy
Py

�

︸ ︷︷ ︸

selection on risk
scale factor

·
� �

ũ′m − ũ′n
ū′

�

︸ ︷︷ ︸

selection on consumption
smoothing value

−
�

BCm

MCm
−

BCn

MCn

�

︸ ︷︷ ︸

selection on moral
hazard cost

�

(1.10)

and

(1 − G) · So
Po
·
�

ũ′o − ū′

ū′
−

BCo

MCo

�

+ G · Sy
Po
·

�

ũ′y − ū′

ū′
−

BCy

MCy

�

= G · (1 −M) ·
��

Sn
Po
− Sn

Py

�

· ε1−M,∆P − Sn
Po
· ε1−M,P

�

(1.11)

First note that without manipulation, i.e. M ≡ 0, Proposition 3 nests Proposi-
tion 1. However, the presence of manipulation induces a wedge in the provision of
insurance for both young and old. Equation (1.10) shows that the wedge for the
young is determined by two elasticities, namely that of extra and baseline coverage,
and by a selection term, capturing the extent to which manipulators are selected on
consumption smoothing value and moral hazard cost. Equation (1.11) implies that
the wedge for the old is the direct counterpart of that for the young together with
an effect on the overall level of insurance (RHS). In order to build intuition, it is
instructive to consider two special cases.

Fixed, nonzero M. First, consider a scenario in which a fixed subset of young in-
dividuals manipulate irrespectively of policy and always obtain higher UI coverage.
In this case the share M is nonzero and unresponsive to the design of UI. As a con-
sequence, all elasticity terms in Proposition 3 are zero. It is straightforward to show
that equation (1.10) implies that

ũ′n − ū′

ū′
−

BCn

MCn
= 0, (1.12)

which means that consumption smoothing benefits and moral hazard cost for non-
manipulators or the ‘endogenous young’ are equated. Similarly equation (1.5) shows
the same holds true for the ‘endogenous old’, i.e. the group of the old and manipula-
tors. Note that equation (1.11) implies that such manipulation induces no distortion
in the desired overall level of insurance. Intuitively, this is a case of pure re-labelling,
in which the planner regards a subset of the young as old because their manipulation
choice is unresponsive to policy.

Homogeneous young. Suppose there is no heterogeneity among the young, ex-
cept potentially in their manipulation fixed cost. In this case the selection term in
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equation (1.10) vanishes and the wedge of the young is governed only by the two
elasticities. If one assumes that additional coverage weakly increases the share of ma-
nipulators and that additional baseline coverage weakly decreases it, then the wedge
of the young is unambiguously negative, calling for overinsurance. Intuitively, it is op-
timal for the planner to grant the young additional surplus, above and beyond their
manipulation-free level, because of their manipulation threat. To the extent that ad-
ditional coveragemitigates manipulation the planner finds it optimal to provide such
insurance to the young. Contrary, by equation (1.11), the old will be underinsured
by more than the wedge for the young representing the fact that shifting insurance
surplus is now costly due to the fiscal externality associated with manipulation.

1.2.4 Connecting Theory and Empirics

This section lays out how to connect our theoretical framework to the data. There
are several points worth emphasizing. First and foremost, the purpose of our theory
is to guide the design of differentiated policy w.r.t. a given endogenous tag, not for
choosing among several potential tags or assessing their appropriateness more gen-
erally. A full implementation of proposition 3 would nevertheless reveal whether or
not differentiation w.r.t. to a tag has any potential benefit or if the optimal policy is
in fact undifferentiated. Finding out which heterogeneities allow welfare-improving
targeting in different policies is a fruitful avenue for future research, although pol-
icy makers might ultimately refrain from exploiting some of them, because of e.g.
administrative costs or horizontal equity and fairness concerns.11

Second, our theory takes the degree of initial differentiation, that is, the grouping
of individuals, in our setup two groups of young and old, as given. This has important
consequences for any empirical implementation in which the classification itself is
a policy choice. Our theory does not directly speak to the optimal classification but
rather analyses the effect of manipulation for a given grouping of individuals. This
implies that any statement about the welfare-relevance of manipulation is always
with respect to a reference degree of differentiation, over which there might be
empirical ambiguity.

To illustrate this point, consider a scenario in which group membership is de-
fined by a cutoff rule in some cardinal individual characteristic which can be manip-
ulated by individuals at some cost, as will be the case in our empirical application
below. If the manipulation cost increases with distance form the threshold, manip-
ulation will tend to be locally concentrated around the threshold. Whether or not
manipulation matters for welfare in this setting depends on the definition of what
constitutes the relevant groups. For instance, if a large number of individuals is lo-
cated far away from the threshold and one considers all of these individuals as part

11. Although not part of the current model, it is straightforward to incorporate other objectives,
e.g. welfare weights, in the analysis.
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of the two groups, one might trivially conclude that manipulation is not globally
welfare-relevant, essentially because M ≈ 0. However, this is precisely the case in
which the policy is a two-part policy in a large population and thus not very ambi-
tiously targeted. The importance of manipulation increases mechanically with the
degree of differentiation, ceteris paribus. The smaller the group of targeted individu-
als the more relevant manipulation effects become, because it is easier for the share
M of manipulators to rise to meaningful levels.

Third and relatedly, given that there is no “correct” classification, our empirical
application focuses on developing amethodology to estimate the empirical moments
in Proposition 3, rather than to provide a welfare assessment of any one particular
policy. We do point out explicitly how to connect our estimates to the theory as
well as which other moments might be of interest. Concretely, we illustrate how
bunching techniques can be used to reveal the extent of selection on moral hazard
even in the absence of policy reforms. Although of equal theoretical interest, we
lack the data, variation and methods to estimate the corresponding selection on
value counterpart.12 We do discuss some tentative findings based on our selection
on observables analysis in Section 1.3.2.4.

1.3 Empirics: Manipulation in Italian Unemployment Insurance

1.3.1 The Italian Unemployment Insurance Scheme

1.3.1.1 Institutional Setting

We study manipulation in Italy’s Ordinary Unemployment Benefits (OUB) scheme.13
The OUB was in effect from the late 1930s until its abolishment and replacement in
January 2013.1⁴ OUB covered all private non-farm and public sector employees who
lost their job either due to the termination of their temporary contract, or due to an
involuntary termination (a layoff), or a quit for just cause, such as unpaid wages or
harassment. Other types of voluntary quits and the self-employed were not eligible
for OUB.1⁵

12. Identifying and estimating the consumption smoothing benefit of UI has proven a consider-
able challenge in the literature by itself. Our setting features two additional complications: the fact
that we are interested in estimating the difference in marginal utilities between two groups of indi-
viduals and that this gap is measured at the respective time of benefit exhaustion. We are unaware of
any work which estimates marginal utilities of UI exhaustees directly.

13. Indennità di Disoccupazione Ordinaria a Requisiti Normali in Italian. We are not the first to
study the Italian OUB scheme, see e.g. Anastasia, Mancini, and Trivellato (2009), Scrutinio (2018)
and Albanese, Picchio, and Ghirelli (2020), of which we discuss the last in more detail in Appendix
1.C.

14. OUB was introduced through Regio Decreto 14. in April 1939 and replaced by ASPI on of
January 1, 2013.

15. For convenience, in the rest of the paper we will use the term “layoff” to indicate all job
terminations that are eligible for UI.
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To qualify for OUB, workers were also required to have some labor market at-
tachment. Concretely, workers needed to have started their first job spell at least
two years before the date of layoff, and to have worked for at least 52 weeks in the
previous two years.1⁶

Benefit levels were based on the averagemonthly wage, calculated over the three
months preceding the layoff. The replacement rate was declining over the unemploy-
ment spell: 60% of the average wage for the first six months; 50% for the following
two months and 40% for any remaining period. OUB did not involve any form of
experience rating.

PBD under OUB was a sole function of age at layoff and amounted to eight
months if the layoff preceded the worker’s fiftieth birthday and twelve months if
it followed it. This discontinuous change (a notch) in coverage created a strong
incentive for workers to delay their date of layoff so that it falls after their fiftieth
birthday.

1.3.1.2 Data

We use confidential administrative data from the Italian Social Security Institute
(INPS) on the universe of UI claims in Italy between 2009 and 2012 and combine
themwith matched employer-employee records covering the universe of working ca-
reers in the private sector. Information on UI claims comes from the SIP database,1⁷
which collects data on all income support measures administered by INPS as a con-
sequence of job separation. For every claim we observe the UI benefit scheme type,
its starting date, duration and amount paid. We further observe information related
to the job and the firm. This includes details about the type of the contract and a
broad occupation category.

The SIP database does not contain the date of re-employment after receiving
UI. We therefore retrieve this information from the matched employer-employee
database (UNIEMENS) and construct nonemployment durations as the time differ-
ence between the layoff date in the SIP and the first re-employment in UNIEMENS.1⁸
The UNIEMENS database provides additional information on workers’ careers in the
private sector, including detailed information on wages and the type of contract. We
observe individuals in the UNIEMENS database until 2016, which gives us at least
four years of observations for all workers. We therefore censor all nonemployment
durations at this horizon.

16. Two other UI benefit schemes were in place in Italy at the same time of our analysis: Reduced
Unemployment Benefits (RUB) and Mobility Indemnity (MI). However, neither one is likely to inter-
fere with our analysis due to different eligibility conditions and less generous benefit coverage. For
completeness, we present the two other UI schemes in Appendix 1.B.

17. Sistema Informativo Percettori in Italian.
18. We restrict the latter to be later than the former, which excludes a few short-term jobs that

are compatible with the continuation of UI benefit receipt.
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For our main sample we restrict our attention to individuals who lost their job
between February 2009 and December 2012, were between 46 and 54 years of age
at the time of layoff, and claimed OUB. Unfortunately, our data does not cover the
years prior to February 2009 and the introduction of a new UI scheme in January
2013 prevents us from including later years. We further restrict attention to individ-
uals who separate from an employer in the private sector after a permanent contract.
The motivation for this is twofold. First, we show in Section 1.3.2.4 that manipula-
tion is confined to permanent contracts in the private sector. Second, the UNIEMENS
database does not contain job information for public sector jobs, which means we
have no information about the previous work arrangement, nor would we observe
re-employment. At this point, one might be worried that we are missing some re-
employment events, namely, those into public sector jobs. This in unlikely to affect
our results because transitions from private into public sector jobs should be rare for
workers at such late stage in their careers. After the exclusion of a few observations
with missing key information we are left with 249,581 separation episodes that led
to UI claims.

Table 1.1 reports summary statistics for our main sample. The average worker
receives UI for about 30 weeks (7 months) corresponding to roughly one third of the
90 weeks (21 months) average nonemployment duration. An average of 50% and
39% of workers are still nonemployed after eight and twelve months, respectively,
implying substantial exhaustion risk. Our sample of workers is predominately male,
on full-time contracts, and employed in blue-collar jobs. Workers have spent about
27.5 years in the labor market since their first job and almost 6 years in their last
firm. In terms of geographic distribution, 46% of workers are laid off in the South
or the Islands.1⁹ Workers earned about 70 Euro per day (gross) which is equivalent
to 70× 26= 1820 Euro per month if working full-time.2⁰ The separating firm is rel-
atively old (14 years) and large (28.16 employees), but this is driven by a few very
large firms. Indeed, more than 60% of workers come from firms with less than 15
employees while only 18% come from firms with more than 50 employees. Because
our main sample contains workers in their late forties and early fifties, one might be
concerned that transitions into retirement could play a non-negligible role. However,
this is not the case with only about 1,500 or 0.6% of workers in our sample claim-
ing retirement benefits before the end of our observation window (4 years since
layoff).21 We now turn to a description of our objects of interest and identification
strategy.

19. This area encompasses the following regions: Abruzzo, Basilicata, Calabria, Molise, Puglia,
Sardegna and Sicilia.

20. This information is consistent with the monthly wage reported in our second data source, the
SIP database, which reports an average monthly wage of 1,735 Euro in the three months preceding
the layoff.

21. For these workers we define the nonemployment spell as the period between the end of the
previous employment and the date at which they claim their pension.
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Table 1.1. Summary Statistics

Mean SD Min Max

Nonemployment outcomes

UI Benefit receipt duration (in weeks) 29.853 15.923 0.14 52.00
Nonemployment duration (in weeks) 89.995 79.092 0.00 208.00
Nonemployment survival prob. 8 months 0.502 0.500 0.00 1.00
Nonemployment survival prob. 12 months 0.388 0.487 0.00 1.00

Individual characteristics

Female (share) 0.311 0.463 0.00 1.00
Experience (in years) 27.656 8.552 2.00 40.00
White-collar (share) 0.208 0.406 0.00 1.00
North (share) 0.367 0.482 0.00 1.00
Center (share) 0.174 0.379 0.00 1.00
South and islands (share) 0.459 0.498 0.00 1.00

Previous job characteristics

Full-time (share) 0.807 0.395 0.00 1.00
Tenure (in years) 5.931 6.113 0.08 30.00
Daily income (in Euro) 69.900 70.300 0.04 13,981.01
Firm age (in years) 14.367 12.115 0.00 109.83
Firm size 28.158 259.010 1.00 14,103.00
Firm size below 15 (share) 0.606 0.489 0.00 1.00
Firm size between 15 and 49 (share) 0.213 0.409 0.00 1.00
Firm size above 49 (share) 0.181 0.385 0.00 1.00

Note: The table reports summary statistics of our main sample consisting of all OUB claims from Feb 2009
to Dec 2012 from individuals who are employed in permanent private sector work arrangements and are
between 46-54 years of age at the time of layo�. The sample contains a total of 249,581 nonemployment
spells from 210,041 individual workers. Nonemployment duration is censored at four years and defined as
the time distance between the date of layo� and the date of the first re-employment event that leads to UI
benefit termination. Experience is equal to the number of years since the first social security contribution.
Tenure is defined as the total number of years (not necessarily uninterrupted) spent with the last employer.
The geographical South and Islands dummy encompasses employment in one of the following regions:
Abruzzo, Basilicata, Calabria, Molise, Puglia, Sardegna and Sicilia.
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1.3.2 Empirical Strategy

This section sketches our empirical strategy and explains the sources of variation in
the data that we use to pin down different parameters of interest. The main idea
is to exploit the local nature of manipulation by extrapolating outcomes from re-
gions that are unaffected by it, to learn about what would have happened in a coun-
terfactual world without it. We first assess the range of the manipulation region
with standard bunching techniques. We then fit polynomials to the unmanipulated
part of the data and interpolate to construct a counterfactual layoff frequency and
recover the number (and share) of manipulators. Similarly, we construct counter-
factuals of outcomes that are not directly manipulated, such as subsequent benefit
receipt or nonemployment survival probabilities, to learn whether these outcomes
respond to manipulation. Intuitively, any unusual change in these outcomes near
the cutoff together with how many manipulators are causing it, let us recover ma-
nipulators’ responses. Under plausible assumptions, we also recover the response of
non-manipulators, a group of individuals laid off just before their fiftieth birthday.
We also illustrate how we can use part of the procedure just described to study se-
lection into manipulation. Our approach is closely related to that of Diamond and
Persson (2016).

1.3.2.1 Quantifying manipulation

Consider a hypothetical manipulated layoff density as in Figure 1.2a. Absent any
manipulation we would expect the frequency of layoffs to be smooth in the neigh-
borhood of the cutoff. Manipulation instead causes a sharp drop in the number or
layoffs right before and a spike right after age fifty. We refer to the first region as
the “missing” and the later the “excess” region which together make up the “manip-
ulation” region. As in standard bunching techniques, we recover the counterfactual
frequency of layoffs by fitting a polynomial to the unmanipulated parts of the data
(on the left and right of the cutoff) and interpolate inwards. The difference between
the observed frequency and the fitted counterfactual lets us recover missing and
excess shares, as well as the number of manipulators in the missing and excess re-
gions. This estimation strategy assumes that manipulation takes the form of a pure
re-timing of layoffs that would have occurred anyways and for which we provide
supporting evidence in Section 1.3.3.6.

We operationalize this identification strategy following standard bunching tech-
niques, e.g. Saez (2010), Chetty, Friedman, Olsen, and Pistaferri (2011), Kleven
and Waseem (2013). First, we group all layoffs into two-week bins based on the
workers’ age at layoff. Second, we determine the lower bound of the missing region
zL by visual inspection, in our case three bins or six weeks. Last, we iteratively try
different upper bounds for the excess region zU until we balance the missing and
excess “mass”, that is, the estimated number of manipulators on either side of the
threshold. We estimate the number of manipulators by fitting a second order polyno-
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mial to the observed layoff frequency, including a full set of dummies for bins in the
manipulation region, and retrieving the relevant regression coefficients. In practice,
we estimate the following specification:

cj = α +
P
∑

p=0

βp · a
p
j +

zU
∑

k=zL

γk · I[aj = k] + νj, (1.13)

where cj denotes the absolute frequency of layoffs in headcounts in bin j, aj is
the mid-point age in bin j, P denotes the order of the polynomial. The coefficients
γk recover the differences between the observed data and the counterfactual fre-
quency in the manipulation region [zL, zU]. Using hat-notation to denote regression
coefficients, our estimate for the number of manipulators in the missing and excess
region, respectively, is given by:

Nmissing
mani =

∑

k∈missing
|γ̂k| and Nexcess

mani =
∑

k∈missing
γ̂k. (1.14)

Note that γ̂k < 0 if k belongs to the missing region, while γ̂k > 0 if it belongs
to the excess region. We repeat the above procedure for different values of zU until
Nmissing

mani ≈ Nexcess
mani . In our application we estimate a manipulation region consisting

of three bins (six weeks) for the missing and two bins (four weeks) for the excess
region.

Because they will be useful in the next steps, let us define estimates for the
number of non-manipulators, which is an observable quantity, and the number of
individuals in the excess regions who are not manipulators, respectively, as:

Nmissing
non-mani =

∑

k∈missing
ck and Nexcess

w/o mani =
∑

k∈excess
ck − γ̂k. (1.15)

Note that we deliberately reserve the term “non-manipulator” for individuals in
the missing region who at least in principle could have engaged in manipulation but
did not. Given the total headcounts, it is straightforward to compute the share of
manipulators in the missing and excess region, respectively, as follows:

smissing =
Nmissing

mani

Nmissing
mani + Nmissing

non-mani

and sexcess =
Nexcess

mani
Nexcess

mani + Nexcess
w/o mani

. (1.16)

Analogously, we define the share of manipulators in age bin k by:

smissing
k =

|γ̂k|
|γ̂k| + ck

for k ∈ missing and sexcessk =
γ̂k

ck
for k ∈ excess. (1.17)

Equipped with a measure of the size of manipulation, we now turn to studying
affected outcomes.
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(a) Quantifying manipulation
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Note: The figure visualizes our identification strategy. Panel (a) illustrates how we estimate the number and
respective share of manipulators in both the missing and excess region. Panel (b) constructs manipulators’
survival response and illustrates the relevant comparison when studying selection into manipulation. Sec-
tion 1.3.2 lays out how we estimate the fitted counterfactuals in practice.

Figure 1.2. Illustration of Identification Strategy
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1.3.2.2 E�ects of manipulation

This section outlines our empirical strategy for studying outcome variables that are
not directly manipulated but could potentially be affected by manipulation. Figure
1.2b illustrates the idea for one of our outcomes of interest: nonemployment sur-
vival rates. Manipulation provides workers with additional UI coverage from month
eight to twelve. Thus, it is likely that nonemployment survival rates respond to the
increase in coverage. Consider a hypothetical statistical relationship between nonem-
ployment survival and age at layoff, as in Figure 1.2b. In order to estimate how ma-
nipulators’ survival rate responds, we take the difference between two quantities:
manipulators’ actual survival probability and manipulators’ counterfactual survival
probability had they not been able to manipulate. As illustrated in Figure 1.2b, we
obtain these quantities by separately studying the missing and excess region. First,
we fit a flexible counterfactual on the right-hand side of the threshold and estimate
the difference between the observed and predicted survival rates to assess manipu-
lators’ actual survival probability. Intuitively, survival rates in the excess region are
higher than predicted by the un-manipulated region to the right only due to manip-
ulation. The extent to which observed and predicted nonemployment survival rates
differ, together with an estimate of how many manipulators are causing this differ-
ence, let us recover manipulators’ actual nonemployment survival probability. We
use analogous arguments to back out manipulators’ counterfactual nonemployment
survival probability on the left-hand side of the threshold.

In practice, we start by running the following regression on individual-level data:

yi = α +
P
∑

p=1

β≤50
p · ap

i · I[ai ≤ 50] +
P
∑

p=0

β>50
p · ap

i · I[ai > 50]+

+
zL
∑

k=zU

δk · I[ai = k] + ξi, (1.18)

where yi is the outcome of interest, e.g. weeks of UI benefit receipt or proba-
bility of still being nonemployed eight months after the layoff, β≤50

p and β>50
p are

coefficients of two P-th degree polynomials in age, that are estimated based on infor-
mation from the left-hand side and right-hand side, respectively. Due to the inclusion
of I[ai = k] indicator variables, the counterfactual polynomial is estimated as if we
were excluding observations from the manipulation region [zL, zU]. The coefficients
δk capture the difference in average outcomes between the observed data and the
estimated counterfactual in the manipulation region.

Specification (1.18) allows for a treatment effect of longer PBD on outcomes, i.e.
β>50

0 . We refer to β>50
0 as the “donut” regression discontinuity (RD) coefficient. This

coefficient captures the treatment effect of four additional months of PBD for the av-
erage individual in the population, as in Barreca, Guldi, Lindo, and Waddell (2011)
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and Scrutinio (2018).22 We use it to benchmark our results for the response of ma-
nipulators (more on this below). Graphically, β>50

0 recovers the difference between
the two grey dots in Figure 1.2b.

The central idea of our estimation strategy is the re-scaling of the estimated
differences (δ̂k) by the respective share of manipulators. Formally, let Y denote our
outcome of interest and Ȳ j

l its average over individuals l in region j. For each bin k in
the missing region, we may calculate the difference in average outcomes between
manipulators and non-manipulators as:23

Ȳmissing
non-mani,k − Ȳmissing

mani,k =
δ̂k

smissing
k

. (1.19)

Note that the average outcome of non-manipulators in bin k is observable and
given by

Ȳmissing
non-mani,k =

∑N
i=1 yi · I[ai = k]

ck
, (1.20)

which allows us to recover manipulators’ counterfactual outcome in bin k as

Ȳmissing
mani,k =

∑N
i=1 yi · I[ai = k]

ck
−

δ̂k

smissing
k

(1.21)

andmanipulators average counterfactual outcome over the entiremissing region
as

Ȳmissing
mani =

1

Nmissing
mani

∑

k

|γ̂k| · Ȳ
missing
mani,k . (1.22)

The logic behind this re-scaling is straightforward: if we found that the absence
of 10% of individuals in the missing region, namely the manipulators, resulted in a
100 unit drop starting from a predicted counterfactual of 1000 units, we could infer
that the now missing individuals must have had an outcome of 1000−0.9×(1000−100)

0.1 =
1900 units on average.

22. Alternatively one could derive bounds on the average treatment effect following the method
of Gerard, Rokkanen, and Rothe (2020). Because manipulation is clearly visible and locally confined
in our setting we use a “donut” regression discontinuity design.

23. Indeed, we can write the coefficient δ̂k as:

δ̂k = Ȳmissing
non-mani,k −

�

skȲmissing
mani,k − (1 − sk)Ȳmissing

non-mani,k

�

which after some rearrangement leads to our equation 1.19.
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Following an analogous argument on the right-hand side of the age cutoff, we
first re-scale the regression coefficient for bin k to obtain

Ȳexcess
mani,k − Ȳexcess

w/o mani,k =
δ̂k

sexcessk

. (1.23)

Notice that the observable average outcome in bin k in the excess region has to
satisfy

Ȳexcess
observed,k =

∑N
i=1 yi · I[ai = k]

ck
=
γ̂k · Ȳexcess

mani,k + (ck − γ̂k) · Ȳexcess
w/o mani,k

ck
. (1.24)

Combining the two expressions above and rearranging terms gives us an estimate
of manipulators’ actual outcome in the form of

Ȳexcess
mani,k =

∑N
i=1 yi · I[ai = k]

ck
+ (1 − sexcessk ) ·

δ̂k

sexcessk

, (1.25)

for bin k in the excess region. We again calculate manipulators’ average actual out-
come over the entire excess region by

Ȳexcess
mani =

1
Nexcess

mani
·
∑

k

γ̂k · Ȳexcess
mani,k, (1.26)

which, together with equation (1.22) lets us define manipulators’ response (or treat-
ment effect) as

YTE
mani ≡ Ȳexcess

mani − Ȳmissing
mani . (1.27)

Note that this strategy identifies the average response of a manipulator without
recovering by how many weeks each individual manipulator delayed their layoff.

1.3.2.3 Recovering Responses of Non-manipulators

Having obtained an estimate of manipulators’ response, we benchmark these results
against the implied response of non-manipulators. As noted above, β̂>50

0 is an esti-
mate of the effect of four additional months of PBD for an average individual who
is moved over the threshold exogenously, i.e. without manipulation. Assuming that
manipulators would have shown the same response to additional PBD coverage had
they been moved over the threshold exogenously, instead of through manipulation,
we can decompose the response for the average individual as follows:

smissing · YTE
mani + (1 − smissing) · YTE

non-mani = β̂
>50
0 . (1.28)

A fraction of smissing of the estimated jump in the polynomial β̂>50
0 is due to the

response of manipulators, the remaining (1− smissing) has to be due to the response
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of non-manipulators. Rearranging thus gives us an estimate for non-manipulators’
response:

YTE
non-mani =

β̂>50
0 − smissing · YTE

mani
1 − smissing . (1.29)

1.3.2.4 Selection into manipulation.

The procedure illustrated in Figure 1.2b also lets us study selection into manipu-
lation by comparing manipulators’ counterfactual outcomes to non-manipulators
realized outcomes. Figure 1.2b highlights this comparison and would suggest that
even absent manipulation, manipulators would have had a higher nonemployment
survival rate than non-manipulators due to the drop in the outcome variable to the
left of the cutoff. This is indeed what we show in Section 1.3.3.4. We now turn to
our empirical findings and illustrate how they relate to the theoretical results from
Section 1.2.

1.3.3 Results

In this section we examine the main findings. We start by presenting graphical evi-
dence of manipulation in the form of strategic delays in the timing of layoffs around
the fiftieth birthday threshold. After quantifying the magnitude of manipulation,
we estimate the additional increase in UI receipt and nonemployment duration that
arises from the change in manipulators’ job search behavior. We highlight that most
of the increase is mechanically the result of higher coverage due to relatively high
long-term nonemployment risk on which manipulators are adversely selected. The
implied responsiveness to UI is modest and, in particular, not higher than for non-
manipulators. Last, we probe the robustness of our findings and examine observable
characteristics on which manipulators are selected.

1.3.3.1 Evidence of manipulation

To provide graphical evidence of manipulation, Figure 1.3 plots the relative fre-
quency of layoffs against workers’ age at layoff. Figure 1.3b covers the entire age
range from 26 to 64 years of age, while Figure 1.3a zooms into a narrower, four
year window around the age-fifty threshold.2⁴ Both figures show a clear drop in the
frequency of layoffs just before, and a pronounced spike after, the age-fifty thresh-
old.

24. By plotting the layoff frequency over the entire age range in Figure 1.3b, we already rule out
that manipulation is caused by other mechanisms like (round-) birthday effects. All our estimates for
the counterfactual density and counterfactual outcomes are based on the narrower (46-54) window.
Section 1.3.3.6 presents additional robustness checks.
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(a) Age-at-layo� between 46 and 54 years
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(b) Age-at-layo� between 26 and 64 years
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Note: The figure shows the density of layo�s in the private sector, for individuals working
on a permanent contract and claiming regular UI (OUB). The data cover the period from Feb
2009 to Dec 2012. Panel (a) plots the density for the age range from 46 to 54 years, while
Panel (b) does so for the entire age range from 26 to 64 years of age. In both panels each
dot represents a two-week bin. The underlying data in Panel (a) consists of 249,581 layo�s.

Figure 1.3. Layo� frequency for permanent contract private sector workers

Following our estimation strategy outlined in Section 1.3.2.1, we find the ma-
nipulation region to consist of all age bins from six weeks before (missing region),
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Table 1.2. Headcount and Share Estimates

(1) (2) (3) (4) (5) (6)
Headcount Headcount Headcount Headcount Share Share

manipulators non-manipulators manipulators all other ind. estimate estimate
missing region missing region excess region excess region missing excess

571.2 3038.0 608.6 2390.4 0.158 0.203
(458.5, 680.0) (2931.0, 3150.0) (496.0, 718.5) (2379.4, 2401.3) (0.127, 0.188) (0.172, 0.231)

Note: The table reports estimates of the total number of individuals in four groups: manipulators
in the missing region (column 1), non-manipulators in the missing region (column 2), manipulators
in the excess region (column 3) and all other individuals in the excess region (column 4). Columns
5 and 6 contain estimates for the share of manipulators in the missing and excess region, respec-
tively. We formally define all quantities in Section 1.3.2. All results are based on our main sample
consisting of 249,581 observations. Bootstrapped 95% confidence intervals are in parentheses.

up to four weeks after the threshold (excess region). Table 1.2 reports our estimates
for the respective headcounts for the four groups of interest: manipulators in the
missing region, non-manipulators in the missing region, manipulators in the excess
region and all individuals in the excess region who are not manipulators, as well as
share estimates for the missing and excess region. We estimate that a total of 571
layoffs are strategically delayed corresponding to 15.8% of layoffs in the missing re-
gion. The counterfactual relationship appears almost perfectly linear and is robust
to the choice of the order of the polynomial. The estimated number of manipulators
in the excess region, 609, deviates slightly from that in the missing region due to
measurement error and corresponds to approximately 20.3% of layoffs in the excess
region.

Relating these findings to the theoretical analysis in Section 1.2, we provide
clear evidence of the presence of manipulation in our context. It is straightforward
to translate the estimated number of manipulators into a share estimate once one
decides on the definition of the relevant group. If one, for instances, took six weeks
prior to the age threshold as the cutoff for the group definition of the young, the
share M would correspond to the above estimate of 15.8% (see our discussion in
Section 1.2.4 on this point). Unfortunately, we lack sufficient policy variation to
credibly estimate the share elasticities in Proposition 3. Due to the nature of our
manipulation mechanism, namely worker-firm bargaining, one can only speculate
about plausible values. It also appears likely that manipulation elasticities are not
constant in our setting, e.g. due to non-financial incentives such as warm-glow or
reputation concerns playing a role. Importantly, the theory does not require pin-
ning down the exact mechanism as long as one has credible estimates for the share
elasticities (or is willing to make additional assumptions).
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Table 1.3. UI Benefit Receipt Estimates (in Euro)

(1) (2) (3) (4) (5) (6)
Benefit receipt Benefit receipt Benefit receipt Benefit receipt Benefit receipt Benefit receipt
manipulators non-manipulators manipulators all other ind. response response

missing region missing region excess region excess region manipulators non-manipulators

5814.2 5223.5 8053.6 7044.2 2239.4 1636.9
(5178.5, 6459.2) (5125.0, 5325.7) (7326.9, 8836.5) (6974.5, 7112.4) (1276.7, 3261.6) (1410.9, 1849.6)

Note: The table reports estimates of the mean UI benefit receipt (in Euro) of individuals in four groups: ma-
nipulators in the missing region (column 1), non-manipulators in the missing region (column 2), manipula-
tors in the excess region (column 3) and all other individuals in the excess region (column 4). Columns 5
and 6 contain estimates of the UI benefit receipt response of manipulators and non-manipulators, respec-
tively. We formally define all quantities in Section 1.3.2. All results are based on our main sample consisting
of 249,581 observations. Bootstrapped 95% confidence intervals are in parenthesis.

Table 1.4. Benefit Duration Estimates (in weeks)

(1) (2) (3) (4) (5) (6)
Benefit duration Benefit duration Benefit duration Benefit duration Benefit duration Benefit duration

manipulators non-manipulators manipulators all other ind. response response
missing region missing region excess region excess region manipulators non-manipulators

27.8 24.8 41.8 35.8 13.9 9.9
(25.2, 30.6) (24.4, 25.2) (38.3, 45.6) (35.5, 36.2) (9.4, 18.7) (8.9, 10.9)

Note: The table reports estimates of the mean benefit duration (in weeks) of individuals in four groups: ma-
nipulators in the missing region (column 1), non-manipulators in the missing region (column 2), manipula-
tors in the excess region (column 3) and all other individuals in the excess region (column 4). Columns 5 and
6 contain estimates of the benefit duration response of manipulators and non-manipulators, respectively.
We formally define all quantities in Section 1.3.2. All results are based on our main sample consisting of
249,581 observations. Bootstrapped 95% confidence intervals are in parenthesis.

1.3.3.2 E�ects of manipulation: UI benefit receipt and duration

Manipulation provides workers with four additional months of UI coverage. To study
the effect of extra coverage on manipulators’ benefit receipt and nonemployment
duration we begin by plotting these outcomes against workers’ age at layoff in Figure
1.4. For each outcome we see visible changes around the age threshold indicating
that both respond to manipulation. As outlined in Section 1.3.3.2 we combine these
changes with the share estimate from the previous section to retrieve manipulators’
as well as non-manipulators’ responses. We report all estimates with associated 95%
confidence intervals in Tables 1.3 and 1.4.2⁵

25. All confidence intervals in the paper are obtained by simple non-parametric bootstrapping:
we operationalize this by resampling layoff events and re-estimating the entire procedure, including
the share of manipulators, 5000 times.
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(a) Average UI receipt (in Euro)
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Note: The figure displays the average UI receipt in Euro (Panel (a)) and average UI benefit duration in weeks
(Panel (b)) by age-at-layo�. In both panels each dot represents a two week bin. The sample includes all
individuals working on a permanent contract and claiming regular UI (OUB). The data cover the period from
Feb 2009 to Dec 2012. The underlying data consists of 249,581 layo�s.

