Classification, Characterization,
and Contextualization of Windows
Malware using Static Behavior and

Similarity Analysis

Dissertation
zur
Erlangung des Doktorgrades (Dr. rer. nat.)
der
Mathematisch-Naturwissenschaftlichen Fakultat
der
Rheinischen Friedrich-Wilhelms-Universitat Bonn

vorgelegt von

Daniel Johannes Plohmann
aus

Bonn-Bad Godesberg

Bonn, 2022

Dissertation

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultat der
Rheinischen Friedrich-Wilhelms-Universitat Bonn.

Erstgutachter: Prof. Dr. Peter Martini
Rheinische Friedrich-Wilhelms-Universitat Bonn
Zweitgutachter: Prof. Dr. Christian Rossow

CISPA Helmholtz-Zentrum fiir Informationssicherheit, Saarbriicken

Tag der Promotion: 28.06.2022
Erscheinungsjahr: 2022

II

It is the pervading law of all things organic and inorganic,
Of all things physical and metaphysical,

Of all things human and all things super-human,

Of all true manifestations of the head,

Of the heart, of the soul,

That the life is recognizable in its expression,

That form ever follows function. This is the law.

Louis H. Sullivan, The Tall Office Building Artistically Considered, 1896.

I

Contents

1. Introduction 1
1.1. Research Questions 2
1.2. Contributions 4
1.3. Thesis Outline e 5

2. Background 7
2.1. Binary Code Analysis 7

2.1.1. Compilation 8
2.1.2. Structure of Windows Executable Programs 9
2.1.3. Disassembly 11
2.1.4. Code Similarity 11
2.2. Malware e e 12
2.3. Analysis of Malware 13
2.3.1. Dynamic Analysis 14
2.3.2. Static Analysis 16
2.4, Summary ..o oL ... e e e 16

3. Related Work 17

3.1. Ground Truth for Malware Research 17
3.1.1. Collections of Malware Samples 17
3.1.2. Analysis of Antivirus Detection Labels 20
3.1.3. Collections of Meta Data on Malware 21

3.2. Windows API Usage Analysis of Malware 22
3.2.1. WinAPI Usage Recovery and Deobfuscation 22
3.2.2. Malware Detection and Classification by Analysis of WinAPI Usage 23

3.3. Code Analysis. e 27
3.3.1. Disassembly oo 28
3.3.2. Code Similarity Analysis. 30

3.4. Malware Analysis Methodology and Workflows 33

3.5, SUMMATY o v it e e e 34

4. Malpedia: A Representative Corpus for Malware Research 37
4.1. Motivation and Contribution L. 37
4.2. Requirements for a Malware Corpus focused on Static Analysis 39

4.2.1. Definition of Requirements 40
4.2.2. Review of Rossow’s Prudent Practices 42
4.2.3. Summary and Mapping to Prudent Practices 45

4.3. The Malpedia Corpus 46

4.3.1. Storage and Organization 47

Contents

4.3.2. Environment Specification and Dumping Procedure 50
4.3.3. Achieving Representativeness 53
4.3.4. Data Set Status. 56

4.4. A Comparative Structural Analysis of Windows Malware 56
4.4.1. Methodology 58
4.4.2. Evaluation of Availability and Reliability of PE Header Information 59

4.5, Summaryo e e 69
5. Robust Recovery and Analysis of Windows APl Usage 71
5.1. Motivation and Contribution 71
5.2. ApiScout: Recovery of Windows API Usage from Memory Dumps 73
5.2.1. Methodology 74
5.2.2. Inventarization of the Windows API 78
5.2.3. Evaluation 79

5.3. Analysis of Windows API Usage in Malware 84
5.3.1. DataSet. 84
5.3.2. WinAPI Information Availability 84
5.3.3. DLL and API Occurrence Frequency Analysis 88
5.3.4. A Semantic Classification Scheme for WinAPI Functions 90

5.4. ApiVectors: Storage and Comparison of WinAPI Usage Profiles 95
5.4.1. Methodology 96
5.4.2. Evaluation of ApiVector Parameterization 101
5.4.3. Evaluation of Classification Performance 104

5.5, SUMMATY . . . o o vttt e et e e e e 111
6. Code Recovery and Similarity Analysis 113
6.1. Motivation and Contribution 0. 113
6.2. SMDA: Effective Code and Control Flow Recovery from Memory Dumps 115
6.2.1. Methodology 116
6.2.2. Evaluation 122

6.3. MCRIT: MinHash-based Code Relationship Identification 131
6.3.1. Methodology 132
6.3.2. Evaluation o 141

6.4. Third-party Library Usage and Code Sharing in Windows Malware 151
6.4.1. DataSets 152
6.4.2. Accuracy Verification 153
6.4.3. Presence of Third-Party Libraries in Windows Malware 155
6.4.4. Code Sharing in Windows Malware 156
6.4.5. Case Studies for the Application of MCRIT 162

6.5. Summary e e e e 165
7. Summary and Outlook 167
7.1. Summary of Contributions, 167
7.2. Conclusions e 169
7.3. Practical Impact 170
7.4. Future Work 170

VI

Contents

Bibliography
Appendices
A. Windows Malware Families in Malpedia

B. YARA rules used to detect MSVC and zlib

VII

173
191
193

197

1. Introduction

Over the last 15 years the characteristics of malicious software (short: malware) have
changed dramatically. In the early days, most variants were created with the intention to
demonstrate skill and gather attention within a secluded scene of programmers. Source
code was published and traded on Virus eXchanges (VX) and the ambition was rarely
to cause serious damage but to explore and push boundaries.

A major shift in behavior can be observed around the years 2006 and 2007 when
a rapidly rising number of malware specimen surfaced that concentrated on criminal
activities. They were clearly geared towards amassing financial gain by systematizing
fraud, enabled by organizing compromised machines in the form of so-called botnets.
Some botnets were dedicated to drastically scale up spam volume [1], which in turn
was partially used to deliver malware [2], including malware families renowned for on-
line banking fraud such as win.zeus and win.gozi [3]. With growing resources and
experience on the attacker side, malware has been constantly refined ever since.

In recent years, a further progression towards extortion attacks using file-encrypting
malware (ransomware) can be observed. An outstanding case occurred win.wannacry
in May 2017 [4], which was able to affect more than 200,000 computer systems in just 8
hours due to its self-spreading mechanism. The attack also had notable impact on critical
infrastructure including transportation, telecommunication, and health-care providers
around the world. As one example, it widely disrupted operationality of the UK National
Health Service (NHS) and caused financial damage estimated at £ 92 million [5].

Similarly, malicious software plays a key role in state-driven digital espionage and
sabotage [6]. Documented cases of targeted attacks and high-profile network intrusions
go back to at least the late 1990s [7]. Backed with immense resources of nation states,
attack campaigns have reached a significant amount of intricacy and sophistication, as
for example the case of win.stuxnet demonstrated, which targeted industrial control
systems and destroyed an estimated 20% of the Iranian nuclear centrifuges [8].

Along with the increase in scale and complexity of malware families and their associ-
ated attacks, a corresponding need for better understanding of the threats has grown.
In particular, a strong demand for detailed analysis of and information about malware
arose, which is a prerequisite to perform accurate threat assessment and to derive strate-
gies for protective countermeasures and mitigations.

As a result, malware analysis has remarkably matured as a research field and pro-
fession. Nevertheless, substantial challenges remain that hinder even better and more
efficient analysis. Two major challenges that we identify and tackle in this dissertation
are availability of ground truth and situational awareness.

1. Introduction

Without question, the availability and quality of ground truth has huge impact on
experiments and thereby on the evaluation of methods and tools. As in many other
fields, openly available and representative data sets for malware research are hard to
come by. This also applies for Windows malware and especially for data suited for
static analysis, as protection mechanisms such as polymorphic packing are estimatedly
found in around 95% of malware samples encountered in the wild [9, 10], making their
payloads inaccessible to direct application of such techniques. For a long time, this
has particularly affected the academic research community, where several studies had to
make use of unsatisfactory data sets, for example containing only few, potentially long
outdated malware families or otherwise large corpora of unlabeled samples.

Situational awareness is crucial for the decision-making that steers efficient and effec-
tive malware analysis. Among the frequently recurring tasks in this regard, classification
of malware is very important, as it enables to distinguish known from unknown malware.
If an analyst is already familiar with a malware family, they may decide to immediately
focus on potential changes in the code compared to prior versions. Otherwise, having
pinpointed the family additionally allows an analyst to contextualize their investigation
early on in case previously published results of other researchers exists. In general and
specifically for unknown malware, a core objective is usually a characterization of the
threat. This includes the assessment of potential behavior and capabilities, which typ-
ically require interactions with the operating system interfaces. Another common facet
of analysis is the identification of components used for the creation of malware, such as
third-party libraries or code fragments that already surfaced in other malware families.

1.1. Research Questions

In order to approach the challenges outlined before, we define the following research
questions.

Research Question 1 (RQ1): How should a malware corpus be composed in order
to enable academic researchers to conduct representative malware research while simul-
tanously serving as a relevant resource for practical malware analysts?

Undoubtedly, ground truth of high quality is a necessary foundation in order to be
able to do meaningful research and to achieve expressive results. Apart from exploring
and formulating general requirements for ground truth, a goal of this research question
is the harmonization of potential nuances in aspects found in academic and practical
malware research. As a part of the answer we compose a data set satisfying the identified
requirements, with a focus on enabling static analysis of Windows malware and providing
memory dumps as a format for an unpacked representation. Given the availability of
comprehensive ground truth, we are now enabled to pursue various follow-up questions.

Research Question 2 (RQ2): To which degree is the integrity of original payload
meta data and file structure maintained, and based on this data, what can be inferred
about tool chains and methodologies as used by the malware authors?

An interesting question that has not been addressed extensively in the literature so far
is concerned with the consistency and authenticity of payload (meta) data encountered

1.1. Research Questions

during malware research. Malware authors and users have a valid interest in hiding
their tracks and aggravating analysis, which may lead to tampering with binaries prior
to deployment. The degree of reliability in turn has implications for the applicability of
both analysis methods and interpretability of information extracted from malware, for
instance when attempting to date the origin of certain malware versions based on the
compilation timestamp included in a binary.

Research Question 3 (RQ3): Using static analysis, how can Windows API usage
information be robustly extracted from memory dumps?

A program’s interactions with the Windows API provides extensive insights into its
potential behavior and capabilities, which emphasizes the relevance of robust methods of
identifying these interactions. Despite this fact, only few methods have been published
and best to our knowledge they have not been formally evaluated, which we also address
with this question.

Research Question 4 (RQ4): How frequently do malware authors apply obfuscation
schemes to their WinAPI usage?

In a spirit similar to RQ)2, we investigate the popularity of anti-analysis methods used
to conceal Windows API usage. For this, we define a three-tiered taxonomy of obfusca-
tion degree, divided into no obfuscation, dynamic imports, and heavy obfuscation. As
a result, we notice that no obfuscation and dynamic imports during the runtime are
common while only a minority of malware families uses heavy obfuscation. This allows
us to study WinAPI interactions in malware more in-depth with the next question.

Research Question 5 (RQ5): How characteristic are Windows API usage profiles for
malware families and can they be used in the context of malware identification?

Given the large variety of malware families and behaviors exposed by them, it has
been shown before that for example WinAPI call traces recorded in dynamic analysis
environments can be successfully used to classify malware [11]. In the given research
question, we investigate whether this is also possible for statically extracted WinAPI
usage profiles, and measure how unique the usage of individual WinAPI functions across
hundreds of malware families actually is.

Research Question 6 (RQs): How can code and Control Flow Graph information for
Intel x86/x64 code be robustly recovered from memory dumps, without making further
assumptions about the structural properties of the given file?

Accurate disassembly is a prerequisite that many other advanced binary code anal-
ysis techniques build upon. During past malware investigations, we noticed a decline
in disassembly quality offered by popular tools when they are confronted with mem-
ory dumps as input format opposite to proper unmapped executable files with header
meta data. Adressing this question, we quantify the impact and recombine disassembly
strategies found in the literature to propose a method that achieves high disassembly
quality without suffering similar effects when processing memory dumps.

1. Introduction

Research Question 7 (RQ7): How frequent is third-party library usage as shared code
in Windows malware?

As labels for functions are typically not initially available during investigations, an-
alysts are prone to choosing and studying functions of interest that later turn out to
be statically-linked library code. To better understand how common library code is en-
countered in malware, we use a fuzzy code similarity method to estimate the frequency
with which it is encountered. Being able to reliably identifying library code may also
save valuable analysis capacity.

Research Question 8 (RQg): Apart from libraries, what is the actual overlap of
intrinsic code in Windows malware families?

Related to RQ7, insights into code overlap between malware families that is not caused
by library code are of high interest. If no extensive code sharing can be assessed, this
would imply that source code is mostly kept private, which in turn would suggest that
actual overlap will more likely indicate common authorship or other kinds of relationship.

1.2. Contributions

In this section, we summarize our primary contributions. A part of the results has been
already published in the following peer-reviewed papers:

e Malpedia: A Collaborative Effort to Inventorize the Malware Landscape [12]

e ApiScout: Robust Windows API Usage Recovery for Malware Characterization
and Similarity Analysis [13]

Chapters 4 and 5 thematically incorporate these publications, but discuss the respec-
tive topics in much extended depth. Additionally, we use a consistent data set snapshot
throughout this dissertation, which is by itself also significantly extended and updated
compared to the previous publications.

In accordance with the research questions, our contributions can be grouped into three
major topics:

1. Malware ground truth

o We specify a set of requirements for malware ground truth that is well-suited
to enable representative research in both academic context and practical mal-
ware analysis.

e Following these guidelines, we create Malpedia as a reference data set tailored
towards static analysis with a focus on Windows malware. The reference
snapshot used in this thesis contains 1,136 manually verified malware families
with 3,469 representative samples, with a majority of them unpacked and
thus ready for in-depth analysis.

o We conduct an extensive comparative structural analysis across 839 Windows
malware families. Showing that most extractable meta data seems plausible,
we use it to derive insights into malware author preferences and methodolo-
gies.

1.3. Thesis Outline

2. Malware behavior and interaction with the Windows API (WinAPI)

e We propose ApiScout as an approach to extract WinAPI usage information
from memory dumps and demonstrate its reliability.

e Applying ApiScout to Malpedia, we show that dynamic WinAPI imports are
found in 49.5% of malware families studied while hard obfuscation is rarely
encountered (3.9%). We furthermore provide a detailed usage occurrence
analysis of individual WinAPI functions for which we also provide a semantic
categorization scheme.

e We present ApiVectors as a concept to capture WinAPI usage profiles of
malware families. We expose that these profiles are characteristic per family
and can be successfully used for malware classification.

3. Malware code and similarity analysis

e We introduce SMDA, a combination of disassembly best-practices able to
robustly retrieve control-flow graph information from memory dumps without
relying on structural file meta data.

e We propose MCRIT, a system using a MinHash-based fuzzy code similarity
method, and use it to estimate that on average at least 15-20% of the code
found in malware is potentially introduced through the inclusion of third-
party libraries.

e Using MCRIT to exclude suspected library code from malware during similar-
ity analysis, we demonstrate that similarity scores above 10% across families
are rare apart from were plausible reasons for relationship exist, such as public
source code leaks or documented links on other levels.

1.3. Thesis Outline

The remainder of this thesis is structured as follows.

Chapter 2 provides background information on fundamental notions used in this thesis.
This includes a general overview of relevant concepts used in binary code analysis, and
an introduction to malware and the analysis of malware.

Chapter 3 features an overview of related work. It surveys the state of available ground
truth for malware research and outlines previous works on Windows API usage analysis.
Furthermore, seminal publications on code analysis with a focus on disassembly and
similarity analysis are listed and works on malware analysis workflows and methodology
are summarized.

Chapter 4 starts out with the definition of a set of requirements for the composition of
high quality malware ground truth, especially suited for static analysis. This is followed
with the detailed description of Malpedia, our reference implementation of such a cor-
pus. The corpus is then used to conduct a comparative structural analysis of Windows
malware, comparing file integrity and meta data from unpacked malware samples of 839
Windows malware families.

1. Introduction

Chapter 5 examines how malware interacts with the Windows API. ApiScout is intro-
duced as a method to reliably extract API usage information from memory dumps and
then used to analyze the samples in Malpedia. Based on a usage frequency analysis,
ApiVectors are defined as a method to store and compare usage profiles, which is then
used for malware classification.

Chapter 6 deals with disassembly and code similarity analysis. First, SMDA is ex-
plained as a method for effective recovery of code and control flow information from
memory dumps. Next, we introduce MCRIT, a Minhash-based system for efficient fuzzy
one-to-many code comparision. MCRIT is then used to investigate third-party library
usage and code sharing in the malware families covered by Malpedia.

Chapter 7 provides a summary of the thesis. Apart from discussing the primary
contributions and conclusions, we give an overview of practical impact that our results
have achieved and which avenues for future work we envision.

2. Background

In this chapter we provide background information that we consider essential for un-
derstanding the matters discussed in the core chapters of this thesis. As this thesis is
primarily concerned with malicious software for the Windows operating system and its
analysis, we focus on these topics.

We start with an explanation of binary code analysis which we follow up with an
introduction to its underlying basic terms and concepts, including the procedure of
compilation, typical program structure, programmatic API usage, and disassembly as
a key technique to enable in-depth analysis. Next, we characterize the phenomenom of
malicious software and survey the foundations of methodology used to analyze it.

2.1. Binary Code Analysis

A fundamental research direction of computer science is program analysis [14], with its
primary use cases being code optimization and verification. A wide array of approved
techniques that has evolved over years in this discipline is directly applied on a pro-
gram’s source code [15]. However, source code is not always available for analysis, and
furthermore, a misalignment between source code representation and its intended effects
on the one hand and what is actually executed by a processor on the other hand has
been documented [16].

In such situations, the analysis has to be performed directly on compiled binary code
instead. It has to be noted that the unavailability of source code makes analysis signif-
icantly more challenging. This is primarily due to the reason that the translation from
source code to machine code typically involves the removal of e.g. structural and type
information, which are not needed for execution and thus are only implicitly encoded
into the program during the compilation procedure. Binary Code Analysis (BCA) is con-
sidered a core technique for reverse engineering, which is concerned with the recovery of
human understandable program semantics from its given binary representation. In this
context, primary purposes of analysis are enabling compatibility with legacy software
for which the source code is lost, auditing the security of proprietary software, as well
as the analysis of malicious software, as described in detail in Section 2.3.

Generally, BCA encompasses both techniques of static and dynamic analysis, the for-
mer being performed without the execution of the code under analysis and the latter on
its execution. Both methodologies have their respective tradeoffs.

Advantages of dynamic analysis are directly connected to its ability to follow a concrete
execution path, meaning that all data manipulated at an arbitrary point during execution
is immediately inspectable and there is no disambiguity about the flow of execution.

2. Background

However, its potential limitations also directly arise from these properties. On the one
hand, being tied to a concrete execution path may significantly limit visibility in terms of
code coverage with regard to the whole program. On the other hand, concrete execution
implies actual runtime with all potential dependencies within the operating system,
which may introduce significant analysis overhead.

Static analysis has its advantages exactly in these weak spots, striving for completeness
in analysis and code coverage while avoiding runtime overhead pitfalls. However, it
has to invest more effort with inference and approximation where the concreteness of
dynamic analysis provides immediate accuracy. For this thesis, we direct our focus
almost exclusively on applications of static analysis as the promise of completeness is
beneficial to our objectives.

We now continue with the introduction of several basic concepts relevant in the context
of BCA.

2.1.1. Compilation

Computer programs typically consist of a series of structured statements that advise the
execution of certain actions that manipulate the program flow or state. They are usually
written in a programming language and the collection of statements is referred to as the
program’s source code, which may be organized in several source code files.

In order to run computer programs, they first need to be prepared and transformed
for execution. Two popular concepts for this are interpretation and compilation. In-
terpretation on the one hand is a concept in which an intepreter, which is typically a
so-called runtime system, directly reads the source code and executes its statements as
they are encountered while following along the program flow. Compilation on the other
hand is the term that describes the transformation of a program written in a source
code language into a machine code suited for execution by a certain target processor
architecture and operating system. [17]

The overall procedure of compilation from source code to an executable program is
described by Aho et al. [17] as a structured sequence of four phases that consecutively
process each other’s output: preprocessor, compiler, assembler, linker.

Preprocessor: In the first phase, the preprocessor searches for all source code files
which are part of the program. In case the programming language supports shorthand
symbols (macros), they are also expanded.

Compiler: The compiler itself works in multiple phases which can be summarized as
analysis and synthesis, which are also called front-end and back-end. Analysis splits
the source code into fragments, which are then captured using a grammatical structure
that allows to organize the program in an intermediate representation (IR). Part of this
phase is verification, which can be used to alert on potential syntactic or semantic errors.
Synthesis is the construction of a concrete program for the target architecture from the
IR. It is a sequence of instructions in assembly language. Optimization of the code may
occur during both analysis and synthesis.

2.1. Binary Code Analysis

Assembler: The assembler produces relocatable and executable binary code from the
textual assembly representation that was generated by the compiler in a straightforward
manner.

Linker: Larger programs may constitute of several components that are compiled indi-
vidually into object and library files. The linker has the task to combine these relocatable
parts into one coherent program through static or dynamic linking. In static linking,
a single output file is produced through direct inclusion of all dependencies. When us-
ing dynamic linking, the resulting program is prepared in a way that it can specify its
dependencies during load time and then work with memory references to the external
code.

Popular frameworks for compilation are the GNU Compiler Collection (GCC) [18] and
the LLVM compiler infrastucture [19] as well as Microsoft Visual Studio as an IDE for
its assorted products Visual C++, Visual C#, Visual Basic, etc. [20].

The result of the full compilation procedure is usually not just plain code but self-
contained executable program files, which are the subject of the next Section.

offset Hexdump Text @ MZ Magic

1) L @ DOS String
00000000 : -4D5A9000 ©! FFFFOQ00 Mz.. © Rich Header
00000020 C e . O PE Magic
008000407 OE1FBAOE 00B409CD) 21B8014C CD215468 69732070, 726F6772 61602063 616EGEGF ..°..7.f!7.L1!This program canno @ wachine
00000060: 74206265 2072756E 20696E20 444F5320 6D6F646502E6D6D6A 24000000 00000000 t be run in DOS mode....$....... @ Nun Sections

00000080: 498D63B3 279C6892 27CF2781 7EIC6892 6CC626CA 6C8827C3 278D7E94 7F8D27CO I.c*'wh’'i'.~eh’lA&EL .'A @ Tinestamp
000000A0:, 52696368, ODECODEG-00000006_00000000 00000000 00A00OE_A000000E_DOOOBBOO RLCH.1.d.. .. eeerureeernneeennnn.

@ Characteristics

000000co-Ds045000¢4c01030¢790788847%0000000 09900000 ES00022100BO10AOE20000100 PE..L... [0'Z. eeees.. © Linker Info
000000E0: 00000200 00000000 CAFE0100 00100000 00200200 00000010 00100000 00020000 Bbeins e ® 05 Required
00000100-Fb5000100 05000100 00501000 00040000.00000006%0300400%FP......cc... @ @ subsysten
00000120: 00091000 00109000 00991600 00109000 00099000 1000900 IOBDOEOD 4BOOOOOD ®..K... @ plicharacteristics

00000140: <data directories> ® Data Directories

@ Section Table

BOBGOICO:@’ZE746578 74000000 5A100300 00100000 00120300

DOS Header
0000O1EQ: 000OE0E0 20000060 2E646174 61000000 CO2A0000 00300300 000AG000 00160300 DOS Stub
00000200: 00000000 00000000 0 2E72656C 6F630000 98200000 00600300 NT Header

00000220: 00220000 00200300 00000000 OO0 00000000 40000042 0000 00O Section Header

Figure 2.1.: Structural Overview of a Windows PE header [12]. The highlighted fields are dis-
cussed later on in Section 4.4.

2.1.2. Structure of Windows Executable Programs

Modern operating systems need additional information on how to run an executable
binary program. This is typically achieved by embedding meta data along the code,
usually in the form of program headers and structuring it into sections, which in combi-
nation serve as a sort of blueprint for the creation of a suitable executable environment
for the program. A popular example and root for many formats is the Common Object
File Format (COFF) format, which was originally used by both Unix-like and Windows
operating systems. Linux nowadays has moved to the Executable and Linkable Format
(ELF), while Windows still uses the Portable Executable (PE) file format, which is based
on COFF.

Following the scope of this thesis on Windows malware, we will now focus on the PE
format [21]. Figure 2.1 shows an example of a typical header of a PE file.

2. Background

It starts off with the DOS Header, which in itself starts with the two bytes MZ, an
abbreviation of the name of Mark Zbikowski, who designed the MS-DOS format [22].
Another relevant field is situated at offset 0x3C, which indicates the start offset of the
PE signature.

The DOS Stub follows the DOS Header. It is in itself a minimal 16bit program
that signals incompatibility with 16bit systems by simply emitting a string (typically
“This program cannot be run in DOS mode”) and exiting. Depending on how the
program was created, the DOS Stub may be potentially followed by the Rich Header,
a data structure inserted only by the Microsoft Linker [23]. The Rich Header is not
officially documented by Microsoft but its structure has been extensively analyzed by
researchers [23, 24, 25, 26]. The data structure contains information about the program’s
source code, in particular the number of input files processed by components of the
compiler tool chain.

The next part is the NT Header, which is divided into a COFF File Header and
Optional Header. As examples for relevant fields, the COFF File Header specifies the
required CPU architecture and number of sections. It also contains a field with a com-
pilation timestamp. The Optional Header carries detailed information about how to set
up the program for execution in memory, including the address of the program entry
point. Another part of the Optional Header are a sequence of 16 data directory entries,
which each contain a pointer and size for these respective additional data structures. Im-
portant examples for data directories are the Import Table and Import Address Table,
the Resource Table, and the Base Relocation Table.

Finally, usually one or more Section Headers follow, that each describe the name,
location, and size of a section in the PE file and how it is supposed to be mapped into
virtual memory. It should be noted that the PE format generally allows great leniency
and it is for example possible to produce a PE file without any sections [27].

Because program interaction with the Windows Application Programming Interface
(Windows API, short WinAPI) is extensively discussed in this thesis, we now provide
a short overview of the related concepts. The central idea of the Windows API is to
enable and manage interference of third-party programs with the operating system. It
provides a set of well-defined interfaces and data structures to ensure that all interactions
happen in an orderly fashion. The Windows API is functionally organized in several
components that for example handle access to file systems, execution contexts such
as services, processes, and threads, the Windows registry, peripheral devices and the
graphical user interface, or networking [28].

From a technical point of view, a program is usually dynamically-linked (cf. Sec-
tion 2.1.1) against all required endpoints of the WinAPI and the respective information
is encoded in the program’s Import Table. This means that this information is gener-
ally obtainable through means of static program analysis. It is however also possible
to obtain references to WinAPI functions during runtime, e.g. by making use of the
WinAPI functions kernel32.d11!LoadLibraryA and kernel32.d11l!GetProcAddress
to command the loading of a system library into memory and then resolving the address
of a desired WinAPI endpoint for use.

10

2.1. Binary Code Analysis

2.1.3. Disassembly

In order to conduct Binary Code Analysis, fundamental preprocessing in the form of
disassembly has to be conducted. The goal of disassembly is to produce a program rep-
resentation in assembly language that is equivalent in syntax to the source program [29].
Thus, disassembly aims at the inversion of the last phases of the compilation procedure
(cf. Section 2.1.1).

Two basic strategies exist for the disassembly procedure: Linear sweep and recursive
traversal. Linear sweep processes the program entirely sequentially, which makes it very
fast but also susceptible to situations where the instruction stream is interrupted, e.g.
when code and data are intertwined. Nonetheless, it has been shown that this is a very
effective method for instruction recovery, especially for Linux binaries [30, 31].

Recursive traversal on the other hand interprets the disassembled code during the
processing and considers code branches to identify promising locations for continuation
of the analysis. Downsides of this approach are that not all code may be discovered in
case direct code references are missed.

When using disassembly, a number of conceptual primitives are typically discussed:

Instruction: An instruction is a single machine-level command that advises the CPU
to perform an action. Its binary representation can be converted to a semantically equiv-
alent but human understandable form in assembly language. This so-called mnemonic
representation is a core element of disassembly and consists of an opcode (e.g. mov, add)
and potentially zero to four operands [32].

Basic Block: A sequence of instructions that are executed consecutively without inter-
ruption, i.e. have only one entry point and exit are called a Basic Block (BB). BBs are
primarily used as a concept to structure control flow.

Function: The term function is conceptually similar to functions in the source code.
In disassembly, they can be understood as the set of Basic Blocks that constitute the
implementation of said function. Typically, a function has only a single function entry
point (FEP) and multi-entry functions or shared basic blocks across functions are very
rare [30].

Control Flow Graph: The term Control Flow Graph (CFG) normally refers to a single
function and is formally a directed graph G = (V| F) in which the vertices V' are the set
of Basic Blocks and the edges E C V x V are defined between these Basic Blocks. It is
also referred to as an intraprocedural Control Flow Graph. The interprocedural Control
Flow Graph (ICFG) on the other hand are all CFGs of functions and additionally any
references between functions that are for example created through calls and jumps.

2.1.4. Code Similarity

Code Similarity Analysis is concerned with the comparison of two or more chunks of
code in order to map out their potential similarities and differences. It is among the
most interesting use cases of binary code analysis and its primary real world applications

11

2. Background

include vulnerability and patch analysis, but also the detection, analysis, clustering, and
attribution of malicious software. As a result, it has received significant attention in the
academic community over the last years. [33]

Key challenges opposite to the comparison of source code lie particularly in the ab-
stractions (e.g. removal of symbolic information) and transformations applied during
compilation. A given compiler toolchain and its parameterization like optimization lev-
els may introduce variance that can make it hard to even match code originating from
identical source code. For this reason, a wide range of approaches has emerged and
methods applied may vary greatly depending on the concrete instance of problem con-
sidered. As an example, a stronger emphasis may be set on measuring syntactic equality,
which may imply higher likelihood of same origin, versus classifying semantic equality,
when interested in identification of similar logic and algorithms.

2.2. Malware

Malicious Software, or short malware, is the umbrella term for any kind of software
that exposes unwanted or harmful behavior on a target computer system. It unifies
the increasingly recessing terms that were used in the past to label pieces of malware
into groups by their functionality, e.g. viruses being self-replicating by infecting other
executables, worms using network-based active spreading mechanisms, or trojan horses
concealing their malicious capabilities while posing as legitimate software [34].

Originally, malware was written primarily for personal enjoyment and the gain of repu-
tation within a small community by showing technical skill in its creation. This changed
drastically with the wide-spread adoption of the Internet. Allowing interaction with
infected systems at ease, malware started to be used to directly access and manipulate
many systems simultanously, leading to so-called botnets (short for “robot networks”,
inspired by the Czech term “robota”). [34]

With society’s growing dependence on computers for communication and electronic
commerce, financial exploitation of compromised systems became lucrative and a driving
factor for the creation of malware. Around 2006, this paradigm shift expressed itself in
rising economization of the malware scene and a strong increase of professionalism. This
can be observed through multiple factors.

First, in order to circumvent detection capabilities of Antivirus (AV) software, poly-
morphic packers, i.e. programs that protect malware as an inner payload through various
encoding and encryption mechanisms were widely adopted. This increased the absolute
numbers of individually malicious files (also called samples) detected by year from 7.3
million in 2008 to 38.3 million in 2014 and now 89.2 million in 2020 as reported by
AV-Test [35]. However, since malware is still authored manually, the number of different
families and variants will remain magnitudes smaller than the number of cryptographi-
cally hash-unique samples observed.

Second, the skill required to create and manage botnets was reduced with the in-
troduction of “botnet construction kits”, which allowed less technically verse actors to
operate them and also cause notable damage. This further evolved into the adoption of

12

2.3. Analysis of Malware

the operational “as-a-Service” model, lately most notorious in the form of Ransomware
as a Service (RaaS) [36]. An author of ransomware may sell or license their malware to
one or more affiliate threat actors, who then carry out the actual operational attacks
and compensate the author in the form of a fee or share in profits. Finally, economic
pressure motivates malware writers to produce the least detected, most persistent, and
functionally capable product, which leads to increasingly mature and complex malware.
The same applies to aforementioned polymorphic packers, which are competetively de-
veloped and marketed.

Throughout this thesis, we will use the following definitions when referring to these
respective terms:

Malware Sample: This term simply refers to a single file containing malicious software.

Malware Family: A malware family constitutes of the entirety of malware samples that
originate from the same source code and belong to the same project from a developer’s
point of view. Incorporating this developer’s perspective enables us to differ between
cases where multiple malware projects are derived from a common code base, e.g. when
it was published or leaked (e.g. win.zeus, win.gozi, elf.mirai) and also when a
project was rewritten (e.g. win.gpcode). Apart from the malware core, this may include
further components that serve as functional extensions specific to the family, such as
dedicated loaders or plugins that enable various capabilities. While not being a perfectly
sharp definition, this serves as an established compromise and consensus among many
practitioners. [12]

Malware Version: A version (or variant) within a family resembles a development
snapshot of the malware that was captured in the wild. The distinctiveness of versions
may largely vary, ranging from minimal incremental differences to major changes to the
source code. In some cases, malware families use their own internal versioning scheme,
in other cases compilation timestamps may provide a guideline as they frequently appear
to be genuine (cf. Section 4.4.2).

(Un)packed Malware: The term unpacked malware implies that a malware sample is
an immediate representation of the malware family itself. There is no presence of any
third-party code that is not related to its own code base that may have been applied
after compilation in order to conceal its identity and potentially evade detection. The
code in the unpacked malware may still be divided into multiple components or stages or
even be obfuscated if it is a feature encoded in the family’s source code itself. Opposite
to this, a packed sample is (unpacked) malware that has been further processed, which
often involves compression and encryption as well as addition of a code stub that reverts
the packed code to its original form and prepares it for execution. [12]

2.3. Analysis of Malware

The economic impact caused by a successful malware attack can be devastating, e.g. it is
estimated that a company on average suffers financial damage between multiple hundred
thousand to millions of Dollars [37], which implies that it is highly relevant to defend

13

2. Background

and fight against malware. In order to have a prolonged effect, countermeasures have to
go beyond mere protection of computer systems, e.g. by detecting potential malicious
intent of files before their execution.

A foundation for performing active mitigation is accurate information about malware,
obtained through detailed analysis. Core objectives of malware analysis are usually to
figure out its means of persistence, communication, and functional capabilities [38]. Iden-
tifying persistence mechanisms allows to identify and remediate compromised machines.
Being able to decode malicious Command and Control (C&C) traffic enables tracking
of actors as well as mapping out the network infrastructures they use for their purposes.
Analysis results on capabilities found in a given malware sample can serve as a basis for
impact estimation when assessing potential damages in case of an incident. Extraction
and description of characteristics of certain malware families and attack methodologies
may in some cases generate leads for the attribution of attackers.

Effective analysis of malware heavily leverages concepts of reverse engineering. In
general, reverse engineering is the process of obtaining knowledge or design information
up to a degree that is sufficient to recreate the original product which has been subject
to analysis [39]. Reverse engineering when applied to the analysis of computer programs
typically requires Binary Code Analysis (cf. Section 2.1) as especially with malware,
source code is almost never available. Luckily, it is rarely necessary to fully examine a
malware sample as full recreation is barely the default goal. Only selected code aspects
may be of such high interest that the effort of in-depth study or re-implementation
is justified, e.g. decryption of network traffic or extraction of configuration files for
automation purposes. However, malware analysis frequently faces techniques used to
additionally protect the software, further aggravating analysis. As a notable example,
when considering full automation of unpacking malware, this task in itself is exposed to
the fundamental limitation of undecidability imposed by the halting problem [40].

As outlined in Section 2.1, Binary Code Analysis can be seen as divided into the com-
plementory approaches of dynamic and static analysis. We will now introduce the key
techniques within these in the context of malware analysis. While performing practical
analysis, an analyst will usually switch between both methodologies to benefit from their
individual advantages.

2.3.1. Dynamic Analysis

A primary objective of dynamic malware analysis is to closely monitor execution in order
to make observations and conclusions about runtime behavior. This is usually already
very informative, as programs have to extensively interact with an operating system’s
interface to achieve meaningful impact (cf. Section 2.1.2).

Because harmful behavior is expected from malware, the execution environment is
typically set up carefully to contain potential damage. This involves aspects such as not
having valuable data unintentionally available within the system and limiting network
access, first and foremost to avoid accidental participation in attacks (e.g. distributed
denial of service) as a side effect of the analysis. A helpful tool frequently used in order
to achieve containment and consistency is virtualization [41]. The abstraction into a

14

2.3. Analysis of Malware

virtual guest system provides a natural barrier from its host. Furthermore, being able
to snapshot a full system state as supported by most virtualization solutions allows to
quickly and reliably revert to known clean states. A downside of virtualization is that
some packers or malware families will probe the system trying to detect it, in which case
they may alter or stop their execution.

With regard to analysis methodology, blackbox analysis describes the approach of
solely monitoring the effects of execution without analysis of the code causing them [42].
While appearing basic in its application, it is a powerful way that often already yields
actionable Indicators of Compromise (IOCs). This includes details such as under which
file paths a malware may try to achieve persistence or to which Command and Control
servers it may try to communicate, allowing to scan for or block them.

A natural development was the automation of blackboxing, which lead to the concept
of sandboxing [43]. A sandbox is a tailored system that provides orchestration of the
common sequence of analysis steps and scope. It will first ensure execution is started from
a clean state. Based on its configuration, it will record any changes to the file system and
configuration, log network conversations, and typically also track suspicious interactions
with the system API that are known to be used to enable malicious capabilities. After
an analysis runtime of usually a few minutes has concluded, output is generated. This
is typically a report optimized for human interpretation or for further machine-based
processing. Sandboxing in professional environments is often horizontally scaled to many
thousands of malware executions daily and coupled with anomaly analysis to identify
new variants.

It has to be noted that the previously mentioned drawback of dynamic analysis usually
being tied to limited, concrete execution paths (cf. Section 2.1) also affects blackboxing
and sandboxing in the way that path coverage is potentially constrained and may not
cover regions in the malware where critical capabilities are located.

Debugging is another highly relevant use case of dynamic malware analysis. Originally,
debugging describes the procedure of runtime error analysis in the context of software
development. As an analysis tool, debuggers are capable of providing full informa-
tion about CPU register and memory contents and enable following program execution
instruction-wise or between so-called breakpoints that can be set on memory addresses.
This allows for very fine-grained analysis that is often applied to obtain a better un-
derstanding of narrow and select code regions such as particularly complex functions.
It is even possible to debug code locations when they have not been reached through a
natural execution flow.

While this dissertation focuses on static analysis, one technique used originates from
digital forensics: the capture of volatile memory on a running system [44]. Also referred
to as memory dumping, it can be used to obtain a variation of the unpacked state of a
malware sample without consideration of how this state was reached, i.e. the packer’s
unpacking procedure. This is in almost all cases equally suitable for in-depth analy-
sis as an unmapped representation and provides even better potential as a normalized
representation as demonstrated in Section 4.3.1.

15

2. Background

2.3.2. Static Analysis

Static analysis in the context of malware analysis can be divided into (initial) cursory
and detailed analysis [38].

Cursory static analysis is typically performed initially when a new investigation into a
malware sample is started and intended to enrich the analysis context and help to create
an overview of its file characteristics, e.g. whether it is packed or not. One primary
objective here is often to perform classification and identify the malware family for a
given malware sample as this allows to potentially accelerate analysis by referring to pre-
viously obtained information and results. Common techniques for this are the creation
and matching of exact or approximate fingerprints in the form of cryptographic or fuzzy
file hashes, an examination of meta data including file header fields (cf. Section 2.1.2),
file entropy analysis, collection and assessment of plaintext strings, or examination of
Windows API imports. Most of these analysis steps can be widely automated, while
interpretation of results may be performed manually, comparable to sandboxing.

Detailed analysis implies mainly the application of Binary Code Analysis techniques
(cf. Section 2.1). This heavily involves an in-depth dissection of code using disassemblers
such as IDA Pro [45] or Ghidra [46]. As the full disassembly of a program will frequently
constitute of several hundred or thousands of functions, a key challenge is to maintain
orientation and situational awareness in the binary and being able to direct focus to select
areas of interest [47]. From a reverse engineering workflow perspective, it is advised to
work towards defined analysis goals or hypotheses that capture narrow scope around
specific functionality. A useful paradigm in this context is to perform top-down or
bottom-up analysis that follows local data- or control flows and is anchored around
cornerstones. These can be for example referenced strings or WinAPI functions that
have tell-tale characteristics [38].

If applicable, decompilation can be used to recover (pseudo-)code that approximates
the source code, which is significantly more accessible to humans than disassembled
instructions and can also accelerate producing an understanding of the code’s seman-
tics [48].

2.4. Summary

In this chapter, we provided an overview of foundational topics relevant for this thesis.
We first conceptually introduced Binary Code Analysis which is applied in all three main
chapters. This included a procedural summary of compilation and an explanation of how
executable Windows PE files are structured, because we conduct a comparative study
across 839 malware families in Chapter 4 and investigate how malware interacts with the
Windows API in Chapter 5. We then explained disassembly and code similarity, which
are the main topic of Chapter 6 where we introduce approaches for both. Furthermore,
we gave a general introduction to malware itself and its analysis, which is the central
theme of this dissertation. Here, we focused on how Binary Code Analysis is specifically
applied to malware in the form of dynamic and static analysis.

16

3. Related Work

In this chapter, we give an overview how the research presented in this dissertation is
related to other work in the field. We cover the following areas: First, we discuss ground
truth data sets created and used for malware research. Second, we present research
analyzing how the Windows API is used in malware and how it can be used to infer
potential capabilities of malware. Third, a survey of works on methods for disassembling
of code is given. Fourth, we give an overview of research into measuring code similarity.
Finally, we list research into malware analysis workflows and methodology.

Where appropriate, we also point out non-academic research as for multiple of the top-
ics listed, outstanding work has been published outside of traditional academic formats.

3.1. Ground Truth for Malware Research

Ground truth is a term used to describe the “gold standard for assessing detection/clas-
sification algorithms” [49] and as such plays a fundamental role in experimental research.
Naturally, reliable ground truth is highly relevant in malware research as well to pro-
duce representative results. In this section, we give a survey of how data sets have been
created and used in malware research, covering both malware samples and meta data.

3.1.1. Collections of Malware Samples

Before discussing works that have been dedicated to malware data sets or used them in
an outstanding way, we highlight publications that are concerned with how ground truth
and experiments should be constructed and that looked at the impact and implications
of violations of such good practices.

Most notably, Rossow et al. [50] published their set of prudent practices, a detailed
collection of guidelines of considerations for sound experimentation with malware. They
reviewed earlier works from 2006-2011 and analyzed their compliance with said guidelines
or otherwise shortcomings. They conducted additional experiments to support their
theses. One significant insight of this was that randomly sampled data sets usually tend
to be highly imbalanced, e.g. 80% of malware samples in one data set belonging to about
10% of the families. Allix et al. [51] investigated the relevance of malware timelines for
(Android) data set construction. They showed that this can have significant impact
on machine learning-based detection schemes. Roy et al. [52] raised concerns about
the quality and in particular age of input data used as data sets in (Android) malware
classification studies. Pendlebury et al. [53] published TESSERACT, an open source
evaluation framework which accounts for effects of temporal and spatial distorsion in data

17

3. Related Work

sets. They reviewed three previously published Android malware classifiers and showed
that they were affected by biases from the data sets they had been created and trained
on. Miller et al. [54] conducted a study in which they evaluated the performance of a
large-scale malware detection system across VirusTotal submissions for 2.5 years. While
by itself achieving a 72% detection rate, they showed that the classifier performance
could be improved to 89% with even 42% detections on otherwise undetected samples
when given a budget for 80 human expert reviews on a daily basis. Additionally, they
discussed the impacts that temporal inconsistency in labeling of training data may have
a negative impact of as much as 20% on classifier performance. In more general terms,
van der Kouwe et al. [55] systematically analyzed the benchmarking practices across 50
defense papers. They postulated a list of 22 “benchmarking crimes” and showed that
they frequently occur even in publications at highly regarded venues. Abt and Baier [56]
did a survey of 4 years of papers in the network security fields. They noted that 70%
used manually compiled data sets, and only 10% of authors shared these upon request.

Upchurch and Zhou [57] proposed Variant, a malware data set created to serve as a
gold standard for similarity testing of code. The data set consists of 85 samples grouped
into 8 families, and samples have been unpacked to allow them to be directly compared.
Nappa et al. [58] monitored 502 drive-by attack servers with exploit kits for one year.
They collected the malware distributed by these servers, which resulted in the Malicia
data set, containing 11,363 samples associated with 55 malware families. Rieck et al. [11]
published their malware data set Malheur alongside their machine learning framework
for behavorial malware classification. Malheur contains 24 malware families identified
by 6 Antivirus labels each, it is limited to 300 samples per family, and families under 20
samples have been discarded during creation. Lin et al. [59] conducted a comparison of
malware samples obtained through passive collection via honeypots with active collection
from P2P filesharing. They noticed that the collection method influences the type of
malware collected, i.e the samples from honeypots contained more bots, while P2P
filesharing appeared to be used to primarily deliver trojans. Ceschin et al. [60] created a
malware data set consisting of 50,000 samples used for targeting victims in Brazil. They
argued that frequent adjustments to detection models are necessary to keep up with
the evolution of threats. Grill et al. [61] investigated bootkits in particular, creating
a collection of 2,424 samples covering 8 years. Ronen et al. [62] produced the data
set used for the Microsoft Malware Classification Challenge (BIG 2015). It contains
more than 20,000 samples for 9 selected families, including ample processed data to
tailor it for easy use in machine learning experiments. Catak and Yazi [63] created
and published a malware data set of 7,107 samples including their respective Windows
API traces as generated using Cuckoo Sandbox. Barabosch [64] used samples from 102
malware families to study host-based code injection attacks. Anderson and Roth [65]
published the EMBER2017 and EMBER2018 feature data sets, derived from 1.1 and 1
million PE files scanned in or before 2017/2018, annotated with the classes benign and
malicious. The data set is intended for the creation and benchmarking of ML-based
malware detectors working on PE file meta data. Harang and Rudd [66] provide the
SOREL-20M data set, which in nature is similar to EMBER but more extensive. It
consists of almost 20 million files with pre-extracted features and other meta-data as
well as high-quality detection labels verified across multiple sources.

18

3.1. Ground Truth for Malware Research

With respect to Android malware research, we note a number of works that have been
dedicated to the assembly and publication of research data sets. In 2012, Zhou and
Jiang [67] were the first to publish a collection of Android malware samples in their
Android Malware Genome Project. This data sets consisted of 1,260 malware samples
that were mostly repackaged applications with added malicious functionality. According
to their estimation, they covered the majority of existing Android malware families (48)
at the time. Arp et al. [68] released the Drebin data set. It consists of 5,560 applications
and includes 179 malware families that were collected over a period of 2 years. Wei et
al. [69] compiled the Android Malware Dataset (AMD). It consists of “24,553 samples,
categorized in 135 varieties among 71 malware families ranging from 2010 to 2016”.
Allix et al. [70] built AndroZoo, a massive collection of currently more than 14 million
Android Packages (APKs). The data set includes both goodware and malware, in case
of the latter with their respective Antivirus detection labels. It was constructed by
crawling app stores including GooglePlay and AppChina but also includes samples from
Torrents and other downloadable locations.

Other Android data sets were created with a more specific focus. Maiorca et al. [71]
specifically looked into obfuscation in the context of Android. They published the PRA-
Guard data set, which consists of 10,479 samples which are obfuscated with 7 different
techniques. Kiss et al. [72] created the Kharon data set, targeting in-depth research
methods. It consists of 7 + 12 fully annonated Android malware samples. The Cana-
dian Institute for Cybersecruity published several data sets for Android Malware in a
specific context. Among them for example the work by Lashkari et al. [73], who con-
tributed the Android Adware and General Malware (AAGM) Dataset: it consists of 250
adware samples (5 families), 150 malware samples (5 families) and 1,500 benign files.
Alswaina and Elleithy [74] provided a survey on the state of Android malware detection,
identification, and also the data sets used over time.

A number of works investigated how malware families developed over time, following
their lineage. Calleja et al. [75] obtained the source code for 151 malware samples,
spanning 30 years of malware development. They noticed an exponential increase (about
one order of magnitude per decade) in complexity when measured in source code files,
lines of code and functions per sample. Goldberg et al. [76] studied the derivation of
phylogenic trees for malware and used directed acyclic graphs (DAG) to describe them.
Their results were building on earlier work by Sorkin [77], who noted about 6,000 unique
computer virus files at that time. Dumitras and Neamtiu [78] reasoned about the factors
affecting lineage and provenance research. They identified several threats to the validity
of this line of work, and made a case for validating results on benign open source software.
Lindorfer et al. [79] tracked the development of 11 malware families over time. They
analyzed the incremental change in the code over time, noticing that families primarily
grew in size and functionality, which was particularly observed for Zeus. Jang et al. [80]
studied and compared straight line and directed acyclic graph lineage. They applied
their proposed method on a ground truth collection of 84 malware samples with known
lineage from the Cyber Genome Project. They observed that PE header timestamps
were a reliable data point to support lineage. Haq et al. [81] studied malware lineage.
Using a data set of 7,793 samples from 10 malware families, they showed that by mapping
samples to versions, a data reduction of 26 times can be achieved.

19

3. Related Work

The Malpedia data set follows best practices and guidelines formulated in prior work
by Rossow et al. [50]. It is unique in that it unifies meta data information and references
for malware families, all of which are covered with representative samples. For most
(Windows) malware samples, an additional unpacked state is provided in the form of
memory dumps, which allows immediate processing using static analysis.

3.1.2. Analysis of Antivirus Detection Labels

Several works examined if Antivirus detections can be used as a reliable source for
malware family classification labels.

Bailey et al. [82] were among the first to investigate if AV detection labels can serve as
a reference for family classification by contrasting label clustering results with clustering
based on behavorial information gained through dynamic analysis. Maggi et al. [83] stud-
ied the inconsistencies in naming across four AV products on 98,000 malware samples.
An important observation by them was that closed subsets of names across AV products
may not exist consistently, which implies that these labels may not suffice to properly
validate clustering techniques. Mohaisen and Alrawi [84] evaluated the AV detections
for 12,000 manually verified samples of 11 families. Among other results, they found
that AV detections as a label source may inflate the number of families significantly, as
the number of labels assigned across all engines was a median of 69 and average of 139.

Perdisci and ManChon [85] introduced a system for Validity Analysis of Malware-
clustering Outputs (VAMO). They studied the effects of inconsistent labels in detail and
showed that plurality vote outperforms majority vote for finding consensus across AV
engines. Kantchelian et al. [86] reviewed ground truth labeling approaches used in more
than 30 prior works and demonstrated that using confidence weights for different AV
engines was beneficial. Gregio et al. [87] noted that traditional names such as Virus or
Worm have become widely obsolete due to malware exhibiting manifold capability and
instead proposed a behavior taxonomy. They also examined how generic Antivirus de-
tection labels correspond to their chosen behavior classes. Sebastidn et al. [88] proposed
AVclass, a system for extrapolating family labels for the collection of AV detections of
a sample, as aggregated on VirusTotal. Using predefined lists for generic tokens and
family aliases, the AV detections are processed and reduced to a single consensus us-
ing plurality vote. The system achieved a F1 score of .939 on 8.9M samples combined
from multiple data sets. Sebastidan and Caballero [89] also proposed the improvement
AVclass2, which no longer needs predefined lists but instead automatically derives class,
family, behavior, and file properties from the aggregated AV detections, if possible, and
builds a taxonomy based on the collective tags. Hurier et al. [90] intensively studied
the potential disagreements in AV engine decisions for Android malware. This poses
a challenge to building ground truth and data sets as they show that both choosing
thresholds for detections or assigning different weights to vendors may introduce biases.
Based on their findings, Hurier et al. [91] presented Euphony as a follow-up, a method
to extract family names from AV labels and demonstrated its application on Android
malware. The extraction method works without upfront definition of generic terms nec-
essary in order to clean detections labels. The method builds weighted graph structures

20

3.1. Ground Truth for Malware Research

encoding the names from multiple AVs which are reduced to trees and then clusters to
derive one name per sample through majority voting. Ugarte-Pedrero et al. [92] gave
detailed insight into how a day’s worth of incoming malware files is processed by a secu-
rity company. They explain how extensive filtering and grouping by behavior are used
to minimize the number of samples to be analyzed manually and discuss limitations of
state-of-the-art tools and implications for such analysis and decision pipelines.

Our approach for family tagging in Malpedia does not rely solely on Antivirus detection
labels but instead uses the classification references provided by subject matter experts
in analysis reports as one primary source of information. As a result, family names
correspond closer to the identifiers as given and used by human analysts. Nevertheless,
the data set is also augmented with Antivirus labels where suitable and possible.

3.1.3. Collections of Meta Data on Malware

Apart from data sets consisting of malware samples, a number of works have focused on
collecting meta data on malware and threat actors that can be used for contextualization.

The Malware Wiki [93] is a public knowledge base in the form of a wiki that documents
information about malware families. Freyssinet [94] studied botnets holistically, focusing
on malware components, operations, and actors. The result was an extensive collection of
meta data stored in a wiki accessible at botnets.fr and the formulation of a strategy to
organize the fight against botnets. Bandla and Castro [95] maintain APTnotes, a GitHub
Repository organizing public information such as blogs and reports on attacks with APT
background. Roth et al. [96] collect publicly available information on APT groups and
their used tools, including their respective aliases as given by security vendors. The
MITRE ATT&CK framework [97] is an extensive knowledge base collecting information
of adversary tactics and techniques. It also features a section documenting attacking
tools and the threat actors they are associated with. The Malware Intelligence Sharing
Platform (MISP) [98] was originally created as an effort to simplify the storage and
exchange of Indicators of Compromise and is a widely adopted open source framework
for exchanging intelligence at large. It contains so-called galaxy clusters, which are
taxonomies that can be used for annotation of content. Among them are extensive
and highly popular collections for malware and threat actors. The Council on Foreign
Relations provides a Cyber Operations Tracker [99] that collects “publicly documented
state-sponsored cyber activity since 2005”. It documents source and target of attacks
along with the type of incident, e.g. espionage or sabotage. ThaiCERT [100] maintains
a collection called Threat Group Cards, that was originally published as a report but
is now also available as a website. Their portal integrates and harmonizes information
from several other sources, including MISP, MITRE ATT&CK, and Malpedia. Laurenza
and Lazzeretti [101] created dAPTaset, a collection of meta data around APT activity.
It imports raw data from sources like MITRE ATT&CK and MISP, parses this data
for Indicators of Compromise and enriches them using further sources, among them
Malpedia. Gray et al. [102] collected 896 reports on APT activity, which were then
parsed in order to extract 15,660 hashes of malware associated with 164 threat actor
groups. As a result of their efforts, the meta data set is made available to researchers
upon request.

21

botnets.fr

3. Related Work

Our data set Malpedia is unique in that it not only collects meta data but also provides
the actual underlying binary files as ground truth, in an unpacked representation where
feasible. Malpedia has already been used as a data source by several other projects as
indicated above.

3.2. Windows API Usage Analysis of Malware

One of the anchors of in-depth malware analysis is the examination of how the malware
interacts with the system. Especially on Windows, the Windows API is an inescapable
gateway to lower-level access to e.g. the file system and networking. Thus, it is also
central to many proposed detection, classification, and analysis methods.

We will first provide a summary of other publications that have addressed the recovery
of information about how programs import and use the Windows API. After that, we will
give an overview of approaches to use this information for detection and classification of
malware. In this context, we also highlight works that used this information to analyze
potential malicious capabilities found in a program.

3.2.1. WinAPI Usage Recovery and Deobfuscation

Suenaga [103] provided an extensive overview of different obfuscation techniques for
Windows API calls. Apart from runtime API address resolution, advanced concepts
involving control flow redirection are discussed. O’Meara [104] investigated and docu-
mented a case where API name hashing was used in the malware family win.heriplor,
associated with threat actor Energetic Bear. They showed how the obfuscation method
can be used to systematically identify more samples of the family by searching through
a big malware repository.

Sharif et al. [105] presented a method for dynamically resolving WinAPI usage in
the context of their analysis framework FEureka. They described how a lookup ta-
ble for WinAPI functions and their corresponding memory addresses can be gener-
ated using dynamic analysis by evaluating the loaded modules in a process memory
space and then resolving use of the WinAPI by checking addresses against this ta-
ble. Raber and Krumheuer [106] presented an approach called QuietRIATT for re-
constructing an Import Address Table. Their method uses a modified version of Mi-
crosoft Detours [107] to record calls into the WinAPI, which can be processed using
IDA Pro [45] and ImpREC. Xi et al. [108] proposed a framework called ADSD (API
Deobfuscation based on Static and Dynamic techniques). They perform slicing to locate
calls to kernel32.d11!GetProcAddress and then use emulation to resolve the respec-
tive WinAPI reference. Choi [109] presented a method for dynamic API deobfuscation
using memory access analysis. By tracking read and write operations, both direct and
indirect calls using obfuscation can be analyzed in order to resolve their respectively
referenced WinAPI functions. Korczynski [110] presented RePEconstruct, a method
and tool to automatically unpack malware using the dynamic binary translation frame-
work DynamoRIO. It can also rebuild Import Tables. Kawakoya et al. [111] proposed

22

3.2. Windows API Usage Analysis of Malware

a method for reconstructing Import Address Tables in cases where position obfusca-
tion [112] is used to masquerade the position of DLLs in the memory layout. Kotov and
Wojnowicz [113] presented a method to recognize the usage of Windows API based on
their passed arguments in order to generically overcome usage obfuscation. For argument
recovery, they used symbolic execution and a vector representation to represent them
for matching via Hidden Markov Models. A limitation of their approach is that they
only considered functions with 3 or more arguments and targeted 25 selected WinAPI
functions only.

With regard to practical methods based on static analysis for WinAPI usage recovery
from memory dumps, the current state of the art are Scylla [114], which is the successor
of ImpRec, and ImpScan [115], a plugin for the Volatility memory forensic framework.
Our approach ApiScout is a generalized method of the approach proposed by Sharif et
al. [105]. It is more robust than Scylla and ImpScan as it does not assume a single
coherent Import Address Table. Instead, it scans for groups of two or more individual
WinAPI references and properly validates recovered entries, resulting in almost no false
positives and false negatives.

3.2.2. Malware Detection and Classification by Analysis of WinAPIl Usage

Many approaches that involve WinAPI usage information in the context of detection
and classification of malware have been proposed. Most of these rely either on static or
dynamic analysis, which is why we use this criterion to organize the following summary.

Starting with dynamic analysis, Christodorescu et al. [116] introduced one of the first
formal concepts for malware detection based on semantic abstraction and interpreta-
tion of behavior. Their framework is based on templates that consist of instruction
sequences in which variables and symbolic constants are translated into an intermedi-
ate representation. This makes their matching of templates robust against compiler
artifacts and obfuscations like instruction reordering, register renaming, or garbage in-
sertion. Christodorescu et al. [117] followed up their work with the presentation of a
prototype. Their examples and explanations demonstrated a strong reliance on WinAPI
usage as a solid semantic anchor for behavior specifications. They then performed min-
ing on a number of malware samples and extracted traits and behaviors that can be used
both for describing and matching malicious behavior. Preda et al. [118] additionally pre-
sented a proof for the stability of patterns extracted via the approach of Christodorescu.
Chen et al. [119] further improved upon the work by Christodorescu et al. [116, 117]
by adding summarization of graph patterns for attack behavior which optimized it to
work better on polymorphic families. Frederikson et al. [120] continued this line of work
by finding optimizations for discriminitive behavior specifications. Again relying mostly
on WinAPI usage sequences, specifications are abstracted and synthesized to better
generalize their detection potential.