Figure 1.4. Benefit Receipt and Duration
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Our results indicate that manipulators would have collected 5814.2 Euro and
spent 27.8 weeks on UI benefits, had they not manipulated (column 1 in Tables 1.3
and 1.4). Through manipulation these numbers increase to 8053.6 Euro and 41.8
weeks (column 3), resulting in an additional cost of 2239 Euro per manipulator
(column 5). In order to benchmark these estimates, we compute the same numbers
for non-manipulators following the strategy outlined in Section 1.3.2.3. We find that
non-manipulators generate a total cost of 1636.9 Euro (column 6) when receiving
additional coverage.

As highlighted in Section 1.2, these numbers alone are not directly welfare rele-
vant, because they reflect both the mechanical transfer as well as possible distortions
in job search. The next section provides a decomposition into these two compo-
nents.2⁶

1.3.3.3 Distinguishing behavioral responses from mechanical e�ects

The key insight to decomposing behavioral and mechanical cost increases, is to re-
peat the preceding estimation procedure at different months after layoff to trace out
when manipulators and non-manipulators respond to additional coverage. We start
by plotting nonemployment survival rates against age at layoff at various months af-
ter layoff in Figure 1.5. Qualitatively, we observe bigger jumps around the thresholds
precisely during the months with extra coverage. Similarly to before, we combine
these changes with the estimated share of manipulators causing them to trace out
monthly survival curves for both manipulators and non-manipulators.

Figure 1.6a presents our estimated nonemployment survival curves of manipula-
tors under the eight and twelve months PBD schemes. Figure 1.6b reports the differ-
ence between the two curves at any point, with associated bootstrapped 95% confi-
dence intervals. The difference between the two curves reveals the effect of longer
PBD along manipulators’ survival curve which appears concentrated precisely in the
months of extra UI coverage. We replicate the same analysis for non-manipulators
and report its findings in Figure 1.7. The qualitative picture is similar, although confi-
dence bands are much narrower in large part due to the fact that non-manipulators’
survival curve under the eight month PBD scheme is observable rather than esti-
mated.

26. It is worth noticing that the cost estimates are relevant for calculating cost-weighted elastici-
ties given in equation (1.8) because they relate to the fiscal externality defined in equation (1.6).
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(b) Probability of still not being in employment at 6
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(c) Probability of still not being in employment at 9
months
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(d) Probability of still not being in employment at 12
months
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(e) Probability of still not being in employment at 15
months
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(f) Probability of still not being in employment at 18
months
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(g) Probability of still not being in employment at 21
months
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(h) Probability of still not being in employment at 24
months
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Note: The figures show the share of laid o� workers, who are still not in employment after 3, 6, ..., 24 months.
In all panels each dot represents a two week bin. The sample includes all individuals working on a perma-
nent contract and claiming regular UI (OUB). The data cover the period from Feb 2009 to Dec 2012. The
underlying data consists of 249,581 layo�s.

Figure 1.5. Nonemployment Survival Probabilities
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(a) Nonemployment survival rates

(b) Di�erence in survival rates

Note: Panel (a) plots point estimates of manipulators’ actual and counterfactual nonemployment survival
for the first 32 months after layo�. Our estimation strategy is outlined in Section 1.3.2. Panel (b) shows the
di�erence between the two survival curves and contains bootstrapped 95% confidence intervals testing
against zero di�erence.

Figure 1.6. Manipulators with 8 and 12 Months of PBD
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(a) Nonemployment survival rates

(b) Di�erence in survival rates

Note: Panel (a) plots point estimates of non-manipulators’ actual and counterfactual nonemployment sur-
vival for the first 32 months after layo�. Our estimation strategy is outlined in Section 1.3.2. Panel (b) shows
the di�erence between the two survival curves and contains bootstrapped 95% confidence intervals testing
against zero di�erence.

Figure 1.7. Manipulators with 8 and 12 Months of PBD
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Table 1.5. BC/MC Ratio Estimates

(1) (2)
without taxes with taxes

(τ = 0%) (τ = 3%)

(a) Manipulators 0.24 0.32
(0.02, 0.89) (0.03, 1.13)

(b) Non-manipulators 0.26 0.32
(0.12, 0.41) (0.15, 0.50)

Note: The table reports BC/MC ratio estimates
for (a) manipulators and (b) non-manipulators.
BC/MC ratios are defined in equation (1.2). Boot-
strapped 95% confidence intervals in parenthe-
ses.

We translate the survival rate responses into BC/MC ratio estimates for manip-
ulators and non-manipulators following equation (1.2). To do so, we rely on nu-
merical integration and weight responses by statutory benefit rates.2⁷ We report our
BC/MC ratio estimates in Table 1.5. Because there is some disagreement in the lit-
erature as to what the appropriate tax rate is this context, columns 1 and 2 provide
BC/MC ratios for a no tax τ= 0 and a commonly used UI tax of τ= 3%, see e.g.
Schmieder and von Wachter (2016) and Lawson (2017). As discussed in Section
1.2 an estimate of 0.24 for manipulators in column 1 of Table 1.5 implies that the
government pays an additional 24 cents for each euro of UI transfer. The estimated
BC/MC ratios for manipulators and non-manipulators are strikingly similar suggest-
ing that there is no selection on moral hazard which links directly to equation (1.10)
in Proposition 3.2⁸ From a positive perspective this finding also mitigates concerns
that anticipated moral hazard is a prime motive to engage in manipulation.

1.3.3.4 Selection on long-term nonemployment risk

The remainder of our empirical analysis provides additional evidence to shed light
on the drivers behind manipulation in our context. The previous section ruled out
anticipated moral hazard as a key motivation to engage in manipulation. In this
section we show that alleviated exhaustion risk is a strong predictor of manipulation.

27. We perform integration using the midpoint rule and impose a non-negativity constraint on
the behavioral cost at any point in time. Note that in the first few months the point estimates of the
survival rate response is negative for manipulators which would imply that longer PBD increases job
finding rates. However, this finding is likely due to noise. As these negative contributions to the overall
integral leads us to underestimate BC/MC ratios for manipulators, our estimates are conservative.
Results are qualitatively unaltered without imposing the non-negativity constraint.

28. The reported BC/MC ratios are in the lower range of estimates in the previous literature, see
Schmieder and von Wachter (2016) for an overview.
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To do so, Figure 1.8 combines manipulators’ and non-manipulators’ eight
months PBD survival curves from Section 1.3.3.3. A clear difference emerges and
manipulators exhibit an almost 20 p.p. higher (counterfactual) exhaustion risk un-
der the less generous eight months PBD scheme. This finding provides compelling
evidence that anticipated exhaustion risk is a strong motive for manipulation. Note
that these estimates also directly relate to the selection of risk scale factor in equa-
tion 1.10 in Proposition 3. The large exhaustion risk is also (partly) responsible for
making most of the increase in benefit receipt mechanical, thus lowering the BC/MC
ratio, in Section 1.3.3.3.

1.3.3.5 Characterizing manipulators

This last section of our analysis, provides some suggestive evidence on the under-
lying manipulation mechanism by documenting observable characteristics that are
correlated with manipulation. In Figure 1.9 we start by visually inspecting the age
distribution of layoffs for different types of contracts (permanent and temporary)
and sectors (private and public). Manipulation is entirely confined to private sector
permanent contract workers motivating the choice of our main sample.

Turning to observable worker and firm characteristics for our main sample, Ta-
ble 1.6 reports a selection on observables analysis.2⁹ Columns 1 and 2 of Table 1.6
report estimated mean characteristics for manipulators and non-manipulators, re-
spectively. Column 3 calculates their difference together with bootstrapped 95%
confidence intervals. We find that manipulators are 18 p.p. more likely than non-
manipulators to be female, 17 p.p. more likely to be employed in white-collar jobs
and 7 p.p. less likely to have full-time contracts. Manipulators’ wages are 6% lower,
although estimates are relatively imprecise. Firm size plays an important role for
manipulation: manipulators come from firms that are about 40% smaller. Overall,
these findings suggest that adjustment costs, bargaining power and proximity to
managers play a role in workers’ ability to engage in manipulation. A full investiga-
tion into the underlying worker-firm bargaining mechanism is beyond the scope of
this paper but we deem it an interesting avenue for future work.

Although more tentative, we view the selection patterns document in this sec-
tion as evidence consistent with our main conclusion that manipulators are not
adversely selected. If anything the findings suggest that manipulators might have
higher marginal utilities, e.g. due to part-time work arrangements and lower wages.

1.3.3.6 Robustness

This section probes the robustness of two identifying assumptions underlying our
empirical analysis and its link to the theoretical results from Section 1.2. First, we

29. The analysis closely follows Section 6.2 of Diamond and Persson (2016).
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Table 1.6. Selection on Observables

(1) (2) (3)
Manipulators Non-Manipulators Di�erence (1)-(2)

Female (share) 0.450 0.270 0.180
(0.100, 0.281)

White-collar (share) 0.351 0.180 0.170
(0.101, 0.239)

Southern Region (share) 0.483 0.471 0.012
(-0.072, 0.098)

Full-time (share) 0.754 0.822 -0.067
(-0.134, -0.000)

Tenure (in years) 6.577 5.718 0.859
(-0.142, 1.853)

Daily Wage (in logs) 4.115 4.176 -0.0610
(-0.142, 0.023)

Firm Age (in years) 14.546 14.335 0.211
(-1.945, 2.320)

Firm Size (in logs) 1.862 2.258 -0.395
(-0.640, -0.155)

Note: The table reports di�erences in observable characteristics between
manipulators and non-manipulators in our main sample. Columns 1 and 2
report estimated means of observable characteristics for manipulators and
non-manipulators, respectively. Column 3 reports their di�erence and asso-
ciated 95% bootstrapped confidence intervals in parentheses.

provide evidence that manipulation is indeed the result of additional UI coverage
around the age at layoff threshold. Second, the empirical analysis assumes that the
discontinuity in PBD around the age threshold affects layoff decisions in exactly one
way, namely, through a delay in an otherwise earlier occurring layoff.

By plotting layoffs across the entire age distribution Figure 1.3b already ruled out
several alternative explanations such as e.g. round birthday effects. To provide fur-
ther supporting evidence Figure 1.10 plots layoff densities for two Italian UI schemes
which replaced the OUB scheme after January 2013 and did not feature any discon-
tinuity in generosity at the age fifty threshold.3⁰ Reassuringly, we find no evidence
of manipulation under any of the these alternative schemes.

30. For institutional details regarding both UI schemes see Appendix 1.B.
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(a) Nonemployment survival rates

(b) Di�erence in survival rates

Note: Panel (a) plots point estimates of manipulators’ and non-manipulators’ nonemployment survival over
the first 32 months after layo� under eight months of PBD. The estimation of the former is outlined in
Section 1.3.2. The latter represents the observed mean survival rate in the missing region. Panel (b) shows
the di�erence between the two survival curves and contains bootstrapped 95% confidence intervals testing
against zero di�erence.

Figure 1.8. Manipulators and Non-manipulators with 8 Months of PBD
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Note: The figure shows the density of layo�s by contract type. The data cover the period from Feb 2009 to
Dec 2012. In all panels each dot represents a two-week bin. Individuals are classified as “public sector”
workers if they cannot be matched to an employment spell in the private sector database (UNIEMENS).

Figure 1.9. Layo� Frequencies by Sector and Contract Type
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(a) MiniASpI
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(b) NASpI
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Note: The figure shows the density of layo�s for workers laid o� in the private sector and receiving MiniASpI
(Mar 2013 to Apr 2015) or NASpI (from Jan 2016). In both panels each dot represents a two-week bin. The
sample has been restricted to workers coming from permanent contracts in the private sector.

Figure 1.10. Placebo Checks: Layo� Frequencies under MiniASpI and NASpI
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The second concern is related to the possible presence of extensive margin job
separation effects of UI and merits special attention in the light of recent evidence by
Albanese, Picchio, and Ghirelli (2020) and Jäger, Schoefer, and Zweimüller (2019).
The former documents layoff responses at the eligibility threshold (52 weeks of con-
tributions) in the same Italian OUB schemewe study. Although theoretically possible,
we find no empirical evidence of any extensive margin job separation responses in
our context through a series of robustness tests presented in detail in Appendix 1.C.
Intuitively, the layoff density shown in Figure 1.3, shows no indication of any addi-
tional layoffs to the right of the cutoff that are not explained by missing layoffs in the
missing region. We discuss this point as well as a series of other robustness tests ex-
haustively in Appendix 1.C and find no evidence for a violation of our identification
assumption.

1.4 Concluding Remarks

This work lays out a simple, yet robust theoretical framework to guide the design
of differentiated social insurance under manipulation. We identify a set of sufficient
statistics and illustrate how key moments in the data can be estimated in practice.
Our empirical strategy builds on and extends recently proposed bunching techniques
which do not require rich policy variation for estimation.

We are optimistic that our empirical methodology might be fruitfully applied in
other contexts and, although a full welfare assessment is beyond the scope of this pa-
per, we deem it an interesting area for future research. As pointed out by Spinnewijn
(2020) there remains important work to be done in understanding, analyzing and
justifying frequently used tags in social insurance. We hope that our framework and
methodology provide an important first step.

Although the theoretical results hold more generally, our empirical analysis fo-
cuses on the case where group membership is defined by a threshold rule in an
underlying continuous variable, age-at-layoff. While there are many such cases in
practice, another prevalent case is that of discrete variable group membership, e.g.
based on gender or the number of children. Developing empirical methodologies for
such settings is thus of first-order policy interest.
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Appendix 1.A Proofs

This appendix lays out the formal derivation of Proposition 3, which implies Propo-
sition 1 for M ≡ 0. We further illustrate how to derive equation (1.4) as well as
Proposition 2.

The government problem parameterized with baseline coverage P and extra cov-
erage ∆P, such that Py = P and Po = P+∆P, reads:

max
P,∆P,τ

W = (1 − G) · Vo(P +∆P) + G · Ey
�

Ṽi(P)
�

+ G ·M · Em
�

Ṽi(P +∆P) − Ṽi(P) − qi
�

subject to the budget constraint:

τ ·
�

(1 − G) ·
�

T − Do(P +∆P)
�

+ G ·
�

T − Dy(P)
�

+ G ·M ·
�

Dm(P) − Dm(P +∆P)
��

= b ·
�

(1 − G) · Bo(P +∆P) + G · By(P) + G ·M ·
�

Bm(P +∆P) − Bm(P)
��

+ R.

When considering small changes in extra coverage ∆P we may, by the envelope
theorem, ignore all direct welfare effects of changes in job search intensities or ma-
nipulation choices.31 Thus, small budget-neutral changes in∆P have a welfare effect
of:

dW
d∆P

= (1 − G) ·
dVo(Po)

d∆P
+ G ·M · Em

�

dṼi(Po)
d∆P

�

− ū′ · L ·
dτ

d∆P
(1.A.1)

= (1 − G) · So
Po
·
�

uo(cu + b) − uo(cu)
�

+ G ·M · Em
�

Si
Po
·
�

ui(cu + b) − ui(cu)
�

�

− ū′ ·
�

(1 − G) ·
�

BCo
Po
+MCo

Po

�

+ G ·M ·
�

BCm
Po
+MCm

Po

��

+ ū′ · G · b · (1 −M) · ε1−M,∆P (1.A.2)

= (1 − G) ·
�

MCo
Po
· ũ′o −

�

BCo
Po
+MCo

Po

�

· ū′
�

+ G ·M ·
�

Em
�

MCi
Po
· ũ′i
�

−
�

BCm
Po
+MCm

Po

�

· ū′
�

+ G · (1 −M) ·MCn
Py
· ū′ · ε1−M,∆P, (1.A.3)

where we used the implicit differentiation of the government budget constraint τ ·
L= b · B+ R and Leibniz rule to obtain:

31. These changes matter only to the extent that they operate through the government budget
constraint.
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L ·
dτ

d∆P
= b ·

dB
d∆P

− τ ·
dL

d∆P
(1.A.4)

= (1 − G) ·
�

b ·
dBo

d∆P
+ τ ·

dDo

d∆P

�

+ G ·
d

d∆P

∫

i

�

b ·
�

Bi(Po) − Bi(Py)
�

+ τ ·
�

Di(Po) − Di(Py)
��

︸ ︷︷ ︸

= FEi by equation (1.6)

·Iqi≤q̄i df(ui,ψi, qi)

(1.A.5)

= (1 − G) ·
�

BCo
Po
+MCo

Po

�

+ G ·
∫

i

dFEi

d∆P
· Iqi≤q̄i df(ui,ψi, qi)

+ G ·
∫

ui,φi

FEi ·
d

d∆P

∫ q̄i

0

f(q|ui,φi) dq

︸ ︷︷ ︸

=Mi by equation (1.7)

df(ui,φi) (1.A.6)

= (1 − G) ·
�

BCo
Po
+MCo

Po

�

+ G ·M ·
�

BCm
Po
+MCm

Po

�

− G ·MCn
Py
·
∫

ui,φi

(1 −Mi) · FEi

MCn
Py
·∆P

· ε1−Mi,∆P df(ui,φi) (1.A.7)

= (1 − G) ·
�

BCo
Po
+MCo

Po

�

+ G ·M ·
�

BCm
Po
+MCm

Po

�

− G · (1 −M) ·MCn
Py
· ε1−M,∆P, (1.A.8)

by the definition in equation (1.8). Exploiting assumptions 1 and 2, we rewrite
(1.A.3) as:

1
ū · b

·
dW
d∆P

= (1 − G) · So
Po

�

ũ′o − ū′

ū′
−

BCo

MCo

�

+ G ·M · Sm
Po

�

ũ′m − ū′

ū′
−

BCm

MCm

�

+ G · (1 −M) · Sn
Py
· ε1−M,∆P, (1.A.9)

which proves equation (1.5) in the main text.
Similarly, small budget-neutral changes in baseline coverage P have a welfare

effect of:
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where, again, we used the implicit differentiation of the government budget con-
straint τ · L= b · B+ R and Leibniz rule to obtain:
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and define

ε1−M,P := En





FEi
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· P
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

 . (1.A.16)

Under assumptions 1 and 2, we may rewrite (1.A.11) to:
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which proves equation (1.9) in the main text.
To prove equation (1.10) in Proposition 3, we substitute equation (1.5) into

(1.9), which gives:
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·
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Noting that,
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we rewrite (1.A.18) to obtain:
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For expositional ease we define
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and introduce shorthand notation for the social surplus from insurance for group
j ∈ {n, m, y, o}:
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ū′
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�
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Finally, we rewrite (1.A.19) as follows:
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which, since Sy
Py
= Sn

Py
· (1+ s ·M) and 1+s

1+s·M =
Sm

Py

Sy
Py

, implies

SSPy = SSPn +M ·
Sm

Py

Sy
Py

·
�

SSPm − SSPn
�

. (1.A.24)

Substituting (1.A.20) and (1.A.22) completes the proof of equation (1.10) in Propo-
sition 3.

Last, we derive equation (1.11) in Proposition 3 by rewriting (1.5) as:
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which with equation (1.A.20) implies:
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�
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�

,

and concludes the proof.
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Appendix 1.B Additional Institutional Details

This section provides additional information about the Italian unemployment insur-
ance schemes in place from 2009. Our main sample covers the period from February
2009 until December 2012. There were two alternative UI schemes in place simul-
taneously to the main OUB scheme which we study in our analysis.

1.B.1 Alternative UI Schemes in Italy from 2009 to 2012

During the years from 2009 to 2012 two other UI schemes were in place: the Re-
duced Unemployment Benefits (RUB) and the Mobility Indemnity (MI).32

The RUB scheme targeted similar workers as OUB albeit different contribution
requirements. While still requiring the first contribution to social security to have
happened at least two years before, the RUB scheme only required 13 weeks (78
days) of contributions over the past year (instead of 52 weeks within the last two
years as in OUB). The milder eligibility requirements went hand in hand with less
generous benefits. Potential benefit duration was proportional to the days worked
in the previous year (up to 180 days), while the replacement rate granted 35% of
the average wage earned in the previous year for the first 120 days and 40% for
the following 60 days. Because RUB is significantly less generous it is unlikely to
interfere with our analysis of the OUB.33

TheMI scheme (active until 2017) andwas targeted toworkers fired duringmass
layoffs or business re-organizations. It provided long and generous income support
with active labor market reintegration and retraining programs. During the period
under study the potential duration of this scheme depended on the worker’s age at
layoff and geography, with a maximum PBD of 48 months in the south and of 36
months in northern regions. UI benefits amounted to 80% of the salary for the first
12 months (with a cap annually set by law) and 64% during the following months.
MI benefits represented a particularly attractive alternative for individuals involved
in mass layoffs and could be responsible for an under-representation of these types
of workers in our sample. What is more relevant for our analysis however is that
selection into MI is largely beyond the control of the worker. Indeed, eligible firms
needed to be undergoing significant economic restructuring and have a minimum
size, while workers needed to meet additional tenure requirements.

32. Indennità di Disoccupazione Ordinaria a Requisiti Ridotti and Indennità di Mobilità in Italian,
respectively.

33. For additional information, please refer to Anastasia, Mancini, and Trivellato (2009).
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1.B.2 UI Schemes in Italy after 2012

The Italian welfare system underwent significant reform after 2012 all aiming at
reducing the fragmentation of benefit schemes. In January 2013, both the OUB and
the RUB were replaced respectively by the ASpI and MiniASpI.3⁴

The ASpI mimicked many aspects of the OUB both in terms of requirements and
structure. Eligibility requirements of the ASpI followed those of the OUB scheme. Po-
tential benefit duration was also identical initially, however, it was reformed several
times in 2014 and 2015 which makes it difficult to include the ASpI in our analysis.
Benefit levels differed with a replacement rate of 75% for the first six month, 60%
for month seven to twelve and 45% thereafter (all as fractions of the average wage
in the preceding two years before layoff).

The MiniASpI was aimed at workers who did not meet the requirement for the
ASpI, but had accumulated at least thirteen weeks of work in the last year. Potential
benefit duration was equal to half of the weeks worked over that time period. Benefit
receipt was proportional to past wages: workers received 75% of the average wage
received during the two previous years.

Since April 2015, both measures are replaced by a single UI scheme which pro-
vides homogeneous coverage to workers from all types of layoffs. The new scheme,
the NASpI, is based on the structure of the MiniASpI. To qualify, workers need at
least 78 days of contributions in the year before layoff. Potential benefit duration is
equal to half of the weeks worked over the previous four years. Benefit levels are
proportional to past wages following a declining profile starting at 75% replace-
ment rate with a 3 p.p. reduction for every month after the first four. Importantly
for our analysis, there is no longer a discontinuity is potential benefit duration thus
removing incentives for workers to delay their layoff.

Appendix 1.C Additional Robustness Tests

This section provides additional evidence in support of the identifying assumptions.
Concretely, our analysis assumes that the discontinuity in PBD around the age thresh-
old affects layoff decisions only through the delay of otherwise earlier occurring
layoffs. The main threat to this assumption is the possibility of extensive margin re-
sponses, i.e. increases in the rate of job separations due to the incentives generated
by the UI system. This is worrisome for two reasons. First we would be mismeasur-
ing the upper bound of the manipulation region (zU). Second, if the extra layoffs
are systematically different, we would be altering the composition of layoffs in the
manipulation region for reasons other than manipulation, introducing bias.

Extensive margin responses to UI have been studied both theoretically, see e.g.
early work by Feldstein (1976), Feldstein (1978) and Topel (1983), as well as in re-

34. Assicurazione Sociale per l’Impiego in Italian.
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cent empirical work e.g. Albanese, Picchio, and Ghirelli (2020) and Jäger, Schoefer,
and Zweimüller (2019).

Albanese, Picchio, and Ghirelli (2020) find alleviated job separation rates as
a response to the same Italian OUB scheme that we study but exploit the eligibil-
ity discontinuity of 52 contribution weeks within the last two years after which a
worker qualifies for any UI. Although closely related there are several reasons why
we might not find job separation effects in our context. Their variation is from zero
to some PBD, whereas we study a PBD extension from a nonzero level. Because we
are exploiting intensive rather than extensive margin incentives, extensive margin
responses are likely significantly smaller. This is especially true because all work-
ers in our sample are eligible for UI and have thus already “survived” the eligibility
threshold Albanese, Picchio, and Ghirelli (2020) exploit.

The work by Jäger, Schoefer, and Zweimüller (2019) documents job separation
effects of a large PBD reform in Austria which raised PBD from one to four years.
They exploit this large variation to form a test for the efficiency of job separations
by studying differences in separation rates of surviving job cohorts that were differ-
entially treated by the reform. Again, there are several reasons to caution against
extrapolating from their setting to ours. First, the sheer size of the PBD extension in
Austria was unusually large. Second, it was targeted at relatively old workers who,
as Jäger, Schoefer, and Zweimüller (2019) document, used it (in part) as a gateway
into early retirement. Last, their setting is likely to produce larger extensive margin
responses because the Austrian UI scheme covers voluntary quits and not just layoffs
as in Italy.

Although there exists recent important evidence on the extensive margin job
separation effects of UI programs we see reason to believe that such effects are
significantly smaller or entirely absent in our context. Of course, the presence of job
separation effects is ultimately an empirical question. In the following we provide
three tests all of which support the absence of extensive margin responses in our
setting.

1.C.1 Testing for Shifts in the Layo� Density

The first test is based on the shape of the layoff density. Concretely, we investigate
whether there is a persistent increase in layoffs after the age fifty threshold. One
might expect a persistent increase in the density if, for instance, firms that expe-
rience negative productivity shocks, dis-proportionally lay off workers above fifty
due to the extended UI coverage. We operationalize this approach by estimating
versions of a classical regression discontinuity design and estimate the following
specification once for the entire sample and by excluding (an extended version of)
the manipulation region:

dj = α + λ · aj + γ · I[aj ≥ 50] + δ · I[aj ≥ 50] · aj + νj, (1.C.1)



Appendix 1.C Additional Robustness Tests | 57

where dj denote the density of layoffs in two-week age bin j, aj denotes the mid-
point age and νj is an error term. The coefficient of interest γ is indicative of any
discontinuity in the density at the age fifty threshold. While we expect a positive γ
coefficient when estimating specification (1.C.1) capturing the presence of manip-
ulation, once we (successfully) exclude the manipulation region, γ should be close
to zero in the absence of extensive margin responses. This is precisely what we find
with results of all three regressions presented in Table 1.D.1. Column 1 presents
estimates from the full sample where we do find a positive and significant γ coeffi-
cient of 0.027, consistent with the visual evidence in Figure 1.3. More importantly,
once we exclude the manipulation region in column 2, the estimated γ becomes
indistinguishable from zero lending support to our identifying assumption. Column
3 repeats the previous analysis but with a modified definition of the manipulation
region. Concretely, we extend the manipulation region to nine age bins prior to age
fifty and four age bins after the threshold. The choice of this extended region is moti-
vated by a simple quantitative heuristic. For the missing (excess) region we include
the longest sequence of age bins from the threshold that are associated with neg-
ative (positive) regression coefficients in a simple OLS regression that allows for a
separate effect of each age bin on the layoff frequency.3⁵ Reassuringly, the estimated
γ coefficient in Table 1.D.1 remains quantitatively small and insignificant.

1.C.2 Testing for the Presence of Extra Excess Mass

In this section we provide a second test based on the empirical layoff density. This
time we investigate the possibility that extensive margin responses are concentrated
right after the threshold. Rather than leading to a persistent increase in the density,
which we tested for in the preceding section, we are concerned with the presence of
additional layoffs just after the threshold that are not due to re-timing. Indeed such
additional layoffs might occur if there are jobs that “mature” into negative surplus
and such separate precisely when the worker crosses the eligibility threshold for
higher UI coverage. We probe this concern with the following analysis. First, in
the absence of such additional layoffs missing and excess “mass”, or numbers of
manipulators, should balance exactly. If there are more excess manipulators one
might be worried that these are the result of an extensive margin response thus
violating our identifying assumption. We thus test the extent to which missing and
excess mass balance around the threshold. To do so, we rely on the same definition
of an extended manipulation region as in Section 1.C.1. Concretely, we estimate the
following specification

35. In order to reduce the influence of very small coefficients, we ignore the sign of a coefficient
if its absolute value is smaller or equal to 1/1000 of the average density across all bins. This is roughly
equal to a deviation of three workers from the predicted counterfactual.
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cj = α + β · aj +
50−
∑

k=A

γ̃k · I[aj = k] +
B
∑

k=50+
δ̃k · I[aj = k] + ζj, (1.C.2)

where cj corresponds to the number of layoffs in age bin j and aj refers to the mid-
point age in bin j. The set of γ̃k and δ̃k coefficients capture the estimated number of
manipulators in the respective bin k in the missing and excess region, respectively.
The lower and upper bounds A< zL and B> zU are set to eighteen weeks (nine
bins) and four eight weeks (four bins) as in the previous section. We calculate the
difference between the sum of all γ̃ coefficients and the sum of all δ̃ coefficients and
re-scale it by the latter. The estimated 1.3% represents the share of the estimated
manipulators in the excess region which is not explained by manipulators in the
missing regions. Reassuringly, this number is very small lending further support to
our main identification assumption.

1.C.3 Testing for Discontinuities in Observable Characteristics

Last we turn to a set of robustness tests based on observable characteristics around
the age threshold. Intuitively, observable characteristics around the age cutoff should
also differ due to manipulation. Similar to the density test in Section 1.C.1 we in-
vestigate if individuals differ based on their observable characteristics outside of the
manipulation region. Concretely and for comparison, we run two regression models.
The first is a standard regression discontinuity specification run on the full sample:

xi = α +
P
∑

p=1

λ≤50
p · ap

i · I[ai < 50] +
P
∑

p=0

λ>50
p · ap

i · I[ai ≥ 50] + ξi, (1.C.3)

where xi denotes individual i’s characteristic, ai denotes age and P refers to the de-
gree of the polynomial, in our case 2. In this standard RD specification the coefficient
λ>50

0 captures the jump at the threshold and is thus the coefficient of interest. The
second model adds indicator variables for each age bin in the manipulation region
and is specified as follows:

xi = κ +
P
∑

p=1

θ≤50
p · ap

i · I[ai < 50] +
P
∑

p=0

θ>50
p · ap

i · I[ai ≥ 50]

+
zL
∑

k=zU

δk · I[ai = k] + νi,

(1.C.4)

where we use the main definition of the manipulation region, namely six weeks prior
and four weeks after the age cutoff.

Each row of Table 1.D.2 reports the estimated λ>50
0 coefficients from specifica-

tion (1.C.3) and θ>50
0 coefficients from specification (1.C.4) for a given observable
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characteristics. Consistent with our main identifying assumption we find no signif-
icant estimates of θ>50

0 coefficients despite several of the estimates for λ>50
0 being

significant. Together these results show that once manipulation is taken into ac-
count, observable characteristics appear similar on either side of the age threshold,
again consistent with the absence of extensive margin job separation effects.

Appendix 1.D Additional Tables

Table 1.D.1. Test for Discontinuity in Layo� Density

(1) (2) (3)
Whole sample Without manipulation Without manipulation

region region
(alternative definition)

Age -0.0366*** -0.0335*** -0.0319***
(0.0027) (0.0023) (0.0026)

I[age ≥ 50] × Age -0.0000 0.00029 0.0002
(0.0042) (0.0032) (0.0033)

I[age ≥ 50] 0.0270** 0.0100 0.0015
(0.0105) (0.0075) (0.0079)

Mean 0.48 0.48 0.48
R

2 0.866 0.898 0.904
N 208 203 195

Note: The table reports a parametric test to detect any discontinuity in the den-
sity of layo� around the 50 years of age threshold. Column 1 includes all age
bins. Column 2 excludes the manipulation region which encompasses the three
bins before the cuto� and the two bins after the cuto�. Column 3 excludes an
extended manipulation defined in Section 1.C.1. Robust standard errors are re-
ported in parentheses.
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Table 1.D.2. Test for Discontinuity in Observables

(1) (2) (3) (4) (5) (6) (7)

Simple RD model “Donut” RD model Baseline

Variable λ
>50
0 s.e. T-stat θ

>50
0 s.e. T-stat mean

Female 0.011 0.005 2.43 0.000 0.005 -0.03 0.31

Experience 0.177 0.095 1.85 0.093 0.107 0.87 27.34

White-collar 0.017 0.005 3.71 0.005 0.005 0.86 0.20

Southern Region -0.003 0.006 -0.56 -0.005 0.007 -0.74 0.47

Full-time 0.001 0.005 0.26 0.005 0.005 1.09 0.81

Tenure (in years) -0.040 0.063 -0.63 -0.095 0.078 -1.22 5.85

Daily Wage (in logs) 0.000 0.006 0.03 0.005 0.007 0.69 4.17

Firm Age (in years) -0.116 0.130 -0.89 -0.122 0.137 -0.89 14.269

Firm Size (in logs) -0.038 0.014 -2.72 -0.015 0.016 -0.94 2.02

Note: The table reports results for the robustness test outlined in Section 1.C.3.
Columns 1 to 3 report estimates of λ>50

0 with associated standard error and t-stat
from the RD specification (1.C.3). Columns 4 through 6 present the correspond-
ing results for θ>50

0 from the “donut” RD model of specification (1.C.4). Each row
represents a separate observable characteristic. T-stats are highlighted in bold if
coe�cients are significantly di�erent from zero at the 5% level. Column 7 reports
baseline averages for individuals fired between 49 and 50 years of age. The anal-
ysis is based on 249,581 spells of individuals laid o� from a permanent contract
from Feb 2009 to Dec 2012. Standard Errors clustered at the local labor market
level.
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Chapter 2

Immigration and Productivity:
Evidence from US Labor Markets?

2.1 Introduction

The economic literature on the impact of immigration has largely focused on la-
bor market outcomes, especially on wages and employment (see e.g. Card (2009),
Ottaviano and Peri (2012), Manacorda, Manning, and Wadsworth (2012), Borjas
(2014) and Dustmann, Schönberg, and Stuhler (2016) for recent surveys). There
are some but not many papers about the impact of immigration on economic out-
put and productivity. A notable exception is Peri (2012) who documents positive
impacts of immigration on productivity, in particular total factor productivity, at the
US state level. Exploiting the same source data, Borjas (2019) correlates GSP with
immigration and concludes that there is no strong evidence of sizable effects of im-
migration on GSP per capita. Focusing on a historical context, Sequeira, Nunn, and
Qian (2019) find that immigration causes long-run economic growth during the age
of mass migration 1850-1920. Fulford, Petkov, and Schiantarelli (2020) document
a positive impact of local diversity on prosperity in US counties between 1850 and
2010. There is a larger literature documenting that immigration raises innovation
which might be expected to raise productivity.

The relative dearth of papers about the impact of immigration on productivity
is perhaps surprising because one could argue that the primary impact of migrant
workers is to produce goods and services which makes the study of the effect of
immigration on GDP and GDP per capita a first order question. The impact on wages
is then perhaps a subsequent question about the distribution of the extra output
produced as this determines the distribution of the benefits (or costs) or immigration.
For example, it could be that immigrants themselves capture the extra output they

? We thank seminar audiences at the LSE for valuable feedback and comments. Funding from the
ERC grant #834455 “LPIGMANN” is gratefully acknowledged.
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produce in which case any benefits to natives may be rather small, driven by the
extent to which the migrants are complements or substitutes. On the other hand, it
may be that migrants are paid less than their marginal product either because they
are exploited or because they produce externalities. In this case some of the output
gains from migration will be captured by natives.

This paper uses recently released, spatially dis-aggregated county by sector GDP
data from the Bureau of Economic Activity (BEA) to provide new evidence on the
impact of immigration on output per worker. Building on a newly assembled county
by sector GDP per worker panel, we estimate production functions differentiating
labor inputs along two dimensions: native vs. immigrant and high vs. low skill. We
address concerns about the selection of workers into areas and sectors using a shift-
share instrumental variable approach.

We find robust evidence that increasing the share high-skilled immigrants while
reducing the share of low-skilled natives raises output per worker, with estimates
that are generally larger, although not statistically different, than for the impact of
increasing the share of high-skilled natives. On the other hand, shifting from lower-
skilled natives to low-skilled immigrants does not seem to have a significant impact
on productivity. When probing the robustness of these findings we find support in
favor of these main conclusions.

We also compare the impact of immigrants on output with their impact on wages.
This allows us to assess whether the impact on productivity is in line with the im-
pact on wages and whether there is an impact on the labor share. Although more
tentative, our estimates suggest that it is mostly workers themselves who reap the
benefits of increased productivity through higher wages. We find no evidence of
significant spillovers, at least in the short-run.

The remainder of the paper is organized as follows. Section 2.2 introduces the
empirical setting and data, Section 2.3 describes the conceptual framework, Section
2.4 and 2.5 present the empirical strategy and our results and Section 2.6 concludes.

2.2 Empirical Setting and Data

Our empirical analysis studies the period 2000-2019 in the US. Our unit of obser-
vation is an industry (approximately two-digit) by commuting zone by year. We
leverage newly released, spatially dis-aggregated real GDP data from the Bureau
of Economic Activity (BEA) by county and two digit NAICS sector code and merge
it with private employment information from the County Business Pattern database
(CBP). For the composition of employment, e.g. the native and immigrant share, we
use information from the 2000 Census and the American Community Survey (ACS).
A summary description of our data sources follows: for a full documentation of the
data sources used in this work see Appendix 2.B.
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2.2.1 Primary Data Sources

GDP. Our measure of local output comes from the newly released county by sector
GDP data provided by the BEA.1 The data are part of the bureau’s recent efforts to
significantly dis-aggregate national and state-level statistics which have been avail-
able for decades. As with the state level figures, the BEA uses an income approach
to measuring GDP at the county level. It builds on information from the Quarterly
Census of Employment and Wages (QCEW) for wages and salaries of employees and
IRS tax filing for proprietor’s income to construct personal income estimates. These
are complemented with information from the Economic Census, the National Estab-
lishment Time Series (NETS) sales data and several industry-specific data sources in
an attempt to provide an accurate measure of local economic activity. All estimates
are re-scaled to match state-level estimates and are thus consistent with the more
aggregate figures by construction. All estimates are deflated to chained 2012 USD
using national chain-type price indexes. For more details on the exact methodology
see Panek, Rodriguez, and Baumgardner (2019).

We use GDP by county and sector information from 2001 to 2019, the maximum
period presently available. Because the BEA suppresses information for small cells to
protect confidentiality we use two digit 2012 NAICS sectors and in several cases ag-
gregations thereof. Our final sample comprises 11 sectors: Construction (23), Man-
ufacturing (31-33), Wholesale Trade (42), Retail Trade (44-45), Transportation,
Warehousing (48-49), Information (51), Finance, Insurance, Real Estate and Rental
and Leasing (52-53), Professional, Scientific, and Technical Services, Management
of Companies and Enterprises and Administrative and Support and Waste Manage-
ment and Remediation Services (54-56), Education Services, Health Care and Social
Assistance (61-62), Arts, Entertainment and Recreation, and Accommodation and
Food Services (71-72) and Other Services (81). These sectors do not cover the whole
economy: for reasons explained below we exclude Agriculture, Forestry, Fishing and
Hunting (11), Mining, Quarrying and Oil and Gas Extraction (21), Utilities(22) and
Public Services (92).

The GDP by county information is place-of-work based rather than residence
based. One caveat with our measure of GDP is that - similar to the distortion of
national accounts due to profit shifting and transfers by multinational firms - the
local GDP data may not accurately ascribe profits to counties in multi-county firms.
However, assessing the extent and potential remedies of this concern is beyond the
scope of this work.

Employment. Our measure for employment comes from the County Business Pat-
tern (CBP) database from the US Census Bureau. Concretely, we use recently pub-
lished data by Eckert, Fort, Schott, and Yang (2021) which combines hierarchical

1. The BEA released the first official version of the dataset on Dec 12, 2019. A prototype dataset
was released on Dec 12, 2018.
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constraints implicit in the official CBP figures to impute information for suppressed
employment cells. Eckert et al. (2021)’s data provide a measure of headcount em-
ployment by county and six digit 2012 NAICS code which we aggregate up to the
same two digit level as the GDP information. We devote some care to matching GDP
and employment information because NAICS code classifications generally do not
differentiate between private and public ownership. Since the CBP data covers only
private non-farm employment we exclude farming as well as several other sectors
that are likely to contain significant fraction of public employment. Specifically, we
exclude the following sectors from the analysis: agricultural, forestry, fishing and
hunting (11), mining, quarrying and oil and gas extraction (21), utilities (22) and
public administration (92). Luckily, the BEA’s GDP estimates do explicitly exclude
public contributions to GDP for several sectors which insures a close link between
the BEA and CBP data.2 While raw CBP data is available until and including 2019,
the imputed data by Eckert et al. (2021) covers only the years until and including
2016. This is because the US Census Bureau significantly altered it’s reporting and
suppression guidelines from 2017 onward. Our main sample therefore restricts at-
tention to the years until and including 2016. We replicate our main findings in
Appendix Table 2.A.15 and Table 2.A.16 for a subsample of the data unaffected by
the reporting change.

Employment Shares. The information on the composition of employment comes
from the 2000 Census and the American Community Survey (ACS) waives 2005-
2019 available via the Integrated Public Use Microdata Series (IPUMS) Ruggles,
Flood, Foster, Goeken, Pacas, et al. (2021). From 2001 until 2004 the ACS does
not provide adequately fine geographic information. We construct estimates of the
total number of workers by industry, education and country of birth at the place-of-
work puma level which we then distribute to counties using a probabilistic crosswalk
based on 2000 population estimates. For our IV construction explained in detail in
Section 2.4.2, we differentiate 36 countries of birth. We classify high-skill education
as having at least some college education, while low-skill refers to no years of col-
lege education. We provide details of the exact construction of employment share
estimates in Appendix 2.B.

2.2.2 Main Sample and Summary Statistics

For our main sample we first combine the real GDP, employment and employment
shares into a county by sector year panel covering 3079 counties and 11 industries
over the years 2005 to 2016. The BEA suppresses GDP information to protect con-
fidentiality and we use interpolation to deal with suppressed GDP information. We

2. Specifically, the BEA explicitly excludes public enterprises from the following sectors’ GDP
estimates: Management of Companies and Enterprises (55), Administrative and Support and Waste
Management and Remediation Services (56), Education Services (61), Hospitals (622), Other Services
(81).
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describe the interpolation procedure in detail in Appendix 2.B and probe the ro-
bustness of the procedure in Appendix Table 2.A.9 and Table 2.A.10. For our main
sample, we rely only on county-sectors with non-missing GDP information for all
years from 2005 to 2016.

We aggregate all data at the commuting zone by sector level. Commuting zones
(CZs) are collections of counties that are characterized by strong within and rela-
tively weak across commuting ties Tolbert and Sizer (1996). There are 722 CZs in
the mainland US. The motivation for conducting the main analysis at CZ, rather
than county level, is twofold. First and foremost, commuting zones offer a reason-
able approximation of small local economies and thus naturally lend themselves to
a production function approach. Second, because we are relying on ACS’s place-of-
work PUMAs to construction employment shares the level of variationmore naturally
maps to larger aggregation rather than individual counties. We nevertheless provide
estimates at the county level in Appendix Table 2.A.13 and 2.A.14. Third, estimating
at CZ level allows for the possibility that there are spill-over effects that operate at
the labor market level.

Apart from the restrictions imposed by missing information or data suppression,
we exclude very small employment cells and (weakly) balance the sample. Con-
cretely, we keep only CZ-sectors that have at least five industries each with a min-
imum headcount employment of ten across all years. We probe robustness to this
restriction in Appendix Table 2.A.7 and Table 2.A.8.

Themain dataset covers 701 CZs eachwith at least five and amaximum of eleven
industries and spans the years 2005-2016. In Table 2.1 we present summary statis-
tics of the main sample with 88,932 observations. Mean GDP per worker amounts
to 128,151 USD with a considerably lower median of 86,254 USD. Headcount em-
ployment is even more right-skewed with a mean of around 15,000, and a median
of around 2,300 workers. We work with a log specification of these variables in
our main analysis. The average CZ sector employs 7% immigrant and around 50%
high-skill (at least some college education) labor. High-skill immigrants make up 3%,
low-skill immigrants 4% on average. Panel B of Table 2.1 shows changes in our main
variables between 2005 and 2016. GDP and employment of the average CZ-sector
rose by 13% and 1%. GDP per worker increased by 16% over the same time period.
These changes were accompanied by changes in the employment composition. The
share of high-skill employment rose by 5.4 p.p., driven by an increase of 4.6 p.p. in
native high-skill employment and 0.8 p.p. increase in immigrant high-skill employ-
ment. These summary statistics provide insight into an average CZ sector. To square
these numbers with national trends, we provide employment-weighted summary
statistics in Appendix Table 2.A.2. In particular, as larger CZ sectors tend to employ
more high-skill and more immigrant labor the share of immigrants in employment is
around 18% and high-skill labor makes up around 56%. Table 2.A.3 in the Appendix
provides summary statistics by industry.
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Table 2.1. Summary Statistics

Panel A: Levels 2005-2016 Mean SD Min Max Median Obs.

GDP (in mil. USD) 1,731 7,794 0.4 360,953 210 88,932
GDP per Worker (in USD) 128,151 140,186 1,953.1 5,611,095 86,254 88,932
Employment (headcount) 14,993 51,016 12.0 1,281,598 2,348 88,932
Pre-Employment (headcount) 14,589 48,887 8.8 1,249,510 2,304 88,932

Share immigrants 0.07 0.09 0.00 1.00 0.04 88,932
Share high-skill 0.49 0.18 0.00 1.00 0.47 88,932
Share high-skill immigrants 0.03 0.04 0.00 1.00 0.01 88,932
Share low-skill immigrants 0.05 0.07 0.00 0.74 0.02 88,932
Share high-skill natives 0.46 0.17 0.00 1.00 0.44 88,932
Share low-skill natives 0.47 0.17 0.00 1.00 0.47 88,932

Panel B: Changes 2005-2016 Mean SD Min Max Median Obs.

GDP (in %) 0.13 0.51 –0.85 17.33 0.07 88,932
GDP per Worker (in %) 0.16 0.55 –0.88 18.12 0.07 88,932
Employment (in %) 0.01 0.38 –0.93 16.80 –0.02 88,932

Share immigrants (in p.p.) 0.01 0.05 –0.61 0.33 0.01 88,932
Share high-skill (in p.p.) 0.05 0.09 –0.46 0.79 0.05 88,932
Share high-skill immigrants (in p.p.) 0.01 0.03 –0.14 0.33 0.01 88,932
Share low-skill immigrants (in p.p.) 0.00 0.04 –0.59 0.30 0.00 88,932
Share high-skill natives (in p.p.) 0.05 0.09 –0.41 0.76 0.04 88,932
Share low-skill natives (in p.p.) –0.06 0.09 –0.78 0.75 –0.06 88,932

Note: This table reports summary statistics of GDP, GDP per worker, employment and employment shares for the main
sample. Panel A presents levels and Panel B changes over the time period 2005-2016. In Panel B growth rates for GDP,
GDP per worker and employment are constructed as arithmetic annual growth rates between 2005/7 to 2014/16. Pre-
employment refers to average employment over the years 2000-2004.

2.3 Conceptual Framework

This section presents a production function approach that guides our empirical anal-
ysis in Section 2.4. Suppose we have a production function that is homogeneous of
degree α ∈ R+ in its n ∈ N inputs L1, ..., Ln representing the different types of labor
used in production.3 Output may thus be written as

Y = A · F(L1, ...,Ln)α, (2.1)

where Y denotes total output, A captures total factor productivity and F(·) is homo-
geneous of degree 1. By Euler’s theorem, we may rewrite (2.1) as follows:

3. Because we restrict attention to labor inputs in production, our framework should be inter-
preted as a long-run production function with capital inputs in perfectly elastic supply.
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Y = A ·
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where Fi =
∂ F
∂ Li

denotes the partial derivative of F w.r.t. Li, L=
∑

i Li denotes total
employment, si =

Li
L denotes the share of type Li in total employment and MPLi =

∂ Y
∂ Li

denotes the marginal product of labor of type Li.
Equation (2.2) permits the following log-linear approximation

log
�

Y
L

�

≈ log(A) + (1 − α) · log(L) − α · log(Fn) + α ·
n−1
∑

i=1

MPLi −MPLn

MPLn
· si.

(2.3)
Our main parameters of interest θi are the re-scaled (divided by α) coefficients

on the si’s and are given by

θi =
MPLi −MPLn

MPLn
. (2.4)

Each θi captures the relative productivity difference between labor type Li and
the omitted type Ln (in percent). We estimate specifications akin to equation (2.3)
using OLS and 2SLS. We employ a two skill-type version differentiating high (with
some college) and low (without any college) education, of themodel in the empirical
implementation. For a justification of a two skill model see e.g. Card (2009).

2.4 Empirical Strategy

This section lays out our empirical strategy to study the effects of immigration on
productivity. We first present our main estimating equations before describing our
shift-share instrumental variable approach.

2.4.1 Estimating Equation

We estimate several specifications motivated by equation (2.3). Concretely, we
model the effect of the high- and low-skill immigrant labor shares simm,h

ijt and simm,l
ijt ,
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the high-skill native labor share snat,h
ijt and log employment log(l)ijt in CZ i, industry

j and year t on log productivity log(y/l)ijt as follows:

log(y/l)ijt = λit + δr(i)jt + β1 · s
imm,h
ijt + β2 · s

imm,l
ijt + β3 · s

nat,h
ijt + β4 · log(l)ijt + εijt,

(2.5)

where y is real CZ sector GDP and l measures headcount employment, i.e. the
number of workers. The coefficients β1, β2 and β3 measure the productivity of the
respective type of labor relative to the omitted category of low-skill native employ-
ment. We flexibly control for several contemporaneous changes that might influence
productivity through a set of fixed effects. These include a full set of CZ year fixed
effects λit which control for local economic conditions affecting all industries in a CZ,
such as e.g. demand side, political or environmental factors. We further include a set
of (regional) industry trends δr(i)jt that capture industry-specific productivity trends,
e.g. due to technological change or trade which might affect industries differently.
In our most demanding specification we allow these trends to be state-specific. The
exhaustiveness of these fixed effects is a key strength of our approach. While previ-
ous studies often worked at the national or state level, our analysis exploits within
state variation in productivity and relates it to the various employment shares and
the size of the labor force. Because the latter effect will turn out to be rather small
in many regressions (but only when we instrument for it), we also run specifica-
tions that omit the effect of log employment. Specifically, we estimate the following
model:

log(y/l)ijt = λit + δr(i)jt + β1 · s
imm,h
ijt + β2 · s

imm,l
ijt + β3 · s

nat,h
ijt + εijt, (2.6)

where all variables are defined as in equation (2.5).
Section 2.5.1 presents results from running regressions of equation (2.5) and

(2.6) using OLS. Although we include a variety of fixed effects, the OLS estimates
are likely to be biased for several reasons. First, there might be unobserved local
characteristics that affect productivity and that correlate with the number and mix
of workers in the area or industry; there is a long tradition in estimating production
functions of worrying about the endogeneity of factor inputs - see e.g. Ackerberg,
Caves, and Frazer (2015). Second, as we rely in part on interpolated data, we might
have measurement error in our share estimates. Motivated by these concerns we
turn to a shift-share instrumental variable approach to lend further support to the
causal interpretation of the effect of immigration on productivity.

2.4.2 Shift-share Instrumental Variable

Given the likely bias of the OLS estimates, our goal is to exploit variation in the
various types of labor used in production that is more plausibly exogenous and un-
correlated with local economic factors. The ideal instrument is a variable that shifts
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the supply of labor but is not driven by shifts to the production function (which will
affect the demand for labor). In line with a long tradition in the literature on the
economic effects of immigration Altonji and Card (1991) and Card (2001) we use
shift-share instruments.

Specifically we construct separate shift-share instruments for all four endoge-
nous regressors in specification (2.5). Concretely, we build predictors of the number
of high- and low-skill immigrants, high- and low-skill natives and, by adding these
up, a predictor of the size of the total work force for each CZ sector in each year. Our
strategy exploits national trends in the size of the workforce of the respective group
interacted with its geographical and industry distribution in the year 2000. Formally,
let Lc,e

ijt denote the number of workers from origin country c with skill level e, in CZ
i, industry j and year t. Analogously, let POPc,e

it be the population (aged 15 to 64)
from origin c with education e in CZ i in year t.⁴ The omission of sub- or superscripts
encodes the summation over the excluded indices , e.g. Lc,e

it =
∑

j L
c,e
ijt refers to the

total number of workers from country c, education e, in CZ i and year t across all
industries. We denote with ˆ the respective predicted values of these variables which
we construct as follows:

First, we define the share of individuals from origin c with education e in CZ i in
the year 2000 as a share of their national total as

wc,e
i,2000 =

POPc,e
i,2000

POPc,e
2000

.

We use these origin- and skill-specific weights to distribute the national growth in
the population of individuals from origin c with education e across CZs and predict
the population of this group in each CZ as

ˆPOPc,e
i,t = POPc,e

i,2000 + wc,e
i,2000 ·

�

POPc,e
t − POPc,e

2000

�

.

Second, we distribute the predicted population according to the national industry
distribution of all workers from origin c and with education e. Concretely, let

wc,e
j,2000 =

Lc,e
j,2000

Lc,e
2000

denote the share of workers from origin c with education e who work in industry j in
the year 2000 as a share of the national total. We predict the number of workers from
origin o with education e, in CZ i, sector j and year t by multiplying the predicted

4. We take county population estimates from the US Census website, see Appendix 2.B for
details.
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population with the national industry shares. Formally, we have

L̂c,e
ijt = wc,e

j,2000 · ˆPOPc,e
i,t .

Lastly, we construct the predicted high- and low-skill native and immigrant employ-
ment shares by aggregating the predicted values for the respective groups and divid-
ing by the size of the predicted total labor force. Formally, we define the predicted
shares as

ŝnat,e
ijt =

L̂USA,e
ijt

L̂ijt
and ŝimm,e

ijt =

∑

c6=USA L̂c,e
ijt

L̂ijt
. (2.7)

Together with the log size of the total labor force, log
�

L̂ijt

�

, these predicted
shares form our instruments for the analysis in Section 2.5.2.

Intuitively, our instruments exploit two forces that help to predict and isolate
exogenous variation in employment shares. First, new immigrants tend to settle in
locations where previous immigrants from the same origin country settled.⁵ Second
immigrants from different origin countries bring different skill-sets and as a conse-
quence tend to be concentrated in certain occupations and industries. The combina-
tion of these two forces leads to variation in the immigrant employment share that is
driven by these historical settlement patterns, the industry / occupation specializa-
tion of previous immigrants and the national growth of immigrants from a specific
origin country. If the national growth of immigrants from a certain origin country is
not driven by local or industry specific labor demand shocks, the shift-share instru-
ments are valid and provide exogenous variation. Shift-share instrumental variables
are popular because they tend to have adequate power and are readily constructible
(often) within sample. There is a recent literature that discusses identification and
inference in shift-share IV designs in more detail, see Adao, Kolesár, and Morales
(2019), Goldsmith-Pinkham, Sorkin, and Swift (2020) and Borusyak, Hull, and Jar-
avel (2021). However, most of these recent contributions apply to a single cross-
section or a panel in which the base shares change over time. Because we use time
and cross-section fixed effects, there cannot be any endogeneity problem with the
two components of our shift-share instrument; the baseline shares and the time
variation. Our identification is based on the interaction between the two.

2.5 Results

Before turning to our main regression analysis, we present three sets of descriptive
figures to provide visual evidence of the impacts of immigration on productivity. Fig-

5. The observation that new arriving immigrants tend to dis-proportionally settle in enclaves
established by earlier immigrants dates back to Bartel (1989).
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ure 2.1 plots changes in productivity, as measured by real GDP per worker, against
changes in the immigrant employment share across CZ sectors between the years
2005/2007 and 2014/2016. There is a significant positive correlation of 0.41 (se
0.15) indicating that CZ sectors that saw a larger rise in the share of immigrants in
employment also experienced larger gains in productivity.⁶ Figure 2.2 repeats this
analysis but splits the immigrant employment share into high- (at least some college
education) and low-skill immigrant employment. The aggregate positive correlation
from Figure 2.1 is due to the change in high-skill immigrant employment which
depicts a strong positive correlation with changes in productivity of 2.25 (se 0.58).
Contrary, changes in low-skill immigrant employment shares are associated with rel-
atively smaller negative changes in productivity of -0.43 (se 0.19). We probe the ro-
bustness of these descriptive patterns in Figure 2.3 in which we residualize changes
in productivity and immigrant employment shares on a set of industry fixed effects,
changes in log employment, changes in high-skill native employment and changes
in the opposite-skill immigrant share in employment. We find that the positive cor-
relation between changes in the high-skill immigrant employment share decreases
but remains significant at 0.80 (se 0.40). Contrary, once we include controls there
is no longer any meaningful or significant relationship between productivity growth
and the change in low-skill immigration with a correlation of -0.06 (se 0.14). These
descriptive pattern provide clear graphical evidence and are suggestive of a posi-
tive effect of high-skill immigration on productivity. They also suggest a modest or
nonexistent effect of low-skill immigration on productivity. Furthermore, Figure 2.1
through Figure 2.3 show that these conclusions are not driven by a small number of
observations but hold more broadly. We now turn to the results of our main regres-
sion analysis.

6. All figures are weighted by CZ sector pre-employment size and the reported standard errors
are clustered at the state level.
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Note: This figure shows the relationship between changes in GDP per worker on the vertical axis and changes
in the immigrant employment share on the horizontal axis between 2005/7 and 2014/16. Each bin repre-
sents one percent of CZ sector cells. The dashed line depicts the best linear fit estimated on the underlying
CZ by sector level data using OLS.

Figure 2.1. Correlation between the Change in Productivity and the Change in the Immigrant Em-
ployment Share between 2005/7 and 2014/16
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(a) High-Skill Immigration

(b) Low-Skill Immigration

Note: This figure shows the relationship between changes in GDP per worker on the vertical axis and changes
in the high-skill (Panel (a)) and the low-skill (Panel (b)) immigrant employment share on the horizontal axis
between 2005/7 and 2014/16. Each bin represents one percent of CZ sector cells. The dashed line depicts
the best linear fit estimated on the underlying CZ by sector level data using OLS.

Figure 2.2. Correlation between the Change in Productivity and the Change in the High- and Low-
Skill Immigrant Employment Share between 2005/7 and 2014/16
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(a) High-Skill Immigration

(b) Low-Skill Immigration

Note: This figure shows the relationship between changes in GDP per worker on the vertical axis and changes
in the high-skill (Panel (a)) and the low-skill (Panel (b)) immigrant employment share on the horizontal
axis between 2005/7 and 2014/16. All variables are residualized on a set of industry sector fixed e�ects
and changes in log employment, changes in the high-skill native employment share and changes in the
opposite-skill immigrant employment share. Each bin represents one percent of CZ sector cells. The dashed
line depicts the best linear fit estimated on the underlying CZ by sector level data using OLS.

Figure 2.3. Correlation between the Change in Productivity and the Change in the High- and Low-
Skill Immigrant Employment Share between 2005/7 and 2014/16 with Controls
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2.5.1 OLS Results

We begin our analysis by estimating an aggregated version of our main specifica-
tion, that is, without distinguishing between high- vs. low-skill within immigrant
and native employment.⁷ As before, and unless otherwise stated all regressions are
weighted by CZ sector pre-employment size. Table 2.2 presents the results from OLS
regressions of real GDP per worker on various employment shares and the size of
the work force, log employment, on the CZ sector year level. The immigrant em-
ployment share is strongly negatively associated -0.33 (se 0.14) with the level of
productivity even when including several layers of fixed effects in column 4.⁸ Once
we control for the educational composition and include the share of high-skill em-
ployment in the CZ sector the coefficient on the immigrant share falls substantially
and becomes insignificant indicating the important interaction between immigra-
tion and the skill composition. A larger share of high-skill employment is strongly
associated with high levels of productivity as one might expect.

Table 2.2. The E�ect of Immigration on Productivity

(1) (2) (3) (4) (5) (6) (7) (8)

Log GDP per Worker

Share immigrants –0.286 –0.322 –0.245** –0.332** –0.103 –0.128 –0.054 –0.155
(0.188) (0.199) (0.120) (0.135) (0.177) (0.192) (0.103) (0.113)

Share high-skill 0.760*** 0.832*** 0.750*** 0.729***
(0.107) (0.115) (0.112) (0.125)

Log employment –0.074*** –0.068*** –0.076*** –0.128*** –0.080*** –0.076*** –0.091*** –0.145***
(0.024) (0.025) (0.024) (0.023) (0.024) (0.024) (0.024) (0.023)

R
2 0.90 0.91 0.92 0.94 0.91 0.91 0.93 0.95
N 88,932 88,932 88,932 88,656 88,932 88,932 88,932 88,656

CZ FE Ø Ø Ø Ø Ø Ø Ø Ø
Industry FE Ø Ø Ø Ø Ø Ø Ø Ø
Year FE Ø Ø Ø Ø Ø Ø Ø Ø
CZ x Year FE Ø Ø Ø Ø Ø Ø
Industry x Year FE Ø Ø Ø Ø Ø Ø
Region x Industry x Year FE Ø Ø Ø Ø
State x Industry x Year FE Ø Ø

Note: This table reports coe�cients from an OLS regression of specification (2.8). The dependent variable is log GDP per
worker and the endogenous variables are the immigrant employment share, the high-skill employment share and log
employment. All regressions are weighted by pre-employment size, that is, average employment between 2000-2004.
Standard errors in parentheses are clustered at the (48) state level, and, ***, **, * denote statistical significance at the
1%, 5% and 10% levels, respectively.

7. Concretely, we estimate versions of the following specification by OLS

log(GDP)ijt = λit + δr(i)jt + β1 · shareimm
ijt + β2 · shareh

ijt + β3 · log(EMP)ijt + εijt (2.8)

8. Some specifications contain "region" or "region by industry" fixed effects. Regions refer to
Census divisions throughout. There are a total of nine divisions representing collections of neighboring
states, e.g. East North Central or New England. See the Census website for details.
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Motivated by these findings we split the immigrant and native employment
share into high- and low-skill and report OLS estimates in Table 2.3. Concretely we
estimates models of log real GDP per worker on the high- and low-skill immigrant
and high-skill native employment shares and on log employment. All effect sizes are
measured relative to the omitted category of low-skill native employment. Table 2.3
confirms the findings from Figures 2.2 and 2.3 that differentiating immigrants by
skill is essential. We find that the high-skill immigrant employment share is strongly
associated 0.94 (se 0.26) with higher productivity especially when controlling for
the remainder of the employment composition in column 8. The effect of the low-
skill immigrant employment share turns insignificant in this specification -0.13 (se
0.12) although we find strong negative univariate correlations in columns 3 and
4 of Table 2.3. Column 8 of Table 2.3 also shows a large and positive effect of the
high-skill native employment share of 0.69 (se 0.08). The coefficient appears signifi-
cantly lower than the point estimate for the high-skill immigrant employment share
although we cannot reject the null of equal coefficients at conventional significant
levels. We now turn to our main results.

Table 2.3. The E�ect of High- and Low-Skill Immigration on Productivity (OLS)

(1) (2) (3) (4) (5) (6) (7) (8)

Log GDP per Worker

Share high-skill immigrants 0.865*** 0.754** 0.635** 0.551* 1.039*** 0.935***
(0.211) (0.321) (0.261) (0.284) (0.228) (0.263)

Share low-skill immigrants –0.546*** –0.493*** –0.446** –0.400*** –0.209 –0.131
(0.175) (0.181) (0.188) (0.146) (0.185) (0.120)

Share high-skill natives 0.673*** 0.690***
(0.114) (0.082)

Log employment –0.084*** –0.085*** –0.080*** –0.083*** –0.086*** –0.088*** –0.086*** –0.094***
(0.024) (0.026) (0.024) (0.024) (0.024) (0.026) (0.024) (0.025)

R
2 0.90 0.92 0.90 0.92 0.90 0.92 0.91 0.93
N 88,932 88,932 88,932 88,932 88,932 88,932 88,932 88,932

CZ FE Ø Ø Ø Ø Ø Ø Ø Ø
Industry FE Ø Ø Ø Ø Ø Ø Ø Ø
Year FE Ø Ø Ø Ø Ø Ø Ø Ø
CZ x Year FE Ø Ø Ø Ø
Region x Industry x Year FE Ø Ø Ø Ø

Note: This table reports coe�cients from an OLS regression of specification (2.5). The dependent variable is log GDP per
worker and the endogenous variables are the high- and low-skill immigrant employment shares, the high-skill native em-
ployment share and log employment. All regressions are weighted by pre-employment size, that is, average employment
between 2000-2004. Standard errors in parentheses are clustered at the (48) state level, and, ***, **, * denote statistical
significance at the 1%, 5% and 10% levels, respectively.

2.5.2 2SLS Results

As outlined in Section 2.4.2 we complement our OLS estimates with 2SLS estimates
from our shift-share instrumental variable approach. To this end we instrument all
four endogenous variables in specification (2.5) by the predicted employment shares



2.5 Results | 77

constructed in equation (2.7) and predicted log employment. The first stage regres-
sion coefficients reported in Appendix Table 2.A.4 indicate sufficient power to sep-
arately predict all four variables. Table 2.4 reports the results of our IV analysis in
three parts. Panel A of Table 2.4 provides OLS estimates for comparison, Panel B
instruments the three employment shares but leaves log employment endogenous
and Panel C instruments all three employment shares and log employment.