Hu et al. [121] proposed a tracing system called Argus to monitor WinAPI usage by
programs. Based on a 35-dimensional vector with each entry representing presence of
one potentially malicious behavior, they performed detection of malware. Liu et al. [122]
defined 35 behaviors based on WinAPI sequences that can indicate malicious programs,

23

3. Related Work

including creation of files or modification of programs to be started on OS initialization.
Bayer et al. [123] provided an overview of malicious behaviors observed across 901,294
submissions to their analysis system Anubis. These behaviors were derived from WinAPI
call sequences recorded and interpreted by the system.

Rieck et al. [124] used machine learning to train models for the detection of malicious
behavioral patterns based on sandbox traces. They presented a method for feature ex-
traction and embedding in order to translate characteristic WinAPI interactions into a
vector space, upon which a SVM can be applied. They used a corpus of 10,000 malware
samples from 14 families and showed that the method provides high reliability. Trinius et
al. [125] defined a new representation to express observable behavior they call Malware
Instruction Set (MIST). MIST instructions translate and abstract WinAPI calls and
their processed arguments into a more space efficient binary format. Because of this,
storage overhead of sandbox traces is significantly reduced while also allowing better
embedding into vector spaces, e.g. for clustering malware by similar observed behavior.
The approach covers 130 WinAPI functions, categorized into 20 groups. Rieck et al. [11]
did a second study of machine learning applied to malware classification, using MIST
to embed observed behavior into a high-dimensional vector space. Using an incremental
approach to combine clustering and classification, they showed a significant improve-
ment in accuracy over the results presented in their previous work, while simultanously
reducing the memory required and increasing the processing throughput. Kolbitsch
et al. [126] used behavior graphs consisting of WinAPI interactions to model specific
program activity. Initially, these graphs are extracted from runtime intruction traces
recorded during the execution of malware in the analysis system Anubis. After creating
a reference set of behavior graphs, they showed that these graphs can be effectively used
for endpoint protection when comparing them against execution behavior of malware.
Apel et al. [127] compared the performance of four different distance metrics when used
for clustering dynamic execution behavior traces, consisting of WinAPI function calls.
Cheng et al. [128] applied information retrieval methods to the classification of malware.
They first recorded sequences of WinAPI calls via Cuckoo sandbox [129] as behavioral
features. These sequences were then processed with an irrelevance reduction method to
isolate significant behaviors which were then used for similarity analysis.

Ki et al. [130] used Detours [107] to enable WinAPI call sequence analysis in order
to detect malware. By tracing 23,080 samples, they found 2,727 WinAPI functions
and categorized them into 26 classes represented by letters A to Z. After normalizing
WinAPI call sequences into sequences of letters, they then used methods known from
DNA sequence alignment (such as multiple sequence alignment and longest common
subsequence) to isolate characteristic sequences for malware. These were then used to
classify unknown samples. Gupta et al. [131] used a similar approach, hooking 534
WinAPI functions and mapping them to 26 semantic classes identified by letters A to Z.
The translated WinAPI call traces were then compared to each other using ssdeep [132].

Anderson et al. [133] used dynamic and static analysis in combination to improve the
classification of malware. One of their 6 data sources were dynamic system call traces,
in which they recorded 2,460 distinct WinAPI functions used across 1,556 traces. They
then grouped these WinAPI functions into 94 semantic categories, primarily to reduce

24

3.2. Windows API Usage Analysis of Malware

dimensionality for their clustering. Shijo and Salim [134] also leveraged a combination
fo static and dynamic analysis for the detection of malware. They derived WinAPI call
n-grams from dynamic traces and combined this data with information on statically
extracted strings.

With regard to approaches relying exclusively on static analysis, Schutz et al. [135] were
among the first to exploit information about a program’s interaction with the Windows
API to detect potentially malicious behavior. They extracted information about DLLs
and APIs used and represented this information as three different kinds of boolean (DLL
and API presence) and integer vectors (APIs used per DLL). These vectors were used to
derive rules for detection. Lu et al. [136] studied the applicability of different machine
learning algorithms to the problem of malware detection. They used a mix of content-
and behavior-based features, with content-based features incorporating the presence of
calls to WinAPI functions. For this, they statically extracted all entries from the Import
Tables across 1,200 malicious and benign programs and found 2,682 different WinAPIs
being referenced. Based on this collection, they constructed a binary vector to encode
the presence of all API functions. Sami et al. [137] statically extracted WinAPI import
information from 65,000 binaries. They observed 44,605 distinct WinAPI functions being
used and used frequency analysis to derive a subset of these functions to be used in a
binary vector representation over which malware detection was enabled. Sathyanarayan
et al. [138] defined a set of critical WinAPI functions that are often observed to enable
malicious functionalities. Using IDA Pro, they extracted call frequencies for these critical
WinAPI functions and used a vector representation as a profile for a given program.
They then used a Chi-square test to decide whether or not a vector belongs to a class
of malicious programs. Baranov et al. [139] used symbolic execution to analyze System
Call Dependency Graphs (SCDG), i.e. potential sequences of WinAPI interactions, and
classify malware.

Alazab et al. [140] proposed a method to derive information about potential malicious
behavior by statically analyzing a program’s Control Flow Graph and WinAPI interac-
tions. They defined 6 behaviors encapsulating 76 WinAPI functions and evaluated their
presence across 386 malware samples. Alazab et al. [141] followed up with another related
approach that statically analyzed the frequency with which certain WinAPI functions
were called.

Shafiq et al. [142] showed that structural information extracted from PE files can
be used to detect malware. One of their features was the presence of references to
the Windows API through usage of the network enabling DLL files wsock32.d11 and
wininet.dll. Beaucamps et al. [143] presented a method to apply model checking
for malware detection. They introduced a generic framework that abstracts behavior
from its concrete implementation using string rewriting. In examples they outlined
how sequences of WinAPI interactions can be described with labels, which then in turn
can be combined to increase the expressiveness. This was then applied to the analysis
of dynamic program traces produced by using Intel Pin [144]. In a follow-up work,
Beaucamps et al. [145] expanded their framework to also cover parameters and thus
involving data flow analysis as well as allowing interleaved abstraction patterns. In the
course, they also explain how this extension allows application for static analysis.

25

3. Related Work

Zwanger and Freiling [146] explored the spectrum of APIs used by binary program code
running in kernel mode. By defining 19 semantic groups for these APIs and measuring
their usage frequency in histograms, they were able to discriminate programs of different
characteristics such as drivers for hardware, the filesystem, and network versus rootkits.

Caillat et al. [147] proposed Prison, a method to monitor inter-process communica-
tion, which also allows to detect and mitigate malicious behavior. It is implemented
via hooking system services in the Windows kernel by patching the System Service Dis-
patch Table. The monitoring and interception is tailored to relevant WinAPI functions
tied to suspicious behavior and their respective entry points to the kernel. Kirat and
Vigna [148] introduced MalGene, a system to automatically extract malware analysis
evasion signatures. The system is based on sequence alignments over WinAPI calls, for
which similarity is measured using methods known from bioinformatics. Mohaisen and
Alrawi [149] presented AMAL, a system for “high-fidelity, behavior-based automated
malware analysis and classification”. The approach is separated in two stages. First,
malware samples are sandboxed and artifacts related to file system, registry, network,
and volatile memory are extracted. Some of these artifacts are interactions with the
Windows API. Second, after mapping these artifacts into corresponding feature vectors,
these vectors are clustered and then have labeled samples injected to map clusters to
families.

Tamada et al. [150] presented a method to encode watermarks into software based
on the sequence and frequency of Windows API calls. Choi et al. [151] proposed a
similar method depending on the Windows API call sets that capture API usage over all
functions found in a program. Guan et al. [152] statically extracted sequences of system
functions and evaluated the applicability of frameworks used for phylogeny and protein
alignments to measure similarity across programs.

Other works have examined if and how a program’s interaction with the Windows API
can be interpreted to provide human analysts with an overview of expected functional
capability and jumpstart their in-depth analysis.

Comparetti et al. [153] raised awareness on the fact that sandboxing will often only
capture certain behaviors but will not provide information about so-called dormant func-
tionality. They proposed Reanimator, a system that uses program slicing to locate pres-
ence of code that matches previously identified genotype features for certain behaviors
that they call malspecs. Guevara [154] proposed a method for semantic exploration
of binaries. The method relies on a-priori defined sequences of WinAPI functions as-
sociated with certain malicious behaviors that are matched against the interprocedural
Control Flow Graph of a program to locate and highlight these behaviors. Oosthoek and
Doerr [155] applied MITRE ATT&CK behavior recognition on the Malpedia data set
by using an industry state-of-the-art malware analysis framework, Joe Sandbox [156].
Ballenthin et al. [157] published capa, a framework to encode and match rules for known
(malicious) program behavior. These rules can be defined to e.g. require the presence of
certain instructions, constants, but also WinAPI functions to indicate behaviors. Capa
uses our disassembler SMDA (presented in detail in Section 6.2) as its primary disas-
sembler backend for Python3. Alrawi et al. [158] presented FORECAST, a system using

26

3.3. Code Analysis

symbolic execution for detection of malicious capabilities in memory images of malware
which also estimates their execution likelihood.

Two representations to assess and compare WinAPI usage commonly used in practice
are ImpHash [159] and ImpFuzzy [160]. Instead of a vector representation, both use
a concatenation of the WinAPI DLL and API names which is then transformed using
cryptographic (ImpHash) or fuzzy (ImpFuzzy) hashing.

Our approach ApiVectors picks up the idea of a vector representation to encode the
usage of WinAPI functions, as previously proposed e.g. by Schutz et al. [135] and
Lu et al. [136]. However, we do not only consider entries from the Import Table like
previous works but also incorporate those entries usually protected by Windows API
usage obfuscation, i.e. dynamically created WinAPI references during runtime, which
can be recovered by ApiScout. Performing our analysis across a data set as diverse
as Malpedia allows us to derive a very representative vector from the 4,994 distinct
WinAPI functions we found being used. Because we provide a semantic categorization
for all of the observed WinAPI functions (which is almost twice as comprehensive as
previous works by Ki et al. [130] and Anderson et al. [133]), we are also able to ensure
that the selection in the vector consists of WinAPIs that have high practical relevance
to analysts.

Instead of using the vector representation for machine learning-based classification,
we propose the use of a similarity measure based on a weighted Jaccard index. The
weighting allows to emphasize less commonly used WinAPI functions, which are thus
potentially more characteristic for a malware family. This is one of the reasons why
ApiVectors achieves better classification results than the comparable approaches Im-
pHash and ImpFuzzy, which instead only use equal weights and project the WinAPIs
using non-reversible hash functions prior to comparison. Maintaining the ApiVector
representation for comparison also provides inspectability of the procedure, increasing
the interpretability of results.

3.3. Code Analysis

As malware is typically delivered as a compiled program, in-depth analysis is usually
required to be carried out on binary code level. An initial step in this context enabling all
further analysis is the identification and interpretation of binary data into instructions
and the structure they are arranged in, a procedure referred to as disassembling. As the
produced disassembly serves as a base on which other analysis techniques are conducted,
it should be as complete and accurate as possible.

In the following, we will first give an overview of related work on disassembly. After
this, we will address the field of code similarity analysis, which is highly relevant in the
context of malware analysis as it is a primary tool to accelerate analysis and provide
context.

27

3. Related Work

3.3.1. Disassembly

Linear sweep disassembly is the straightforward approach to disassembly and is based
on the assumption that instructions are located in a sequence within a continuous code
section. Application of this technique turns an individual instruction decoder immedi-
ately into a disassembler and is implemented e.g. by OBJDUMP [161]. While being a
very fast method, it is susceptible to data being mixed into the instruction stream, like
jump tables or strings.

Among the first to define a recursive traversal algorithm for disassembly were Sites et
al. [162]. They used it to extract code and be able to translate it for other instruction
sets, benefiting from performance advances on other architectures. Cifuentes and Van
Emmerik [163] used a form of recursive traversal in their system UQBT, applying it in
the context of binary rewriting. They [164] also presented a method for the recovery of
n-conditional branching when implemented as a jump table. It is based on program slic-
ing and aims at locating and evaluating the offset table containing all target addresses.
Their method recovers the sought information for more than 89% of the cases. Another
early work describing recursive traversal was by Theiling [165], who proposed using a
bottom-up instead of top-down approach for control flow graph extraction. Their disas-
sembly algorithm allows to better account for uncertainty and ambiguity in a number of
special cases, including switch tables or functions without a dedicated return instruction.
Schwarz et al. [166] suggested to combine the advantages of linear sweep and recursive
traversal into a hybrid disassembler algorithm, that uses linear sweep for instruction
recovery while using recursive traversal for validation of function boundaries. Linn and
Debray [167] revisited recursive traversal and proposed obfuscation techniques to thwart
static analysis. De Sutter et al. [168] defined techniques for the reconstruction of indirect
control flow transfers when recovering and restructuring CFGs from binary programs.
They achieved a target recovery success rate of above 90%, consequently allowing to
reduce the code size missed by a higher degree than before.

Meng and Barton [169] studied the frequency with which complex code constructs,
such as jump tables, tailcalls, or overlapping instructions occur in compiled code. An-
driesse et al. [30] performed a comparison of nine state-of-the-art disassemblers on an
extensive data set of both Linux and Windows binaries compiled with varying compilers
and settings. They also addressed the prevalence of complex constructs and how they af-
fect disassemblers. Additionally, 30 publications were reviewed and a mismatch between
the expectations and presented results in the literature was noticed, especially with re-
gards to accuracy and reliability of instruction recovery (underestimated) and function
start recovery (overestimated). Andriesse et al. [31] followed up their investigation with
the presentation of Nucleus, an algorithm for compiler-agnostic function detection. The
approach uses a bottom up methodology, first identifying sequences of instructions as
basic blocks and then inferring function structure from control flow connections between
these components. Di Federico et al. [170] proposed Rev.NG, a framework for disas-
sembly based on reaching definitions analysis applied to code lifted into an intermediate
representation. This allowed them to apply the same set of techniques for multiple ar-
chitectures. Pang et al. [171] did a systematic study and overview of techniques used

28

3.3. Code Analysis

in (open-source) disassemblers for different aspects such as linear sweep versus recursive
traversal, resolution of cross-references, indirect jumps, jump tables, etc.

A line of works has studied the applicability of machine learning in the context of
disassembly, for both instruction and function border detection. Rosenblum et al. [172]
used machine learning for the identification of function entry points (FEP). They defined
a model for Conditional Random Fields (CRF) using idioms of up to four instructions
as well as call and overlap information. Their approach achieved a notable improvement
over FEP detection in Dyninst [173] and IDA Pro. Wartell et al. [174] addressed the
challenge of differentiating data and code. For this, they interpreted x86 binaries as a se-
quences of bytes and used machine learning to train a language model that allowed them
to classify these as code or data. Bao et al. [175] defined a method called ByteWeight
and applied weighted prefix trees over instruction sequences for the identification of
FEPs. This allowed them to recognize longer sequences of up to ten instructions as
function prologues. They used normalization on instructions by wildcarding parts of
their operands. Shin et al. [176] used recurrent neural networks (RNN) and showed that
this allows to notably reduce the time required for training while achieving similar or
slightly better results than with ByteWeight. Pei et al. [177] demonstrated the applica-
bility of transfer learning to the recognition of instructions and function borders. They
showed that even when only trained on unoptimized binaries, their method XDA still
worked well on optimized binaries.

Other research set its analysis scope on code protected against analysis. Kruegel
et al. [178] discussed improvements to static disassembly when targeting binaries that
are obfuscated. Apart from iterative refinement and conflict resolution of the CFG and
basic blocks, they also used gap completion to locate additional code missed by the initial
disassembly. Harris and Miller [179] focused on the analysis of stripped binaries. They
expanded their model for function representation by adding shared-code and multi-entry
functions. After an initial phase of breadth-first recursive disassembly, they similarly
scan potential gaps for well-known function prologues. They reported an improvement
of accuracy and completeness of recovery over results provided by IDA Pro. Bonfante et
al. [9] presented CoDisasm, an approach that is capable of dealing with self-modifying
code including overlapping instructions. They combined concrete path execution, used
to capture waves of codes, with static disassembly in which they piece the observed
pieces together. Scope of their evaluation was the application to malware unpacking and
identification of layers in packers.

Further use cases for code analysis and disassembly were also demonstrated. Wang et
al. [180] demonstrated their approach Uroboros, which allows to disassemble code in a
way that enables assembling it back correctly into executable programs. The challenge
specifically addressed in this work is to handle relocation of code accurately, which
they solved successfully. Caballero et al. [181] examined possibilities for automated
binary code reuse. They proposed a method to identify the interface of self-contained
code blocks including instructions and data dependencies and to extract it for external
instrumentation. As use case, they showed how to infer and rewrite adapters for the
C&C protocols used by the MegaD and Kraken botnets. Chua et al. [182] focused on
the application of machine learning for derivation of function type signatures. In their

29

3. Related Work

system Eklavya, they trained neural networks for this task and achieved an accuracy of
above 80%.

Our approach SMDA that we present in Section 6.2 builds on several of the pre-
sented works [178, 179, 172, 175, 170, 31|, reusing ideas for recursive disassembly, using
prologue- and call-destination-based heuristics for function entry point detection and
filling remaining gaps with linear disassembly. The novelty aspect of our work is that
we specifically focus on memory dumps instead of unmapped executables. In the course,
we demonstrate that high quality disassembly can still be obtained with these methods
without the need to rely on further pointers for code constraints from meta data, such as
section, relocation, exception handler, or symbol tables, and also that the output quality
of other disassemblers suffer when they do not have access to this information.

3.3.2. Code Similarity Analysis

(Binary) code similarity analysis is a technique that enables the comparison of given
pieces of binary code. Its use cases include the detection and analysis of malware but
also bug search and differencing of patches, e.g. in the context of vulnerability research.
It is usually assumed that source code is not available and methods are applied on either
function or whole binary level, less often also on basic blocks. Haq et al. [33] provided a
comprehensive survey of research on this topic.

Among the first to describe a code similarity analysis approach were Baker et al. [183].
They proposed a method called Exediff, which allowed to construct delta files, i.e. small
change sets of code that can function as patches with low size footprint. Their demon-
stration was applied to DEC Unix Alpha executables and provided specific methods for
handling both text and data segments. Another early work was presented by Wang et
al. [184], who introduced BMAT, an approach to match versions of executables with the
purpose of propagating existing performance profiling information to new builds. In a
first step, code is matched on function level using both meta data information (symbols)
and hashing over code. Then the candidate function pairs are further compared on basic
block level. Carrera et al. [185] used an adjacency matrix defined over all calls between
functions in a program for similarity analysis. They further defined control flow graph
and call-tree signatures and used them for matching. Schulman [186] split up the out-
put of a disassembler at the identified function boundaries and used hashing to create
a database of known functions. Cohen and Havrilla [187] analyzed code duplicates in a
large collection of binaries using code hashes. Working on function level, they compared
hashing the binary code directly as given in the program with hashing a processed ver-
sion in which they wildcarded addresses, leading to position independent code (PIC).
They particularly observed that hashing the PIC representation will rarely introduce
additional false positives over direct code hashing.

Farhadi et al. [188] defined a taxonomy for code similarity methods, in which they
divided them into text-based, token-based, metrics-based, structural-based, behavorial-
based, and hybrid approaches. In their taxonomy, text-based approaches are applied on
whole binary level, with the system BitShred as introduced by Jang et al. [189] given as
example. BitShred uses a bit vector of mixed feature, containing information obtained

30

3.3. Code Analysis

through both dynamic and static analysis. The collection of vectors is then processed
using co-clustering and Jaccard distance as a similarity measure.

Token-based approaches split a given code representation into subsequences which are
then used for comparisons. A very early work using tokens was the study by Gold-
berg et al. [76]. They observed that for computer viruses that are derived from each
other, that they will likely contain sequences of 20 or more identical bytes. Goldberg
et al. defined these sequences as characteristics and used a directed acyclic graph to
capture the characteristics of certain virus species. Karim [190] compared the utility of
n-grams versus n-perms (n-permutations, i.e. sorted n-grams) for matching code and
found that n-perms performed better. Walenstein et al. [191] also suggested the use of
n-grams and n-perms and introduced weighting based on inverse document frequency.
Saedbjornsen [192] normalized instructions by performing abstraction over the operands.
Instead of n-grams, a window approach was used to capture instructions in a given re-
gion, that were then transformed into a vector suitable for matching using a bagging
technique. Upchurch [193] used the locality sensitive hashing (LSH) method Minhash
to efficiently index n-grams for code similarity analysis. Tahan et al. [194] described
a similarity analysis method using n-grams which involves both benign and malicious
software. Here, the benign code is used to filter software to be analyzed, allowing to
match only suspected malicious components against each other. Hassen and Chan [195]
used the the call graph extracted from malware samples for matching. They also used
an intermediate step in which they performed clustering and derived cluster ids using
instruction n-grams of sizes one, two, and three. Raff and Nicholas [196] showed that
when using n-grams for classification and being interested in extracting the most fre-
quently occuring n-grams, they can be processed using hashing to achieve a speedup of
one to two magnitudes.

With respect to metrics-based approaches, Bruschi et al. [197] proposed a method to
numerically summarize certain features of functions, e.g. by counting the number of
instruction, blocks, or specific instruction types. Miller [198] used metrics such as num-
ber of parameters, incoming and outgoing references, and stack frame size to define a
signature for functions that can be used for comparisons. Eschweiler et al. [199] thor-
oughly evaluated the expressiveness of metrics-based features and proposed DiscovRE
as a method using kNN clustering for nearest neighbor search to locate candidates of
functions to be then compared with other in-depth methods.

A significant work in the class of structural-based methods is the graph-based ap-
proach to function matching that was proposed by Dullien [200], which also uses the call
graph to determine matching candidates in two programs to be compared. A follow-up
work by Dullien and Rolles [201] again focused on graph isomorphism but proposed
improvements to the matching on instruction, basic block, and function level. By using
the Small Primes Product as a hashing method, the method also introduced robustness
against instruction reordering in basic blocks. Kruegel et al. [202] proposed a fingerprint-
ing method for the detection of polymorphic worms. They used colored k-subgraphs,
in which the color was based on instruction semantics, defining classes such as data
transfer, arithmetics, stack, or floating point instructions. Cesare et al. [203] presented
Malwise, which uses a flowgraph representation for functions and set similarity to com-
pare flowgraphs contained in malware samples. Ding et. al. [204] created Kam1n0, an

31

3. Related Work

approach for scalable asssembly code clone search. They used an adaptive locality sen-
sitive hashing scheme to approximate Nearest Neighbors, using instructions represented
as mnemonics and operands as well as n-grams of these as features. Exploiting the
sparsity of links in control flow graphs, they were able to efficiently implement subgraph
clone search in a MapReduce algorithm, working on basic block level and merging up-
wards into functions. Huang et al. [205] used Minhash to encode features extracted from
longest path generation and path exploration for code similarity.

Considering behavior-based methods, Leder et al. [206] proposed to use Value Set
Analysis to abstract code semantics and behavior from their concrete implementation
and demonstrated the applicability to the detection of metamorphic malware. Jin et
al. [207] introduced the concept of semantic hashing. On basic block level, they used
pseudo-randomly generated assignments of register states to compute input-output pairs
for the behavior of basic blocks. In order to make this semantic representation usable
for matching, Jin et al. were the first to show that the concept of MinHashing [208]
is well suitable to be applied in the context of code similarity. Lakhotia et al. [209]
presented their approach BinJuice, in which semantics of basic blocks are captured by
extracting algebraic and type constraints. Egele et al. [210] used blanket execution as a
dynamic analysis technique in their PIN [144] tool BLEX to perform semantic feature
extraction. They showed that this method can provide higher discriminatory power than
other approaches. An extension to cross architecture code matching in the context of
bug search was presented by Pewny et al. [211]. They lifted code from ARM, MIPS,
and Intel into a common intermediate representation, over which they calculated input-
output pairs that were processed using Minhash, similar to Jin et al. [207].

The taxonomy also lists hybrid approaches that combine multiple of the previously
listed methods. The approach by Wang et al. [184] as mentioned earlier falls in this
category, but also a work by Khoo et al. [212] that uses code abstraction, n-grams, and
function subgraphs for matching. Alrabaee et al. [213] used opcodes but also control
flow graph walks as features for code similarity analysis. They were also among the first
to conduct an extensive study of usage of third-party libraries in malware. Dullien [214]
proposed the use of SimHash [215] for code similarity analysis. Features used for their
system FuncSimSearch were subgraphs of the control flow graph as well as n-grams of
mnemonics.

In addition to these categories, new approaches based on encodings and embeddings,
such as the natural language processing techniques word2vec by Mikolov et al. [216],
were proposed in recent years. Feng et al. [217] created Genius. In their system, control
flow graphs annotated with structural and statistical features are first used to generate
codebooks. These codebooks are then used for feature encoding of functions, which
allows them to apply locality sensitive hashing for search and comparison. Gemini was
proposed by Xu et al. [218] as an improvement of Genius, which was the first neural
network-based approach for generating embeddings of binary code. They call their em-
bedding structure2vec and process a similar annotated control flow graph structure as
defined for Genius. They showed that the method is significantly more accurate than
Genius and can be trained three to four magnitudes faster. Massarelli et al. [219] pre-
sented their system SAFE, in which they used word2vec to map instructions to vectors,

32

3.4. Malware Analysis Methodology and Workflows

which are then summarized using a self-attentive neural network. They show that this
setup is capable of outperforming Gemini. Ding et al. [220] proposed an adaption of
word2vec they call asm2vec. It is tailored to capture syntactic context of instructions by
encoding mnemonics and operands for the processed instruction as well as its preceeding
and successive instructions. In order to represent full functions, the function’s control
flow graph is modeled using edge coverage sequences and random walks over sequences
of instructions. Ding et al. showed that their technique performs better than approaches
based exclusively on graphlets or n-grams.

Our approach MCRIT performs code similarity analysis on function level and builds
on several well-proven concepts from prior work. It uses both token- and metrics-based
features, whose influence can be weighted to control their impact on the matching. The
indexing itself is implemented using the LSH scheme MinHash for which a series of
parameterizations are evaluated in detail. We continue the work of Alrabaee et al. [213]
by performing an analysis of third-party library usage in malware over a large and
representative data set, Malpedia. For the analysis of code overlap across malware
families, we incorporate the idea by Tahan et al. [194] to exclude known library code to
focus on code intrinsic to malware families.

3.4. Malware Analysis Methodology and Workflows

Chapters 5 and 6 address concrete methodology of static malware analysis. The specific
aspects covered in these chapters are chosen on what we — based on personal experience —
believe are among the most crucial areas of in-depth analysis, as also outlined in our work
on a cooperative malware analysis workflow [38]. The following provides an overview of
related work analyzing or proposing malware analysis methodology.

Bryant [221] conducted a fundamental study of the procedures applied by reverse
engineers when recovering a semantic interpretation from assembly code. It is specif-
ically highlighted how representational gaps complicate the task of interpretation and
abstracted the concepts and procedures as described by multiple subject matter experts
into coherent methodology. Pucsek et al. [222] proposed the Integrated Comprehen-
sion Environment (ICE), which aims to transfer tools known from IDEs for high-level
languages to low-level representations. This includes a series of components, e.g. a Car-
tographer module that uses the call graph to provide orientation above the function level
that many analysis tools usually provide as primary interface. Baldwin [223] extensively
studied how analysts achieve program comprehension on assembly code and how to sup-
port this procedure. This also included an extensive user study conducted by Baldwin
et al. [224] to identify requirements and issues that two expert groups regularly faced
during their work. Votipka et al. [47] performed interviews to investigate the decision
making procedure of reverse engineers for both vulnerability and malware analysis. They
observed a methodology split in three phases across all study participants, divided into
overview, sub-component scanning, and focused experimentation. They noticed that
static analysis dominates in the first two phases, while focused experimentation often
involves dynamic analysis (cf. Section 2.3).

33

3. Related Work

Nguyen and Goldman [225] presented their methodology for Malware Analysis Reverse
Engineering (MARE). It covers a full analysis workflow divided in four phases, from
detection over unpacking to in-depth analysis including behavior analysis and reverse
engineering. Higuera et al. [226] proposed a Systematic Approach to Malware Analysis
(SAMA). The method lists a general sequence of tasks typically to be carried out when
working on a malware case. It gives detailed workflows including feedback loops to guide
the analysis procedure.

Kim et al. [227] proposed a framework to support the procedure of attributing mal-
ware families to actor groups by using human and machine collaboration. A number
of descriptive features like printable strings or modified registry keys was extracted and
used to train a kNN classifier. Then, a human analyst was presented with a visual repre-
sentation of closeness for outliers that could not be classified automatically. In all cases,
the subject matter experts were able to increase the overall classification accuracy with
the presented information.

Obrst et al. [228] defined the Malware Attribute Enumeration and Characterization
(MAEC) language. MAEC is an ontology that allows structured documentation of
malware by referring to standardized behaviors and capabilities.

3.5. Summary

This chapter gave an overview of relevant prior work published on the topics covered
in this dissertation. It allowed us to demonstrate how our efforts and results relate to
others and which novelties our work provides.

With Malpedia, we provide the most comprehensive data set to date in terms of
cleanly labeled, representative samples for 1,136 malware families including an unpacked
representation for a large majority of them. Strictly following a set of requirements in
line with previous guidelines for best practices [50], it is ensured that this data set
can serve as a solid foundation for in-depth analyses of malware. Additionally tracking
meta data information for the malware families provides practical context to support
research. The usefulness of the data set is demonstrated through an investigation of the
applicability of prominent analysis methods on memory dumps.

By expanding an existing approach [105], we first propose ApiScout as a robust method
for the recovery of references to the Windows API and show in an evaluation that it
outperforms the current state of the art [114, 115]. Using our method on Malpedia, we
quantify that dynamic WinAPI imports are found in almost 50% of malware families
analyzed. In order to define a representative vector to encode WinAPIs used by mal-
ware (similar to [135, 136]), we create a semantic classification scheme more extensive
than what was used before [130, 133], providing detailed behavioral characterization of
malware. We also show that this vector representation allows a more granular compari-
son and identification of malware based on WinAPI usage information than comparable
methods [159, 160].

With regard to the analysis of code, we show that current disassemblers struggle to
recover code from memory dumps and build upon previous work [178, 179, 172, 175,

34

3.5. Summary

170, 31] to propose improvements to function entry point recognition and code recovery,
producing more robust results. Next, we continue to study code similarity using both
exact [187] and fuzzy hashing and propose a scalable, Minhash-based code similarity
framework called MCRIT for which we evaluate the effectiveness of mixing token- and
metrics-based features. Inspired by [213], we investigate the use of third-party libraries
in malware. Using MCRIT on Malpedia and a set of 53 FOSS libraries, we locate about
20% of code likely associated with libraries, which is in line with what was reported by
Alrabaee et al. [213].

We will revisit details of selected publications for comparison and discussion in the
course of the following chapters.

35

4. Malpedia: A Representative Corpus for
Malware Research

In this chapter, we discuss the perceived lack of solid, quality ground truth for (Windows)
malware research and present our contribution in this context: Malpedia.

We first start with a motivation and follow up with a definition of related research
questions and our contributions in Section 4.1. In Section 4.2 we then define a set of
requirements that a malware corpus tailored for static analysis should follow and compare
them against the Prudent Practices outlined by Rossow et al. [50]. Next, in Section 4.3
we present Malpedia, a reference corpus following the requirements introduced and give
an outline of its contents. Malpedia is valuable for multiple use cases, allowing to study
a wide range of different malware families in great detail from different perspectives. In
this chapter, we demonstrate this by performing an extensive structural analysis of the
unpacked payload malware in order to gain an insight into malware author behavior in
Section 4.4. Finally, we conclude the chapter with a summary in Section 4.5.

This chapter follows in large parts our previously published results as presented in [12]
but significantly expands in the number of covered malware families, which is more than
twice as large as in the original publication.

4.1. Motivation and Contribution

Malware remains a significant threat to the integrity of computer systems and networks.
The time around the years 2006-2007 marks a significant changing point in the evolu-
tion of malicious software for multiple reasons. First, at this time polymorphic runtime
packers were omnipresently adopted, becoming a drastic game changer in the discipline
of malware detection, as can be inferred from AV-TEST’s collection statistics [35]. Sec-
ond, from this time on, malware was increasingly economized, introducing specialized
services for many aspects of conducting cybercrime operations. Third, fraud using in-
famous banking trojans promising immediate financial gains was a new attack model
that boosted the popularity of financially-oriented malware [34]. Ever since, malware
has received increasing attention by researchers.

Reviewing academic malware research of the last 15 years, it becomes fairly obvious
that there is still a lack of quality reference data to conduct experiments on. As was
summarized in Chapter 3 on related work, many publications that covered Windows
malware used data sets consisting of only a few malware families that also appear in parts
heavily outdated when comparing their first spotting in the wild versus the publication
date. Other reseachers tried instead to compensate the aspect of coverage by using

37

4. Malpedia: A Representative Corpus for Malware Research

large data sets with near or completely unknown and undocumented composition. This
raises serious questions on the expressiveness of the studies conducted as malware is a
fast-paced, everchanging field.

One inherent challenge to research is the omnipresence of packers that immensely
inflate the number of uniquely observable malware samples. Bonfante et al. observe
93% packed samples in the data they used [9] and Calvet et al. [10] 98% packed sam-
ples. Therefore, packers are an important aspect in the context of detection, and they
are an effective hindrance for actual malware research on their carried payloads, which
is usually referred to as the actual malware families. Many packers carry great com-
plexity by abusing barely documented operating system intrinsics to thwart detection
(e.g. win.smokeloader [229]), posing a significant challenge to industry professionals
and academic researchers alike. Thus, packers can be seen as a barrier, which has to
be overcome in order to perform effective static analysis. This indicates that having a
maintained reference corpus of carefully compiled data, focusing on providing unpacked
samples would have a huge benefit for research on malware, as it could potentially fill
the gap and provide researchers with relevant and understandable data to base their
work on.

On the other hand, when looking at practical malware research as for example con-
ducted and published by threat protection vendors or CERTS, their work mostly focuses
on single malware families or sets of families as used by specific threat actors. But
in consequence, the resulting research and design of tooling currently carried out is of
reactive fashion, based on observations of prevalence in the wild.

In summary, the core problems of current malware research are uncertainty in represen-
tativeness and expressiveness as well as the reactive short-sightedness they exhibit. This
clearly motivates the need for an extensive, realistic, representative corpus of malware.
Such a corpus could be used to find answers to questions beyond chasing the current
trends that has been shaping the design and optimization of analysis methods for many
years now. High value use cases are for example the ability to create context by infer-
ring previously unknown code relationships between malware families or the derivation of
generically applicable structural and behavorial features useful for signature generation,
i.e. detection and identification.

This leads to the central research question for this chapter:

RQ@Q1: How should a malware corpus be composed in order to enable academic re-
searchers to conduct representative malware research while simultanously serving as
a relevant resource for practical malware analysts?

In an attempt to answer this question, we have created Malpedia. Malpedia is a refer-
ence corpus for malware research, especially optimized for static analysis and providing
wide coverage of distinct malware families while being exceptionally accurately labeled.
On January 3rd, 2019, Malpedia features 3.469 reference samples for 1.136 malware
families of multiple platforms and additionally 2.447 references to analysis reporting,
which makes it the most comprehensive malware corpus for practically-orientied mal-
ware research at the time of writing. As one central goal is to provide verified unpacked

38

4.2. Requirements for a Malware Corpus focused on Static Analysis

payloads, it allows a unique insight beyond the shroud formed by polymorphic packers
and allows to study the malicious payload programs as produced by their authors.

Having this data at hand, we formulate a follow-up question:

RQs: To which degree is the integrity of original payload meta data and file structure
maintained, and based on this data, what can be inferred about tool chains and
methodologies as used by the malware authors?

Using our framework malpedia-analytics, we show that the integrity of the vast ma-
jority of payloads is not affected by packers used. This means that many samples contain
seemingly generally valid meta data, among them such interesting fields as the compila-
tion timestamp, or linker version. For example, inspecting the latter, we learn that the
most common tool chain is Microsoft Visual Studio in its rather outdated versions 2010
and 6 (dated 1998), showing that malware authors seemingly stick to development en-
vironments they are most used to. Furthermore, malware authors spend little attention
to data fragments that tell about their development systems, as unredacted PDB paths
with user names stored in paths and plausible Rich Header entries show.

Contributions. By answering research questions RQ); and R(Q)2, we lay the foundations
for a realistic, representative corpus useful for malware research. In summary, in this
chapter we make the following contributions:

1. We define a set of requirements for a representative malware corpus focused pri-
marily on static analysis and show their harmony with documented best practices.

2. We detail our approach and experiences with composing a reference data set fol-
lowing these requirements, showing that well chosen data can be representative for
file collections several orders of magnitude larger.

3. We provide Malpedia as a reference corpus following these requirements to the
research community.

4. We demonstrate the applicability and usefulness of the corpus by conducting an
extensive study of meta data availability and payload integrity for the 839 Windows
unpacked malware families.

4.2. Requirements for a Malware Corpus focused on Static
Analysis

After the introductory motivation of the need for a realistic malware corpus, we start
by defining requirements that such a corpus should obey. In order to derive concrete
requirements that a malware corpus focused on static analysis should fulfil, we first look
more closely at what this data set shall enable, especially in the context of this thesis. For
this, we quickly recapitulate that the two key challenges identified initially in Chapter 1
were centered around ground truth and situational awareness and derive the following
three goals:

39

4. Malpedia: A Representative Corpus for Malware Research

1. to create a comprehensive data set to enable a comparative analysis of Windows
malware,

2. to derive knowledge about the applicability of static analysis techniques and

3. to apply and improve techniques to investigate relationships between malware fam-
ilies.

We identify requirements that are relevant in all of these goals and which can be
categorized into 3 overarching topics: representativeness, accessibility, and practicality.
We will first explain the aspects covered by these categories in Section 4.2.1. Afterwards,
we examine their relationship to the seminal work on this topic, the “Prudent Practices
for Designing Malware Experiments” as defined by Rossow et al. [50], showing that our
requirements sufficiently cover the guidelines proposed.

4.2.1. Definition of Requirements

In this section, we define our three requirements for a realistic and usable malware
corpus:

e REQR: Representativeness
e REQ4: Accessibility
o REQp: Practicality

In the following, we discuss the relevant aspects covered by these requirements in
detail.

REQR: Representativeness

First and foremost, any data set should be representative so that any experiments and
analyses conducted yield expressive and meaningful results. This means that it has to
achieve coverage in at least the following (potentially interdependent) dimensions.

Temporal Coverage. To ensure that both general trends in malware can be identified
but also the development of code from families over time can be studied in detail, the
corpus should provide sufficient temporal coverage. As mentioned in the introduction of
Chapter 4, malware has been commoditized since around 2006, so this could serve as a
meaningful lower temporal border which the collection should aim for.

Malware Family Diversity. Furthermore, as implied by temporal coverage, the corpus
should contain a large number of distinct malware families to support comprehensiveness.
However, given the sheer amount of unique observable samples, means of limitation have
to be installed. The probably most important feature from a practical point of view that
can be used to filter malware is its relevance. A critical problem is that relevance is not
defined in a standard way or easily measured objectively. Nevertheless, it can be inferred
to a certain degree by studying secondary sources such as analysis reports on malware
as published by Antivirus and Threat Intelligence companies. As these companies are
driven economically, it can be assumed that their focus is oriented towards what they

40

4.2. Requirements for a Malware Corpus focused on Static Analysis

perceive as the most threatening malware families or focusing on novel, undocumented
specimen. This means that relevance of malware families is indirectly expressed through
features such as volume and operative reach, persistence over time, or usage in attacks
against high value targets.

Version Coverage. Another dimension is situated within families themselves. It can be
assumed that malware authors work similar to the authors of regular (benign) software,
i.e. they gradually change their code over time. Example reasons for such changes can
be to evade detection, improve or extend the functionality offered by their malware, or
to simply fix bugs that impaired their operationality. In consequence, malware families
will typically have a series of versions over time that provide a picture of the evolution
of their code base.

Platform Diversity. While this dissertation primarily focuses on Windows malware,
it should be noted that malware has become increasingly popular for other platforms,
e.g. mobile and IoT devices [67, 230]. Therefore, a malware corpus should also consider
inventorizing malware for other platforms to reflect the entire spectrum.

REQ 4: Accessibility

Besides representativeness, a second requirement for the corpus should be to ensure
accessibility. As shown in Chapter 3, the vast majority of previous works have used
collections of malware samples for which the composition could only be estimated. We
believe that this is strongly tied to a lack of accessibility as found for many malware
collections.

Labeling. While it is not hard to acquire tremendous amounts of malware samples,
a dissimilarly harder task is to obtain reliable information about their identity. The
primary reason for this is that for defending against malware, detection massively out-
weighs identification, which is for example observable in detection labels as assigned by
Antivirus software [84].

Unpacked Representation. To overcome these issues, we believe that unpacked,
clean counterparts for malware samples have to be a core component of the corpus.
Identification for these is way easier than for unprocessed malware samples, which allows
to assign and verify reliable labels with high confidence. As a result, it becomes possible
to perform experiments using static analysis on the actual malware families without
being obstructed by packers.

Usability. Additionally, the data set should be structurally organized and made avail-
able in a way that it can be easily used by other researchers.

REQp: Practicality

On top of representativeness and accessibility, a third requirement should be to aim for
practicality, which covers four aspects.

41

4. Malpedia: A Representative Corpus for Malware Research

Topicality. In order to remain relevant in a dynamic field such as malware research, a
data set should ideally be kept up to date. Ensuring maintenance and keeping the data
set topical provides already a great added value and allows it to serve purposes even well
beyond academic applications.

Referenceability. In the case of an evolving data set that aims to provide topicality,
it is important to provide temporal reference points, to ensure that experiments can be
replicated as well as reproduced. The data set should therefore provide mechanisms that
allow to create permanent references of its state at any given time.

Documentation. Next, it is important to take care of the documentation of processes
employed to create the data set. For example, it is necessary to record the origin of mal-
ware samples and to specify any environments and processes used during data creation.

Containment. Finally, as the data set contains purposely harmful software that can
lead up to the unrecoverable destruction of data, containment has to be ensured. For
this reason, dissemination should be limited to parties that are experienced in handling
such data with the necessary amount of care. Additionally, as the contents of the data
set may tip off malware authors, even access to meta data such as file hashes should be
restricted.

In the next section, we continue by reviewing the Prudent Practices as defined by
Rossow et al. [50] and compare them against our requirements.

4.2.2. Review of Rossow’s Prudent Practices

In 2012, Rossow et al. [50] published a survey that scrutinized 36 earlier papers in the
field of malware research from the years of 2006-2011. They found a number of systematic
shortcomings that seriously flawed the experimental results, most of them tied to the
handling of malware data sets. Even after the publication of their paper, these flaws
are observed in a range of papers (cf. Chapter 3) and it is apparent that quality data
sets are not used by or available to academic researchers. In our process of creating a
high-quality, accurately labeled malware corpus focusing on static analysis, we use this
section to review the guidelines published by Rossow et al. [50] for suitability to our
cause and implement them where it appears reasonable.

The guidelines postulated in “Prudent Practices” are generic rules applicable to any
kind of experiments involving malware. They are divided into 18 aspects that are
grouped into the four categories of “Correctness of Data Sets”, “Transparency”, “Real-
ism”, and “Safety”. These categories are not directly applicable to our case that only
encapsulates data set design and organization, which is rather a sub-category for which
aspects are found in the four categories defined by Rossow et al. In the following, we
briefly summarize all of these aspects and then revise their relevance and applicability
for our case.

42

4.2. Requirements for a Malware Corpus focused on Static Analysis

Correctness of Data Sets

For Rossow et al., the topic of correctness questions the composition of a corpus with
regard to what shall be shown by an experiment. It is used as well to ensure that the
analysis produces meaningful and expressive results.

1. C1 Inclusion of Goodware: Especially for techniques that decide for a given
software if they are benign or potentially malicious, goodware should be included
in the data set.

2. C2 Balance of Families: A corpus should be balanced in order to show that
a given technique performs well across families and to avoid the impression it is
tailored to special cases.

3. C3 Choice of Training Data: If it is intended to show that an approach is able
to detect unseen malware, it is recommendable to use distinct families in training
and in evaluation data.

4. C4 Privileged Analysis: The analysis should always be carried out with higher
privileges than the malware to avoid tampering.

5. C5 Artifacts: Side effects and biases should be mitigated as well as possible.

6. C6 Blending: When blending malware into benign background data, this should
be carried out with high caution to ensure realism but also produce meaningful
results. Especially, it should be ensured that the background data is indeed benign.

Out of these 6 aspects, the aspects of Balance of Families (C2), Privileged Analysis
(C4), and Artifacts (C5) are of high relevance. Aiming for balance can be translated
into striving for a high coverage in variety of families and below that, versions of these
(REQR, REQp). Privileged analysis should be employed in order to maximize the
success for unpacking (REQ4, REQp). Artifacts that may result from the unpacking
process on the other hand should be avoided in order to ensure purity in the results.
But these artifacts still need documentation (REQpr, REQ s, REQp).

As goodware is not of concern for a malware corpus, the aspects Inclusion of Good-
ware (C1l) and Blending (C6) can be neglected. Furthermore, since no classification
performance is measured, the choice of training data (C3) can be neglected as well.

Transparency

Experiments in research should be replicable which is also covered by by our aspect of
practicality (REQp). In this vein, Rossow et al. document that it is paramount to
describe the experiments in such depth that design ideas and interpretation of results
are transparent.

1. T1 Malware Family Names: Consistent naming of malware is a persistent
problem that regularly causes confusion. Therefore, the choice of naming should
be explained in detail, or citation should be given to allow cross-referencing.

43

4. Malpedia: A Representative Corpus for Malware Research

2. T2 Time-dependency: The time when an analysis was conducted may change
the outcome, e.g. when date-based packers are involved or when availability of
network connectivity and C&C components plays a role.

3. T3 Sample Selection Criteria: The selection process of samples is very impact-
ful as it determines how the resulting corpus is comprised. It also influences many
other aspects as outlined here.

4. T4 Analysis Setup: The setup of an analysis machine can greatly affect dynamic
analysis, as some malware may have dependencies or do not run on certain oper-
ating system versions at all. It is also of importance when stating benchmarks for
processing speed.

5. T5 Network Connectivity: For any experiment, it should be clearly stated if
and how a system was connected, i.e. it should also be differed between public
facing IPs and NAT.

6. T6 Thorough Analysis of Results: When interpreting the outcome of a de-
tection methodology with regard to true/false positives and negatives, reason and
diversity of results should be scrutinized.

The aspects on Malware Family Names (T1) and Sample Selection Criteria (T3) are
core concerns when compiling a malware corpus, as they massively influence its orga-
nization and aspired coverage (REQgr, REQ 4, REQp). While not doing experiments
themselves, the Analysis Setup (T4) used for unpacking should be well documented,
as this information may later be exploited to augment the results obtainable through
static analysis (REQ4, REQp). Since the orientation of our corpus is to support static
analysis, Time-dependency (T2) influences how topical the data is and may be relevant
when facing date-based packers (REQp).

Network Connectivity (T5) should not be enabled because treating samples in isola-
tion benefits their identification. The aspect with regard to analysis (T6) is again not
applicable because the corpus is a base for further analyses and not an analysis in itself.

Realism

Rossow et al. also require to show that the implications of the approach impact the real
world, and thus the experiment should adhere to realistic conditions.

1. R1 Relevance of Families: To support the usefulness of an approach, it should
be evaluated against recent and relevant malware families. In consequence, stale
malware samples should be avoided.

2. R2 Significance: It should be shown that the approach is scalable, e.g. for a
network-based approach, a significant number of hosts should be used.

3. R3 Generalization: It should be avoided to generalize results when they originate
from a single operating system.

44

4.2. Requirements for a Malware Corpus focused on Static Analysis

4. R4 Stimuli: When conducting dynamic analysis, the malware should be appro-
priately stimulated to near behavior on a real-world system.

5. R5 Internet Access: To allow for a realistic environment, the analysis system
should be connected to the Internet.

Relevance (R1) of the content is a core facet for a malware corpus and thus very
important (REQRr, REQp). The selection of samples should be both broad in coverage
while keeping its focus on active and impactful malware families. As a detail, for a
malware corpus that aims to preserve and document evolution of malware as a whole
(REQR), the exclusion of “stale” samples would actually be harmful and is thus not
conducted.

Stimuli (R4) can be adapted again in the context of unpacking, as every method
available should be considered to excavate the payloads from the packed samples and
make them accessible to in-depth analyses (REQ 4, REQp).

All the other aspects refer to experiments and can again be discarded.

Safety

While realism is a high goal, Rossow et al. also make clear that there needs to be balance
against safety, especially when allowing full network access.

1. S1 Containment: Experiments have to avoid at all cost any harm to uninvolved
parties. Thus, proper containment has to be installed when running malware.

The aspect of Containment (S1) again addresses provisions to be taken when doing
experiments based on dynamic analysis, which is therefore not directly applicable to the
cause of creating a malware corpus oriented towards static analysis. However, contain-
ment should still be considered in another context: Distribution of the data (REQ 4,
REQp). While there is a trend towards open and easily reproducible research, we be-
lieve that the data set created here should not be openly published, as it poses danger
to uninformed users that are not experienced in handling malicious software (REQ 4,

REQp).

4.2.3. Summary and Mapping to Prudent Practices

Table 4.1 shows how our requirements defined in Section 4.2.1 correspond to Rossow’s
Prudent Practices.

To begin with, it should be noted that four out of 18 aspects were found not applicable
in the context of creating a malware corpus as they address specificities of conducting
sound experiments involving malware.

Next, three of the aspects are influential on all of our defined requirements. They
address cleanliness of data and labels themselves as well as the procedure of selecting it,
which is reasonable. This also highlights their outstanding importance.

45

4. Malpedia: A Representative Corpus for Malware Research

Another six aspects relate to more than one of our requirements. They postulate goals
to be pursued in the data creation and refinement process as well as how to ensure
relevance for the data set and storing it safely.

Finally, one aspect influences practicality of the data and is connected to consider
time-dependency, which we interpret as topicality.

In summary, it can be concluded that Rossow’s guidelines are still a valid and a helpful
orientation even if their context of application is slightly adjusted to in our case. They
definitely confirm our own perspective on this matter, as shown by our definition of
requirements for a malware corpus focusing on static analysis.

Aspect Representativeness | Accessibility | Practicality

C1 Inclusion of Goodware - -

\ I

C2 Balance of Families v -

C3 Choice of Training Data | - - -
C4 Privileged Analysis - v v
C5 Artifacts v v v
C6 Blending - - ,
T1 Malware Family Names v v v
T2 Time-dependency - - v
T3 Sample Selection Criteria | v v v
T4 Analysis Setup - v v

T5 Network Connectivity - -
T6 Analysis of Results - - -

R1 Relevance of Families v - v
R2 Significance - - -
R3 Generalization - - -
R4 Stimuli - v v
R5 Internet Access - - -

S1 Containment - ‘ v ‘ v

Table 4.1.: Mapping of Rossow’s aspects to our categories Representativeness, Accessibility, and
Practicality.

4.3. The Malpedia Corpus

In this section, we introduce our implementation of a malware data set according to
the requirements defined in Section 4.2. The Malpedia corpus is intended to remain
an ongoing project that has been pursued since March 2016 and shall yield the most
comprehensive corpus of unpacked malware available.

We will first present how the data contained in the corpus is organized. Next, we
explain in detail which environment and procedures are used to produce unpacked repre-
sentations of malware samples, which are the essential and unique feature of this corpus.

46

4.3. The Malpedia Corpus

Afterwards, we explain the method for choosing samples to be integrated in the data
set. Finally, we outline the contents of the corpus at the time of writing, which form the
basis for the analyses conducted in the following Section 4.4. To demonstrate that our
implementation is in line with the requirements, we mention the respective requirements
fulfilled by our design decisions throughout this section. Where possible, we resort to
using well-proven industry standards.

4.3.1. Storage and Organization

When considering the conceptual options for designing storage and data organization, we
first need to acknowledge the respective aspects of our requirement categories REQR,
REQ4, REQp that may be relevant in this context. While most of these aspects
address content-related issues, Usability (REQ4) and Referenceability (REQp) should
be immediately accounted for when thinking about storage and organization. Another
aspect that may be relevant is Labeling (REQ 4), as synonyms are known to be common
for malware families and have to be potentially treated as well.

As a methodical anchor, we use the definition of a malware family as given in Sec-
tion 2.2 as our foundation to organize all malware samples to be contained in the Mal-
pedia corpus. Meaning that a single sample will correspond to one family only, this
allows us to employ a hierarchical organization of data with the primary criterium being
families. Additionally, as one malware sample is only capable of reflecting a single state
of development, families can be further divided into versions. In consequence, this ob-
servation leads us to the adoption of a straightforward hierarchical mapping, and thus a
structure resembling a file-system, using folders for organization. A folder structure is a
human-understandable and highly usable format of organization that turned out favor-
able over a tag-based system, e.g. when sorting emails or files as shown by Bergman et
al. [231]. It is also useful to provide convenient and direct access to the contents of the
data set. This allows the application of analysis tools directly to the files and having
their association reflected in the path.

One commonly raised drawback of a hierarchical system for data organization is the
lack of flexibility in data presentation. In order to give this additional flexibility, we
propose a method of storing meta data for the family along the malware samples. This
meta data specifically allows potential re-organization of the presentation layer at a
later time by abstracting from the file system. For the implementation, we use a single,
dedicated meta data file per family, and as format a common data serialization format to
ensure compatibility. By storing the meta data within the folder of the family, we ensure
that the meta data remains available when a family folder is isolated. As serialization
format, we chose JSON [232] over other options such as XML [233], as it is just as suited
for our intended purpose, while being simple and very compatible with data structures
such as dictionaries as offered naturally by modern programming languages.

To ensure consistency, we impose a schema on the meta data files. While the meta
data storage is designed to be extensible, to again aid usability we provide facilities to
capture the following information by default: a primary family name and aliases, public

47

4. Malpedia: A Representative Corpus for Malware Research

analysis references (blogs, reports) as well as information about known threat actors,
whenever available.

Before we further detail how families and samples are stored precisely, we first want
to address the requirement of Referenceability (REQp). As we chose a file-system as
basic structure, an overlay such as a version control system (VCS) is a natural choice for
tracking changes. Using a VCS, we can ensure that every change is tracked atomically
and automatically becomes a referencable state, as commit entries are typically identified
by author, timestamp, and a hash serving as unique identifier. Among potential version
control systems, we choose Git as it is by far the most popular option, e.g. shown in a
2018 survey conducted among more than 100,000 users by Stackoverflow [234]. As most
implementations of version control systems natively support access restriction, we can
simultanously address the requirement of Containment (REQp).

Considering different options for the requirement Labeling (REQ4) (and thus pri-
mary name and aliases) of malware families, one outstanding option is an industry-wide
adopted concept called the CARO naming scheme [235, 236]. As this scheme by de-
sign encapsulates both platform and a family identifier, it is perfectly compatible with
our intended use of a hierarchical structure. For the identifier of a family, again with
usability in mind, we resort to a name as used by the majority of references and AV
detections found for the respective family. Because this method of naming is subjective
and may even change over time, we use the introduced meta data storage to aditionally
assign a universally unique identifier (UUID) [237] when first introducing the family to
the corpus.

As outlined, for a malware family, versions are identified and organized as folders
below the family level. To aid the hierarchical structure and Usability (REQ4), we
use internal versioning as well as temporal information, if available. Whenever possible,
the malware’s own specific version information is used (if known), as this provides a
natural criterium to characterize its line of development from its author’s perspective.
Temporal information may additionally be available in file meta data or through external
services with exceptional visibility, such as VirusTotal [238]. In case neither information
is available, the sample is left in the root folder of the family with the option to be
versioned at a later point in time.

For each version of a malware family, only a single representative is kept. This is
easily explained with the corpus focusing on malware payloads instead of packers, thus
avoiding redudancy. This design choice furthermore results in a drastic data reduction
because instead of keeping numerous packed samples containing an identically versioned
payload, storage is now reduced to a single representative file. This is further motivated
in Section 4.3.3.

In case that the malware family is modular in design, the malware-family specific
modules are stored in a dedicated subfolder named “modules”. This allows us to separate
the core payload from auxiliary files in a meaningful way that reflects the author’s
design choices for their malware. It additionally accounts particularly for the special
circumstance that these modules are typically not observed being distributed through
those channels used for initial infection (spam, exploit kits) but delivered through C&C
channels. Modules again are versioned in an identical way as explained before.

48

4.3. The Malpedia Corpus

The samples themselves are stored as found in the wild but renamed to their SHA256
hash, capturing the uniqueness of the data item identified by its content. We decided to
use this hashing algorithm as it is not shown to be prone to collisions yet, opposite to
MD5 [239] and SHA1 [240]. All processed data related to a sample is stored along them
with similar naming. In these cases, additional identifiers are appended to the origin
SHA?256, divided by underscores. Permissible suffixes are:

e unpacked: The payload extracted from the original sample, preferably in its origi-
nal representation, i.e. not memory-mapped or reconstructed and thus executable.

e dump: A memory-mapped representation of the unpacked payload. In this case it
is mandatory to record the environment and base address the dump was obtained
from in hex representation.

Tracking and pinning the environment provides a beneficial reference for additional
context that could be relevant during later analysis. Due to system snapshot consistency,
it allows for example to apply memory deduplication techniques [241]. Recording the
base address has two benefits: First, it is an important detail for later analysis as well
and second, it can be used to immediately indicate the bitness of the hosting process
the dump was taken from by formatting the respective address width for 32 and 64bit.

[.-]

<platform>.<family_name>
win.urlzone
— 2014-11-08
| F—— 62a19defldbcal32c4e1d53848356be78df6a1f80947ecbed7f76F85a94514F
| }—— 62al19defldbcal32c4e1d53848356be78df6a1f80947ecbed7f76185a94514f dump_0x01e00000
| L 62a19defldbcal32c4e1d53848356be78df6a1f80947ecbRed7f76¥85a94514f unpacked
L— 2015-04-29
F—— @e7a9%9a2df9a4db4c537f248ce239abal7bfa3618afcfc30de5d2a460b80b2b55
f— @e7a9a2df9a4dbac537f248ce239abal7bfa3618afcfc30de5d2a460b80b2b55_dump_0x01e00000
L— @e7a9a2df9a4dbac537f248ce239abal7bfa3618afcfc30de5d2a460b80b2b55_unpacked
win.urlzone.json
yara
f— tlp_green
| L— win.urlzone_g@.yar
L— tlp_white
— win.urlzone_we.yar
L— win.urlzone_wl.yar

(-]

Figure 4.1.: Malpedia data set structure as introduced in [12]

An example for this structure is shown in Figure 4.1.

For both unpacked and dump data, multiple files may be the result. For example,
in case the malware itself is exclusively found in a multi-staged form, e.g. realizing
execution chains such as

e dropper — loader — core_payload or
e loader — core_payload — modules

It should be noted that it is not always possible to extract a meaningful unpacked
representation for packed samples. Especially when the payload code is not a proper
binary found in PE file format but shellcode instead, it will be often directly mapped to
memory and then executed. Consequently and because of the fact that all code has to

49

4. Malpedia: A Representative Corpus for Malware Research

be executed at some point, we decide to generally prefer dump representations and even
consider them as an appropriate normalization format.

The method for creating dumps is explained in detail in the following section.

4.3.2. Environment Specification and Dumping Procedure

In order to be compliant with the requirement of Unpacked Representation (REQ4),
all samples are transformed into a normalized form reflecting this state. As explained
in Section 4.3.1, the use of memory dumps is the preferable representation choice in the
Malpedia corpus. To further adhere to the criterions of Documentation (REQp), this
section presents the environments and procedures used to create these dumps.