Table 2.4 shows three main findings. First, we robustly find a large positive im-
pact of increasing the high-skill immigrant and high-skill native employment share
at the expense of low-skill natives employment. Our estimates imply that a one
percent increase in the share of high-skill immigrants accompanied by a one per-
cent reduction in the share of low-skill natives increases real GDP per worker by
between 1 to 3 percent. [To benchmark these results ...] Second we consistently
find small, mostly insignificant, sometimes positive impacts of the low-skill immi-
grant employment share, implying that substituting between low-skill immigrant
and native employment doesn’t meaningfully affect productivity. Third, these con-
clusions are robust to the exact inclusion of fixed effects. The reported Kleibergen
Paap first stage F-statistics in Table 2.4 indicate that the instruments are strong and
have sufficient power with values above conventional thresholds.⁹

Panel C of Table 2.4 further suggests that scale effects, as captured by estimates
of β4 in specification (2.5), are relatively small. Constant returns to scale seems
a reasonable approximation to the data. This motivates investigating specification
(2.6) which omits log employment. Table 2.5 reports results of estimating specifica-
tion (2.6) with Panel A showing OLS and Panel B presenting 2SLS estimates using
the predicted shares from equation (2.7) as instruments. The findings in Table 2.5
confirm the previous conclusion. Larger high-skill immigrant and native employ-
ment shares (at the expense of low-skill native employment) increase productiv-
ity markedly, while low-skill immigration has smaller, mostly insignificant impacts.
Again, these conclusions are robust to the choice of fixed effects and the instruments
appear sufficiently powerful.

9. Our results are (mostly) based on F-statistics that far exceed conventional levels. This is reas-
suring in the light of recent concerns about possible overstatements of statistical significance in single
IV specifications based on conventional F-statistic levels, see e.g. Lee, McCrary, Moreira, and Porter
(2021).
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Table 2.4. The E�ect of High- and Low-Skill Immigration on Productivity

(1) (2) (3) (4) (5) (6)

Panel A: OLS Log GDP per Worker

Share high-skill immigrants 1.039*** 1.095*** 0.995*** 0.924*** 0.935*** 0.957***
(0.228) (0.236) (0.237) (0.244) (0.263) (0.251)

Share low-skill immigrants –0.209 –0.205 –0.205 –0.126 –0.131 –0.313**
(0.185) (0.200) (0.201) (0.112) (0.120) (0.143)

Share high-skill natives 0.673*** 0.746*** 0.765*** 0.671*** 0.690*** 0.622***
(0.114) (0.121) (0.120) (0.074) (0.082) (0.073)

Log employment –0.086*** –0.087*** –0.080*** –0.095*** –0.094*** –0.150***
(0.024) (0.024) (0.025) (0.025) (0.025) (0.023)

R
2 0.91 0.91 0.91 0.93 0.93 0.95
N 88,932 88,932 88,932 88,932 88,932 88,656

Panel B: 2SLS Log GDP per Worker

Share high-skill immigrants 3.520*** 3.526*** 3.354*** 2.880*** 2.864*** 3.936***
(0.886) (0.943) (0.928) (0.562) (0.576) (0.779)

Share low-skill immigrants 0.543 0.544 0.516 0.930*** 0.929*** 1.117***
(0.566) (0.591) (0.595) (0.225) (0.226) (0.392)

Share high-skill natives 1.920*** 1.957*** 1.965*** 1.392* 1.384* 1.830
(0.649) (0.638) (0.648) (0.744) (0.757) (1.142)

Log employment –0.102*** –0.104*** –0.097*** –0.110*** –0.109*** –0.185***
(0.024) (0.024) (0.025) (0.031) (0.031) (0.033)

KP F-stat 27.24 28.18 28.51 30.01 30.01 22.41
N 88,932 88,932 88,932 88,932 88,932 88,656

Panel C: 2SLS Log GDP per Worker

Share high-skill immigrants 2.449*** 2.412*** 2.429*** 1.862** 1.845** 2.626***
(0.831) (0.861) (0.842) (0.725) (0.747) (0.590)

Share low-skill immigrants 0.274 0.263 0.285 0.824*** 0.823*** 0.992***
(0.634) (0.646) (0.628) (0.216) (0.218) (0.358)

Share high-skill natives 2.455*** 2.475*** 2.386*** 1.856** 1.845** 2.309*
(0.611) (0.592) (0.591) (0.804) (0.816) (1.270)

Log employment 0.057* 0.052 0.032 0.046 0.046 –0.006
(0.034) (0.035) (0.037) (0.029) (0.029) (0.027)

KP F-stat 18.54 19.33 19.79 25.48 25.39 20.78
N 88,932 88,932 88,932 88,932 88,932 88,656

CZ FE Ø Ø Ø Ø Ø Ø
Industry FE Ø Ø Ø Ø Ø Ø
Year FE Ø Ø Ø Ø Ø Ø
CZ x Year FE Ø Ø Ø Ø Ø
Industry x Year FE Ø Ø Ø Ø
Region x Industry FE Ø Ø Ø
Region x Industry x Year FE Ø Ø
State x Industry x Year FE Ø

Note: This table reports coe�cients from OLS (Panel A) and 2SLS (Panel B and Panel C) regressions of specification (2.5).
The dependent variable is log GDP per worker and the endogenous variables are the high- and low-skill immigrant em-
ployment shares, the high-skill native employment share and log employment. Panel B reports coe�cients from 2SLS
regressions in which the three share variables are instrumented. Panel C additionally instruments log employment. Panel
B and C include the first-stage Kleibergen Paap F-statistics on the excluded instruments. The IV construction is described
in Section 2.4.2. All regressions are weighted by pre-employment size, that is, average employment between 2000-2004.
Standard errors in parentheses are clustered at the (48) state level, and, ***, **, * denote statistical significance at the
1%, 5% and 10% levels, respectively.
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Table 2.5. The E�ect of High- and Low-Skill Immigration on Productivity (w/o log employment)

(1) (2) (3) (4) (5) (6)

Panel A: OLS Log GDP per Worker

Share high-skill immigrants 0.891*** 0.939*** 0.849*** 0.732*** 0.737*** 0.660**
(0.218) (0.224) (0.227) (0.229) (0.246) (0.258)

Share low-skill immigrants –0.191 –0.187 –0.188 –0.096 –0.099 –0.295*
(0.174) (0.188) (0.190) (0.116) (0.124) (0.150)

Share high-skill natives 0.673*** 0.744*** 0.762*** 0.636*** 0.656*** 0.549***
(0.118) (0.126) (0.124) (0.077) (0.085) (0.078)

R
2 0.91 0.91 0.91 0.92 0.93 0.94
N 88,932 88,932 88,932 88,932 88,932 88,656

Panel B: 2SLS Log GDP per Worker

Share high-skill immigrants 2.831*** 2.785*** 2.656*** 2.161*** 2.147*** 2.581***
(0.863) (0.909) (0.900) (0.572) (0.590) (0.580)

Share low-skill immigrants 0.370 0.357 0.342 0.855*** 0.854*** 0.987***
(0.626) (0.648) (0.648) (0.215) (0.217) (0.362)

Share high-skill natives 2.264*** 2.302*** 2.283*** 1.720** 1.708** 2.325*
(0.653) (0.641) (0.655) (0.827) (0.838) (1.302)

KP F-stat 26.13 26.68 26.80 26.47 26.31 23.33
N 88,932 88,932 88,932 88,932 88,932 88,656

CZ FE Ø Ø Ø Ø Ø Ø
Industry FE Ø Ø Ø Ø Ø Ø
Year FE Ø Ø Ø Ø Ø Ø
CZ x Year FE Ø Ø Ø Ø Ø
Industry x Year FE Ø Ø Ø Ø
Region x Industry FE Ø Ø Ø
Region x Industry x Year FE Ø Ø
State x Industry x Year FE Ø

Note: This table reports coe�cients from OLS (Panel A) and 2SLS (Panel B) regressions of specification (2.6). The depen-
dent variable is log GDP per worker and the endogenous variables are the high- and low-skill immigrant employment
shares and the high-skill native employment share. Panel B reports coe�cients from 2SLS regressions in which the three
share variables are instrumented and includes the first-stage Kleibergen Paap F-statistics on the excluded instruments.
The IV construction is described in Section 2.4.2. All regressions are weighted by pre-employment size, that is, average
employment between 2000-2004. Standard errors in parentheses are clustered at the (48) state level, and, ***, **, * de-
note statistical significance at the 1%, 5% and 10% levels, respectively.
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Table 2.6. Robustness

(1) (2) (3) (4) (5)
Sample excludes: - California Texas - -
IV excludes: - - - China & India Mexico

Panel A: OLS Log GDP per Worker

Share high-skill immigrants 0.935 0.747*** 0.917*** 0.935*** 0.935***
[0.345,1.385] (0.266) (0.280) (0.263) (0.263)

Share low-skill immigrants –0.131 –0.043 –0.172 –0.131 –0.131
[–0.419,0.124] (0.117) (0.139) (0.120) (0.120)

Share high-skill natives 0.690 0.652*** 0.661*** 0.690*** 0.690***
[0.484,0.823] (0.079) (0.086) (0.082) (0.082)

Log employment –0.095 –0.087*** –0.092*** –0.095*** –0.095***
[–0.158,–0.052] (0.026) (0.027) (0.025) (0.025)

R
2 0.93 0.92 0.93 0.93 0.93
N 88,932 86,712 81,216 88,932 88,932

Panel B: 2SLS Log GDP per Worker

Share high-skill immigrants 2.860 2.468** 2.547*** 2.474** 5.091***
[1.547,5.780] (0.974) (0.545) (1.165) (0.733)

Share low-skill immigrants 0.927 1.036*** 0.780*** 0.775*** 1.858***
[0.507,1.807] (0.302) (0.176) (0.266) (0.299)

Share high-skill natives 1.382 0.579 1.354 1.388 2.223***
[–0.327,3.028] (0.432) (0.832) (0.893) (0.474)

Log employment –0.109 –0.090*** –0.105*** –0.106*** –0.130***
[–0.187,–0.527] (0.031) (0.032) (0.033) (0.029)

KP F-stat 30.05 29.08 29.22 8.05 38.35
N 88,932 86,712 81,216 88,932 88,932

Panel C: 2SLS Log GDP per Worker

Share high-skill immigrants 1.844 0.803 1.572* 2.217* 3.791***
[–0.513,3.085] (0.976) (0.795) (1.248) (0.843)

Share low-skill immigrants 0.823 0.877*** 0.665*** 0.830*** 1.670***
[0.270,1.470] (0.291) (0.183) (0.275) (0.258)

Share high-skill natives 1.846 0.834** 1.734* 1.964** 2.347***
[0.966,3.517] (0.367) (0.887) (0.927) (0.620)

Log employment 0.046 0.078** 0.042 0.037 0.014
[–0.126,0.117] (0.031) (0.029) (0.030) (0.034)

KP F-stat 25.41 21.16 23.97 8.04 24.78
N 88,932 86,712 81,216 88,932 88,932

CZ x Year FE Ø Ø Ø Ø Ø
Region x Industry x Year FE Ø Ø Ø Ø Ø

Note: This table reports coe�cients from OLS (Panel A) and 2SLS (Panel B and Panel C) regressions of specification (2.5).
The dependent variable is log GDP per worker and the endogenous variables are the high- and low-skill immigrant em-
ployment shares, the high-skill native employment share and log employment. Panel B reports coe�cients from 2SLS
regressions in which the three share variables are instrumented. Panel C additionally instruments log employment. Panel
B and C include the first-stage Kleibergen Paap F-statistics on the excluded instruments. The IV construction is described
in Section 2.4.2. All regressions are weighted by pre-employment size, that is, average employment between 2000-2004.
Column 1 reports 95% bootstrapped confidence intervals for each coe�cient. Columns 2 and 3 exclude California and
Texas, respectively. Columns 4 and 5 leave out China and India, and Mexico from the IV construction, respectively. Columns
2-5 report standard errors (in parentheses) clustered at the (48) state level, and, ***, **, * denote statistical significance
at the 1%, 5% and 10% levels, respectively.
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Table 2.7. Robustness (w/o log employment)

(1) (2) (3) (4) (5)
Sample excludes: - California Texas - -
IV excludes: - - - China & India Mexico

Panel A: OLS Log GDP per Worker

Share high-skill immigrants 0.737 0.524** 0.720*** 0.737*** 0.737***
[0.161,1.102] (0.224) (0.261) (0.246) (0.246)

Share low-skill immigrants –0.099 0.001 –0.137 –0.099 –0.099
[–0.413,0.156] (0.110) (0.144) (0.124) (0.124)

Share high-skill natives 0.656 0.618*** 0.632*** 0.656*** 0.656***
[0.441,0.794] (0.081) (0.091) (0.085) (0.085)

R
2 0.93 0.92 0.93 0.93 0.93
N 88,932 86,712 81,216 88,932 88,932

Panel B: 2SLS Log GDP per Worker

Share high-skill immigrants 2.146 1.575* 1.851*** 2.283* 3.913***
[0.591,3.402] (0.818) (0.605) (1.182) (0.644)

Share low-skill immigrants 0.854 0.950*** 0.698*** 0.816*** 1.688***
[0.340,1.546] (0.282) (0.176) (0.272) (0.231)

Share high-skill natives 1.708 0.716* 1.625* 1.816* 2.335***
[–0.094,3.439] (0.391) (0.909) (0.990) (0.613)

KP F-stat 26.28 23.34 25.18 8.01 33.06
N 88,932 86,712 81,216 88,932 88,932

CZ x Year FE Ø Ø Ø Ø Ø
Region x Industry x Year FE Ø Ø Ø Ø Ø

Note: This table reports coe�cients from OLS (Panel A) and 2SLS (Panel B) regressions of specification (2.6). The depen-
dent variable is log GDP per worker and the endogenous variables are the high- and low-skill immigrant employment
shares and the high-skill native employment share. Panel B reports coe�cients from 2SLS regressions in which the three
share variables are instrumented and includes the first-stage Kleibergen Paap F-statistics on the excluded instruments.
The IV construction is described in Section 2.4.2. All regressions are weighted by pre-employment size, that is, average
employment between 2000-2004. Column 1 reports 95% bootstrapped confidence intervals. Columns 2 and 3 exclude
California and Texas, respectively. Columns 4 and 5 leave out China and India, and Mexico from the IV construction, re-
spectively. Columns 2-5 report standard errors (in parentheses) clustered at the (48) state level, and, ***, **, * denote
statistical significance at the 1%, 5% and 10% levels, respectively.

2.5.3 Robustness

In this section we probe the robustness of our main results along several dimensions.
First, we begin by providing bootstrapped 95% confidence intervals in column 1 of
Table 2.6 and Table 2.7 to guide against concerns about non-normality or leverage
- the sensitivity of the estimates and standard errors to a small set of observations,
see Young (2021). The estimates are based on 1000 bootstrap samples clustered
at the state-level. Although confidence intervals are sometimes considerably larger,
especially for the high-skill employment shares, the broad conclusions seem robust.
We complement this analysis with a worst-case cluster (state) leave-out strategy in
which we drop two states that have the largest effect on the main estimates and
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standard errors.1⁰ Columns 2 and 3 in Table 2.6 and Table 2.7 omit the states of
California and Texas respectively. For both states one might also be concerned about
very particular productivity and/or immigration pattern. Reassuringly the results
seem relatively robust to excluding either state. The exclusion of California does
affect several estimates, in particular when we instrument for all four endogenous
variables in Panel C of Table 2.6. This is likely due to California’s disproportional
role and importance for immigrant settlements both historically and today.

Columns 5 and 6 of Tables 2.6 and 2.7 probe the sensitivity to certain origin
countries, namely, China and India as well as Mexico in the construction of our
instrumental variable. Mexican immigrants make up the fast majority of all immi-
grants in the US and immigrants from China and India tend to have exceptionally
highly levels of education, see Card (2009). We in turn, exclude those countries
from the construction of the IV and report the results in Panels B and C of Tables 2.6
and 2.7. The exclusion of China and India as origin counties, significantly weakens
the IV with an F-statistics of around 8 instead of 20-30, so weak instrumental vari-
ables concerns might be warranted. This leads to substantially less precise estimates,
however and reassuringly the point estimates remain relatively stable. Exclusion of
Mexican immigrants in the IV leads to larger estimates in column 6. This might be
explained by the relative low levels of education of Mexican immigrants, see e.g.
Table 2 in Card (2009).

We probe the robustness of our estimates to various regression weights in Ap-
pendix Tables 2.A.5 and 2.A.6. Until now, all results are weighted by CZ sector pre-
employment size and thus can interpreted as the productivity effect affecting the
average worker. Columns 3 and 4 of Tables 2.A.5 and 2.A.6 use the square root
of pre-employment size as weights, while columns 5 and 6 report unweighted re-
gression results. The coefficients of interest become significantly smaller under the
alternative weighting schemes. This might be driven by two factors. First, the em-
ployment shares are measured with more noise in small CZ sector cells leading to
less precise estimates. Second, there might be heterogeneity in the impact of em-
ployment shares on productivity and larger CZ sectors have larger treatment effects.
While weighting does affect the size and precision of point estimates it does not lead
to qualitatively opposite conclusions.

To investigate the sensitivity of our estimates to the industry composition we
report results on a balanced panel of CZwith data on all eleven industries in columns
2 of Tables 2.A.7 and 2.A.8. The results are virtually identical to our main estimates.
Columns 3 to 5 of Tables 2.A.7 and 2.A.8 exclude the construction, manufacturing
and information industry, respectively. The average construction and manufacturing
CZ sector employs a relatively high share of immigrant workers ,see Table 2.A.3 and
the former has significant impact on the strength of the IV. The information industry

10. The cluster leave-out results are available from the authors upon request.
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has seen the largest growth in productivity over the sample period, see Table 2.A.3.
However, we find that the exclusion of neither of these sectors meaningful alters our
conclusions.

Last we explore a modified measure of employment, namely hours of work in-
stead of headcount employment. To this end, we use the ACS data to construct
estimates of the number of hours worked per worker in each county sector year and
multiply it by headcount employment data from the CBP. We also adjust the em-
ployment share estimates to a per hour worked rather than per worker basis. Tables
2.A.11 and 2.A.12 provide the estimates of this analysis which are very close to our
main results. If anything, the change to hours worked brings estimates of the impact
of high-skill immigrant and native employment closer together.

2.5.4 Additional Results

In a final step, we investigate the connection between our productivity effects and
potential wage effects. We are interested in how much, if any, of the productivity
increases are captured by workers and if so by whom. Although a full investigation
of these effects is beyond the scope of this work we show suggestive evidence that
suggests it is the workers themselves who capture most of the productivity gains.
We do so by providing two pieces of evidence.

First, we study the effects of the various employment shares on the average
compensation per worker. The BEA provides such estimates together with the GDP
data. In order to make the GDP and compensation data directly comparison we use
nominal, that is non-inflated, GDP figures.11 Columns 1 and 2 of Table 2.8 replicate
the previous analysis with nominal GDP per worker as the outcome variable. The
estimated effects are very similar. Columns 3 and 4 provide estimates of the impacts
of employment shares on the average compensation per worker. We find slightly
larger effects on compensation compared to output for high-skill, and slightly lower
for low-skill, implying that all of the impact on productivity is captured by wages. In
columns 5 and 6 of Table 2.8 we estimate the effect on the labor share, as defined
by compensation over GDP. Although imprecisely estimated we again find that high-
skill immigrant and employment are causing a higher labor shares, while low-skill
immigrant employment causes a lower labor share, all compared to native low-skill
employment.

The advantage of the BEA’s compensation data is that they are directly compa-
rable to the GDP estimates. However, they do allow to investigate which workers
benefit through higher compensation. We thus turn to the ACS data which is un-
derlying our share estimates and which contains, until now unused, information on
wages. This part of the analysis is somewhat more descriptive but we try and mimic
the previous specifications as close as possible. Concretely, we construct estimates of

11. For more information on the variables and the data sources see Appendix 2.B.
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the share of high- and low-skill immigrant and high-skill native employment as well
as log headcount employment at the place-of-work puma (PWPUMA) by sector year
level. Additionally, we construct indicator variables which encode to which group a
given individual belongs. We then regress log wages on these variables at the individ-
ual level and report the results in Table 2.9. In column 1 which is closest to our main
specification for the productivity estimates, we find that the high-skill immigrant
and native employment shares are associated with larger wages while the low-skill
immigrant share tend to depress wages relative to low-skill native employment. In
columns 2 to 4 we unpack these effects into the direct effect of an individual belong-
ing to one of said employment groups (captured by the coefficients on the indicator
variables) and the remaining indirect spillover effects from the types of other work-
ers (coefficients on the shares). We find that the inclusion of (rich enough) fixed
effects all but eliminates the spillover effects and leaves only the direct effects.12
These findings suggest that spillover effects are rather small and that most of the
impact appears to be captured by the individual workers themselves.

12. Some of the share coefficients in column 4 are statistically significant, however they are small
in magnitude. Also, because results reported in Table 2.9 cluster standard errors at the PWPUMA level,
precision is likely overstated.
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Table 2.8. GDP, Earnings and Labor Share

(1) (2) (3) (4) (5) (6)

Panel A: OLS Log GDP per Worker Log Comp. per Worker Log Labor Share

Share high-skill immigrants 0.760*** 0.922*** 1.304*** 1.233*** 0.485*** 0.257*
(0.253) (0.270) (0.266) (0.275) (0.116) (0.130)

Share low-skill immigrants –0.077 –0.116 –0.287*** –0.270*** –0.210** –0.154**
(0.124) (0.123) (0.104) (0.099) (0.092) (0.066)

Share high-skill natives 0.702*** 0.718*** 0.707*** 0.700*** –0.003 –0.025
(0.086) (0.084) (0.075) (0.074) (0.041) (0.043)

Log employment –0.079*** 0.035* 0.112***
(0.025) (0.019) (0.015)

R
2 0.93 0.93 0.92 0.92 0.88 0.89
N 83,525 83,525 83,516 83,516 83,516 83,516

Panel B: 2SLS Log GDP per Worker Log Comp. per Worker Log Labor Share

Share high-skill immigrants 2.164*** 1.881*** 2.841*** 2.406*** 0.670** 0.517
(0.467) (0.553) (0.323) (0.379) (0.297) (0.337)

Share low-skill immigrants 0.895*** 0.878*** 0.390** 0.365** –0.513*** –0.522***
(0.207) (0.209) (0.159) (0.156) (0.182) (0.177)

Share high-skill natives 1.503** 1.661** 1.966*** 2.208*** 0.497 0.583
(0.708) (0.719) (0.385) (0.445) (0.453) (0.407)

Log employment 0.046* 0.070** 0.025
(0.027) (0.027) (0.020)

KP F-stat 46.72 32.71 46.72 32.71 46.72 32.71
N 83,525 83,525 83,516 83,516 83,516 83,516

CZ x Year FE Ø Ø Ø Ø Ø Ø
Region x Industry x Year FE Ø Ø Ø Ø Ø Ø

Note: This table reports coe�cients from OLS (Panel A) and 2SLS (Panel B) regressions of specifications (2.6) (odd columns)
and specification (2.5) (even columns). The dependent variable is log nominal GDP per worker (columns 1-2), log com-
pensation per worker (columns 3-4) and log labor share (columns 5-6). The labor share is defined as the ratio of com-
pensations over nominal GDP (see Section 2.4 for details). The endogenous variables are the high- and low-skill im-
migrant employment shares, the high-skill native employment share and log employment. Panel B reports coe�cients
from 2SLS regressions in which all endogenous variables are instrumented includes the first-stage Kleibergen Paap F-
statistics on the excluded instruments. The IV construction is described in Section 2.4.2. All regressions are weighted by
pre-employment size, that is, average employment between 2000-2004. Standard errors in parentheses are clustered at
the (48) state level, and, ***, **, * denote statistical significance at the 1%, 5% and 10% levels, respectively.
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Table 2.9. Individual-Level Wages Analysis

(1) (2) (3) (4) (5)

Log Wages

Share high-skill immigrants 0.716*** 0.323*** –0.054***
(0.075) (0.071) (0.020)

Share low-skill immigrants –0.331*** –0.274*** –0.023
(0.032) (0.032) (0.015)

Share high-skill natives 0.637*** 0.228*** –0.078***
(0.020) (0.018) (0.007)

Indicator high-skill immigrant 0.483*** 0.479*** 0.479*** 0.482***
(0.008) (0.008) (0.008) (0.008)

Indicator low-skill immigrant –0.083*** –0.073*** –0.073*** –0.071***
(0.007) (0.007) (0.007) (0.007)

Indicator high-skill native 0.545*** 0.542*** 0.540*** 0.541***
(0.004) (0.004) (0.004) (0.004)

Log employment 0.148*** 0.152*** 0.144*** –0.012***
(0.008) (0.009) (0.008) (0.003)

R
2 0.15 0.20 0.20 0.21 0.22
N 17,667,847 17,667,847 17,667,847 17,667,840 17,667,388

PWPUMA x Year FE Ø Ø Ø Ø Ø
Industry x Year FE Ø Ø Ø Ø Ø
PWPUMA x Industry FE Ø Ø
PWPUMA x Industry x Year FE Ø

Note: This table reports coe�cients from OLS wage regressions described in Section 2.5.4. The dependent variable is
log wages and the endogenous variables are indicator variables for high- and low-skill immigrant and high-skill native
status. Columns 1 and 3 additionally include log CZ by sector employment. The sample is constructed by distributing
observations from the ACS’s place-of-work pumas (PWPUMA) to the corresponding CZ according to a probabilistic cross-
walk. Each observation is weighted by the product of the ACS sampling weight (perwt) and the probability weight for each
CZ. Columns 3-4 additionally weight observations by CZ sector pre-employment size. Standard errors in parentheses are
clustered at the (48) state level, and, ***, **, * denote statistical significance at the 1%, 5% and 10% levels, respectively.

2.6 Conclusion

In summary our work provides novel direct evidence on the productivity effects
of immigration. We employ a production function approach and study variation in
productivity within US state sectors over time. Our findings point to large impacts
of high-skill immigrants on productivity and small or zero effects of low-skill im-
migrants at least in the short run. Most of the productivity impacts appear to be
captured by workers themselves although this conclusion is more tentative.

One caveat of our study is that we rely on a relatively short time period and thus
can only study short run responses. If the benefits and/or costs of immigration only
materialize over longer periods our estimates might miss those long-term effects.
Such concerns would also pose a challenge from an identification perspective as we
are not exploiting a structural break in immigration trends Jaeger, Ruist, and Stuhler
(2018).
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Appendix 2.A Additional Tables

Table 2.A.1. Data Sources

Year(s)

Variable Unit 2000 2001-2004 2005-2016 2017-2019

GDP 2012 USD thous. n.a. BEA BEA BEA

Employment Headcount CBP from CBP from CBP from raw CBP
Eckert et al. (2021) Eckert et al. (2021) Eckert et al. (2021)

Shares - CENSUS n.a. ACS ACS

Note: This table illustrates the data sources for GDP, employment and employment shares for the years 2000-2019. For
more details see Section 2.2 and Appendix 2.B. The abbreviations are as follows:
BEA - Bureau of Economic Activity
CBP - County Business Pattern
CENSUS - 2000 Census (5% sample)
ACS - American Community Survey (yearly samples)
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Table 2.A.2. Summary Statistics (emp. weighted)

Panel A: Levels 2005-2016 Mean SD Min Max Median Obs.

GDP (in mil. USD) 22,225 37,808 0.4 360,953 8,041 88,932
GDP per Worker (in USD) 121,398 104,716 1,953.1 5,611,095 84,415 88,932
Employment (headcount) 183,472 248,360 12.0 1,281,598 87,912 88,932
Pre-Employment (headcount) 178,407 239,532 8.8 1,249,510 84,799 88,932

Share immigrants 0.18 0.14 0.00 1.00 0.14 88,932
Share high-skill 0.56 0.16 0.00 1.00 0.54 88,932
Share high-skill immigrants 0.09 0.07 0.00 1.00 0.07 88,932
Share low-skill immigrants 0.10 0.10 0.00 0.74 0.06 88,932
Share high-skill natives 0.48 0.15 0.00 1.00 0.46 88,932
Share low-skill natives 0.34 0.16 0.00 1.00 0.31 88,932

Panel B: Changes 2005-2016 Mean SD Min Max Median Obs.

GDP (in %) 0.11 0.23 –0.85 17.33 0.11 88,932
GDP per Worker (in %) 0.10 0.23 –0.88 18.12 0.06 88,932
Employment (in %) 0.02 0.17 –0.93 16.80 0.01 88,932

Share immigrants (in p.p.) 0.01 0.03 –0.61 0.33 0.01 88,932
Share high-skill (in p.p.) 0.06 0.04 –0.46 0.79 0.06 88,932
Share high-skill immigrants (in p.p.) 0.02 0.02 –0.14 0.33 0.01 88,932
Share low-skill immigrants (in p.p.) –0.00 0.03 –0.59 0.30 –0.00 88,932
Share high-skill natives (in p.p.) 0.04 0.04 –0.41 0.76 0.04 88,932
Share low-skill natives (in p.p.) –0.05 0.04 –0.78 0.75 –0.05 88,932

Note: This table reports pre-employment weighted summary statistics of GDP, GDP per worker, employment and employ-
ment shares for the main sample. Panel A presents levels and Panel B changes over the time period 2005-2016. In Panel
B growth rates for GDP, GDP per worker and employment are constructed as arithmetic annual growth rates between
2005/7 to 2014/16. Pre-employment refers to average employment over the years 2000-2004.
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Table 2.A.3. Summary Statistics by Industry Sector

NAICS 23: Construction

Panel A: Levels 2005-2016 Mean SD Min Max Median Obs.

GDP (in mil. USD) 887 2,642 1.1 49,485 170 8,244
GDP per Worker (in USD) 103,333 38,629 4,970.8 1,239,259 96,583 8,244
Employment (headcount) 8,639 23,669 15.0 436,418 1,694 8,244
Pre-Employment (headcount) 9,142 24,715 17.2 343,064 1,772 8,244

Share immigrants 0.10 0.11 0.00 0.66 0.06 8,244
Share high-skill 0.32 0.10 0.00 0.77 0.32 8,244
Share high-skill immigrants 0.02 0.03 0.00 0.25 0.00 8,244
Share low-skill immigrants 0.08 0.10 0.00 0.62 0.05 8,244
Share high-skill natives 0.30 0.10 0.00 0.70 0.30 8,244
Share low-skill natives 0.60 0.13 0.12 1.00 0.60 8,244

Panel B: Changes 2005-2016 Mean SD Min Max Median Obs.

GDP (in %) –0.05 0.62 –0.83 8.83 –0.15 8,244
GDP per Worker (in %) 0.03 0.27 –0.59 1.65 0.01 8,244
Employment (in %) –0.07 0.46 –0.70 5.51 –0.14 8,244

Share immigrants (in p.p.) 0.02 0.05 –0.23 0.19 0.01 8,244
Share high-skill (in p.p.) 0.03 0.07 –0.23 0.21 0.04 8,244
Share high-skill immigrants (in p.p.) 0.00 0.02 –0.07 0.07 0.00 8,244
Share low-skill immigrants (in p.p.) 0.02 0.05 –0.21 0.18 0.01 8,244
Share high-skill natives (in p.p.) 0.03 0.07 –0.23 0.21 0.03 8,244
Share low-skill natives (in p.p.) –0.05 0.08 –0.27 0.25 –0.05 8,244

NAICS 31-33: Manufacturing

Panel A: Levels 2005-2016 Mean SD Min Max Median Obs.

GDP (in mil. USD) 2,921 8,190 1.0 115,532 620 8,040
GDP per Worker (in USD) 134,852 116,024 21,787.2 4,402,123 111,615 8,040
Employment (headcount) 17,655 41,931 17.0 828,883 5,702 8,040
Pre-Employment (headcount) 21,953 54,417 20.6 904,629 6,737 8,040

Share immigrants 0.11 0.11 0.00 0.81 0.07 8,040
Share high-skill 0.39 0.12 0.00 0.94 0.39 8,040
Share high-skill immigrants 0.03 0.04 0.00 0.43 0.02 8,040
Share low-skill immigrants 0.08 0.09 0.00 0.71 0.05 8,040
Share high-skill natives 0.36 0.11 0.00 0.94 0.36 8,040
Share low-skill natives 0.53 0.14 0.06 1.00 0.54 8,040

Panel B: Changes 2005-2016 Mean SD Min Max Median Obs.

GDP (in %) 0.09 0.50 –0.70 7.33 0.01 8,040
GDP per Worker (in %) 0.27 0.63 –0.70 9.01 0.18 8,040
Employment (in %) –0.12 0.22 –0.80 1.75 –0.13 8,040

Share immigrants (in p.p.) 0.01 0.06 –0.61 0.29 0.01 8,040
Share high-skill (in p.p.) 0.06 0.07 –0.22 0.37 0.06 8,040
Share high-skill immigrants (in p.p.) 0.01 0.02 –0.10 0.15 0.01 8,040
Share low-skill immigrants (in p.p.) 0.00 0.05 –0.59 0.30 0.00 8,040
Share high-skill natives (in p.p.) 0.05 0.06 –0.19 0.35 0.05 8,040
Share low-skill natives (in p.p.) –0.07 0.07 –0.37 0.36 –0.06 8,040
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Table 2.A.3. Summary Statistics by Industry Sector (continued)

NAICS 42: Wholesale Trade

Panel A: Levels 2005-2016 Mean SD Min Max Median Obs.

GDP (in mil. USD) 1,444 5,218 1.9 81,103 171 7,848
GDP per Worker (in USD) 153,311 72,272 22,512.1 1,941,533 143,516 7,848
Employment (headcount) 8,301 28,489 18.0 478,523 1,184 7,848
Pre-Employment (headcount) 8,491 29,685 25.2 446,969 1,266 7,848

Share immigrants 0.07 0.11 0.00 0.92 0.03 7,848
Share high-skill 0.46 0.16 0.00 1.00 0.47 7,848
Share high-skill immigrants 0.02 0.05 0.00 0.57 0.00 7,848
Share low-skill immigrants 0.05 0.08 0.00 0.73 0.01 7,848
Share high-skill natives 0.43 0.16 0.00 1.00 0.44 7,848
Share low-skill natives 0.49 0.17 0.00 1.00 0.48 7,848

Panel B: Changes 2005-2016 Mean SD Min Max Median Obs.