Environment Specification

All memory dumps should originate from a limited set of well-defined environments. In
order to ensure that all memory dumps are created from an identical runtime state of
the operating system, the use of a virtualization software makes sense, as these allow
to record and restore runtime states. We decide to use VirtualBox because it is open-
source, thus offering good potential for hardening against anti-analysis and is also well
studied for the application of malware analysis [41]. Using an identical runtime state is
necessary to ensure the best possible comparability across dumps.

Desktop Windows Version Market Share Worldwide

-=- Winl0
70 4 Win8.1
—— Win7
—=- WinVista

—— WinXP

Percentage

NG NG NG NS NS NS N N NS N
&
S

Figure 4.2.: Windows version market share, based on data by StatCounter [242].

To maximize compatibility with the malware, we opt to use the operating system
versions that have been most common in the time period to be covered by the corpus.
We choose Windows XP and Windows 7 and created hardened Virtual Machines (VM)
for them. While Windows XP was first released in 2001 and may appear to be an
outdated choice, it has been the most popular operating system until mid of 2011 as
shown in Figure 4.2. Due to its popularity, we can safely assume that it was the most
targeted and optimized-for operating system for Windows malware authors, which makes

50

4.3. The Malpedia Corpus

it a natural candidate as a base system. Windows 7 on the other hand has been the most
popular Windows version ever since it took over the lead from Windows XP. An argument
against using newer versions may be that they introduce additional mandatory security
mechanisms which may obstruct the execution of older malware, such as enforced ASLR
and DEP. Finally, using just these two environments also allows to cover both 32bit and
64bit programs.

Apart from using these Windows versions as a baseline, additional software should be
installed to increase execution and thus unpacking success. Microsoft Visual Studio, the
most popular compiler and IDE for C/C++ on Windows [243], will typically compile
programs in a way to make use of dynamic loading. This may result in dependencies on
the Microsoft Visual C Runtime (short: MSVCRT) which typically has to be installed
by users. We therefore collect and install all versions of MSVCRT available for both
Windows XP and 7. The same is true for the .NET framework, where we install all
available versions as well.

A summary of all relevant configuration details is given in Table 4.2.

Windows XP ‘ Windows 7

CPUs 1 2

RAM 2 GB 4 GB

HDD 120GB 120GB

Bitness 32bit 64bit

Service Pack | SP3 SP1

Version 2600.080413 7601.101119

MSVCRT up to 14.0 up to 14.1, 32bit and 64bit
NET up to 4.0 up to 4.7

Table 4.2.: Specification for the reference virtual machine images.

In order to further increase the unpacking success rate, the environment is additionally
hardened against detection by potential anti-analysis methods used by the malware or
packers [244]. First, the virtualization software is hidden as good as possible. For
this, we exchanged the BIOS emulated by VirtualBox with the parameters of a real
system and changed the network interface’s MAC address to a plausible neutral vendor
prefix. Furthermore, we set the paravirtualization settings to “None”, resulting in no
detectable hypervisor bit in the CPU and also no hypervisor ID. We also forego the
installation of VirtualBox’s helper utilities. Second, some emulated “wear” is inflicted
onto the system. For this we performed typical system usage activities such as starting
and stopping programs, creating and deleting files in various folders.

Dumping Procedure

The highest priority goal for dumping is to extract an unpacked version of the malware,
preferably in its naturally encountered state, i.e. a mapped memory image. This makes

51

4. Malpedia: A Representative Corpus for Malware Research

the data specifically useful for the derivation of detection mechanisms as it represents the
running state in which the malware would be encountered during incident reponse and
memory forensics. It has been shown that memory dumps of payload malware can be
obtained using automation with a success rate of up to 90% as described and analyzed
by Jenke et al. [245]. We therefore apply the following approach, driven by the idea of
gradually increasing the effort or degree of intervention necessary to obtain an unpacked
version. It is organized in four stages, out of which stages 1 and 2 are automated as
explained in [245], while stage 3 and 4 resemble a typical manual analysis workflow [38]:

1. Stage 1 is a snapshotting-based method, for which the operating system’s memory
state is recorded and compared prior and after the execution of the malware sample.
We first execute the sample for 2 minutes, as proposed by Jenke et al. [245].
After taking the second snapshot, we perform a comparison of memory, through
which we can identify all changes of executable memory. These candidates are
then filtered by removing known benign files originating from the system and are
afterwards examined using YARA signatures or manual inspection in order to
identify unpacked memory representations of the target malware.

2. Should stage 1 not lead to success, we repeat the method but additionally use
system-wide hooking in order to prohibit termination of any processes, as pro-
posed in [245]. This yields additional coverage of samples where the packer or
family will terminate their process. Observed reasons for this are e.g. detection
of an analysis environment (despite our hardening efforts), missing preconditions
(Internet connection or presence of certain system aspects), or completion of the
intended functionality (ransomware).

3. In case stages 1 and 2 fail to produce a satisfying result, a manual investigation of
the execution behavior is conducted. Now all memory allocations and deallocations
are monitored and inspected during the execution phase. This helps in cases where
the packer or malware take precautions by minimizing their traces in memory, e.g.
by actively removing themselves.

4. As a last resort if none of the three preceding stages lead to a result, it is likely the
payload of interest never reached an unpacked and thus dumpable state during the
execution. In this case, an in-depth analysis has to be performed. This involves
potentially a high degree of intervention, up to debugging and patching code in
order to extract an unpacked representation of the payload code.

Without recording exact numbers, it should be noted that the application of stages 1
and 2 leads to success for up to 90% of samples as noted in [245] and manual runtime
analysis is only performed if ultimately necessary. As a special case, DLLs should be
mentioned. Opposite to executable files, in this case both the DlIMain function as well
as all exported functions may be the potentially relevant program entry points, which
may incur additional runs to produce a dump as observed by Jenke et al. [245].

The dumping in stages 1 and 2 is generally done using low-level mechanisms offered
by the Windows API, whereas dumping in stages 3 and 4 is done using a kernel-mode
component (offered by the analysis tool ProcessHacker [246]) or the respective debugger
used.

52

4.3. The Malpedia Corpus

We have observed that the outlined methodology may lead to inaccurate represen-
tations of the memory layout as used by .NET executables. Here, sections normally
will have an alignment of 0x2000 bytes. Because this is not reflected by the tools men-
tioned above (or other tools tried before), we have addressed this fact by inserting zeroed
memory pages into the respective missing gaps if not found in the memory dumps.

As a final processing step, we additionally improve the quality of the created dumps in
two steps. First, we clean fragments of packer code trailing the payload, in case they are
identified as obvious third party code not belonging to the malware family itself. Second,
in case the dump of the malware payload contains a PE header, we check this header
for validity and delete potentially trailing zero bytes, which may have been created by
a packer as an obvious analysis countermeasure: artificially increasing memory space
required to store analysis results and memory dumps. All of this again has the purpose
of producing data that provides highest standard of Usability (REQ).

4.3.3. Achieving Representativeness

After having explained how the data set is organized and how the unpacked representa-
tions of malware samples are produced from a technical perspective, this section covers
all aspects dealing with the requirement category of representativeness (REQRr) while
also providing Topicality (REQp).

As explained in Section 4.2, a comprehensive malware corpus should aim to provide
extensive Temporal Coverage (REQR) to capture generals trends within the field of
malware, and to offer Malware Family Diversity (REQRg) as well as Version Coverage
(REQR) to reflect evolution of families and their intrinsics, which implies also supporting
Platform Diversity (REQR).

As primary data source for malware samples themselves, we decided to use VirusTotal
(VT), a service that has been collecting and archiving scan results of malware since
2004, thus giving sufficient Temporal Coverage (REQR). VirusTotal is a popular service
and allows free public uploads of suspicious files, resulting in an immense coverage. It
has furthermore the advantage of not being an Antivirus vendor by itself, thus being
unbiased. As a secondary resource, we have also been granted access to the (non-
public) malware archive of the Shadowserver Foundation [247], which has been collecting
malware since 2004 as well.

We will now detail the strategy we followed in order to work towards these goals. Our
collection approach can be divided into three categories.

Previously collected data. An initial collection of malware samples for a range of
well-known and prevalent families was taken from our internal unpacking and malware
configuration extraction framework, called Kahou. It is capable of identifying 37 dis-
tinct malware families and applying methods to extract their respective configuration
parameters. In the period of 2013 to 2016, Kahou has been used to process more than
600,000 unique malware samples that have been kindly provided by the Shadowserver
Foundation [247]. We performed a deduplication based on the version numbers and PE
compilation timestamps of payloads. This data was then augmented by reviewing the

53

4. Malpedia: A Representative Corpus for Malware Research

sharable content of our internal incident and analysis case repository. This category of
existing data resulted in the addition of around 120 malware families to the corpus.

Third-party sources. In order to get information about samples associated with cer-
tain malware families, we heavily rely on the numerous publications released by the
highly active Antivirus and Threat-Intelligence industry [248] as well as private and pro-
fessional blogs maintained by independent researchers. Most of these entities frequently
publish detailed reports in which they describe their obsverations of tracking malicious
software and actors, typically accompanied with hashes of reference samples. As these
publications remain available in various forms, including whitepapers, blog posts, IOC
collections, and information repositories, this allows us to reconstruct the history of
malware research to a certain degree. By meticulously dissecting these combined data
sources, we were able to add another 746 malware families to the corpus. This data
category significantly contributed to Malware Family Diversity and Version Coverage
(REQR), as most publications discuss the continuous developments of the malware fam-
ilies covered.

Community contributions. In addition to our own collection efforts, we have launched
a community-driven web service around Malpedia in December 2017 where vetted mem-
bers of the malware analysis community can propose additions to the corpus. Since
its start of operation and until January 2019, community members have added more
than 3,000 content proposals. While the majority of these proposals is centered around
extensions to the meta data (references to publications on families), this has resulted in
the addition of another 270 malware families to Malpedia as well.

All of these three categories have made significant contributions to the corpus. We
have taken a snapshot of the corpus on January 3rd, 2019 that is used throughout
this thesis. It contains 1,136 distinct malware families with a total of 3,469 samples,
further described in Section 4.3.4. To fulfil the requirement of Topicality (REQp), we
continue to monitor third-party sources and integrate their referenced malware families
and versions and also maintain the community founded for the curation of the Malpedia
corpus.

Core Findings

We now summarize observations and experiences we have made during this process.

Data redundancy. A primary observation from our previously collected data processed
with Kahou is that for a range of families, a massive data reduction can be achieved when
comparing the amount of encountered packed samples versus the uniquely identified
versions. For example, we used Kahou to intensely track the builder-based Zeus offspring
win.citadel. Over the period of three years, the Shadowserver Foundation has provided
us with more than 80,000 samples pre-identified as win.citadel. Examining the output
of our configuration extractor, we identified more than 140 identifiers corresponding to
individual builder kits. But even these group into just 21 distinct versions with regard
to code of the malware, a finding supported by cursory code similarity analysis. In

54

4.3. The Malpedia Corpus

consequence, this implies just based on the data processed by us, an observed data-
reduction factor of 3,800x for the representation of this malware family is achieved by
keeping only one sample per version. Other families where we observed similar ratios
are win.tinba with a reduction factor of 5,700x, the spam malware win.asprox with
a factor of 5,500x, and the other two Zeus offprings win.vmzeus and win.kins with
factors of 471x and 105x respectively [12]. Similarly, Haq et al. recently reported an
average reduction factor of 26x with regard to unique samples and automatically derived
versions for 7,793 samples of 10 families in their malware lineage study [81]. Because
there can only be so many malware authors who manually have to create and modify
code, we expect similar ratios for a significant portion of malware families, especially
commodity malware. This is a very important finding because it suggests that when
focusing on unpacked malware, huge numbers of samples can be accurately represented
by a fraction of well-chosen samples.

Effectively sourcing malware families. Another observation is that scaled mass
data processing as a technique to produce labels of the required accuracy is not self-
sustainable. In fact, the creation and maintenance of YARA rules and extractors is only
possible by dedicating significant resources in terms of qualified staff to fulfil these tasks.
With this realization in mind we shifted our strategy of data collection and primarily
relied on third party information. Instead of mass processing samples, we opted to use
opportunistic cherry-picking of pre-labeled data from trustworthy sources. One helpful
observation in this context is that there is often a redundancy of coverage observable
across multiple commercial vendors. This is connected to trends that relate to current
and high-profile incidents. As a result the number of samples to be considered for
integration in the corpus is typically low enough to maintain the outlined strategy even
with low resources. For perspective, in combination with the review and refinement of
content proposals by the Malpedia community, this cumulates to 8-10 hours of effort per
week at the time of writing.

Collection Bias. While we attempt to have a balanced coverage through our wide
choice of third-party sources, it does not go unnoticed that these sources are subjected
to following trends. This is expressed in one vendor covering a certain actor or family that
is then reactively covered by other vendors as well. Furthermore, the sources monitored
are mostly in English language and also Western-focused. We have to assume that this
results in a potential underrepresentation of malware families prevalent in regions such
as Asia, South America, and Africa.

Impure malware and cross-infections. It also should be mentioned that assigning
single labels to packed samples is not always possible. For example, we had frequent
encounters where a malware sample of one family would additionally contain one of
the notorious families behaving as file infectors, such as win.virut and win.sality.
Another case are orchestrating packers that are capable of dropping multiple payloads. A
common combination that we have observed more than once is malware with information
stealing capabilities (such as win.pony) being run in conjunction with other malware
families. This has implications to the design of analysis systems but also the compilation
of malware corpora. In particular, a Host Intrusion Preventions System (e.g. Antivirus
software) typically aims for detection and will usually produce only a single detection

55

4. Malpedia: A Representative Corpus for Malware Research

label, potentially missing presence of another malware family. For Malpedia, we avoid
the integration of any samples that may lead to such ambiguities. That said, we do not
include packed samples that result in more than one unpacked family when executed if
there are alternative samples that do not have this trait.

4.3.4. Data Set Status

In this section, we give a brief overview of the data set status of the Malpedia corpus that
will serve as a basis for all following experiments throughout this thesis. As a reference
point, we use the Git commit 1639cad, which has been created on January 3rd, 2019.

Families Samples

Platform DMP UNP PACK Total DMP UNP PACK Total

Android 0 1 70 71 0 1 148 149
ELF/Linux 0 11 37 48 0 47 144 191
iOS 0 1 2 3 0 5 2 7
macOS 0 23 21 44 0 52 55 107
Windows 839 41 49 929 | 2,352 295 308 2,907
other/multi 0 23 18 41 0 39 69 108
Sum 839 100 197 1,136 | 2,352 439 726 3,469

Table 4.3.: Overview of the corpus state of Malpedia at the snapshot date January 3rd, 2019,
commit 1639cad .

Table 4.3 gives a comprehensive overview of the number of families and samples per
platform as well as their processing states. For every sample, only the highest state
present is counted, considering dumped, unpacked, and packed (cf. Section 4.3.1).
With regard to the two specified environments used for dumping on Windows (cf. Sec-
tion 4.3.2), 937 of 2,352 (40.67%) dumps have been produced using Windows 7. The
minimum file size for a dump in this data set is 4,096 bytes and the maximum 15,687,680
bytes, with a median of 135,168 bytes.

In order to illustrate that the corpus does indeed represent recent malware, we have
performed a lookup for all sample file hashes against VirusTotal in order to get an
estimate for their date of first appearence. The results are shown in Figure 4.3. As can
be seen, the majority of samples originates from recent years with an emphasis on 2015
and later.

We believe that this concept gives a solid answer to R(Q)1, which should be sufficiently
covered by the sum of these efforts.

4.4. A Comparative Structural Analysis of Windows Malware

After the composition and realization of a representative malware corpus suited for
static analysis has been discussed in the previous sections, we now want to use this

56

4.4. A Comparative Structural Analysis of Windows Malware

100

80

60

40

Samples per month

2(

0
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

VirusTotal first seen timestamp

Figure 4.3.: FirstSeen timestamps for 2,290 dumped Windows samples found on VirusTotal,
grouped by month.

data set to answer research question R(@)2, addressing payload integrity and malware
author methodologies. As stated initially, this dissertation focuses on x86/x64 Windows
malware as it is without question the most-targeted and historically richest environment
for malicious software. For this reason it also still remains the most relevant platform
where most analysis methods and tools focus on.

Even with this limitation, the Malpedia corpus allows us to perform a comparison
across several hundred malware families that should yield an unseen impression of the
design and implementation choices of the various malware authors over several years.
The analysis will be limited to those families of malware for which at least one memory
dump (in accordance with the requirement of Unpacked Representation (REQ4)) of a
sample exists, which is a result of RQ2’s goal of targeting payloads only. This leaves us
with a comparison of 839 malware families. A full listing of these families is provided in
Appendix A.

In some cases where we have dumps for multiple samples of a family available, the
observed values will not be in concordance with each other. As some of them are enu-
merative declarators, we can not average them. Instead, we count the occurrences and
present the value observed most often as it is then the most representative for the pop-
ulation of samples analyzed.

As we are interested in meta data, the analysis will primarily focus on the availability
of PE header information [21]. This is also possible, because this information is available
for a surprising 96.42% of families examined (cf. Section 4.4.2). The analysis is divided
along the groups of fields in this layered data structure. In this context, we will conduct

57

4. Malpedia: A Representative Corpus for Malware Research

an assessment of the reliability of the information contained in these fields, i.e. if meta
data values concerning provenance and structure are genuine.

The outcome of this analysis has different implications. First, structural correctness
with regard to section layout is especially of importance to assess the viability of memory
dumps as a preferred normalization form in the Malpedia corpus. Second, the outcome
influences the applicability of static analysis techniques in general and therefore also for
the methodology proposed in Chapters 5 and 6. Finally, the information gathered in this
analysis by itself will provide helpful insights into the workflow and tool-chain choices
of malware authors.

Before presenting the results of our analysis, we shortly outline the methodology ap-
plied for parsing and extracting PE header fields.

4.4.1. Methodology

We perform the analysis of the PE header information in resemblance of the sequence
how the addressed structures are encountered in a PE file. A short recapitulation of
the PE header is provided in Section 2.1.2. We limit ourselves to only those fields
and structures that are commonly inspected in the context of malware analysis and are
expressive in early triage (see Figure 2.1), thus helping to characterize the tool chains
and methodologies used by malware authors, as is the focus of RQ2. In the following,
we divide the analysis into five parts and examine the reliability of selected fields along
their presence: DOS Header, COFF File Header, Optional Header, Data Directories,
and finally Section Table.

While the margins in which valid PE files can be crafted are surprisingly wide [249],
the PE header itself follows a quite strict offset based structure for the most relevant
fields in both 32 and 64bit files that benefits their parsing. We opt to not rely on one
of the available libraries for PE parsing because they usually rely on the presence of the
iconic file magic MZ in order to operate at all. This decision is based on the experience,
that these magics may be purposefully removed or altered in malware in order to thwart
detection or heuristics used by automated analyis systems. One famous example is the
malware win.plugx, which changes the magics MZ and PE to XV after injection into
memory as observed by Szappanos [250]. Instead, we use the following method (that we
will call pe_check in the following) to identify the presence and location of potentially
modified PE file headers.

We start by scanning the given input file for the first occurrence of all of the following
WORD values, potentially identifying the start of the Image File Header:

e 4C 01: I386
e 64 86: AMDG64
e 02 00: TA64

We then perform a backward search to check if the DWORD location prior to the value
found (which should be the start of the NtHeader, usually marked by the magic PE) is
referenced by a matching e_1fanew field (short for long file address of New Executable

58

4.4. A Comparative Structural Analysis of Windows Malware

Families Samples
Feature True (%) False (%) n/a (%) | True (%) False (%) n/a (%)
has_nz_nagic 805 (95.95) 34 (4.05) 0 (0.00) | 2,199 (93.49) 153 (6.51) 0 (0.00)
pe_check 809 (96.42) 30 (3.58) 0 (0.00) | 2,219 (94.35) 133 (5.65) 0 (0.00)
pefile 805 (95.95) 34 (4.05) 0 (0.00) | 2,199 (93.49) 153 (6.51) 0 (0.00)
has_dos_string 779 (92.85) 60 (7.15) 0 (0.00) | 2,060 (87.59) 292 (12.41) 0 (0.00)
has_rich_header 570 (67.94) 269 (32.06) 0 (0.00) | 1,638 (69.64) 714 (30.36) 0 (0.00)

Table 4.4.: Overall availability and presence of field values in the DOS header.

header). This provides us independence from the explicit file magic MZ and header magic
PE, while still providing sufficient orientation to be able to extract all fields of interest.

The remaining procedure is straight-forward parsing of fields at their respective offsets,
as designated by the PE/COFF standard [21]. All aggregation and analysis has been per-
formed with a set of Python scripts in the following referred to as malpedia-analytics.

4.4.2. Evaluation of Availability and Reliability of PE Header Information

We now apply the presented methodology to all elements of the PE header and focus on
the fields that potentially carry information revealing hints on the methodology used by
malware authors.

DOS Header

We first focus on the first header component of the PE header: the DOS Header, includ-
ing its prominent magic MZ and the DOS stub. Here, it is of specific interest if malware
authors modify these values in order to make their malware less detectable by heuristics
of automated analysis systems. We summarize our results in Table 4.4.

PE Header Availability. Performing pe_check on the data set, it can bee seen that
a total of 809 (96.42%) of families pass this check. This is a pleasant result, as it
implies that in almost all cases data of the PE file header is potentially present that
can be examined for further meta information. With regard to the presence of the MZ
magic, we can indeed see that at least four families seem to remove these magics only
but potentially leave the remainder of the header intact, which was confirmed by manual
inspection. We used the popular Python library pefile [251], which was also able to parse
data from 805 families, which corresponds with the number of observed MZ magics.

We have furthermore manually reviewed all 153 samples that did not start with the
MZ magic. The cases identified can be further divided into subgroups where dumps start
with a destroyed header (42 samples in 14 families with larger portions or full header
nulled, 18 samples in 12 families with only the MZ and PE magics overwritten or nulled,
1 sample overwritten or “encrypted” with a single byte XOR key) or no header at all
(53 samples in 24 families starting with (position independent) shellcode, 39 samples
in 15 families starting with referenced data instead). Please note that the number of
individual families exposing these characteristics is slightly higher than the 34 being

59

4. Malpedia: A Representative Corpus for Malware Research

stated not having a MZ magic, because some families have a majority of samples without
a modified header, triggering the majority decision as explained earlier or the authors
having experimented with multiple categories in different versions of the malware.

DOS String. Another prominent feature typically found in PE headers is the so-called
DOS string. This structure is part of the DOS stub and contains a series of machine
instructions that print the actual DOS string in case the program is executed in a non-
compatible legacy MS-DOS environment. Its presence was determined for 779 (92.85%)
families, with 3 different variants having been observed:

e This program cannot be run in DOS mode
e This program must be run under Win32
e This program must be run under Win64

The variant This program cannot be run in DOS mode is way more common and ap-
peared 1,930 times in cases when a DOS string was observed in a sample. The second and
third variant This program must be run under Win32/Win64 seem to be an alterna-
tive used by Borland compilers exclusively and occur in 131 files. For the cases where
a MZ magic is preserved but no DOS string observed, we assess multiple case-specific
reasons. We have proof for intentional manipulation, e.g. in the case of all Zeus-related
families in whose build script the DOS header is scrubbed, as can be inferred from the
leaked source code [252]. We also observed the string not being present because of side
effects, such as compressed PE header fragments (specifically by the packer MPRESS).

Rich Header. The Rich Header is a very interesting structure in the PE file because it
is one of the few elements that may contain information about the system environment
in which the binary was compiled. According to Webster et al. [25], the Rich header
is a proprietary and MSVC-specific structure that contains counter values tracking how
many times specific versions of the MSVC compiler and linker have been used on the
system in order to produce a given binary. Given knowledge about the release date for
these compiler versions, the Rich Header can be used to determine a lower (time) border
after which a sample has been most likely compiled. In case MSVC is updated, the
combination of tool versions may become very characteristic for a family.

We observe the Rich Header to be present for 570 (67.94%) families. This already
inidicates that a majority of the reviewed Windows malware is likely compiled using the
MSVC toolchain. The Optional Header (further investigated in Section 4.4.2) contains
a MajorLinkerVersion and MinorLinkerVersion field inserted by the compiler tool chain.
It can be used in conjunction with the RichHeader to examine common plausibility.

In the following analysis, we use the mapping published by Webster et al. [25] to
identify if the respective version of MSVC is contained among the Rich Header entries.
As shown in Table 4.4, there are 1,638 samples in which a Rich Header is present. After
discarding 36 cases where the linker version field was nulled, we assess that in 1,571 of
the remaining 1,602 cases (98%), the linker version is actually found among the Rich
Header fields. In nine of the mismatched cases, the linker version corresponds to Visual
Studio 2017, which is not covered in the mapping. For the remaining cases, no profound
reason for the mismatch could be established.

60

4.4. A Comparative Structural Analysis of Windows Malware

Families Samples
Feature True (%) False (%) n/a (%) | True (%) False (%) n/a (%)
has_pe_magic 805 (95.95) 34 (4.05) 0 (0.00) | 2,203 (93.66) 149 (6.34) 0 (0.00)
1532 793 (94.52) 16 (1.91) 30 (3.58) | 2,114 (89.88) 105 (4.46) 133 (5.65)
timestamp 761 (90.70) 48 (5.72) 30 (3.58) | 2,095 (89.07) 124 (5.27) 133 (5.65)
d11 237 (28.25) 572 (68.18) 30 (3.58) | 765 (32.53) 1,454 (61.82) 133 (5.65)
exe 508 (71.28) 211 (25.15) 30 (3.58) | 1,454 (61.82) 765 (32.53) 133 (5.65)

Table 4.5.: Presence of field values in the COFF file header.

COFF File Header

The second group of fields that we want to investigate are associated with the COFF
File Header. Again, with author methodologies in mind, fields of special interest are
the PE magic, the bitness and file characteristic, and the compilation timestamp. The
number of sections is addressed along with other details on this structure in Section 4.4.2
instead. The results in Table 4.5 give an overview of presence for these values.

PE Magic. Observations for the PE magic are mostly similar to what was already
established in Section 4.4.2. There are notably only 4 cases in which only the MZ but
not the PE magic have been manipulated.

Bitness and File Characteristic. With respect to bitness, the vast majority (739
families or 94.52%) of families inventorized feature primarily 32bit code. We find the
following two explanations for this. First, the system from which the majority of dumps
have been produced (59.33%) is the Windows XP VM, which is a 32bit exclusive op-
erating system. Secondly, writing malware in 32bit has the advantage that it can be
executed on both 32bit and 64bit versions of Windows, in the latter case falling back
to using WOW64 (Windows-On-Windows 64-bit). Nevertheless, we have noted that at
least 22 families also have code as 64bit version available, in most cases along a 32bit
version and shared loader that deploys the appropriate version. It has to be noted that
64bit variants are necessary in order to inject into and manipulate native 64bit processes,
e.g. to perform hooking.

Additionally, using a dedicated YARA signature and manual verification, we have de-
termined that at least 36 families make use of the so-called Heaven’s Gate technique [253]
in the variant offered by ReWolf’s x86 helper library [254]. This technique allows to in-
tercept the switching procedure during requests to the 64bit kernel in 32bit WOW64
environments, effectively allowing the execution of 64bit code within the same process.
It can be used for example as an anti-analysis measure or to inject code into other (na-
tive) 64bit processes. It furthermore implies that some malware will contain both 32bit
and 64bit code within the same sample, which is a case not covered by most current
analysis tools. The malware family win.nymaim is at least one publicly documented
case where a malware author intentionally used hybrid and even polyglot (semantically
equivalent in 32bit and 64bit) code [255].

Another interesting aspect is that 237 (28.25%) of the families’ primary dumps are
identified as DLLs. From a pure technical point of view of a malware author, the

61

4. Malpedia: A Representative Corpus for Malware Research

difference between EXE files and DLL files is not significant, as both have a designated
entry point that can be used to start arbitrary execution. They mostly differ in the
operational perspective, i.e. how they are supposed to be started up. Here, DLLs
need help for startup (e.g. rundll32.exe, another potentially customized loader, or by
making use of DLL side-loading [256]) while EXEs can directly spawn as processes
themselves. Therefore, from a methodology point of view, this implicates that many
malware authors seemingly have adopted a modularized or multi-staged approach to
develop their malware.

100 100.0

Cumulative coverage in percent

0 30 60 90 120 150 180 210 240 270 300 330 360
Timestamp difference in days

Figure 4.4.: Difference between VirusTotal FirstSeen and PE compilation timestamps.

Compilation Timestamp. A header field that can provide interesting temporal con-
text about a malware author’s working habits and/or the provenance of certain versions
of a family is the PE compilation timestamp. It is a DWORD sized value representing a
UNIX Timestamp and therefore given in UTC [21].

As research question R()o addresses how reliable PE header fields in unpacked malware
are, we will now compare the values found in the PE headers with an external reference,
in this case the FirstSeen timestamps of VirusTotal (cf. Section 4.3.4).

Table 4.5 shows that 2,095 (89.07%) samples have a compilation timestamp that
is potentially considered valid, i.e. not zero and not the fixed Delphi Timestamp of
708,992,537 (June 19th, 1992 22:22:17) [257]. In order to compare values with the First-
Seen dates as provided by VirusTotal, they actually have to be found on that platform,
which is the case for 2,041 (97.42%) of these samples, that we now denote as Type.

These samples can further be reduced to a set of potentially meaningful values. We
first exclude samples with PE timestamp values before January 1st, 2006 (the year in
which the earliest sample of our collection has been confirmed) and values beyond the
data set snapshot taken on 3rd of January 2019. One more causal constraint is that the

62

4.4. A Comparative Structural Analysis of Windows Malware

compilation timestamp is situated before the FirstSeen timestamp, which leaves us with

1,911 samples having date pairs of interest, that we denote in the following as T7,,..

Figure 4.4 shows the distribution of differences between FirstSeen and compilation
timestamps for T, in days, limited to one year.

As many as 28.1% of the samples are observed within one week, and 44.69% within
the first 30 days. Overall, almost 79.38% of the samples show a timestamp difference of
at most a year. With regard to outliers, 716 families have timestamps in T3, and 595
of these 716 families also have values within this one year range.

While there is no absolute ground truth available (and we only compare against Virus-
Total), we believe that this examination across the Malpedia data set indicates that PE
compilation timestamps will more often than not contain reasonable values. This is sur-
prising, as they give away useful information to analysts while being trivially to tamper

with. But seemingly, many malware authors and operators do not spend attention to
this.

Optional Header

The COFF File Header is followed by the Image Optional Header. While the COFF
File Header details how contents are organized within the file, this structure primarily
contains information about runtime requirements and how it is supposed to be mapped
into memory for execution. Since we are interested in reliability of information, we
focus on the Major- and MinorLinkerVersion that provides us provenance information
about the program’s creation, required OS version and security features enabled during
compilation.

200 Il Incomplete (73)
mmm MSVC (786)
Borland (60)
B MinGW/gcc (32)
MASM (17)
. Go (7)
FASM (5)
B Pelles C (5)
GoAsm (1)
BN FreePascal (1)

Number of Families
- - - I
5 <) ~ 1]
S a S a) a

)
o

o
2|

3.0 (7)
(

VC6 (175

Forged (4

Fragmented (37

Compiler / Linker

Figure 4.5.: Overview of occurrence frequencies of Linker versions, counted once per family.

Major/MinorLinkerVersion. The Major- and MinorLinkerVersion is typically in-
serted by the compiler/linker tool chain during creation of the executable. Best to our

63

4. Malpedia: A Representative Corpus for Malware Research

knowledge, no standardized registry of these values exists. However, we assume that the
creators of the most popular tool chains are aware of each other’s work and tend to pick
unique values as identifiers.

With regard to mappings from Major- and MinorLinkerVersion fields to the respective
tool chains, no official data sources exist. We have used the database of the popular
file identifier Detect-It-Easy [258] as a basis and then adjusted and extended it for
integration into malpedia-analytics. Detect-It-Easy was considerable more granular
and maintained as other alternatives, such as libmagic [259] as integrated in GNU/Linux
or the outdated tool PEIiD.

Figure 4.5 gives an overview of the distribution of values observed across all families,
with values per family only counted once. Using this methodology, we observe a total
of 987 data points. These can be identified as nine different tool chains in 30 versions
which make up 95.54%, and 44 cases where the information was likely manipulated,
fragmented (e.g. by overlapping data of a compressed header) or missing.

Microsoft Visual C++ (MSVC) as offered by Microsoft’s Visual Studio (VS) product
line is by far the most popular tool chain, contributing 82.57% of the data points and
making an appearence as compiler in 701 families. Even though the majority of files
in the data set has been collected 2013 and later (cf. Figure 4.3), Visual Studio 2010
sticks out as most commonly observed (181) overall. Additionally, Visual Studio 6,
although released in 1998, is closely following with 175 occurrences. A primary reason
for this appears to be that its library version of msvcrt.dll was the one delivered in
Windows XP and beyond by default, meaning that programs compiled with VS6 would
be compatible out of the box and not be affected by the so-called phenomenon of “DLL
Hell” [260, 261]. The other versions between 2005 and 2015 register between 59 and
114 observations, while earlier versions and the most recent ones at the time of writing
(VS2017) were observed 20 times or less.

Only MSVC generates Rich Headers, which can be used to cross-check the validity
of the values found in the Major- and MinorLinkerVersion. As has been established in
Section 4.4.2), in 98% of the cases where Rich Header and linker version information are
available, the linker version in fact appears with its corresponding Product ID in the
Rich Header.

The remaining tool chains sum up to 12.97%. MinGW appears to be the primary
alternative C/C++ compiler being used by malware authors, but is also only found
32 times in 29 families. The code of four families was generated with Borland’s C++
compiler, while 56 families were written in Delphi and also compiled with Borland’s tool
chain for this programming language. This also includes modern versions of Delphi,
which are now maintained by the software vendor Embarcado but keep the same linker
version (2.25).

Another 23 families appear to be written in Assembler directly and being linked using
Microsoft Incremental Linker (MIL, 17 families), FASM (5 families), and GoLink (1
family). Seven families are written in Go and compiled using the corresponding compiler
in version 3.0.

64

4.4. A Comparative Structural Analysis of Windows Malware

Families Samples
Feature True (%) False (%) n/a (%) | True (%) False (%) n/a (%)
ASLR 446 (53.16) 363 (43.27) 30 (3.58) | 1,321 (56.16) 898 (38.18) 133 (5.65)
NX 414 (49.34) 395 (47.08) 30 (3.58) | 1,116 (47.45) 1,103 (46.90) 133 (5.65)
NX&ASLR 393 (46.84) 416 (49.58) 30 (3.58) | 1,042 (44.30) 1,177 (50.04) 133 (5.65)
SEH 655 (78.07) 154 (18.36) 30 (3.58) | 1,849 (78.61) 370 (15.73) 133 (5.65)

Table 4.6.: Presence of field values in the Optional header.

DLL Characteristics. The DLL Characteristics field is a bitmask that contains in-
formation about the compatibility with various security mechanisms. Table 4.6 gives
an overview of the availability of the most relevant fields. While Structured Excep-
tion Handling (SEH) is supported by 78.07% of the families, only a mere half supports
Data Execution Prevention (DEP) as realized through use of the non-execution bit (NX)
mechanism, and same holds true for supporting Address Space Layout Randomization
(ASLR). Both DEP and ASLR are supported since VS2005 and by default activated
since VS2008 [262].

The fact that these numbers turn out lower than what could be expected based on
the Linker evaluation may be explained by malware authors wanting to remain able to
overwrite and modify code at runtime.

Operating System Version. The Operating System Version field in the PE header
indicates the minimum version required to run the given binary. This is one of the strict
constraints and in fact, execution will not even start in case the OS version is lower than
specified in this field.

For 2,162 out of 2,219 (97.43%) samples with a parsable header, the field assumes
a meaningful value. The most common value is “5.1”7, indicating the very popular
Windows XP as its required version. The value “4.0” (Windows NT 4.0) is the second
most common value with 792 occurrences, followed by “5.0” (Windows 2000) with 268
occurrences.

To our surprise, 71 samples indicate “5.2”, which is the 64bit version of Windows XP.
After manual inspection, all of these samples are actually 64bit samples and the version
required is the lowest OS version possible matching this bitness. While Windows XP
64bit is amongst the rarest of all Windows versions observed being in use, we believe
it has been chosen to enable maximum compatibility to ensure the malware will run on
any 64bit target presented. Beyond XP, 124 samples require OS version “6.0” (Windows
Vista) and 2 require “6.1” (Windows 7).

For 57 samples, this field has been nulled or set to “1.0”, which we consider an irregular
or modified value.

Data Directories

Next in sequence after the Optional Header are the 16 Data Directory entries. Results
for all directories are shown in Table 4.7, the fields are discussed in thematical groups,
generally following the order of appearence.

65

4. Malpedia: A Representative Corpus for Malware Research

Families Samples
Feature True (%) False (%) n/a (%) | True (%) False (%) n/a (%)
Export 217 (25.86) 592 (70 56) 30 (3.58) | 637 (27.08) 1,582 (67.26) 133 (5.65)
Tmport 774 (92.25) 5 (4.17) 30 (3.58) | 2,062 (87.67) 157 (6.68) 133 (5.65)
Resource 561 (66.87) 248 (29.56) 30 (3.58) | 1,281 (54.46) 938 (39.88) 133 (5.65)
Exception 25 (2.98) 784 (93.44) 30 (3.58) 102 (4.34) 2,117 (90.01) 133 (5.65)
Security 33 (3.93) 776 (92.49) 30 (3.58) 55 (2.34) 2,164 (92.01) 133 (5.65)
BaseRelocationTable 575 (68.53) 234 (27.89) 30 (3.58) | 1,699 (72.24) 520 (22.11) 133 (5.65)
Debug 194 (23.12) 615 (73.30) 30 (3.58) | 456 (19.39) 1,763 (74.96) 133 (5.65)
Architecture 1(0.12) 808 (96.31) 30 (3.58) 3(0.13) 2,216 (94.22) 133 (5.65)
GlobalPtr 0 (0.00) 809 (96.42) 30 (3.58) 0 (0.00) 2,219 (94.35) 133 (5.65)
TLS 79 (9.42) 730 (87.01) 30 (3.58) 139 (5.91) 2,080 (88.44) 133 (5.65)
LoadConfiguration 269 (32.06) 540 (64.36) 30 (3.58) 655 (27 85) 1,564 (66.50) 133 (5.65)
BoundImport 10 (1.19) 799 (95.23) 30 (3.58) 6 (0.68) 2,203 (93.66) 133 (5.65)
IAT 660 (78.67) 149 (17.76) 30 (3.58) | 1 813 (77.08) 406 (17.26) 133 (5.65)
DelayLoadImport 31 (3.69) 778 (92.73) 30 (3.58) 65 (2.76) 2,154 (91.58) 133 (5.65)
COMRuntime 103 (12.28) 706 (84.15) 30 (3.58) 159 (6.76) 2,060 (87.59) 133 (5.65)
Reserved 0 (0.00) 809 (96.42) 30 (3.58) 0 (0.00) 2,219 (94.35) 133 (5.65)

Table 4.7.: Presence of field values in the Data Directories.

The number of families with an Export directory (25.86%) strongly corresponds to the
families that are developed as DLL (28.25%). The slight difference results from the fact
that a DLL does not necessarily need exported functions as execution can also be taken
over through an optionally defined entry point, commonly a DIIMain routine [263].

However, a DLL without any exports should immediately raise suspicion as a DLL’s
purpose is as its name implies to provide additional functionality by serving as library.

With regard to importing functions, almost all families (92.25%) specify an Import
directory, meaning that they are dynamically linked against additional libraries or the
Windows API. This makes a lot of sense as the Windows API is the central interface
for interaction with the Windows operating system (cf. Chapter 5). On the other hand,
only 78.67% have an explicit Import Address Table (IAT) directory configured. The IAT
is the expected natural runtime counterpart to the Import Table. Its directory exists
mostly for reasons of optimization as the region specified here is designated for Copy
on Write, thus excluding them from memory otherwise shared across processes (which
is the case for most Windows system modules). The Bound Import directory allows
a program to be linked against a fixed version of a module. Of the ten families that
feature this directory, 9 are written in VisualBasic and require the respective runtime in
version 6.0. For win.slingshot however, the bound imports might have been used to
tailor the malware to blend in with or tie it to a given target, as it was designed against
MikroTik routers running Windows 2003, which matches the timestamps in the bound
import table entries [264].

Delay Imports are specified for 31 families and enable a program to load additional
DLLs at call time. Here, no consistent usage pattern could be identified. The topic of
Windows API usage is discussed in detail in Chapter 5.

A Resource directory is found for 66% of the families. It is a very flexible structure
and some of its primary use is to carry auxiliary data in pre-defined structures. Many

66

4.4. A Comparative Structural Analysis of Windows Malware

of its use cases address the appearence of a graphical user element, with elements such
as custom program icons, cursors, or images, embedded fonts, defined menu structures
and dialogues. It also enables multi-language support in accordance with the system’s
localization settings. Another prominent data type is version information about the
program. As the resource section can be used to store (binary) strings, some malware
families embed additional payloads or modules in this data structure, contributing to its
popularity.

The Exception directory is found in only 3% of the families, which is explained with
the fact that it is only available for 64bit binaries, which are rare in the corpus (cf.
Section 4.4.2). The Security directory is similarly uncommon as it is only found in 4%
of families. Its presence indicates that the file has been signed with a certificate in
order to establish trust in the file’s integrity. Signing binaries is a prominent method
to enable their execution in environments with heightened security controls, and 63% of
the families with signed samples are also attributed to APT activity.

More common is the Relocation Table with 68% presence among families. It is used to
allow the binary to be loaded at different base addresses, which is especially important
for operating systems of Windows 8.1 and above.

Notably, 23.12% of the families contain a Debug directory. Similar to the Rich header
(cf. Section 4.4.2), this data structure can contain data containing information about
the computer the binary was compiled on. Here, the location entry of the auxiliary
Program Database (PDB) file is of relevance as it contains a local path. In total, 441
PDB paths could be extracted from samples, which is almost 4 times as high as the
result noted by Miller [265]. Depending on the location of the project, this path may
contain the user name on the system or the self-chosen name of the author. We observe
a total of 51 unique user names that were non-standard (i.e. different from arbitrary
names such as Administrator, Admin, User, ...). While a majority of them appear to be
nicknames, some also are first and last name pairs in the clear. Additionally, the paths
contained parts that correspond to the name with which the respective malware families
are publicly referred to, meaning that this one of the typical resources used for naming.
As we did not pursue this beyond the observations shared here, authenticity of the data
is not established but it appears plausible that this field may contain highly interesting
data.

While the Architecture field is supposed to be zero according to the PE/COFF stan-
dard [21], 3 samples have a non-zero field. All of them are written in Delphi and it
appears that under some circumstances, a Borland compiler may set a pointer to the in-
ternal project name in the Architecture field. The Global Pointer as well as the Reserved
directory were indeed zero for all files.

The TLS (Thread Local Storage) directory, which is present for 9.42% of the families,
can be used to implement additional per-thread setup/tear-down functionality including
private storage apart from the stack. Notable in this context are TLS callbacks, which
can be used to execute code prior to the entry point. In this case, 125 of 139 samples
have such a callback, which is also commonly observed in packers.

67

4. Malpedia: A Representative Corpus for Malware Research

Finally, a LoadConfiguration directory is found for 32.06% of the families. This direc-
tory is tied to the SafeSEH security feature, and the number is only about half as big as
families generally supporting SEH (cf. Section 4.4.2).

Section Tables

The section table of the PE file format provides information about the overall program
structure. For example, it lists details about code and data regions including their
names (which hints towards their purpose), sizes, and how they are generally mapped
into memory with access flags read, write, and execute. The availability and consistency
of this information is highly relevant for further analysis of the malware. We will first
check the section tables encountered in malware against the recommended values from
the PE/COFF standard [21] in order to get an impression of information availability.
In a second step, we evaluate consistency of table data versus actual content by using
CodeScanner (in its version available as of August 2019) by Zwanger et al. [266] to
identify if indeed only sections marked as executable primarily contain code.

Number and Characteristics of Sections. We first investigate if the section table
contains a meaningful number of sections and well-defined names and flags.

With regard to the number of sections, samples with three (442), four (661), or five
(716) sections make up 81.97%, most of them consisting of a combination of the standard
section names .text, .rdata, .data, .reloc, and .rsrc. 57 samples have one or two
sections, while 177 have six, 53 have seven, and 60 have eight sections. Another 52
samples have nine to thirteen sections and a single outlier has 255 (manual inspection
indicates an intentionally modified value likely to confuse analysis programs).

Out of a total 10,074 section names, 9,117 are equal to one of the reserved section
names as given in [21], with 8,819 of them having the required combination of section
flags. Furthermore 427 section names are considered the extended standard category,
as they simply are an alias to one of the reserved names, e.g. CODE instead of .text
as typically used by Borland compilers. Another 208 section names consistently appear
only in conjunction with specific well-known packers or unpackers, such as UPX, AS-
protect, Upack, MPRESS, and VMprotect. The remaining 277 section names appear
manipulated (e.g. nulled (90), and some even contain non-printable binary data (5)).

On sample level, 1,692 samples (76.25%) have exclusively standard names, another 288
have one or more sections that fall into the extended standard, 94 with packer sections
and 143 have one or more non standard sections. Altogether, this leaves the impression
that the vast majority of section names as found in the headers are highly consistent
with native compiler output.

Consistency of Table Data and Memory Layout. In the second step, we now apply
CodeScanner [266] to all memory dumps and compare the results with the PE header’s
section table information where possible. CodeScanner is a byte occurrence frequency
and pattern-based detection tool that can be used to classify a given buffer into regions
such as code and ASCII/binary data.

68

4.5. Summary

For the following evaluation, we use the executable memory regions as defined by the
PE header as expected code region and measure if and how much code is additionally
located by CodeScanner outside of these regions. For 133 out of 2,352 samples, no PE
header information could be obtained (cf. Section 4.4.1)). For another four samples, the
PE header was fragmented in a way that no valid section offsets could be extracted and
CodeScanner did also not detect any code.

For 216 samples, CodeScanner did not identify code regions. By manually inspecting
these, we found that 163 of these were either .NET or VisualBasic samples, which can
not be detected by the version of CodeScanner available to us, which is only capable to
find x86 and x64 code regions. Looking at the remaining 49 samples, the code region
generally was tiny (potentially smaller than CodeScanner’s window size) or obfuscated,
also resulting in no detection.

For 43 samples, only CodeScanner produced results. Here, 29 samples had virtual
offsets pointing outside of the buffer and through manual analysis we concluded that
most likely junk bytes have been inserted to fool analysis programs. In the remaining
14 samples, no executable bit was set, which may be a result of a custom loader reading
the PE and not relying on this information (e.g. because all memory is set to read-
/write/executable anyway), meaning that CodeScanner correctly identified additional
code.

This leaves us with 1,956 samples (83.16%) for which results can be compared and
that can be evaluated in the proposed way. Among these, the code regions detected by
CodeScanner are fully contained within the section borders for 702 samples. For another
additional 1,082 samples, the overlap is between 90 and 100%, which in combination sums
up to 91,21%. Upon closer inspection of the remaining 172 samples, we find that for
53 of them, the code section is under 20kB, meaning a single misclassified window in
CodeScanner will have the samples already drop below the chosen 90% overlap border.
Indeed, misclassification was confirmed for all of these cases, in some cases with an
additional CodeScanner window before or after the code section. For another 65 samples,
CodeScanner correctly identified an additional embedded PE file, a typical method of
malware to carry an auxiliary module, e.g. in the Resource section. For 12 cases,
CodeScanner made a detection of code for another architecture, which was confirmed
as Heaven’s Gate code to dynamically change between 32bit and 64bit execution. This
leaves us with 42 uncategorized cases. For these, we identified a mix of correctly identified
shellcode in data sections and minor misclassifications by CodeScanner that led to a code
section coverage below 90% as outlined before. Overall, CodeScanner has provided very
accurate and consistent results that established for us that the section table layout as
contained in the PE header of the payload dumps appears to be genuine in a vast
majority of cases.

4.5. Summary

In this chapter we examined the availability of quality ground truth for static analysis
in malware research and observed a severe need for reliable data.

69

4. Malpedia: A Representative Corpus for Malware Research

This led us to RQ1, asking how a malware corpus should be composed to both enable
representative research from academic viewpoints while similarly serving as a relevant re-
source to practical malware analysis. To answer this question, we specified requirements
around the three core categories of Representativeness (REQR), Accessibility (REQ),
and Practicality (REQp). These were then carefully validated against Rossow’s Prudent
Practices, showing that they indeed would yield a data set as prescribed by an accepted
standard.

In the following, we presented our implementation of such a malware corpus named
Malpedia. We showed that our concept and realization indeed fulfil all aspects of the
specified requirements. This included careful documentation of the collection and pro-
cessing applied, including a summary of observations gathered during the processing. As
of January 3rd, 2019, Malpedia consisted of 3,469 representative samples for 1,136 mal-
ware families, making it the most comprehensive malware corpus (in regards of verified
malware families) available to research.

With this corpus at hand, we approached R(Q)2, asking about the integrity of payload
meta data and file structure in unpacked Windows malware as well as what can be
inferred about tool chains and methodologies used by malware authors. To answer this,
we conducted a thorough comparative structural analysis of the 839 Windows malware
families with unpacked representations present in Malpedia. In summary, we found that
meta data in the form of PE headers was available for 96.42% of the malware families.
Furthermore, fields contained in this meta data were plausible in a vast majority of cases,
showing only few cases of tampering. This has been both shown by the comparison of
Rich Headers with compiler/linker fields and the study of payload integrity with respect
to the section table. These findings especially indicate that packers and protectors almost
always can be seen as just an initial barrier that by itself does not focus on aggravating
static analysis, e.g. by further concealing payloads after deployment.

As for author methodologies, Visual Studio strongly dominates as a development plat-
form, with the seemingly outdated versions VS2008 and VS6 being among the most
common. It was surprising to see that for almost a fourth of all samples, hints on debug
information were contained in the sample, including filepaths from the author’s machine
and in more than 50 cases even a username. This shows that ignorance or even careless-
ness to such easily mitigatable details is not uncommon among authors or operators of
malware, unless it is planted intentionally as a false flag as observed e.g. by Kaspersky
in the OlympicDestroyer campaign [267].

As a final remark, it should be noted, that the relative values derived in Section 4.4
are very close to what we reported before in the previous publication [12] this chapter
is based upon, although more than twice as many families have been covered in this
evaluation. We conclude that this stability indicates reliability for the generalization of
the results.

70

5. Robust Recovery and Analysis of
Windows API Usage

After explaining our efforts of a structured collection and cursory structural analysis
of malware, we continue in this chapter by focusing on a crucial cornerstone for in-
depth malware analysis: API usage information. As motivated earlier in Section 4.4,
we continue to focus on Windows malware as it is the most relevant environment. We
highlight the importance of availability of API information and present our approach
for robust recovery and comparative analysis of extracted Windows API usage profiles.
The information gathered allows us to study the spectrum of malicious capabilities in
great detail and provides better understanding how malware authors interact with the

API.

We first start with a motivation and define our main research questions and contri-
butions in Section 5.1. Next, we introduce our proposed approach ApiScout for the
recovery of Windows API usage information from memory dumps in Section 5.2, reli-
ably automating one of the most relevant tasks in the preparation of in-depth malware
analysis. In Section 5.3, we use ApiScout to perform an analysis of Windows APT usage
across Malpedia. We follow up with a method to store and compare extraction results of
ApiScout that we call ApiVectors in Section 5.4 and benchmark the performance when
using ApiVectors for malware classification. We conclude with a summary in Section 5.5.

This chapter follows in large parts our previously published methodology and results
as presented in [12, 13] but it significantly expands the evaluation of the method itself
as well as the number of covered malware families. Furthermore, it is in line with the
data set status as defined in Chapter 4 and supports the purpose of providing a coherent
picture throughout this dissertation.

5.1. Motivation and Contribution

When working on incidents and newly identified malware families, analysts often work
under high pressure towards goals such as ensuring protection and mitigation of threats.
A core question that usually quickly arises has its origins in risk assessment and asks
about the potential capabilities of a given malware. To answer it, analysts typically
have to accept trade-offs between the timeliness, depth of analysis, and accuracy of
conclusions they are able to make [268]. To save time, a typical first step in analysis is
the use of automated dynamic methods such as blackboxing and sandboxing. However,
these methods can only give a limited answer because they are typically performed with
a short execution time frame. In consequence, they will only capture a limited number of

71

5. Robust Recovery and Analysis of Windows API Usage

behaviors exhibited in that time frame. Moreover, because malware often acts reactively
and in response to an external control entity, it may depend heavily on external resources
such as network communication and availability of the malware’s C&C servers.

For results of more depth and accuracy, reverse engineering has to be applied. Effective
reverse engineering requires situational awareness in order to maintain orientation [3§]
and one central cornerstone for this are Windows API interactions. Following these
interactions is among the most effective ways to locate code tied to certain behaviors
of interest [38]. For example, in order to investigate the communication with a C&C
server, an analyst will typically first identify API functions that are tied to network-
ing, and then investigate nearby areas in the code where these functions are referenced.
As we have learned in Chapter 4, malware is typically encountered packed and proper
analysis requires unpacking. Luckily, Chapter 4 has also shown that packing in modern
malware can be considered a mere barrier that can be successfully circumvented, e.g.
by an approach differencing memory dumps, yielding a success rate of up to 92% [245].
This means that memory dumps can be easily produced and serve as an effective ap-
proximation of unpacking that can be used to jumpstart in-depth analysis.

However, this does not address additional methods used by malware authors to protect
their code against analysis. In the context of this chapter, these protections include
concealing interactions with the Windows API, e.g. by avoiding the PE header’s natural
method for resolving references into the Windows API (and other dynamically linked
libraries), the Import Table [21]. In case malware uses so-called dynamic imports or
even more sophisticated methods of obfuscation, reconstruction of the WinAPI usage
information is required to enable proper analysis.

The current state of the art for import usage reconstruction from memory dumps
is represented in tools such as Scylla or ImpScan as found in the Volatility memory
forensic framework. Both require access to the full memory layout as well as contents of
the target process from which a memory dump was taken of. Scylla also relies on manual
interactions and adjustments that can not be executed automatically. Additionally, these
tools assume that all import references are stored in a single structure that resembles the
Windows-native Import Address Table (IAT) format, which does potentially not hold
true for custom methods as observed in malware. With especially the last argument in
mind, no formal evaluation of these approaches is available, leaving uncertainty about
their effectiveness and accuracy.

Longing for improvement, the first research question for this chapter is the following:

RQ3: Using static analysis, how can Windows API usage information be robustly
extracted from memory dumps?

Using Malpedia as reference corpus, we quickly follow up with a second research ques-
tion:

RQ4: How frequently do malware authors apply obfuscation schemes to their
WinAPI usage?

As an answer to both, we present ApiScout, a fully automated method that is ca-
pable of identifying and recovering both static and dynamically created references to

72

5.2. ApiScout: Recovery of Windows API Usage from Memory Dumps

the Windows API from memory dumps. Because ApiScout uses an approach divided
in two stages, it does not require a live environment and can be conveniently applied
in post-mortem scenarios for malware analysis and memory forensics. As consequence
of the principles explained in Section 4.3, this also allows us to apply ApiScout to all
memory dumps contained in Malpedia. This way, we can study WinAPI usage in detail
and derive an answer for the second question.

Now, given the ability to robustly extract WinAPI usage profiles, we specify a follow-
up question:

RQs5: How characteristic are Windows API usage profiles for malware families and
can they be used in the context of malware identification?

To investigate this question, we need to be able to measure the similarity of usage
profiles. We propose the concept of ApiVectors, a vector representation of the most
semantically relevant and commonly encountered WinAPI functions. Apart from being
an efficient storage method, these vectors can be compared to each other using similarity
metrics, serving as an effective classification method for malware.

Contributions. In summary, in this chapter we make the following contributions:

1. We present ApiScout, a method that effectively recovers WinAPI references from
memory dumps. With a near perfect F1 score (0.999), ApiScout produces more re-
liable results than the comparable approaches Scylla (0.893) and ImpScan (0.933).

2. We define a taxonomy for API usage obfuscation. Using ApiScout, we provide
the first extensive analysis of the usage spectrum of the Windows API across 726
malware families. We learn that 48% of these families do make use of dynamically
imported WinAPI references but only less than 4% use complex custom obfuscation
that is not extractable by our method.

3. Based on the API usage data, we create a comprehensive semantic classification
scheme, covering 4,994 WinAPI functions. Being almost twice as extensive as
schemes from previous works, it allows more precise characterization of capabilities
in malware.

4. We propose ApiVectors, a method that allows measuring similarity based on API
usage profiles and show that it outperforms current state of the art methods:
ImpHash and ImpFuzzy.

5.2. ApiScout: Recovery of Windows API Usage from Memory
Dumps

As motivated earlier, it is a common task for analysts to rapidly identify points of interest
tied to key behavior aspects such as persistence, network communication, and functional
capability in a given analysis target [38]. Revisiting that we have already explained in
Chapter 4 why we consider memory dumps equivalent if not superior to classic ’clean’
unpacking, this allows us to consider new methods to optimize an analyst’s workflow.

73

5. Robust Recovery and Analysis of Windows API Usage

State of the art approaches such as Scylla IAT Search and Volatility ImpScan are able
to extract API information from memory dumps but have shortcomings. Scylla can not
be automated and requires manual interaction and both approaches generally require
that the full memory layout of the process for which API import information shall be
reconstructed is available, i.e. information about all modules being loaded in a given
process context.

We now introduce our method ApiScout, which is tailored to memory dumps and
intended to ease an analyst’s task of robustly reconstructing Windows API usage of
malware in a given memory dump. In this context, using memory dumps as the only
input data provides flexibility by being generally decoupled from the dynamic analysis
execution environment once created.

We define the following requirements for our method. First, it should provide a com-
plete and accurate result, providing coverage for all references to the Windows API.
Second, the method should generalize well and especially be applicable for malware
analysis. Third, it should have high usability as this is not only important to find ac-
ceptance among practicioners, but also to allow for easier integration with other tools
and workflows.

In the following, we first explain the ApiScout methodology in detail. Because our
later analysis focuses on Windows malware, we present inventarization results for four
major releases of this operating system, showing how its API maintained compatibility
while also growing significantly in size over time. To show that our approach provides
accurate and robust results, we evaluate it against Scylla TAT Search and Volatility
ImpScan, using a selection of benign and malicious programs in both 32 and 64bit.

5.2.1. Methodology

ApiScout is a generalization of and inspired by the method proposed as part of the
Eureka framework by Sharif et al. [105]. In Eureka, disassembly is used to identify
call instructions that likely interact with the Windows API, which are then compared
against a database of target function offsets. The database is built dynamically by
extracting exported functions from modules, with analysis triggered when a call to the
ntdll.d11!NtMapViewOfSection WinAPI function is executed.

To fulfil the requirement of generalization, we do not make assumptions about how the
Windows API is used as long as valid references to it exist. This means that ApiScout
is not based on the context of disassembly for resolving call targets. Instead we show
that the method can be used with arbitrary buffers without any additional structural
information being required. The methodology is generally divided into two phases: an
initial setup phase and its actual application phase. This division specifically enables the
decoupling from a runtime environment as explained in the following. A limitation of
this approach is that only those function offsets can be located, that are explicitly stored
within the target memory and that correspond to actual export offsets from inventorized
modules as stored in the database.

The phases are now described in detail. A reference implementation of ApiScout has
been written in Python and made publicly available on GitHub [269].

74

5.2. ApiScout: Recovery of Windows API Usage from Memory Dumps

Inventarization Phase

The inventarization phase is a mandatory setup step that is required to capture the
specifics of the environment from which the memory dumps originate that are later to
be analyzed in the application phase.

In this phase, the target system’s file system is crawled recursively in order to identify
every executable and Dynamic Link Library by their file extension. These files are then
analyzed in order to collect their preferred ImageBase address and all of the exported
functions including their Relative Virtual Addresses (RVAs). The RVA is the value at
which these exported functions are located once the DLL has been mapped to memory,
relative to the ImageBase. Both of these data points are easily located by parsing the
PE header in a similar methodology as outlined in Section 4.4, this time focusing on
the Export data directory. It has to be noted that the approach has to be capable of
treating both 32bit and 64bit systems, meaning that the address length format can be 4
bytes or 8 bytes respectively. The extraction result for every DLL is stored individually
within one configuration profile for the given OS and its current state. By storing
results individually, this allows to resolve potential address conflicts that may arise
through identical ImageBase addresses at a later time. Incorporating every executable
and DLL ensures that we achieve the requirement of completeness, as we have data for
every potentially imported standard module. Malware authors can generally not make
assumptions about their target systems (unless dedicated reconnaissance was performed)
and have to rely on these standard modules. In Section 5.3.3, we will later see that in
practice, only a small number of DLLs (and no executable) are used to interact with the

Windows API.

Because the above described method of database creation is based on full enumeration
of the file system, it gives a complete result and by definition is as good as potential
alternatives. It follows mostly the method proposed for Eureka [105], described in the
section on “Handling DLL obfuscations: DLLs loaded at standard virtual addresses”.
It only deviates in order to additionally address the specifics of modern OS versions of
Windows, namely effects of Address Space Layout Randomization (ASLR).

In this context it is important to note that during the setup phase, every DLL in-
ventorized is loaded once into a stub process to set and identify its individual adjusted
load offset. This way, even in case ASLR is activated for the environment, we will still
obtain the actual ImageBase and RVA for all DLLs. Loading the modules is also the
only known way to derive the ASLR offset, which makes it a necessity. However, this
means that the database has to be updated after every boot sequence as this is the
moment ASLR offsets are initialized randomly. For the application of ApiScout, this
drawback is negligible as it is common practice in malware analysis to have a snapshot
of a running system state (e.g. using a virtualization software such as VMware or Virtu-
alBox) to speed up analysis [41]. The same holds true for most sandbox analysis systems.
However, full rebuilding of the database is necessary in case the system configuration
changes, i.e. when patches are applied, as the memory layout within relevant DLLs may
change, shifting the export offsets.

75

5. Robust Recovery and Analysis of Windows API Usage

Offset Hexdump Offset Value WinAPI function
@OBDEOGO:QCQBDEW 519CDE77 7ESADE77 11C8DF77 8042DE77 C3BCDF77 D7EADD77 BBEFDD77 0QO08DEQOO: 77DESBAC advapi32.dll!CryptDestroyHash
008DE020: 9651DE77 8F9BDF77 A454DE77 _SFD7E@77 4278DD77 AB7ADD77 176CDD77 _DSECDD77 008DE0GO4: 77DE9C51 advapi32.dll!CryptCreateHash
008DEO40: 1D79DE77 40E3DE77 00000000-2527A977 2B45AB77 C41FA977 00000000%724807C 008DEOO8: 77DESATE advapi32.dll!CryptHashData
008DE0O60: 01FE907C D109837C 462C817C 85DE807C 1A1E807C C706817C 64A1807C 9C32817C 0O8DEOOC: 77DFC811 advapi32.dll!CryptVerifySignatureA
008DE0O80: A7A0807C E917807C C51E837C 4624807C FDOC817C 1218807C BO9980O7C OF29837C 008DEO10: 77DE4280 advapi32.dll!RegDeletekeyA
008DEQAO: 6B23807C 281A807C 170E817C D79B807C 51AC807C A400917C 7CAC857C ODFF907C 008DEO14: 77DFBCC3 advapi32.dll!RegCreatekeyA
008DEOCO: 31B7807C E19A807C 2E93807C 749B807C 7B1D8O7C 30AE807C CFE9807C 00000000 0O8DE0O18: 77DDEAD7 advapi32.dll!RegSetValueExA
008DEOEO: “I8BFC177 ©7C4C277 FO75C477 16DEC177 BD67C477 80D3C177 607CC477 _1BC2C277 0O8DEO1C: 77DDEFB8 advapi32.dll!RegOpenKeyA
008DE100: 706FC477 00000000%2431277 80481277 699AB7C 0A6417E 008DE0Q20: 77DE5196 advapi32.dll!RegEnumKeyExA
008DE120: 2398427E EAO7457E 0000000&A821C77 5A5A1C77 8E571C77 A1601C77 F92A1C77 008DE024: 77DF9B8F advapi32.dll!RegEnumValueA
008DE140: 52341C77 8C4D1C77 0000000(9556AAB71 ED3FAB71 E12EAB71 C145AB71 00000000 008DE028: 77DE54A4 advapi32.dll!GetUserNameA

008DE160: “532A507

@ advapi32.dll

7 TEQ55077 00000000 00000000

© kernel32.dll © oleauth32

.dul

@ user32.d11

© ws2_32.4d11

[...]

@ crypt32.d1l O nsvert.dll @ shell32.d1l @ wininet.dll @ ole32.d1l

Example of an TAT for win.asprox. API references (thunks) are typically organized
by their respective DLL.

Figure 5.1.:

Application Phase

After a database of potential API offsets has been created, the recovery technique can
be applied to examine memory dumps for potential references to the WinAPI. Before
the examination begins, the database has to be prepared for usage. Because we require
our approach to have high usability, we want to optimize for speed.

Our method is based on queries against a database of addresses, so we use a data
structure that allows fast lookups. While there are several possibilities, we choose a
hash-map as it allows efficient lookups in average O(1), which is the fastest possible in
this case. For the concrete implementation that is written in Python, this means we
can use dictionaries, as they are internally implemented as hash-maps. As a result, the
keys of the hash-map will be absolute memory addresses and values are the respective
WinAPI information (DLL and API function name) as this is what we want to resolve.
For construction of the hash-map, the respective RVA export offsets are added to the
preferred ImageBase address of every DLL, taking the additional ASLR offset into con-
cern if necessary. This resulting value corresponds to what would be expected as a data
reference in a live process environment, i.e. as an IAT entry.

Now using this data structure for the recovery of data references to the Windows API
is straightforward. Given a memory dump, all consecutive data n-grams that correspond
to a possible address length (i.e. 4 or 8 byte, resulting in DWORD or QWORD values) are
extracted and then used in a look-up against the database. In case we hit an element, we
consider the n-gram as a candidate for a WinAPI reference and store it along its offset
in the memory dump. This method is illustrated in Figure 5.1, showing how WinAPI
references are identified and extracted as candidates.

After all candidates have been identified, it seems advisable to apply optional filtering
mechanisms to increase the precision of the approach as required initially by sorting out
potential false positives. We propose the following methods for filtering.

Fs Self-Filter: We can filter out all references towards addresses that are situated
within the address space of the currently analyzed memory dump. Obviously, it is
impossible that a module has been mapped to the same ImageBase as inhabited by the
memory that was dumped, meaning this will never result in the removal of true positives.

76

5.2. ApiScout: Recovery of Windows API Usage from Memory Dumps

All Unique
Name Version/Build APIs DLLs APIs DLLs
Windows XP (32bit) NT5.1/2600 128,408 1,597 101,710 1,584
Windows 7 NT6.1/7601 251,186 3,828 168,176 2,215
Windows 8.1 NT6.3/9600 282,802 5,154 183,424 3,024
Windows 10 NT10.0/17134 338,456 5,971 234,528 3,751
Total 323,851 5,686

Table 5.1.: Number of DLLs and exported API functions found in different vanilla installations
of Windows, as presented in [13]. Unique columns show data with deduplicated DLL
and API names. The “Total” is calculated as all unique values observed across all
versions. Windows XP is 32bit, all others are 64bit versions.

Fy Neighbor Filter: We can use the distance between candidates as a criterion. This
approach is based on an observation from practical malware analysis. Typically, malware
authors structure their programs logically, resulting in the fact that WinAPI references
are often located near to each other. This naturally holds true for the construct of an
Import Address Table in which entries are stored immediately next to each other with
a zero DWORD or QWORD as divider between DLLs (see Figure 5.1). However, it is our
experience that this is similarly true for many custom import schemes used by malware
authors. Thus, the neighbor filter discards all WinAPI reference candidates that do not
have another candidate within a certain distance. This can help to reduce potential
false positives, but as will be shown in Section 5.2.3, the proposed technique is highly
accurate even without this filter.

Additionally, we propose the following method for estimating the number of data ref-
erences to a candidate offset. It does not require any disassembly by using a similar
method as for scanning for candidates. For this technique, we exploit the fact, that
most data references to WinAPI references in the code will be made using instructions
for which we can easily derive their targets, given the dump’s base address and the offset
where the reference occurs. The two instructions in question are these: call dword ptr
<offset> and jmp dword ptr <offset>. Please note that a differentiation has to be
made for 32bit and 64bit systems as offsets for 32bit are absolute while they are relative
for 64bit systems. The binary representation of these instructions is (48)FF15<offset>
for a call and (48)FF25<offset> for a jump, with the 48 prefix indicating a 64bit instruc-
tion. By simply searching through the memory dump and inspecting every occurrence of
these byte sequences and the respective offset, we can perform address calculations using
the given offset and analyze if it corresponds to one of the previously found candidate
offsets, tracking the potential references with a counter. A limitation to this is that we
do not get visibility into references using other data reference methods (e.g. indirection
through call <register>, with the register holding a WinAPI offset). An advantage
of this approach is that it does also not require any disassembly or data flow analysis, as
used by both Scylla and ImpScan, while still providing decent accuracy as shown in the
earlier work [13]. Obviously, non-zero counters for candidates drastically increase their
chance of being an actual WinAPI reference.

7

5. Robust Recovery and Analysis of Windows API Usage

5.2.2. Inventarization of the Windows API

Before we evaluate ApiScout, we first study the development of the Windows API over
several versions of Windows, focusing on the most popular editions (cf. Section 4.3.2):
Windows XP, 7, 8.1, and 10. This will give us insights into the population of addresses in
the memory address space being potential WinAPI offsets, and thus potential for colli-
sions while constructing the hash-map and doing lookups against it. As explained in [13],
the inventorization step was applied to vanilla installations of these operating system
versions to serve as a baseline for the respective OS version and ensure reproducibility.

Table 5.1 gives a summary of the results. As can be seen, the Windows API has noti-
cably grown over the progression of the versions. The drastic difference of Windows XP
to the others is explained by the fact, that only a 32bit version of Windows was available
to us for XP, while for all others a 64bit version was analyzed. In 64bit Windows, a
mechanism called Windows-on-Windows 64-bit (WOW64) is available that affects the
majority of core DLLs. Because of WOW64, many DLLs exist in both 32bit and 64bit
versions to ensure downward compatibility to older software compiled for 32bit systems.

Inspecting the columns with unique DLL and API names we can infer that over time
not only new DLLs and APIs have been added but some older ones had also been re-
moved. Nonetheless, the hash-map to be used by ApiScout typically consists of more
than 100,000 entries, with additional entries from any software that may be installed
along the Windows system DLLs. This means the chance for collisions of random
DWORDs with our function offset database is very small. Using Windows XP as ex-
ample, with up to 2,147,483,648 addressible bytes in user-space, only a tiny fraction
(0,006%) could be occupied by valid function offsets in a scenario where all 1,584 DLLs
would be mapped to memory. In practice, the number of mapped modules in processes
is far smaller. Again for the Windows XP example, the most “crowded” process in a
vanilla system is Windows Explorer with 138 DLLs mapped to its memory space.

As additionally discussed in [13], we investigated potential collisions of address offsets
that may occur during the construction of the hash-map. For Windows XP and Windows
7, only 1 and 178 collisions have respectively been identified, which occur in DLLs sharing
their base address. While a common base address rarely occurs in system libraries of
these operating systems, collisions are even less likely as export offsets would have to
match as well, which explains this low number of collisions.

However, the situation is completely different for Windows 8.1 and 10, where 55,181
and 115,022 collisions are respectively found. The reason for this is that ASLR is a
mandatory feature in these operating system versions and all of the DLLs have been
compiled with this in mind, resulting in them defaulting to standard base addresses
0x10000000 for 32bit and 0x0000000180000000 for 64bit. In practice, these theoretical
collisions are even less impactful than for Windows XP and 7 and do not negatively affect
the operability of ApiScout. In a running system state, ASLR offsets are initialized
and will cause the DLLs to be spread in the memory space, resolving all collisions.
Furthermore, as Windows employs a shared memory concept for processes, the offsets
will be identical across process boundaries.

78

5.2. ApiScout: Recovery of Windows API Usage from Memory Dumps

5.2.3. Evaluation

We now proceed to evaluate the capabilities of ApiScout in terms of WinAPI usage
recovery by measuring the accuracy achieved with the method outlined in Section 5.2.1.
We begin with explaining the data set used for the evaluation, followed by an overview of
comparable methods as identified in Section 3.2, namely Scylla IAT Search and Volatility
ImpScan method that will serve as a state of the art reference against which ApiScout
is then evaluated in the following. For ApiScout, we also examine the influence of the
proposed filters Fg and Fly, as well as the proposed method for reference counting.

Data Set

To achieve reasonable results, ApiScout has to be tested on both benign as well as
malicous software. To cover all aspects mentioned previously, it should also be tested
with 32bit and 64bit and activated ASLR.

We therefore use a vanilla Windows 7 32bit and 64bit system as a baseline. Because all
WinAPI references found in memory have to be manually annotated to serve as ground
truth, we limit ourselves to 15 benign system programs (cf. Table 5.4) chosen by personal
experience. These have a large variety of characteristics and functional spectrum, e.g.
including GUI, console tools, and services used for tasks such as multimedia processing,
networking, or system management. We furthermore randomly select 15 malware fami-
lies from the Malpedia data set (cf. Section 4.3). With regard to bitness, we select ten
32bit and five 64bit samples each.

To create a ground truth out of these binaries, we executed all of the programs and
created memory dumps of their running state, which we assumed to be an idle state after
one minute of execution or upon their WinAPI call to ntd11l.d11!TerminateProcess.
For the goodware, we parse all entries of the ImportTable and DelayImportTable as
they designate the offsets where ImportAddressTable entries referencing WinAPI func-
tions can be found. For the DelaylmportTable, we then reduce the set to those ref-
erences that are actually created delayed, which is typically just a subset, depending
on the execution paths covered during this runtime of the program. For the malware,
we similarly parse the entries from these structure but additionally perform a man-
ual analysis to ensure that all additional (dynamic) WinAPI reference are covered as
well. Dynamically resolved WinAPI references are observed for nine of 15 families:
win.citadel, win.geodo, win.hlnl, win.matsnu, win.reactorbot, win.redalpha,
win.snatch_loader, win.trickbot, win.vawtrak. In the 30 memory dumps, we iden-
tify a total of 8,132 WinAPI references across all samples.

Impact of Filtering

Before we compare ApiScout against other approaches, we examine the effectiveness of
the proposed filters. As was stated earlier, the Self-Filter Fg will never lead to the
removal of true positives but has the potential to filter false positives, which means it
should be always active. On the other hand, the Neighbor Filter Fy can affect the result

79

5. Robust Recovery and Analysis of Windows API Usage

Filter Size ‘ 4 8 16 32 64 128 256 512 1,024 2,048 4,096
N 5,419 7,918 8,034 8,101 8,112 8,119 8,120 8,120 8,122 8,125 8,127
FP 7 20 28 44 53 60 66 68 70 71 85
FN 2,713 214 98 31 20 13 12 12 10 6 5
PPV 0.999 0.997 0.997 0.995 0.994 0.993 0.992 0.992 0.991 0.991 0.990
TPR 0.666 0.974 0.988 0.996 0.998 0.998 0.999 0.999 0.999 0.999 0.999
F1 0.799 0.985 0.992 0.995 0.996 0.996 0.995 0.995 0.995 0.995 0.994

Filter Size ‘ 8,192 16,384 32,768 65,536 131,072 262,144 524,288 1,048,576 2,097,152 4,194,304 8,388,608

TP 8,127 8,129 8,130 8,130 8,130 8,131 8,132 8,132 8,132 8,132 8,132
FP 89 98 101 116 124 126 126 126 126 126 126
FN 5 3 2 2 2 1 0 0 0 0 0
PPV 0.989 0988 00988 0.986 0.985 0.985 0.985 0.985 0.985 0.985 0.985
TPR 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
F1 0.994 0994 0994 0.993 0.992 0.992 0.992 0.992 0.992 0.992 0.992

Table 5.2.: Effect of different neighbor filter sizes without self-filter

Filter Size | 4 8 16 32 64 128 256 512 1,024 2,048 4,096
TP 5420 7,919 8,035 8,102 8,112 8,119 8,120 8,120 8,122 8,125 8,127
FP 6 6 6 6 6 6 7 8 8 8 19
FN 2,712 213 97 30 20 13 12 12 10 6 5
PPV 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.998
TPR 0.667 0974 0.988 0.996 0.998 0.998 0.999 0.999 0.999 0.999 0.999
F1 0.800 0.986 0.994 0.998 0.998 0.999 0.999 0.999 0.999 0.999 0.999

Filter Size | 8,192 16,384 32,768 65,536 131,072 262,144 524,288 1,048,576 2,097,152 4,194,304 8,388,608

TP 8,127 8,129 8,130 8,130 8,130 8,131 8,132 8,132 8,132 8,132 8,132
FP 23 32 35 50 58 60 60 60 60 60 60
FN 5 3 2 2 2 1 0 0 0 0 0
PPV 0.997 0.996 0.996 0.994 0.993 0.993 0.993 0.993 0.993 0.993 0.993
TPR 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
F1 0.998 0.998 0.998 0.997 0.996 0.996 0.996 0.996 0.996 0.996 0.996

Table 5.3.: Effect of different neighbor filter sizes with self-filter

in both ways, potentially reducing both True and false positives, in case true positives
are isolated from other imports, e.g. when found in a Delay Import Table or being the
result of dynamic imports.

Table 5.2 shows the results for a range of filter sizes. The sizes are chosen as powers
of two, up to a size exceeding the largest memory dump in the data set, equivalent to
the filter being deactivated. Table 5.3 shows the same filter sizes but with activated
Self-Filter Fg.

First, it can be noted that ApiScout achieves very good results of F1 scores (i.e. the
harmonic mean of precision and recall) above 0.99 for all configurations except with a
F of size 4 and 8. This is due 64bit data references already having a size of 8 bytes,
meaning that they alone technically can not fulfil the minimum distance for a filter size
of 4 and even in the case of 8 require immediate neighbors, which leads to a number of
missed WinAPI references.

It can be further seen that the Self-Filter Fg indeed improves all results in terms of
false positives as expected. In some configurations, e.g. neighbor filter of size 2,048
bytes, the effect is quite drastic, resulting in a reduction to 8 FPs from 71 FPs without
the filter.

In general, the Neighbor Filter also balances True and false positives as expected, and
the best result (highest F1 with lowest FPs and FNs) is achieved for F with 2,048 bytes

80

5.2. ApiScout: Recovery of Windows API Usage from Memory Dumps

in size. Without neighbor filtering, ApiScout is also capable of avoiding false negatives
entirely, thus recovering all WinAPI references found in the test data set.

Comparison with other Approaches

In order to be comparable to ApiScout, we only consider methods that fulfil the following
requirements:

e applicable to memory dumps.
e work entirely statically to reconstruct WinAPI usage.
e (publicly) available for evaluation.

As evaluation candidates, this leaves us with Scylla [114] and Volatility ImpScan [115].
It was not possible to acquire the code of Eureka as it is not publicly accessible or oth-
erwise shared by the authors. Note that Scylla by itself does not offer a fully automated
application but can be adapted to perform in that way. Therefore, we resort to only
comparing ApiScout against Scylla and ImpScan. We conducted a code review for both
Scylla and ImpScan and outline their methods briefly.

Scylla: TAT Search. Scylla is implemented in C+4 and focuses only on IAT recov-
ery, meaning that it aims only for extracting one block of consequent WinAPI refer-
ences. This is originally done using the method findAPIAddressInIAT and relies on
diStorm3 [270] as disassembler. The approach of findAPIAddressInIAT begins by dis-
assembling 200 bytes, starting at the Original Entry Point (OEP) of the program. If
it encounters a jmp or call instruction, it potentially extracts an IATPointer that is
checked for being an actual WinAPI reference. In case it is a WinAPI reference, it infers
the IAT start address and size by performing a backward and a forward scan for as long
as additional WinAPI references are found. If no WinAPI reference is found by this
approach in the first 200 bytes, another function is searched by following any call and
branch instructions in the disassembled buffer. This is repeated up to 8 times.

Scylla: Advanced IAT Search. Scylla also supports a second method that improves
its original scanning, called £indIATAdvanced, which also relies on diStorm3. Instead of
starting at OEP and disassembling forward, Scylla obtains the BaseAddress and size of
the executable memory in which the OEP resides. Now, this whole buffer is disassembled,
searching for all potential IATPointers that can be found. To derive IAT start and size
from these candidates, a verification step starts in the middle of the list and checks for
distances between the pointers of longer than 256 bytes. If such skips are found, it is
checked if any of the two pointers creating the skip is invalid and if yes, all following
candidates are deleted. The second part of the verification consists of iterated validation
rounds, always starting at the beginning of the list and similarly checking neighbored
candidates in the pointer list. In case a jump of more than 256 bytes is found, the entries
are checked for being valid WinAPI references and deleted if this is not the case. The
purpose of this procedure is to keep only valid WinAPI references and continually delete
bogus references and eventually the borders of the derived IAT are returned. Note that
this leaves room for false positives, as entries are only validated in case they are part of
a jump.

81

5. Robust Recovery and Analysis of Windows API Usage

Volatility ImpScan. ImpScan is a plugin for Volatility and written in Python2. The
method is similar to the Advanced TAT Search of Scylla and works as follows. It starts
by creating a database of possible WinAPI reference offsets by extracting exported func-
tions from modules loaded into the process (similar to ApiScout). Over the full memory
buffer which shall be analyzed, it disassembles all instructions and examines call instruc-
tions if they reference a call target that is listed in the database. Now, for the lowest
and highest candidate, a forward/backward search called VicinityScan is executed, in
which consecutive IAT entries of up to 0x2000 bytes distance are recorded. This search
is aborted if 5 consecutive resolution errors occurred, meaning that either an invalid
WinAPI reference, or a duplicate IAT entry, or a reference pointing into the own mem-
ory space is found, with the latter being identical to the Self-Filter Fg of ApiScout. As
all entries are checked for being valid WinAPI references, ImpScan can only produce
FPs in very borderline cases.

Because both Scylla and Volatility derive their candidates from fully scanning the
memory, their candidate lists should be near identical. Yet, their filtering differs which is
why we evaluate against both approaches, reimplementing Scylla’s Advanced TAT Scan
in Python and adapting ImpScan. For all three, we use the same WinAPI reference
databases, emulating the dynamic acquistion methods used for Scylla and Volatility.

Evaluation of WinAPI Usage Information Recovery

We now discuss the evaluation of Scylla, ImpScan, and ApiScout. A summary of the
results is shown in Table 5.4.

We first assess that both Scylla and ImpScan produce very similar results because of
the noted relationship in their methodology, relying on linear disassembly. Both of them
also have a significantly lower true positive rate (TPR) than ApiScout. Scylla is able
to produce 86.9% of the TPs and ImpScan produces 87.4%. Only in three cases are
these approaches capable of reconstructing all WinAPI references (ApiScout: 25/30). In
two cases, both methods even do not produce a single WinAPI reference. This has two
reasons. One the one hand, win.matsnu uses a number of anti-analysis techniques that
aggravate disassembly. Furthermore, its reference offsets are not located on multiples of
4, which breaks another assumption in ImpScan. For win.snatch (and essentially also
win.hinl) the lack of identified references is a consequence of the linear disassembly
using diStorm3, which is not able to identify any calls into the IAT correctly, meaning
that even the initial candidate lists are empty.

The ImpScan method does not result in any false positives which is a result of the
strict validation used in the vicinity scan. Scylla on the other hand produces a moder-
ate amount of false positives but many for winlogon and malware family win.citadel.
Here, the discovery of winlogon’s Delay Imports and win.citadel’s dynamic imports
violate Scylla’s assumptions of a single IAT. The FPs are thus created by misinterpret-
ing gaps between these imports wrongly as WinAPI reference offsets without further
checking. As for overall results, Scylla ends up with a F1 score of 0.893 and ImpScan
achieves 0.933 due to its higher precision.

82

5.2. ApiScout: Recovery of Windows API Usage from Memory Dumps

ImpScan Scylla ApiScout
File/Malware ‘ Malware 64bit Ngr ‘ TP FN FP ‘ TP FN FP ‘ TP FN FP
SoundRecorder False True 218 214 4 0 214 4 0 218 0 1
calc False True 377 373 4 0 372 5 0 376 1 1
cmd False False 197 184 13 0 179 18 0 196 1 0
explorer False True 890 855 35 0 847 43 0 890 0 1
iexplore False True 167 163 4 0 159 8 0 167 0 1
mmc False False 1,138 | 1,067 71 0 | 1,064 74 0| 1,136 2 0
mspaint False False 929 876 53 0 874 55 1 928 1 0
notepad False False 201 187 14 0 187 14 0 201 0 0
nslookup False False 93 85 8 0 85 8 0 93 0 0
osk False False 191 177 14 0 177 14 0 191 0 0
regedit False False 315 296 19 0 296 19 0 315 0 0
svchost False True 102 100 2 0 100 2 1 102 0 0
taskmgr False False 275 262 13 0 258 17 0 275 0 0
winlogon False False 642 562 80 0 562 80 541 642 0 0
wscript False False 215 200 15 0 200 15 0 215 0 1
win.citadel True False 386 303 83 0 301 85 62 386 0 0
win.conficker True False 184 171 13 0 171 13 0 184 0 0
win.elise True False 104 101 3 0 101 3 0 104 0 0
win.geodo True False 147 95 52 0 95 52 0 147 0 0
win.globeimposter True False 59 58 1 0 58 1 12 59 0 0
win.hinl True False 94 1 93 0 1 93 1 94 0 0
win.homefry True True 40 40 0 0 40 0 0 40 0 0
win.matsnu True False 172 0 172 0 0 172 0 172 0 0
win.reactorbot True True 344 142 202 0 142 202 0 344 0 0
win.redalpha True True 164 164 0 0 164 0 1 164 0 1
win.rockloader True False 34 29 5 0 29 5 0 34 0 1
win.snatch True False 40 0 40 0 0 40 2 40 0 0
win.trickbot True True 96 93 3 0 79 17 0 96 0 0
win.vawtrak True False 190 185 5 0 185 5 0 189 1 0
win.xagent True True 127 127 0 0 127 0 1 127 0 1
Totals | 8,131 | 7,110 1,021 0| 7,067 1,064 622 | 8,125 6 8

Table 5.4.: Results for Scylla, ImpScan and Apiscout. ApiScout uses the Self-Filter Fs and
Neighbor Filter F with a filter size of 2,048 bytes.

ApiScout on the other hand produces very stable results and is not affected by the
effects of scattered imports or imports not residing on an address that is a multiple of 4
or 8. Only in 5 cases does ApiScout miss any WinAPI references. For all of the benign
programs, these are single, isolated entries of their respective Delay Import Tables that
get removed by the Neighbor Filter Fy. In case of win.vawtrak, the false negative
is also an isolated reference that results from a single cached dynamic import slightly
outside the filter window. Other than that, ApiScout produces a near perfect result of
F1 0.999.

A notable difference between ApiScout and the other methods is that ApiScout makes
less assumptions about how the Windows API references are encountered. While this
may lead to a negliable amount of false positives, it drastically improves the complete-
ness. We therefore believe that the ApiScout method fulfils all requirements defined
initially. It is a decent answer to Research Question R@3 and does achieve the goal of
robustly statically extracting WinAPI usage information from memory dumps.

83

5. Robust Recovery and Analysis of Windows API Usage

5.3. Analysis of Windows APl Usage in Malware

After having presented and verified ApiScout as an effective method, we can proceed to
apply it to the Malpedia corpus as described in Chapter 4. This has the goal of answering
RQ4, which targets the frequency with which malware authors apply obfuscation schemes
to their WinAPI usage. We additionally investigate the occurrence frequency of different
WinAPI functions in general and propose a classification scheme of semantic categories,
intended to serve as an outline for the characterization of potential behaviors.

The section is structured as follows. We first review to which parts of the corpus the
ApiScout methodology is applicable.

Because it has been documented on several occasions [103, 271, 109, 255, 104] that
malware authors make use of obfuscation methods to conceal their program’s interactions
with the Windows API, we conduct an analysis to measure API information availability.
We define a taxonomy of three classes of WinAPI usage with regard to obfuscation and
examine how common and effective these obfuscation methods are against ApiScout.

Finally, we introduce a semantic classification scheme for WinAPI functions and based
on the results of the API usage recovery, we conduct a survey on the occurrence and
usage frequencies for DLL and APIs.

5.3.1. Data Set

As motivated in Section 4.3.4, we use the same repository snapshot of Malpedia (Git com-
mit 1639cad, created on January 3rd, 2019) to provide a consistent picture throughout
this dissertation. Because ApiScout operates on memory dumps only, the 929 Windows
malware families are reduced to 839, for which we have 2,352 memory dumps of samples
inventorized.

At this point, it has to be noted that ApiScout is oriented towards the recovery of
direct WinAPIT references, which limits its applicability to native code. Among the 839
malware families for which dumps are available in Malpedia, 8 families have been created
using VisualBasic and/or another 105 using the .NET framework. Both primarily do not
make direct use of the Windows API but provide their own proxied API interface. In
consequence, it does not make sense to apply ApiScout to these families, as the recovery
method of ApiScout aims for native Windows API only. As there is no mapping available
between the custom APIs used by these frameworks and the Windows API, we exclude
them from the following analysis. This leaves us with 726 Windows malware families
with 2.155 memory dumps present in native code, on which we will now focus in the
analyses following in this chapter.

5.3.2. WinAPI Information Availability

Before we dive deeper into API usage, we first assess the general availability of WinAPI
usage information. As previously mentioned, other analyses highlighted aggravation
of analysis through obfuscation, e.g. O’Meara’s analysis on API hashing as found in

84

5.3. Analysis of Windows API Usage in Malware

malware family win.heriplor [104] or Suenaga’s analysis on multiple WinAPI usage
obfuscation techniques [103]. Given the importance of WinAPI information to ana-
lysts [38], concealing API interactions are certainly an aspired goal in this regard. It
remains to analyze if these techniques also have an impact on the applicability and
results of ApiScout.

A common approach is to avoid usage of the programmatically intended way, i.e.
having the compiler specify WinAPI references in the PE header’s Import Table, and
instead delay the resolution of references to the WinAPI for all or just certain specific API
functions until a self-chosen point in time during execution. This is typically achieved
through so-called Dynamic Imports, often expressed through the use of two WinAPI
functions from kernel32.d11:

1. LoadLibrary(lpLibFileName) to ensure that target libraries have been loaded
and to identity their base addresses and

2. GetProcAddress(hModule, 1lpProcName) in order to obtain the concrete virtual
address of a target API function, which is in many cases cached for later on-demand
use.

While being a very popular method, more sophisticated schemes exist that even avoid
using those two API helper functions [104] or otherwise complexify recognizing API
interactions. For this reason, we now first define a taxonomy of API usage obfuscation
schemes and then evaluate their appearance frequencies in our data set, using ApiScout
and manual analysis as refinement.

A Taxonomy of APl Usage Obfuscation Schemes

After extensive literature review we found only a single categorization for classes of API
usage obfuscation. Sharif et al. [105] distinguish between standard API and obfuscated
API resolution. Suenaga [103] gives a fine-grained enumeration of techniques observed
in the wild but does not categorize them into groups.

Based on these previous works and additional manual analysis of a wide range of
obfuscation schemes, we decided to use the following three classes into which API usage
obfuscation can be divided.

1) Native Import Table usage (no obfuscation) As a default case, we define absence
of obfuscation. In this case, the respective malware author has not conducted any steps
to aggravate analysis and had their compiler generate a default Import Table. Import
information for this class is usually extractable with many existing analysis tools focusing
on PE header and structure analysis.

2) Dynamic Imports The classic scheme of Dynamic Importing relies on one or more
dedicated functions, which are typically executed at the beginning of the program’s start.
These functions will resolve all desired WinAPI references that are potentially used
throughout the program and store them in a “pseudo” Import Address Table format
as chosen by the author. A variant of this scheme is to use Dynamic Imports only for
a subset of the API functions, usually those that the author deems more suspicious or

85

5. Robust Recovery and Analysis of Windows API Usage

PE Dynamic
Imports —_——— = Imports
e /"‘\\ S
/7 7/
yz ’ . N
4 7 302% g
! 47.4% / 18.6%

I }/’ ~JA \
, N 1

I 1 N
\ ’ AN]
\ ’ 0.1% I\ !
v/ A

g \ / v)/
\ 0.7% \ 706% y ¢
(N | N / 4
o N -7 V4
\\ ,,
\
S 2.5% y
. >
~ -

o

Custom Schemes

Figure 5.2.: Distribution of API Usage Obfuscation Schemes across 726 families (113 VisualBasic
and .NET families excluded).

connected to potentially malicious behavior [13]. Regardless of this, their common aspect
is that the direct reference offsets are cached and thus generally available to analysis.

3) Custom Schemes (obfuscation) The third class are all schemes that in some
way deviate from how imports of WinAPI functions are typically used in programs, i.e.
cached reference tables. These schemes are synonymous for us with obfuscation and
express themselves in many unique ways as explained in the following evaluation.

Through summarizing the different custom schemes, we believe that our taxonomy bet-
ter reflects the situation which analysts experience during practical work in which they
are potentially confronted with obfuscation. Regardless of the actual scheme, custom
methods used by malware authors always require varying amounts of tailoired efforts to
effectively recover a complete WinAPI usage profile.

To summarize, our defining criterion is the ease of access for an analyst to WinAPI us-
age information. The division of dynamic imports and custom schemes is also motivated
by the methodology of import recovery as introduced with ApiScout (cf. Section 5.2),
which fully addresses both classes 1 and 2.

Evaluation of Usage Frequency for Obfuscation

After having defined three classes of usage obfuscation schemes, we now analyze how
often they appear in malware. As for methodology, we apply ApiScout to all memory
dumps of the 726 families considered and additionally reconstruct and parse their PE
header’s Import Tables (cf. Section 5.2.1).

86

5.3. Analysis of Windows API Usage in Malware

In case all entries recovered by ApiScout are associated with an Import Address Table
entry, we assign class 1 (PE Imports). If ApiScout produces results that are outside
of the natural IAT, we assign class 2 (Dynamic Imports). Should ApiScout produce
suspiciously few or no results, we assume class 3 (Obfuscation) and conduct manual
analysis to confirm our hypothesis. Obviously, this procedure allows memory dumps to
fit into multiple classes at once. A malware author may decide to use the Windows API
normally for most of his code but use Dynamic Imports or Custom Schemes to protect
certain WinAPI functions they deem might raise suspicion.

The observed distribution among all classes is shown in Figure 5.2. We first note
that ApiScout is capable of recovering WinAPI references from almost all of the families
(96.2%) as it fully covers import classes 1 and 2.

With 47.4%, almost half of all families make use of exclusively compiler-generated,
native imports through the PE header. This is in line with observations made in Chap-
ter 4, in which the analysis of PE headers indicated that many families of malicious
code exhibit a “natural” program structure once unpacked. It also further strengthens
the impression that aggravating analysis may not be a primary target of most mal-
ware authors and that malware often is simply supposed to enable the execution of
malicious activities while otherwise having a very similar appearance to benign pro-
grams. As was noted in [12], the frequent usage of APIs tied to dynamic imports
(kernel32.d1l!LoadLibrary, kernel32.d11l!GetProcAddress, ...) may also raise sus-
picions when observed in automated dynamic analysis systems. Therefore, it can defi-
nitely make sense to avoid noisy protection schemes.

A total of 18.6% families make use of Dynamic Imports only. Here, the malware
authors have taken full control over how their program interacts with the Windows API.
Cursory inspection of examples shows that these families regularly feature a single or
a few functions that are dedicated to resolving all WinAPI dependencies at once. By
definition, the resolved references are cached in some way. As the layout of the cache
can be chosen freely, we note 1,231 cases where they are IAT-like (consecutively stored,
sometimes missing the typical dividers of a zero DWORD/QWORD), 641 cases with
two blocks, 143 with three blocks, and 75 with more than three and up to 41 blocks
(each at least 2,048 bytes apart, the setting of Fiy as explained in Section 5.2.3). In 82
samples from 37 families (e.g. win.matsnu or win.tinba), we furthermore observe that
the offsets are also not multiples of 4 or 8.

Almost a third (30.2%) of the families make use of a mix of Native and Dynamic
Imports. In this case, it is of high interest which criteria malware authors may have
followed in order to treat certain WinAPI functions differently. We postpone this rea-
soning until Section 5.3.4 because we can additionally consider semantic contexts that
are introduced in this section.

Finally, only 28 (3.9%) malware families in the data set make use of class 3 custom
obfuscation schemes that are not easily recovered, some in combination with regular
or dynamic imports. We were not able to identify a common pattern by which these
obfuscations are designed and implemented, instead it seems malware authors typically
create their own schemes around a general idea of how they want to obfuscate WinAPI
usage.

87

5. Robust Recovery and Analysis of Windows API Usage

APIs DLLs
Minimum 0 0
25% 79 5.27
50% 114 7.66
75% 169 10
Maximum 717 26
Mean 139.51 8.06
STD 106.36 3.99
Count 4,994 80

Table 5.5.: API and DLL Occurrence Frequencies per Family.

The most commonly observed scheme are variants of API name hashing [103, 104]
which we found in at least 10 families, e.g. win.formbook and win.nymaim. Almost
similarly common was the technique to create an Extra-Modular Function Table [103],
with variants on the stack (e.g. win.dorshel) or heap (e.g. win.cryptowall). We also
found cases where multiple techniques were combined, most notably in win.andromeda.
Here, a level of indirection is created using Staged API Obfuscation [103] which however
consists of Immediate Jumps [103] combined with a Jump-in [103], skipping the first 5
bytes or more with the most likely intention to avoid hooks (a technique also observed
in win.chthonic).

5.3.3. DLL and API Occurrence Frequency Analysis

After a close examination of how malware performs its imports of references to the
Windows API, we will now focus on how much and which parts of the Windows API are
most commonly used. We again use the ApiScout results with active Fg and a Fly size
of 2,048 bytes as it turned out as the best configuration in our previous evaluation in
Section 5.2.3. In case we have multiple dumps for a family, we again create an average
over the result values and keep those that appear in the majority of cases, using the same
arguments for this procedure as used in the evaluation of the PE header data presented
in Section 4.4.

Table 5.5 provides a characterization of the distribution of API and DLL counts used
across the 726 families. We first note that the spectrum appears comparatively small
with 4.994 APIs and 80 DLLs, given that we earlier counted about 20 times as many
unique APIs and DLLs available on a vanilla Windows installation (cf. Section 5.2.2).
Individually, about half of all malware families in the data set make use of between 79
and 169 API functions originating from about 5 to 10 DLLs. The most API functions
(717) are used by a sample of family win.cutlet, a malware used for the manipulation of
Automated Teller Machines (ATMs). The extensive amount of functions is a result of this
malware featuring a GUI, because programming GUIs using the respective frameworks
provided by the Windows API requires reliance on a variety of specialized functions for
different graphical objects, thus inflating the individual count. For additional context,
this GUI requires the malicious user to enter a validation PIN that they receive from the
developer upon payment of a certain amount of Bitcoin and it then offers buttons to issue
commands to the ATM in order to force complete dispenses of its cash containers [272].

88

5.3. Analysis of Windows API Usage in Malware

In the following, we will now examine the frequency with which references to the
individual API functions and DLLs occur. For better comparability, we summarize
entries by performing three processing steps:

1. We account for the fact that WinAPI functions that process string parameters
typically exist in two variants, one for ANSI and one for Unicode [273]. Treating
them as one in the following can be justified by the fact that they will yield the
same result (oftentimes even resorting to the same underlying WinAPI functions
after conversion of the parameters) and also have joint documentation pages in the
MSDN.

2. We also summarize identically named functions that are provided by different
versions of the MSVC runtime, using msvert.d1l1l as a replacement DLL label for
its respective versions such as msvcr10.d11, msver110.d11, etc. This allows us to
be more independent from concrete IDE and compiler choices of malware authors
which have been already discussed in detail in Section 4.4.2.

3. In case the name appears in mangled format [274], we perform demangling and
reduce the API to the primary function name, dropping additional information on
types and arguments.

These adjustments reduce the total number of observed API functions from 4,994 to
4,562.

Table 5.6 gives an overview of the 50 most commonly imported APIs and DLLs. As
the counts have not been adjusted for the class 3 obfuscation, we find that at least one
reference to an API of kernel32.4d11 is found in every family not using API obfuscation.
However, no WinAPI function is used in every of these family, as the disparity between
the top entries in API and DLL columns reveals.

Looking closer at the listing of APIs, the distribution even among the first 50 entries
exhibits a steeply falling occurrence frequency. The entry at position 33 already occurs in
less than half of the families. The overall distribution indicates that this trend continues
as shown in Figure 5.3. In fact, every API beyond msvert.dll!strstr in position 307
occurs in less than 10% of the families, meaning that 93.27% of all APIs observed occur
this rarely.

What has not been accounted for is that multiple API functions may achieve the
same effect intended by a malware author. For example, instead of using a higher level
API offered by kernel32.d11 a malware author may use a direct call to the respective
function in the underlying ntd11.d11. Another example would be to achieve network
capability by interacting with sockets using ws2_32.d11 directly instead of using the
high level wininet.d11l.

The table also lists another column Njsgy ¢, indicating in how many versions of Mi-
crosoft Visual Studio (we examined all 10 versions, ranging from VS6 to 2019) the
respective WinAPI function will automatically appear as standard import when using
static or dynamic linking with this framework. Because of the high frequency of usage
of MSVC as described in Section 4.4.2 on Linker versions as denoted by the PE header,
we found adding this information a useful addition. Our available methods do not allow

89

5. Robust Recovery and Analysis of Windows API Usage

600

500

400

300

200

Occurrence in Families

100

T T T
0 1000 2000 3000 4000 5000

WinAPI Function

Figure 5.3.: Occurrence Frequency Distribution of individual WinAPI Functions.

us to accurately filter out the occurrences purely originating from linked code but we
have to assume that they will influence the overall distribution to some degree.

In order to make API usage more comparable and also to enable faster capability
assessment, we introduce a semantic classification scheme for API functions in the next
section.

5.3.4. A Semantic Classification Scheme for WinAPI| Functions

Having another look at Table 5.6 and focusing on the semantic aspects, we note that
the vast majority of these APIs appears to be centered around core functional aspects of
interacting with the Windows operating system. Many of these can be used to interact
with properties relevant for execution such as obtaining and manipulating handles and
modules, thread management, but also error handling. We further observe WinAPI
functions that allow file system manipulation, managing memory, or reading from the
Windows registry.

Further analysis of this data leads us to the conclusion that while revealing interesting
data points, the presentation is not suited to get deeper insights in how the Windows
API is used on a broader level. For example, we can assume that it is probably unlikely
that less than half of all families will make use of network, as only a single network API
function is listed with ws2_32.d11!'WSAStartup in position 49. One reason for this is
that there are typically several ways to achieve the same or similar effects when using
the Windows API, as already hinted by the simultanous existence of otherwise identical
API functions except for processing ANSI and Unicode arguments.

90

5.3. Analysis of Windows API Usage in Malware

Nysve API Occurrences ‘ DLL Occurrences
1] 10 kernel32.d1l!CloseHandle 654 (89.10%) | kernel32.dll 699 (95.23%)
2|5 kernel32.d1l!Sleep 629 (85.69%) | ntdlldll 652 (88.83%)
319 kernel32.d1l!GetModuleHandle 601 (81.88%) | advapi32.dll 570 (77.66%)
4| 10 kernel32.d11!WriteFile 600 (81.74%) | user32.dll 519 (70.71%)
5| 10 kernel32.dll!GetModuleFileName 599 (81.61%) | shell32.dll 397 (54.09%)
6 |8 kernel32.d1l!CreateFile 598 (81.47%) | ws2.32.dll 368 (50.14%)
716 kernel32.d1l!LoadLibrary 569 (77.52%) | wininet.dll 265 (36.10%)
8 | 10 kernel32.d1l!GetProcAddress 553 (75.34%) | ole32.dll 248 (33.79%)
9 | 10 kernel32.dll!ExitProcess 536 (73.02%) | shlwapi.dll 235 (32.02%)
10 | 2 kernel32.dll!ReadFile 529 (72.07%) | oleaut32.dll 191 (26.02%)
11 | 10 kernel32.d1l!GetCurrentProcess 528 (71.93%) | msvert.dll 181 (24.66%)
12 | 10 kernel32.d1l!WideCharToMultiByte 489 (66.62%) | gdi32.dll 162 (22.07%)
13 | 10 kernel32.d1l!MultiByteToWideChar 482 (65.67%) | crypt32.dll 97 (13.22%)
14 ntdll.dll'RtlAllocateHeap 481 (65.53%) | psapi.dll 90 (12.26%)
15 | 5 kernel32.d1l!GetTickCount 480 (65.40%) | urlmon.dll 86 (11.72%)
16 | 10 kernel32.dll!TerminateProcess 471 (64.17%) | version.dll 4 (8.72%)
17 | 3 kernel32.dll!CreateThread 467 (63.62%) | netapi32.dll 0 (8.17%)
18 | 10 kernel32.d1l!GetStartupInfo 449 (61.17%) | iphlpapi.dll 7 (7.77%)
19 | 9 kernel32.d1l!GetCurrentThreadld 443 (60.35%) | winhttp.dll 4 (7.36%)
20 ntdll.dll!RtlEnterCriticalSection 442 (60.22%) | msvep60.dll 46 (6.27%)
21 ntdll.dll!RtlLeaveCriticalSection 442 (60.22%) | mpr.dll 45 (1 6.13%)
22 | 8 kernel32.d1l!GetCurrentProcessld 435 (59.26%) | dui70.dll 43 (5.86%)
23 | 10 kernel32.d1l!GetCommandLine 434 (59.13%) | GdiPlus.dll 42 (5.72%)
24 kernel32.d1l'WaitForSingleObject 430 (58.58%) | wtsapi32.dll 41 (5.59%)
25 kernel32.dll!DeleteFile 430 (58.58%) | userenv.dll 5 (4.77%)
26 advapi32.dll!'RegCloseKey 417 (56.81%) | wsock32.dll 5 (4.77%)
27 | 5 kernel32.dll!SetFilePointer 415 (56.54%) | dnsapi.dll 4 (14.63%)
28 ntdll.dll!RtlDeleteCriticalSection 391 (53.27%) | mfc42.dll 2 (4.36%)
29 | 10 kernel32.d1l!UnhandledExceptionFilter 389 (53.00%) | comctl32.dll 1 (4.22%)
30 ntdll.dll'RtIReAllocateHeap 385 (52.45%) | rpert4.dll 5 (3.41%)
31 | 10 kernel32.d1l!GetStdHandle 373 (50.82%) | winmm.dll 4 (3.27%)
32 | 4 kernel32.d1!VirtualAlloc 369 (50.27%) | winspool.drv 4 (3.27%)
33 kernel32.dll!CreateProcess 363 (49.46%) | msver110.dll 2 (. 3.00%)
34 | 8 kernel32.dll!SetUnhandledExceptionFilter 360 (49.05%) | secur32.dll 2 (1 3.00%)
35 ntdll.dll!RtlGetLast Win32Error 356 (48.50%) | msver120.dll 9 (2.59%)
36 | 4 kernel32.d1l!VirtualFree 355 (48.37%) | comdlg32.dll 4 (1.91%)
37 | 10 kernel32.d1l!GetACP 353 (48.09%) | sspicli.dll 2 (1.63%)
38 advapi32.dll'RegOpenKeyEx 353 (48.09%) | uxtheme.dll 0 (1.36%)
3919 kernel32.d1l!GetProcessHeap 351 (47.82%) | imm32.dll 9 (1.23%)
40 kernel32.d1l!GetFileSize 349 (47.55%) | msver90.dll 8 (1.09%)
41 | 8 kernel32.d11!TlsGet Value 347 (47.28%) | mfcd42u.dll 8 (1.09%)
42 | 8 kernel32.d1l!T1sSet Value 343 (46.73%) | powrprof.dll 7 (0.95%)
43 advapi32.dll'RegQueryValueEx 343 (46.73%) | setupapi.dll 7 (0.95%)
44 | 4 kernel32.d1l!lstrlen 343 (46.73%) | oleacc.dll 7 (0.95%)
45 | 9 kernel32.d1l!QueryPerformanceCounter 340 (46.32%) | imagehlp.dll 6 (0.82%)
46 | 10 kernel32.dll!GetCPInfo 338 (46.05%) | samcli.dll 6 (10.82%)
47 | 10 kernel32.d1l!GetFileType 333 (45.37%) | msimg32.dll 6 (0.82%)
48 | 9 kernel32.dll!FreeLibrary 333 (45.37%) | netutils.dll 6 (0.82%)
49 ws2_32.dII'WSAStartup 333 (45.37%) | srveli.dll 5 (0.68%)
50 | 2 kernel32.d1l!GetVersionEx 332 (45.23%) | cfgmgr32.dll 5 (0.68%)

Table 5.6.: Most common APIs and DLLs across all families. Nj;syv ¢ indicates how many ver-
sions of MS Visual Studio’s statically compiled libraries will induce presence of the
given WinAPI function.

91

5. Robust Recovery and Analysis of Windows API Usage

For this reason, we decide to aggregate the observed Windows API functions by their
semantics. We first define a scheme and then evaluate the occurrences according to this
scheme.

Definition of a Semantic Classification Scheme

In order to abstract from these concrete choices of certain API functions that may be
made by malware authors, we resort to using a classification scheme of semantic cate-
gories to describe in which context these WinAPI functions are used for, centered on
a (malware) programmer’s viewpoint. We first considered to build on related work (cf.
Section 3.2.2) as multiple authors had introduced similar schemes in previous works.
Some of them even categorized more than 2,000 API functions, for example Ki [130]
sorted 2,727 APIs into 26 classes and Anderson [133] assigned 2,460 APIs to 94 classes.
However, we were not able to obtain any of their schemes in full detail as they were
either not contained in the publication or not made publicly available by the authors.
Reviewing the methodology they used, we note that their collection of APIs was ex-
tracted from dynamic traces with tagging applied to the API information, mostly for
the purpose of detecting malware. Because of that we have to assume that the dynamic
traces were created from packed files, which means that the classification schemes may
be biased by API calls encountered primarily during the runtime of these packers and
are also limited to functionality actually observable during runtime of the analysis.

As a consequence of these circumstances, we decided to create our own semantic clas-
sification scheme for Windows API functions. For the procedure, we started out by
consulting the MSDN as a guideline to derive expected categories for the DLLs previ-
ously observed. The classes chosen by us generally resemble the classes used in other
mentioned works, as far as this can be determined from their descriptions.

Now starting out with 11 prototype classes, we iteratively assigned all observed Win-
dows API functions into them, marking the entries with a low/high confidence label.
After the first pass, we had to make slight adjustments and extended the original scheme
with an additional class covering “Other” APIs to address the API functions with a low
confidence label. It turned out complicated to assign them a single semantic aspect, so
we refrained from this and stayed with the “Other” group label as they can be generally
considered helper constructs (like data structures or math routines) which can be used
more generally than in only one semantic context.

In a second round, we then reviewed the APIs within the primary classes in order
to create subgroups that capture them more accurately. This categorization was done
entirely manually and primarily lead by our personal experience in reverse engineering.
It involved tedious review of the results obtained through ApiScout and consulting the
MSDN whenever necessary. The subgroups defined address either specific aspects of
Windows system internals (e.g. COM objects, RPC, and DDE in the Process group) or
categorize basic principles of data processing, such as creation, read, write, and delete
operations found in the three primary classes Memory, File, and Registry.

Ultimately, we ended up with a scheme that covers all of the 4,994 APIs we observed,
sorted into 12 primary and 113 secondary classes. This makes our categorization scheme

92

5.3. Analysis of Windows API Usage in Malware

almost twice as large as the other schemes and by far the most comprehensive collection
known to date. An additional advantage of our scheme over the others mentioned is that
it captures all WinAPIs resolved in our entire data set, independent from whether they
are observed during runtime or not because they were statically extracted.

Our scheme is publicly available and maintained through the ApiScout repository [269].

Evaluation of Occurrence Frequencies of the Semantic Classes

An overview of the classes and their frequency of occurrence is shown in Table 5.7. The
presentation of summarized classes gives a much better characterization of Windows API
usage across the 726 malware families than the absolute occurrence of individual API
functions.

Looking at the distribution of APIs within the classes, we can see that some classes
contain an extensive amount of functions, most notably GUl-related functions with
1,564 entries. The latter is in line with our earlier observation that GUI programming in
Windows results in having to use many different specialized functions. We can further
see that the usage of frameworks such as GDI or MFC incurs a signficant increase in
functions of this semantic class that have to be covered. On the other hand, other
classes such as Time (44 entries), Registry (93 entries), and Memory (119 entries) are
way smaller because they do not feature the same degree of redundancy but instead a
simple and tightly defined interface.

With regard to occurrences, we see that 5 classes appear in more than 90% of the
families: Execution, Memory, Files, System, and handling of Strings. This is easily
explained with the fact that they encompass the most basic operational aspects of in-
formation processing. Without surprise, we can also see a frequent use of writing and
creating files, most certainly tied to achieving persistence oftentimes in a less suspicious
file system location after initial compromise.

On the other hand, it is surprising that more than a third of the families makes use of
Component Object Models (COM) objects. Usage of COM objects enables a wide range
of different functionalities through convenient access interfaces. However, our personal
impression is that their apparently frequent use is not covered as often or not as explicitly
outlined in malware analysis reports. At this point, we do not further investigate which
COM objects are actually used as it is out of scope for our analysis of Windows API
usage. Instead, we consider it an interesting aspect for future work.

Even beyond those top 5 classes, we note that almost 80% of the families make use
of some kind of network functionality. Inspection of the subclasses also confirms our
earlier impression that aggregating by semantics provides a more meaningful picture:
All three ways of using socket (ws2_32.d11 and winsock.d1l), Internet (wininet.d11l),
and HTTP (winhttp.dll, impersonating the Internet Explorer’s methods) are well-
known and popular for achieving connectivity to a C&C server. Also interesting is the
presence of non-HTTP protocols, such as Samba (Share), Windows Terminal Services
(WTS), FTP, and LDAP.

93

5. Robust Recovery and Analysis of Windows API Usage

Class APIs Occurrences ‘ Subclass APIs Occurrences Subclass APIs Occurrences
Execution 601 712 (97.00%) | Process 116 695 (94.69%) Message 27 281 (38.28%)
Handles 25 686 (93.46%) COM Objects 26 262 (35.69%)

Synchronization 85 684 (93.19%) Pipe 15 215 (29.29%)

Modules 26 677 (92.23%) Service 39 181 (24.66%)

Errors 65 656 (89.37%) RPC 42 9 (1.23%)

Thread 68 649 (88.42%) ActCtx 6 6 (10.82%)

Arguments 18 546 (74.39%) DDE 13 5 (0.68%)

Debug 14 339 (46 19%) Jobs 10 5 (0.68%)

Memory 119 695 (94.69%) | Allocation 24 681 (92.78%) Management 32 543 (73.98%)
Free 16 674 (91.83%) Read 7 415 (56.54%)

Write 23 574 (78.20%) Search 17 209 (28.47%)

File 368 693 (94.41%) | Management 132 678 (92.37%) Path 71 319 (43.46%)
Write 26 654 (89.10%) Volume 20 193 (26.29%)

Create 20 619 (84.33%) Resource 23 188 (25.61%)

Read 23 562 (76.57%) Open 12 119 (16.21%)

Delete 8 448 (61.04%) Compression 5 3 (0.41%)

Search 13 408 (55.59%) Link 15 1 (0.14%)

System 888 682 (92.92%) | Environment 76 663 (90.33%) Clipboard 20 86 (11.72%)
User 48 351 (47.82%) Shell 26 80 (10.90%)

Authorization 158 350 (47.68%) Version 11 3 (1 7.22%)

Console 54 329 (44.82%) Setup 21 9 (5.31%)

Events 33 314 (42.78%) MSI 413 4 (0.54%)

Control 19 280 (38.15%) Communication 9 1 (0.14%)

String 491 681 (92.78%) | Format 144 665 (90.60%) Convert 17 365 (49.73%)
Search 140 556 (75.75%) Management 4 333 (45.37%)

Modify 89 402 (54.77%) Uncategorized 60 197 (26.84%)

Network 390 581 (79.16%) | Sock 43 381 (51.91%) Share 27 61 (8.31%)
Winsock 36 376 (51.23%) WTS 26 0 (8.17%)

Internet 63 334 (45.50%) User 23 4 (1 7.36%)

Name 18 298 (40.60%) FTP 11 9(1.23%)

HTTP 42 287 (39.10%) LDAP 33 7 (0.95%)

Management 62 79 (10.76%) WLAN 6 1 (0.14%)

Time 44 550 (74.93%) | Read 30 537 (73.16%) Control 1 2 (0.27%)
Convert 11 250 (34.06%) Modify 2 2 (0.27%)

Registry 93 491 (66.89%) | Management 29 468 (63.76%) Write 22 376 (51.23%)
‘ Read 28 389 (53.00%) Delete 14 194 (26.43%)

GUI 1,564 444 (60.49%) | Window 111 357 (48.64%) Font 16 57 (7.77%)
Management 243 292 (39.78%) DirectUI 9 9 (6.68%)

Dialog 48 215 (29.29%) Desktop 13 8 (6.54%)

Icon 19 127 (17.30%) MFC 480 42 (5.72%)

Mouse 7 100 (13.62%) Scroll 22 33 (14.50%)

Geometric 31 98 (13 35%) MDI 3 0 (4.09%)

Text 31 87 (11.85%) AcctBl 9 27 (3.68%)

Menu 50 74 (10.08%) Caret 8 8 (2.45%)

Image 32 68 (9.26%) Theme 45 11 (1.50%)

GDI 364 63 (8.58%) OpenGL 14 1 (0.14%)

Other 134 390 (53.13%) | Variants 34 157 (21.39%) Datastructures 24 110 (14.99%)
Anonymous 18 148 (20.16%) UUID 16 107 (14.58%)

Math 39 126 (17.17%) Compression 3 6 (2.18%)

Device 170 317 (43.19%) | Display 9 175 (23.84%) Audio 69 3 (7.22%)
Keyboard 52 169 (23.02%) Network 5 6 (6.27%)

Mouse 15 106 (14.44%) Printer 11 28 (3.81%)

Driver 5 61 (8.31%) HID 3 1 (0.14%)

Crypto 132 292 (39.78%) | Encryption 60 212 (28.88%) Random 9 102 (13.90%)
Hash 23 126 (17.17%) Certificate 40 42 (5.72%)

Table 5.7.: A semantic classification scheme of 12 primary and 113 secondary classes, covering
4,994 Windows APIs. Also listed are occurrences of the classes across 726 malware
families.

94

5.4. ApiVectors: Storage and Comparison of WinAPI Usage Profiles

Despite its importance and power in the general system context of Windows, the
Registry is only accessed by about 66% of the malware families. Only about 51% actually
write to the registry and we assume that this happens mostly in order to achieve autostart
persistence.

While the GUIT class is large with respect to the number of contained API functions,
the occurrences are mostly tied to functions that are connected to extracting information
instead of actually producing an interface. The Window subclass contains functions used
to create screenshots or to read from Window titles. The latter is for example used as an
alternative to process enumeration (as otherwise enabled through the System class API
calls) in order to identify targets for injection or to detect if certain malware analysis
software may be running.

The least frequent class Cryptography is still present in almost 40% of the families.
We specifically note that the most prominent among the subclasses is actually use of
encryption, which is certainly also a consequence of the rise of ransomware in the last
years. A cursory review of descriptions for the malware families showed that at least 80
families in the data set can be associated with this capability.