GDP (in %) 0.23 0.46 –0.71 4.14 0.13 7,848
GDP per Worker (in %) 0.20 0.45 –0.81 3.90 0.12 7,848
Employment (in %) 0.06 0.29 –0.79 2.22 0.02 7,848

Share immigrants (in p.p.) 0.00 0.07 –0.40 0.20 0.00 7,848
Share high-skill (in p.p.) 0.05 0.12 –0.46 0.79 0.05 7,848
Share high-skill immigrants (in p.p.) 0.01 0.04 –0.12 0.19 0.00 7,848
Share low-skill immigrants (in p.p.) –0.00 0.06 –0.47 0.18 0.00 7,848
Share high-skill natives (in p.p.) 0.04 0.12 –0.41 0.68 0.04 7,848
Share low-skill natives (in p.p.) –0.05 0.12 –0.45 0.75 –0.04 7,848

NAICS 44-45: Retail Trade

Panel A: Levels 2005-2016 Mean SD Min Max Median Obs.

GDP (in mil. USD) 1,334 3,961 1.5 69,826 288 8,412
GDP per Worker (in USD) 54,239 34,043 25,048.4 1,589,948 51,863 8,412
Employment (headcount) 21,572 54,156 29.0 811,659 5,584 8,412
Pre-Employment (headcount) 21,123 52,118 62.6 717,113 5,782 8,412

Share immigrants 0.06 0.07 0.00 0.54 0.04 8,412
Share high-skill 0.42 0.09 0.07 0.80 0.42 8,412
Share high-skill immigrants 0.02 0.03 0.00 0.26 0.01 8,412
Share low-skill immigrants 0.03 0.04 0.00 0.37 0.02 8,412
Share high-skill natives 0.40 0.09 0.07 0.79 0.40 8,412
Share low-skill natives 0.54 0.10 0.19 0.93 0.55 8,412

Panel B: Changes 2005-2016 Mean SD Min Max Median Obs.

GDP (in %) 0.03 0.25 –0.43 3.80 –0.01 8,412
GDP per Worker (in %) 0.05 0.25 –0.42 4.26 0.02 8,412
Employment (in %) –0.01 0.11 –0.45 0.93 –0.03 8,412

Share immigrants (in p.p.) 0.01 0.03 –0.17 0.18 0.01 8,412
Share high-skill (in p.p.) 0.06 0.06 –0.13 0.26 0.06 8,412
Share high-skill immigrants (in p.p.) 0.01 0.02 –0.05 0.07 0.01 8,412
Share low-skill immigrants (in p.p.) 0.00 0.02 –0.18 0.16 0.00 8,412
Share high-skill natives (in p.p.) 0.05 0.06 –0.15 0.24 0.05 8,412
Share low-skill natives (in p.p.) –0.06 0.06 –0.27 0.14 –0.06 8,412
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Table 2.A.3. Summary Statistics by Industry Sector (continued)

NAICS 48-49: Transportation, Warehousing

Panel A: Levels 2005-2016 Mean SD Min Max Median Obs.

GDP (in mil. USD) 676 2,170 1.5 31,257 121 7,128
GDP per Worker (in USD) 133,346 179,223 10,995.2 5,611,095 100,639 7,128
Employment (headcount) 6,135 18,276 15.0 282,780 1,160 7,128
Pre-Employment (headcount) 5,466 17,116 8.8 234,169 884 7,128

Share immigrants 0.06 0.09 0.00 0.63 0.03 7,128
Share high-skill 0.37 0.13 0.00 0.98 0.37 7,128
Share high-skill immigrants 0.02 0.04 0.00 0.48 0.00 7,128
Share low-skill immigrants 0.04 0.07 0.00 0.52 0.01 7,128
Share high-skill natives 0.35 0.13 0.00 0.98 0.35 7,128
Share low-skill natives 0.59 0.15 0.00 1.00 0.59 7,128

Panel B: Changes 2005-2016 Mean SD Min Max Median Obs.

GDP (in %) 0.10 0.61 –0.63 11.08 0.02 7,128
GDP per Worker (in %) 0.05 0.57 –0.75 9.64 –0.03 7,128
Employment (in %) 0.15 0.86 –0.93 16.80 0.05 7,128

Share immigrants (in p.p.) 0.02 0.05 –0.21 0.23 0.01 7,128
Share high-skill (in p.p.) 0.05 0.10 –0.30 0.41 0.04 7,128
Share high-skill immigrants (in p.p.) 0.01 0.03 –0.12 0.21 0.00 7,128
Share low-skill immigrants (in p.p.) 0.01 0.04 –0.16 0.18 0.00 7,128
Share high-skill natives (in p.p.) 0.04 0.09 –0.32 0.41 0.03 7,128
Share low-skill natives (in p.p.) –0.06 0.10 –0.39 0.39 –0.05 7,128

NAICS 51: Information

Panel A: Levels 2005-2016 Mean SD Min Max Median Obs.

GDP (in mil. USD) 1,163 5,942 1.2 120,022 77 7,824
GDP per Worker (in USD) 151,164 77,034 3,689.5 1,722,596 137,317 7,824
Employment (headcount) 4,960 18,926 16.0 348,357 585 7,824
Pre-Employment (headcount) 5,376 19,259 20.4 246,672 670 7,824

Share immigrants 0.04 0.08 0.00 1.00 0.00 7,824
Share high-skill 0.62 0.19 0.00 1.00 0.64 7,824
Share high-skill immigrants 0.03 0.07 0.00 1.00 0.00 7,824
Share low-skill immigrants 0.01 0.04 0.00 0.63 0.00 7,824
Share high-skill natives 0.59 0.19 0.00 1.00 0.61 7,824
Share low-skill natives 0.36 0.19 0.00 1.00 0.34 7,824

Panel B: Changes 2005-2016 Mean SD Min Max Median Obs.

GDP (in %) 0.32 0.67 –0.78 10.04 0.21 7,824
GDP per Worker (in %) 0.57 1.02 –0.88 18.12 0.42 7,824
Employment (in %) –0.10 0.30 –0.81 2.24 –0.14 7,824

Share immigrants (in p.p.) 0.01 0.06 –0.22 0.33 0.00 7,824
Share high-skill (in p.p.) 0.08 0.15 –0.38 0.77 0.07 7,824
Share high-skill immigrants (in p.p.) 0.01 0.04 –0.14 0.33 0.00 7,824
Share low-skill immigrants (in p.p.) 0.00 0.04 –0.21 0.19 0.00 7,824
Share high-skill natives (in p.p.) 0.07 0.14 –0.38 0.76 0.07 7,824
Share low-skill natives (in p.p.) –0.08 0.14 –0.78 0.40 –0.07 7,824
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Table 2.A.3. Summary Statistics by Industry Sector (continued)

NAICS 52-53: Finance, Insurance, Real Estate

Panel A: Levels 2005-2016 Mean SD Min Max Median Obs.

GDP (in mil. USD) 4,417 17,978 8.9 360,953 652 8,412
GDP per Worker (in USD) 430,224 182,710 90,987.5 3,636,101 398,400 8,412
Employment (headcount) 11,591 38,986 23.0 601,191 1,542 8,412
Pre-Employment (headcount) 11,772 40,836 34.4 603,889 1,516 8,412

Share immigrants 0.05 0.06 0.00 0.53 0.02 8,412
Share high-skill 0.63 0.12 0.10 1.00 0.64 8,412
Share high-skill immigrants 0.03 0.05 0.00 0.45 0.01 8,412
Share low-skill immigrants 0.02 0.03 0.00 0.36 0.00 8,412
Share high-skill natives 0.60 0.12 0.10 1.00 0.61 8,412
Share low-skill natives 0.35 0.12 0.00 0.90 0.34 8,412

Panel B: Changes 2005-2016 Mean SD Min Max Median Obs.

GDP (in %) 0.22 0.24 –0.49 2.87 0.19 8,412
GDP per Worker (in %) 0.31 0.25 –0.47 1.70 0.29 8,412
Employment (in %) –0.05 0.19 –0.58 1.60 –0.08 8,412

Share immigrants (in p.p.) 0.01 0.03 –0.16 0.15 0.01 8,412
Share high-skill (in p.p.) 0.07 0.08 –0.22 0.53 0.06 8,412
Share high-skill immigrants (in p.p.) 0.01 0.03 –0.13 0.16 0.01 8,412
Share low-skill immigrants (in p.p.) 0.00 0.02 –0.10 0.16 0.00 8,412
Share high-skill natives (in p.p.) 0.05 0.08 –0.22 0.53 0.05 8,412
Share low-skill natives (in p.p.) –0.07 0.08 –0.53 0.22 –0.07 8,412

NAICS 54-56: Services, Management, Administrative

Panel A: Levels 2005-2016 Mean SD Min Max Median Obs.

GDP (in mil. USD) 2,740 10,605 0.4 152,794 211 8,064
GDP per Worker (in USD) 96,052 53,586 1,953.1 801,905 84,712 8,064
Employment (headcount) 26,989 91,983 12.0 1,276,370 2,614 8,064
Pre-Employment (headcount) 26,104 91,405 11.4 1,249,510 2,457 8,064

Share immigrants 0.08 0.08 0.00 0.79 0.06 8,064
Share high-skill 0.59 0.13 0.01 1.00 0.60 8,064
Share high-skill immigrants 0.04 0.05 0.00 0.44 0.02 8,064
Share low-skill immigrants 0.04 0.06 0.00 0.74 0.02 8,064
Share high-skill natives 0.55 0.12 0.01 1.00 0.56 8,064
Share low-skill natives 0.37 0.13 0.00 0.99 0.36 8,064

Panel B: Changes 2005-2016 Mean SD Min Max Median Obs.

GDP (in %) 0.37 0.88 –0.85 17.33 0.24 8,064
GDP per Worker (in %) 0.35 0.90 –0.75 17.87 0.22 8,064
Employment (in %) 0.09 0.49 –0.84 5.06 0.03 8,064

Share immigrants (in p.p.) 0.02 0.05 –0.16 0.18 0.02 8,064
Share high-skill (in p.p.) 0.03 0.08 –0.24 0.32 0.03 8,064
Share high-skill immigrants (in p.p.) 0.01 0.03 –0.13 0.14 0.01 8,064
Share low-skill immigrants (in p.p.) 0.01 0.03 –0.12 0.17 0.00 8,064
Share high-skill natives (in p.p.) 0.02 0.08 –0.30 0.34 0.02 8,064
Share low-skill natives (in p.p.) –0.04 0.08 –0.34 0.25 –0.04 8,064



Appendix 2.A Additional Tables | 95

Table 2.A.3. Summary Statistics by Industry Sector (continued)

NAICS 61-62: Education, Health Care

Panel A: Levels 2005-2016 Mean SD Min Max Median Obs.

GDP (in mil. USD) 1,922 6,054 0.8 93,731 315 8,304
GDP per Worker (in USD) 50,454 14,866 4,670.5 193,045 51,253 8,304
Employment (headcount) 29,806 85,268 47.0 1,281,598 6,337 8,304
Pre-Employment (headcount) 24,834 70,872 69.4 1,003,276 5,534 8,304

Share immigrants 0.06 0.06 0.00 0.53 0.04 8,304
Share high-skill 0.70 0.07 0.40 0.94 0.71 8,304
Share high-skill immigrants 0.04 0.04 0.00 0.36 0.03 8,304
Share low-skill immigrants 0.02 0.03 0.00 0.26 0.01 8,304
Share high-skill natives 0.66 0.07 0.34 0.87 0.67 8,304
Share low-skill natives 0.28 0.07 0.03 0.60 0.27 8,304

Panel B: Changes 2005-2016 Mean SD Min Max Median Obs.

GDP (in %) 0.18 0.19 –0.62 1.97 0.17 8,304
GDP per Worker (in %) 0.08 0.19 –0.77 2.10 0.06 8,304
Employment (in %) 0.11 0.19 –0.72 2.03 0.10 8,304

Share immigrants (in p.p.) 0.01 0.02 –0.09 0.10 0.01 8,304
Share high-skill (in p.p.) 0.05 0.04 –0.12 0.15 0.05 8,304
Share high-skill immigrants (in p.p.) 0.01 0.02 –0.04 0.08 0.01 8,304
Share low-skill immigrants (in p.p.) 0.00 0.01 –0.07 0.06 0.00 8,304
Share high-skill natives (in p.p.) 0.04 0.04 –0.13 0.16 0.04 8,304
Share low-skill natives (in p.p.) –0.05 0.04 –0.17 0.12 –0.05 8,304

NAICS 71-72: Entertainment, Accommodation

Panel A: Levels 2005-2016 Mean SD Min Max Median Obs.

GDP (in mil. USD) 873 3,133 0.4 53,605 132 8,340
GDP per Worker (in USD) 33,300 12,854 5,523.5 232,428 30,790 8,340
Employment (headcount) 19,871 54,983 19.0 977,864 4,309 8,340
Pre-Employment (headcount) 16,952 45,317 29.4 672,620 3,828 8,340

Share immigrants 0.10 0.10 0.00 0.56 0.07 8,340
Share high-skill 0.37 0.11 0.00 0.80 0.37 8,340
Share high-skill immigrants 0.03 0.03 0.00 0.27 0.02 8,340
Share low-skill immigrants 0.07 0.08 0.00 0.54 0.05 8,340
Share high-skill natives 0.34 0.11 0.00 0.72 0.34 8,340
Share low-skill natives 0.56 0.13 0.16 1.00 0.57 8,340

Panel B: Changes 2005-2016 Mean SD Min Max Median Obs.

GDP (in %) 0.08 0.28 –0.72 3.15 0.06 8,340
GDP per Worker (in %) 0.01 0.18 –0.66 1.39 –0.01 8,340
Employment (in %) 0.08 0.19 –0.59 1.61 0.07 8,340

Share immigrants (in p.p.) 0.01 0.05 –0.25 0.22 0.00 8,340
Share high-skill (in p.p.) 0.06 0.07 –0.21 0.27 0.06 8,340
Share high-skill immigrants (in p.p.) 0.00 0.02 –0.10 0.09 0.00 8,340
Share low-skill immigrants (in p.p.) 0.00 0.04 –0.28 0.26 0.00 8,340
Share high-skill natives (in p.p.) 0.05 0.07 –0.18 0.26 0.05 8,340
Share low-skill natives (in p.p.) –0.06 0.07 –0.30 0.24 –0.06 8,340
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Table 2.A.3. Summary Statistics by Industry Sector (continued)

NAICS 81: Other Services

Panel A: Levels 2005-2016 Mean SD Min Max Median Obs.

GDP (in mil. USD) 507 1,589 1.4 26,133 100 8,316
GDP per Worker (in USD) 69,474 20,657 8,366.4 242,025 64,824 8,316
Employment (headcount) 7,535 21,114 19.0 284,599 1,506 8,316
Pre-Employment (headcount) 7,582 21,022 21.0 279,164 1,518 8,316

Share immigrants 0.08 0.10 0.00 0.71 0.05 8,316
Share high-skill 0.46 0.12 0.00 0.90 0.47 8,316
Share high-skill immigrants 0.03 0.04 0.00 0.46 0.01 8,316
Share low-skill immigrants 0.06 0.08 0.00 0.71 0.03 8,316
Share high-skill natives 0.44 0.13 0.00 0.90 0.44 8,316
Share low-skill natives 0.48 0.13 0.09 0.98 0.48 8,316

Panel B: Changes 2005-2016 Mean SD Min Max Median Obs.

GDP (in %) –0.13 0.15 –0.50 1.98 –0.14 8,316
GDP per Worker (in %) –0.08 0.16 –0.67 0.93 –0.10 8,316
Employment (in %) –0.03 0.14 –0.64 0.97 –0.04 8,316

Share immigrants (in p.p.) 0.02 0.05 –0.27 0.16 0.02 8,316
Share high-skill (in p.p.) 0.05 0.09 –0.31 0.40 0.05 8,316
Share high-skill immigrants (in p.p.) 0.01 0.03 –0.14 0.10 0.01 8,316
Share low-skill immigrants (in p.p.) 0.01 0.04 –0.27 0.16 0.01 8,316
Share high-skill natives (in p.p.) 0.04 0.09 –0.32 0.39 0.04 8,316
Share low-skill natives (in p.p.) –0.06 0.09 –0.34 0.26 –0.06 8,316

Note: This table reports summary statistics of GDP, GDP per worker, employment and employment shares by industry.
Panels A present levels and Panels B changes over the time period 2005-2016. In Panels B growth rates for GDP, GDP per
worker and employment are constructed as arithmetic annual growth rates between 2005/7 to 2014/16. Pre-employment
refers to average employment over the years 2000-2004.
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Table 2.A.4. First Stage

(1) (2) (3) (4) (5) (6) (7) (8)

Outcome: Employment share of High imm. Low imm. High nat. log emp. High imm. Low imm. High nat. log emp.

Inst. share high-skill immigrants 0.889*** –0.359*** 0.235* 2.381* 1.047*** –0.534*** 0.143 2.609**
(0.116) (0.123) (0.131) (1.216) (0.193) (0.190) (0.150) (1.122)

Inst. share low-skill immigrants 0.033 0.736*** 0.188* –0.639 0.086 0.760*** 0.039 –0.941*
(0.025) (0.113) (0.097) (0.447) (0.061) (0.109) (0.060) (0.491)

Inst. share high-skill natives 0.017 0.106** 0.732*** –0.839 0.114** –0.023 0.697*** –0.866
(0.030) (0.043) (0.080) (0.708) (0.052) (0.075) (0.076) (0.829)

Inst. log employment 0.008 –0.026*** 0.005 1.327*** 0.005 –0.032*** 0.014* 1.312***
(0.006) (0.006) (0.010) (0.085) (0.007) (0.007) (0.008) (0.089)

addlinespaceR2 0.91 0.88 0.87 0.97 0.93 0.92 0.90 0.98
N 88,932 88,932 88,932 88,932 88,932 88,932 88,932 88,932

CZ FE Ø Ø Ø Ø Ø Ø Ø Ø
Industry FE Ø Ø Ø Ø Ø Ø Ø Ø
Year FE Ø Ø Ø Ø Ø Ø Ø Ø
CZ x Year FE Ø Ø Ø Ø
Region x Industry x Year FE Ø Ø Ø Ø

Note: This table reports coe�cients from a first stage OLS regression of the four instruments on the respective endoge-
neous variables. The dependent variables are the employment share of high and low skill immigrants, high skill natives
and log employment in columns 1 through 4, and 5 through 8. The IV construction is described in Section 2.4.2. All re-
gressions are weighted by pre-employment size, that is, average employment between 2000-2004. Standard errors in
parentheses are clustered at the (48) state level, and, ***, **, * denote statistical significance at the 1%, 5% and 10% lev-
els, respectively.
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Table 2.A.5. Robustness Regression Weights

(1) (2) (3) (4) (5) (6)
Regression Weights: emp. emp. sqrt. emp. sqrt. emp. unweighted unweighted

Panel A: OLS Log GDP per Worker

Share high-skill immigrants 1.039*** 0.935*** 0.726*** 0.636*** 0.333*** 0.307***
(0.228) (0.263) (0.138) (0.146) (0.065) (0.061)

Share low-skill immigrants –0.209 –0.131 –0.254 –0.180** –0.076 –0.025
(0.185) (0.120) (0.158) (0.074) (0.126) (0.051)

Share high-skill natives 0.673*** 0.690*** 0.257*** 0.259*** 0.084*** 0.070***
(0.114) (0.082) (0.037) (0.027) (0.019) (0.013)

Log employment –0.086*** –0.094*** –0.121*** –0.137*** –0.132*** –0.153***
(0.024) (0.025) (0.015) (0.014) (0.017) (0.014)

R
2 0.91 0.93 0.87 0.89 0.80 0.83
N 88,932 88,932 88,932 88,932 88,932 88,932

Panel B: 2SLS Log GDP per Worker

Share high-skill immigrants 3.520*** 2.864*** 3.253*** 3.191*** 3.781*** 3.669***
(0.886) (0.576) (1.077) (0.911) (0.832) (0.940)

Share low-skill immigrants 0.543 0.929*** 0.527 0.843** 0.687 0.670
(0.566) (0.226) (0.517) (0.336) (0.755) (0.559)

Share high-skill natives 1.920*** 1.384* 0.714 0.691 0.635 0.373
(0.649) (0.757) (0.512) (0.508) (0.849) (0.685)

Log employment –0.102*** –0.109*** –0.136*** –0.155*** –0.141*** –0.162***
(0.024) (0.031) (0.018) (0.018) (0.019) (0.017)

KP F-stat 27.24 30.01 23.59 35.22 15.22 29.31
N 88,932 88,932 88,932 88,932 88,932 88,932

Panel C: 2SLS Log GDP per Worker

Share high-skill immigrants 2.449*** 1.845** 1.245 0.743 0.901 0.297
(0.831) (0.747) (0.885) (0.846) (0.570) (0.733)

Share low-skill immigrants 0.274 0.823*** 0.248 0.514 0.314 0.101
(0.634) (0.218) (0.560) (0.360) (0.801) (0.604)

Share high-skill natives 2.455*** 1.845** 0.748 0.440 –0.455 –0.670
(0.611) (0.816) (0.704) (0.624) (0.827) (0.593)

Log employment 0.057* 0.046 0.046** 0.038* 0.038* 0.029
(0.034) (0.029) (0.021) (0.020) (0.019) (0.020)

KP F-stat 18.54 25.39 17.72 29.06 10.89 24.35
N 88,932 88,932 88,932 88,932 88,932 88,932

CZ FE Ø Ø Ø Ø Ø Ø
Industry FE Ø Ø Ø Ø Ø Ø
Year FE Ø Ø Ø Ø Ø Ø
CZ x Year FE Ø Ø Ø
Region x Industry x Year FE Ø Ø Ø

Note: This table reports coe�cients from OLS (Panel A) and 2SLS (Panel B and Panel C) regressions of specification (2.5).
The dependent variable is log GDP per worker and the endogenous variables are the high- and low-skill immigrant em-
ployment shares, the high-skill native employment share and log employment. Panel B reports coe�cients from 2SLS
regressions in which the three share variables are instrumented. Panel C additionally instruments log employment. Panel
B and C include the first-stage Kleibergen Paap F-statistics on the excluded instruments. The IV construction is described
in Section 2.4.2. For comparison, columns 1-2 replicate columns 1 and 5 in Table 2.4 and are pre-employment size
weighted. Pre-employment refers to average employment from 2000-2004. Columns 3-4 weight by the square root of
pre-employment and columns 5-6 are unweighted. Standard errors in parentheses are clustered at the (48) state level,
and, ***, **, * denote statistical significance at the 1%, 5% and 10% levels, respectively.
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Table 2.A.6. Robustness Regression Weights (w/o log employment)

(1) (2) (3) (4) (5) (6)
Regression Weights: emp. emp. sqrt. emp. sqrt. emp. unweighted unweighted

Panel A: OLS Log GDP per Worker

Share high-skill immigrants 0.891*** 0.737*** 0.545*** 0.405*** 0.256*** 0.207***
(0.218) (0.246) (0.134) (0.129) (0.061) (0.054)

Share low-skill immigrants –0.191 –0.099 –0.247 –0.169** –0.101 –0.054
(0.174) (0.124) (0.149) (0.073) (0.132) (0.061)

Share high-skill natives 0.673*** 0.656*** 0.241*** 0.220*** 0.071*** 0.048***
(0.118) (0.085) (0.037) (0.027) (0.017) (0.012)

R
2 0.91 0.93 0.86 0.88 0.80 0.82
N 88,932 88,932 88,932 88,932 88,932 88,932

Panel B: 2SLS Log GDP per Worker

Share high-skill immigrants 2.831*** 2.147*** 1.751** 1.223* 1.508*** 0.812
(0.863) (0.590) (0.858) (0.714) (0.507) (0.603)

Share low-skill immigrants 0.370 0.854*** 0.318 0.579* 0.393 0.188
(0.626) (0.217) (0.550) (0.342) (0.780) (0.570)

Share high-skill natives 2.264*** 1.708** 0.739 0.489 –0.225 –0.511
(0.653) (0.838) (0.642) (0.579) (0.758) (0.562)

KP F-stat 26.13 26.31 23.98 38.61 15.76 34.36
N 88,932 88,932 88,932 88,932 88,932 88,932

CZ FE Ø Ø Ø Ø Ø Ø
Industry FE Ø Ø Ø Ø Ø Ø
Year FE Ø Ø Ø Ø Ø Ø
CZ x Year FE Ø Ø Ø
Region x Industry x Year FE Ø Ø Ø

Note: This table reports coe�cients from OLS (Panel A) and 2SLS (Panel B) regressions of specification (2.6). The depen-
dent variable is log GDP per worker and the endogenous variables are the high- and low-skill immigrant employment
shares and the high-skill native employment share. Panel B reports coe�cients from 2SLS regressions in which the three
share variables are instrumented and includes the first-stage Kleibergen Paap F-statistics on the excluded instruments.
The IV construction is described in Section 2.4.2. For comparison, columns 1-2 replicate columns 1 and 5 in Table 2.4
and are pre-employment size weighted. Pre-employment refers to average employment from 2000-2004. Columns 3-4
weight by the square root of pre-employment and columns 5-6 are unweighted. Standard errors in parentheses are clus-
tered at the (48) state level, and, ***, **, * denote statistical significance at the 1%, 5% and 10% levels, respectively.
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Table 2.A.7. Robustness Sample Restrictions

(1) (2) (3) (4) (5)
baseline balanced excl. excl. excl.
sample sample Construction Manufacturing Information

Panel A: OLS Log GDP per Worker

Share high-skill immigrants 0.935*** 0.951*** 0.931*** 0.543*** 1.007***
(0.263) (0.265) (0.266) (0.167) (0.311)

Share low-skill immigrants –0.131 –0.121 –0.133 0.145 –0.053
(0.120) (0.121) (0.150) (0.119) (0.101)

Share high-skill natives 0.690*** 0.718*** 0.694*** 0.500*** 0.722***
(0.082) (0.085) (0.091) (0.077) (0.088)

Log employment –0.094*** –0.092*** –0.085*** –0.085*** –0.109***
(0.025) (0.026) (0.026) (0.019) (0.027)

R
2 0.93 0.93 0.93 0.95 0.93
N 88,932 71,544 80,688 80,892 81,108

Panel B: 2SLS Log GDP per Worker

Share high-skill immigrants 2.864*** 2.819*** 2.713** 2.275*** 2.807***
(0.576) (0.577) (1.046) (0.684) (0.663)

Share low-skill immigrants 0.929*** 0.914*** 0.946*** 0.986*** 1.152***
(0.226) (0.227) (0.324) (0.195) (0.251)

Share high-skill natives 1.384* 1.414* 1.317 1.350** 1.034
(0.757) (0.757) (0.944) (0.626) (0.748)

Log employment –0.109*** –0.106*** –0.097*** –0.130*** –0.117***
(0.031) (0.032) (0.036) (0.033) (0.033)

KP F-stat 30.01 29.74 16.03 25.93 30.10
N 88,932 71,544 80,688 80,892 81,108

Panel C: 2SLS Log GDP per Worker

Share high-skill immigrants 1.845** 1.865** 1.496 0.737 1.763**
(0.747) (0.741) (1.251) (0.881) (0.765)

Share low-skill immigrants 0.823*** 0.812*** 0.779** 0.669*** 0.960***
(0.218) (0.219) (0.319) (0.227) (0.247)

Share high-skill natives 1.845** 1.849** 1.681 1.645** 1.652**
(0.816) (0.809) (1.053) (0.696) (0.796)

Log employment 0.046 0.042 0.037 0.094** 0.051*
(0.029) (0.030) (0.028) (0.038) (0.028)

KP F-stat 25.39 25.49 17.06 27.91 23.95
N 88,932 71,544 80,688 80,892 81,108

CZ x Year FE Ø Ø Ø Ø Ø
Region x Industry x Year FE Ø Ø Ø Ø Ø

Note: This table reports coe�cients from OLS (Panel A) and 2SLS (Panel B and Panel C) regressions of specification (2.5).
The dependent variable is log GDP per worker and the endogenous variables are the high- and low-skill immigrant em-
ployment shares, the high-skill native employment share and log employment. Panel B reports coe�cients from 2SLS
regressions in which the three share variables are instrumented. Panel C additionally instruments log employment. Panel
B and C include the first-stage Kleibergen Paap F-statistics on the excluded instruments. The IV construction is described
in Section 2.4.2. Columns 1 replicates column 5 in Table 2.4 for comparison. Column 2 restricts the sample to CZ with
information on all eleven industries. Column 3-5 exclude the construction, manufacturing and the information sector, re-
spectively. All regressions are weighted by pre-employment size, that is, average employment between 2000-2004. Stan-
dard errors in parentheses are clustered at the (48) state level, and, ***, **, * denote statistical significance at the 1%, 5%
and 10% levels, respectively.
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Table 2.A.8. Robustness Sample Restrictions (w/o log employment)

(1) (2) (3) (4) (5)
baseline balanced excl. excl. excl.
sample sample Construction Manufacturing Information

Panel A: OLS Log GDP per Worker

Share high-skill immigrants 0.737*** 0.759*** 0.748*** 0.294* 0.775**
(0.246) (0.247) (0.248) (0.174) (0.299)

Share low-skill immigrants –0.099 –0.090 –0.093 0.149 –0.031
(0.124) (0.125) (0.158) (0.110) (0.107)

Share high-skill natives 0.656*** 0.684*** 0.661*** 0.405*** 0.690***
(0.085) (0.088) (0.094) (0.086) (0.091)

R
2 0.93 0.93 0.93 0.95 0.93
N 88,932 71,544 80,688 80,892 81,108

Panel B: 2SLS Log GDP per Worker

Share high-skill immigrants 2.147*** 2.134*** 1.836* 1.381** 2.082***
(0.590) (0.590) (1.045) (0.606) (0.648)

Share low-skill immigrants 0.854*** 0.841*** 0.826** 0.802*** 1.018***
(0.217) (0.218) (0.314) (0.192) (0.244)

Share high-skill natives 1.708** 1.726** 1.580 1.522** 1.463*
(0.838) (0.835) (1.057) (0.691) (0.816)

KP F-stat 26.31 26.06 18.21 28.74 23.75
N 88,932 71,544 80,688 80,892 81,108

CZ x Year FE Ø Ø Ø Ø Ø
Region x Industry x Year FE Ø Ø Ø Ø Ø

Note: This table reports coe�cients from OLS (Panel A) and 2SLS (Panel B) regressions of specification (2.6). The depen-
dent variable is log GDP per worker and the endogenous variables are the high- and low-skill immigrant employment
shares and the high-skill native employment share. Panel B reports coe�cients from 2SLS regressions in which the three
share variables are instrumented and includes the first-stage Kleibergen Paap F-statistics on the excluded instruments.
The IV construction is described in Section 2.4.2. Columns 1 replicates column 5 in Table 2.5 for comparison. Column 2
restricts the sample to CZ with information on all eleven industries. Column 3-5 exclude the construction, manufactur-
ing and the information sector, respectively. All regressions are weighted by pre-employment size, that is, average em-
ployment between 2000-2004. Standard errors in parentheses are clustered at the (48) state level, and, ***, **, * denote
statistical significance at the 1%, 5% and 10% levels, respectively.
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Table 2.A.9. Robustness GDP Interpolation

(1) (2) (3) (4) (5) (6)
Interpolation never exceeds: 5 tot. yrs. 5 tot. yrs. 2 tot. yrs. 2 tot. yrs. 1 tot. yr. 0 tot. yrs.
Interpolation never exceeds: 5 cons. yrs. 2 cons. yrs. 2 cons. yrs. 1 cons. yr. 1 cons. yr. 0 cons. yrs.

Panel A: OLS Log GDP per Worker

Share high-skill immigrants 0.935*** 0.905*** 0.907*** 0.908*** 0.898*** 0.932***
(0.263) (0.269) (0.270) (0.269) (0.271) (0.306)

Share low-skill immigrants –0.131 –0.132 –0.130 –0.125 –0.125 –0.113
(0.120) (0.120) (0.121) (0.121) (0.121) (0.121)

Share high-skill natives 0.690*** 0.697*** 0.700*** 0.702*** 0.699*** 0.718***
(0.082) (0.083) (0.083) (0.084) (0.085) (0.087)

Log employment –0.094*** –0.090*** –0.090*** –0.088*** –0.086*** –0.080***
(0.025) (0.025) (0.025) (0.025) (0.025) (0.023)

R
2 0.93 0.93 0.93 0.93 0.93 0.93
N 88,932 87,648 87,276 86,520 86,376 84,444

Panel B: 2SLS Log GDP per Worker

Share high-skill immigrants 2.864*** 2.547*** 2.517*** 2.488*** 2.278*** 1.947**
(0.576) (0.674) (0.673) (0.658) (0.727) (0.948)

Share low-skill immigrants 0.929*** 0.876*** 0.872*** 0.881*** 0.831*** 0.729***
(0.226) (0.224) (0.222) (0.219) (0.226) (0.222)

Share high-skill natives 1.384* 1.183 1.182 1.142 1.023 1.102
(0.757) (0.775) (0.783) (0.766) (0.776) (0.768)

Log employment –0.109*** –0.100*** –0.099*** –0.096*** –0.092*** –0.084**
(0.031) (0.031) (0.031) (0.031) (0.031) (0.032)

KP F-stat 30.01 22.67 22.46 25.76 27.96 31.99
N 88,932 87,648 87,276 86,520 86,376 84,444

Panel C: 2SLS Log GDP per Worker

Share high-skill immigrants 1.845** 1.431* 1.443* 1.411* 1.219 0.905
(0.747) (0.845) (0.832) (0.830) (0.892) (0.965)

Share low-skill immigrants 0.823*** 0.748*** 0.752*** 0.761*** 0.711*** 0.609***
(0.218) (0.225) (0.221) (0.222) (0.234) (0.208)

Share high-skill natives 1.845** 1.667* 1.665* 1.618* 1.498* 1.358*
(0.816) (0.830) (0.832) (0.822) (0.826) (0.784)

Log employment 0.046 0.064** 0.059** 0.062** 0.061** 0.047**
(0.029) (0.026) (0.025) (0.023) (0.023) (0.023)

KP F-stat 25.39 20.63 19.98 23.28 25.61 27.48
N 88,932 87,648 87,276 86,520 86,376 84,444

CZ x Year FE Ø Ø Ø Ø Ø Ø
Region x Industry x Year FE Ø Ø Ø Ø Ø Ø

Note: This table reports coe�cients from OLS (Panel A) and 2SLS (Panel B and Panel C) regressions of specification (2.5).
The dependent variable is log GDP per worker and the endogenous variables are the high- and low-skill immigrant em-
ployment shares, the high-skill native employment share and log employment. Panel B reports coe�cients from 2SLS
regressions in which the three share variables are instrumented. Panel C additionally instruments log employment. Panel
B and C include the first-stage Kleibergen Paap F-statistics on the excluded instruments. The IV construction is described
in Section 2.4.2. Columns 1 replicates column 5 in Table 2.4 for comparison. Column 2-5 alter the interpolation of sup-
pressed county by sector GDP information in the construction of the sample: The baseline sample (column 1) interpo-
lates GDP information but never over more than five consecutive years, and excludes county sectors with more than five
total years of suppressed data all together. Column 2 reports results for the subsample if the interpolation is restricted
to two consecutive and five total years, column 3 to two consecutive and two total years, and so on. The Appendix 2.B for
details about the interpolation methodology. The column header states the interpolation restrictions. All regressions are
weighted by pre-employment size, that is, average employment between 2000-2004. Standard errors in parentheses are
clustered at the (48) state level, and, ***, **, * denote statistical significance at the 1%, 5% and 10% levels, respectively.
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Table 2.A.10. Robustness GDP Interpolation (w/o log employment)

(1) (2) (3) (4) (5) (6)
Interpolation never exceeds: 5 tot. yrs. 5 tot. yrs. 2 tot. yrs. 2 tot. yrs. 1 tot. yr. 0 tot. yrs.
Interpolation never exceeds: 5 cons. yrs. 2 cons. yrs. 2 cons. yrs. 1 cons. yr. 1 cons. yr. 0 cons. yrs.

Panel A: OLS Log GDP per Worker

Share high-skill immigrants 0.737*** 0.718*** 0.719*** 0.724*** 0.719*** 0.751**
(0.246) (0.252) (0.252) (0.252) (0.254) (0.282)

Share low-skill immigrants –0.099 –0.100 –0.097 –0.092 –0.092 –0.086
(0.124) (0.124) (0.124) (0.124) (0.124) (0.124)

Share high-skill natives 0.656*** 0.665*** 0.668*** 0.672*** 0.670*** 0.691***
(0.085) (0.086) (0.086) (0.087) (0.087) (0.089)

R
2 0.93 0.93 0.93 0.93 0.93 0.93
N 88,932 87,648 87,276 86,520 86,376 84,444

Panel B: 2SLS Log GDP per Worker

Share high-skill immigrants 2.147*** 1.866*** 1.845*** 1.831*** 1.644** 1.278
(0.590) (0.663) (0.660) (0.657) (0.718) (0.820)

Share low-skill immigrants 0.854*** 0.798*** 0.797*** 0.808*** 0.759*** 0.652***
(0.217) (0.218) (0.215) (0.214) (0.224) (0.204)

Share high-skill natives 1.708** 1.479* 1.484* 1.433* 1.307 1.266
(0.838) (0.844) (0.850) (0.835) (0.842) (0.803)

KP F-stat 26.31 20.05 19.80 22.67 24.34 29.56
N 88,932 87,648 87,276 86,520 86,376 84,444

CZ x Year FE Ø Ø Ø Ø Ø Ø
Region x Industry x Year FE Ø Ø Ø Ø Ø Ø

Note: This table reports coe�cients from OLS (Panel A) and 2SLS (Panel B) regressions of specification (2.6). The depen-
dent variable is log GDP per worker and the endogenous variables are the high- and low-skill immigrant employment
shares and the high-skill native employment share. Panel B reports coe�cients from 2SLS regressions in which the three
share variables are instrumented and includes the first-stage Kleibergen Paap F-statistics on the excluded instruments.
The IV construction is described in Section 2.4.2. Columns 1 replicates column 5 in Table 2.5 for comparison. Column 2-5
alter the interpolation of suppressed county by sector GDP information in the construction of the sample: The baseline
sample (column 1) interpolates GDP information but never over more than five consecutive years, and excludes county
sectors with more than five total years of suppressed data all together. Column 2 reports results for the subsample if
the interpolation is restricted to two consecutive and five total years, column 3 to two consecutive and two total years,
and so on. The Appendix 2.B for details about the interpolation methodology. The column header states the interpola-
tion restrictions. All regressions are weighted by pre-employment size, that is, average employment between 2000-2004.
Standard errors in parentheses are clustered at the (48) state level, and, ***, **, * denote statistical significance at the
1%, 5% and 10% levels, respectively.
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Table 2.A.11. GDP per Hour Worked

(1) (2) (3) (4) (5) (6)

Panel A: OLS Log GDP per Hour Worked

Share high-skill immigrants 0.789*** 0.831*** 0.738*** 0.690*** 0.709*** 0.728***
(0.195) (0.203) (0.203) (0.180) (0.197) (0.181)

Share low-skill immigrants –0.244 –0.236 –0.238 –0.172* –0.181 –0.341**
(0.159) (0.168) (0.170) (0.098) (0.108) (0.130)

Share high-skill natives 0.479*** 0.542*** 0.551*** 0.503*** 0.519*** 0.480***
(0.096) (0.102) (0.101) (0.064) (0.069) (0.058)

Log Hours Worked –0.107*** –0.108*** –0.101*** –0.116*** –0.116*** –0.170***
(0.023) (0.023) (0.024) (0.024) (0.024) (0.022)

R
2 0.89 0.89 0.90 0.91 0.91 0.93
N 88,932 88,932 88,932 88,932 88,932 88,656

Panel B: 2SLS Log GDP per Hour Worked

Share high-skill immigrants 3.575*** 3.513*** 3.316*** 2.895*** 2.876*** 3.821***
(0.855) (0.908) (0.891) (0.528) (0.539) (0.721)

Share low-skill immigrants 0.539 0.527 0.496 0.850*** 0.848*** 0.968***
(0.510) (0.535) (0.536) (0.218) (0.219) (0.329)

Share high-skill natives 1.852** 1.892** 1.868** 1.332* 1.323* 1.744
(0.724) (0.714) (0.727) (0.725) (0.737) (1.177)

Log Hours Worked –0.124*** –0.124*** –0.118*** –0.132*** –0.131*** –0.204***
(0.023) (0.023) (0.024) (0.029) (0.029) (0.032)

KP F-stat 20.23 20.84 21.26 36.46 36.53 24.55
N 88,932 88,932 88,932 88,932 88,932 88,656

Panel C: 2SLS Log GDP per Hour Worked

Share high-skill immigrants 2.274*** 2.162** 2.119** 1.756** 1.740** 2.289***
(0.831) (0.862) (0.840) (0.679) (0.699) (0.548)

Share low-skill immigrants 0.236 0.210 0.218 0.739*** 0.738*** 0.821***
(0.600) (0.613) (0.593) (0.205) (0.208) (0.299)

Share high-skill natives 2.475*** 2.494*** 2.380*** 1.900** 1.884** 2.338*
(0.717) (0.697) (0.699) (0.806) (0.816) (1.331)

Log Hours Worked 0.058* 0.054 0.038 0.040 0.040 –0.003
(0.032) (0.034) (0.035) (0.026) (0.026) (0.027)

KP F-stat 13.48 14.03 14.27 23.43 23.33 20.84
N 88,932 88,932 88,932 88,932 88,932 88,656

CZ FE Ø Ø Ø Ø Ø Ø
Industry FE Ø Ø Ø Ø Ø Ø
Year FE Ø Ø Ø Ø Ø Ø
CZ x Year FE Ø Ø Ø Ø Ø
Industry x Year FE Ø Ø Ø Ø
Region x Industry FE Ø Ø Ø
Region x Industry x Year FE Ø Ø
State x Industry x Year FE Ø

Note: This table reports coe�cients from OLS (Panel A) and 2SLS (Panel B and Panel C) regressions of specification (2.5).
The dependent variable is log GDP per hour worked and the endogenous variables are the high- and low-skill immigrant
employment shares, the high-skill native employment share and log employment. Panel B reports coe�cients from 2SLS
regressions in which the three share variables are instrumented. Panel C additionally instruments log employment. Panel
B and C include the first-stage Kleibergen Paap F-statistics on the excluded instruments. The IV construction is described
in Section 2.4.2. All regressions are weighted by pre-employment size, that is, average employment between 2000-2004.
Standard errors in parentheses are clustered at the (48) state level, and, ***, **, * denote statistical significance at the
1%, 5% and 10% levels, respectively.
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Table 2.A.12. GDP per Hour Worked (w/o log employment)

(1) (2) (3) (4) (5) (6)

Panel A: OLS Log GDP per Hour Worked

Share high-skill immigrants 0.620*** 0.653*** 0.567*** 0.481*** 0.493*** 0.420**
(0.185) (0.192) (0.194) (0.165) (0.181) (0.181)

Share low-skill immigrants –0.213 –0.204 –0.207 –0.121 –0.127 –0.304**
(0.147) (0.155) (0.157) (0.108) (0.117) (0.144)

Share high-skill natives 0.482*** 0.543*** 0.551*** 0.470*** 0.485*** 0.407***
(0.098) (0.105) (0.103) (0.066) (0.072) (0.059)

R
2 0.88 0.89 0.89 0.90 0.91 0.93
N 88,932 88,932 88,932 88,932 88,932 88,656

Panel B: 2SLS Log GDP per Hour Worked

Share high-skill immigrants 2.690*** 2.573*** 2.411*** 2.021*** 2.007*** 2.268***
(0.857) (0.900) (0.890) (0.558) (0.576) (0.522)

Share low-skill immigrants 0.333 0.307 0.286 0.765*** 0.764*** 0.819***
(0.588) (0.610) (0.607) (0.202) (0.204) (0.302)

Share high-skill natives 2.276*** 2.311*** 2.255*** 1.768** 1.752** 2.346*
(0.748) (0.736) (0.753) (0.815) (0.825) (1.346)

KP F-stat 19.64 19.95 20.10 30.13 29.96 25.17
N 88,932 88,932 88,932 88,932 88,932 88,656

CZ FE Ø Ø Ø Ø Ø Ø
Industry FE Ø Ø Ø Ø Ø Ø
Year FE Ø Ø Ø Ø Ø Ø
CZ x Year FE Ø Ø Ø Ø Ø
Industry x Year FE Ø Ø Ø Ø
Region x Industry FE Ø Ø Ø
Region x Industry x Year FE Ø Ø
State x Industry x Year FE Ø

Note: This table reports coe�cients from OLS (Panel A) and 2SLS (Panel B) regressions of specification (2.6). The depen-
dent variable is log GDP per hour worked and the endogenous variables are the high- and low-skill immigrant employ-
ment shares and the high-skill native employment share. Panel B reports coe�cients from 2SLS regressions in which the
three share variables are instrumented and includes the first-stage Kleibergen Paap F-statistics on the excluded instru-
ments. The IV construction is described in Section 2.4.2. All regressions are weighted by pre-employment size, that is,
average employment between 2000-2004. Standard errors in parentheses are clustered at the (48) state level, and, ***,
**, * denote statistical significance at the 1%, 5% and 10% levels, respectively.
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Table 2.A.13. County-Level Analysis

(1) (2) (3) (4) (5) (6)

Panel A: OLS Log GDP per Worker

Share high-skill immigrants 0.440*** 0.467*** 0.420*** 0.422*** 0.407*** 0.465***
(0.080) (0.086) (0.107) (0.109) (0.103) (0.107)

Share low-skill immigrants –0.180* –0.165 –0.118 –0.117 –0.212*** –0.286***
(0.103) (0.111) (0.079) (0.080) (0.073) (0.095)

Share high-skill natives 0.225*** 0.262*** 0.249*** 0.252*** 0.226*** 0.204***
(0.028) (0.033) (0.033) (0.034) (0.030) (0.034)

Log employment –0.199*** –0.192*** –0.211*** –0.211*** –0.228*** –0.240***
(0.017) (0.018) (0.017) (0.017) (0.016) (0.016)

R
2 0.81 0.82 0.83 0.83 0.84 0.87
N 292,723 292,315 292,315 292,315 292,315 281,107

Panel B: 2SLS Log GDP per Worker

Share high-skill immigrants 3.240*** 3.148*** 3.123*** 3.135*** 3.338*** 3.692***
(0.725) (0.760) (0.705) (0.708) (0.757) (0.840)

Share low-skill immigrants 0.790*** 0.792*** 0.967*** 0.973*** 0.982*** 1.097***
(0.271) (0.294) (0.218) (0.219) (0.214) (0.375)

Share high-skill natives –0.126 –0.124 0.520 0.538 0.551 0.871
(0.577) (0.629) (0.536) (0.542) (0.660) (0.965)

Log employment –0.207*** –0.199*** –0.219*** –0.219*** –0.239*** –0.256***
(0.019) (0.019) (0.020) (0.020) (0.019) (0.019)

KP F-stat 19.26 20.14 25.38 25.33 16.13 7.40
N 292,723 292,315 292,315 292,315 292,315 281,107

Panel C: 2SLS Log GDP per Worker

Share high-skill immigrants 1.245* 1.215 1.761* 1.774* 1.836* 1.519
(0.709) (0.757) (0.995) (1.006) (1.072) (1.141)

Share low-skill immigrants 0.422 0.424 0.961*** 0.970*** 1.027*** 1.125***
(0.400) (0.382) (0.250) (0.253) (0.273) (0.397)

Share high-skill natives 1.709*** 1.443*** 1.807*** 1.837*** 2.128*** 3.206**
(0.479) (0.480) (0.610) (0.624) (0.789) (1.502)

Log employment 0.024 –0.002 –0.047 –0.046 –0.066 –0.061
(0.077) (0.078) (0.064) (0.064) (0.063) (0.055)

KP F-stat 9.26 9.12 8.80 8.62 4.31 1.76
N 292,723 292,315 292,315 292,315 292,315 281,107

County FE Ø Ø Ø Ø Ø Ø
Industry FE Ø Ø Ø Ø Ø Ø
Year FE Ø Ø Ø Ø Ø Ø
County x Year FE Ø Ø Ø Ø Ø
Industry x Year FE Ø Ø Ø Ø Ø
Region x Industry FE Ø Ø Ø Ø
Region x Industry x Year FE Ø Ø Ø
State x Industry x Year FE Ø Ø
CZ x Industry x Year FE Ø

Note: This table reports coe�cients from OLS (Panel A) and 2SLS (Panel B and Panel C) regressions of specification (2.5) at
the county-sector-year level. For consistency, only county-sector cells that (i) underlie the CZ-sector main analysis panel
and (ii) have at least ten headcount employment in all years are included. The dependent variable is log GDP per worker
and the endogenous variables are the high- and low-skill immigrant employment shares, the high-skill native employ-
ment share and log employment. Panel B reports coe�cients from 2SLS regressions in which the three share variables are
instrumented. Panel C additionally instruments log employment. Panel B and C include the first-stage Kleibergen Paap
F-statistics on the excluded instruments. The IV construction is described in Section 2.4.2. All regressions are weighted
by pre-employment size, that is, average employment between 2000-2004. Standard errors in parentheses are clustered
at the (48) state level, and, ***, **, * denote statistical significance at the 1%, 5% and 10% levels, respectively.
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Table 2.A.14. County-Level Analysis (w/o log employment)

(1) (2) (3) (4) (5) (6)

Panel A: OLS Log GDP per Worker

Share high-skill immigrants 0.304*** 0.328*** 0.231*** 0.230*** 0.184** 0.194**
(0.068) (0.073) (0.078) (0.080) (0.077) (0.082)

Share low-skill immigrants –0.080 –0.057 –0.024 –0.021 –0.134 –0.201*
(0.100) (0.108) (0.101) (0.103) (0.093) (0.110)

Share high-skill natives 0.248*** 0.286*** 0.244*** 0.247*** 0.204*** 0.162***
(0.029) (0.035) (0.033) (0.034) (0.030) (0.032)

R
2 0.79 0.80 0.81 0.81 0.83 0.85
N 292,723 292,315 292,315 292,315 292,315 281,107

Panel B: 2SLS Log GDP per Worker

Share high-skill immigrants 1.449** 1.194 1.394 1.415 1.264 0.838
(0.714) (0.757) (0.838) (0.847) (1.029) (1.198)

Share low-skill immigrants 0.459 0.420 0.959*** 0.970*** 1.044*** 1.134***
(0.452) (0.472) (0.266) (0.269) (0.313) (0.421)

Share high-skill natives 1.522** 1.460** 2.154*** 2.180*** 2.730** 3.938**
(0.578) (0.635) (0.783) (0.797) (1.057) (1.726)

KP F-stat 19.74 20.45 23.00 22.76 15.65 6.01
N 292,723 292,315 292,315 292,315 292,315 281,107

County FE Ø Ø Ø Ø Ø Ø
Industry FE Ø Ø Ø Ø Ø Ø
Year FE Ø Ø Ø Ø Ø Ø
County x Year FE Ø Ø Ø Ø Ø
Industry x Year FE Ø Ø Ø Ø Ø
Region x Industry FE Ø Ø Ø Ø
Region x Industry x Year FE Ø Ø Ø
State x Industry x Year FE Ø Ø
CZ x Industry x Year FE Ø

Note: This table reports coe�cients from OLS (Panel A) and 2SLS (Panel B) regressions of specification (2.6). For consis-
tency, only county-sector cells that (i) underlie the CZ-sector main analysis panel and (ii) have at least ten headcount em-
ployment in all years from 2005-2016 are included. The dependent variable is log GDP per hour worked and the endoge-
nous variables are the high- and low-skill immigrant employment shares and the high-skill native employment share.
Panel B reports coe�cients from 2SLS regressions in which the three share variables are instrumented and includes the
first-stage Kleibergen Paap F-statistics on the excluded instruments. The IV construction is described in Section 2.4.2. All
regressions are weighted by pre-employment size, that is, average employment between 2000-2004. Standard errors in
parentheses are clustered at the (48) state level, and, ***, **, * denote statistical significance at the 1%, 5% and 10% lev-
els, respectively.
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Table 2.A.15. Robustness Long Panel

(1) (2) (3) (4) (5) (6)

Panel A: OLS Log GDP per Worker

Share high-skill immigrants 1.270*** 1.327*** 1.165*** 1.101*** 1.105*** 1.064***
(0.221) (0.231) (0.231) (0.226) (0.240) (0.268)

Share low-skill immigrants –0.207 –0.184 –0.202 –0.110 –0.117 –0.328**
(0.184) (0.196) (0.199) (0.113) (0.120) (0.130)

Share high-skill natives 0.717*** 0.795*** 0.801*** 0.689*** 0.710*** 0.636***
(0.122) (0.132) (0.129) (0.081) (0.088) (0.086)

Log employment –0.086*** –0.088*** –0.078*** –0.089*** –0.088*** –0.133***
(0.022) (0.023) (0.023) (0.023) (0.023) (0.022)

R
2 0.91 0.91 0.92 0.93 0.93 0.95
N 103,402 103,402 103,402 103,402 103,402 103,057

Panel B: 2SLS Log GDP per Worker

Share high-skill immigrants 3.811*** 3.761*** 3.407*** 3.208*** 3.190*** 4.109***
(0.770) (0.911) (0.883) (0.484) (0.491) (1.001)

Share low-skill immigrants 0.642 0.647 0.574 1.019*** 1.021*** 1.167***
(0.505) (0.550) (0.558) (0.238) (0.238) (0.427)

Share high-skill natives 1.611** 1.641*** 1.635** 1.183* 1.180 1.412
(0.630) (0.605) (0.612) (0.696) (0.707) (1.156)

Log employment –0.102*** –0.103*** –0.092*** –0.103*** –0.101*** –0.162***
(0.022) (0.022) (0.023) (0.028) (0.028) (0.031)

KP F-stat 32.26 34.08 34.33 30.41 29.94 24.34
N 103,402 103,402 103,402 103,402 103,402 103,057

Panel C: 2SLS Log GDP per Worker

Share high-skill immigrants 2.711*** 2.564*** 2.366*** 2.345*** 2.327*** 2.926***
(0.801) (0.871) (0.830) (0.492) (0.506) (0.711)

Share low-skill immigrants 0.373 0.348 0.317 0.996*** 0.997*** 1.176***
(0.618) (0.646) (0.627) (0.230) (0.230) (0.389)

Share high-skill natives 2.408*** 2.419*** 2.275*** 1.910** 1.897** 2.261*
(0.526) (0.504) (0.502) (0.765) (0.774) (1.268)

Log employment 0.076*** 0.074** 0.057* 0.049** 0.049** 0.020
(0.027) (0.027) (0.029) (0.023) (0.023) (0.022)

KP F-stat 22.49 23.00 22.91 16.88 16.65 15.72
N 103,402 103,402 103,402 103,402 103,402 103,057

CZ FE Ø Ø Ø Ø Ø Ø
Industry FE Ø Ø Ø Ø Ø Ø
Year FE Ø Ø Ø Ø Ø Ø
CZ x Year FE Ø Ø Ø Ø Ø
Industry x Year FE Ø Ø Ø Ø
Region x Industry FE Ø Ø Ø
Region x Industry x Year FE Ø Ø
State x Industry x Year FE Ø

Note: This table reports coe�cients from OLS (Panel A) and 2SLS (Panel B and Panel C) regressions of specification (2.5)
for the long panel from 2005-2019 described in detail in Appendix 2.B. The sample excludes county-sector cells which
have suppressed employment information between 2017-2019 when aggregating to the CZ-sector level. For consistency,
only CZ-sector cells with at least ten headcount employment are included. The dependent variable is log GDP per worker
and the endogenous variables are the high- and low-skill immigrant employment shares, the high-skill native employ-
ment share and log employment. Panel B reports coe�cients from 2SLS regressions in which the three share variables are
instrumented. Panel C additionally instruments log employment. Panel B and C include the first-stage Kleibergen Paap
F-statistics on the excluded instruments. The IV construction is described in Section 2.4.2. All regressions are weighted
by pre-employment size, that is, average employment between 2000-2004. Standard errors in parentheses are clustered
at the (48) state level, and, ***, **, * denote statistical significance at the 1%, 5% and 10% levels, respectively.
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Table 2.A.16. Robustness Long Panel (w/o log employment)

(1) (2) (3) (4) (5) (6)

Panel A: OLS Log GDP per Worker

Share high-skill immigrants 1.124*** 1.174*** 1.023*** 0.920*** 0.920*** 0.800***
(0.215) (0.225) (0.226) (0.212) (0.224) (0.261)

Share low-skill immigrants –0.180 –0.157 –0.179 –0.074 –0.079 –0.300**
(0.173) (0.183) (0.188) (0.117) (0.123) (0.143)

Share high-skill natives 0.726*** 0.802*** 0.805*** 0.665*** 0.686*** 0.583***
(0.125) (0.135) (0.132) (0.083) (0.090) (0.089)

R
2 0.90 0.91 0.91 0.93 0.93 0.94
N 103,402 103,402 103,402 103,402 103,402 103,057

Panel B: 2SLS Log GDP per Worker

Share high-skill immigrants 3.182*** 3.064*** 2.763*** 2.622*** 2.608*** 3.054***
(0.773) (0.876) (0.850) (0.426) (0.438) (0.714)

Share low-skill immigrants 0.488 0.473 0.415 1.003*** 1.005*** 1.175***
(0.572) (0.611) (0.610) (0.227) (0.227) (0.391)

Share high-skill natives 2.067*** 2.094*** 2.031*** 1.677** 1.663** 2.168*
(0.580) (0.559) (0.571) (0.763) (0.771) (1.261)

KP F-stat 31.61 32.38 32.42 22.53 22.21 21.35
N 103,402 103,402 103,402 103,402 103,402 103,057

CZ FE Ø Ø Ø Ø Ø Ø
Industry FE Ø Ø Ø Ø Ø Ø
Year FE Ø Ø Ø Ø Ø Ø
CZ x Year FE Ø Ø Ø Ø Ø
Industry x Year FE Ø Ø Ø Ø
Region x Industry FE Ø Ø Ø
Region x Industry x Year FE Ø Ø
State x Industry x Year FE Ø

Note: This table reports coe�cients from OLS (Panel A) and 2SLS (Panel B) regressions of specification (2.6) for the long
panel from 2005-2019 described in detail in Appendix 2.B. The sample excludes county-sector cells which have sup-
pressed employment information between 2017-2019 when aggregating to the CZ-sector level. For consistency, only CZ-
sector cells with at least ten headcount employment are included. The dependent variable is log GDP per hour worked
and the endogenous variables are the high- and low-skill immigrant employment shares and the high-skill native em-
ployment share. Panel B reports coe�cients from 2SLS regressions in which the three share variables are instrumented
and includes the first-stage Kleibergen Paap F-statistics on the excluded instruments. The IV construction is described
in Section 2.4.2. All regressions are weighted by pre-employment size, that is, average employment between 2000-2004.
Standard errors in parentheses are clustered at the (48) state level, and, ***, **, * denote statistical significance at the
1%, 5% and 10% levels, respectively.
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Appendix 2.B Data

In this appendix we outline the variable and sample construction, including the han-
dling of missing and suppressed information.

2.B.1 GDP Data

We obtain county by sector real GDP estimates from the BEA.13 For a description of
the construction of the estimates see Section 2.2.1 and Panek, Rodriguez, and Baum-
gardner (2019). The raw data contains chained 2012 USD estimates of local GDP
at roughly the two digit NAICS code sector level and aggregations thereof for the
years 2001-2019. Industry classification is based on the 2012 NAICS code system.
Because the BEA suppresses information to protect confidentiality we use several
aggregations of two digit NAICS sectors. For reasons explained below we exclude
Agriculture, Forestry, Fishing and Hunting (11), Mining, Quarrying and Oil and Gas
Extraction (21), Utilities(22) and Public Services (92), leaving us with the following
industries: Construction (23), Manufacturing (31-33), Wholesale Trade (42), Retail
Trade (44-45), Transportation, Warehousing (48-49), Information (51), Finance, In-
surance, Real Estate and Rental and Leasing (52-53), Professional, Scientific, and
Technical Services, Management of Companies and Enterprises and Administrative
and Support and Waste Management and Remediation Services (54-56), Education
Services, Health Care and Social Assistance (61-62), Arts, Entertainment and Recre-
ation, and Accommodation and Food Services (71-72) and Other Services (81).

On the geographical level, we restrict attention to the mainland United States,
dropping Alaska and Hawaii, as well as Washington D.C. from the analysis. For the
state of Virginia the BEA uses an aggregated delineation of counties which group
together independent cities with their surrounding county in several but not all in-
stances.1⁴ We adopt this aggregation throughout when working at the county level.

The final county by sector GDP dataset contains 643,511 observations for 3079
counties, 11 sectors and 19 years (2001-2019). Out of these, approximately 13% are
suppressed due to confidentiality. The suppression is roughly balanced across years
and amounts to 12.8% for our main sample period from 2005-2016. We reduce
the number of missing/suppressed cells via interpolation. Our interpolation relies
on employment information, which is never suppressed, and is outlined in Section
2.B.6.1 below.

13. Datawas downloaded from the BEA’s website at https://apps.bea.gov/regional/downloadzip.cfm,
on June 21, 2021.

14. For example, Albemarle County (fips code: 51003) and Charlottesville (fips code: 51540)
form “Albemarle + Charlottesville” (fips code: 51901). All 519xx fips codes refer to such combinations
of independent cities and surrounding counties.
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2.B.2 Employment Data

Our measure for headcount employment comes from the County Business Pattern
(CBP) database from the US Census Bureau. Specifically, we use data published by
Eckert et al. (2021) who impute suppressed employment cells in the CBP data.1⁵ We
use the yearly native NAICS code data and aggregate it up to the same two digit level
as the GDP information. We devote some care to matching GDP and employment
information because NAICS code classifications do not differentiate between private
and public ownership. Since the CBP data covers only private non-farm employment
we exclude NAICS sector Agriculture, Forestry, Fishing and Hunting (11) as well as
several other sectors that are likely to contain significant fraction of public employ-
ment. Specifically, we exclude the following sectors from the analysis: Agricultural,
Forestry, Fishing and Hunting (11), Mining, Quarrying and Oil and Gas Extraction
(21), Utilities (22) and Public Administration (92). Fortunately, the BEA’s GDP es-
timates do explicitly exclude public contributions to GDP for several sectors which
insures a close link between the BEA and CBP data. The BEA explicitly exclude public
enterprises from the following sectors’ GDP estimates: Management of Companies
and Enterprises (55), Administrative and Support and Waste Management and Re-
mediation Services (56), Education Services (61), Hospitals (622), Other Services
(81).

While raw CBP data is available until and including 2019, the imputed data by
Eckert et al. (2021) covers only the years until and including 2016. This is because
the US Census Bureau significantly altered its reporting and suppression guidelines
from 2017 onward. Our main sample therefore restricts attention to the years until
and including 2016. We replicate our main findings in Appendix Table 2.A.15 and
Table 2.A.16 for a subsample of the data unaffected by the reporting change. We
describe how we construct our long panel in Section 2.B.8 below.

2.B.3 Employment Shares

The information on the composition of employment comes from the 2000 Census
and the American Community Survey (ACS) waives 2005-2019 available via the
Integrated Public Use Microdata Series (IPUMS) Ruggles et al. (2021). From 2001
until 2004 the ACS does not provide adequately fine geographic information.

We restrict the sample to working-age individuals aged 15 to 64 with known
place-of-work in the mainland United States (excl. Washington D.C.). Because BEA’s
GDP data is place-of-work, rather than place-of-residence based we adopt this con-
cept when constructing our employment share estimates in the ACS / Census data.
Concretely, we construct estimates of the total number of workers (as well as the
total number of hours worked for our hours measure), in a place-of-work public

15. Eckert et al. (2021)’s data is publicly available at https://fpeckert.me/cbp and was down-
loaded on November 5, 2019.
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use micro area (PWPUMA) by industry, education and country of birth. We use the
same eleven two-digit native NAICS code industries and aggregations thereof as in
the BEA and CBP data. Our definition of high-skill encompasses all individual with
at least some years of college education, and low-skill correspondingly covers indi-
vidual with no college education. For the construction of our shift share instrumental
variable (see Section 2.4.2) we reply on estimates of the total number of workers
for the 36 foreign counties that make up the largest share of the immigrant work-
force in the US. Specifically, we construct estimates of the number of high- and low-
skill workers in each PWPUMA by industry year for the following countries of birth:
Brazil, Canada, China, Colombia, Cuba, Dominican Republic, Ecuador, El Salvador,
Ethiopia, Germany, Guatemala, Guyana, Haiti, Honduras, India, Iran, Italy, Jamaica,
Japan, North Korea, South Korea, Mexico, Nicaragua, Nigeria, Pakistan, Peru, Philip-
pines, Poland, Puerto Rico, Russia, Thailand, Trinidad and Tobago, United Kingdom,
Venezuela, Vietnam and Yugoslavia.

Census changed its PWPUMA codes from 2012 onward. Prior to 2012, there are
1237 unique PWPUMAs, post 2012 there are 974. For each coding scheme we have
eight years of data (2000, 2005-11 and 2012-2019). We aggregate industries to the
same eleven sectors as in the BEA data and differentiate a total of 38 countries of
birth (36 countries listed above plus USA and “others”). The PWPUMA industry by
country of birth panel has a total of 7,393,584 cells.

2.B.4 Missing and Suppressed Employment Share Information

There are a few instances (approx. 3%) in which the ACS does not contain a single
observations for a PWPUMA industry cell and our employment share estimates are
thus missing. We use interpolation and extrapolation to fill in these missing cells.
To reduce noise in the procedure we proceed as follows. We set share estimates to
missing throughout if a PWPUMA industry has less than four (out of possible eight)
years with non-missing information. We fill in all intermediate years by linear in-
terpolation between non-missing year observations. For the extrapolation of share
estimates we have to ensure that they fall within [0, 1]. Because natives make up
the fast majority in the sample we extrapolate the native share in employment and
truncate the extrapolation at 0 or 1 whenever it exceeds these boundaries. We then
calculate the implied share of the foreign-born employment share and distribute it to
the individual foreign countries based on the average foreign country distribution
within PWPUMA industry cell over the years with non-missing data. We proceed
analogously and construct education-specific share estimates by using the average
education of native and foreign-born labor in a PWPUMA industry cell to extrapo-
late.
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2.B.5 Other Data Sources

We use several other data sources in this work. In particular, the BEA also provides
estimates of nominal GDP and nominal worker compensation by county sector year,
which we use in Table 2.8. The data is available at BEA’s website at the same address
at the real GDP data above. We also rely on county population estimates from the
Census Bureau for the construction of our instrumental variable.1⁶ For this we re-
strict attention to individuals between 15 and 64 years of age as in the employment
share construction.