5.4. ApiVectors: Storage and Comparison of WinAPI Usage
Profiles

In the previous sections, we defined a method for the robust recovery of WinAPI infor-
mation, which is essential for effective in-depth program analysis as it allows the quick
localization of relevant areas in a binary. Along the way, we noted that strong obfusca-
tion is not widely found and for the majority of malware families the recovery procedure
will result in a rather complete picture of the families’” API usage spectrum.

In this section, we now address RQ)s and want to analyze how characteristic these
usage spectrums are for families and if they can be used to reliably identify malware.
As motivated before, the classification and identification of malware is very important
as it allows to quickly assess threats and to enable the reuse of existing analysis re-
sults, allowing analysts to efficiently focus on new aspects or malware that is potentially
unknown.

For this purpose, we propose a concept called ApiVectors, which doubles as an efficient
storage method for recovered API information and also allows the comparison of captured
API usage spectrums. The concept presented in this work is comparable to the binary
WinAPI presence vectors used by Lu et al. [136] for studying applicability of machine
learning to malware detection. However, apart from notably expanding the number of
considered WinAPI functions, we also show in the following that using just a carefully
selected subset of them can actually improve classification results.

Because ApiVectors are supposed to be used in a similar settings as ApiScout, the
same requirements as explained previously in Section 5.2 can be demanded: accuracy
and usability.

95

5. Robust Recovery and Analysis of Windows API Usage

In the following, we first introduce the general methodology of ApiVectors. We then
explain the parameters defined for this method and evaluate their effects, focusing on
the trade-off between storage space and coverage. Finally, we evaluate the classification
performance of the approach and compare it against two related, well-known methods:
ImpHash [159] and ImpFuzzy [160].

5.4.1. Methodology

In order to investigate how characteristic API usage spectrums are and how well-suited
they are to identify malware families (RQ)s5), we need to define a method able to capture
and compare these spectrums. We first discuss the available data and then choose a
representation.

Generally, ApiScout reports contain all recovered occurrences of API references and
additional meta information about them. Entries consist of the offset where the reference
was found, the DLL/API name, an estimate for the number of uses for this API reference,
and whether it was part of the import table or not. Obviously of highest value to us
are the actual DLL/API names observed and potentially also the number of uses for an
API reference. Both in combination can be considered as a direct representation of the
usage spectrum.

For the other values, we find meaningful reasons why to discard them. Whether an
API originates from the import table or not may provide an inconsistent picture because
the parsing of the import table from memory dumps may not be possible at all or fail due
to various reasons, as was observed in Section 4.4. The fact that dynamic imports are
used is also rather an implementation detail that in itself can be influenced by a malware
author, opposite to the need of having to use a concrete API to achieve certain functional
aspects. Additionally, the offset and inferrable from that, the order of appearence for the
APT references should be discarded as well. These values are instable even for different
compilations of the same source code, which would likely negatively impact classification
results.

Related work in this domain relied on hashed representations, with ImpHash [159]
using MD5 [275] over the import table entries and ImpFuzzy [160] using ssdeep [132].
ImpHash using the cryptographic hash MD5 [276] results in only being able to do ex-
act matches, while ImpFuzzy using the rolling hash ssdeep also allows approximated
matches. However, in both cases, the source information is completely lost and both
approaches also do not consider using weights, a method that could take advantage of
the drastically skewed distribution of API occurrences (cf. Section 5.3.3).

Given these considerations, we choose a dedicated vector representation for our fea-
tures, with each dimension representing one WinAPI function. For choices of a classifica-
tion approach, we have learned in Chapter 4 that there is not as much variety in unpacked
malware versions opposite to observed unique packed files and acquiring ground truth
beyond the quality of Malpedia is near impossible. Because even in Malpedia many fam-
ilies have only single representatives, we opt against an approach of (semi-)supervised
machine learning because no meaningful k-fold cross validation or otherwise split into
training and test data is possible and thus any evaluation would be seriously flawed.

96

5.4. ApiVectors: Storage and Comparison of WinAPI Usage Profiles

kernel32.d1l1!UnhandledExceptionFilter

=
o
QN gg'u e} =
P o © H e A o »
(] w > g H £ » 0 1 o
s n m O 0 g 0 0w ol]
@ 0 A O 7] g 0 0 O 2 w0
[=] = « O £ T @ o 0 nn wnn V0 9 o0 o 2
o) «u o = A o A=) 4 4 4 0o &8 o o d o
= — @ H 82 =2 & £ 0 ©W A O 4 d N oA o L0 o o O
o < Bl > N on A= O o g 8 © H B O O A g B I) = 4 O
=} o B o 4 T 0 £ 0 = © 5 A& 0 Q& £ A" L T 4 0 0 A P -t
g o 9o 0o ~4 © T O g FH 9 o 0o 0 & 3 g £ L g 5-:—1 — X o A 2 5'_' H
ﬁ o= 4 4 HA H < 0 0 0 4y P O U L 4O P o A A O L B B R - PR o < 9
S A4 3 B2 0O 0 A H ©@ B oL M 4B H N H N HEH B o0 0 O S | £
k= ¥ W T 0 A o0 N H N g m d O 7 0 d H O O N o ©® o —~H © o T « o
0 A 0 © O £ S H A kK JU A O A H L P T H O I O B OP A H P N P 3 2
w o = £ = & TV A L T O O L O HE N OO0 >0 0L OO L O ~ P =
O 0 B A P 0 & L 4 B P T A A L L OP P L OB P P A A WP A < P N =
[0 H O H O 0 K O 0 4 5 A 0 0 H O o g 0 0 0 d o @ o Qo Q o A 2
O n v = Y O 4 Um:ﬂUBZj o B O U UEjUUB = V)a 5 o > <
A 4 4 4 A4 AdAd A d-dAdAd8d%2BRAdAdAdAdAd$B 2 AAAAAA 82 P °
4 4 4 4 4 dd 4 dd 44 4@8 4d4ddd@@~-d-d-d A4+ 4 & [@
T © ©W © W T T ’U'U’U’U’U'U’—_; ™ © T T 'U'—_;'—_i’U’U’U © © 'U:; =t © © 00 2
NN NN NN NN NN N NN N4 4NN NN N A - o o & o
mm M M MMM MM mmmom"T M0 0nmmT T M0N0 000" T ™ M sl H
P i T e e R B T T R B - a,
o o o 9 9 0 O o 9o 9o 0o 0o 9 - o 9 o @ e 4 4 0 o O o & 9o ~ — o o ° El
g 8 g 8 8 8 8 8 8 8 8 & 8 4 8 8 888 & 44 8 8¢ & & g ~ & 8 o o
HoH M M M M M M N M M M N T M NM M N N T " N N H N B> N T T MM A o
o o o 9o 0o o O o 0o 0o 0o 0 O L o o 0 0 0 £ £ 0 0 O o ° o B + o o
AOMOM M MMM MM MMM M D M MMM N D RN MM NN R oMM —A —
Alefe] [fofefefe] Jo] [I T T T [e[[TTTTJe[TTTT[[e]T[TT]= =0Cg
z @ g
Bofe[| [efefefe[[Je[e[[[[T [[[ofefe[[[efel [e[[[TTT[T]= zzAcea
4 2 A c ¢} A
1+2 + 5+6+7+8 + 25 = Sw, (AAB) =54
AnBefe] [fefelefe[[T [TTTITTTITITTIITTTITITITTIT]=Mnm =7
142 4+ 5+6+7+8 + 10+11+12 + 17 + 19420421422 + 25426 + 28 + 31 =Sw, (AV B) =271
AUB [ofe] | [efe]efe] JeJefe] [[[[of [efefefe] [[efe[[e] [[e] [T [T]=laun =1
J(A,B) = 408l — 1 ~ .39 7 (AB)zwzﬂzOQO
A [AUB| = 18 -9 S s Sw,(AVB) ~ 271 :

Figure 5.4.: A full example for the construction, compression, and similarity calculation of two
ApiVectors A and B. The ApiVectorBase has length 32 and contains the most
common Windows API functions as found in the Malpedia datatset. Compression is
achieved by using Base64 with a custom alphabet (cf. Table 5.8) and applying run-
length encoding for repetitive symbols. Similarity between the vectors is calculated
using Jaccard similarity with optional weights for vector offsets. Diagram as initially
introduced in [13].

Instead, we decided to define a similarity measure to compare individual vectors, and
then use a threshold, in order to classify similarity between vectors and thus samples.

In the following, we describe the concrete construction of ApiVectors, a compression
scheme for efficient storage, and the similarity measure used for the evaluation of its
classification capabilities.

ApiVector Construction

We will first describe how an ApiVector is constructed. Based on the considerations
discussed in the previous section, we introduce a series of abstraction and normalization
steps that bring the data extracted with ApiScout into a format that can be used for
further processing. We perform the same three steps of preprocessing as used for the
occurrence frequency analysis (cf. Section 5.3.3). These are intended to even out imple-
mentation and compilation specifics and should increase the potential of comparisons.

First, we do not keep track of ANSI and Unicode implementations for Windows API
functions. As explained in Section 5.3.3, the Windows API provides duplicate imple-
mentations that can ingest arguments given as either ANSI or Unicode. Because this
is mostly an implementation specific and does not alter the semantics of a given API
function, we normalize the names of respective API functions by dropping the A or W
suffix.

97

5. Robust Recovery and Analysis of Windows API Usage

000000 A | 011010 a | 110100 @ | 111010 =
000001 B | 011011 b | 110101 } | 111011 /
000010 C | 011100 < 110110 1 111100 7

... | 11o111 -~ | 111101 ,
011000 Y 110010 y | 111000 + | 111110 .
011001 Z 110011 =z 111001 - | 111111 _

Table 5.8.: The custom Base64 alphabet used for compression of ApiVectors [13].

The second step addresses the fact that many (malware) programmers make use of the
Microsoft Visual Studio C compiler (cf. Section 4.4.2). Because different versions and
compilation options (static vs dynamic linking) lead to use of different versions of the
respective MSVCRT standard libraries, we conduct additional normalization to increase
the stability of comparison results with regard to toolchain upgrades. This is easily
achieved by replacing the DLL name for specific MSVCRT versions (e.g. msver80.dll or
msver90.dll) with a generic name, for which we choose “mscvrt.dll”.

Finally, in a third step we address name mangling that is found for some API names
(mostly from MSVCRT as well). For normalization, we conduct demangling [274] and
limit ourselves to using the function name only, discarding additional information such as
class names or arguments. This again increases the robustness of name representations
and summarizes multiple semantically similar or even identical functions into single
representatives.

With regard to the 4,994 individual API functions recorded in Section 5.3.3, these
normalization steps result in a reduction to 4,562 API functions. We can see that the
effects are not excessive but certainly result in a meaningful generalization.

After this input normalization, the data has to be converted into the desired vector
representation. As stated earlier, we want to use one dimension per API function in the
vector. To be able to compare vectors, the mapping of API functions to dimensions (i.e.
vector offsets) has to be consistent. For this reason, we introduce the term ApiVectorBase
to describe an instance of such a mapping. We do not strictly require that every entry in a
normalized ApiScout result is represented in an ApiVectorBase, e.g. an ApiVectorBase
as shown in Figure 5.4 could focus on 32 entries only. In this case, entries from an
ApiScout result that are not represented in the ApiVectorBase are simply discarded.

For value representation, we consider either boolean values (indicating a WinAPI
function is used or not), effectively resulting in a bit vector, or integer values (API
function is referenced n times). For a more convenient implementation, we restrict the
usage count range to 0 — 255, allowing us to use exactly one byte per dimension. This
has only minimal impact, because only for 26 out of 298,163 observed WinAPI entries
across all previously created ApiScout results exceed a reference count of 255. In these
cases, we use 255 as value.

To further exemplify usage, Figure 5.4 introduces 2 example bit vectors with a ApiVec-
torBase of the 32 most commonly found WinAPI functions (cf. Table 5.6). The figure
also explains the compression and comparison of vectors, as explained in the next two
sections.

98

5.4. ApiVectors: Storage and Comparison of WinAPI Usage Profiles

ApiVector Compression

Revisiting Figure 5.3, we note that the distribution of occurrences across families is
heavily skewed towards a few very common WinAPI functions and otherwise extensively
sparse as about 93% of APIs appear in 10% of the families or less. This means that
it is likely possible to compress their representation to save storage space. Because we
intend the ApiVector concept to be of high practical value and thus initially defined the
requirement of usability, we need to consider a practical representation for the vectors
just introduced.

First, we want users to be able to handle these vectors easily in their procedures of
analysis and documentation. As a result we want them to be as compatible as possible
and representable in ASCII printable characters only, which leaves us with 95 usable
character symbols. Some symbols are used as control symbols (e.g. " or |) by terminals
such as the Bourne-again shell (Bash), which implies that we should in fact use fewer
than the available char set. Because of these constraints, we can not use the highly
efficient Base91 (14-23% overhead) or Base85 (25% overhead) encodings and resort to
the popular Base64 encoding [277] which leaves us with 33% encoding overhead.

Second, as with all meta data for files, we want them to be stored in a space-efficient
manner to minimize overhead. For this, the observed fact about the sparse occurrence
distribution is likely beneficial. We decide to use a run-length encoding (RLE) [278],
which is compatible with our print-only requirement by introducing a straightforward
modification to the standard Base64 implementation.

The concrete methodology works as follows. In order to achieve a printable repre-
sentation, we first convert the given vectors (boolean or byte) into a continuous binary
string. Next, we apply the Base64 encoding [277] to this binary string, adding zero bits
as padding beforehand if needed. However, because we want to reserve the number lit-
erals as used by the original Base64 for the run-length encoding, we replace them with a
set, of the other remaining printable ASCII characters, carefully avoiding control symbols
as used by shells such as the Windows commandline or Bash. The custom alphabet is
shown in Table 5.8. For compression, we now scan the resulting Base64 encoded se-
quence of multiple consecutive appearences of the same symbol. In case we find more
than 2 identical symbols, we replace them with one instance of the symbol and a number
indicating the repetitions, e.g. “DDDD” becoming “D4” and so on. Figure 5.4 features
two examples for this encoding and the compression.

ApiVector Similarity Measures

The final conceptual aspect to be discussed is the method of measuring similarity between
ApiVectors. Similarity measures have been extensively discussed in previous works.
For this work, we will consult the comparative survey of 76 binary similarity measures
published by Choi et al. [279] as a guideline for the selection of an appropriate method.
Thinking about what our vectors represent, we do not consider absence of WinAPIs
as expressive. We therefore do not further consider negative match inclusive measures,
which already eliminates 38 candidates.

99

5. Robust Recovery and Analysis of Windows API Usage

The further hierarchical clustering and correlation analysis performed by Choi et al.
indicates that many measures produce highly similar results. From the remaining groups,
we select the Jaccard [280] similarity measure as a representative because it is extensively
studied and has performed well in numerous use cases [279].

Given two Binary ApiVectors, the Jaccard similarity measure is defined as:

ANB
T4, B) = :AUB:

As stated earlier, we can represent A and B as bit vectors, which allows an efficient
calculation through Boolean logic as follows:

S(AA B)

(4, B) = S(AVB)

Here, S is a function that counts the number of bits set to one in a given vector.
A similar method has been successfully used by Jang et al. [189] for their BitShred
approach.

Another consequence from our observation about the distribution of occurrence fre-
quencies is that we might want to be able to use weights in our similarity measure. It is
safe to assume that lesser frequently appearing WinAPI functions carry more decisive
information and consequently we might want to boost them. One way to achieve this is
by introducing a modification to our function S in that way that a Hadamard product
(i.e. element-wise multiplication) is carried out with a second vector of the same length.
Let this weight vector be denoted as W, the resulting modified function S shall now be
called Sy and similarly the modified Jaccard function using Sy will be called Jj;, (A4, B):

Sw(AA B)

Jw (4, B) = Sw(AV B)

Again, a full example of this calculation is given in Figure 5.4.

After discussing the case of Binary ApiVectors, we now focus on Frequency ApiVectors.
Application of Jaccard similarity is not possible because we no longer necessarily have
equal values at matching vector offsets. We decided to use the continuous form of the
Tanimoto [281] similarity measure:

A-B

T(A, B) =
(4, B) A+ |B*-A-B

The Tanimoto similarity is closely related to the Jaccard similarity [279], in fact,
calculating the Tanimoto similarity for a bit vector gives an identical result to J'(A, B).
Again, as we want to be able to apply weights to vector entries, we extend T'(A, B)
to become Ty (A, B), but have to adjust the element-wise multiplication. Instead of
applying the weights directly, we have to use the square root of each weight because
the following multiplications between vectors A and B will restore the original weight
values:

100

5.4. ApiVectors: Storage and Comparison of WinAPI Usage Profiles

Size 10% 20% 30% 40% Median Mean
64 14.9% 19.6% 23.4% 27.0% 31.5% 33.3%
128 25.4% 33.0% 38.2% 43.8% 49.0% 50.8%
256 42.9% 50.5% 57.3% 62.9% 69.0% 67.4%
512 57.9% 71.1% 76.2% 80.5% 84.6% 80.8%

1,024 78.4% 87.0% 90.5% 92.6% 94.9% 91.1%
2,048 92.6% 96.5% 97.9% 98.9% 99.4% 97.3%
4,096 96.6% 99.4% 100.0% 100.0% 100.0% 98.8%

C-1024 67.2% 77.9% 82.6% 85.7% 89.9% 86.1%

Table 5.9.: Lowest Windows API function coverages by vector size.

(T 0 4) - (Vi o B)
‘\/WOA‘Q—F’\/WOB‘Q—(\/WOA)-(\/WOB)

Tw(A,B) =

5.4.2. Evaluation of ApiVector Parameterization

In the previous section, we introduced ApiVectors as a general concept for storing and
comparing ApiScout results. Before this concept can be applied effectively, we need to
examine the configuration of the ApiVectorBase, especially the influence of the vector
length and entry composition.

We first have to note that we do not have much information available that could aid us
directly in the selection process. Our previous analysis provides us with the occurrence
frequency of individual WinAPI functions and their respective semantic categories. As
was concluded in Chapter 4, we can assume that Malpedia is representative for a solid
part of the malware family universe. Thus, using the aggregated occurrence frequencies
derived from the corpus should serve as a decent base for decision making while not
adjusting too much to the individual contents of the corpus, as we are still aiming for a
generalizing solution.

However, we have to take into account that the occurrence frequencies have still to
be considered impure. This is primarily the consequence of the presence of additional
code introduced through the different code generation frameworks used, as was already
observed for the very popular Microsoft Visual Studio (cf. Table 5.6). Similarly, other
frameworks with less popularity that also introduce significant amounts of statically
linked library code like Delphi or Go will have an impact.

In the following two sections, we will first analyze the ability of differently composed
ApiVectorBases derived from the occurrence frequency to cover ApiScout results and
to capture semantically relevant WinAPIs. Next, because we claim our method to be
space-efficient, we will also examine the space consumption by these different vectors,
for both binary and frequency vectors, and compare them to the space consumption
of other methods used for similarity analysis based on Windows API information. As
data set for the evaluation, we continue to use the reference snapshot of Malpedia, as
described earlier in Section 5.3.1.

101

5. Robust Recovery and Analysis of Windows API Usage

64 128 256 512 1,024 2,048 4,096 C-1024
Execution 26 43 81 129 200 318 440 229
Memory 8 16 29 38 51 83 95 68
File 12 19 39 63 98 162 225 114
System 7 18 26 51 95 188 353 150
String 5 10 13 36 78 199 300 52
Network 1 14 27 53 95 172 271 192
Time 1 2 7 10 13 24 35 22
Registry 4 5 8 13 16 36 57 32
GUI 0 1 18 85 276 574 1,267 27
Other 0 0 3 13 44 71 106 24
Device 0 0 1 8 31 82 129 66
Crypto 0 0 4 13 25 51 90 48
unknown 0 0 0 0 2 88 728 0

Table 5.10.: Different Vector sizes and their coverage of semantic categories, sorted by occurrence
of classes (cf. Table 5.7)

Analysis of Coverage

We first conduct an analysis of how many ApiScout result entries are covered when using
ApiVectorBases of different length. To address a meaningful range of vector lengths
we revisit the average number of WinAPIs found per malware family (139 WinAPI
functions) and decide to evaluate lengths of vectors that are powers of 2 between 64 and
4,096. The choice for powers of two is arbitrary but allows us to capture a good range
of lengths with just 7 configurations. For WinAPI entries within these ApiVectorBases,
we construct them by using a single list of the respectively most occurring WinAPI
functions across all families and cut it off at the given vector length. Furthermore, we
note that we do not have to conduct separate measurements for binary and frequency
vectors because measuring coverage means we count one or more occurrences, which
yields the same result for binary and frequency vectors.

To measure how effectively the different ApiVectorBases perform, we conduct a cover-
age analysis for all samples. This is done by evaluating how many of the APIs found in
the malware are represented in the vectors of different lengths. We focus our analysis on
the 10-40% least covered samples. The results are shown in Table 5.9. We immediately
note that short vectors yield definitely an undesireably low coverage. For vectors of
length 64 and 128, even the median coverage remains below 50% and for a length of 256
the median coverage reaches only about 67%. For lengths of 512 and 1,024 we definitely
see significant improvement in coverage. Here, median coverage of 85% and 95% are
achieved but the vector of length 1,024 also has almost 80% WinAPI entry coverage for
even the ApiScout results with the lowest 10% of coverage. As expected, vector lengths
of 2,048 and 4,096 give almost complete coverage. Nonetheless, we need to keep in mind
that these will very likely consist almost entirely of zero entries as we only expect about
139 WinAPI function being used on average (cf. Table 5.5).

For comparison, Lu et al. [136] concluded that for their use case, a vector length of
500 entries derived from WinAPIs observed in 800 benign and 400 malicious programs
yielded the best results, which is comparable with our findings.

102

5.4. ApiVectors: Storage and Comparison of WinAPI Usage Profiles

As a second aspect, we will now have a closer look at the distribution of semantic
categories being represented by the vector entries of these different sizes. Table 5.10
provides an overview of the semantic categories covered for the vector lengths chosen.

Revisiting our preceding analyses, we remember once again the highly skewed general
distribution of occurrences. For the effects previously explained, purely going by oc-
currence frequency may not be an optimal criterium when trying to select entries that
are also relevant to a human malware analyst. Then again, for the lack of available re-
sources, it is also non-trivial to estimate the informational “value” of WinAPI functions
to analysts. Especially, since different analysis tasks require different scope and thus
focus on different semantic categories of the Windows API.

As a proposal for a practical solution, we manually reviewed the full list of WinAPI
functions and used our personal experience to craft a custom vector we denote as C-1024.
This vector has a length of 1,024, as this size appeared to be a favorable compromise
between size and coverage. The vector C-1024 shares 653 entries with the first 1,024
entries from the list of WinAPIs with the most occurrences. For the remaining 371
entries, we selected other WinAPI functions to provide a more nuanced spectrum of
semantic categories as shown by Table 5.10.

When comparing to the regular 1,024 vector, we can see that 9 categories have been
extended, while 3 have been reduced in representation. The four most occurring semantic
categories Execution, Memory, File, and System have been granted more space in the
ApiVectorBase. Other semantic aspects that are often of high interest to analysts have
been extended as well: Network, Time, Registry, Device, and Crypto. On the other
hand, we reduced entries from the categories String, GUI, and Other. Especially GUI
functions that have been previously explained to be having a highly redundant API
design (cf. Section 5.3.4), are now represented with only 27 instead of 276 WinAPI
functions, most of them centered around initialization routines that would still indicate
to an analyst the presence of GUI usage. With another look at Table 5.9, we also can
see that the coverage offered by C-1024 falls between the natural occurrence frequency
vectors with sizes 512 and 1,024.

Analysis of Vector Space Consumption

After analysing the composition, we now analyze the space consumption of the different
configurations. The results are shown in Table 5.11. Looking first at the maximum
values, we see that the space consumption first increases proportional with the vector size
but slows down as vectors grow. Opposite to that, the mean values do not grow nearly
as fast and cap out starting with the vector of length 1,024. This is a direct reflection
of the sparsity in vector entries that has been mentioned several times throughout this
chapter.

We next look at two other methods used for similarity analysis of WinAPI usage:
ImpHash and ImpFuzzy. Both methods work based on the information extracted from
a given program’s Import Table.

ImpHash (as the name implies) uses hashing (MD5) to convert the information into a
comparable format. It maintains the order of the entries as found in the Import Table.

103

5. Robust Recovery and Analysis of Windows API Usage

Vector Min 25% 50% 75% Max Mean
Binary 64 10 12 12 12 10.2
Binary 128 19 23 23 23 19.0
Binary 256 32 41 44 44 33.9
Binary 512 43 64 78 87 56.0

Binary 1,024
Binary 2,048
Binary 4,096
Binary C-1024

48 82 115 172 79.8
52 92 145 306 99.9
53 95 155 440 108.3
47 77 102 166 72.4

38 72 82 87 58.2
122 144 171 100.1

84 171 225 325 155.1
110 213 301 584 2114
119 238 357 1,036 256.8
129 252 396 1,391 2874
120 255 412 1,594 2944
115 229 330 780 232.6

32 32 32 32 32
60 71 86 100 69.9

Frequency 64
Frequency 128
Frequency 256
Frequency 512
Frequency 1,024
Frequency 2,048
Frequency 4,096
Frequency C-1024

w
DADN [O ULUL U | OO UT U
ot
oo

ImpHash
ImpFuzzy

Table 5.11.: Value distributions for different ApiVector sizes as well as ImpHash and ImpFuzzy.

Because this data structure’s layout is potentially randomized upon re-compilation, Im-
pHash may not find samples although they have an identical set of WinAPI functions
used. As MD5 is used as hash, its space consumption is constant at 32 (hex)bytes.

ImpFuzzy uses fuzzy hashing to derive a representation for WinAPI information. Sim-
ilar to ImpHash, it uses the Import Table information in its original sequence. However,
the hashing method used here is ssdeep, which allows for approximate matches. In con-
sequence, the storage consumption is not constant but depends on ssdeep and we observe
a space consumption between 6 and 100 bytes with an average of 69.9 bytes.

When comparing ApiVectors to both other methods, we have to keep in mind that
them using hashing leads to a significant loss of source information. It is impossible to
reconstruct the input data, while information from ApiVectors is easily restored, minus
the entries not found in the ApiVectorBase. Given that the space consumption is almost
similar to that of ImpFuzzy, the only drawback is that ApiVectors may not have captured
all WinAPI functions used by the input program and that some generalization is applied
(normalization of API function names and DLLs).

5.4.3. Evaluation of Classification Performance

After introducing the ApiVector concept and discussing its properties of API coverage
and vector sizes under different parameterizations, we now want to examine its capa-
bilities for estimating similarity and thus its usability for malware identification. In
Section 5.3.3, we noted that the distribution of occurrences for WinAPI functions across
families is very scattered and that the majority of observed WinAPI functions is only
found in few families. This generally implies that the individual distribution per family
has a high potential for being characteristic for the respective family which should favor
the WinAPI usage composition as a feature for identification.

104

5.4. ApiVectors: Storage and Comparison of WinAPI Usage Profiles

After outlining the methodology, we first evaluate three types of parameters for ApiVec-
tors and follow by comparing its classification performance against concepts from related
work.

Methodology

For consistency, we again use the reference snapshot of Malpedia, as described in Sec-
tion 5.3.1. In order to measure the classification performance, we compare all ApiVectors
against each other and use a threshold to determine whether the vectors match. We note
a true positive if an ApiVector from family A matches another vector of family A and a
false positive if a mismatch between families occurs. Self-matches are ignored.

Revisiting the concept of ApiVectors explained in this Chapter, can identify three
types of parameters whose influence should be evaluated:

1. Vector length: We noted that vector length has influence on how many APIs are
captured by an ApiVector. We use the same 7 vector lengths as before, resulting
from powers of 2 and giving values between 64 and 4096, as well as the manually
composed configuration C-1024.

2. Binary and Frequency: Having additional information about the number of ref-
erences to a certain WinAPI function may allow to better distinguish between
vectors than just information about their presence. We compare boolean values
and occurrence counts for WinAPI functions to see if the greater detail provided
by frequency counts provides an advantage.

3. Weights: Because the presence of lesser frequent WinAPI function may help distin-
guish between malware families, we use three different weighting methods: equal
weights, linear scaled weights, and a sigmoid function to derive weights.

As ApiVectors do not allow further parameters, our evaluation is thus comprehensive.
Finally, we use the best configuration and compare against two other related methods:
ImpHash [159] and ImpFuzzy [160].

Analysis of Vector Length

We first analyze the impact of ApiVector length on classification performance because
it can be considered the most significant parameter as it determines the amount of
information generally available to be used when comparing vectors.

Figure 5.5a presents the results for binary ApiVectors of all considered lengths. We
have chosen logarithmically scaled axis to highlight the range of smaller values which is
of generally higher interest when considering application in practical context.

We first observe that ApiVectors seem generally useful as a component for the classi-
fication of malware families. All vector configurations except for the smallest two with
lengths of 64 and 128 entries produce results of generally similar quality. Medium-sized
vectors of 256 to 1,024 entries also slightly outperform the larger vectors with 2,048 and
4,096 entries. Notable values for true positive rate and false positive rate pairs of the
crafted vector C-1024 are a TPR of 0.76 at FPR 0.001, 0.84 at FPR 0.01, and 0.89 at
FPR 0.1.

105

5. Robust Recovery and Analysis of Windows API Usage

10° 100
9x107! 9x10-1
8x107! 8x10-!
2 2
27)(10’] 2 7x107t
o)
2 2
& 6x 107 € 6x 107!
P 64-binary-equal (AUC: 0.9214) P 4096-frequency-equal (AUC: 0.9096)
c —— 128-binary-equal (AUC: 0.9338) = / —— 64-frequency-equal (AUC: 0.9111)
—— 2048-binary-equal (AUC: 0.9400) —— 2048-frequency-equal (AUC: 0.9143)
5x10-1 4096-binary-equal (AUC: 0.9428) 5% 10-1 —— 128-frequency-equal (AUC: 0.9158)
—— 1024-binary-equal (AUC: 0.9436) —— 1024-frequency-equal (AUC: 0.9190)
—— 256-binary-equal (AUC: 0.9445) 512-frequency-equal (AUC: 0.9220)
—— C-1024-binary-equal (AUC: 0.9459) —— C-1024-frequency-equal (AUC: 0.9226)
512-binary-equal (AUC: 0.9471) —— 256-frequency-equal (AUC: 0.9226)
4x107t 4x107! T T T T
1074 1073 1072 107t 100 107* 1073 1072 107t 10°
False Positive Rate False Positive Rate
(a) Binary ApiVectors (b) Frequency ApiVectors
Figure 5.5.: Comparison of ROC curves for Binary and Frequency ApiVectors with all considered
vector sizes.
10° 10°
9x107 = 9x107 /ﬂ
8x 107! 8x 10
2 2
g7x10" 2 7x107t
o v
2 2
€ 6x107 - € 6x107! - —
g —— 64-binary-linear (AUC: 0.9233) i 64-binary-sigmoid (AUC: 0.9243)
= —— 128-binary-linear (AUC: 0.9397) = 4096-binary-sigmoid (AUC: 0.9323)
—— 2048-binary-linear (AUC: 0.9460) —— 2048-binary-sigmoid (AUC: 0.9392)
5x10-1 4096-binary-linear (AUC: 0.9485) 5x 10! —— 128-binary-sigmoid (AUC: 0.9406)
—— 256-binary-linear (AUC: 0.9504) ~—— 1024-binary-sigmoid (AUC: 0.9505)
—— 1024-binary-linear (AUC: 0.9513) —— 256-binary-sigmoid (AUC: 0.9511)
512-binary-linear (AUC: 0.9526) ——— C-1024-binary-sigmoid (AUC: 0.9525)
——— C-1024-binary-linear (AUC: 0.9535) 512-binary-sigmoid (AUC: 0.9529)
4x107! T 4x107*

1073 1072 107t 10°

False Positive Rate

1073 1072 1074

False Positive Rate

1074 107t 100

(a) Linear-weighted Binary ApiVectors (b) Sigmoid-weighted Binary ApiVectors

Figure 5.6.: Comparison of ROC curves for weighted Binary ApiVectors of all considered vector
sizes.

Analysis of Binary and Frequency Counts

Figure 5.5b shows the results of using Frequency ApiVectors and Tanimoto distance
instead (cf. Section 5.4.1). Here, the different vector lengths are even closer together
than in the case of Binary ApiVectors. Again, the medium-sized vectors perform better
than the others. This shows that short vectors (that notably also contain WinAPI
functions with highest occurrence frequency) apparently capture not enough information
to distinguish families as successful as larger vectors. Larger vectors on the other hand
appear to pick up noise by capturing lesser frequent WinAPI functions that may then
lead to lower matching scores. For Frequency ApiVectors in particular, a change in the
number of references to a WinAPI function reduces the similarity score while it does not
affect the score for Binary ApiVectors.

106

5.4. ApiVectors: Storage and Comparison of WinAPI Usage Profiles

Analysis of Entry Weights

Apart from ApiVector length and binary/frequency contents, the method introduced
in Section 5.4.1 also allows us the application of weights for entries. The general idea
behind using weights is to boost the signal available from WinAPI functions with lesser
occurrence frequency. These in particular are expected to be more characteristic for a
given malware family when present.

For this evaluation, we consider three options for weights. First, equal weights of
value 1, as used in the analysis of the other two parameterization dimensions. This is a
baseline result as it values all API functions with the same degree of importance. Second,
linearly increasing weights. Because our vector is sorted by occurrence frequency, we can
simply use the entry position in the vector to determine the weight. This will cause API
functions that are less likely encountered to have higher importance in the comparision
of vectors. Third, weights determined by a non-linear sigmoid function. This allows us
to express even stronger favor for entries with lower occurrence frequency. The formula
used for weight deriviation is Wg(i,n) = 50(1 + tanh (325-2)), with n as vector length
and ¢ designating the entry’s offset in the vector. These values have been chosen to
remodel the tanh function to assume values in the range of 5 to 95.

We only consider Binary ApiVectors this time as they generally performed better than
Frequency ApiVectors and the results for the weight parameterizations are shown in
Figure 5.6. Comparing with Figure 5.5, we see that the introduction of weights does
improve the results. While the Area under Curve (AUC) values improve only slightly, we
can see that the TPR for FPR ranges of 0.01 and below do increase by several percent.
This FPR range is typically considered of high practical relevance [65] which means that
weights do indeed increase accuracy and usability as required for the method. As before,
medium-sized vectors perform best, with smaller vectors performing slightly worse than
large vectors. More importantly, we can also see that the manually chosen C-1024 vector
composition dominates the other curves for almost the whole FPR range and that the
best configuration is found for linear weights.

We now perform an analysis in greater detail of false positives and false negatives
for this configuration to better understand the flaws of the method. For this we use a
matching threshold of 0.57, which results in a TPR of 0.795 and FPR of 0.001.

For false positives, we note 176 families with a total of 271 unique wrong classifications.
Similar to the previous analysis in [13], we can identify classes of false positives that
explain the majority of the occurrences.

A number of families have a documented code relationship, e.g. a cluster of families
derived from the leak of the Zeus source code [252]. This cluster alone involves 12 families
with 30 pairs. Furthermore, we find other famous relations within the false positives, such
as win.hlux being the known successor for win.kelihos, win.evilpony as a derivative
from win.pony, or win.friedex as a ransomware spin-off from win.dridex. We also
find a case in which a family is repurposed as a module for win.trickbot. In total, we
explain 46 families causing 41 FPs because of these relationships.

For 74 families, the false positives are not caused because of family intrinsic code
overlaps but because of their extensive use of third party and/or statically linked code

107

5. Robust Recovery and Analysis of Windows API Usage

that introduces many similar WinAPI functions. Families with small intrinsic code
footprint and statically linked MSVC runtime account for 44 families leading to 66
wrongly classified pairs. On top of that, we find 24 families written in Delphi alone that
cause 94 FPs among each other and additionally 6 families written in Go that generate
another 11 FPs.

As ApiVectors group by similar WinAPI usage spectrum, we also find a few cases
where (assumably) independent families are grouped because of similar behavior. Here,
10 families characterized as ransomware, 9 downloaders, 9 Remote Access Tools (RATSs),
and 5 families that are capable of Point of Sale (POS) manipulation create a total of 20
wrongly classified pairs among each other.

The remainder of wrong classifications are a result of multiple effects. We notice
a very small number of APIs for some of the pairs, potentially due to a mix of na-
tive/dynamic imports mixed with import obfuscation, leading to presence of only a few
essential WinAPI functions extractable with ApiScout. Additionally, we find some in-
teresting pairs across all classes in which the families are attributed to the same threat
actor group. For example, several malware families used by Lazarus have significant
overlaps in how they use the networking aspects of the WinAPI, which is potentially a
result of their intensive code reuse [282]. Similar is observed for first stage malware used
by APT1 as well as noticable overlaps in WinAPI usage spectrums for those APT28
malware families compiled with MSVCRT. While we assume that static linking does
have an effect on this, we still think that it is safe to assume that malware authors have
a certain fingerprint in their choice of preferred APIs for certain purposes.

For false negatives, we find 68 of 331 families where no positive classification among
samples was found although possible. In 29 of these cases, we identify that they are a
result of the corpus structure, in which droppers and loaders, as well as modules are
sometimes inventorized along the core payload. Because the grouping also happens in
many cases based on third party reporting, families may include samples of varying
similarity. All of these do not necessarily have a matching WinAPI usage spectrum and
thus do not result in matches.

For others, the evolution within the family has lead to a spectrum whose change
exceeds the threshold. That is because these families may have only spotty coverage
in Malpedia, with observed samples being years apart or for example API obfuscation
being introduced at a point in their development timeline. Others may have generally
few imports for the same reasons as stated in the analysis of false positives, e.g. API
usage obfuscation schemes.

We also analyzed the results for a variation of linear weights for C-1024. In this
variation we denote as MC-1024, entries of WinAPI functions that we identified as
being introduced through MS Visual Studio’s statically linked code (cf. Table 5.6)
receive a weight reduced to 1 instead of their normal linear weight. The result for
this is shown in Figure 5.7a, which also lists the best performing parameter setting
among all combinations of binary/frequency vector and weight for all vector lengths.
Opposite to our expectation, this weight adjustment targeting to lessen the effect of
common WinAPIs not tied to actual user defined code did not yield an improvement.
It appears that this modification interferes too much with the WinAPI spectrum of

108

5.4. ApiVectors: Storage and Comparison of WinAPI Usage Profiles

100 — 100
9x107! : 9x10-1

8x107! 8x10-1

7x10°1 L

7x107!

—— 64-binary-sigmoid (AUC: 0.9243)

—— 128-binary-sigmoid (AUC: 0.9406)

—— 2048-binary-linear (AUC: 0.9460)
4096-binary-linear (AUC: 0.9485) —— ImpHash (AUC: 0.7005)

5x10-1 —— MC-1024-binary-msvc (AUC: 0.9507) 5x 10-1 | — ImpHash sorted (AUC: 0.7278)

—— 256-binary-sigmoid (AUC: 0.9511) —— ImpFuzzy (AUC: 0.8299)

—— 1024-binary-linear (AUC: 0.9513) ImpFuzzy sorted (AUC: 0.8861)
512-binary-sigmoid (AUC: 0.9529) —— C-1024 (IT) (AUC: 0.9391)

—— C-1024-binary-linear (AUC: 0.9535) —— C-1024 (AUC: 0.9535)

T T T T 4x107t T T T T

1074 1073 1072 107t 10° 107 1073 102 107t 10°

False Positive Rate False Positive Rate

6x107 6x10-1

True Positive Rate
True Positive Rate

4x107!

(a) Best of Class Binary ApiVectors (b) ApiVectors, Imphash, and ImpFuzzy

Figure 5.7.: Comparison of ROC curves across all possible parameterizations and versus the
related approaches ImpHash and ImpFuzzy.

families not containing the statically linked code portions. We further note that sigmoid
weights perform better with smaller vectors and linear weights perform better with larger
vectors.

We did not consider machine learning for further optimizing a custom weight vector.
The primary reason for this is that as stated before the amount of data organized in
Malpedia is insufficient for these techniques to be properly applied. In fact, a total of
758 of 839 families are represented by only five samples or less. This simply allows not
to appropriately split the data into training, validation, and test/holdout sets and still
yield expressive results. However, a short experiment with intentional overfitting by
using an SVM classifier with the full corpus as both training and validation set resulted
in a perfect classification result (i.e. every sample assigned with the correct family, no
false positives). This additionally indicates that the space of WinAPI functions generally
seems well divisable into classes per family and can be considered a strong feature usable
in compound classifiers.

Comparison against ImpHash and ImpFuzzy

We finally compare ApiVectors against two other established methods for malware iden-
tification based on Windows API import information: ImpHash and ImpFuzzy. The
results are shown in Figure 5.7b.

ImpHash (short for import hash) was created by FireEye in 2013 in order to track
and cluster similar malware families. The method essentially collects all entries in a
given sample’s Import Table and calculates an MD5 hash over this API listing. In its
original version, this API listing contained DLL and API names (if available) as well as
the virtual address where the resolved import would be placed in the mapped binary
(i.e. its position in the IAT), one per line. ImpHash was then incorporated into the
popular Python library PEfile [21], for which the APT listing was slightly modified to no
longer contain the IAT position and use a comma as separator for entries. It additionally

109

5. Robust Recovery and Analysis of Windows API Usage

resolved API names for a few popular Windows DLLs through lookup tables for their
ordinals.

ImpFuzzy was then introduced in 2016 by JPCERT/CC as an alternative or improve-
ment for ImpHash. It uses a mostly similar method for construction of its API listing (it
incorporates additional APT information in certain edge cases) but then uses ssdeep [132]
for derivation of a fuzzy hash. This allows ImpFuzzy to perform approximate matching
within the capabilities of ssdeep, opposite to ImpHash that only allows exact matching.

To our surprise both methods do not sort the APT listing before application of the
hashing. From a functional point of view, the order of DLL and API entries in the PE
header’s data structures can be considered irrelevant because the correct links can be
easily established through code references anyway. However, this order may impact the
effectiveness of the techniques just explained. We conducted a cursory analysis of Import
order both in Import and Import Address tables for our data set, limiting ourselves to
the most common compilers: MSVC, Borland Delphi, and MinGW (cf. Section 4.4.2).
Across versions, for MSVC, the Import table appears randomized for both DLL and
APIs while the Import Address Table is then apparently sorted by DLL names. For
Borland Delphi, no apparent ordering can be easily identified. For MinGW, entries are
consistently sorted by first DLL and then API name.

Because of these observations, we assume that sorting the API listing before hashing
may positively impact the chance to produce matches for ImpHash and ImpFuzzy at the
cost of some potential FPs. Consequently for our comparison, we used ImpHash and
ImpFuzzy in their original form, as well as in a modified form in which the API listing
contains fully sorted entries similar to MinGW, and then two variants for ApiVectors,
the original C-1024 vector with linear weights applied to results provided by ApiScout
and a variation that only uses the information from Import tables to ensure direct
comparability with ImpHash and ImpFuzzy. We exclude empty import tables from the
generation of representations for all three methods.

Analysis of Figure 5.7b reveals that ImpFuzzy does hold its promise and outperforms
ImpHash, but we easily note that ApiVectors yield the best results. We also note that
sorting the API listings for ImpHash and ImpFuzzy does indeed improve results signif-
icantly for both techniques. Furthermore, only ApiVectors are able to produce results
with false positive rates generally lower than 1.3%.

ImpHash with its binary decision for equality seems generally too restrictive to provide
generalization across different versions of the same malware family. We conclude that it
is still a very good method especially for clone detection. This is commonly encountered
when considering builder-based malware, in which the same binary template (also called
stub) is only adjusted with a set of configuration parameters. Sorting the imports before
hashing results in a net gain of 5.8%, so we recommend modifying the method in this
way.

ImpFuzzy has a capability to generalize due to its use of approximative similarity but
it still suffers from using a suboptimal data representation. Relying on string similarity
and ssdeep in particular may lead to disadvantagous situations. For example, a variety
of WinAPI functions exist as both a normal and “Ex” version (e.g. LoadLibraryA vs.

110

5.5. Summary

LoadLibraryExA, the latter allows passing additional parameters) or with a “Get” and
“Set” variant (e.g. GetThreadContext vs. SetThreadContext, which read or modify a
thread’s state), which may be considered very similar by the fuzzy matching but carry
different semantics that could help perform accurate matching. Additionally, since ss-
deep determines block sizes depending on the input size, two API listings leading to
different block sizes because of their lengths may potentially affect matching perfor-
mance. ImpFuzzy suffers from the effect of library-introduced standard imports (e.g.
through MSVC, Delphi, Go) as described before more than ApiVectors because it does
not use weights to adjust the impact of entries. Sorting API entries before hashing also
improves the technique’s results by up to 7.1 percentage points.

In conclusion, we assess that ApiVectors definitely benefit from their specific data
representation and ability to use weights for entries, allowing it to significantly outper-
form the other approaches. Generally, WinAPI information appears to be a very useful
feature that, when applicable, should always be considered when determining potential
similarity of programs on a cursory level.

5.5. Summary

In this chapter, we set our scope on the Windows API as it is one of the most relevant
aspects to enable the situational awareness required for effective in-depth analysis of
programs and malware in particular.

In the previous chapter, we identified memory dumps as a favorable form of unpacked
malware (cf. Section 4.3.1). In consequence, we now defined our first research question
of this chapter, RQs, as looking for a robst method of extraction of Windows API usage
information from memory dumps. As a solution, we presented ApiScout in Section 5.2.
ApiScout is a revised and generalized adaption of a method first presented by Sharif et
al. [105] in the Eureka framework. Split in an inventarization and application phase,
ApiScout can be applied at later stages and thus decoupled from the respective dynamic
analysis environment. We continued examining the development of the Windows API
from Windows XP to Windows 10 and then evaluated ApiScout’s performance against
two related approaches, Scylla IAT Search and Volatility ImpScan (cf. Section 5.2.3) in
which ApiScout proved to be superior.

Having shown the robustness of ApiScout, we then applied it to Malpedia in order to
answer RQ4, which is concerned with how frequently malware authors actually apply
obfuscation schemes to their WinAPI usage. We defined a taxonomy of three classes
for WinAPT usage: Native Import Table usage (no obfuscation), Dynamic Imports, and
Custom schemes (obfuscation). Across 726 malware families, we observed that Native
Import Table usage can be found for almost half (47.4%) of these families, while Dynamic
Imports are found more frequently in combination with Native Imports (30.2%) than on
their own (18.6%). Custom schemes are surprisingly rather uncommon and were only
found in 3.9% of the families. This falls in line with our assessment made in the previous
chapter, that malware payloads are often programs delivered without extensive efforts
to aggravate analysis.

111

5. Robust Recovery and Analysis of Windows API Usage

A closer inspection of the occurrence frequencies for DLLs and APIs in malware hinted
that apart from a core set of very common WinAPI functions, the majority might only
appear in few families respectively, therefore potentially leading to characteristic combi-
nations. As a result, we focused with RQs on how characteristic these usage profiles for
malware families actually are and if they can be used in the context of malware iden-
tification. We defined ApiVectors as a concept for storage and comparison of WinAPI
usage profiles and showed that it can indeed be used for measuring malware similar-
ity. The evaluation conducted gave general insights in the usefulness and limitations
for using WinAPI usage profiles for similarity assessments. ApiVectors also significantly
outperformed two other widely used methods, ImpHash and ImpFuzzy.

112

6. Code Recovery and Similarity Analysis

In Chapter 4, our work addressed the design of a representative corpus for malware
research. Focusing on static analysis and using our reference corpus Malpedia, we then
conducted a cursory structural analysis and followed in Chapter 5 with an in-depth
analysis of Windows API usage. In this chapter, we continue with an examination of
analysis methods for the actual code found in malware, using disassembly and code
similarity to identify 3rd party library usage and code sharing among more than 650
malware families.

We first start with a motivation and define our main research questions and con-
tributions in Section 6.1. In Section 6.2, we present our approach SMDA for robust
disassembly of memory dumps and evaluate its primary heuristic for function entry
point detection and the overall result quality. Next, in Section 6.3 we define a method
for efficient estimation of code similarity and show that it produces accurate results.
We then apply both methods together in Section 6.4 on a combined data set consisting
of reference code for 3rd party libraries and Malpedia. This allows us to analyze the
popularity of these third party libraries and to identify and isolate code that is intrinsic
to malware families. The chapter is rounded off with a summary in Section 6.5.

6.1. Motivation and Contribution

Looking past cursory structural analysis, a clean representation of unpacked code is
required to conduct effective in-depth analysis on malware [38]. With this representation
as a foundation, in most cases accurate disassembly can be created, which is essentially
a basis for all other techniques to build on, including reverse engineering and code-based
similarity analysis.

Historically, obtaining this clean form had to be done using tedious manual or tool-
assisted procedures. This was partially caused by a lack of methodology but also mainly
a result of threat actors relying on packers that employed a wide array of sophisticated
anti-analysis techniques.

Nowadays, the dynamic economization of the malware landscape [34] seemingly has
caused a shift in how malware is protected with a stronger focus on avoiding detec-
tion. Especially the widespread use of machine learning for malware detection [65] and
interconnectedness of systems has reduced the time frame in which actors can assume
their campaigns to remain undetected. With techniques at hand that can process huge
amounts of data to identify characteristics suitable for detection, the use of anti-analysis
techniques appears to become less relevant or even less attractive, as they may stick out
as suspicious. In 2011, Lindorfer et al. [283] found that about 60% of 1,686 samples

113

6. Code Recovery and Similarity Analysis

in their case study exhibited deviating behavior when executed in a virtualized envi-
ronment. More recently in 2019, Ugarte-Pedrero et al. [92] dissected a representative
daily intake of suspicious files as seen by a security vendor. In their study, only 9.5% of
172,000 samples did not show behavior sufficiently classifiable as malicious in a sandbox.
This is in line with our observations that memory dumps serve as a good approximation
of clean unpacking (cf. Chapter 4), producing a successfully unpacked result for up to
92% [245] of samples.

Sadly, disassemblers are typically not tailored for the processing of memory dumps.
While they typically support processing of raw binary files as input, they will not pro-
duce results as good as on cleanly unpacked files. This is primarily because they seem
to heavily rely on the structural information extractable from the meta data of an ex-
ecutable file. When told to ignore these data structures, it seems to cause them to use
only a subset of their heuristics and analysis capabilities. However, in recent years we
see an increasing reporting on fileless and memory-only malware [284], malware with
custom file formats [285], or plain shell code [286].

In theory, disassemblers should not perform significantly worse when not having struc-
tural meta data from a header available. Interestingly, it has not been researched prop-
erly yet how the alternative input data representation of memory dumps impacts disas-
sembly quality. We therefore define our first research question of this chapter as follows:

RQs: How can code and Control Flow Graph information for Intel x86/x64 code be
robustly recovered from memory dumps, without making further assumptions about
the structural properties of the given file?

As an answer, we present our approach SMDA, a recursive disassembler that special-
izes on memory dumps. The approach recombines best practices known from previous
works [178, 179, 172, 175, 170, 31], for which we evaluate the effectiveness of their heuris-
tics, e.g. the ability of finding function entry points and gap functions in detail. We
then evaluate the method against a selection of state of the art disassemblers, includ-
ing IDA Pro and Ghidra, and show that SMDA outperforms them with regard to CFG
reconstruction on memory dumps.

With the ability to robustly recover code and control flow, we now want to study how
malware authors create and maintain their software. An essential tool in this context
is the ability to measure similarity of code. This topic has become immensely popular
and has been addressed by several works in recent years [33]. A core observation from
this range of different approaches is that there is no one best solution as several provide
similarly (good) results.

A primary application of these approaches is patch analysis and vulnerability research.
Fewer publications focus on use cases like malware clustering and lineage, as well as
library recognition which are more relevant for this thesis. Most notable is the work by
Alrabaee et al. [213]. They created the approach FOSSIL, which they apply to analyze
the use of about 160 FOSS projects in 17 malware families.

Given a collection of malware families as comprehensive Malpedia, we want to conduct
a similar experiment and study code reuse, asking the following two research questions:

114

6.2. SMDA: Effective Code and Control Flow Recovery from Memory Dumps

RQ7: How frequent is third-party library usage as shared code in Windows malware?

and

RQs: Apart from libraries, what is the actual overlap of intrinsic code in Windows
malware families?

To answer these question, we first introduce MCRIT, a method for efficient one-to-
many code similarity analysis based on exact and locality-sensitive hashing. Similar to
SMDA, MCRIT is based on findings of previous works but tailored specifically for RQ7
and RQs: It supports tagging contents with project names (such as a malware family
or a FOSS project name), versions, and a flag to specifically indicate library code. To
validate the approach, we show that MCRIT performs well on a large ground truth data
set composed of commonly used libraries. We then continue by creating a data set of
FOSS libraries and apply MCRIT to this collection in combination with Malpedia.

Contributions. In summary, in this chapter we make the following contributions:

1. We present SMDA, a method to effectively recover code and control flow graph
structure. We show that SMDA is capable of producing robust results for memory
dumps, a task with which otherwise reliable disassemblers struggle.

2. We introduce MCRIT, a framework for efficient one-to-many code similarity anal-
ysis.

3. Using SMDA and MCRIT, we perform an analysis of a combined data set consisting
of 2,476,837 functions from FOSS reference code as well as Malpedia, which allows
us to conduct an extensive in-depth analysis of code sharing across 663 malware
families and their library usage frequencies.

6.2. SMDA: Effective Code and Control Flow Recovery from
Memory Dumps

Without question, accurate disassembly is an absolute foundation, upon which basically
all methods of reverse code engineering build upon [167]. Andriesse et al. [30] showed that
many disassemblers and especially IDA Pro, which is considered the industry standard
among recursive disassemblers, achieve great results of an average 96-99% instruction
recovery rate across a wide range of tested compilers and optimization levels. Their study
however also revealed that all 7 disassemblers tested produced mixed results with e.g.
false negative rates of 20% and above for function start detection, indicating room for
improvement. This is in line with the observations of Meng and Barton [169] who closely
looked at complex constructs like jump tables, non-returning functions, and tailcalls. We
have not found any prior work specifically addressing memory dumps as input data for
disassembly.

In this section, we present SMDA, our proposed approach for effective code and CFG
recovery. As argued earlier, we specifically focus on the importance of producing robust
results when processing memory dumps and with emphasis on Windows as operating

115

6. Code Recovery and Similarity Analysis

system as throughout this dissertation. For this reason, we limit ourselves in the assump-
tions we make about the code to be disassembled. The core objective is that SMDA
should be able to achieve the same results independent from whether it is applied to
unmapped PE files with full context available or shellcode without any context at all.

We define the following requirements for our method. First, it should provide a com-
plete and accurate result for Intel x86 and x64 code and CFG recovery, taking complex
constructs as mentioned in [169] and [30] into concern. We limit ourselves to this task
only because we will not need more details in the following context of this work and
there are established methods available in the literature [181, 180, 182], e.g. for recon-
struction of further details such as all data references or function arguments. Second,
while the method should generalize well, it should be especially applicable for malware
analysis. In consequence, the method should focus on binaries compiled with Microsoft
Visual Studio, which is highly common in Windows malware development as shown in
Section 4.4.2.

In the following, we first explain the methodology behind SMDA in detail, discussing
the different phases of code and CFG recovery. We then evaluate the approach, focus-
ing specifically on the heuristic for the detection of function starts and compare the
disassembly quality against other well-known disassemblers.

6.2.1. Methodology

Disassembly approaches are traditionally divided into linear and recursive methods (cf.
Section 2.1.3). We will first recapitulate these basic principles and then explain how
SMDA is designed.

Linear disassembly [161] is based on the assumption that functions are non-overlapping
and ordered linearly one after another, which holds true almost always except in rare
cases where e.g. code obfuscation is applied. For this method, the analysis is preferably
started at the beginning of a code segment and then executed instruction by instruction
to maximize coverage. Branches in the code flow as caused e.g. by jumps and calls are
ignored as instructions are only recognized sequentially on the fly. This technique is very
successful when the code is well structured, e.g. in Linux ELF binaries, it often leads
to 100% accurate instruction recovery [30]. It is less applicable for Windows binaries
compiled using MSVC, as this compiler makes use of inline jump tables, mixing code
with data [30].

Recursive disassembly on the opposite is usually started at the Original Entry Point
(OEP), and driven by the assumption that all code is supposedly reachable from this
location. Similar to linear disassembly, instructions of given code sequences are pro-
cessed one after another. The central difference is that targets of branches and calls are
usually managed in a queue that provides further starting points of sequences, mostly
basic block and function entry points (FEPs), as function starts are alternatively called.
Sophisticated disassemblers often combine both methods, organized in multiple passes
with application of further heuristics [287, 288, 289] in order to achieve the highest code
and CFG recovery rate possible.

116

6.2. SMDA: Effective Code and Control Flow Recovery from Memory Dumps

Phase 1:
Discovery of FEP candidates by scanning for code references

©

e
e O

A 4 A l? 4 l’—?’—? ’—?l_v

Process candidates with recursive disassembly to confirm or discard

I o

Phase 2:
Identification of further FEPs by scanning and processing gaps

T

Final result:

B confirmed FEPs Oprocessed FEPs [discarded FEPs

Figure 6.1.: The methodology of SMDA is structured in two phases. First, a given input buffer
is scanned for code references. The resulting function entry point candidates are
processed sorted by the number of references pointing to them, using recursive dis-
assembly. In a second phase, the gaps are scanned and processed using recursive
disassembly as well.

As mentioned before, reliable and complete identification of function entry points is
proven as a key requirement for accurate disassembly [30, 169]. Because of this, we make
optimization of FEP identification the core principle of SMDA. Our method generally
incorporates ideas and approaches previously defined by Kruegel et al. [178], Harris
and Miller [179], Rosenblum et al. [172], Bao et al. [175], Di Federico et al. [170], and
Andriesse et al. [31].

SMDA’s operation is organized in two phases:
1. Function entry point candidate discovery and reconstruction.
2. Gap function discovery and reconstruction.

Treating the input buffer agnostically, we first perform one sequential scan over all
data, locating typical byte sequences that either indicate function starts or can be inter-
preted as jump and call instructions to derive their respective target addresses. Next,
this initial list of function candidates is ordered by the number of identified references
and then recursively disassembled on a per-function level. During this first round of dis-
assembly, indirect calls via CPU registers are resolved and the queue of FEP candidates
is continuously updated.

117

6. Code Recovery and Similarity Analysis

x86 x64 Opcode Instruction
v v E8 7?7 77 7?7 7?7 call [relative offset]
v FF 15 77 77 7?7 77 call dword ptr [offset]
v FF 25 77 ?? 7?7 ?7? jmp dword ptr [offset]

v FF 15 77 ?? 7?7 7?7 call qword ptr [RIP + relative offset]
v (48) FF 25 77 77 7?7 77 jmp qword ptr [RIP + relative offset]

Table 6.1.: Opcodes for code references, identified through global heuristic search. Opcode de-
scribes the opcode bytes and operand length. Instruction is the corresponding in-
struction when disassembled.

The second phase has the goal of finding all functions that have not been identified
through the processed candidates. For this, we linearly scan the buffer for a second time,
treating every gap between the already identified function candidates as potential FEP
candidates and again perform recursive disassembly on a per-function level.

The methodology is outlined in Figure 6.1, and both phases are now described in
detail. A reference implementation of SMDA has been written in Python and is publicly
available [290]. It uses capstone [291] as single instruction disassembler backend and
LIEF [292] to optionally interpret ELF/PE file structure and meta data.

Function Entry Point Discovery

The core idea of our function entry point discovery is based on two observations:

Code References: The purpose of structuring a program into functions is to enable
their referencing as subfunctions. As a consequence, we expect that a majority of func-
tions is referred to by either interprocedural jumps or calls found in other parts in the
code. This means in particular that those code references will point to locations within
the buffer under analysis.