2.B.6 Main Sample

For our main sample we combine the real GDP, employment and employment shares
into a county by sector year panel covering 3079 counties and 11 industries over
the years 2005 to 2016. For an overview on data availability by year see Table 2.A.1.
Before aggregating all variables at the CZ by sector level, we use interpolation to
deal with suppressed GDP information.

2.B.6.1 GDP Suppression

As mentioned, approximately 13% of county sector cells have suppressed GDP data.
We reduce the number of suppressed cells via interpolation. In doing so we rely on
employment data from the CBP which is never subject to suppression (until 2016).
We thus interpolate on a GDP per worker basis. This is important due to the non-
random nature of suppression, e.g. due to firm exist.

For our main sample we proceed as follows. We first exclude all county sector
cells with more than a total of five years of suppressed GDP information between
2005-2016. We calculate GDP per worker for all non-missing years. We then use
linear interpolation of GDP per worker for intermediate years of missing GDP per
worker and multiply employment counts with the interpolated GDP per worker es-
timate to do obtain interpolated GDP data. When doing so we never interpolate
for more than five consecutive years. Lastly we only keep county sectors with non-
missing GDP (raw and interpolated) information for all years between 2005-2016.
We probe the robustness of our findings w.r.t. the exact choice of interpolation restric-
tions in Appendix Table 2.A.9 and Table 2.A.10 in which we repeat the interpolation
for more stringent exclusion criteria.

16. We downloaded Census county population data by age at
https://www.census.gov/data/datasets/time-series/demo/popest/intercensal-2000-
2010-counties.html for 2000-2010 and https://www.census.gov/data/datasets/time-
series/demo/popest/2010s-counties-detail.html for 2010-2019 on January 21, 2021.
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2.B.7 Sample Restrictions

Apart from the restrictions imposed by data availability, see Section 2.B.6.1, we re-
strict the sample as follows. First, we impose a minimum number of employment
headcount across all years. That is, we keep only CZ sectors with headcount em-
ployment of at least ten in all years between 2005 and 2016. Second, to insure that
we have sufficient variation within CZ across sectors we restrict attention to CZ with
data on at least five different industries (of the eleven above). We probe robustness
to this restriction in Appendix Table 2.A.7 and Table 2.A.8.

2.B.8 Long Panel

As mentioned above, we probe the robustness of our findings on a longer panel
spanning 2005-2019, which is not affected by the change in suppression protocol
in the CBP employment data. To this end, we repeat the construction of our main
sample (incl. the sample restrictions above) but additionally require there to be no
suppressed or omitted employment information after 2016 before collapsing the
panel to the CZ sector level. This implies that a CZ sector might contain slightly
different county sectors in the main vs. the long panel even for the overlapping
years from 2005 to 2016. We report our results for the long panel in Appendix
Table 2.A.15 and Table 2.A.16.



.

Chapter 3

Ranking Mechanisms for Coupled
Binary Decisions?

3.1 Introduction

Almost all collective decisions in society – be it in committees, parliaments or ref-
erenda – are made by means of (simple) Majority Rule. We base decisions on how
many individuals favor or oppose a reform rather than how much everyone cares.
This blindness to preference intensities casts doubt on the efficiency of voting as an
aggregation mechanism. Consider a scenario in which 49% of individuals oppose a
proposed reformwith drastic consequences for each individual. A majority of 51% of
people marginally benefits and therefore supports the reform. Nevertheless it seems
sensible to decide in favor of the minority. This inherent weakness of direct democ-
racy based on Majority Rule has long been recognized as the Tyranny of the Majority
(De Tocqueville (1835)).

Advocates of Majority Voting point out several desirable properties. First, Ma-
jority Voting takes everyone’s opinion into account and treats them equally. Second,
Majority Voting respects consensus. Third, Majority Voting provides individuals with
an incentive to reveal their preferences truthfully. For instance, if one were to naively
ask how much everyone cares about a given reform, individuals would certainly like
to exaggerate their feelings to sway the decision in their favor regardless of how
much they actually cared. So is it at all possible to elicit preference intensities truth-
fully while maintaining all desirable properties of Majority Voting?

This paper gives an affirmative answer to this question for the practically relevant
class of coupled binary decisions. Consider a set of agents who face a fixed agenda
of several reforms that have to be approved or rejected. We study a class of Rank-

? We thank Albin Erlanson, Thomas Gräber, Rafael Hortala-Vallve, Andreas Kleiner, Benny
Moldovanu, Balazs Szentes as well as seminar audiences at University Bonn, LSE, the 13th Meeting of
the Society for Social Choice and Welfare in Lund and at the 10th Conference on Economic Design in
York. Financial support through the Bonn Graduate School of Economics is gratefully acknowledged.
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ing Mechanisms which are sensitive to preference intensities while maintaining all
desirable properties mentioned above. Agents communicate which alternative they
prefer in each decision problem. Additionally, they report a priority ranking over
decision problems by ranking each problem according to the absolute difference in
utilities between the reform and the status quo. These rankings are then used to
assign weights to agents’ votes in a voting mechanism. In each decision problem the
reform is implemented if and only if the sum of weighted votes in favor of imple-
mentation outweighs the one supporting the status quo. Any Ranking Mechanism
is thus implementable as a weighted voting procedure. Rather than deciding upon
each reform separately a Ranking Mechanism makes use of the linkage of problems
by eliciting cardinal information of preferences. In particular, the approval of any
reform depends on both the number of agents in favor and their relative preference
intensity towards the issue (as reflected by the rank they assigned to that particular
problem).

This paper establishes two sets of results. For the case of identical decision prob-
lems we prove that the sincere strategy is a Bayes-Nash equilibrium of any Ranking
Mechanism. Agents find it optimal to rank problems according to the absolute differ-
ence in utilities between the two alternatives as long as all other agents do the same.
We then maximize over the class of Ranking Mechanisms and derive a closed form
solution for the ex-ante efficient weight vector. The optimal Ranking Mechanism
ex-ante Pareto dominates Separate Majority Voting for arbitrary number of agents
and decision problems. Further, it achieves full efficiency in the limit as the number
of decision problems tends to infinity.

We then extend our idea of ranking to non-identical decision problems. We pro-
pose a generalized class of Randomized Ranking Mechanisms all of which induce
sincere equilibrium behavior. Intuitively, randomization is such that from the per-
spective of all other agents each agent reports every priority ranking with equal
probability. We derive the ex-ante efficient Randomized Ranking Mechanism and
provide a closed form solution for the optimal weight vector. The optimal Random-
ized Ranking Mechanism ex-ante Pareto dominates Separate Majority Voting for
any number of agents and decision problems.

The optimal (Randomized) Ranking Mechanism respects both anonymity and
unanimity. Moreover, under mild conditions it allows for strong minorities to over-
turn weak majorities and therefore mitigates the Tyranny of the Majority. Our pro-
posed mechanism is the first to successfully link both identical and non-identical
decision problem for any number of agents and problems.

Further we document that the picture changes under a different equilibrium
concept. Building on a result by Hortala-Vallve (2010) we show that under mild con-
ditions Separate Majority Voting is ex-ante Pareto efficient in the class of strategy-
proof mechanisms. In other words, the requirement that agents find truth-telling
a dominant strategy makes it impossible to exploit the coupled structure and pre-
cludes any use of cardinal information.
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The rest of the paper is organized as follows. Section 3.2 reviews the existing
literature. The formal model is presented in Section 3.3. Section 3.4 presents two
impossibility results and may be seen as a theoretical justification for our interest in
the topic. In Section 3.5 we study the class of Ranking Mechanisms linking identical
decision problems. We generalize our results to non-identical decision problems in
Section 3.6. Section 3.7 concludes.

3.2 Related Literature

The conceptual idea of evaluating efficiency of voting rules in terms of ex-ante ex-
pected welfare goes back to Rae (1969). Our work adds to a series of recent papers
studying the ex-ante welfare properties of voting schemes in environments with
cardinal preferences (Gershkov, Moldovanu, and Shi (2017), Kim (2017) among
others).

The traditional literature on social choice has focused on environments with
ordinal preferences over alternatives. Classical impossibility results include the fa-
mous Gibbard-Satterthwaite-Theorem (Gibbard (1973), Satterthwaite (1975)) and
subsequent work demonstrating its robustness on cardinal type spaces with respect
to randomization (Hylland (1980)) and Bayesian implementation of ordinal mech-
anisms (Majumdar and Sen (2004)).

Coupling multiple decisions alone is not sufficient to overcome impossibility re-
sults. Barberà, Sonnenschein, and Zhou (1991) study a setting in which agents have
separable, ordinal preferences over subsets of objects. In our terminology, an object
is a decision problem which is contained in the subset if and only if the reform in
that decision problem is implemented. Their main result characterizes the set of
strategy-proof mechanisms and implies that only the most preferred subset of each
voter can be elicited truthfully. In a cardinal framework with a finite number of bi-
nary decisions Hortala-Vallve (2010) shows that any strategy-proof mechanism can-
not be both unanimous and sensitive to preference intensities. As shown in Section
3.4 his results imply that (i) Separate Majority Rule is ex-ante efficient in the class
of strategy-proof mechanisms and (ii) full efficiency remains unachievable among
incentive compatible mechanisms for any finite number of decisions.

We are not the first to show that coupling decision problems may improve ef-
ficiency under Bayesian implementation. There exist voting mechanisms that are
sensitive to cardinal intensities and Pareto improve upon ordinal mechanisms such
as Separate Majority Voting. Most notable examples thereof are a Rationing Proce-
dure by Jackson and Sonnenschein (2007), a Simple Scheme by Casella and Gelman
(2008) and Qualitative Voting by Hortala-Vallve (2012).

Jackson and Sonnenschein (2007) demonstrate that as the number of identical
decision problems tends to infinity full efficiency is achievable. Their Rationing Pro-
cedure works as follows. For any number of decision problems an agent announces
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his utility type directly, but he has to ration his reported type so as to match the
underlying distribution as best as possible. The mechanism then picks the alterna-
tive that maximizes reported welfare. However, their Rationing Procedure crucially
relies on identical type distributions across problems. It does not readily extend to a
finite number of decision problems or continuous type spaces and exact equilibrium
strategies are unknown. Our Ranking Mechanism also achieves full efficiency in the
limit while simultaneously admitting intuitive equilibrium behavior and welfare im-
provements for any finite number of decision problems.

In Casella and Gelman (2008), agents are endowed with a single bonus vote,
which can be cast in addition to regular votes. The decision is made according to the
sum of votes cast for each alternative. Their main result proves that in large popula-
tions the Simple Scheme improves upon Separate Majority Voting for small enough
bonus votes. Although they restrict attention to large populations our Proposition 6
implies that casting the bonus vote on the decision problem with highest difference
in utilities remains an equilibrium for any number of agents. Casella and Gelman
(2008) generalize their results to non-identical type distributions across problems
but not agents.

Hortala-Vallve (2012) proposes another intuitive voting procedure. Agents are
endowed with a fixed number of votes that can be distributed freely among alter-
natives and problems. A reform is accepted if the total number of votes supporting
the reform is larger than the number of votes against it. The main result of the
paper shows that in settings with 2 or 3 agents with 4 possible valuations and 2
decision problems Qualitative Voting is ex-ante efficient. Another mechanism mo-
tivating much of the recent literature on coupled binary decisions is the Storable
Votes procedure by Casella (2005), which applies to a dynamic setup of a commit-
tee meeting regularly over time.

While there has been considerable effort the literature has not yet proposed a
mechanism which is both intuitive and predictable – at least for the practically rele-
vant case of finitely many problems and agents. Simplicity as well as predictability
are prerequisites for any real world application. Our paper fills this gap and applies
the idea of ranking to a social choice setting without monetary transfers, namely
coupled binary decisions.1

Our results for the optimal (Randomized) RankingMechanism identify expected
order statistics as important moments of the underlying type distribution. In this
spirit our work is related to a recent paper by Kim (2017), who studies a social
choice problem with K alternatives. Kim (2017) proposes a mechanism based on
expected order statistics which improves upon Majority Voting by partly eliciting
cardinal information on preferences. However, Kim’s mechanism is not applicable

1. The idea of ranking alternatives or objects has also been studied in the multidimensional
cheap talk literature, for example in the context of coordination in auctions Campbell (1998) and
Pesendorfer (2000) or biased expert advise Chakraborty and Harbaugh (2007) among others.
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in our setting due to the impossibility result by Majumdar and Sen (2004). Relat-
edly, Apesteguia, Ballester, and Ferrer (2011) rely on expected order statistics to
characterize the ordinal mechanism that maximizes ex-ante expected utility in a so-
cial choice problem with cardinal preferences. In contrast to our work, Apesteguia,
Ballester, and Ferrer (2011) abstract from incentive considerations.

3.3 The Model

There are n ∈ N agents, who have to decide on d ∈ N binary decisions. Each deci-
sion problem k ∈ D= {1, . . . , d} consists of two alternatives {0, 1}. We interpret 0 as
maintaining the status quo and 1 as implementing a reform. The overall outcome
is a vector x ∈ X = [0, 1]d where the kth component xk represents the probability of
implementing the reform in decision k ∈ D.

We normalize the utility of maintaining the status quo to 0 for every agent and
every decision problem. Each agent i ∈ N = {1, . . . , n} draws a private von Neumann-
Morgenstern utility vector (or type) ui = (u1

i , . . . , ud
i ) representing his cardinal utility

if the reform is implemented in each of the different decision problems. We refer to
the sign of uk

i as agent i’s ordinal type and to |uk
i | as his preference intensity in deci-

sion k. Throughout the paper we refer to uk
i as the random variable and its realization

interchangeably. The random variable uk
i takes on values in Uk

i ⊂ R and is indepen-
dently distributed between agents and across problems. Formally, uk

i is independent
of ul

j for all i, j ∈ N with i 6= j and all k, l ∈ D with k 6= l. It has a finite first absolute
moment and its continuous pdf ρk

i is symmetric around zero. For notational conve-
nience let Ui = (U1

i , ...,Ud
i ), U = (Ui)i∈N and U−i = (U1, ...,Ui−1,Ui+1, ...,Un).

The distribution of types is common knowledge among agents. We assume that
agents’ utility is separable across problems and write the overall utility of agent
i with utility type ui ∈ Ui for outcome x ∈ X as Vi(x)=

∑d
k=1 uk

i · xk.2 The above
environment is entirely separable implying that there is no a priori reason to link
decision problems at all.

An indirect mechanism G= (M , g(·)) consists of a message space M =M⊗n,
which encompasses a message or action set M for each agent and a decision rule
g :M → X, which maps into the set of possible outcomes. Again, we refer to gk as
the random outcome in decision k as well as to its realization. Unless made explicit
all expectation operators are meant to include the randomness of the mechanism.
We restrict attention to mechanisms that treat all agents equally.

Definition 1. An indirect mechanism G= (M , g) is anonymous if for all permuta-
tions σ on N and all m ∈M it holds that g(m1, ..., mn)= g(mσ(1), ..., mσ(n)).

2. We follow most of the literature by assuming that preferences are additively separable across
problems. Ahn and Oliveros (2012) demonstrate the importance of the separability assumption for
equilibrium predictions even under Separate Majority Voting.
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Agent i’s strategy si :Ui→M maps i’s utility vector into a message in his action
set. A collection of strategies for all agents s= (s1, ..., sn) is called a strategy profile
and the strategy profile of all but agent i is denoted by s−i. Agent i evaluates a strat-
egy si given an indirect mechanism (M , g) and a strategy profile of the other agents
s−i by taking expectations over all other agents’ utility types (and the potentially
random mechanism), i.e. according to E−i [Vi(g(si, s−i))].3

Definition 2. A strategy profile ŝ is a Bayes-Nash equilibrium of (M , g) if for every
agent i the strategy ŝi is in expectation a best response to the strategy profile ŝ−i of
the other agents. Formally, E−i [Vi(g(̂si, ŝ−i))]≥ E−i [Vi(g(si, ŝ−i))] for all i and si.

A mechanism is direct ifM =U , i.e. agents report their utility type directly.

Definition 3. A direct mechanism (U , g) is

(1) strategy-proof, if for every agent i with type ui the truthful strategy is a best
response to any strategy profile of all other agents. Formally, Vi(g(ui, u−i))≥
Vi(g(ũi, u−i)) for all i, ui, ũi and u−i.

(2) incentive compatible, if for every agent i with type ui the truthful strategy is in
expectation a best response to the truthful strategy profile of all other agents.
Formally, E−i [Vi(g(ui, u−i))]≥ E−i [Vi(g(ũi, u−i))] for all i, ui and ũi.

While the revelation principle guarantees that there is theoretically no loss in
restricting attention to direct mechanisms, it might still be simpler to communicate
indirect mechanisms in practice. The Ranking Mechanisms we introduce below are
examples for which an indirect representation facilitates understanding and offers
an intuitive implementation.

Throughout the paper we measure efficiency at the ex-ante stage. Agent i’s ex-
ante expected utility under a mechanism (M , g) and strategy profile s is E[Vi(g(s))]
where the expectation is taken w.r.t. to all random variables.

Definition 4. Amechanism (ex-ante Pareto) dominates another mechanism if it gen-
erates at least as high levels of ex-ante expected utility for all agents. A mechanism
is (ex-ante Pareto) efficient if it is not dominated.

Full efficiency refers to the highest ex-ante utility level achievable under any (not
necessarily incentive compatible) mechanism. Ex-ante expected welfare is the sum
over all agents’ ex-ante expected utility levels. A necessary requirement for ex-ante
efficiency is unanimity.

Definition 5. Amechanism is unanimous if in every decision problem it implements
the alternative preferred by all agents whenever such alternative exists.

3. Throughout Ei and E−i denote expectations taken with respect to all random variables with
subscript i and subscripts j 6= i (including the randomness of the mechanism), respectively.
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One unanimousmechanism is SeparateMajority Voting, which serves as a bench-
mark throughout this work. Every agent casts a single vote on every problem and
the decision is made by simple Majority Rule or in case of a tie by a fair coin toss
separately for each problem. Separate Majority Voting is strategy-proof but makes
no use of the fact that there are multiple problems.

3.4 Impossibility Results

The first result of this section shows that if one restricts attention to strategy-proof
mechanisms Separate Majority Voting is ex-ante Pareto efficient. This result is a
consequence of an impossibility result by Hortala-Vallve (2010). We borrow the fol-
lowing definition.

Definition 6. (Hortala-Vallve (2010)) The preference domain is unrestricted if there
exists ε > 0 such that (−ε,ε) ⊆ Uk

i for all i ∈ N and all k ∈ D.

With this definition we have the following proposition.

Proposition 4. Among anonymous, strategy-proof mechanisms Separate Majority
Voting is efficient in an unrestricted domain.

Proposition 4 follows from the impossibility result established in Hortala-Vallve
(2010): Among strategy-proof mechanisms unanimity implies non-sensitivity and
separability. A mechanism is separable on d coupled decision problems if the out-
come implemented in each decision problem only depends on agents’ utilities for
that problem. A mechanism is sensitive if there exist two utility profiles of the same
ordinal type but with different intensities, which result yet in a different outcome
for at least one decision problem. In other words, any strategy-proof and unanimous
mechanism elicits only ordinal types and cannot link decision problems. Proposition
4 follows because on a single decision problem (Separate) Majority Voting is ex-ante
efficient among all anonymous, strategy-proof mechanisms in symmetric environ-
ments.⁴

Proposition 4 implies that from an ex-ante welfare perspective there is no advan-
tage in linking decision problems in the class of strategy-proof mechanisms. More-
over the efficient mechanism elicits only ordinal types. Our environment with cardi-
nal utility and randomization allows us to work with the different implementation
concept of incentive compatibility. The weaker requirement of incentive compati-
bility does not make the problem trivial. Incentive constraints still present a non-
negligible restriction as full efficiency remains unachievable.

Proposition 5. Full efficiency is unachievable among incentive compatible mecha-
nisms.

4. For a general proof of the optimality of majority voting see Schmitz and Tröger (2012).
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Proof. See Appendix.

Incentive compatibility implies that only proportional types can be elicitedwhich
prevents full efficiency. Together the above results raise the following question: Is
it at all possible to find an incentive compatible mechanism that improves upon
Separate Majority Voting? In the remainder of this paper we give an affirmative
answer to this question.

3.5 Ranking Identical Decision Problems

Our improvement upon Separate Majority Voting is centered around the intuitive
idea of ranking decision problems. Concretely, we would like agents to not only com-
municate which alternative they prefer in each decision problem – as in Separate
Majority Voting – but also express which problem they care most about, which sec-
ond, and so on.

To formalize the idea we define the following message space.

Definition 7. The (ranking) message space is defined as M = {(a,π) | a ∈
{0, 1}d,π ∈ σ(D)}, where σ(D) denotes the set of all permutations over D. We de-
note the profile of message spaces for all agents byM =M⊗n.

Note that any message m ∈M can canonically be separated across problems, i.e.
m= (mk)k=1,...d. For decision problem k ∈ D we interpret message mk = (ak,πk) in
two parts. The ordinal part ak encodes whether an agent is in favor of the reform
ak = 1 or prefers the status quo ak = 0. The cardinal part πk ∈ D corresponds to the
rank an agent assigns to problem k. Importantly, an agent can assign every rank
exactly once.

We are interested in eliciting one particular ranking over decision problems,
namely, the one in which an agent ranks each decision problem according to the
absolute difference in utilities between the two proposed alternatives. Using Defini-
tion 7 of the message space we formulate the following strategy.

Definition 8. A strategy ∗
si :Ui→M is sincere if agent i reports his favored alterna-

tive for every problem k and a ranking ∗
πi which sorts all problems by their preference

intensities. Formally, ∗ak
i = 1 if and only if uk

i > 0 and ∗
πk

i >
∗
πl

i only if
�

�uk
i

�

�≥
�

�ul
i

�

�.⁵

Our goal is to induce sincere equilibrium behavior. The motivation to focus at-
tention on the sincere strategy is twofold. First, it is intuitive and easy to understand
from the perspective of an agent thereby making it a likely equilibrium outcome in
practice. This is especially important because we work with the weaker Bayes-Nash
equilibrium concept. Second, the sincere strategy contains strictly more information

5. Since types are continuously distributed the sincere strategy is unique with probability one.
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than what is elicited by Separate Majority Voting. Therefore the sincere strategy is
a promising starting point both from a practical as well as theoretical perspective.

However, it is not obvious how to construct (non-trivial) mechanisms for which
the sincere strategy profile is a Bayes-Nash equilibrium. We first present our main
idea under the following simplifying assumption.

Assumption 3. The random variable uk
i is identically and independently distributed

between agents and across problems.

Section 3.6 generalizes our results to settings with different type distributions
between agents and across problems. The next section introduces a class of simple
mechanisms all of which induce sincere equilibrium behavior under Assumption 3.

3.5.1 Ranking Mechanisms

In this section we introduce the class of Ranking Mechanisms. Ranking Mechanisms
correspond to a generalization of standard voting procedures like Separate Majority
Voting. For every decision problem an agent communicates whether or not he is in
favor of implementing the reform. A Ranking Mechanism then assigns a weight to
every vote of an agent. For each decision problem the weight assigned to an agent’s
vote solely depends on the agent’s reported rank of that particular problem. There-
fore two agents may be assigned different weights in the same decision problem
if they rank it differently. However, weights are not agent-specific and since every
agent gets to report every rank exactly once a Ranking Mechanism remains anony-
mous.

Formally, we define a Ranking Mechanism (M , gRM,w) with M defined in
Definition 7 as follows. Every agent reports an ordinal type as well as a prior-
ity ranking. The decision rule gRM,w :M → X is parametrized by a weight vector
w= (w1, ...,wd) ∈W, where W ⊂ Rd

++ denotes the set of strictly positive weight vec-
tors with d non-decreasing entries. For every decision problem k ∈ D and every agent
i ∈ N the Ranking Mechanism (M , gRM,w) translates the report mk

i = (ak
i ,πk

i ) into a
signed weight (2 · ak

i − 1) ·wπ
k
i . The ordinal part maps into the sign of the weight

such that ak
i = 0,1 corresponds to a negative and a positive sign, respectively. The

cardinal part πk
i ∈ D determines the entry of the weight vector w ∈W. In particu-

lar, higher reported ranks map into (weakly) higher weights. Formally, we define
Ranking Mechanisms as the maximization of the resulting sum of signed weights.

Definition 9. The Ranking Mechanism (M , gRM,w) with weight vector w ∈W imple-
ments the outcome that maximizes the sum of signed weights. Ties are broken by a
fair coin toss. Formally, the decision rule is defined as

gRM,w(m) ∈ argmax
x∈{0, 1

2 ,1}d

¨ n
∑

i=1

d
∑

k=1

�

2 · ak
i − 1

�

· wπ
k
i · xk

«

.
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Note that gRM,w is identical for multiples of w, i.e. gRM,w ≡ gRM,λ·w for all λ > 0.
The class of Ranking Mechanisms has several desirable properties. First, Rank-

ing Mechanisms are both anonymous and unanimous. Second, as we show in Sec-
tion 3.5.3 all Ranking Mechanisms induce sincere equilibrium behavior. Third, any
Ranking Mechanism corresponds to a simple voting procedure: Every agent is en-
dowed with d votes of pre-specified weights w1, ...,wd. Agents are allowed to cast
one weighted vote in each decision problem. For every problem the alternative with
the higher sum of weighted votes is implemented. Ties are broken by a fair coin
toss. This interpretation offers a simple implementation of any Ranking Mechanism
in practice. Further it identifies Separate Majority Voting as belonging to the class
of Ranking Mechanisms with weights (1, ..., 1).⁶ Lastly, from a theoretical perspec-
tive the results of Section 3.5.4 imply that on the ranking message space there is
no loss in restricting attention to Ranking Mechanisms. If agents report sincerely
the ex-ante efficient outcome is implementable by a Ranking Mechanism. The next
section illustrates the class of Ranking Mechanisms by means of an example.

3.5.2 Example

Distribution of Types. There are three agents, who have to decide on two binary
decisions. For every decision problem we normalize every agent’s utility to 0 if the
status quo is maintained. We denote by uk

i the utility of agent i ∈ {1,2, 3} in decision
problem k ∈ {I, II} if the corresponding reform is implemented. Utility uk

i is drawn
from a standard normal distribution. It may thus be positive or negative implying
that an agent is either in favor or against the proposed reform, respectively. Further
the absolute value of uk

i encodes his preference intensity towards the decision.
Sincere Strategies. Suppose agents 1, 2 and 3 draw utility vectors u1 = (4,−1),

u2 = (3,−2) and u3 = (1, 4), respectively. Assume further that all agents find it op-
timal to report sincerely. Agents 1’s sincere report ∗s1 is given by (

∗
a1,

∗
π1)= (10, 21).

Agent 1 is in favor of the reform in the first decision problem and against it in the
second ∗

a1 = (10). By reporting ∗
π1 = (21) agent 1 assigns a higher rank to his vote

in decision problem I and a lower priority to problem II. The sincere reports of agent
2 and 3 are given by ∗

s2 = (10, 21) and ∗
s3 = (11,12), respectively.

Ranking Mechanism. We illustrate the Ranking Mechanism with weight vector
w= (1,3). For decision problem I the Ranking Mechanism translates agent 1’s re-
port m1

1 = (a1
1,π1

1)= (1, 2) into the signed weight (2 · a1
1 − 1) ·wπ

1
1 = +3. Intuitively,

agent 1 is in favor of the reform (positive sign) and indicates a high priority (weight
3) in decision problem I. For decision problem II agent 1 reports (a2

1,π2
1)= (0,1)

and the assigned weight equals (2 · a2
1 − 1) ·wπ

2
1 = −1. The assigned weights for de-

cision problem I and II for agent 1 are summarized in column 2 in the table below.

6. Note that the Simple Scheme by Casella and Gelman (2008) also belongs to the class of Rank-
ing Mechanisms with weights (1, ..., 1, 1+ θ).
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Analogously the RankingMechanism assigns signed weights to agent 2 and 3 as sum-
marized in column 3 and 4. After translating all agents’ reports into signed weights
the Ranking Mechanism calculates the problem wise sum of signed weights (column
5) and implements the reform if and only if the sum is positive. The resulting out-
come of the Ranking Mechanism is illustrated in column 6. For comparison column
7 contains the outcome under Separate Majority Voting.

Decision Agent 1 Agent 2 Agent 3 Sum of Outcome Outcome
problem (10, 21) (00, 21) (11,12) weights RM SMV

I +3 +3 +1 7 1 1
II −1 −1 +3 1 1 0

A few points are worth noting. First, the Ranking Mechanism respects unanimity
in decision problem I. Second, by overturning the majority of agents the Ranking
Mechanism deviates from Separate Majority Voting in decision problem II. Agent 3
ranks problem II highest and thereby sways the decision in his favor albeit being a
minority. In our case this is indeed a desirable outcome. Utility vectors are drawn
such that the sum of utilities increases from 8 under Separate Majority Voting to 9
under the RankingMechanism. Third, the sincere strategy is not a dominant strategy
for every agent. Agent 1, for example, prefers to deviate to report (10, 12) thereby
changing the outcome of problem II while not affecting that of problem I. Although
it is not a dominant strategy, the next section proves that the sincere strategy profile
constitutes a Bayes-Nash equilibrium.

3.5.3 Sincere Equilibrium

This section establishes the most important property of the class of Ranking Mecha-
nisms, namely that agents find it optimal to report sincerely. Apart from its theoret-
ical appeal the existence and characterization of an equilibrium is indispensable to
any further efficiency analysis.

Proposition 6. Under Assumption 3, the sincere strategy profile is a Bayes-Nash
equilibrium of any Ranking Mechanism.

Proof. See Appendix.

The proof consists of two parts essentially separating ordinal and cardinal in-
centives. For every agent the sincere ordinal report is weakly optimal independently
of the reported priority ranking and the message profile of all other agents. Having
reported sincere ordinal type an agent finds it optimal to rank decision problems
sincerely. Since all reports by the other agents are equally probable, an agent has no
incentive to strategically rank decision problems.

Importantly, Proposition 6 allows us to make precise welfare predictions and
to compare the performance of different Ranking Mechanisms. In the remainder
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of this section we assume that agents report sincerely whenever we evaluate the
performance of a Ranking Mechanism.

3.5.4 The Optimal Ranking Mechanism

This section compares the ex-ante welfare of different Ranking Mechanisms. For
any fixed number of agents and decision problems we solve for the ex-ante efficient
Ranking Mechanism. In particular, we derive a closed form solution for the ex-ante
efficient weight vector. A consequence of our derivation is that the optimal Ranking
Mechanism ex-ante dominates Separate Majority Voting.

What is the best outcome a mechanism can implement given that agents report
sincerely? Intuitively, the efficient mechanism should decide in favor of a reform if
the sum of expected utilities from doing so is positive. Therefore it should assign to
each agent’s vote a weight that corresponds to that agent’s expected utility from im-
plementing the reform. More precisely, the signed weight should equal the agent’s
expected utility conditional on all information contained in his report. By Definition
8 the ordinal part of an agent’s message is informative about the sign of his util-
ity and should therefore only determine the sign of the weight. The cardinal part -
i.e. the rank assigned to a problem - contains information about an agent’s prefer-
ence intensity. Concretely, an agent ranks a problem at position l ∈ D if he has his
l-th highest preference intensity in that problem. Therefore the l-th weight should
correspond to the expected value of an agent’s l-th order statistic of his preference
intensity. Building on this logic we define the following weight vector.

Definition 10. The efficient weight vector ∗
w ∈W is given by

∗
w =

�

Ei

�
�

�uk
i

�

�

(1:d)

�

, ...,Ei

�
�
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i

�

�

(d:d)

��

for some i ∈ N and d ∈ D, where
�

�uk
i

�

�

(k:d) denotes the k-th (out of d) order statistic
of the preference intensity

�

�uk
i

�

�.⁷ Under Assumption 3, the above definition is inde-
pendent of the choice of i ∈ N and k ∈ D which justifies the notation. We refer to
(M , gRM,

∗
w) as the optimal Ranking Mechanism.

The next proposition justifies Definition 10.

Proposition 7. Under Assumption 3, the optimal Ranking Mechanism is ex-ante
Pareto efficient in the class of Ranking Mechanisms.

Proof. See Appendix.

7. Since uk
i is Lebesgue-integrable the weights ∗

w are well-defined, see Ahsanullah, Nevzorov,
and Shakil (2013), page 76.
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In the Appendix we prove a stronger result. The optimal Ranking Mechanism is
ex-ante Pareto efficient among all indirect mechanisms that are defined on the rank-
ing message space and induce sincere equilibrium behavior. Put differently, there is
no better way to make use of the information elicited through sincere equilibrium
behavior than to assign weights to agents’ votes. For any sincere message profile the
Ranking Mechanism maximizes ex-ante expected welfare conditional on all agents’
reports.

Definition 10 characterizes the efficient weight vector in terms of agents’ type
distributions. For uk

i ∼ iiN (0, 1) as in the example in Section 3.5.2 the efficient
weights are approximately (0.467, 1.128).⁸ We round all numbers to three digits
throughout this paper. A consequence of Proposition 7 is that the optimal Ranking
Mechanism ex-ante dominates Separate Majority Voting.