Common Starts: The concept of functions and calling conventions [293] implies that
usually a local context has to be created to ensure that execution integrity of the calling
function is not violated. As a consequence, the first instructions found in a function are
typically only a subset of all possible instructions, due to necessities such as creating a
stack frame or clearing registers. These instruction sequences can be used to identify
potential function starts.

The x86/x64 architecture generally allows to transfer control flow beyond the imme-
diately following instruction e.g. via the call, jump, loop, return, and interrupt in-
structions. In the context of our approach for FEP discovery, interprocedural call and
(unconditional) jump instructions using explicit offsets are of special interest. We can
derive all of their potential occurrences through scanning the input buffer and matching
on the respective opcode byte sequences shown in Table 6.1. In all cases, the referenced
destination can be calculated just given the match location, the instruction’s operand,
and the address pointed to by the operand. A slightly special case is the sequence
starting with 48 FF 25, which has a theoretically redundant 48 prefix byte (REX.W).

118

6.2. SMDA: Effective Code and Control Flow Recovery from Memory Dumps

Opcodes Instructions

8B FF 55 8B EC mov edi, edi; push ebp; mov ebp, esp
89 FF 55 8B EC mov edi, edi; push ebp; mov ebp, esp
55 8B EC push ebp; mov ebp, esp
55 89 E5 push ebp; mov ebp, esp

Table 6.2.: Opcodes for function prologues identified through global heuristic search. Opcode
describes the opcode bytes and operand length. Instruction is the corresponding
instruction when disassembled.

The reason for its presence in some cases (especially tailcalls) is an internal Microsoft
convention and it is used as a signal for unwinding [294].

For the sake of brevity, we demonstrate this calculation for a x86 relative call instruc-
tion (E8). Assume this instruction is found in a buffer with a given base address B, at
a relative virtual address R, and with an operand specifying a relative offset O (which
can be positive or negative). Then the destination D,. of the call can be calculated as:

D..=(B+R+0+5) modn

The addition of values is straightforward, but we have to add 5 bytes to account for the
fact that the reference originates from after the call instruction and 5 bytes is the size
of the call instruction.

Now, we can check if D,.. is located within the boundaries of the buffer under anal-
ysis (i.e. spanning from B to B + size) and if yes, treat this referenced location as a
FEP candidate. The modulo operation simply ensures we perform a correct calculation
with regard to the bitness’ register size, with n = 232 for 32bit and n = 254 for 64bit
respectively.

If D,. is in fact pointing within the buffer, it is already highly likely that we found
a valid call instruction and destination. This is because the operand length allows
addressing 4 bytes (232) but the typical buffer size is magnitudes smaller. For example,
assuming a buffer size of 1 MB (229), then only 0.024% of the potentially addressable
space is occupied by this buffer.

A similar heuristic exploiting caller-callee relationships has been proposed by Rosen-
blum [172], but they used it to calculate likelihood values in their method based on
Conditional Random Fields. Di Federico et al. [170] use caller-callee identification and
return identification as well but define the concept in an architecture-independent way.

The second observation builds as well on the findings presented by Rosenblum [172]
regarding idiom detection and instruction prefix trees by Bao et al. [175]. Both works
generally showed that the distribution of instruction sequences found at function starts is
weighted towards a limited number of highly popular constructs. Because the machine-
learning based accuracy claims of Bao et al. [175] were disputed by Andriesse et al. [31],
we decide to only use a very small set of instruction sequences. For SMDA, we rely on four
known common prologues known for stack frame creation [295] and hotpatching [296]
that we use additionally in the initial scanning procedure as shown in Table 6.2.

119

6. Code Recovery and Similarity Analysis

In case an input file is processed as regularly unmapped executable and not as a mem-
ory dump, we further use information provided by LIEF [292] to infer FEP candidates
from the executable’s entry point and potentially exported functions. Furthermore, can-
didates outside of regions marked as executable in the section table are discarded.

Given the combined list of FEP candidates resulting from both heuristics, we assign
them an initial score based upon the number of references pointing to them and whether
or not they start with one of the prologues defined in Table 6.2. This allows us sort the
candidates by score and then perform a first round of function disassembly on them, as
described in the next section.

Function Disassembly

The disassembly procedure for individual functions is based on recursive descent [297]
and follows best practices and improvements presented in other works [166, 178, 170, 31].
Our disassembly model is equal to the one used in these works, which is also used by
IDA Pro: every instruction may only belong to a single function and instructions may
not overlap. Because recursive descent is technically a Depth-First Search (DFS), we
use a stack as data structure to manage unprocessed basic block starts and initialize the
stack with the respective FEP candidate.

Starting with a block, the decoding of the individual subsequent instructions is deter-
ministic with regard to their instruction size. We therefore perform a linear sweep [166]
unless we encounter instructions that potentially change the control flow. In this case,
we end the block and handle the instructions specifically as described in the following.
In all cases, we keep track of all visited offsets and use multiple encounters to collect
code references between instructions.

Call instructions: Call instructions do not end the processing of the current basic
block but are used to update the FEP candidate queue. We analyze the instruction
and identify its destination. If it is a regular call using an explicit relative or absolute
offset, it was by definition already handled in the FEP discovery phase. If otherwise it
is a call using a register as operand, we execute a local dataflow analysis and perform
backtracking to resolve its call target.

Unconditional jump instructions: These instructions have one or more outgoing
edges in the CFG and end a basic block. The default case are jumps with a single target
offset, which is simply added to the stack of unprocessed blocks if within the overall
input buffer. The special case maps to the high-level construct of a switch statement,
in assembly typically represented by the complex construct jump table. Here, the jump
may dynamically calculate its target or use an address stored in a register. In this case,
we use the heuristic described by Andriesse et al. [31] to resolve all potential jump targets
and add them to the stack. Similarly, should the unconditional jump point to another
FEP candidate or was already established as function start, we assume the complex
construct tailcall and perform its resolution as described in previous works [170, 31].

Conditional jump instructions: These instructions have more than one outgoing
edge in the CFG and end a basic block. In accordance with DFS, we first add the
immediately following instruction to the stack, then the jump target.

120

6.2. SMDA: Effective Code and Control Flow Recovery from Memory Dumps

Loop instructions: Similar to conditional jumps, these instructions have two outgoing
edges and similarly end a basic block. We again first add their sequentially following
instruction to the stack, then the loop jump target.

Terminating instructions: We treat return instructions and interrupts (e.g. int3) as
symbols that end functions. A special heuristic is applied that checks if a push is used
before the return. While rarely encountered in benign code or generally in the wild, it
is still a well-known obfuscation construct [298] used to confuse disassemblers. Should
we identify a push-ret construct, we try to resolve its target and treat it like a default
jump in case it points into our buffer. Terminating instructions naturally also end basic
blocks.

Once the stack is empty, all reachable basic blocks have been visited. The analysis
of the function is concluded and the next FEP candidate can be processed. When the
queue of FEP candidates is empty, we start the second phase of SMDA: Gap Analysis.

Gap Analysis

After all regular FEP candidates have been processed, the second phase is used to analyze
the area not occupied by functions recovered in the first phase. The literature refers to
this procedure as gap analysis and it is a concept that has been successfully applied in
several works on disassembly [178, 179, 172, 31]. Functions may exist in further locations
for multiple reasons, e.g. simply because references to them could not be resolved or
they are actually unreferenced and were not addressed by the compiler in a dead code
removal phase. Nevertheless, it is important to also locate these functions because they
still carry context and may be of relevance during further analysis. We use gap analysis
specifically to fulfil the requirement of completeness.

For SMDA, we only consider the space between the functions and their bodies found
in the first phase because code is typically located in continuous areas and we assume
further functions most likely to be found in these gaps. Should the input file be pro-
cessed as unmapped, we again use LIEF [292] to limit gap search to regions marked as
executable in the section table.

We basically reuse the method proposed in [179, 31], meaning that we perform a
linear scan within the gaps. Whenever we encounter effective NOPs, i.e. instructions
that have no effect on the program state except for increasing the program counter, we
simply proceed the scan and ignore them.

The effective NOPs found depend on the compiler used. While both the Intel Software
Developer’s Manual [32] and AMDG64 Architecture Programmer’s Guide [299] define a
list of preferred NOPs, additional variations do exist and are generated by compilers.
In order to determine these non-standard NOPs, we used capstone directly to isolatedly
disassemble all instructions found in the ground truth and collected those being disas-
sembled as instructions containing the nop mnemonic. Furthermore, we included the CC
(int3) byte in our skip list. While not an effective NOP, it is frequently used as padding
byte by compilers to achieve 16- or 4-byte function alignment to speed up instruction

121

6. Code Recovery and Similarity Analysis

Name | Functions | TPR | FP | FN
Tz 272 .992 2 2
client7z 644 1998 | 249 1
pageant 1,104 1989 59 12
putty 2,425 .989 66 27
sfxsetup 472 1998 16 1
x64-client7z 836 .994 0 5
x64-sfxsetup 460 991 0 4
Combined | 6,213 | .991 | 392 | 52

Table 6.3.: Quality of manual labeling. Functions Number of functions as given in the
ByteWeight data set. TPR is the percentage of fully correctly, manually labeled
functions. FP are the false positives and FN the false negatives.

prefetch [300]. Ultimately, we ended up with a list of 41 byte sequences to be treated as
effective NOPs during Gap Analysis (accessible in the SMDA GitHub repository [290]).

If we otherwise encounter an instruction different from an effective NOP, we perform
another check. Because gap functions typically start only with a number of typical
instructions not depending on previous context as well [175], we compare the first byte
of the instruction against a list of commonly encountered start bytes. We statistically
evaluated all known functions starts from the ground truth (cf. Section 6.2.2) and used
only those 37 byte values that make up 99% of the cumulative distribution of all function
starts. If the first instruction matches, we perform a regular Function Disassembly
attempt as described in Section 6.2.1. Should this attempt be successful, we continue
the gap analysis behind the newly detected function border. Otherwise, we proceed to
the next gap, as we cannot reliably identify another potential FEP candidate in the
current gap. This procedure is continued until all gaps have been analyzed.

Once this second phase is concluded, we have found all functions we want to extract
from the given buffer. Because this recovery method of FEP-based function identifica-
tion and gap analysis is relatively aggressive, it is potentially prone to false positives.
However, the number of false positives is within an adequate range as shown by the
following evaluation and additionally, since we value completeness over accuracy, this is
acceptable for our purposes.

6.2.2. Evaluation

In this section, we evaluate SMDA with regard to its FEP detection heuristic and the
completeness and accuracy of CFG recovery.

We first introduce the three data sets used. Next, we evaluate the FEP discovery
heuristic based on references and prologues. Finally, we evaluate SMDA for its disas-
sembly quality against three other tools, namely the industry standard IDA Pro, its new
free competitor, Ghidra, and nucleus by Andriesse et al. [31].

Data Sets

With regard to data sets, we want to cover two aspects in this evaluation.

122

6.2. SMDA: Effective Code and Control Flow Recovery from Memory Dumps

First, we want to achieve comparability with previous works. Thanks to the increasing
emphasis on reproducibility, these data sets are easily available.

Second, we want to specifically address memory dumps and malicious software. Best
to our knowledge, no related work addressed this aspect yet, which is why we created a
data set of our own to allow a disassembly quality benchmark.

The data sets used in the following are in detail:

e ByteWeight as used by Bao et al. [175]
e The SPEC CPU2006, servers and glibc data set as used by Andriesse et al. [31]

e Malpedia57, a manually annotated sampling of memory dumps found in Malpedia

While the composition of ByteWeight was critized to be flawed for the evaluation
of machine learning approaches because of significant code overlap in training and test
data [31], we can still use it in our context as we do not rely on such a division. This data
set we refer to as G'p consists in total of 68 32bit and 64bit Windows PE files, compiled
with Microsoft Visual Studio in O1 and O2 optimization levels, and thus matches well
what SMDA has been designed for. The data set provides both the compiled binaries
and meta data files containing the ground truth about 102,532 function start and end
locations but no information about instruction borders.

We additionally use the Bao data set to derive a secondary corpus ByteWeight* with
the following variation: We produce memory dumps of all binaries in the same way as
described in Section 4.3.2. Because the mapping for all files shifts code offsets from RVA
0x400 to 0x1000, the ground truth is easily adapted. To additionally raise the difficulty
for disassemblers, we overwrite the PE headers with null bytes, making recovery of
structural information using PE header data impossible. The G, data set is otherwise
identical in its content.

Andriesse et al. [30] did a thorough evaluation on the state of disassembly in 2016,
using the SPEC 2006 benchmarking suite, as well as a collection of servers and glibc
as a base. Commendably, they provided a full (Linux) build environment and ground
truth files for the data sets used in [30, 31]. We obtained a license for SPEC 2006 in
order to use it in our evaluation as well and maximize comparability. Indeed, the build
environment produced Linux binaries that exactly matched the provided ground truth.
We also tried to replicate the build procedure for Windows binaries, which was more
complicated as no environment could be provided due to licensing issues of Microsoft
Windows and Visual Studio. Not being able to match the exact Windows version and
MSVC, we sadly were not able to achieve an exact reproduction of the binaries that
would match the ground truth. For this reason, we had to forego the PE side of their
corpus. The Linux corpus G4 consists of 304 SPEC binaries in optimization levels OO0-
03, 20 server binaries and one 64bit glibc binary, altogether containing 803,602 functions
with 55,698,481 instructions.

The third and final data set is Malpedia57, denoted as Gj;. It is a data set that fo-
cuses on memory dumps of real-world malware samples. We used 57 randomly sampled
memory dumps from Malpedia, covering 56 families. Because source code was not avail-
able for these malware samples, we had to produce ground truth in a different way. We

123

6. Code Recovery and Similarity Analysis

decided to use IDA Pro as a tool, load the memory dumps manually with no code detec-
tion heuristics enabled and then manually annotated all code found in these samples to
define ground truth, producing 21,920 labels for functions with 1,335,293 instructions.
Due to the tediousness of this procedure, we limited the effort spent for annotation to
80 hours, resulting in the mentioned 57 samples.

To show that our manual labeling is sufficiently accurate and matches the quality
of the other ground truth, we also manually labeled a selection of binaries from the
ByteWeight data set, which was close due to also being PE files. For methodology, we
decided to only count functions as correct for which we labeled both their function start
and all instructions inferred by function end in accordance with the ground truth. The
results are shown in Table 6.3. As can be seen, with our manual annotation we achieved
a high TPR of 99.16% and a F1 score of 0.965 overall. The majority of false negatives
in our manual labeling were unreferenced nullsubs (i.e. single C3 (retn) instructions),
which provide negliable value to analysis. The high number of false positives for client7z
actually reveals a mismatch of information generated by the compiler, as most of the
manually identified functions are actually referenced by other code but seemingly did not
show up in the ByteWeight ground truth (which was inferred from PDB files, according
to the paper).

Accuracy of Function Entry Point Discovery

Before we evaluate SMDA’s ability to produce accurate disassembly itself, we first ex-
amine the heuristics used for function entry point discovery as used in the first phase of
operation. For this, we separately analyze the reference counting and prologue detection.

Reference Counting. Table 6.4 summarizes the results. No ground truth for the
number of control flow references to function starts is available for any data set. Because
of this, we resort to the evaluation of correctness additionally considering the number
of references identified and function starts defined by SMDA expressed in true and false
positives and precision. The results are based on all FEP discovery methods available to
SMDA, prologue identification, the code reference heuristic, and gap search. A refcount
above zero indicates that the FEP was located using the code reference heuristic, while
a refcount of zero means the FEP was found through gap search.

The presence of a prologue as defined in Table 6.2 is generally decoupled from the
occurrence of references. But as discussed in more detail in the following, they very
frequently occur in parallel.

Depending on the data set, between 20.19% and 45.08% of the function starts identified
by SMDA had no related code references and were only recovered through the Gap
Analysis phase. Reading the results the opposite way, this means that between 54.92%
and 79.81% of function starts can be identified through the FEP heuristic presented
in Section 6.2.1. This supports the assumption stated earlier and shows that a decent
number of function starts can be identified prior to any disassembly by simply scanning
the buffer once and correlating the results. Looking at the reliability of the heuristic
across all data sets, FEP candidates identified through more than one reference are

124

6.2. SMDA: Effective Code and Control Flow Recovery from Memory Dumps
Bao Andriesse
refcount TPs FPs PPV Occurrence | TPs FPs PPV Occurrence
0 96,589 6,944 .933 45.08% | 357,642 122,734 744 40.67%
1 39,481 2,980 .930 18.43% | 229,251 591 .997 26.07%
2 25,459 206 .992 11.88% 98,012 109 .999 11.14%
3 13,650 58 .996 6.37% 47,017 42 .999 5.35%
4 8,141 64 .992 3.80% 31,074 25 .999 3.53%
5-8 13,594 55 .996 6.34% 50,205 30 .999 5.71%
9-16 8,481 31 .996 3.96% 28,652 11 1.00 3.26%
17-32 4,260 16 .996 1.99% 16,625 2 1.00 1.89%
33-64 2,344 0 1.00 1.09% 9,964 1 1.00 1.13%
65-128 1,181 0 1.00 0.55% 5,543 2 1.00 0.63%
129-256 625 1 .998 0.29% 2,926 0 1.00 0.33%
257-512 298 0 1.00 0.14% 1,440 0 1.00 0.16%
513-1,024 125 0 1.00 0.06% 713 0 1.00 0.08%
1,025-2,048 27 0 1.00 0.01% 319 0 1.00 0.04%
Malpediab7 All
refcount TPs FPs PPV Occurrence | TPs FPs PPV Occurrence
0 4,332 1,183 786 20.19% | 458,563 130,861 778 41.12%
1 8,063 749 .915 37.58% | 276,795 4,320 .984 24.82%
2 3,490 191 .948 16.27% | 126,961 506 .996 11.38%
3 1,577 78 .953 7.35% 62,244 178 .997 5.58%
4 915 44 .954 4.27% 40,130 133 .997 3.60%
5-8 1,482 85 .946 6.91% 65,281 170 997 5.85%
9-16 822 43 .950 3.83% 37,955 85 .998 3.40%
17-32 438 29 .938 2.04% 21,323 47 .998 1.91%
33-64 184 16 .920 0.86% 12,492 17 .999 1.12%
65-128 96 8 .923 0.45% 6,820 10 .999 0.61%
129-256 40 3 .930 0.19% 3,591 4 .999 0.32%
257-512 11 1 917 0.05% 1,749 1 .999 0.16%
513-1,024 3 1 750 0.01% 841 1 .999 0.08%
1,025-2,048 - - - - 346 0 1.00 0.03%

Table 6.4.: Reliability of function entry point detection (prologue, code reference, and gap search
combined) provided by SMDA for all three data sets and combined. TPs: true
positives, FPs: false positives, PPV: Precision, Occurrence: fraction of identified
function starts with the given number of references (refcount).

almost always correct as the precision of 0.996 indicates and even those with a single
reference are correct in 98.4% of cases. We manually inspected a subset of the cases
where more than one reference lead to a false positives and found that they were almost
entirely connected to SMDA’s tailcall detection and the decision taken where to define
additional function starts in these cases.

With respect to the different data sets, the heuristic achieves the highest precision
on the Andriesse data set which consists solely of Linux binaries. Here, even single
references are indicators for actual function starts 99.7% of the time. On the other
side, the Gap Analysis performed least precise on this data set, which is related to the
extensive use and structural specifities of exception handler constructs in the code base,
which lead to a relatively high number of false positives.

125

6. Code Recovery and Similarity Analysis

For the ByteWeight and Malpediab7 data sets, the precision for single reference func-
tion indications is at 93.0% and 91.5% respectively. The heuristic seems generally to
perform worst on the malware data set, where also higher reference counts apparently
lead to false positives.

The reason for this is tied to two specific families: win.bolek, win.corebot. In
win.bolek, we find use of the Heaven’s Gate technique [253, 254] for switching between
32bit and 64bit execution mode as noted earlier in Section 4.4.2 as well as a range of
functions in 64bit Intel assembler. In the ground truth, the 64bit code has been excluded,
but as the specific code areas in themselves also use code references, they are mistakenly
picked up by the heuristic and lead to potential false positives. The most false positives
originate however from win.corebot, where a full 64bit binary is contained in a data
section called “x64”. It is in fact a 64bit version of the CoreBot, which is deployed in case
a 64bit version of Windows is detected. Naturally, this second PE file contains numerous
relative code references, which could not be discarded during analysis because SMDA
(similarly to all other disassemblers) does not expect overlayed, unmapped files in a data
section. Expectedly, this also affects Gap Analysis. Both samples together cause 492 of
499 FPs with two or more references, which would otherwise put the Malpediab7 results
in line with the other data sets.

Overall, the FEP detection heuristic based on reference counting has proven to be a
very reliable instrument for locating function entry points. Considering that Malpedia57
consists entirely of memory dumps, this shows that the heuristic can even be applied
without making assumptions about where to expect code or data, making it suitable for
dealing with shellcode.

Prologue Detection. Using the four byte sequences defined as prologues in Sec-
tion 6.2.1, we assess that in total 252,070 of 1,115,209 functions (22.60%) recognized
by SMDA have one of these prologues, out of which 58,596 are not also identified by
a reference and thus a gap function. The heuristic produces only 254 false positives
(overall PPV: 0.999), all of which occur in the PE files and none in the ELF files of the
Andriesse data set. Interestingly, all of the positively identified gap functions are in the
Andriesse data set. As a result, this means that no function with one of these prologues
in the Bao and Malpedia57 data sets do not also have a code reference.

We also used YARA to scan for all 4 of the prologue byte sequences in the data sets,
which revealed another peculiarity with regard to which of these sequences appear in
which data sets. Both variations of the sequence mov edi, edi; push ebp; mov ebp,
esp (byte sequences 8B FF 55 8B EC and 89 FF 55 8B EC) occur only in the PE data
sets. This is most likely a result of mov edi, edi being intended only as a placeholder
to enable hot patching [296] as explicitly introduced by Microsoft [301].

The instruction sequence push ebp; mov ebp, esp on the other hand does have an
ambiguous binary representation and can be produced by multiple byte sequences be-
cause the direction bit in the opcode field and swapping register modifiers yields two
semantically equivalent sequences.

The variation 55 8B EC seems to be preferred by the C/C++ compiler in Visual
Studio, as it appears dominantly in the Bao and Malpediab7 data sets. A respective

126

6.2. SMDA: Effective Code and Control Flow Recovery from Memory Dumps

YARA rule consisting only of these three bytes produces just 14 hits in the entirety of
the Andriesse data set and all of them have been confirmed to not be instructions (but
coincidentially data fragments).

The 55 89 E5 variation similarly does not at all appear in the Bao data set but in 5
samples of the Malpediab7 data set:

e in win.dyre, it appears seven times in code fragments distant from the main code.
We assume this is a set of functions manually written in assembler as they contain
a specific construct or rather trick related to a call instruction and string usage
that is very unlikely to be generated by any compiler.

e in win.locky and win.bedep, it appears once each, again in functions that based
on their register usage might originate from manually written assembly.

e in win.corebot, the byte sequence appears twice as part of Heaven’s Gate, whose
implementation is written in inline-assembly.

e in win.pony, it appears as part of the 3rd party library aPLib, whose source code
is written in assembler.

e in win.tinba and win.matsnu, the sequence fully replaces occurrences of 55 8B
EC. The commonality of these families is that their source code is written in as-
sembler, as both the linker field in the PE header and certain idioms in their code
indicate.

Overall, the prologue detection greatly benefits the location of FEP candidates for ELF
files and serves as a good supporting feature for PE files.

Evaluation of Disassembly Quality

Before we present and discuss the evaluation results for disassembly quality, we have
to clarify one important aspect with regard to how a specific code entity is treated
with respect to the ground truth. This code entity are stubs for referring to external
functions, which exist for both ELF and PE files and may depend on compiler settings.
Various disassemblers have different strategies for whether or not recognizing these stubs
as code, which can significantly impact their results (by influencing the count of true
and false positive function starts), especially with larger stub collections in small pro-
grams. Additionally, the disassemblers are used in batch mode, meaning their execution
is automated and no further manual choice of settings is taken.

In our evaluation we only consider four disassemblers, the two strongest from An-
driesse’s evaluation (IDA Pro and nucleus), we add Ghidra (version: 9.1.2) as a new
contender and SMDA (version: 1.2.5) as introduced in this dissertation.

Out of these four disassemblers (Ghidra, IDA Pro, nucleus, and SMDA), all except
nucleus consider the jmp thunks potentially found in an ELF files’ PLT section as func-
tions and thus code. All four disassemblers consider jmp thunks encountered in PE files,
when compiled with Visual Studio and incremental linking enabled [302] as functions
and thus code.

127

6. Code Recovery and Similarity Analysis

Ghidra 9.1.2 IDA Pro 6.7 IDA Pro 7.4 nucleus smda 1.2.5
GT pack compiler OPT | TPR PPV | TPR PPV | TPR PPV | TPR PPV | TPR PPV
Ga glibc gec510-64 - | .001 .001 | - - | .967 .990 | 921 691 | 944 875
Ga servers gee510-32 - .996 1.00 | .871 917 | 967 .998 | .983 979 | 981 973
Ga servers gceb510-64 - 992 1.00 .856 901 .959 1.00 979 .983 .982 .962
Ga servers llvm370-32 - 766 1.00 | 840 919 | .867 1.00 | .985 .993 | 985 .958
Ga servers llvm370-64 - .992 1.00 | 826 897 | .942 1.00 | .970 .991 | .962 .959
Ga SPEC (C) gee510-32 00 .994 1.00 | .800 999 | .994 1.00 | .991 1.00 | .928 .971
Ga SPEC (C) gec510-32 Ol .988 1.00 | .770 999 | .931 .995 | .982 987 | .992 .992
Ga SPEC (C) gee510-32 02 .987 1.00 | 711 997 | .901 .997 | .913 .941 | .862 .981
Ga SPEC (C) gee510-32 O3 .987 1.00 | .663 998 | .891 .995 | .927 945 | .854 .982
Ga SPEC (C) gee510-64 00 991 1.00 | 800 .999 | .994 1.00 | .991 .999 | .981 .913
Ga SPEC (C) gec510-64 Ol .987 1.00 | .764 992 | 919 1.00 | .982 979 | .991 .91
Ga SPEC (C) gee510-64 02 .984 998 | 716 991 | .826 1.00 | .926 .969 | .872 .989
Ga SPEC (C) gee510-64 O3 .986 998 | 665 984 | 799 1.00 | .936 971 | .869 .983
Ga SPEC (C) llvm370-32 00 .985 1.00 | .803 998 | .820 1.00 | .991 1.00 | .981 .899
Ga SPEC (C) llvm370-32 Ol 697 1.00 | 784 .998 | .802 1.00 | .967 .982 | .967 .995
Ga SPEC (C) llvm370-32 02 624 1.00 | .689 .998 | .724 1.00 | 973 .983 | .969 .994
Ga SPEC (C) Ilvm370-32 O3 616 1.00 | 677 998 | .716 1.00 | .974 .985 | .968 .994
Ga SPEC (C) llvm370-64 OO0 991 1.00 | .802 .978 | .994 1.00 | 992 1.00 | .977 .923
Ga SPEC (C) llvm370-64 Ol .983 997 | 773 997 | .897 1.00 | 952 975 | .862 .995
Ga SPEC (C) llvm370-64 02 .987 997 | 683 996 | .844 1.00 | .963 975 | .848 .992
Ga SPEC (C) Ilvm370-64 O3 .987 997 | 669 996 | .843 1.00 | .963 .976 | .846 .990
Ga SPEC (C++) gee510-32 00 .997 1.00 | 928 981 | 996 1.00 | .987 1.00 | .992 .961
Ga SPEC (C++) gec510-32 Ol .995 1.00 | 847 975 | 944 996 | .974 995 | 988 .969
Ga SPEC (C++) gee510-32 02 .995 1.00 | .806 .965 | .917 .973 | .929 915 | .803 .919
Ga SPEC (C++) gec510-32 03 .995 1.00 | 757 962 | .906 .970 | .941 912 | .794 .874
Ga SPEC (C++) gec510-64 00 .997 1.00 | 927 980 | 996 1.00 | .987 .998 | .987 .911
Ga SPEC (C++) geebl0-64 Ol .995 1.00 | .783 969 | 923 1.00 | .972 .988 | .986 .961
Ga SPEC (C++) gec510-64 02 .995 .999 | 670 956 | 874 1.00 | .923 916 | .773 .926
Ga SPEC (C++) gec510-64 O3 995 999 | 622 951 | 846 1.00 | .943 915 | 759 .867
Ga SPEC (C++) llvm370-32 00 .997 1.00 | .895 978 | .994 1.00 | .989 .906 | .956 .862
Ga SPEC (C++) 1lvm370-32 Ol .990 1.00 | 872 979 | 948 1.00 | .941 925 | 952 .938
Ga SPEC (C++) llvm370-32 02 .985 1.00 | .762 967 | .890 1.00 | .968 .883 | .862 .908
Ga SPEC (C++) 1lvmn370-32 O3 .982 1.00 | .748 967 | .883 1.00 | .969 .883 | .841 .908
Ga SPEC (C++) llvm370-64 OO0 .998 1.00 | 893 962 | .996 1.00 | .988 .905 | .956 .857
Ga SPEC (C++) llvm370-64 O1 .996 1.00 | .825 977 | .913 1.00 | .882 914 | .846 .942
Ga SPEC (C++) llvm370-64 02 .994 999 | 748 964 | 859 1.00 | .939 .873 | 775 916
Ga SPEC (C++) llvmn370-64 O3 .994 999 | 738 963 | 859 1.00 | .942 .874 | .760 .919
Gp ByteWeight msvcl0-32 O1 804 952 - -| 835 996 | .975 .923 | .992 .935
Gp ByteWeight msvcl0-32 02 809 950 - -] 833 .996 | .975 .894 | .992 .927
Gp ByteWeight msvcl0-64 Ol 675 999 - -] 813 999 | .949 969 | .975 .983
Gp ByteWeight msvcl0-64 02 7703999 - -] 811 999 | .948 938 | .972 .981
Gps« ByteWeight* msvcl0-32 - 775 .953 - - 743 .928 745 .621 967 .910
Gp. ByteWeight* msvcl0-64 - ‘ 653 999 ‘ - - ‘ 543999 ‘ 645 413 | .932 .985
Gy Malpedia57 - - | 819 940 | - -| 847 964 | 914 627 | .976 .935

Table 6.5.: Results (recall and precision) of function entry point discovery for the disassemblers,
best F1 score highlighted in green. Original IDA Pro 6.7 results taken from Andriesse
et al. [31] (thus no results for ByteWeight and Malpedia57) and reproduced with IDA
7.4.

In our opinion, it does make sense to consider these stubs generally as functions and
code because typically they are frequently referenced by other code and consist of code
themselves, albeit it being a single jmp instruction. We therefore include all of these stubs
in the ground truth. On the other hand, external functions which are just represented
by data in the form of an offset are not considered functions as they also do not consist
of code. However, both Ghidra and IDA Pro will include them when iterating over the
list of functions, carrying a flag about their so-called external status. Using this flag, we
discard these function entries for these two disassemblers.

128

6.2. SMDA: Effective Code and Control Flow Recovery from Memory Dumps

Now to continue with the evaluation, we align our evaluation design with the works
presented by Andriesse et al. [31] as much as possible. For this, we similarly group by
compiler and optimization level and use the geometric mean across results within each
group to penalize outliers. For comparability, we list the results they obtained using
IDA Pro 6.7 in 2017 and re-run the evaluation with a more recent version, IDA Pro 7.4.

We limit our evaluation on function entry points and instruction recovery, as the results
for function starts and boundary detection can be generally considered alike as seen in
the evaluation done by Andriesse et al. [31] and we consider function starts more relevant
in the given context as we focus on heuristics for FEP discovery. We do not provide a
full listing of results of instruction recovery as all disassemblers usually achieve an F1
score of 0.950 or above, as previously observed by Andriesse et al. [31]. Instead, we
discuss them briefly along the other aspects.

The overall results are summarized in Table 6.5. We will discuss the results by data
set.

Andriesse data set (G4). An immediate observation is Ghidra’s strength for the
majority of Linux binaries. We believe this is a consequence of the extensive amount
of analysis modules available in Ghidra, which are capable to recognize numerous code
constructs including exception handlers and reconstruction of virtual tables etc., which
especially should explain the great results for C+4 and all optimization levels. One
observation is however, that Ghidra’s TPR dropped heavily for a number of param-
eter groups. This is most visible for the glibc group, where Ghidra achieves only a
0.11 TPR. We excluded that the error lies in our evaluation scripts by manually using
Ghidra on the given binary and observed that Ghidra indeed does produce only very
few identified functions. Inspecting the other groups, we noticed similar cases in which
Ghidra would fail, not giving an error and producing limited output. Notice that IDA
Pro similarly struggles with the SPEC (C), 11vm370-32 binaries, which may suggest
that this configuration simply does not match the heuristics used by Ghira and IDA Pro
as well as other binaries.

Comparing the results of IDA Pro 6.7 and 7.4, we observe a consistent, significant
improvement, competing in many cases with Ghidra. IDA Pro generally produces better
results for optimization level 00 and falls off at level 02-03. This is also in line with
what was reported by Andriesse et al. [31].

Nucleus still outperforms IDA Pro 7.4 in many cases and note again that nucleus
suffers slightly from the previously discussed interpretation of ground truth with regard
to the PLT section, as it would otherwise have achieved better results.

SMDA despite not being originally developed for handling ELF files, still achieves solid
results for O1/02, even outperforming Ghidra in a few cases. Similarly to the other
disassemblers, SMDA suffers from higher optimization settings. This is mostly related
to failure in recognition of exception handling and non-returning calls, which especially
interferes with the implemented Gap analysis. For improvements on Linux binaries, an
adaption of nucleus’ methodology for connecting basic blocks as an alternative method
for Gap analysis appears a logical step to improve results in future work.

129

6. Code Recovery and Similarity Analysis

With respect to instruction recovery, nucleus achieves the overall best results with an
F1 score between 0.985 and 0.997 across all groups, which is probably a consequence of
its underlying linear sweep in the first phase. Ghidra reaches F1 scores between 0.976
and 0.998 with the mentioned outliers for 11vm370-32: 0.820 for servers and 0.885 for
SPEC (C). IDA Pro 7.4 achieves an F1 score between 0.973 and 0.993 with similar
outliers of 0.921 for SPEC (C) and 0.944 for the servers group. SMDA has no heuristics
tailored for C++ code and recovers instructions only with a F1 score of 0.950 and 0.960
on the respective groups but also achieves a F1 score between 0.975 and 0.990 for the
remainder.

Bao data set (Gp). On the benign PE data set, SMDA achieves both the highest
recall and F1 in all cases, specifically because it cleanly recognizes the aforementioned
chains of jmp thunks to their full extent as present in some of the binaries. The reduced
precision of SMDA for 32bit code originates in mistakenly recognized tiny functions in
gaps such as nullsubs (functions consisting entirely of a ret instruction), which are not
part of the ground truth.

Nucleus produces results in similar quality to SMDA but suffers from similar misclas-
sifications.

Ghidra and IDA Pro perform significantly worse on the PE binaries than ELF binaries.
The major reason are missed functions in the jmp thunks, which has impact similar to
the missed PLT section for nucleus on the ELF files.

Bao data set, dumped (Gpg.). When confronted with the same binaries of Gp, but
after being memory dumped and without PE header, the disassemblers have to work in
their respective raw binary mode as no structural information is available. For Ghidra,
this means only a smaller performance loss of 3-5% in TPR, while IDA Pro suffers more,
losing 10% in TPR for 32bit and 25% for 64bit code.

When Nucleus is not able to restrict its search to a code section, the whole buffer is
analyzed. As a result, this leads to a significantly lowered precision with many false
positives outside of the actual code.

On memory dumps, SMDA can show its full strength as it uses the same methodology
regardless of how the code is organized in the binary (unmapped/dumped) and as a
result only loses slightly in accuracy due to the inavailability of information on executable
section borders otherwise provided by LIEF. Opposite to Nucleus, SMDA will only search
code in gaps between already established functions, avoiding the false positives outside
these boundaries at the cost of a few missed functions at the borders.

Malpedia57 data set (Gps). The same trend as for the dumped ByteWeight data set
G s« shows also for the Malpediab7 data set. Ghidra and IDA Pro achieve a TPR of
0.819 and 0.847 respectively, which again is probably related to less applicable heuristics
compared to properly parsable PE files.

Nucleus covers 91.4% of the expected functions but again has a low precision of 0.627
because the full buffers are scanned.

SMDA once more is not affected by the changed data representation and recovers solid
97.6% of the expected functions with an overall F1 score of 0.948.

130

6.3. MCRIT: MinHash-based Code Relationship Identification

With respect to recovered instructions, Ghidra finds 88.84%, IDA Pro finds 89.53%,
and SMDA finds 98.78% of the instructions. Nucleus again due to its linear sweep
finds the most with 99.74% but has only 0.480 precision as a lot of data is mistakenly
recognized as code as well.

Summary

In summary, the evaluation has shown that the approach of SMDA with its presented
heuristics for FEP discovery is definitely capable of recovering code and Control Flow
Graph information, especially for the scenario of concern in this thesis, which are memory
dumps for Windows malware, without requiring further assumptions about the structural
layout of buffers presented to it. This means in conclusion that RQ¢ has been successfully
answered.

6.3. MCRIT: MinHash-based Code Relationship Identification

In the previous section, we demonstrated that accurate disassembly of memory dumps
is possible and sufficiently achieved by our method SMDA. In order to answer research
questions RQ)7 on third-party library usage and R@g on code sharing among Windows
malware families, we first need to be able to estimate code similarity.

Code similarity is a popular research topic in recent years. Haq and Caballero list
more than 50 works since 2010 on the topic in their survey [33]. However, only 17 of
them have been evaluated on 10 malware samples or more and generally for none of
these, their proof of concept code is available either as open source or binary. Thus, we
cannot simply use one of the existing proposed methods out of the box but have to find
one ourselves. We therefore study the theory described in these works and gather best
practices that we can use in our own approach.

For the granularity of our approach, we consider functions as unit to operate on, similar
to most other approaches [33]. Comparison on the level of full binaries would not give
us insight into which components are responsible for overlaps. Basic blocks or elements
even below would likely not carry enough context for what we aim to achieve in this
study.

We again start with a definition of requirements for our solution. Obviously, the ap-
proach should provide a reliable estimate of similarity among functions, allowing inexact
matching to accomodate for changes in code. Because we ultimately want to use the
method on the Malpedia corpus which consists of 95% families in 32bit code only (cf.
Section 4.4.2), we do not pursue a cross-bitness or even cross-architecture solution but
instead optimize for matching code in the same bitness and architecture.

Next, the method should allow for scalability into millions of functions, while main-
taining a fast response time, e.g. a matter of seconds for the lookup of a full sample.

Finally, the representation for functions in the index should be efficient, ideally signif-
icantly smaller than the code indexed itself.

131

6. Code Recovery and Similarity Analysis

In this section, we now introduce MCRIT, the MinHash-based Code Relationship
Identification Toolkit, our approach that allows efficient one-to-many code similarity
analysis based on exact and MinHash-based locality-sensitive hashing. We first explain
the methodology behind MCRIT and discuss both code hashing methods in detail. Next,
we conduct an evaluation to optimize the configuration of the system and show that it
fulfils the requirements.

6.3.1. Methodology

MCRIT uses two methods to enable efficient one-to-many code similarity analysis: ex-
act and locality-sensitive hashing. Hashing is a well-researched method for similarity
search [303].

We use immediate hashing of function contents to identify exact code duplicates across
samples. To increase robustness, we apply transformations that remove absolute ad-
dresses from the disassembly, making it more robust against relocation. This method
is called position independent code (PIC) hashing and has been described in detail by
Cohen and Havrilla [187]. We revisit their approach in the next section and describe
how we use it in the context of MCRIT, referring to it as PicHash.

We additionally use a technique to also perform fuzzy matching. This is necessary
to detect variants of functions that may exist due to slight changes to the source code
when the compiler or optimization level is changed. We choose a method based on
locality-sensitive hashing (LSH), in which the hashing used preserves the similarity of
hashed objects, making it suitable for nearest neighbor search. LSH-based methods are
known for their great scalability and can provide efficient lookups, as techniques ex-
ist that allow to lower the algorithmic complexity for full pair-wise comparisons from
O(n?) to O(nlogn) and allowing single lookups in O(logn) when accepting a certain
degree of error. These methods have been for example successfully applied to genetic se-
quence [304] and association [305] analysis, as well as text [208] and image [306] similarity
detection. With regard to code similarity, min-wise independent permutations locality
sensitive hashing (short: MinHash [208]) and SimHash [215] have been used successfully.
While these approaches use different similarity measures they have been compared in
various studies. Henzinger [307] showed in an experiment using 1.6 billion webpages
that SimHash seems to have higher precision, while MinHash has higher recall. Shri-
vastava [308] additionally showed experimentally that MinHash outperforms SimHash
when used on binary vectors. For these reasons, we favor MinHash over SimHash. Best
to our knowledge Jin et al. [207] were the first to use MinHash for code similarity and it
has been used multiple times since then [211, 193, 195, 205, 196]. Notably, Dullien [214]
has shown that using SimHash leads to solutions providing decent results as well.

In order to use MCRIT for code similarity measurements, the data of interest first
has to be indexed using both the PicHash and MinHash method. It makes sense to
allow annotation of arbitrary meta data to indexed functions, allowing association of
functions with information such as file hashes, malware families and versions, or free
and open source software (FOSS) library names.

132

6.3. MCRIT: MinHash-based Code Relationship Identification

Intended use of the system are lookup queries that can consist of a single or a set of
functions and a threshold for MinHash similarity. The result of a query are all functions
with their matching score, including their corresponding meta data, which enables e.g.
aggregation by file hash for one-to-many program comparisions.

A reference implementation of MCRIT has been written in Python and is publicly
available [309].

PicHash

As motivated previously, we use a direct function hashing method, for finding literal
code duplicates. Cohen and Havrilla [187] applied this method to the CERT Artifact
Catalog, a database of disassembled functions. In their experiments, they were able
to reduce an initial 1.5 billion functions to just 39 million unique functions in their
PIC representation. We interpret this as another indicator that tremendous redundancy
exists in collections of binary files, as argued by us earlier in Section 4.3.3 as well.

Given the disassembly of a function as input, we perform the same transformations as
suggested by them. To achieve position-independent code hashing, we need to perform
wildcarding of absolute and relative code and memory references. In detail, we replace
values that fulfil the following conditions with zero bytes as proposed in [187]:

e All operands that can be interpreted as memory references.

e All immediate operands that could be interpreted as an address A within the
current buffer B, i.e. BaseAddress <= A < BaseAddress+|B| (cf. Section 6.2.1).

We also replace relative call and jump offsets when they are interprocedural, i.e. point
outside of the function’s scope. This additionally hardens the PIC hashes against changes
caused by padding bytes or code reordering. We leave all other opcodes, operands, and
immediates untouched.

Just as proposed in [187], we now order all instructions in the given function by their
address. We then concatenate their byte representation and use SHA256 for deriving a
cryptographic hash. To preserve space, we only take the first 8 bytes as final represen-
tation of our PicHash.

Note that this method can be applied to functions of arbitrarily small size but it does
not capture semantics of the functions in some cases, as explained in [187]. A prominent
case are code stubs such as import thunks or wrapper functions. For example, import
thunks are simple functions that consist of a single jmp dword ptr [offset] instruc-
tion, where the offset is typically a WinAPI function’s start address. Because the offset
would be masked by the PIC hashing method, all import stubs are represented by the
same hash. Similar cases exist for wrapper functions that simply pass on arguments
to a function but carry out additional error handling. In cases of functions with iden-
tical function signatures, their wrappers may be byte-identical. However, Cohen and
Havrilla [187] note that they found most PIC hashes to represent functions with unique
behavior.

We will study the effects of small function ambiguity with regard to function labels as
provided by our ground truth in detail in the evaluation (cf. Section 6.3.2).

133

6. Code Recovery and Similarity Analysis

MinHash

The second method for indexing and measuring similarity of code is based on MinHash.
In this section, we give an overview of the theory of the approach and explain the specific
techniques from recent findings that we use to improve the method.

In the original work, Broder [208] defines resemblance and containment between text
documents as a value between 0 and 1, expressing how similar they are. Resemblance
can be computed on a fixed-sized sketch, i.e. a (smaller) representation derived from
the original documents. Furthermore, he assumes that documents can be interpreted as
sets of tokens d, for example shingles of consecutive words (i.e. n-grams). This allows
Broder to define the calculation of resemblance as a set intersection problem, which is
equivalent to the Jaccard similarity [280]:

|AN B
J(A, B) = AUT]

The core idea of MinHash is that the relative size of overlap between sets can be
approximated through a method of random sampling that can be done independently
on each document. This is proven by Broder through showing that the minimum values
of random permutations of the original sets are indeed unbiased estimates of the original
resemblance. For implementation, he argues that using a projection in form of a hash
function is a viable choice that will produce a negliable amount of collisions in practice.
Using k independent and uniform hash functions Ay, the (so-called k-hash) MinHash
signature my, for a document D consisting of tokens d is defined [310] as:

me(D) = min(n(d))

Broder furthermore states that for practical applications, the MinHash signature size
can be used to trade computation and speed for accuracy, with a value of £k = 100 or

kE = 200 providing sufficiently low estimation errors which are calculated as € = ﬁ [311].

For our use case, we want to use MinHashing for the following problem. Given a set of
functions f found in one program, we want to find similar functions in other programs.
We present the considered features and their representation in detail in the next section
and omit their discussion at this point.

Regardless of the features, in order to efficiently use MinHash and benefit from its
properties for this use case, we need to be able to use it for nearest neighbor search.
Among others, Rajaraman et al. [311] describe the theory behind the application of
MinHash as a locality-sensitive hashing scheme usable for nearest neighbor search. We
effectively want to find neighbors for each element in f and aggregate them by their
origin, which lets us estimate program similarity.

Rajaraman et al. propose the use of so-called bands, i.e. a division of the whole
MinHash signature of length k into d divisions of size r each, e.g. consecutive signature
entries. Now, by hashing those 7 entries again and sorting them into buckets managed

134

6.3. MCRIT: MinHash-based Code Relationship Identification

per band, we can derive a d-fold lookup table, grouping signatures that already match
in r signature entries each.

When we now want to find neighbors of a query signature, we can simply apply the
banding technique to the query signature as well and then perform lookups in all buckets
for entries that share the buckets. Joining the results from all bands, we end up with a
selection of candidates, that we need to perform the actual signature matching against.
According to Rajamaran et al. the probability p,,(s,d,r) that the MinHashes for a pair
with given Jaccard similarity s will at least match in one of d bands of size r is calculated
as:

Pm(s,d,r)=1—(1— sr)d

The resulting curve for this function is S-shaped and resembles a logistic function,
regardless of the constants d and r. This means that the matching probability increases
significantly with the actual similarity. In an example Rajamaran et al. show that for
d =20 and r = 5 (giving a signature length of 100), only one in 3,000 pairs of similarity
s = 0.8 will be a false negative. According to them, this scheme allows for sub-linear
and thus very time-efficient lookups of all functions in f against the whole index.

Further optimizations targeting efficient computation of MinHash have been researched,
for which we want to highlight two approaches. On the one hand, the use of k individual
hash functions may be computationally expensive. An alternative is to use just one
hash function h and synthesize further independent hash functions hj by transforming
the output of h using a single XOR operation with a random value in the output size
of h for each derived hash. As this causes a non-destructive permutation of bits, the
result is effectively a new hash function [311]. On the other hand, Li and Konig [312]
showed that storing only the one or two least significant bits per entry (so-called b-bit
hashing) opposed to the full 64 bits per entry in a MinHash signature can drastically
improve computation and reduce space consumption. Obviously, this modification in-
creases variance massively. However, they also showed that the signature length only
has to be increased by a factor of 3, when considering a threshold of 0.5 for resemblance
to achieve the same accuracy, yielding a 20x improvement in processing speed.

For our approach, we will combine the presented ideas and use k-hash b-bit MinHash
with XOR-synthesized hash functions and banding to enable efficient index lookups. We
use M fg’ to identify the parameters used, e.g. Mg, for MinHashing with a signature length
of 64 and a 8 bit representation per entry. This allows to choose a number of parameters
for which we will evaluate meaningful combinations in Section 6.3.2 in order to identify
a combination with the most promising tradeoffs. In addition, we use the concept of
segmentation for MinHash signatures in order to allow to split a signature into parts
that only contain hashes for certain features.

We will next address what is actually represented by the MinHashes and present our
considered features.

135

6. Code Recovery and Similarity Analysis

Feature Extraction and Representation

We now discuss how functions and code can be represented by derived features that are
usable for MinHashing. In the related work (cf. Section 3.3.2) we extensively discussed
the taxonomy of code similarity methods introduced by Farhadi et al. [188] and gave a
broad overview of techniques used in other works.

Text-based approaches are applied on full binary scale, therefore they do not fit our
requirement of function-level matching and are left out of scope.

Approaches that are token- or metrics-based are well researched and have been shown
to perform well. As examples of token-based approaches, Karim [190] as well as Walen-
stein et al. [191] used n-grams and n-permutations (short: n-perms) as representation for
comparisons. An n-perm are all possible orderings of a given n-gram, which is equivalent
to simply using sorted n-grams, with the idea to increase robustness against instruction
sequence reordering. N-grams are also close to the original MinHash idea, as they are
one of the most natural shingles.

Metrics-based approaches as introduced by Bruschi et al. [197] numerically summa-
rize certain features of functions, e.g. number of instruction, basic blocks, or specific
instruction types. Eschweiler et al. [199] did not use MinHash but relied on kNN clus-
tering for nearest neighbor search, using a selection of metrics as a primary method in
discovRE. They specifically showed that numerical features can be highly effective for
finding similar functions, even across optimization levels and architectures.

The most prominent approach in category 4 is the method presented by Dullien et
al. [200], which is the foundation for the BinDiff tool. To enable a similar way of
structural subgraph comparisons in conjunction with set similarity, Cesare et al. [203]
introduced flowgraph strings.

Behavorial-based approaches have been used primarily for cross-architecture matching
scenarios, which are out of scope for this work. As this class typically involves either
emulation or symbolic execution, these approaches are expected to be computationally
much more expensive compared to the features presented before. Important works have
been published by Jin et al. [207], Egele et al. [210], and Pewny et al. [211], which
use input-output pairs and blanket execution for basic blocks of functions, in order to
abstract code to its semantics.

Hybrid approaches are simply considered a combination of the previous categories.

A new class of approaches from recent years not covered in the taxonomy are based
on the natural language processing technique word2vec by Mikolov et al. [216]. One
of the best perfoming examples using embeddings is SAFE by Massarelli et al. [219].
While outperforming many other works, their approach uses a vector length of 100 with
64bit floating point values as representation, resulting in 800 bytes of storage required
per function. This exceeds the actual code of the functions to be represented by one
or more orders of magnitude in most cases (cf. Table 6.8), which violates one of our
requirements.

In summary, we are aiming for a single platform and can expect rather consistent
compiler usage as shown in Section 4.4.2. As we strive for matching efficiency in our

136

6.3. MCRIT: MinHash-based Code Relationship Identification

Instruction Normalized Instruction
push ebp S REG

mov eax, Ox14 M REG, CONST

Xor ecx, edx A REG, REG

jmp 0x4022a0 C CONST

lea eax, [rcx - 2] M REG, PTR

Table 6.6.: Examples for instruction normalization as used for n-perm tokenization. Instruction
describes the originally decoded instruction. Normalized Instruction is the corre-
sponding instruction with masked mnemonic and operands.

work, we will use a combination of token- and metrics-based techniques, as they both
provide good capture potential of a function’s characteristics and they are directly usable
with MinHash.

Token-based features

To enable the use of token-based features, the instruction stream of functions has to
be divided into subsequences. Before actually creating these subsequences, we first
normalize all instructions, by replacing the mnemonic and operands with tokens. The
idea behind this normalization is to derive more robust tokens, a technique that has
been used by several other approaches as summarized in the survey by Haq et al. [33].

Concretely, we replace the actual mnemonic with symbols for one of the 8 following
semantic categories:

e A: arithmetic/logic - e.g. add, and, inc, shl, ...

C: control flow - e.g. call, cmp, je, loop, ...

F: floating point - e.g. fadd, fcom, £1d, fmul, ...

e M: memory - e.g. lea, lods, mov, xchg, ...

P: privileged - e.g. hlt, int3, 1gdt, syscall, ...

S: stack - e.g. enter, pop, push, pushad, ...

X: extended - e.g. addpd, cvtpi2ps, vfmadd132pd, vxorpd, ...
e Y: cryptographic - e.g. aesdec, crc32, sha256msgl, xcryptebc, ...

At the time of writing, this scheme has a semantic classification for 741 instructions,
which were encountered during processing of code. The full list is available via the
SMDA GitHub repository [290].

Similarly, the operands are replaced with tokens of the classes, similar to what was
used by Adkins et al. [313]:

e CONST: for immediates
e PTR: for all pointer-based memory references

e REG: for registers, with subgroups for regular, segment (SREG), extended (XREG),
and floating point registers (FREG).

137

6. Code Recovery and Similarity Analysis

Examples for resulting transformations of this normalization scheme are shown in
Table 6.6 and Figure 6.2.

Once the instructions are normalized, we iterate over all basic blocks and derive all
n-perms of length n within them, for example n = 3 or n = 4. Should a block be shorter
than n instructions, we produce a single shorter n-perm of the respective length.

The idea of producing n-perms per block is that it provides token-based information
with respect to the control flow graph structure. This gives weight to smaller components
that would otherwise disappear if the processing instead would span across the basic
block boundaries and their respective (conditional) jump instructions.

After all instructions have been normalized and tokenized into n-perms, they already
have been generalized to a degree that will suffice the requirements of inexact matching.
Taking the string representation of the n-perms, they can directly be processed by the
following steps of the MinHashing procedure.

Metrics-based features

For metrics-based features, we consider a total of 29 potential numerical values as can-
didates. These values can be categorized as follows.

First, there are very basic values such as the overall number of instructions (num_ins)
and the number of basic blocks (num_blocks) as well as the number of control flow graph
edges (num_edges) between those blocks. The cyclomatic complexity can be calculated
from these values [314] as cyclomatic_complexity = 2 + num_edges - num_blocks.
Characteristic may also be outstandingly large blocks, which are represented by the
feature max _block_size. Eschweiler discussed also capturing a representation for the
amount of local variables, which we incorporate as (stack_size).

Further features are based on relationships in the CFG, such as the number of strongly
connected components (num_sccs) and related to this, the number of loops ((num_loops).
Another measure for complexity is known from source code metrics but can be also
derived for disassembled functions: the nesting depth ((nesting depth).

Features that target the interprocedural CFG are for example the number of calls
(num_calls), returns (num rets) but also incoming data and code references to the
function (num_inrefs) and all outgoing references from the function (num_outrefs).

Eschweiler also used counts specific to semantic categories of instructions, which proved
to be very reliable. As we already defined such a scheme for token-based features, it
makes sense to incorporate them for metrics as well. For the 8 classes we defined, we
use both the absolute counts as well as their relative share with regard to the total
number of instructions in the function of interest, denoted as num_ins_<CLASS> and
num_ins_<CLASS> rel respectively, totalling 16 more feature candidates.

As shown by Eschweiler et al. [199], not all of the values also discussed here are
suited for estimating code similarity. We conduct a two-way correlation analysis of these
features in Section 6.3.2 to determine the most expressive and complementing features.

138

6.3. MCRIT: MinHash-based Code Relationship Identification

One important aspect after having derived the metrics-based features for a given func-
tion is that they are exact values. Now, if they were directly used as input to the further
processing steps of MinHash, the transformation through hashing would lead to exact
comparisons, which is not in line with the required inexact matching capability for the
system.

We therefore propose the following scheme to enable inexact matching. We first note
that all values derived from the above features can be represented as discrete values. The
only features that are not direct count values and thus by definition already discrete are
the relative share of instructions classes, which can be simply rounded to their full
percentages, effectively mapping them to the range of 0 to 100.

To achieve fuzziness, we want to reduce a large set of values to a smaller set, e.g. by
grouping similar values together, a procedure known as quantization. One quantization
technique is to define value ranges to be represented by a single value, a so-called bucket.

To allow proportional fuzziness, we use bucket sizes that grow with the size of the
value they capture. As a baseline, we use powers of two as a scale and choose the bucket
values as follows. Apart from the value 0 which has its own bucket of 0, for any exponent
i € Np, we set a width of W; = 2% to create buckets in the interval R; = [2%, 22(”1)). As

a result, a value j falling into R; can be quantized using Q;(j) = 2 - L7]-

As an example, consider ¢ = 1, and thus W; = 2 and R; = [4,16). Given j = 11, and
with j € Ry, the bucket value for j is Q1(11) = 10.

An issue with bucketing arises with values close to the borders chosen for buckets, in
that values close left and right of a bucket border fall into separate buckets despite their
actual proximity. To overcome this issue, we can make use of the fact that MinHash
approximates set similarity. By representing values not by a single but multiple bucket
values, e.g. incorporating the bucket values to the left and right of the original bucket,
comparisons even in the unlucky border case will now result in a non-zero similarity. We
call the resulting tuple a LogBucket Triplet.

Picking up the previous example, j = 11 would now be represented by the set S; =
{8,10,12}. Additionally considering a neighbored value & = 12, which would normally
fall into a separate bucket @Q1(12) = 12, it would now instead be represented by Si =
{10,12,14}. Indirectly using the Jaccard approximation enabled through MinHash,

we get J(S;j,S;) = Igjg?}j = % = 0.5. Note that even values falling into buckets an
additional position further away (e.g. 14 or 6) achieve a similarity of 0.2 but all other

values result in no similarity. Only 0 is a special case for which we use a fixed triplet
{-1,0,1}

This property of inexact matching directly translates into MinHash. Assuming a
function with 11 instructions, we can apply) and determine the set of buckets as before
({8,10,12}). Now we can transform this set into strings by simply prefixing the bucket
values with the feature name, producing shingles num_ins:8, num ins:10, num_ins:12
which are compatible with the following steps of the MinHash procedure.

139

6. Code Recovery and Similarity Analysis

Example Function: Metrics-based Features

= Feature Value LogBucket Triplets
push esti
mov esi, 0x023C598C max_block_size 14 122 | 14 | 16
push esi num_calls 4 3] 4] 6
call dword ptr [0x02391294] num_ins_C 7 4 | 6 | 8
push 0x14 num_ins_S 9 6 | 8 | 10
pop eax num_ins_A_rel 8 6 | 8 | 10
push dword ptr [0x023C5978] num_ins_M_rel 17 14 | 16 | 20
mov word ptr [0x023C5980], ax stack_size 0 -1 | 0 | 1
mov eax, dword ptr [esp+0x10]
mov dword ptr [0x023C5988], eax .
call dword ptr [6x02389085] Token-based Features:
Xor eax, eax Instruction 3-grams (first 5)
cmp dword ptr [esp+0x8], eax [push esifHmov esi, 0x023C598C|Hpush est |
jz 0x023B4830

l [mov esi, ©x023C598CHpush esi|{call dword ptr [0x02391294]
[push esifHcall dword ptr [0x02391294]Hpush 0x14|

push dword ptr [esp+0x8]

[call dword ptr [0x02391294]Hpush 0x14]{pop eax

push eax
or eax, OxFFFFFFFF [push 0x14{{pop eax|{push dword ptr [0x023C5978]]
call 0x023B92C5
converted to escaped 3-perms:
¢ [M REG, CONSTH'S REGHS REG|
push esti
mov dword ptr [0x023C5978], eax |C PTRHM REG, CONSTHS REG'
call dword ptr [0x0239129C] |c PTRHS CONSTHS REGl
pop esi
ret 0x8 [c PTRHS consTH'S REG]
[s consTHs PTRHS REG|
o | [n [ms][0 |0 [e [0] [[0 | [oo | [hae] [o | [0es | [e] [0o | [e
| min || min || min || min || min || min || min || min || min || min || min || min || min || min || min || min
|LSBe |LSBB ILSBs ILSBa |LSBE |LSBa ILSBs |LSBB |LSBB |LSBa |LSBB ILSBR |LSBB |LSBB ILSBB |LSBS

109 | 52 | 76 (112 | 51 | 68 | 105 | 65 | 124|124 | 82 | 48 | 99 | 75 | 115 | 33

Figure 6.2.: A complete example for calculation of a M MinHash signature, segmented into 12
token-based and 4 metrics-based entries.

Example Generation for a MinHash Signature

Figure 6.2 gives an example for the full procedure of generating a MinHash signature
from a given disassembled function. The system is parameterized M §67 meaning that the
signature has a length of 16 and entries use 8 bits. The example input function consists
of 23 instructions in 3 basic blocks.

We can now determine metrics-based features as introduced in Section 6.3.1, for exam-
ple for the 7 features shown in diagram. Using the concept of LogBucket Triplets, we are
able to quantize the single discrete value into three normalized values and together with
the feature label arrive at 7 -3 = 21 strings that are processed by the hash functions.

140

6.3. MCRIT: MinHash-based Code Relationship Identification

Similarly, token-based features as introduced in Section 6.3.1 can be determined. In
the example, 3-grams are extracted and then converted into 3-perms using the escaping
for semantic instruction categories and operands. These are forwarded as input to the
hash functions as well.

For each output of a hash function A4 14, min calculates the minimum value and LS Bg
reduces the (by default 32bit) output to the specified number of Least Significant Bits,
in this case 8. The resulting MinHash signature then has 16 entries with values in the
range from 0 to 255.

To determine the similarity of signatures means to calculate their resemblance (cf.
Section 6.3.1). In this case it would be a field-wise comparison, dividing the number
of equal fields by the signature length 16. Two signatures having the same value in 12
positions would have a resemblance of]1% = 0.75.

6.3.2. Evaluation

In order to analyze if the proposed method fulfils the defined requirements, we conduct
an evaluation of several aspects. We first describe the data set used for this evaluation,
which consists of 16 very commonly used open source libraries in multiple versions each.

Next, we focus on the exact matching method of PIC hashing to get a better under-
standing of how the data set is shaped and what can be already achieved by this method
alone. This allows us to also investigate the effects of expected label ambiguity for small
functions. After this, we determine which feature configuration to use for MinHashing
by performing a correlation analysis. We then continue to evaluate further system pa-
rameters such as the MinHash signature length and composition with regard to token-
and metrics-based features. One goal in this context is to see how well short signatures
can still perform.

We conclude with an in-depth discussion of the most promising parameter configura-
tion.

Data Set

To evaluate the proposed method, we need a data set that provides us with (syntactic)
variations of semantically close or identical functions in order to show that the exact
and inexact matching produces results as expected.

An established way according to the survey by Haq et al. [33] is to create this kind of
ground truth by using several release versions of the same software projects, as we can
expect mostly incremental changes between versions but that they otherwise maintain
their functionality. Similar to other works [204, 213] before, we resort to using a selection
of commonly found third-party libraries.

In order to be able to determine pairs of similar functions within and across these
libraries on machine code level, one typically needs availability of function level symbolic
information (i.e. function names). The presence of this information generally depends on

141

6. Code Recovery and Similarity Analysis

Library ‘ MinVersion MaxVersion Versions Packs Files Functions
libarchive 3.3.2 3.3.3 2 4 912 14,018
libbz2 1.0.6 1.0.6 1 3 30 380
libenca 1.18 1.19 2 5 240 1,326
libgerypt 1.7.1 1.8.2 11 24 5,220 70,515
libgmp 6.1.1 6.2.0 3 8 8,172 16,061
libgnutls 3.4.14 3.6.11 13 26 | 12,659 168,613
libgpg-error 1.23 1.37 15 30 1,278 26,537
libiconv 1.14 1.16 3 8 32 5,351
liblzma 5.2.2 5.2.5 4 12 1,656 8,686
libnettle 3.2 3.5.1 6 18 5,270 15,861
libogg 1.3.2 1.3.4 3 10 40 1,528
libspeex 1.2.0 1.2.0-4 2 7 266 2,508
libssh 0.7.3 0.9.3 14 27 3,262 56,888
libxml2 2.9.4 2.9.10 7 12 1,048 72,537
libzlib 1.2.8 1.2.11 4 9 342 4,355
openssl 1.0.2h 1.1.0i 11 24 | 30,356 355,758

total | - - 101 227 | 70,783 820,922

Table 6.7.: Groundtruth based on development libraries provided by Shift Media Project [315].
Each library is present in multiple versions and compiled by multiple versions of
Visual Studio (Packs). Files lists the count of individual Object files produced by
this, while Functions shows the count of functions with labels.

compilation settings. For our evaluation, we decided to use the extensive collection of pre-
configured, linker-ready development libraries provided by the Shift Media Project [315].
Apart from including the source code and reference Visual Studio projects, this data
already contains full symbolic information, which makes it equivalently good to compiling
it ourselves.

All libraries have been natively compiled with one or more versions of Visual Studio,
which was previously identified to be the most common compiler used for Windows
malware (cf. Section 4.4.2).

A full listing of the libraries used is shown in Table 6.7. In total we use 16 differ-
ent well-known libraries providing commonly used functional aspects such as encryp-
tion (libcrypt, openssl), compression (libarchive, 1ibz1lib), or parsing (libenca,
libxml2).

Each library (except 1ibbz2) is present in multiple release versions and compiled with
up to four versions of Visual Studio (ranging from 2013 to 2019), producing a total of
227 unique combinations. All of the combinations are available for 32 and 64bit each
and the resulting precompiled library files decompose to 70,783 Object files containing
820,922 individual functions with labels. It has to be noted that some libraries listed
are contained within other libraries, so these numbers are obtained after application of
basic filtering on the Object file level to avoid direct cross-library code duplicates.

For disassembly, we used IDA Pro 7.4, as the software already provides capability
for interpretation of all information found in the Object files, including demangling of
function names. Using the symbolic information and bridging expected gaps in naming
convention (32bit functions may be prefixed with one or more underscores indicating
the calling convention used), a total of 19,041,057 function pairs within the same bitness
can be determined, with 1,679,918 of them being across libraries.

142

6.3. MCRIT:

MinHash-based Code Relationship Identification

Instr. ‘ Bytes ‘ Functions ‘ PicHash Matches ‘ Pairs TPs TPR FPp FPo PPV PPVe
1 222,293 (1 0.125%) 44,994 (5.481%) 9 412,246,223 868,714 868,104 999 147,012,694 264,365,425 .002 .003

2 556,886 (0.438%) 71,314 (14.168%) 1,894 84,438,718 2,209,293 1,415,404 .641 63,528,139 19,495,175 .017 .068

3 259,942 (0.584%) 25,431 (17.266%) 947 3,468,964 382,352 345,802 904 2,518,565 604,597 100 .364

4 231,928 (0.714%) 16,369 (19.260%) 1,031 638,504 194,074 160,893 .829 363,846 113,765 252 .586

5 420,513 (0.950%) 23,023 (22.064%) 1,646 1,380,661 334,969 282,358 .843 923,678 174,625 .205 618

6 483,044 (1.222%) 24,599 (25.061%) 1,658 815,458 382,632 298,963 781 312,855 203,640 .367 595

7 507,556 (1.507%) 21,586 (27.690%) 1,484 1,022,543 254,434 209,846 .825 573,444 239,253 .205 467

8 341,432 (1.699%) 12,617 (29.227%) 1,105 240,804 172,157 117,808 .684 71,329 51,667 .489 695

9 426,553 (1.938%) 14,158 (30.952%) 1,128 266,394 201,552 160,222 .795 92,168 14,004 .601 920

10 431,697 (2.181%) 12,596 (32.486%) 1,339 351,046 363,065 101,952 281 247,638 1,456 290 .986

11 579,244 (2.506%) 15,834 (34.415%) 1,651 877,019 2,478,111 770,474 311 76,515 30,030 879 962

12 512,712 (2.794%) 13,269 (36.031%) 1,152 199,814 149,008 114,085 .766 74,012 11,717 571 907

13 585,000 (3.123%) 13,796 (37.712%) 1,147 398,965 189,989 148,686 783 246,548 3,731 373 976

14 590,324 (3.454%) 12,643 (39.252%) 1,001 1,040,795 628,852 591,638 941 448,719 438 568 1999

15 607,678 (3.796%) 12,117 (40.728%) 1,332 1,228,013 1,256,650 1,193,629 .950 34,264 120 972 1.00

16 453,393 (4.050%) 8,628 (41.779%) 1,153 150,293 115,078 91,481 .795 58,496 316 .609 997

17 468,905 (4.314%) 8,708 (42.840%) 1,105 263,714 240,243 217,673 .906 42,821 3,220 .825 985

18 417,781 (4.548%) 7,089 (43.703%) 1,031 54,868 70,547 44,256 .627 10,502 110 .807 998

19 526,228 (4.844%) 8,329 (44.718%) 1,132 75,181 83,911 57,060 .680 18,037 84 759 999

20 458,387 (5.102%) 6,896 (45.558%) 1,226 49,073 63,594 41,291 .649 7,782 0 .841 1.00

21 620,644 (5.450%) 9,113 (46.668%) 1,690 67,554 83,047 56,099 676 11,455 0 .830 1.00

22 691,227 (5.839%) 9,326 (47.804%) 1,524 149,360 172,971 136,926 792 9,288 3,146 917 978

23 590,968 (6.171%) 7,785 (48.753%) 1,223 59,206 74,760 50,013 .669 8,281 912 .845 982

24 540,829 (6.474%) 6,972 (49.602%) 1,151 44,571 61,396 41,318 673 2,341 912 927 978

25 567,361 (6.793%) 7,026 (50.458%) 1,187 46,181 65,074 42,500 .653 3,681 0 920 1.00

26 539,172 (7.096%) 6,470 (51.246%) 1,130 42,876 60,959 37,853 .621 4,801 222 .883 1994

27 624,060 (7.446%) 7,076 (52.108%) 1,167 51,670 69,647 44,098 .633 6,660 912 .853 .980

28 501,635 (7.728%) 5,605 (52.791%) 1,050 33,292 50,441 31,034 .615 2,258 0 932 1.00

29 594,115 (8.062%) 6,358 (53.565%) 1,033 188,018 201,118 180,808 .899 6,776 434 962 998

30 537,795 (8.364%) 5,576 (54.244%) 1,073 28,719 46,442 27,386 590 1,333 0 954 1.00

31 626,459 (8.716%) 6,437 (55.028%) 1,026 90,953 115,450 86,127 .746 4,826 0 .947 1.00

32 615,577 (1 9.062%) 6,096 (55.771%) 1,136 44,123 65,434 41,369 .632 2,754 0 938 1.00
33-64 21,164,716 (20.951%) 139,228 (72.731%) 30,367 800,722 1,300,298 720,741 .554 76,741 3,240 900 996
65-128 36,464,466 (41.435%) 120,136 (87.365%) 33,078 455,509 937,711 440,026 .469 13,947 1,536 966 997
129-256 43,047,747 (65.618%) 70,959 (96.009%) 23,663 192,370 408,963 185,126 .453 6,906 338 962 998
257-512 30,354,879 (82.670%) 24,870 (1 99.039%) 9,278 70,517 127,565 67,759 .531 2,094 664 961 990
513-1,024 13,620,896 (90.321%) 5,522 (99.711%) 2,051 17,504 28,104 16,998 .605 506 0 971 1.00
1,025-2,048 8,732,091 (95.226%) 1,793 (199.930%) 593 6,682 9,189 6,486 .706 96 0 985 1.00
3,293,233 (97.076%) 339 (199.971%) 93 1,425 1,807 1,425 .789 0 0 1.00 1.00

4,097-8,192 5,204,269 (100.000%) 239 (100.000%) 25 2,699 3,032 2,699 .890 0 0 1.00 1.00
0+ | 178,013,635 (100.000%) | 820,922 (100.000%) 137,709 923,324,845 | 14,522,633 9,448,416 .651 216,826,796 285,325,689 .018 .032

5+ | 176,742,586 (99.286%) | 662,814 (80.740%) 133,828 10,808,492 | 10,868,200 6,658,213 613 3,403,552 746,727 .616 .899
10+ ,563,488 (1 98.062%) | 566,831 (69.048%) 126,807 7,082,632 9,522,456 5,589,016 587 1,430,078 63,538 789 989
15+ | 171,864,511 (96.546%) | 498,693 (60.748%) 120,517 4,214,993 5,713,431 3,862,181 .676 336,646 16,166 916 996
204+ | 169,390,526 (95.156%) | 453,822 (55.282%) 114,764 2,442,924 3,947,002 2,258,082 572 172,526 12,316 924 995

Table 6.8.: PicHash matching results, organized by number of instructions per function. Bytes:
number of bytes for functions of this size (with cumulative percentage), Functions:

functions of that size (with cumulative percentage), PicHash: unique PicHashes for
the given size, Matches: Matches produced by these PicHashes, Pairs: expected
matches based on ground truth, TPs: true positives with respect to expected matches,
TPR: true positives rate with respect to same-size pairs, F' Pp: false positives in
function pairs where both are of the same library, F'Po: false positives in pairs with
functions from different libraries, PPV: overall precision, PPV: precision when only

considering FPs with pairs of different libraries.

Accuracy Evaluation of the PicHash Component

We now want to apply the exact matching technique, PicHash (cf. Section 6.3.1), on
the data set. The results are summarized in Table 6.8.

First off, exact matching implies that only functions with the same number of instruc-
tions can be matched. As shown in Table 6.8, this applies to 14,522,633 function pairs,
or 76.27% of all function pairs in the ground truth. PicHash is able to identify 9,448,416
of these and thus potentially achieves an overall TPR of .651, with respect to the same
sized function pairs.

Studying the results in more detail, we can make the following observations.

143

6. Code Recovery and Similarity Analysis

Looking at the distribution of function sizes, we see a disproportionate number of
very small functions. The cumulative fraction of functions with 5 instructions or less
is 22.06% and that of functions with 10 instructions or less 32.49%, while the median
function has 25 instructions. At the same time, when considering the number of bytes
of all instructions in these small functions, they account for a way smaller part, e.g.
functions of 10 instructions or less contribute only 2.18% of all bytes found in the code
of the whole data set.

Next, looking at the number of PicHashes, we see that there are 137,709 unique hashes
for 820,922 total functions. Expectedly, the relative number of function variants (func-
tions per PicHash) increases with function size.

An extreme case shows at functions consisting of a single instruction, for which there
are only 9 unique PicHashes. As an additional detail, all of these are control transfer
instructions, i.e. returns, jumps, and calls. Given that there are 44,994 functions that
are grouped by these 9 hashes, and the number of matches is quadratic per group, the
result is a huge number of potential matches, totalling 412,246,223. As there are only
868,714 expected pairs derived from function names, this means that most of them are
by definition false positives, despite having identical instructions.

While a drastic example, similar effects can still be observed for the other small func-
tions, leading to a low Precision. The number of false positives generally decreases with
increasing function size, especially the FPs that contain functions of different libraries.
Nevertheless, there are still a significant number of unexpected FPs within the same
libraries, even for rather large function sizes. We performed a cursory inspection on a
random sample of the function pairs associated with these FPs. A primary reason for
these unexpected matches is the renaming of internal functions in the version lineage
of a library. As a second source, we identified wrapper functions that only differed in
the functions called internally or parameters being passed by reference. As this concrete
information is lost when performing the normalization/wildcarding of PicHashing, they
reduce to the same byte sequence and thus PicHash. But given these circumstances, we
consider these FPs within the same library as much less grave than those across libraries,
especially with respect to the upcoming analysis of presence of third party libraries in
malicious code as conducted in Section 6.4.3.

A general implication of these observations is that when doing matching on function
level and not considering the ICFG these functions are embedded in, there is no way to
discern these syntactical duplicates. However, introducing a minimum required size for
functions still seems reasonable and can certainly mitigate these effects.

The bottom five rows in Table 6.8 summarize results for potential function size thresh-
olds, ranging from 0 to 20. For the following evaluation of MinHash, we choose a function
size threshold of 10 instructions, which we consider a good compromise taking the differ-
ent aspects mentioned into concern. This threshold will exclude 30.95% of the functions
but only 2.18% of the code, reducing the number of function to 566,831 and the overall
expected matching pairs to 12,055,913. As a result, using the same function size thresh-
old for PicHash, the method achieves an overall TPR of .587 for same-sized function
pairs (or .464 when considering all pairs). For us most importantly, the Precision when
only considering cross library FPs (PPV) reaches a very good .989 starting at this

144

6.3. MCRIT: MinHash-based Code Relationship Identification

threshold. As reasoned before, we consider these FPs seriously more grave than those
found within the same library because of the implications for library detection.

feature-name | space | min 25% 50% 75% = max | avg sd | pszvit Peabit Psame Pdiff
cyclomatic_complexity 232 0 2 4 9 561 8.223 13.767 | 0.961 0.953 0.958 0.923
max_block_size 554 2 9 12 17 6,669 | 22.173 100.989 0.946 0.966 0.963 0.805
nesting_depth 65 0 2 4 7 101 4.871 4.777 | 0.973 0.966 0.970 0.960
num_blocks 339 1 4 9 18 817 | 15.417 22.605 | 0.974 0.939 0.954 0.933
num_calls 148 0 1 3 7 380 6.308 10.260 | 0.980 0.980 0.980 0.952
num_edges 480 0 4 11 25 1,376 | 21.640 36.096 | 0.969 0.949 0.955 0.929
num_inrefs 114 0 0 0 1 224 1.018 3.907 | 0.396 0.861 0.605 0.303
num-_ins_A 516 0 3 6 12 3,929 | 16.244 83.531 0.985 0.963 0.981 0.688
num_ins_C 495 0 7 15 32 1,343 | 26.784 38.942 0.980 0.971 0.976 0.964
num-ins_F 14 0 0 0 0 30 0.003 0.161 0.972 - 0.972 -0.000
num-ins_-M 691 0 6 14 33 2,811 29.725 60.236 0.980 0.970 0.981 0.384
num-ins_P 25 0 0 0 0 40 0.012 0.373 | 0.606 0.693 0.655 0.471
num-ins_S 301 0 2 6 15 932 | 13.854 24.591 | 0.947 0.946 0.965 0.006
num_ins_X 261 0 0 0 0 5,897 2.569 66.481 | 0.893 0.957 0.934 0.637
num_ins_Y 39 0 0 0 0 280 0.161 4.015 | 0.967 0.989 0.982 0.929
num_ins_A _rel 83 0 9 13 17 86 | 14.465 9.469 | 0.914 0.944 0.954 0.106
num_ins_C_rel 97 0 26 33 40 100 | 33.017 12.931 0.909 0.964 0.952 0.424
num_ins_F _rel 13 0 0 0 0 27 0.004 0.236 0.972 - 0.972 -0.000
num-ins_M_rel 100 0 18 31 46 99 | 32.194 16.829 0.935 0.939 0.975 -0.648
num-ins_P_rel 13 0 0 0 0 13 0.007 0.207 | 0.629 0.716 0.677 0.418
num-ins_S_rel 80 0 3 11 30 86 | 17.022 16.306 | 0.907 0.963 0.976 -0.339
num_-ins_X _rel 97 0 0 0 0 99 1.068 7.057 | 0.887 0.957 0.933 0.636
num_ins_Y _rel 45 0 0 0 0 84 0.141 2.501 | 0.980 0.990 0.987 0.917
num_instructions 1,293 10 23 48 100 6,743 | 89.718 182.991 0.950 0.961 0.973 0.771
num_loops 36 0 0 0 1 100 0.380 1.139 | 0.957 0.962 0.961 0.894
num_outrefs 88 0 0 0 0 128 0.692 2.843 0.886 0.886 0.886 0.810
num_returns 56 0 1 2 3 232 2.197 3.249 0.973 0.930 0.956 0.682
num-sccs 262 1 4 8 15 555 12.672 16.598 0.973 0.941 0.954 0.931
stack_size 389 0 0 8 48 4,092 | 44.652 143.470 | 0.952 0.912 0.971 -0.292

Table 6.9.: Results for the metrics-based feature evaluation. Qualified features highlighted yellow,
selected features highlighted green. p lists the Spearman rank correlation for function
pairs of 32bit and 64bit as well as same and difference bitness only.

Feature Evaluation for the MinHash Component

Before MinHash can be applied to measure the similarity of code, we need to select
features to be used in the representation for functions. As mentioned in Section 6.3.2,
we will only consider functions of size 10 instructions or more.

Metrics-based Features. We will first focus on the metrics-based features as intro-
duced in Section 6.3.1. We denote the metrics-based feature as Fiy.

Similar to the evaluation in [199], we require that on the one hand features cover a
sufficiently expressive value range in which they notably vary and on the other hand
values correlate notably among ground truth pairs of functions, indicating that they are
robust across variants of the same function.

For the first requirement, we do a statistical aggregation and interpretation of the val-
ues across all functions in the data set. This will allow us to identify suitable candidates.
We require a feature space of at least 100 distinct values (80 for relative features) and
standard deviation for values of at least 5.

For the second requirement, we evaluate Spearman’s Rank Correlation Coefficient [316]
p. Because all values are distinct integers, we can use the representation:

145

6. Code Recovery and Similarity Analysis

with

di = rg(X;) —rg(¥3)

being the difference in rank per value pair after converting the raw values to ranks.

We decided to use Spearman’s method and not the Pearson Product-Moment Cor-
relation [317] because it is considered more general (testing for monotonic instead of
linear relationship) and more robust to outliers. We apply this analysis in two ways.
First, we measure the correlation of the values for a given feature for all function pairs
in the ground truth in order to identify the most robust feature candidates. We require
a correlation of at least 0.95. Second, we measure the co-correlation of features for each
function in order to identify potential redundancy in features. Here, we exclude features
if they significantly correlate.

Table 6.9 and Figure 6.3 summarize the results. Most features cover a decent value
space and also have a balanced value distribution. Additionally, all but 6 features have
a high correlation of 0.95 and more for function pairs of the same bitness. Features not
qualiyfing are primarily those addressing much less common instruction types F, P, X, Y
which as a consequence lack expressiveness for the majority of functions. Other features
that target less common constructs (loops, returns) cover a narrow value range and
thus are also not as expressive as others, especially when considering the used binning
method to increase fuzziness. Surprisingly, both incoming and outgoing references do
not qualify. This may be due to how those references are specifically structured in Object
files, resulting in a lower presence and expressiveness as previously reported [199].

In total, 16 of 29 features fulfil the requirements. In consideration of Figure 6.3, we
immediately notice that subsets of these qualified features are heavily co-correlated.
Features that describe the structural composition of a function’s CFG (num_blocks,
num_edges, cyclomatic_complexity, num sccs) are strongly correlated with the overall
number of instructions (num_instructions) but also control-flow associated instructions
(num_ins_C). We pick num_ins_C as single representative for this group to reduce redun-
dancy and also discard num_ins_C_rel because we only want one feature per instruction

group.

For the other 3 popular instruction groups, we select num_ins_S as second explicitly
counted feature but the relative values num_ins_A and num_ins_M because this combina-
tion has the least co-correlation.

With regard to the other qualified features, we use each of num_calls, stack_size,
and max_block_size because neither of them has significant co-correlation with other
previously selected features.

This leaves us with a total of 7 metrics-based features to be used (cp. Table 6.9).

146

6.3. MCRIT: MinHash-based Code Relationship Identification

ges

num_blocks
ps

. num_calls
num_returns
num_ins_F

num_ins_P_rel

num_ed
num_ins_C_rel

cyclomatic_complexity

num_ins_C
nesting_depth
num_instructions
num_ins_A
max_block_size
num_inrefs
num_outrefs
num_ins_S_rel
num_ins_M_rel
num_ins_A_rel
num_ins_X_rel
num_ins_Y_rel
num_ins_F_rel

num_sccs
num_ins_M
num_ins_S
num_loo
stack_size
num_ins_X
num_ins_Y
num_ins_P
bitness

num_ins_C Lo
num_edges
num_blocks

num_sccs 0.8

nesting_depth
cyclomatic_complexity
num_instructions
num_ins_A
num_ins_M
num_calls -
num_ins_S
num_loops
num_returns
max_block_size
stack_size
num_inrefs
num_outrefs
num_ins_C_rel
num_ins_S_rel
num_ins_M_rel
num_ins_A_rel
num_ins_X
num_ins_X_rel
num_ins_Y
num_ins_Y_rel
num_ins_F
num_ins_F_rel
num_ins_P
num_ins_P_rel
bitness

Figure 6.3.: Correlogram for the metric features. Bitness added for context and feature order
rearranged to highlight feature groups with high co-correlation.

Token-based Features. We now focus on the token-based features: n-perms. We
denote these features as Fr,, with n being the length of the instruction sequence used.
We will evaluate for values of n € {3,4,5}.

To measure how well n-perms of different length perform, we calculate the achievable
TPR at different similarity thresholds over the ground truth. For this, we transform all
functions into their token-based feature representation and use the MinHash approach
described in Section 6.3.1 with an instance of M3, to derive the similarity score between
true positive function pairs.

Table 6.10 summarizes the results, averaged over 3 replications with different seeds.
The main takeaway is that shorter n-perms provide better matching potential as Fr 3
achieves the highest result at all thresholds. Even at a threshold of 100, the TPR of
.635 already outperforms the results of PicHash (.464), but with at this point unknown
penalty in FPs due to the introduced fuzziness of MinHash.

147

6. Code Recovery and Similarity Analysis

T | Frz Fra Frs

Fu | FrzUFu

0 1.00 1.00 1.00 | 1.00 1.00
5 993 988 .984 | .996 .999
10 989 982 977 | 991 .996
15 984 977 925 | .984 .992
20 979 972 920 | 978 .988
25 976 967 913 | .972 .985
30 971 961 905 | .966 981
35 963 952 .898 | .959 978
40 956 .897 .888 | .952 974
45 949 .886 .875 | .944 .969
50 942 876 .866 | .889 .963
55 929 .865 .854 | .880 .955
60 913 .854 .844 | .869 .946
65 899 .837 .825 | .861 .939
70 .869 .817 .810 | .851 919
75 .820 .803 .796 | .780 .883
80 .803 .78 .781 | .736 .869
85 784 770 .765 | .728 .859
90 672 .661 .660 | .717 765
95 .650 .645 .645 | .706 .749
100 635 .634 .632 | .706 743

Table 6.10.: Potential TPR at given matching thresholds T' for token-based and metrics-based
features as well as their best combination.

Combination of Features. Table 6.10 additionally lists results for a similar evaluation
of Fyr, again using an instance of M72,,. The achievable TPR is very similar to Fr 3 for
lower thresholds of up to 45 but remains higher for upper thresholds.

To analyze if the two feature types complement each other, we additionally list results
for a combination where a true positive is recorded when either of the two feature
types has a similarity score above the threshold (Frs3 U Fjs). We can see that the
combination indeed improves the result, which is strictly better at each threshold level.
This is beneficial as it allows to choose higher thresholds while maintaining the TPR of
individual features while likely lowering the overall FPR.

Parameter Evaluation of the MinHash Component

After evaluating the metrics- and token-based features and showing that they are gen-
erally capable of capturing similarity in functions, we now evaluate parameters of the
MinHash method M,g itself. For signature length k, we consider values of 16, 32, 64,
128, 256 and for b bits used for representation of entries, we consider 1, 4, 8, and 32 bit.
These value ranges should give decent coverage for candidates that can be considered as
efficient in the sense of required space to store a function’s fingerprint.

Given that we have two types of features, we also need to consider by which weight
they should contribute, taking ratios of 0%, 25%, 50%, 75%, and 100% into account to
model a distribution similar to quartiles. Based on the results shown in Table 6.10, we
deliberately consider a required minimum similarity threshold of 60, which should give
us a TPR of up to .946.

148

6.3. MCRIT: MinHash-based Code Relationship Identification

In total, we evaluate 100 configurations for which we each perform a matching of all
functions matched against each other.

Given 566,831 functions with a minimum size of 10 instructions, this yields a total of
160,648,407,865 potential function pairs. However, as mentioned in Section 6.3.1, we are
using MinHash banding to filter down to a selection of promising candidate pairs. We
decided to use 20 bands of 4 entries, which gives us according to the formula a 6.23%
chance to miss a candidate pair at expected threshold 60 but less than 0.5% chance
to miss a candidate pair at threshold 70. As a result of banding, the actual number
amount pairs evaluated per configuration is much smaller. In fact, the median number
of evaluated candidate pairs is 1,456,700,812 (0.91%).

The evaluation of all parameter combinations took a total of 67 days and 21 hours
using a Intel i7-6700 CPU (3.40GHz) with 64 GB RAM and a SSD hard drive. The
median matching speed using 8 threads was 34,913 function similarity comparisons per
second.

The overall results of this evaluation are shown in Table 6.11. We can make the
following observations.

Generally, a higher signature length k& will lead to higher precision as the estimation
error decreases, as explained in Section 6.3.1. Note that this seems to have much less
impact on recall, which is already high even for small signature lengths.

Similarly, a higher number of b (i.e. bits for entry representation) directly results
in better precision and recall. We can see however that b = 1 does not produce any
acceptable precision at all. The results of b = 1 at k = 16 are outliers, where the
banding filtered too many candidates.

Also, b = 4 does not achieve a precision as good as b = 8 or b = 32 but catches up when
k is increased. Interestingly, we can only assess a marginal difference between results
achieved by an entry representation of b = 8 and b = 32. This generally supports the
findings of Li and Kénig [312] but in our case, storing more of the least significant bits
seems to offer a better tradeoff.

With regard to the feature composition, n-perms perform better than metric features.
In most cases, a combination performs better than the isolated features (cf. Section 6.3.2)
but with a higher portion of n-perms promising better precision.

Overall, several parameter combinations offer similarly good results given their re-
spective trade offs. For the following experiments, we choose a setup of M684 with a
segmented signature composed of 75% n-perm and 25% metric features, which repre-
sents a good balance of all previously discussed aspects. We note that the 64 bytes of
representation equal 20.78% of the average function size when considering functions with
10 or more instructions (cf. Table 6.8), which we still consider space-efficient. For this
configuration, MinHash banding produced 835,624,841 matching candidates that were
processed in 27,930 seconds (7 hours, 45 minutes, 29,918 comparisons per second), lead-
ing to 44,697,628 matches with a TPR of .920 and PPV of .277. We will now proceed
to analyze the results of this configuration in greater detail.

149

6. Code Recovery and Similarity Analysis

b| Frs | k=16 k=32 k=64 k=128 k=256

0| .723 .107 | .810 .007 | .864 .007 | .872 .005 | .917 .006
25 | 698 .216 | .904 .016 | .913 .013 | .869 .012 | .877 .012
1 50 | 772 .190 | .838 .023 | .913 .017 | .919 .022 | 914 .020
75 | 679 .151 | .894 .015 | .855 .013 | .871 .018 | .866 .016
100 | 773 113 | .842 .015 | .903 .009 | .908 .009 | .906 .010

0| .873 .016 | .777 .016 | .874 .022 | .877 .012 | .876 .025
25 | 877 .033 | .873 .059 | .878 .080 | .880 .090 | .879 .106
4 50 | .885 .015 | .877 .096 | .922 .210 | .922 .222 | .882 .234

75 | 921 .053 | 923 182 | 925 .190 | .925 .248 | .925 .263
100 | 909 .096 | .916 .163 | .915 .152 | .922 .173 | .922 .183

0| .870 .011 | .868 .037 | .868 .040 | .870 .033 | .868 .041
25 | .820 .051 | .927 .060 | .871 .138 | .873 .141 | .873 .152
8 50 | 925 .095 | .875 .188 | .872 .255 | .874 .279 | .874 .323

75 | .923 .136 | .912 .293 | 920 .277 | 920 .323 | .922 .339
100 | .910 .041 | .864 .197 | 911 257 | 919 .254 | .918 .268

0| .923 .015 | 918 .029 | .868 .030 | .868 .040 | .868 .040
25 | 928 .024 | .876 .066 | .874 .106 | .873 .158 | .872 .158
32 50 | .869 .170 | .871 .283 | .923 .285 | .876 .290 | .922 .302

75 | 925 .091 | .868 .254 | .923 .328 | 918 .323 | .922 334
100 | 908 .143 | 911 .226 | .916 .221 | 917 .268 | .918 .276

Table 6.11.: Parameter evaluation of the MinHash component. TPR and PPV at threshold 60
shown per configuration.

Accuracy Evaluation of the MinHash Component

After having identified a suitable configuration for our MinHash system with respect
to the requirements, we have a closer look at its corresponding results. For this, we
analyze the matching results when using different similarity thresholds ranging from
40 to 100. In addition to examining results for Recall and Precision, we also consider
the mean Average Precision (mAP) [318] and Average Precision at k (APQk). Both
of these measures are used to describe the quality of the ranked matching results for
queries, thus giving insight into how the system performs from a perspective of user
experience. Manning et al. [318] define mAP as follows. Given a query ¢; € @ (in our
case a function), its expected TPs {d1,...dp, }, and Rjj, as the set of ranked retrieval
results from top to dg, the mean Average Precision is

Q] my
mAP(Q Z Z Precision(Rjy,)
"l &y 2

Should a query not return any TP, the Precision is taken as zero. The value APQ@k
instead considers only results up to position k, focusing on the first results and thus the
ones most relevant to a user.

The results for the reference configuration M§, are summarized in Table 6.12.

Considering Recall and Precision, we see that gains in Recall below the previously
used matching threshold of 60 are expensive, as we experience a sharp drop in Precision.
This also affects the Precision when only considering matches as FPs when they are in

150

6.4. Third-party Library Usage and Code Sharing in Windows Malware

different libraries (PPV(), indicating that low thresholds should be used with care, at
least when inspecting single functions. Otherwise, we see that the regular Precision PPV
increases up to 0.616, while PPV increases up to .950, showing that almost exclusively
functions from the same library are matched. This discrepancy is very similar to what
was observed for PicHash (cf. Section 6.3.2), underlining that deriving ground truth
matches solely from function names may be insufficient.

Examining the results for mean Average Precision, we see that the MinHash component
achieves values between .849 and .866 throughout all thresholds. This indicates that the
previously noted decline in overall Precision does not significantly impact the usability
even at lower thresholds, as there remains a stable set of accurate query results being
ranked in the most relevant positions. Our result also exceeds the results presented by
Ding et al. [204], who achieved a mAP of .536 on a very similar but smaller (63,939
functions) data set of open source libraries. When ignoring false positives in the same
library, the values increase much further, achieving a mAPg of up to .978 which only
notably decreases for thresholds below 50. This means that the system almost always
returns only functions from the same group of libraries, especially in the first ranks, as
AP-@1 and AP-@10 additionally underline.

Based on all of our findings and considering the combination of PicHash and MinHash,
we can conclude that MCRIT is a system that can successfully determine function sim-
ilarity, focusing primarily on structural code similarity. This makes it suitable for the
task of identifying code sharing and third-party library usage in Windows Malware.

T ‘ TPs Matches ‘ TPR PPV PPVg ‘ APQ@Q1 APQ@QI0 mAP ‘ APcsQ1 APc@10 mAPc
40 | 12,736,401 212,078,358 .946 .060 .101 .862 .883 .849 978 979 .816
45 | 12,643,943 145,004,144 .939 .087 .149 .862 .883 .851 978 979 .869
50 | 12,589,490 99,751,924 .935 126 .219 .862 .883 .854 978 979 910
55 12,483,836 61,875,611 927 .202 .352 .862 .883 .858 977 979 .945
60 | 12,388,100 44,697,628 .920 277 487 .861 .883 .861 977 978 961
65 | 12,257,864 34,835,370 911 .352 .609 .861 .882 .863 976 978 970
70 11,446,785 27,815,267 .850 412 704 .860 .882 .865 975 977 975
75 | 11,214,691 24,099,357 .833 .465 .780 .859 .880 .866 974 975 978
80 10,835,047 20,907,974 .805 518 837 .856 878 .866 971 972 977
85 | 10,596,654 18,880,603 787 561 .886 .853 .875 .865 .968 .969 976
90 | 10,286,408 17,339,073 764 .593 914 .850 .872 .863 .964 .966 973
95 8,761,446 14,656,269 651 .598 1940 .846 .868 .860 1960 1962 .970

100 8,515,040 13,831,829 .633 .616 .950 .842 .864 .856 .956 957 965

Table 6.12.: Accuracy evaluation of the MinHash component (M§,) for matching thresholds T of
40 and above. Index C indicates that only FPs from different families are considered.

6.4. Third-party Library Usage and Code Sharing in Windows
Malware

In this section, we now apply MCRIT in order to investigate third-party library usage
and code sharing in Windows malware. We first introduce the data sets used for this
purpose. We then verify that MCRIT does produce meaningful results when applied in

151

6. Code Recovery and Similarity Analysis

a practical setting. Next, we measure the presence of libraries in malware. Finally, we
analyze and discuss the implications of this for similarity matching in malware.

6.4.1. Data Sets

In order to study library usage and code sharing in malware, we naturally need a selection
of malware and library code.

For malware, we continue to use the same reference snapshot of Malpedia, as described
in Section 4.3.4. However, similar to how we proceeded for the Windows API usage anal-
ysis in Section 5.3.1, we make a decision to exclude certain families with inappropriate
characteristics. For consistency, we only use families with memory dumps available,
reducing the number of families from 929 to 839. Again, we drop families that have
been created with the NET framework as they use bytecode instead of native x86/x64
Intel code as targeted by our disassembler and code similarity method. This affects a
total of 113 families, which leaves 726 families for consideration. Finally, we decided to
furthermore exclude families that have been written in Delphi and Go. Both of these
programming languages have extensive collections of own library code that is typically
statically linked into applications when used. Among the remaining, we identified 63
families for these languages. While having low representation among all families (less
than 10%), we believe that they could still introduce a distorsion of the results as they
are much less likely to use third party libraries due to their built-in library code. This
leaves us with a final 663 malware families with 2.056 samples. These contain a total of
1,633,349 functions and 1,116,619 of them have 10 or more instructions.

For library reference code, we incorporate three sources. First, we reuse the 16 libraries
from the Shift Media Project [315] data set that was used for the MCRIT evaluation and
described in Section 6.3.2. Because we no longer require function labels, we can use even
more code from this data set. A total of 449 library files provide 1,142,518 functions,
749,976 have 10 or more instructions.

Second, we use all the code from the empty msvc project [319]. The data set is com-
posed of the resulting programs when compiling “empty” projects (i.e. only a single
main() routine that returns 0) in as many versions of Microsoft Visual Studio as possi-
ble, using both dynamic and static linking. The goal of this is to isolate the code that
is introduced into these programs by the Visual C compiler and providing useful ground
truth to detect it. It contains 118 configurations, which contain 112,481 functions out
of which 44,699 have 10 or more instructions.

Finally, we collected a further 36 libraries for which we anticipate potential encounters
in malware. Candidates for this selection have been determined by reviewing numerous
analysis reports and related work by Alrabaee et al. [213] but are also based on the
author’s own experience. Almost all of these libraries were obtained as pre-compiled files,
and many of them through the package manager vepkg [320]. All 460 files associated
with these libraries combined contain another 1,194,978 functions and 565,543 of these
have 10 or more instructions.

In sum, the following experiments are conducted across 2,476,837 functions.

152

6.4. Third-party Library Usage and Code Sharing in Windows Malware

6.4.2. Accuracy Verification

In order to verify that MCRIT performs well in a more applied context, we examine
its matching results for two libraries: MSVC and libzlib. We already detailed in Sec-
tion 4.4.2 that most Windows malware is built using MSVC, which makes it a natural
choice. The use of libzlib in malware is also well-documented, e.g. in [321] and [322].

As motivated before, source code for malware is typically not available and as a con-
sequence, we have no information or ground truth for the presence of these libraries
in malware. Therefore, we need to be able to identify them by other means. For this
task, we created YARA rules to generically detect both libraries and ensured that they
at least detect all representatives in our library collection while not causing any false
positives. The rules are listed in Appendix B. Using these rules on the Malpedia data
set, we assess 1,294 hits on samples for MSVC and 195 hits for libzlib.

Now, in order to detect the presence of the libraries in samples using MCRIT, we
match all functions associated with the libraries on a per file basis against all malware
samples and report the result for the best match. The best match in this sense is defined
as the library that matched functions carrying the most bytes, each weighted with the
function’s matching score to incorporate this as a measure of confidence. To decide
whether we consider a library present in a sample or not, we use the percentage of
weighted bytes matched from the library as a second threshold. The results are shown
in Table 6.13.

A first general observation is that when using MCRIT for compound detection of
libraries, the system achieves a much better Precision than previously for individual
functions. The primary reason for this is that the noise introduced by matches with low
matching score has much less impact in this setting. This is because we now consider
libraries matched against samples as a whole and larger accumulations of false posi-
tives between groups of functions are less likely as the results indicate, especially when
increasing the matching threshold to 50 or above.

Similar to our previous analysis in Section 6.3.2, we see that for a matching threshold
of 40, the achieved Precision falls significantly behind the results achieved for higher
thresholds and the overall number of FPs also leads to very low Accuracy in the case of
libzlib. For a threshold of 45, the number of FPs almost drops to about half for MSVC
and even a third for libzlib while not significantly losing TPs. Going from threshold 45 to
50, the number of FPs is again significantly reduced but with a more notable impact on
TPs. When increasing the matching threshold to 60, we see that FPs disappear almost
entirely for libzlib, even at low required matching percentages. However, the TPR also
falls behind compared to lower thresholds and we get no match with more than 20% of
code for libzlib at this threshold.

Looking at the matching results for both libraries in more detail we can make several
interesting observations. When linking libzlib into a program, a string pointing to the
library’s authorship, copyright but also version of the library is frequently included.
We found this string for 176 out of the 195 cases where the YARA rule produced a
hit. Looking at the version numbers, only 71 correspond to versions for which we have
reference code in our data set (68x 1.2.8 and 3x 1.2.11). All other versions are below,

153

6. Code Recovery and Similarity Analysis

with the three most common being 1.2.7 (31x), 1.2.3 (27x) and surprisingly 1.1.3 (15x).
For context, libzlib 1.1.3 was released in 1998, 1.2.3 was released in 2005, and even 1.2.7
was released already in 2012. Comparing this to Figure 4.3 from Section 4.3.4, which
gives temporal information about the samples in the corpus, we note that these library
dates are much older than the likely creation of the samples. This again points out that
malware authors may tend to use aged and outdated software and versions, similar to
what was observed to the distribution of MSVC versions found in the PE header’s linker
field (cf. Section 4.4.2).

This generally implies that when thinking of which code to include in a reference
collection of libraries, one should definitely include coverage for even very old versions
for optimal results. Then again, contrasting these findings with the library detection
results, we are delighted to see that MCRIT is still capable of detecting a significant
share of these much older libraries despite only having code of version 1.2.8 (relased in
2013) and above for reference.

We also had an in-depth look at the false positives. In most cases, especially for
the lowest matching thresholds, the fuzziness of MinHash caused an aggregation of 2-3
function FPs, which was already sufficient to exceed the low expected byte percentage
threshold and register as FP on library-level. These effects become much less frequent
once the required code percentage is at 1% or 1.5% and almost disappears entirely when
requiring a higher matching threshold.

However, we noted several cases where the occurrence of FPs had a different reason. In
these, functions were recognized correctly as being part of libzlib but the sample was not
previously identified by the YARA rule. By further investigation, we found that those
were indeed single functions (e.g. the checksum algorithms Adler-32 or CRC-32) from
libzlib that were however also the only traces from the library found in the malware. We
think the most likely reason here is that the source code of these functions have been
copied directly by authors into the source code of the malware. This explains why the
YARA rule missed these samples, as neither the author or version strings nor the inflate
table could be matched in such an isolated case.

This phenomenon raises a more general question how we have to expect libraries
being included into programs. With options including full precompiled libraries, or
as full source code package, or just manually chosen snippets of source code, this has
significant implications about the detectability of these libraries as the above examples
illustrated. Even with the first two cases, optimizations like Dead Code Elimination [323]
or Function-Level Linking [324] could create situations where only a fraction of the
library code will be present in the resulting compiled program, asking for a very fine-
grained resolution of functions.

When looking closer at MSVC, we note that the variance in program sizes has notable
impact on the FPs. The number of bytes in functions for libzlib range between 63,971 and
73,910 for all versions in the data set. This number fluctuates much more for MSVC,
because the footprint of functions introduced by MSVC when linking dynamically is
magnitudes smaller when compared to linking statically, especially for debug builds.
We register between 681 (VS 2003 /MD) and 469,193 bytes (VS 2017 with /MTd) in this
case, with a median of 16,323 and an average of 82,807 bytes. When only considering

154

6.4. Third-party Library Usage and Code Sharing in Windows Malware

dynamically linked binaries, this average drops to 5,439 bytes, and again, 1-2 mismatched
functions contribute enough bytes to register a FP. Because of this low byte size, the
functions to be mismatched can be very small themselves (10-15 instructions) and we
noted before that matching these is prone to errors (cf. Section 6.3.2).

Examining the results in total, we consider a threshold pair of 50 for the matching
threshold and 1.5% for matched library size as a good compromise for balancing TPs
and FPs. This value combination achieves among the best overall Accuracy for both
libzlib and MSVC, while slightly leaning towards Precision over Recall.

MSVC libzlib
T Percent | TPs FPs TPR PPV ACC | TPs FPs TPR PPV ACC
40 0.5 1,284 506 .992 717 738 185 688 .949 212 532
40 1| 1,232 349 .952 779 791 182 305 .933 374 787
40 1.5 | 1,188 287 918 .805 .800 179 244 918 423 .826
40 2 1,164 201 .900 .853 .832 174 218 .892 444 .840
40 5 | 1,050 83 811 .927 .834 125 81 .641 .607 .899
40 10 926 20 716 .979 .803 64 2 .328 .970 911
40 20 886 0 .685 1.00 .793 32 0 .164 1.00 .891
45 0.5 | 1,213 333 .937 785 .790 179 205 918 .466 .852
45 1| 1,158 209 .895 .847 .825 168 76 .862 .689 .931
45 1.5 | 1,106 159 .855 874 .824 163 34 .836 .827 .956
45 2 | 1,078 116 .833 .903 .831 152 17 779 .899 .960
45 5 | 1,021 30 789 971 .846 101 2 .518 981 .936
45 10 900 16 .696 .983 .792 47 0 241 1.00 901
45 20 884 0 .683 1.00 .792 26 0 .133 1.00 .887
50 0.5 | 1,147 256 .886 .818 .795 171 78 877 .687 .932
50 1 1,088 118 841 .902 .835 148 18 759 .892 .956
50 1.5 | 1,056 69 .816 .939 .844 123 7 .631 .946 947
50 2 | 1,048 25 .810 977 .862 110 3 .564 973 941
50 5 995 11 769 .989 .843 66 0 .338 1.00 913
50 10 895 5 .692 .994 .795 35 0 179 1.00 .893
50 20 883 0 .682 1.00 791 3 0 .015 1.00 871
60 0.5 | 1,026 61 .793 .944 .833 98 8 .503 .925 .930
60 1 | 1,008 25 779 .976 .842 64 2 .328 970 911
60 1.5 998 14 771 .986 .843 61 1 .313 .984 .909
60 2 996 5 770 .995 .846 58 1 .297 .983 .907
60 5 979 5 757 .995 .837 44 0 .226 1.00 .899
60 10 888 4 .686 .996 792 15 0 077 1.00 .879
60 20 866 0 .669 1.00 783 0 0 .000 .000 .000

Table 6.13.: Detected presence of MSVC (out of 1294) and zlib (out of 195) in malware samples
of the Malpedia corpus, using matching threshold 7' and the percentage of bytes
from recognized functions in relation to the full library size as a second threshold.

6.4.3. Presence of Third-Party Libraries in Windows Malware

We will now proceed and measure the presence of all other libraries in the malware
samples from Malpedia. Overall, we have matched 1,360,218 library functions from

155

6. Code Recovery and Similarity Analysis

1,117 library files against 1,116,619 functions from 2,056 malware samples. The results
are shown in Table 6.14.

We first note that we generally register library matches for 533 (80.39%) families
with 1,507 (73.30%) samples. In total 171,934 (15.4%) functions in malware have been
recognized as libraries, with 20.28% of the samples’ matchable code covered. This is well
in line with the estimated 10-45% FOSS package usage reported by the only comparable
study we know of, conducted by Alrabaee et al. [213].

Among the detected functions, 148,925 or 86.62% have been detected as one library
only, with the three most matched libraries being MSVC (97,615), openssl (14,923) and
wolfssl (12,555). For those functions being detected as multiple libraries, 12,543 or 7.30%
have been detected with 2 library labels, 4,580 or 2.66% have been detected with 3 library
labels, and 5,886 (3.42%) have been detected as 4 or more libraries. In these collisions,
the most common pairings occur between libgnutls and openssl (1,613), libxml2 and
openssl (1,027), and poco and tinyxml (783). As a further reason for collisions, we
identified cases where libraries were simply included in other libraries, e.g. libzlib in
libmariadb, or libbz2 and liblzma both being used by libarchive.

As expected, the most prominent library overall is MSVC with matches against 428
families, for which we also note the by far highest distribution of matched library content.
The reason that we do not observe an even higher matching percentage throughout all
percentiles is that the empty msvc project only contains reference binaries compiled as
executable (and not DLL) and also only as C and not C++ projects. This may create
potential gaps in MSVCRT code coverage, as we observed many families being compiled
as DLLs as reported in Section 4.4.2 and we also certainly have to expect C++ code.

Other frequently detected libraries are mostly centered around networking (e.g. poco),
encryption (e.g. wolfssl), and general data processing (e.g. tinyxml, abseil). No occur-
rences were detected for three libraries focusing on sound processing (libsndfile, libspeex,
opus), the regular expression library pcre2 and libcurl.

It has to be noted that these results should again be interpreted with two aspects in
mind. First, a number of libraries contain files small enough that they may suffer from
the same effect described previously for dynamically-linked MSVC (cf. Section 6.4.2),
causing misdetections through just a few matched small functions.

Second, the reference library data has been collected in 2020, with many of the library
versions being among the most recent available. We already noted before that these may
be signficantly more modern than what is used in malware (cf. Section 6.4.2), which
may cause a detection gap.

We therefore conclude that our estimated library use of 20.28% code is more likely a
lower than an upper border. This conclusion is additionally supported by findings in
the following section, in which we view function match clusters in the context of family
labels.

6.4.4. Code Sharing in Windows Malware

We now extend the perspective to match code across all malware families, taking the
previously detected library functions as additional information into concern.

156

6.4. Third-party Library Usage and Code Sharing in Windows Malware

Matchable Bytes Percent Matched
Library Files Functions min 50% max | Families Samples | min 25% 50% 75% max
abseil 109 8,791 30 3,004 101,823 116 238 | 2.69 7.92 26.76 33.56 94.55
aplib 15 202 36 7,071 9,371 23 68 | 3.22 11.02 16.98 76.17 92.21
boost 36 43,387 59 82,498 920,522 83 183 | 2.27 3.51 5.88 11.80 24.71
c-ares 2 389 57,775 68,405 68,405 2 31279 2.89 3.00 4.12 5.25
double-conversion 2 317 41,053 48,730 48,730 1 1| 3.77 3.77 3.77 3.77 3.77
expat 2 570 83,841 102,038 102,038 15 21 | 2.67 2.83 3.17 3.91 29.44
freeglut 2 732 81,267 98,636 98,636 29 62 | 2.80 3.03 4.60 8.80 14.77
freetype 2 2,952 447,151 507,114 507,114 8 14 | 2.73 3.15 4.01 4.13 5.53
grpc 22 68,641 2,498 332,099 2,116,389 72 176 | 2.03 3.58 4.93 7.28 23.77
harfbuzz 2 12,429 | 1,028,413 1,129,158 1,129,158 7 26 | 2.90 3.73 3.82 3.88 7.70
jasper 2 1,449 207,451 247,071 247,071 20 55 | 274 292 371 3.86 6.36
libarchive 8 11,195 387,918 434,346 454,358 13 33 | 2.74 3.53 3.86 4.02 6.04
libbz2 8 425 39,581 45,977 54,872 6 10 | 4.03 4.69 9.02 46.60 50.44
libeurl 2 2,513 603,403 711,812 711,812 0 0 - - - - -
libenca 10 773 16,060 20,047 20,898 14 23 | 2.67 2.81 3.16 3.65 6.95
libflac 4 1,232 9,859 181,263 182,749 163 367 | 2.31 3.77 5.74 8.69 28.81
libgerypt 48 53,098 398,092 439,985 490,298 87 187 | 3.02 3.95 5.58 9.87 24.92
libgmp 16 13,112 234459 320,533 370,025 73 168 | 240 3.26 4.01 4.94 8.24
libgnutls 52 136,434 624,361 748,151 1,034,480 23 60 | 3.08 5.12 5.72 12.04 16.74
libgpg-error 60 15,646 39,458 62,459 83,571 20 41 | 2.32 3.24 4.88 5.37 12.43
libiconv 16 5,150 70,781 83,546 87,469 29 40 | 3.07 353 440 6.88 14.29
libjpeg-turbo 4 2,702 314,459 363,379 390,180 5 9 | 2.79 3.17 3.17 6.92 9.80
liblzma 26 7,744 87,205 92,446 106,678 14 25 | 2.31 2.49 2.92 3.02 6.48
libmariadb 2 1,439 187,267 211,510 211,510 39 88 | 2.50 3.26 3.96 7.36 10.46
libnettle 72 24,014 116,797 119,944 139,928 87 157 | 2.47 3.88 6.41 8.60 35.11
libogg 22 1,089 7,060 7,941 8,561 20 54 | 240 4.00 4.00 4.35 7.01
libpng 2 843 115,248 143,768 143,768 17 30 | 3.26 4.66 5.26 5.33 7.30
libpq 12 1,508 3,996 36,329 100,890 111 261 | 2.66 6.15 8.61 8.61 29.08
libsndfile 2 2,054 357,782 398,272 398,272 0 0 - - - - -
libspeex 14 1,971 86,984 118,378 124,292 0 0 - - - - -
libssh 54 41,553 172,814 208,649 256,605 24 52 | 2.70 3.11 5.20 6.44 19.13
libvorbis 6 547 10,339 21,124 138,287 5 34 | 2.86 3.77 3.77 6.13 6.32
libwebp 8 4,384 9,006 209,553 486,856 25 59 | 2.77 3.90 5.22 6.10 7.56
libxml]2 24 61,313 740,382 924,399 943,157 25 65 | 2.84 3.53 3.81 6.26 10.74
libzlib 20 3,817 46,568 67,885 73,161 50 123 | 2.84 3.49 11.67 2391 37.24
Imdb 2 296 49,010 61,597 61,597 5 6 | 2.95 3.02 3.16 3.35 4.56
mepp 2 326 64,366 75,177 75,177 1 1]294 294 294 294 2.94
mdnsresponder 2 133 17,543 20,257 20,257 13 17 | 2.75 3.02 3.53 3.98 6.61
MSVC 118 44,699 544 17,730 442,677 428 1,125 | 1.87 3441 87.01 89.81 98.48
openssl 100 383,893 264,781 1,072,110 1,548,783 35 83 | 2.77 4.24 6.11 33.63 65.70
opus 2 962 268,842 334,281 334,281 0 0 - - - - -
pcre 10 1,809 1,130 225,312 286,070 44 92 | 2.53 3.25 4.96 7.45 16.70
pere2 6 1,829 252,446 320,065 379,564 0 0 - - - - -
poco 32 50,278 5,741 153,381 839,983 228 574 | 2.88 16.92 16.92 16.92 49.20
protobuf 6 59,588 372,904 2,369,427 2,684,741 46 120 | 2.63 3.10 3.61 6.06 11.15
qt5 80 164,407 287 119,804 3,898,923 185 404 | 1.53 7.12 8.34 17.07 100.00
sqlite3 2 3,776 685,293 845,807 845,807 10 14 | 2.90 3.40 6.82 3094 40.48
tiff 4 1,308 2,236 223,757 247,602 68 128 | 2.63 3.69 4.22 1299 16.17
tinyxml 2 518 22,550 38,357 38,357 216 495 | 1.94 3.39 5.67 10.75 60.07
tinyxml2 7 2,020 27,228 29,296 34,098 81 145 | 1.98 3.37 4.53 12.75 57.43
upb 12 1,290 1,505 15,676 49,747 87 259 | 2.21 3.37 3.92 5.58 15.87
wolfssl 8 11,473 166,882 374,895 512,771 136 298 | 2.53 4.06 5.94 10.57 55.24
zeroc-ice 32 102,481 7,858 191,860 3,380,278 84 171 | 2.58 3.85 6.78 10.84 27.25
zstd 2 2,331 567,691 656,595 656,595 1 1] 324 3.24 3.24 3.24 3.24
Combined 1,117 1,360,218 | - - - 533 1,507 | - - - - -

Table 6.14.: Detected presence for 53 third-party libraries. For each library, the number of corre-
sponding LIB files and functions equal or above 10 instructions is listed. Matchable
Bytes provides additional information about the range of sizes for the LIB files, Per-
cent Matched gives a five number summary for how much content of the libraries
was matched.

For this, we conducted the previous experiment in the other direction, matching
1,116,619 functions from 2,056 malware samples against themselves in addition to the
1,360,218 library functions from 1,117 library files.

Overall, we register 244,187,596 MinHash matches when using a similarity threshold of
50, out of which 55,336,402 (22.66%) are also PicHash matches. On a per sample level,

157

6. Code Recovery and Similarity Analysis

matching takes between 0.97 and 2,522.19 seconds, with a median of 25.49 seconds. The
whole data set was processed in 35 hours and 27 minutes.

Figure 6.4 shows the distribution of function cluster sizes when measured in families
represented in the cluster, annotated with whether or not the cluster has been classified
as a collection of library functions. This view on the data can be used to provide an
interpretation in terms of occurrence frequency with which similar code is encountered
across malware families. It is inspired by similar concepts presented by Kornau-von
Bock und Polach et al. [325] for large-scale code similarity analysis within Google.

Because clusters may contain a split of functions recognized as library or not, we
decide their belonging based on the percentage of the functions that had a library label.
Here, we deliberately chose 10% as a threshold and expand the respective label to the
full cluster if the threshold is met. As a result, 217,266 functions have transitively
received a label in addition to the 171,934 that were already labeled directly before (cf.
Section 6.4.3). With increasing cluster size, the fraction of clusters tagged with a library
of any kind generally increases, with MSVC dominating over other libraries for cluster
sizes of 25 families and larger. MSVC is generally the most commonly found library,
which is a similar result to what we previously observed (cf. Table 6.14).

We can see that there are several peaks in the overall distribution, best visible e.g.
for cluster sizes of 43, 103-104, 263 etc. families. Most of them occur for MSVC tagged
clusters and for some of them, their surrounding exhibits a shape reminding of a gaussian
bell curve. Our analysis did not give a concluding answer for this phenomenon, but we
found indications that these correspond to groups of common code shared across version
and compilation options of MSVC. The bell curve in this context is a result of the
fuzziness introduced through MinHash.

In total, 727,419 functions are neither matched directly nor transitively with the ref-
erence libraries in the data set. The stacked bars for cluster sizes 9 or smaller are cut
off for better interpretability of the diagram, excluding the portion of functions not
matched with any library. Note that the functions not shown in the diagram constitute
a significant part of all functions and sum up to 558,334 or 50,00% of the functions
in all malware samples, with a majority of them concentrated for 0-3 families matched
(305,796, 104,497, 51,015, 29,045), which together add up to 43.91%. These also most
likely represent the family-intrinsic parts of the malware families and are the area where
we can expect to find the most interesting overlaps between families.

It is safe to assume that despite our efforts, the collection of reference library code will
have missed libraries or versions of libraries that are commonly found in malware. As a
result, we expect the real number of larger cluster sizes not associated with any library
to be smaller than suggested by Figure 6.4 and again assume our results more likely to
represent a lower bound. This is a particularly interesting observation, as it suggests
that code found so commonly across families carries less value when investigating au-
thorship links between families and that less frequently observed overlaps could in turn
be amplified.