Corollary 1. Under Assumption 3, the optimal Ranking Mechanism ex-ante domi-
nates Separate Majority Voting.

The optimal Ranking Mechanism dominates Separate Majority Voting in the
weak sense of Definition 4. Inspection of the proof of Proposition 7 shows that the
optimal Ranking Mechanism generates at least as high levels of conditional ex-ante
expected welfare message profile by message profile. It is thus sufficient to ensure
the existence of one message profile that results in different outcomes to guarantee
a strict improvement. Note that the two mechanisms differ if there exists a message
profile such that a strong minority overturns a weak majority (see Section 3.5.2).
This occurs if the largest minority of

�n
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�

agents all with the highest assigned weight
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. The following condition is sufficient for the
optimal Ranking Mechanism to strictly increase ex-ante expected utility upon Sep-
arate Majority Voting.

Remark 1. The optimal Ranking Mechanism strictly increases ex-ante expected wel-
fare over Separate Majority Voting if the number of agents n ∈ N, the number of
decision problems d ∈ N and the distribution of types is such that
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Ceteris paribus Condition (3.1) is more likely to hold the higher the number of
agents or problems or the more dispersed the type distribution. If the number of
agents is even and there are at least two decision problems d≥ 2 the existence of
some cardinal information - i.e. Var
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�uk
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�

is nonzero - is sufficient for Condition
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= d!
(l−1)!·(d−l)!

∫∞
−∞ |x| · (F(x))l−1 · (1− F(x))d−ldF(x), see for example chapter 7 in

Ahsanullah, Nevzorov, and Shakil (2013)
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(3.1) to be satisfied. Condition (3.1) in Remark 1 ensures that the optimal Ranking
Mechanism dominates Separate Majority Voting not merely by more efficient res-
olution of ties, but also the more substantive change of allowing strong minorities
to overturn weak majority. Put differently, the optimal Ranking Mechanism strictly
improves upon Separate Majority Voting whenever it mitigates the Tyranny of the
Majority. Note that in the example in Section 3.5.2 both the weight vector (1,3) and
the efficient weight vector (0.467, 1.128) satisfy Condition (1) for three agents and
two decision problems.

In the remainder of this section we provide a limiting result reminiscent of Jack-
son and Sonnenschein (2007). As the number of decision problems goes to infinity,
the optimal Ranking Mechanism achieves full efficiency.

Proposition 8. Under Assumption 3, if the support of the type distribution is
bounded, the ex-ante utility levels under the optimal Ranking Mechanism converge
to full efficiency as the number of decision problems tends to infinity.

Proof. See Appendix.

Proposition 8 is driven by the insight that as the number of decision problems
becomes arbitrarily large agents are able to perfectly communicate their underly-
ing utility vector. Apart from being theoretically appealing the above result offers a
strong rationale for linking decision problems. Note that by symmetry of the envi-
ronment any Ranking Mechanism trivially converge to full efficiency as the number
of agents tends to infinity.

3.6 Ranking Non-Identical Decision Problems

In this section we relax Assumption 3 and allow for different type distributions be-
tween agents and across problems. We impose that utility types are independently
but not necessarily identically distributed between agents and across problems.

We first show that the sincere strategy profile is - in general - no longer a Bayes-
Nash equilibrium. However, there exist special cases for which it is. Motivated by
this observation we propose a shuffling procedure based on randomization which
restores sincere equilibrium behavior of all agents. We then derive the ex-ante effi-
cient Randomized Ranking Mechanism and prove that it ex-ante dominates Sepa-
rate Majority Voting.

3.6.1 Strategic Ranking

Consider a modified version of our example from Section 3.5.2. Suppose agent 1
draws his utility type in problem II from a uniform distribution with support [−1,1]
instead of from a standard normal distribution. Formally, all uk

i ∼ iiN (0, 1) with the
exception of u2

1 which is independently drawn from Uniform[-1,1].
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Under these conditions agent 1 no longer reports every priority ranking with
the same probability when following the sincere strategy. Agent 1 is more likely to
rank problem I as his first ranked problem, i.e. report priority ranking π1 = (21).
Concretely, the probability that agent 1 reports priority ranking π1 = (21) under
the sincere strategy is P1[

∗
π1 = (21)]= P1

��

�u1
1

�

�>
�

�u2
1

�

�

�

= 0.631 6= 0.5. So agent 1
ranks problem I over problem II with probability 63.1% when reporting sincerely.

So, if agent 1 and 2 were to report sincerely, agent 3 would anticipate that agent
1 is likely to rank problem I highest and thus might have an incentive to strategically
misreport his priority ranking. Since agent 1 is more likely to prioritize problem I
agent 3 might prefer rankingπ3 = (12) in order to influence the decision in problem
II with higher probability. Agent 3 will find such deviations desirable if he has similar
preference intensities for problem I and II. Straightforward calculations show that
this is indeed the case in our example and agent 3 deviates from the sincere strategy.⁹
Therefore the sincere strategy profile is no longer a Bayes-Nash equilibrium.

The example above demonstrates that Proposition 6 does not hold when we al-
low for differently distributed types between agents and across problems. Agent 3
deviates from the sincere ranking, because agent 1 is more likely to rank problem I
over problem II when following the sincere strategy. Conversely, as long as agent 1
reports every priority ranking with the same probability, agent 3 has no incentive to
strategically rank problems. This implies that it is not necessary that agent 1 has the
same distribution of types across all problems. It is merely necessary that all agents
have type distributions which result in a uniform distribution over all possible prior-
ity rankings under the sincere strategy. Formally, we define the following property
of an agent’s type distribution.

Assumption 4. For every agent i the type distribution is Ranking Uniform, i.e.
Pi[

∗
πi = πi]= Pi[

∗
πi = π′i] for all πi,π

′
i ∈ σ(D) and all i ∈ N.

Assumption 4 is violated in the example above. But suppose agent 1 drew his util-
ity in decision problem II from a uniform distribution with support [−c, c] for some
c ∈ R++. Then for c≈ 1.470 it holds that P1
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= 1
2 . Agent 1 reports each

priority ranking with equal probability and type distributions are Ranking Uniform.
As this example illustrates there exist Ranking Uniform type distributions that are
not identical across problems. For these the following corollary generalizes Proposi-
tion 6.

Corollary 2. Under Assumption 4, the sincere strategy profile is a Bayes-Nash equi-
librium of any Ranking Mechanism.

9. W.l.o.g consider the case of uk
3 > 0 for k= 1, 2, i.e. agent 3 is in favor of implementing the

reform in both decision problems. Let p := P1
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The corollary follows from inspection of the proof of Proposition 6. The next
section builds on the above insight and defines a shuffling procedure based on ran-
domization. Motivated by Corollary 2 the procedure guarantees that from the per-
spective of every agent all reports of the other agents are equally probable.

3.6.2 Shu�ing Rankings

To illustrate the idea of our shuffling procedure consider the example from the
previous Section 3.6.1. Recall that all uk

i ∼N (0,1) with the exception of u2
1 ∼

Uniform[−1,1]. Under the sincere strategy agent 1 is more likely to rank problem I
over problem II, i.e. ∗

π1 = (21) with probability 0.631 and ∗
π1 = (12) with probabil-

ity 1− 0.631= 0.369.
Suppose agent 1 reported sincerely and consider the following shuffling proce-

dure that turns every reported ranking of agent 1 into a shuffled ranking as fol-
lows. With probability 0.208 the reported ranking is changed to the less probable
ranking (12) and with probability (1− 0.208) the reported ranking remains un-
changed. Then, the probability that agent 1’s shuffled ranking equals ranking (21)
is given by 0.631 · (1− 0.208)= 0.500 and the probability for it to be (12) equals
0.369+ 0.631 · 0.208= 0.500. If the mechanism were to use the shuffled ranking of
agent 1 there would be no incentive for agent 2 and 3 to strategically rank decision
problems. From their point of view all shuffled rankings of agent 1 are equally likely.
Further, agent 1 has no incentive to strategically rank decision problems since shuf-
fling occurs with equal probability after any report. In the remainder of this section
we generalize the above shuffling procedure to an arbitrary number of agents and
problems.

A shuffling procedure is a (random) mapping from agents’ reported rankings
into the set of all possible rankings. It is characterized by two parts. First, for every
agent i we define a shuffling probability αi ∈ [0, 1] which corresponds to the prob-
ability with which every reported ranking of agent i is shuffled. Second, for every
agent i we specify the shuffling lottery βi ∈∆(σ(D)) where βπi

i ∈ [0, 1] is the prob-
ability with which the reported ranking is changed to ranking πi in case it does get
shuffled. Formally, we define a shuffling procedure as follows.

Definition 11. A shuffling procedure for agent i is a random mapping γi : σ(D)→
σ(D) defined as

γi(πi) =

(

πi with probability 1 − αi

π′i with probability αi · β
π′i
i

for πi,π
′
i ∈ σ(D), where αi ∈ [0,1] and βi ∈∆(σ(D)) are referred to as agent i’s

shuffling probability and shuffling lottery, respectively. We refer to the image γi(πi)
as agent i’s shuffled ranking.
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The goal is to construct a shuffling procedure – that is choose α and β – such that
every agent’s shuffled ranking is uniformly distributed under the sincere strategy
profile. We formalize this point in the following remark.

Remark 2. For any agent i the choice of αi and βi is such that it leads to a uniform
distribution of shuffled rankings under the sincere strategy. Formally, we choose
αi ∈ [0,1] and βi ∈∆(σ(D)) such that

Pi

�

γi(
∗
πi) = πi

�

= (1 − αi) · p
πi
i + αi · β

πi
i =

1
d!

for all πi ∈ σ(D), (3.2)

where pπi
i := Pi

� ∗
πi = πi

�

is agent i’s probability of ranking πi under the sincere
strategy.

The intuition behind equation (3.2) is straightforward. There are two ways a
shuffled ranking takes on one particular ranking: either the agent sincerely reports
that ranking and it does not get shuffled, or the agent’s reported ranking does get
shuffled in which case the shuffling lottery picks the ranking.

Equation (3.2) immediately places a lower bound on the shuffling probabilities
αi. To see this, consider the ranking that an agent is most likely to report under the
sincere strategy and suppose the shuffling lottery βi places probability zero on this
ranking. Plugging this into equation (3.2) gives the lower bound for the shuffling
probability αi. Intuitively, even if the shuffling lottery places probability zero on
the most probable sincerely reported ranking the shuffling procedure still needs to
bring down its probability to 1

d! . Since all other rankings are by definition less likely
the minimal level of shuffling is pinned down by the probability of an agent’s most
probable reported ranking under the sincere strategy profile. Formally, we define
the shuffling probabilities for all agents as follows.

Definition 12. The (minimal) shuffling probability for agent i is given by

αi = 1 −
1

d! · pmax
i

,

where pmax
i :=maxπi∈σ(D) Pi

� ∗
πi = πi

�

is the probability of the ranking which agent
i is most likely to reported under the sincere strategy.1⁰ Let α= (αi)i∈N correspond
to the collection of shuffling probabilities for all agents.

Note that if (and only if) an agent’s type distribution is Ranking Uniform in
the sense of Assumption 4 his shuffling probability is zero. The shuffling procedure
does not introduce randomization if an agent already reports all rankings with equal

10. While our shuffling procedure also works for larger choices of αi the next section shows that
in the context of our Ranking Mechanisms the minimal choice in Definition 12 is desirable from an
ex-ante welfare perspective.
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probability. For nonzero shuffling probabilities equation (3.2) implies the following
choice for the shuffling lottery.

Definition 13. The shuffling lottery of agent i with nonzero shuffling probability αi

(defined in Definition 12) is given by

β
πi
i =

1
αi

�

1
d!
− (1 − αi) · p

πi
i

�

for πi ∈ σ(D),

where pπi
i := Pi

� ∗
πi = πi

�

is the probability with which agent i reports ranking πi

under the sincere strategy. For consistency we choose βπi
i = pπi

i for all πi ∈ σ(D) if
agent i’s shuffling probability is zero in Definition 12. Let β = (βi)i∈N denote the
collection of shuffling lotteries for all agents.

A shuffling procedure with shuffling probabilities and shuffling lotteries as in
Definition 12 and Definition 13 – henceforth referred to as the shuffling procedure
– leads to a uniform distribution of shuffled rankings by all agents. From the per-
spective of any one agent all other agents’ shuffled rankings are equally likely and
there is no incentive to strategically rank decision problems. In the next section we
integrate the shuffling procedure into our Ranking Mechanism.

3.6.3 Randomized Ranking Mechanisms

Equipped with the shuffling procedure from the previous section, we define the
new class of Randomized Ranking Mechanisms. A Randomized Ranking Mecha-
nism corresponds to a Ranking Mechanism on the shuffled message profile. It uses
the message space from Definition 7 and its decision rule gRRM,w :M →∆(X) is
parametrized by a weight vector w= (w1, ...,wd) ∈W, where W ⊂ Rd

++ denotes the
set of strictly positive weight vectors with non-decreasing components. Formally, we
define a Randomized Ranking Mechanism as follows.

Definition 14. The Randomized Ranking Mechanism (M , gRRM,w) with weight vec-
tor w ∈W implements the same outcome as the Ranking Mechanism gRM,w on the
shuffled message profile. Formally,

gRRM,w(m) =
�

gRM,w ◦ γ
�

(m)

where γ(m)= (ai,γi(πi))i∈N denotes the profile of shuffled messages of all agents
and γi is the shuffling procedure defined in the previous section (Definition 11, 12
and 13).

Every Randomized Ranking Mechanism is a composition of the corresponding
Ranking Mechanism (with the same weight vector) and the shuffling procedure.
Definition 14 immediately implies that for any strategy profile the distribution over
outcomes under the Randomized Ranking Mechanism is identical to that of the
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corresponding Ranking Mechanism under the shuffled strategy profile. Formally, we
have the following remark.

Remark 3. For any strategy profile ŝ, the corresponding shuffled strategy profile
γ(̂s)=

�

â,γ(π̂)
�

and any w ∈W we have

gRRM,w(̂s) ∼ gRM,w(γ(̂s)).

Definition 14 and Remark 3 allow Randomized Ranking Mechanisms to inherit
many of the properties of Ranking Mechanisms. In particular, we have the following
proposition analogous to Proposition 6.

Proposition 9. The sincere strategy profile is a Bayes-Nash equilibrium of any Ran-
domized Ranking Mechanism.

Proof. See Appendix.

The logic of the proof is as follows. First, every agent finds it optimal to sincerely
report his ordinal type because shuffling only affects the reported ranking. Second,
neither the shuffling probability nor the shuffling lottery depend on an agent’s re-
ported ranking. Therefore every agent only considers the case in which his reported
ranking is not shuffled. But in expectation the shuffled report profile of the sincere
rankings of all other agents is uniformly distributed and an agent has no incentive
to deviate from the sincere strategy by the same logic as in the proof of Proposition
6.

It is straightforward to see that Proposition 9 continues to hold for choices of
shuffling probabilities larger than the minimal choice defined in Definition 12, as
long as we also adjust the shuffling lotteries as in Definition 13. The following remark
illustrates the optimality of the minimal choice in Definition 12 from an ex-ante
welfare perspective.

Remark 4. To illustrate the optimality of a minimal choice of α (together with
corresponding shuffling lottery defined in Definition 13) rewrite ex-ante expected
welfare as
∑

i

Eu,γ

�

Vi(g
RRM,w(

∗
s))
�

=
∑

i

Eu,γ

�

Vi(g
RM,w(γ(

∗
s)))

�

=
∑

i

Eui



(1 − αi)E−i

�

Vi(g
RM,w(

∗
si, s̃−i))

�

︸ ︷︷ ︸

(∗)

+αi

∑

π′i

β
π′i
i E−i

�

Vi(g
RM,w((

∗
ai,π

′
i), s̃−i))

�

︸ ︷︷ ︸

(∗∗)



,

where s̃−i = (
∗
ai,γi(

∗
πi))−i denotes the shuffled strategy profile of all agents but agent

i. For all i and ui ∈ Ui expression (∗) is weakly larger than expression (∗∗) by Proposi-
tion 6 and both are independent of α−i and β−i as long as s̃−i ∼ Uniform(M−i). Thus
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α chosen minimally (subject to achieving uniformity) maximizes ex-ante expected
welfare for any weight vector.

The shuffling probabilities in Definition 12 are not only desirable in terms of ex-
ante expected welfare, but also ensure that if an agent’s type distribution is Rank-
ing Uniform no randomization is introduced. In particular, we have the following
remark.

Remark 5. Under Assumption 4, any Randomized Ranking Mechanism collapses to
the corresponding Ranking Mechanism.

In the next section we turn to the optimal choice of the weight vector. We im-
plicitly assume that agents report sincerely whenever we evaluate the performance
of any Randomized Ranking Mechanism.

3.6.4 The Optimal Randomized Ranking Mechanism

Having established sincere equilibrium behavior this section compares the ex-ante
welfare of different Randomized Ranking Mechanisms. For any fixed number of
agents and decision problems we derive the ex-ante efficient Randomized Ranking
Mechanism and provide a closed form solution for the associated weight vector. The
optimal Randomized Ranking Mechanism ex-ante dominates Separate Majority Vot-
ing.

The intuition is analogous to that in Section 3.5.4. What weight should the mech-
anism assign to an agent’s vote based on his shuffled ranking? Intuitively, the weight
should correspond to an agent’s expected utility from implementing the reform con-
ditional on his report. However, the assigned weights can neither discriminate be-
tween agents or problems nor can they depend on the realization of the randomiza-
tion or the choice of the shuffle lottery. The following definition generalizes Defini-
tion 10.

Definition 15. The efficient weight vector ∗∗w ∈W is given by

∗∗
wl =

1
n
·
∑

i

�

(1−αi) ·
∑

k

Pi

� ∗
πk

i = l
�

·E
�
�

�uk
i

�

�

(l:d)

�

+αi ·
∑

k

Pβi

�

π̃k
i = l

�

·E
��

�uk
i

�

�

�

�

for l= 1, ..., d, where
�

�uk
i

�

�

(l:d) denotes the l-th (out of d) order statistic of the pref-
erence intensity

�

�uk
i

�

� and Pβi

�

π̃k
i = l

�

:=
∑

πi:π
k
i=l β

πi
i is defined as the probability

that problem k is ranked on l-th position through shuffling lottery βi. We refer to
(M , gRRM,

∗∗
w) as the optimal Randomized Ranking Mechanism.

Before providing intuition we justify Definition 15 by the following proposition.
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Proposition 10. The optimal Randomized Ranking Mechanism is ex-ante Pareto
efficient in the class of Randomized Ranking Mechanisms.

Proof. See Appendix.

Proposition 10 follows from suitably rewriting ex-ante expected welfare. The
intuition behind Proposition 10 and Definition 15 is as follows. For every agent i
the efficient l-th weight trades-off two cases. First, with probability 1−αi agent i’s
report is sincere and did not get shuffled. In this case it is efficient to set the l-th
weight for agent i to the expected value of his l-th highest preference intensity under
the sincere strategy. Because we allow for different distributions across problems the
expected value of the l-th highest order statistic for a fixed decision problem may
vary across problems. The ex-ante expected value of the l-th highest preference in-
tensity under the sincere strategy thus weights all expected l-th order statistics by
their respective sincere probability, that is, by the probability that an agent sincerely
ranks that problem at position l. Second, with probability αi agent i’s ranking gets
shuffled. In this case – since the shuffle lottery is uninformative about the prefer-
ence intensity – the efficient l-th weight corresponds to the unconditional expected
preference intensity. Again, the expected preference intensity may vary across prob-
lems and needs to be weighted by the probability that a problem is ranked at the
l-th position by the shuffling lottery βi of agent i. Lastly, since we restrict attention
to anonymous mechanism the efficient weight vector cannot depend on an agent’s
identity. It is therefore efficient to take the average over all “agent-specific” efficient
weights outlined above.11

It is further instructive to consider the following special case. Under Assumption
4, the shuffling probabilities are zero and Definition 15 simplifies.

Remark 6. Under Assumption 4, the optimal Randomized Ranking Mechanism cor-
responds to the Ranking Mechanism with weight vector ∗∗w ∈W given by

∗∗
wl =

1
n · d

·
∑

i

∑

k

E
�
�

�uk
i

�

�

(l:d)

�

for l= 1, ..., d.

Remark 6 generalizes Definition 10 of the optimal weight vector in the identical
case of Section 3.5 by allowing for different type distributions between agents and
across problems as long as Assumption 4 is satisfied. In this case the efficient l-th
weight corresponds to the expected value of the l-th highest preference intensity av-
eraged across all agents and problems. By Definition 14 of the Randomized Ranking
Mechanism the randomization procedure only shuffles the reported ranking. Thus

11. All our results readily extend to the case in which we drop the anonymity requirement and
allow for agent-specific weights.
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it has no effect for constant weight vectors for which the order is irrelevant. This
implies that the Randomized Ranking Mechanism with weight vector w= (1, ..., 1)
implements the same outcome as Separate Majority Voting. Therefore Proposition
10 implies that the optimal Randomized Ranking Mechanism ex-ante dominates
Separate Majority Voting.

Corollary 3. The optimal Randomized Ranking Mechanism ex-ante dominates Sep-
arate Majority Voting.

Analogously to Section 3.5.4 the optimal Randomized Ranking Mechanism dom-
inates Separate Majority Voting in the weak sense of Definition 4. The following re-
mark follows from the same logic as Remark 1 in Section 3.5.4 and guarantees the
welfare improvement to be strict. The Randomized Ranking Mechanism and Sepa-
rate Majority Voting differ if there exists a report profile such that a strong minority
overturns a weak majority. Formally, we have the following remark.

Remark 7. The optimal Randomized Ranking Mechanism strictly increases ex-ante
expected welfare over Separate Majority Voting if the number of agents n ∈ N, the
number of decision problems d ∈ N and the distribution of types is such that

jn
2

k

· ∗∗wd >
ln

2

m

· ∗∗w1. (3.3)

The intuition is analogous to Section 3.5.4. Condition (3.3) in Remark 7 en-
sures that the optimal Randomized Ranking Mechanism dominates Separate Ma-
jority Voting not merely by more efficient resolution of ties, but also by allowing
strong minorities to overturn weak majorities thereby mitigating the Tyranny of the
Majority.

Note that in our modified example in Section 3.6.1 the efficient weight vector
equals (0.455, 1.041). It allows for overturning by satisfying Condition (3.3) in Re-
mark 7 for three agents and two decision problems and therefore strictly improves
upon Separate Majority Voting.

3.7 Concluding Remarks

In this paper we show that among strategy-proof mechanisms Separate Majority Vot-
ing is ex-ante efficient and there is no benefit in coupling binary decisions. When
moving to the class of incentive compatible mechanisms full efficiency remains un-
achievable for a finite number of decision problems but one can improve upon Sep-
arate Majority Voting.

In order to do so, we study a class of Ranking Mechanisms. A Ranking Mecha-
nism corresponds to a simple weighted voting procedure, in which agents are free
to distribute weights across problems and alternatives. For the case of identically
distributed preferences over problems any Ranking Mechanism admits an intuitive
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equilibrium strategy. Agents rank problems according to the absolute difference in
utilities between alternatives, i.e. by their preference intensities. We solve for the ex-
ante efficient Ranking Mechanism and give a close-form solution for the correspond-
ing optimal weight vector. The optimal Ranking Mechanism ex-ante dominates Sep-
arate Majority Voting and achieves full efficiency in the limit as the number of deci-
sion problems goes to infinity. In the case of non-identically distributed problems we
introduce a randomization procedure which sustains sincere equilibrium behavior.
Incentives are preserved by ensuring that from the perspective of every agent all
priority rankings of all other agents are equally likely. We provide a closed-form so-
lution for the ex-ante efficient weight vector and prove that the optimal Randomized
Ranking Mechanism ex-ante dominates Separate Majority Voting.

All our results hold for an arbitrary number of agents and decisions thereby com-
plementing mechanisms in the previous literature, which work well for an infinite
number of decisions (Jackson and Sonnenschein (2007)) or a large enough num-
ber of agents (Casella and Gelman (2008)). Moreover the optimal (Randomized)
Ranking Mechanism represents - to the best of our knowledge - the first mechanism
which successfully couples non-identically distributed binary decision problems, in-
duces intuitive equilibrium behavior and dominates Separate Majority Voting for
any number of agents and problems.

Throughout this work we restricted attention to anonymous mechanisms. From
an ex-ante welfare perspective it might be desirable to discriminate between agents.
All of our analysis readily extends to the case of allowing for agent-specific weights.
The optimal (Randomized) Ranking Mechanism is not without its weaknesses. In
particular, it relies on a strong knowledge assumption regarding the underlying type
distributions.
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Appendix 3.A Appendix: Proofs

Proof of Proposition 5. The following corollary is a straightforward adoption of
Proposition 1 in Hortala-Vallve (2010) for the case of incentive compatibility.

Definition 16. The expected indirect utility function Vi :Ui→ R of agent i under
mechanism (U , g) is defined by Vi(ui)=

∑d
k=1 uk

i ·E−i[gk(ui, u−i)].

Corollary 4 (Hortala-Vallve (2010)). A mechanism (U , g) is incentive compatible
if and only if agents’ expected indirect utilities are homogeneous of degree one and
convex.
That is, Vi(λ · ui)= λ · Vi(ui) for λ≥ 0, ui ∈ Ui and is convex in ui.

For any incentive compatible mechanism (U, g) it follows that

E−i [gk(ui, u−i)] = E−i [gk(λ · ui, u−i)] (3.A.1)

for every i ∈ {1, ..., n}, every k ∈ {1, ...,d}, every ui ∈ Ui and every λ≥ 0.
Equation (3.A.1) states that from agent i’s perspective the expected outcome

of the mechanism is identical on proportional utility types. In other words, propor-
tional types of agent i are bunched in expectation.

To prove Proposition 5 suppose for sake of contradiction that g is incentive com-
patible and achieves full efficiency. By the above g bunches proportional types in ex-
pectation. Consider two cases depending on whether or not Equation (3.A.1) holds
pointwise:

Case 1: Equation (3.A.1) holds pointwise everywhere, that is, proportional types
are bunched type by type. It is enough to consider the case of two agents and one
decision problem. For one decision problem all possible types are proportional and
hence g must be constant, which is not optimal. The same line of reasoning extends
to settings with more agents and more decision problems.

Case 2: Equation (3.A.1) does not hold pointwise everywhere, implying that
there exist i ∈ {1, ..., n}, k ∈ {1, ..., d}, ui ∈ Ui with uk

i 6= 0, λ ∈ R++ \ {1} and u′−i ∈
U−i such that gk(ui, u′−i) 6= gk(λ · ui, u′−i). Consider the case uk

i > 0 and gk(ui, u′−i)>
gk(λ · ui, u′−i). All other cases follow by an analogous argument. In order for Equa-
tion (3.A.1) to be satisfied, there must exist u′′−i ∈ U−i such that gk(ui, u′′−i)< gk(λ ·
ui, u′′−i). The fact that g achieves full efficiency necessitates that for fixed u−i ∈ U−i

the function gk(·, u−i) depends only on the value of uk
i and not on the other com-

ponents of ui. Further gk(·, u−i) has to be non-decreasing in uk
i > 0. For λ > 1 this

contradicts the first inequality, for λ < 1 the second.

Proof of Proposition 6. Fix w ∈W and denote gRM,w by g. Formally, we need to
show that for all agents i ∈ N, all ui ∈ Ui and

∗
s−i =

� ∗
a−i,

∗
π−i

�

it holds that
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∗
si(ui) =

� ∗
ai,

∗
πi

�

(ui) ∈ arg max
(ai,πi)

�

E−i

�

Vi(g((ai,πi),
∗
s−i))

�	

. (3.A.2)

The proof consists of two parts.
Part 1: For anymessage profile of the other agents m−i = (a−i,π−i) and any fixed

priority ranking πi agent i finds the strategy si = (
∗
ai,πi) weakly optimal. Note that

Vi(g((ai,πi), m−i)) =
∑

k

uk
i · gk

��

ak
i ,πk

i

�

, mk
−i

�

(3.A.3)

for ui ∈ Ui and (ai,πi) ∈M. Since for all k ∈ D, all πk
i ∈ D and all m−i ∈M−i

gk

��

1,πk
i

�

, mk
−i

�

≥ gk

��

0,πk
i

�

, mk
−i

�

,

it follows that equation (3.A.3) is maximized for

ak
i =

∗
ak

i =

(

ak
i = 1 if uk

i > 0

ak
i = 0 if uk

i ≤ 0.

Part 2: For the sincere strategy profile of the other agents ∗s−i = (
∗
a−i,

∗
π−i) and

the sincere ∗
ai agent i finds the sincere priority ranking ∗

πi weakly optimal. Exploiting
uncorrelated types we have

E−i

�

Vi(g((
∗
ai,πi),

∗
s−i))|ui

�

= E−i

�

Vi(g((
∗
ai,πi),

∗
s−i))

�

=
∑

k:uk
i>0

uk
i · E−i

�

gk

��

1,πk
i

�

,
∗
sk
−i

��

+
∑

k:uk
i<0

uk
i · E−i

�

gk

��

0,πk
i

�

,
∗
sk
−i

��

(3.A.4)

for ui ∈ Ui and (
∗
ai,πi) ∈M. We decompose the message space M−i of all other

agents according to the outcome that would be implemented in the absence of agent
i. Formally, we define

M k,q
−i :=

§

m−i ∈ M−i

�

�

�gk

�

1
2

,πk
i , mk

−i

�

= q
ª

for q = 0,
1
2

,1.

The setM k,q
−i encompasses all message profiles of the other agents such that without

agent i outcome q ∈
�

0, 1
2 , 1

	

is implemented in problem k. Note that by definition
of gk the setM k,q

−i is independent of πk
i which justifies the notation. Using the fact

that for all k ∈ D, all πk
i ∈ D and all m−i ∈M−i

gk

��

1,πk
i

�

, mk
−i

�

≥ gk
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, mk
−i
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with strict inequalities if gk

��1
2 ,πk

i

�

, mk
−i

�

= 1
2 . We write (3.A.4) as

∑
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with C independent of πi. We further decompose the type space of all other
agents depending on whether or not agent i with priority ranking πk

i changes the
outcome in decision problem k. We splitM k,0

−i into three disjoint sets of reports of
other agents: the setM k,0
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such that the inclusion of agent i voting in favor of
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As made explicit by the notation the decomposition depends on πk
i . Analogously, we
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i < π

k
i ∈ D

gk

�

1, π̃k
i , mk

−i

�

≤ gk

�

1,πk
i , mk

−i

�

and gk

�

0, π̃k
i , mk

−i

�

≥ gk

�

0,πk
i , mk

−i

�

with strict inequalities if gk

�

0, π̃k
i , mk

−i

�

= 1
2 . It follows that

T k,q
�

π̃k
i

�

⊆ P k,q
�

πk
i

�

and P k,q
�

π̃k
i

�

⊆ P k,q
�

πk
i

�

(3.A.8)

for all k ∈ D, all π̃k
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Using the above construction we write (3.A.7) as
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with C̃ independent of πi. Exploiting symmetry and independence assumptions the
crucial step in the proof is to realize that every report profile of other agents is
equally probable. Formally, the fact that ρk

i is centered around zero for all k ∈ D and
independence of {uk

i }k imply that ∗
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From (3.A.8) it follows that for all π̃k
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which implies that (3.A.12) is maximized for
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Proof of Proposition 7. Let M be defined as in Definition 7. For any mechanism
(M , g), not necessarily a Ranking Mechanism, ex-ante expected welfare is given by
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which implies that the is no loss in restricting attention to separable mechanisms
and g≡ gRM,
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w from Definition 9 and 10 is efficient.
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where we used the fact that ∗sk ∼ Uniform
�

M k
�

. Exploiting boundedness of all inte-
grals and continuity of the maximum-operator we obtain
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where Φ−1 denotes the inverse cdf of the absolute value of agents’ valuations. The
crucial step in the proof makes use of the following result on the asymptotic con-
vergence of order statistics. For any random variable X with cdf F and pdf f and
any p ∈ [0,1] it holds that X(dd·pe:d) ∼ AN

�

F−1(p), p·(1−p)
d·f(F−1(p))2

�

at all points such
that f
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�

6= 0, see Ahsanullah, Nevzorov, and Shakil (2013), page 111. Since
(3.A.13) is the sum of ex-ante expected utility levels that correspond to full efficiency
for problem k this concludes the proof.

Proof of Proposition 9. Fix w ∈W. We need to show that for all agents i ∈ N, all
ui ∈ Ui and
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By construction s̃−i ∼ Uniform(M−i) and therefore expression (∗) is maximized
by ∗si by Proposition 6. Further expression (∗∗) is independent of the reported πi and
maximized by ∗

ai by the same logic as Part 1 of Proposition 6.
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Proof of Proposition 10. We write ex-ante expected welfare under the Random-
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Let M̄ denote the set of all possible report profiles of all agents
for a single decision problem, i.e. M̄ =
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�⊗n. Further, we divide
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. We refer to [m̄] as the equiv-
alence class and its representative interchangeably and denote by [M̄] the set of all
equivalence classes. We write (3.A.14) as
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where we used that gRM,w is anonymous and that for all i, j ∈ N there exist (n− 1)!
permutations inσ(N) sending i onto j. After suitably rearranging (3.A.15) Definition
9 gives us
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for r= 1, ..., d as in Definition 15.
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