Next, we aggregate the individual function matches to measure similarity on a sample
level. As a similarity measure, we summarize the size in bytes of matched functions

158

6.4. Third-party Library Usage and Code Sharing in Windows Malware

¥ No libra
12000 4

‘

10000

8000
y
]
5
§ 6000
]

M‘
o, I|||n .m‘ .|I‘..‘ ok PR | SO [

m “\ ol |\\|||mn||\| -

I
Q%b AN © > AV D P o *’LD \2 VO VO X o 3
N o o @@«%%@.&\,«,wg@ AR G S R Tt Oy Lt S S S RN e

Multiple libraries
W Other library
mMSVC

© > DS DO N
LSRR o QA

Families in Function Cluster

Figure 6.4.: Distribution of function cluster sizes when counted in families, annotated whether
or not detected as a third-party library. Bars for cluster sizes 9 and smaller are cut
off for better interpretability, excluding only functions tagged “no library”.

multipled with the similarity score. This takes the actual amount of code matched into
concern (opposite to e.g. counting functions only) and also the confidence with which
matches have been assessed.

Additionally, we make use of the previously stated observations. On the one hand, we
exclude all matches in clusters that have been identified as library code. This allows us
to focus on the parts in the code that we assume to be family-intrinsic. This idea has
been proposed before as well by Tahan et al. [194], who used it on n-grams of full-scale
binaries instead of for the comparision of individual functions as in this work.

On the other hand, we use the number of families found per cluster to further adjust
the scoring. For this, we scale the byte score by dividing with logy of the number of
families contained in the cluster, if this number is 4 or above. This ensures that clusters
shared among few families are counted in full while bigger clusters are softly diminshed
according to their size.

Figure 6.5 shows the results of an exemplary similarity clustering using a threshold of
10% between samples. Samples of the same family have been assigned the same random
colors and a number of interesting cases have been annotated with numbers. The overall
clustering results in 746 components with 6,237 edges. At first glance, we see that the
links lead to mostly homogeneously colored clusters, indicating that code similarity and
thus relationship between samples of same families is reliably recognized. At the same
time, there appear to be only few cases where code between families is overlapping for
10 or more percent.

Note that the 746 components capture 663 families, meaning that a number of families
have been divided into multiple clusters as well. Reasons for this are for example that
some are divided by bitness, have changed too significantly in the versions captured in
the data set, or because they contain multiple modules (loader and payload). We will

159

6. Code Recovery and Similarity Analysis

.
..

R 'gﬁéﬁ”%%

o.ooo

w&w i

Figure 6.5.: Similarity clustering resulting from aggregating all function matches on sample level.
Nodes represent samples (same color for same family) and edges indicate a similarity
score (measured in bytes) of 10% or above.

now discuss a number of 10 selected, interesting cases to demonstrate the capabilities of
the methodology implemented with MCRIT.

Cluster 1 is the biggest one and contains 83 samples. It contains 7 families all derived
from the Zeus source code leak: win.citadel (plum), win.kins (green), win.ice_ix
(cyan), win.zeus_sphinx (purple), win.vmzeus (pink), win.floki _bot (brown), and the
source family itself, win.zeus (ochre). The highest node degree with 43 has win.zeus
version 2.0.8.9, the leaked version.

Cluster 2 is another big cluster and consists of two Zeus-like families: win.vmzeus
(pink) and win.pandabanker (orange). The samples of win.vmzeus are not linked to
the ones from cluster 1 because a WinAPI usage obfuscation scheme has been added
that alters the majority of functions structurally to a degree that they are no longer
matched by MCRIT. In this case, it is this specific obfuscation scheme that links the
evolved strain of win.pandabanker to win.vmzeus. This has also been observed by IBM
X-Force [326].

160

6.4. Third-party Library Usage and Code Sharing in Windows Malware

Cluster 3a and cluster 3b are both win.dridex (berry), which cleanly divide into
32bit and 64bit respectively. The samples colored green in cluster 3a are also related, as
they belong to the ransomware offspring of win.dridex: win.friedex.

Cluster 4 is the primary collection of samples for family win.locky (green). The orange
sample is indeed associated with the code base, as it is win.locky_decryptor. In this
case, the decryptor component is implemented reusing the code for enumerating files and
handling cryptography from the ransomware. Note also that a second, smaller cluster
of win.locky is found above the marking for cluster 6, which contains the later samples
that employed heavy code obfuscation.

Cluster 5 consists primarily of samples from family win.gpcode (pink), which is manu-
ally written in Assembler. A consequence of this is that it contains many characteristic
code sequences that look differently from what compilers would emit. The sample colored
in blue belongs to family win.crypto_fortress (blue), which appears to have been an
attempt at rebranding the ransomware but clearly has strong code overlap upon manual
inspection.

Cluster 6 consists of 3 families: win.sage ransom, win.crylocker, and win.ransoc,
that are as well documented to be rebrandings of each other [327].

Cluster 7 shows the strong relationship of samples from win.isfb (brown) among each
other but also links to a sample of its documented predecessor win.snifula (green) [328].

Cluster 8 captures the relationship between win.pony (orange) and win.icedid (lime).
This was also observed and documented by Intezer [329].

Cluster 9 contains the evolutionary linage of win.murofet (brown), win.gameover_p2p
(navy), and win.gameover_dga (magenta). While all three families are attributed to the
original author of win.zeus [330], their code links to the zeus cluster (1) are distant and
diminished by the log, scaling described earlier. On the other hand, the newly introduced
parts provide a strong link among the families.

Cluster 10 shows the effect of incomplete library recognition and filtering. Multiple of
the families in this cluster have much older versions of OpenSSL than in the reference
data set and/or the uncovered VCTools statically linked into them. This causes MCRIT
to detect suspected overlap in these uncovered functions, e.g. OpenSSL causing matches
between win.xtunnel (mint) and win.zeus_openssl (orange), as well as win.xtunnel
and win.rokrat (berry). Neither of these relationships makes any sense from the known
background in which these malware families are situated, so we can register them as false
positives.

We assume that there are more false positive multi-family clusters that have been com-
posed for similar reasons but we also think that this approach may uncover interesting
leads of potentially unknown connections between malware families. Overall, we think
that the results are plausible and that this experiment demonstrates MCRIT’s powerful
clustering abilities.

161

6. Code Recovery and Similarity Analysis

|| I |I| ' ||||] uty" I .IIII b Il - Ea]réﬂies natlc:r{?; .
. | E | |I I I| I | I - " |||I||IIII Il Ill ' |II y E§3 E;gg;
|l I I I I I|| I i I || Illl - |H| ||| | R 047 Mo+

-||| G -- - - | a1 Library identified:
lI I I III m g I I III'I I II I I I II IIlIII I u If]nl;anrey identifie
I I III I l“ I II I " I { b Ezi:gr librar
||I| ; I il I llaft |-. I I||..- Al NG) | .
o — cintlort :
I II'I I I -I STV | PR
| | il | [
a 'lll I III Ill L Ds0-89

libzlib 1.1.3

link ti link to
win. conto pee| [win.romeos|

win.bitsran)

AES, unknown
source
link to

win. joanap

Figure 6.6.: MCRIT graph for the analyzed win.wannacryptor sample that lead to Lazarus being
attributed for the attack. Additional annotation below the graph shows further links
to Lazarus as identified by MCRIT. The sample contains 216 functions with 10 or
more instructions.

6.4.5. Case Studies for the Application of MCRIT

In this section, we now outline practical use cases for the application of MCRIT. We
have selected one case each with an APT and crimeware background.

In the first experiment, we will reproduce the analysis that was conducted in order
to generate attribution hints for win.wannacryptor (or more commonly referred to as
“WannaCry”) towards the North Korean threat actor group Lazarus.

In the second experiment, we will examine how the banking malware win.citadel has
evolved from the leaked win.zeus source code, outlining which components have been
added or changed and which remained closer to the original.

Both case studies exemplify how MCRIT can aid and accelerate in-depth malware
analysis workflows [38] by guiding an analyst’s attention to code areas of interest. We
again use the same data sets as before and a similarity threshold of 50.

Attribution of WannaCry

On May 12th 2017, news broke of a ransomware spreading rapidly by employing worm-
like distribution, using an SMB exploit called EternalBlue [331], which was part of
the NSA arsenal previously leaked by TheShadowBrokers. On May 15th 2017, Neel
Mehta from Google tweeted [332] two hashes for malware samples with corresponding
offsets that pointed out a link in code between win.wannacryptor and malware family
win.contopee. This other malware family was previously observed being used by the
threat actor Lazarus [333], credited e.g. for attacks on the SWIFT banking system [333]
and the wiper attack on Sony [334]. The code sharing link was then quickly verified by
other researchers [335, 336]. In this experiment, we will reproduce the findings published
originally in the tweet using MCRIT.

Figure 6.6 shows a visualization we refer to as MCRIT graph, a composite diagram
for matching results of the win.wannacryptor sample that was referenced. All three
rows in the diagram are overlays of each other and provide different aspects of matching

162

6.4. Third-party Library Usage and Code Sharing in Windows Malware

information. They generally visually represent all functions in the sample with 10 or
more instructions. For each function the respective size is indicated by length of its
bar, with one block being equal to 10 instructions and expanding first top down and
potentially wrapping over into the next column. All functions are listed in the sorting
of their start addresses, moving left to right.

The first row picks up the occurrence frequency interpretation introduced in Sec-
tion 6.4.3 and shows to how many other families this function was matched. The second
row indicates whether a function was matched against a library function from the data
set and we differ between a function from MSVC, one library or if multiple libraries were
matched. The third row shows the best similarity score of a function not belonging to a
sample of the same family, i.e. foreign similarity. The rating PIC means in this context
that the function had a MinHash similarity score of 100 and also matched using PicHash
and thus can be considered a binary clone.

As shown in the diagram, MCRIT is indeed capable of establishing the same link to
win.contopee and the function in question is matched with a score of 67.19. In addition,
we annotated further code sharing links to families attributed to and exclusively used by
Lazarus as found by MCRIT. MCRIT finds another function related to the construction
of the same imitated TLS encapsulation in the RomeoGolf variant of family win.romeos.
Further inspection of the sample reveals that the same code linked to win.contopee is
also found there but was not recognized due to code being merged and additional use of
string obfuscation. Another piece of code that makes use of the embedded libzlib 1.1.3
(also partially recognized by MCRIT) is linked to family win.bitsran, which uses the
same version of libzlib but in a slightly different but still matchable way. Finally, at the
end of the win.wannacryptor sample we find an implementation of AES for which we
could not identify the source. However, the exact same functions are found to be used
in family win. joanap, which is also linked to Lazarus.

An important takeaway of this example is the insight that all of these links are es-
tablished through functions matched against single or very few other families (1-3), i.e.
functions with low occurrence frequency. We believe that a selection of functions with
these characteristics may serve well as a list of pivotable candidates when searching for
code-based relationships between families.

Mapping out Citadel

In the second experiment, we will dive into the ecosystem of families derived from the
source code leak of win.zeus, focusing on win.citadel. This family was very popular
and actively developed during 2012-2013.

Figure 6.6 shows the MCRIT graph for a sample of win.citadel, version 1.3.4.5. In
addition to the three rows, we have annotated the functional capabilities of code areas in
the binary as manually obtained through reverse engineering and added their averaged
foreign similarity score. Looking at the first row of the graph, we can see that the
majority of functions is matched with 4-7 and then 8-15 families. This is in line with
the observations made in Section 6.4.3 and underlines the popularity of win.zeus as a
baseline for derivative projects. The green areas directly correspond to the 7 families

163

6. Code Recovery and Similarity Analysis

™ H I = | Families matched:
P - H Oe Os-15
& m: Tis-31
] b A
& g
™ H i ikl ~ K[k | Library tdentified:
4 . I
i il :
l v
[||I | l. .
!
T |

- T Ll A o el il gnone
-~ MSVC
Dlother library
e < C
ove%c‘i@‘ a"‘e(S & e‘pﬁ 06*‘\% ‘mc ‘“Q"“ (\Q ® oW\q
R P G PO SO GO
o 2 ‘\n AS e < ‘\,’Q(e

: !Iil'll .I...|.i||’

Fanily Match
Frequency
T,

i B

Library

avg Similarity Recognition

1~ Erultiple libraries

Similarity score:

0 O7e-79
Eric O 60-69
[Joo-100 [50-59
Dso-89

Foreign

L

oS

o x,\)e 0% ¢

,,o(< \5
e

g,

»Q‘-‘\q(sgv"o cez:qf\%eaés‘d \\d\\’c(‘&‘\ o

0!

Figure 6.7.: MCRIT graph for an analyzed win.citadel sample, version 1.3.4.5. Additional
annotation below the graph shows which code areas are responsible for which func-
tional aspects in the malware, color indicates the averaged similarity score in the
area. The sample contains 747 functions with 10 or more instructions.

mentioned for Cluster 1 (cf. Figure 6.5). The yellow area additionally links into other
zeus-like families such as win.murofet, win.pandabanker, or even win.bolek.

With respect to libraries matched, we can see that the reference library set did not
produce significant hits, apart from one large function in the cryptography area. This
function is also matched into many families (32-63) and provides AES encryption and
decryption. It has a comparatively low matching score because it was slightly modified
by the author of win.citadel.

When looking at the foreign similarity score, we can easily identify which areas were
significantly modified by the malware author. These also overlap with the descriptions
made in the manual published for this bot [337]. First, the unmatched (white) areas
are a series of anti-detection mechanisms that also identify security products potentially
running on the victim’s machine. The remote command capability was heavily extended
and hooking for the network library nspr4.d11 was added, which is e.g. used by FireFox.

For the areas with lower matching scores (red, orange), HTTP grabber and injects
were constantly updated during the activity of win.citadel to keep up with changes
introduced through browser updates in Internet Explorer, FireFox, and Chrome. Simi-
larly, the author seemingly had a liking for integrating customized cryptography, which
lead to a heavily modified RC4 (using a more complex and salted SBox generation) and
a lesser modified implementation of AES with an additional XOR operation using a
static 128 bit key. The configuration, persistence, and C&C code (including parts of the
reporting) was also modified and diverts from standard win.zeus.

Lesser modifications were made on the backconnect functionality, hooking and software
grabbing. Almost no changes were made to Socksh proxy and VNC capability and many
of the core aspects of system interaction such as process, memory, registry, network
and file system management were almost not changed at all. As the MCRIT graph
shows, especially the latter have been reused in a wider array of families because of the
convenience provided by them.

This second case study illustrated how MCRIT can be used to investigate and under-
stand the composition of a binary and how to potentially isolate family-intrinsic aspects

164

6.5. Summary

of certain functionality. This again may serve as a supporting guideline in the context
of situational awareness, e.g. when an analyst considers where to focus analysis efforts
on or even just to help identify potential code reuse across families in a more widened
context than classical 1:1 binary diffing.

6.5. Summary

In this chapter we covered two topics: robust recovery of code from memory dumps and
measuring structural code similarity.

Robust code recovery is a strict requirement for enabling the reliable execution of
a wide array of in-depth analysis methods. We continued again with concentrating
on memory dumps as input format, which we identified as a favorable representation
for unpacked malware (cf. Section 4.3.1). Personal experience from practical settings
suggested that disassemblers struggle with handling memory dumps but as this had
not been previously addressed in academic research of disassembly methods, we set RQg
specifically to focus on the recovery of code and Control Flow Graph information for Intel
x86/x64 from memory dumps without making assumptions about structural properties
of the given file. As an answer to this question we presented SMDA, a methodology
that incorporates various core ideas from previous work [178, 179, 172, 175, 170, 31] and
showed their applicability in this specific case. SMDA is organized in two phases, first
identifying potential function entry points by heuristically locating code references on
function level and then second, filling in gaps between the functions recognized in the
first phase.

We showed that the introduced method of FEP discovery alone is capable of finding
up to 79.81% of function starts (cf. Section 6.2.1) and that having two or more code ref-
erences pointing to the same location indicates almost always a function as the precision
of 0.996 for this case underlines. For the accuracy evaluation, we reused the data sets
from Andriesse et al. [31] and Bao et al. [175] to enable comparability. Benchmarking
recent versions of industry disassemblers IDA (7.4) and Ghidra (9.1.2), we found that
their results on the Linux binaries significantly improved since 2017, and were pleasently
surprised that Ghidra produced very accurate results. We evaluated the disassemblers
on the Windows binaries from the Bao data set both in their given and memory-dumped
form. This direct comparability allowed us to formally prove the experienced decline in
performance for the other disassemblers. SMDA was the only disassembler to retain
a high accuracy on memory dumps with a TPR of 0.958, which was possible without
processing any structural information provided by file headers or similar sources.

In the second part of the chapter, we directed our attention to measuring code simi-
larity in order to answer two more research questions: RQ)7, asking about the frequency
of third-party library use in Windows malware and RQg asking about actual intrinsic
code overlap in Windows malware.

To answer these questions, we presented MCRIT as a system combining two methods
for exact and locality-sensitive hashing of functions to enable efficient one-to-many code
similarity analysis. We used the exact position-independent code (PIC) hashing method

165

6. Code Recovery and Similarity Analysis

defined by Cohen and Havrilla [187], primarily to study how function size affects the
results when using function names as labels for assigning pairs of supposedly similar
functions. Using a data set of 16 well-known libraries in various versions containing
820,922 functions, we found out that small functions of less than 10 instructions will
frequently have exact code overlap but differ in their labels, which will cause challenges
to the interpretability of precision. We concluded that excluding these small functions
is a viable approach as they only contribute 2% of the code measured in bytes while
contributing 31% of the functions.

We then performed an evaluation and selection for metrics- and token-based features
to be used as representation for code in a MinHash-based similarity method. Further
evaluating parameterizations for this MinHash method, we showed that b-bit hashing
as suggested by Li and Konig [312] can be effectively applied, which allowed us to select
a small MinHash signature length of 64 bytes (about 20% of the average function size)
and still maintain good matching results, especially when considering the mean average
precision, i.e. quality of results when considered from a usability perspective.

To answer the research questions, we applied MCRIT to a data set composed of 53
libraries and 663 families from Malpedia, consisting of 2,476,837 functions in total. With
regard to RQ7, our experiments suggest that 15.4% of the functions or 20.28% of the
code in the malware samples are associated with library code from our reference data
set. This is in line with the findings by Alrabaee et al. [213] who found between 10-45%
FOSS package usage. However, we expect our result to be a lower border because the
characteristics of the function matching clusters suggest that there remains a notable
amount of functions that would have been detected as library if reference code had been
available.

Investigating intrinsic code overlap as questioned by RQg, we found that only few
families show linkage above 10% and in many cases this is a result of one family’s source
code being publicly available e.g. through a leak. Using MCRIT to study the case
for code-based authorship attribution in win.wannacryptor however suggests that solid
links can be much smaller, which opens field for interesting and challenging future work.

166

7. Summary and Outlook

In this dissertation, we concentrated on improvements to the efficiency and quality of
Windows malware analysis. We identified ground truth and situational awareness as
major challenges for even better analysis and workflows.

To address ground truth, we first reasoned about aspects that qualify ground truth
for malware research and created a reference data set called Malpedia. Focusing on
situational awareness, we continued with an examination of malware interactions with
the Windows API, proposing a robust method for the extraction and comparison of API
usage profiles. Finally, we improved disassembly quality on memory dumps and used
code similarity analysis to explore third party library usage and code sharing across
malware families.

All of these facets constitute enhancements to the tasks of classification, characteri-
zation, and contextualization, which are of high relevance for the in-depth analysis of
malware. Especially supporting classification with relationship indicators and additional
cross-family context during an investigation has the potential to save significant amounts
of time and thus accelerate and facilitate an analyst’s workflow. Apart from this, a key
novelty of our work is the scale in terms of manually verified family coverage at which
these analyses have been conducted, thanks to the comprehensiveness of Malpedia.

7.1. Summary of Contributions

With respect to the individual chapters, we summarize our contributions as follows.

In Chapter 4, we assessed the state of ground truth available for research using static
analysis on Windows malware. Having identified an insufficiency in existing data sets,
we defined a total of eleven aspects grouped into three major requirements: Representa-
tiveness (REQR), Accessibility (REQ 4), and Practicality (REQp). These requirements
were then corroborated by a comparison to Rossow’s Prudent Practices [50]. As a re-
sult, a data set fulfilling these requirements is expected to prove useful for research
from an academic point of view as well as being able to support applied research and
investigations in the context of practical malware analysis. Next, we created Malpedia
as a reference malware corpus and validated that it indeed adhered to all requirements.
With 1,136 manually verified malware families (January 2019) and its focus on unpacked
representations in the form of preferably memory dumps, it is the most comprehensive
openly available data set of its kind. Using Malpedia, we then performed a structural
analysis across unpacked samples for 839 Windows malware families. This particularly
revealed that meta data in the form of PE headers is widely available to analysis and
also appears plausible in most cases.

167

7. Summary and Outlook

In Chapter 5, we studied malware interaction with the Windows API in depth. As
a prerequisite to analysis, we proposed ApiScout as a method for the robust extraction
of Windows API usage information from memory dumps. ApiScout is a generalization
of Eureka’s approach [105] and uses two phases: first a system-wide inventorization of
available WinAPI functions and their offsets, and then scanning and filtering of ref-
erences to these in memory dumps. This decouples its application from the dynamic
analysis environment, allowing for a more flexible and repeatable analysis. An accuracy
evaluation revealed that comparable approaches (Scylla’s IAT Search and Volatility’s
ImpScan) make too strong assumptions about how API references are structured and
located, which may lead to incomplete results for them, while ApiScout achieves near
perfect results. Next, we applied ApiScout on all memory dumps from Malpedia, show-
ing that dynamic API imports are frequently encountered while custom obfuscation
that actually impairs analysis is rare. A frequency analysis of individual WinAPI usage
showed that most API functions are found in only few families, suggesting that usage
profiles are distinctive on a family level. Furthermore, categorizing API functions into
semantic classes gave insight into potential capabilities enabled by them, establishing
behavorial context. We then introduced ApiVectors as a data representation that allows
efficient storage and comparison of API usage profiles. An evaluation of this approach
pointed out that API usage profiles allow effective malware classification.

In Chapter 6, we shifted our attention to the analysis on the code level. In a first part
we proposed SMDA, an approach specifically tailored for the recovery of x86/x64 disas-
sembly from memory dumps. The method distinguishes itself by not making assump-
tions about structural properties of a given input file and at its core is a combination of
well-proven previous work [178, 179, 172, 175, 170, 31]. In the evaluation, we compared
SMDA against the industry standards IDA and Ghidra. We noticed significant improve-
ments of their performance on Linux binaries compared to previous evaluations [31] but
were also able to verify a personal observation made over the years during practical
analysis, namely that those disassemblers experience a notable drop in accuracy when
presented with memory dumps. We showed that SMDA was not affected by this, as it
maintained a TPR of above 95% and in the course also established that the method used
for function Entry point identification is highly accurate. In a second part, we focused
on code similarity. We first revisited the hashing method for position-independent code
as defined by Cohen and Havrilla [187]. We used it to show that small functions with
less than 10 instructions are prone to collisions with regard to their function labels,
which implies challenges to the creation of ground truth and the interpretability of pre-
cision in evaluations. Next, we proposed a MinHash-based fuzzy code similarity method
called MCRIT for which we conducted an extensive feature evaluation. Using MCRIT
on Malpedia and a set of 53 popular third-party libraries, we identified that 15-20% of
code found in malware likely originates from libraries and is not intrinsic to the families.
When excluding such library code from consideration, we notice that malware families
barely exceed 10% similarity, except for known cases of source code leaks or documented
family relationships due to same origin. This implies that an approach for hunting sim-
ilarity based on occurrence frequency of code across malware families and samples can
provide valuable hints for identifying potential relationships.

168

7.2. Conclusions

In summary, we are convinced that this dissertation has effectively demonstrated the
need for and benefit of having a representative data set available for in-depth malware
research. The contributions made throughout this thesis draw a differentiated and de-
tailed picture of the overall malware landscape from a binary code analysis point of view,
indicating that there is still a lot more to explore and improve upon.

7.2. Conclusions

We draw the following primary conclusions from our research:

o It is feasible to curate a data set that enables comprehensive, comparative research
on malware analysis methods and malware itself. While malware packing leads to
an explosion in unique observed files, a high data redundancy can be assessed with
regard to actually unique payloads. Packers also appear as a distinct barrier and
ecosystem of their own, leaving payloads widely unaltered with respect to their
meta data and content. Automated memory dumping is an effective approach for
obtaining an approximate representation of unpacked payloads, helping to reduce
the problem scale.

e Many malware authors seem to intentionally walk past new development tools if
keeping e.g. an older version of Visual Studio they are used to promises higher
compatibility with victim systems and stability in their results. Many authors
also appear careless about data fragments that shed light on their working envi-
ronments, expressed in information such as debug data, build system paths, and
genuine compilation timestamps.

e It is possible to reliably extract Windows API usage information from memory
dumps for more than 95% of the studied malware families, despite dynamic imports
of API references being way more prevalent than previously documented in the
literature. An interpretation of the WinAPI usage profile can serve as a good first
estimation of the potential capabilities of a malware sample. The degree to which
these WinAPI usage profiles are characteristic to families also implies that they
capture personal choice and style of malware authors on how to use the Windows
APT to implement capabilities.

e The presence of statically-linked code from programming frameworks such as Del-
phi or Go has notable impact on both WinAPI usage profiles and code similarity.
This underlines the relevance of methods that are able to isolate such generic from
project intrinsic code. At the same time, the variety of code in third-party libraries
and how these libraries are concretely used and linked remains to pose a significant
challenge to analysis procedures.

e Our observation that no excessive code sharing across malware families exists in
the absence of published or leaked code is promising. It suggests that families
generally contain significant unique regions of code that enable effective classi-
fication, while actual overlaps invite to investigate whether previously unknown
relationships between malware families may exist.

169

7. Summary and Outlook

7.3. Practical Impact

At the time of writing (January 2022), Malpedia has become an established information
resource valued by both academic and industry researchers and practicioners. Its closed
community has grown to more than 1.700 members and more than 12.000 commits have
been added to the underlying Git repository. The corpus now covers 2.288 malware
families represented by 6.365 samples. The web service making the data set accessible
on average handles about 250.000 requests by more than 4.000 unique visitors daily.
Malpedia is frequently mentioned as a useful resource by experts [338, 339, 340] and
has been integrated with several other services and frameworks, including MISP [98],
OpenCTI [341], TheHive [342], VirusTotal [238], UnpacMe [343], URLhaus [344], and
malwoverview [345].

The provided open-source implementations of ApiScout [269] and SMDA [290] have
been integrated into popular malware analysis tools, including the malware processing
framework AssemblyLine [346] and the behavorial capability analysis tool capa [157].
MCRIT [309] has been used to support law enforcement investigations. This underlines
that the theoretical foundations for the research presented in this dissertation are well
suited for and have significant relevance for practical applications.

7.4. Future Work

We identify the following avenues for future research and effort:

Maintainance and extension of Malpedia: In order to remain perspectively useful
and relevant, it should be ensured that Malpedia is actively maintained and its fam-
ily coverage is kept up to date. This is in line with REQgr and REQp as defined in
Section 4.2.1, which demand temporal coverage and topicality for an effectively useful
data set. Keeping a community involved with this task appears advisable and has been
aspired since Malpedia’s inception. In the future, it may become necessary to address
potential shifts in the malware landscape e.g. modularized malware being divided over
several deployment stages or if there is movement towards higher level languages in-
cluding scripting languages like Powershell and Javascript. If required, this should be
reflected in adjustments to the hierarchical data organization.

Extended analysis of WinAPI usage: Chapter 5 has successfully demonstrated
how the analysis of WinAPI information can be used to discriminate between malware
families. This could be expanded to the consideration of benign software, allowing to
further study if and how WinAPI usage spectrums of benign and malicious software
differ (similar to Zwanger and Freiling [146]). In the same context, the code similarity
analysis methods presented in Section 6.3 and 6.4 could be used to isolate and exclude
those WinAPI functions introduced by library code and frameworks in order to achieve a
more pure representation of WinAPI functions used in the actual malicious code. Given
the significance of WinAPI usage in order to implement certain capabilities, one could
investigate whether WinAPI usage similarity may even serve as an indicator for code
similarity between programs. Additionally, future effort should be invested to investigate

170

7.4. Future Work

how WinAPI information can be leveraged to accelerate malware analysis workflows,
e.g. by guiding an analyst’s attention towards selected groups of semantically classified
WinAPI functions tied to specific malicious capabilities.

Extended investigation of code sharing in malware: In Section 6.4.3, we showed
that third-party library usage is common in malware but genuine source code overlaps
appear to be rare. Apart from the two highlighted case studies, we believe it would
be fruitful to further study the characteristics of such code overlaps. This could lead
to a better understanding how these potentially very interesting links between families
express themselves concretely in the code and how code similarity could be better ap-
proached from a practical point of view. Best to our knowledge, the use of one-to-many
code similarity analysis is not widely adapted yet, which also offers chances to examine
it from a usability point of view to tame complexity and quantity of data to consider
during malware investigations.

Transfer of the proposed approaches to other platforms: For this dissertation,
we have exclusively focused on Windows as operating system and Intel x86/x64 as ar-
chitecture. As indicated in Section 4.3.4, malware is being actively developed for several
other architectures and operating systems. One future endeavor could be to generalize
the presented approaches to other platforms. For example, examining how characteristic
Android API and permission sets are for mobile malware families (similar to Aafer et
al. [347]), examining if the function entry point identification heuristic can be adapted
to ARM or MIPS, or if the code similarity analysis can be expanded to cross-platform
matching [199].

171

Bibliography

(1]

2]

(8]
(9]

(10]

(11]

(12]

(13]

(14]
(15]
[16]

(17]

C. Kanich, C. Kreibich, K. Levchenko, B. Enright, G. M. Voelker, V. Paxson, and S. Savage,
“Spamalytics: An Empirical Analysis of Spam Marketing Conversion,” Communications of the
ACM, vol. 52, 2009.

B. Stone-Gross, T. Holz, G. Stringhini, and G. Vigna, “The Underground Economy of Spam: A
Botmaster’s Perspective of Coordinating Large-Scale Spam Campaigns,” in Proceedings of the 4th
USENIX Conference on Large-Scale Exploits and Emergent Threats (LEET), 2011.

R. Cohen and D. Walkowski, “Banking Trojans: A Reference Guide to the Malware Family
Tree,” 2019. Blog post: https://www.f5.com/labs/articles/education/banking-trojans-a-
reference-guide-to-the-malware-family-tree [online; accessed April 2022].

European Cybercrime Centre, “WannaCry Ransomware,” 2017. Blog post: https://www.
europol.europa.eu/wannacry-ransomware [online; accessed April 2022].

Cyber Security Policy, “Securing cyber resilience in health and care: Progress update october
2018,” tech. rep., Department of Health and Social Care, Oct. 2018.

K. Geers, D. Kindlund, N. Moran, and R. Rachwald, “WORLD WAR C: Understanding Nation-
State Motives Behind Today’s Advanced Cyber Attacks,” tech. rep., FireEye, 2014.

J. A. Guerrero-Saad, C. Raiu, D. Moore, and T. Rid, “Penquin’s Moonlit Maze - The Dawn of
Nation-State Digital Espionage,” tech. rep., Kaspersky Labs, 2018.

R. Langner, “To Kill a Centrifuge - A Technical Analysis of What Stuxnet’s Creators Tried to
Achieve,” tech. rep., The Langner Group, 2013.

G. Bonfante, J. Fernandez, J.-Y. Marion, B. Rouxel, F. Sabatier, and A. Thierry, “CoDisasm:
Medium Scale Concatic Disassembly of Self-Modifying Binaries with Overlapping Instructions,”
in Proceedings of the 22nd ACM Conference on Computer and Communications Security (CCS),
2015.

J. Calvet, F. L. Lévesque, J. M. Fernandez, E. Traourouder, F. Menet, and J.-Y. Marion, “WaveAt-
las: Surfing Through the Landscape of Current Malware Packers,” in Proceedings of the 2015
VirusBulletin Conference (VB), 2015.

K. Rieck, P. Trinius, C. Willems, and T. Holz, “Automatic analysis of malware behavior using
machine learning,” Journal of Computer Security, vol. 19, 2011.

D. Plohmann, M. Clauf}; S. Enders, and E. Padilla, “Malpedia: A Collaborative Effort to In-
ventorize the Malware Landscape,” The Journal on Cybercrime € Digital Investigations, vol. 3,
2018.

D. Plohmann, S. Enders, and E. Padilla, “ApiScout: Robust Windows API Usage Recovery for
Malware Characterization and Similarity Analysis,” The Journal on Cybercrime € Digital Inves-
tigations, vol. 4, 2018.

F. Nielson, H. R. Nielson, and C. Hankin, Principles of Program Analysis. Springer-Verlag Berlin
Heidelberg, 1999.

D. Binkley, “Source Code Analysis: A Road Map,” in Future of Software Engineering (FOSE),
2007.

G. Balakrishnan and T. Reps, “WYSINWYX: What You See is Not What You EXecute,” ACM
Transactions on Programming Languages and Systems, vol. 32, 2010.

A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques, and Tools,
2nd Edition. Pearson, 2007.

173

https://www.f5.com/labs/articles/education/banking-trojans-a-reference-guide-to-the-malware-family-tree
https://www.f5.com/labs/articles/education/banking-trojans-a-reference-guide-to-the-malware-family-tree
https://www.europol.europa.eu/wannacry-ransomware
https://www.europol.europa.eu/wannacry-ransomware

Bibliography

(18]

[19]

23]

24]

[26]
27]

28]

2

R. M. Stallman and GCC Developer Community, Using The Gnu Compiler Collection: A Gnu
Manual For Gee Version 4.3.3. Scotts Valley, CA: CreateSpace, 2009.

C. Lattner and V. Adve, “The LLVM Compiler Framework and Infrastructure Tutorial,” in Pro-
ceedings of the 17th International Workshop on Languages and Compilers for High Performance
Computing (LCPC), Mini Workshop on Compiler Research Infrastructures, 2004.

Microsoft, “Visual Studio,” 2021. Homepage: https://visualstudio.microsoft.com/ [online;
accessed April 2022].

various, “PE format,” 2021. MSDN Article: https://docs.microsoft.com/en-us/windows/
win32/debug/pe-format [online; accessed April 2022].

M. Pietrek, “Inside Windows: An In-Depth Look into the Win32 Portable Executable File
Format,” 2002. MSDN Article: https://docs.microsoft.com/en-us/previous-versions/
bb985992 (v=msdn.10) [online; accessed April 2022].

D. Pistelli, “Microsoft’s Rich Signature (undocumented),” 2008. Blog post: http://ntcore.com/
files/richsign.htm [online; accessed April 2022].

lifewire, “Article: Things They Didn’t Tell You About MS LINK and the PE Header,” 2004.
Blog post: http://bytepointer.com/articles/rich_header_lifewire_vxmags_29A-8.009.htm
[online; accessed April 2022].

G. Webster, B. Kolosnjaji, C. von Pentz, J. Kirsch, Z. Hanif, A. Zarras, and C. Eckert, “Finding the
Needle: A Study of the PE32 Rich Header and Respective Malware Triage,” in Proceedings of the
14th Conference on Detection of Intrusions and Malware and Vulnerability Assessment (DIMVA),
2017.

M. Poslusny and P. Kélnai, “Rich Headers: Leveraging this mysterious artifact of the PE format,”
in Proceedings of the 2020 VirusBulletin Conference (VB), 2020.

A. Albertini, “Proof of Concepts,” 2011. Github Repository: https://github.com/corkami/pocs
[online; accessed April 2022].

Microsoft, “MSDN Library,” 1992. Homepage: https://msdn.microsoft.com/library [online;
accessed April 2022].

J. Kinder, Static Analysis of ©86 Executables. PhD thesis, Technische Universitdt Darmstadt,
2010.

D. Andriesse, X. Chen, V. van der Veen, A. Slowinska, and H. Bos, “An in-depth analysis of dis-
assembly on full-scale x86/x64 binaries,” in Proceedings of the 25th USENIX Security Symposium
(USENIX), 2016.

D. Andriesse, A. Slowinska, and H. Bos, “Compiler-Agnostic Function Detection in Binaries,” in
Proceedings of the 2nd IEEE European Symposium on Security and Privacy (EuroS&P), 2017.

Intel Corporation, Intel 64 and IA-32 Architectures Software Developer’s Manual, 2007.
I. U. Haq and J. Caballero, “A Survey of Binary Code Similarity,” 2019. arXiv:1909.11424 [cs.CR].

D. Plohmann, E. Gerhards-Padilla, and F. Leder, “Botnets: Detection, measurement, disinfection
& defence,” Furopean Network and Information Security Agency (ENISA), vol. 1, 2011.

AV-TEST Institut, “Gesamtmenge von Malware und PUA unter Windows,” 2021. Microsoft C++
Team Blog: https://portal.av-atlas.org/malware/statistics [online; accessed April 2022].

M. Midler, K. O’Meara, and A. Parisi, “Current Ransomware Threats,” tech. rep., SEI, 2020.

Iman Ghosh, “This is the crippling cost of cybercrime on corporations.” Blog article for World Eco-
nomics Forum: https://www.weforum.org/agenda/2019/11/cost-cybercrime-cybersecurity/
[online; accessed April 2022].

D. Plohmann, S. Eschweiler, and E. Gerhards-Padilla, “Patterns of a Cooperative Malware Anal-
ysis Workflow,” in Proceedings of the 5th International Conference on Cyber Conflict (CyCon),
2013.

174

https://visualstudio.microsoft.com/
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
https://docs.microsoft.com/en-us/previous-versions/bb985992(v=msdn.10)
https://docs.microsoft.com/en-us/previous-versions/bb985992(v=msdn.10)
http://ntcore.com/files/richsign.htm
http://ntcore.com/files/richsign.htm
http://bytepointer.com/articles/rich_header_lifewire_vxmags_29A-8.009.htm
https://github.com/corkami/pocs
https://msdn.microsoft.com/library
https://portal.av-atlas.org/malware/statistics
https://www.weforum.org/agenda/2019/11/cost-cybercrime-cybersecurity/

Bibliography

[39]
[40]
1]
[42]
[43)
[44]
[45]
f46]

(47]

(48]

(49]

[50]

[51]

[52]

53]

[54]

[55]

[56]

[57]

E. J. Chikofsky and J. H. Cross II, “Reverse engineering and design recovery: A taxonomy,” IEEFE
Software, vol. 7, 1990.

A. M. Turing, “On computable numbers, with an application to the entscheidungsproblem,” Pro-
ceedings of the London Mathematical Society, vol. 2, 1936.

T. Robinson, Building Virtual Machine Labs: A Hands-On Guide. CreateSpace Independent
Publishing Platform, 2017.

M. Sikorski and A. Honig, Practical Malware Analysis: The Hands-On Guide to Dissecting Mali-
citous Software. No Starch Press, 2013.

C. Willems, T. Holz, and F. Freiling, “Toward automated dynamic malware analysis using cwsand-
box,” IEEFE Security and Privacy, vol. 5, 2007.

M. H. Ligh, A. Case, J. Levy, and A. Walters, The Art of Memory Forensics: Detecting Malware
and Threats in Windows, Linux, and Mac Memory. Wiley, 2014.

I. Guilfanov, “IDA Pro,” May 1990. Company Website: https://hex-rays.com/ida-pro/ [online;
accessed April 2022].

National Security Agency, “The Ghidra Software Reverse Engineering suite,” 2019. Project Web-
site: https://ghidra-sre.org/ [online; accessed April 2022].

D. Votipka, S. Rabin, K. Micinski, J. S. Foster, and M. L. Mazurek, “An observational investi-
gation of reverse engineers’ processes,” in Proceedings of the 29th USENIX Security Symposium
(USENIX), 2020.

K. Yakdan, S. Dechand, E. Gerhards-Padilla, and M. Smith, “Helping Johnny to Analyze Malware:
A Usability-Optimized Decompiler and Malware Analysis User Study,” in Proceedings of the 37th
IEEE Symposium on Security and Privacy (S€P), 2016.

A. Taboada-Crispi, H. Sahli, M. Orozco Monteagudo, D. Hernandez Pacheco, and A. Falcon,
“Anomaly detection in medical image analysis,” Handbook of Research on Advanced Techniques in
Diagnostic Imaging and Biomedical Applications, 2009.

C. Rossow, C. J. Dietrich, C. Kreibich, C. Grier, V. Paxson, N. Pohlmann, H. Bos, and M. van
Steen, “ Prudent Practices for Designing Malware Experiments: Status Quo and Outlook ,” in
Proceedings of the 33rd IEEE Symposium on Security and Privacy (SEP), 2012.

K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “Are Your Training Datasets Yet Relevant?,”
in Proceedings of the 7th International Symposium on Engineering Secure Software and Systems
(ESS0S), 2015.

S. Roy, J. DeLoach, Y. Li, N. Herndon, D. Caragea, X. Ou, V. P. Ranganath, H. Li, and N. Gue-
vara, “Experimental Study with Real-World Data for Android App Security Analysis Using Ma-
chine Learning,” in Proceedings of the 31st Annual Computer Security Applications Conference

(ACSAC), 2015.

F. Pendlebury, F. Pierazzi, R. Jordaney, J. Kinder, and L. Cavallaro, “TESSERACT: Eliminating
Experimental Bias in Malware Classification across Space and Time,” in Proceedings of the 28th
USENIX Security Symposium (USENIX), 2019.

B. Miller, A. Kantchelian, M. Tschantz, S. Afroz, R. Bachwani, R. Faizullabhoy, L. Huang,
V. Shankar, T. Wu, G. Yiu, A. Joseph, and J. Tygar, “Reviewer Integration and Performance
Measurement for Malware Detection,” in Proceedings of the 13th Conference on Detection of In-
trusions and Malware and Vulnerability Assessment (DIMVA), 2016.

E. van der Kouwe, D. Andriesse, H. Bos, C. Giuffrida, and G. Heiser, “Benchmarking crimes: An
emerging threat in systems security,” 2018. arXiv:1801.02381 [cs.CR].

S. Abt and H. Baier, “Are We Missing Labels? A Study of the Availability of Ground-Truth
in Network Security Research,” in Proceedings of the 3rd International Workshop on Building
Analysis Datasets and Gathering Ezperience Returns for Security (BADGERS), 2014.

J. Upchurch and X. Zhou, “Variant: A Malware Similarity Testing Framework,” in Proceedings of
the 10th International Conference on Malicious and Unwanted Software (MALWARE), 2015.

175

https://hex-rays.com/ida-pro/
https://ghidra-sre.org/

Bibliography

[58]

[59]

[60]

[61]

[74]

[75]

A. Nappa, M. Z. Rafique, and J. Caballero, “The malicia dataset: Identification and analysis of
drive-by download operations,” International Journal of Information Security, vol. 14, 2015.

Y. Lin, C. Lee, Y. Wu, P. Ho, F. Wang, and Y. Tsai, “Active versus passive malware collection,”
Computer, vol. 47, 2014.

F. Ceschin, F. Pinage, M. Castilho, D. Menotti, L. S. Oliveira, and A. Gregio, “The Need for
Speed: An Analysis of Brazilian Malware Classifiers,” IEEE Security and Privacy, vol. 16, 2018.

B. Grill, A. Bacs, C. Platzer, and H. Bos, ““Nice Boots!” - A Large-Scale Analysis of Bootkits
and New Ways to Stop Them,” in Proceedings of the 12th Conference on Detection of Intrusions
and Malware and Vulnerability Assessment (DIMVA) (M. Almgren, V. Gulisano, and F. Maggi,
eds.), 2015.

R. Ronen, M. Radu, C. Feuerstein, E. Yom-Tov, and M. Ahmadi, “Microsoft malware classification
challenge,” 2018. arXiv:1802.10135 [cs.CR].

F. O. Catak and A. F. Yazi, “A benchmark api call dataset for windows pe malware classification,”
2019. arXiv:1905.01999 [cs.CR].

T. Barabosch, Formalization and Detection of Host-Based Code Injection Attacks in the Context
of Malware. PhD thesis, Rheinische Friedrich-Wilhelms-Universitdt Bonn, 2018.

H. S. Anderson and P. Roth, “EMBER: An Open Dataset for Training Static PE Malware Machine
Learning Models,” 2018. arXiv:1804.04637 [cs.CR].

R. Harang and E. M. Rudd, “SOREL-20M: A Large Scale Benchmark Dataset for Malicious PE
Detection,” 2020. arXiv:2012.07634 [cs.CR].

Y. Zhou and X. Jiang, “Dissecting Android Malware: Characterization and Evolution,” in Pro-
ceedings of the 33rd IEEE Symposium on Security and Privacy (S&P), 2012.

D. Arp, M. Spreitzenbarth, M. Hiibner, H. Gascon, and K. Rieck, “Drebin: Effective and explain-
able detection of android malware in your pocket,” 2014.

F. Wei, Y. Li, S. Roy, X. Ou, and W. Zhou, “Deep Ground Truth Analysis of Current Android
Malware,” in Proceedings of the 14th Conference on Detection of Intrusions and Malware and
Vulnerability Assessment (DIMVA), 2017.

K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “AndroZoo: Collecting Millions of Android
Apps for the Research Community,” in Proceedings of the 13th International Conference on Mining
Software Repositories (MSR), 2016.

D. Maiorca, D. Ariu, I. Corona, M. Aresu, and G. Giacinto, “Stealth Attacks: An Extended Insight
into the Obfuscation Effects on Android Malware,” Computers and Security, vol. 51, 2015.

N. Kiss, J.-F. Lalande, M. Leslous, and V. Viet Triem Tong, “Kharon dataset: Android malware
under a microscope,” in Learning from Authoritative Security Experiment Results (LASER), 2016.

A. H. Lashkari, A. F. A. Kadir, H. Gonzalez, K. F. Mbah, and A. A. Ghorbani, “Towards a
network-based framework for android malware detection and characterization,” in Proceedings of
the 15th Annual Conference on Privacy, Security and Trust (PST), 2017.

F. Alswaina and K. Elleithy, “Android Malware Family Classification and Analysis: Current Status
and Future Directions,” Electronics, vol. 9, 2020.

A. Calleja, J. Tapiador, and J. Caballero, “A Look into 30 Years of Malware Development from a
Software Metrics Perspective,” in Proceedings of the 9th International Symposium on Research in
Attacks, Intrusions and Defenses (RAID), 2016.

L. A. Goldberg, P. W. Goldberg, C. A. Phillips, and G. B. Sorkin, “Constructing Computer Virus
Phylogenies,” Journal of Algorithms, vol. 26, 1998.

G. B. Sorkin, “Grouping related computer viruses into families,” in Proceedings of the IBM Security
ITS, 1994.

176

Bibliography

(78]

[79]

(80]
(81]

(82]

(83]

(84]

(85]

(86]

(87]

(88]

(89]

[90]

(91]

(92]
(93]
(94]
[95]

[96]

T. Dumitras and I. Neamtiu, “Experimental Challenges in Cyber Security: A Story of Provenance
and Lineage for Malware,” in Proceedings of the 4th Workshop on Cyber Security Experimentation
and Test (CSET), 2011.

M. Lindorfer, A. Di Federico, F. Maggi, P. M. Comparetti, and S. Zanero, “Lines of Malicious
Code: Insights into the Malicious Software Industry,” in Proceedings of the 28th Annual Computer
Security Applications Conference (ACSAC), 2012.

J. Jang, M. Woo, and D. Brumley, “Towards automatic software lineage inference,
of the 22nd USENIX Security Symposium (USENIX), 2013.

I. U. Haq, S. Chica, J. Caballero, and S. Jha, “Malware lineage in the wild,” Computers & Security,
vol. 78, 2018.

M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao, F. Jahanian, and J. Nazario, “Automated
classification and analysis of internet malware,” in Proceedings of the 10th International Symposium
on Recent Advances in Intrusion Detection (RAID), 2007.

" in Proceedings

F. Maggi, A. Bellini, G. Salvaneschi, and S. Zanero, “Finding Non-trivial Malware Naming Incon-
sistencies,” in Proceedings of the 7th International Conference on Information Systems Security
(ICISS), 2011.

A. Mohaisen and O. Alrawi, “AV-Meter: An Evaluation of Antivirus Scans and Labels,” in Proceed-
ings of the 11th Conference on Detection of Intrusions and Malware and Vulnerability Assessment
(DIMVA), 2014.

R. Perdisci and M. U, “VAMO: Towards a Fully Automated Malware Clustering Validity Analysis,”
in Proceedings of the 28th Annual Computer Security Applications Conference (ACSAC), 2012.

A. Kantchelian, M. C. Tschantz, S. Afroz, B. Miller, V. Shankar, R. Bachwani, A. D. Joseph,
and J. D. Tygar, “Better Malware Ground Truth: Techniques for Weighting Anti-Virus Vendor

Labels,” in Proceedings of the 8th ACM Workshop on Artificial Intelligence and Security (AlSec),
2015.

A. R. A. Grégio, V. M. Afonso, D. S. F. Filho, P. L. d. Geus, and M. Jino, “Toward a taxonomy
of malware behaviors,” Computer, vol. 58, 2015.

M. Sebastian, R. Rivera, P. Kotzias, and J. Caballero, “AVclass: A Tool for Massive Malware
Labeling,” in Proceedings of the 9th International Symposium on Research in Attacks, Intrusions
and Defenses (RAID), 2016.

S. Sebastidn and J. Caballero, “AVclass2: Massive Malware Tag Extraction from AV Labels,” in
Proceedings of the 36th Annual Computer Security Applications Conference (ACSAC), 2020.

M. Hurier, K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “On the Lack of Consensus
in Anti-Virus Decisions: Metrics and Insights on Building Ground Truths of Android Malware,”
in Proceedings of the 13th Conference on Detection of Intrusions and Malware and Vulnerability
Assessment (DIMVA), 2016.

M. Hurier, G. Suarez-Tangil, S. K. Dash, T. F. Bissyandé, Y. Le Traon, J. Klein, and L. Cavallaro,
“Euphony: Harmonious unification of cacophonous anti-virus vendor labels for android malware,”
in Proceedings of the 14th International Conference on Mining Software Repositories (MSR), 2017.

X. Ugarte-Pedrero, M. Graziano, and D. Balzarotti, “A close look at a daily dataset of malware
samples,” ACM Transactions on Privacy and Security, vol. 22, 2019.

ParzivalWolfram, LeTesla, and alu_pahrata, “The malware wiki,” 2009. Website: https:
//malwiki.org/ [online; accessed April 2022].

E. Freyssinet, Lutte contre les botnets: analyse et stratégie. PhD thesis, Université Pierre et Marie
Curie - Paris VI, 2015.

K. Bandla and S. Castro, “APTnotes,” 2016. Github Repository: https://github.com/aptnotes/
data [online; accessed April 2022].

F. Roth and Contributors, “APT Groups and Operations,” 2015. Google Spreadsheet: https:
//apt.threattracking.com [online; accessed April 2022].

177

https://malwiki.org/
https://malwiki.org/
https://github.com/aptnotes/data
https://github.com/aptnotes/data
https://apt.threattracking.com
https://apt.threattracking.com

Bibliography

[97]

(98]

[99]
[100]
[101]
[102]

[103]
[104]

[105]

[106]
[107]

[108]

[109]

[110]

[111]
[112]
[113]
[114]
[115]
[116]

[117]

B. Strom, A. Applebaum, D. Miller, K. Nickels, A. Pennington, and C. Thomas, “MITRE
ATT&CK: Design and Philosophy,” tech. rep., The MITRE Corporatation, 2018.

C. Wagner, A. Dulaunoy, G. Wagener, and A. Iklody, “MISP: The Design and Implementation of a
Collaborative Threat Intelligence Sharing Platform,” in Proceedings of the 3rd ACM on Workshop
on Information Sharing and Collaborative Security (WISCS), 2016.

Council on Foreign Relations, “Cyber Operations Tracker,” 2005. Website: https://www.cfr.
org/cyber-operations [online; accessed April 2022].

ThaiCERT, “Threat Group Cards,” 2019. Website: https://apt.thaicert.or.th/cgi-bin/
aptgroups.cgi [online; accessed April 2022].

G. Laurenza and R. Lazzeretti, “daptaset: A comprehensive mapping of apt-related data,” in
Proceedings of the 25th European Symposium on Research in Computer Security (ESORICS), 2020.

J. Gray, D. Sgandurra, and L. Cavallaro, “Identifying authorship style in malicious binaries: Tech-
niques, challenges, and datasets,” 2021. arXiv:2101.06124 [cs.CR].

M. Suenaga, “A Museum of API Obfuscation on Win32,” tech. rep., Symantec, 2009.

K. O’Meara, “API Hashing Tool, Imagine That,” 2019. Blog Post: https://insights.sei.cmu.
edu/cert/2019/03/api-hashing-tool-imagine-that.html [online; accessed April 2022].

M. Sharif, V. Yegneswaran, H. Saidi, P. Porras, and W. Lee, “Eureka: A Framework for En-
abling Static Malware Analysis,” in Proceedings of the 13th European Symposium on Research in
Computer Security (ESORICS), 2008.

J. Raber and B. Krumheuer, “QuietRIATT: Rebuilding the Import Address Table Using Hooked
DLL Calls,” in Proceedings of BlackHat DC, 2009.

G. Hunt and D. Tarditi, “Detours,” 2002. Project Homepage by Microsoft Research: https:
//www.microsoft.com/en-us/research/project/detours/ [online; accessed April 2022].

Qi Xi, Tianyang Zhou, Qingxian Wang, and Yongjun Zeng, “An api deobfuscation method com-
bining dynamic and static techniques,” in Proceedings of the 2013 International Conference on
Mechatronic Sciences, Electric Engineering and Computer (MEC), 2013.

S. Choi, “API Deobfuscator: Identifying Runtime-obfuscated API calls via Memory Access
Analysis,” 2015. Presentation given at BlackHat Asia: https://www.blackhat.com/docs/asia-
15/materials/asia-15-Choi-API-Deobfuscator-Indentifying-Runtime-Obfuscated-API-
Calls-Via-Memory-Access-Analysis.pdf [online; accessed April 2022].

D. Korczynski, “RePEconstruct: reconstructing binaries with self-modifying code and import
address table destruction,” in Proceedings of the 11th International Conference on Malicious and
Unwanted Software (MALWARE), 2016.

Y. Kawakoya, M. Iwamura, and J. Miyoshi, “Taint-assisted IAT Reconstruction against Position
Obfuscation,” Journal of Information Processing, vol. 26, 2018.

Y. Kawakoya, E. Shioji, Y. Otsuki, M. Iwamura, and J. Miyoshi, “Stealth Loader: Trace-free
Program Loading for Analysis Evasion,” Journal of Information Processing, vol. 26, 2018.

V. Kotov and M. Wojnowicz, “Towards Generic Deobfuscation of Windows API Calls,” in Pro-
ceedings of the Workshop on Binary Analysis Research (BAR), 2018.

NtQuery, “Scylla,” 2011. Github Repository: https://github.com/NtQuery/Scylla [online; ac-
cessed April 2022].

M. Ligh, “Volatility Command ImpScan,” 2012. Github Repository: https://github.com/
volatilityfoundation/volatility/wiki/Command-Reference [online; accessed April 2022].

M. Christodorescu, S. Jha, S. Seshia, D. Song, and R. Bryant, “Semantics-aware malware detec-
tion,” in Proceedings of the 26th IEEE Symposium on Security and Privacy (S&P), 2005.

M. Christodorescu, S. Jha, and C. Kruegel, “Mining specifications of malicious behavior,” in
Proceedings of the 6th joint meeting of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on The Foundations of Software Engineering (ESEC-FSE), 2007.

178

https://www.cfr.org/cyber-operations
https://www.cfr.org/cyber-operations
https://apt.thaicert.or.th/cgi-bin/aptgroups.cgi
https://apt.thaicert.or.th/cgi-bin/aptgroups.cgi
https://insights.sei.cmu.edu/cert/2019/03/api-hashing-tool-imagine-that.html
https://insights.sei.cmu.edu/cert/2019/03/api-hashing-tool-imagine-that.html
https://www.microsoft.com/en-us/research/project/detours/
https://www.microsoft.com/en-us/research/project/detours/
https://www.blackhat.com/docs/asia-15/materials/asia-15-Choi-API-Deobfuscator-Indentifying-Runtime-Obfuscated-API-Calls-Via-Memory-Access-Analysis.pdf
https://www.blackhat.com/docs/asia-15/materials/asia-15-Choi-API-Deobfuscator-Indentifying-Runtime-Obfuscated-API-Calls-Via-Memory-Access-Analysis.pdf
https://www.blackhat.com/docs/asia-15/materials/asia-15-Choi-API-Deobfuscator-Indentifying-Runtime-Obfuscated-API-Calls-Via-Memory-Access-Analysis.pdf
https://github.com/NtQuery/Scylla
https://github.com/volatilityfoundation/volatility/wiki/Command-Reference
https://github.com/volatilityfoundation/volatility/wiki/Command-Reference

Bibliography

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

133

[134]

[135]

M. D. Preda, M. Christodorescu, S. Jha, and S. Debray, “A semantics-based approach to malware
detection,” in Proceedings of the 84th annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL), 2007.

C. Chen, C. X. Lin, M. Fredrikson, M. Christodorescu, X. Yan, and J. Han, “Mining graph patterns
efficiently via randomized summaries,” Proceedings of the VLDB Endowment, vol. 2, 2009.

M. Fredrikson, S. Jha, M. Christodorescu, R. Sailer, and X. Yan, “Synthesizing Near-Optimal
Malware Specifications from Suspicious Behaviors,” in Proceedings of the 31st IEEE Symposium
on Security and Privacy (S&P), 2010.

Y. Hu, L. Chen, M. Xu, N. Zheng, and Y. Guo, “Unknown malicious executables detection based
on run-time behavior,” in Proceedings of the 5th International Conference on Fuzzy Systems and
Knowledge Discovery (FSKD), 2008.

Lei Liu and Kun Shao, “An approach of malicious executables detection on black gray based on
adaboost algorithm,” in Proceedings of the 2nd International Conference on Anti-counterfeiting,
Security and Identification (ASID), 2008.

U. Bayer, 1. Habibi, D. Balzarotti, E. Kirda, and C. Kruegel, “A View on Current Malware
Behaviors,” in Proceedings of the 2nd USENIX Conference on Large-Scale Exploits and Emergent
Threats (LEET), 2009.

K. Rieck, T. Holz, C. Willems, P. Diissel, and P. Laskov, “Learning and classification of mal-
ware behavior,” in Proceedings of the 5th Conference on Detection of Intrusions and Malware and
Vulnerability Assessment (DIMVA), 2008.

P. Trinius, C. Willems, T. Holz, and K. Rieck, “A Malware Instruction Set for Behavior-Based
Analysis,” in Proceedings of the 2010 Sicherheit Conference, 2010.

C. Kolbitsch, P. M. Comparetti, C. Kruegel, E. Kirda, X. Zhou, and X. Wang, “Effective and Effi-
cient Malware Detection at the End Host,” in Proceedings of the 18th USENIX Security Symposium
(USENIX), 2009.

M. Apel, C. Bockermann, and M. Meier, “Measuring similarity of malware behavior,” in Proceed-
ings of the 34th Annual IEEE Conference on Local Computer Networks (LCN), 2009.

Julia Yu-Chin Cheng, Tzung-Shian Tsai, and Chu-Sing Yang, “An information retrieval approach
for malware classification based on windows api calls,” in Proceedings of the 12th International
Conference on Machine Learning and Cybernetics (ICMLC), 2013.

C. Guarnieri, A. Tanasi, J. Bremer, M. Schloesser, K. Houtman, R. van Zutphen, and B. de Graaff,
“Cuckoo sandbox,” 2010. Website of Cuckoo Sandbox: https://cuckoosandbox.org/ [online;
accessed April 2022].

Y. Ki, E. Kim, and H. K. Kim, “A novel approach to detect malware based on API call sequence
analysis,” International Journal of Distributed Sensor Networks, vol. 11, 2015.

S. Gupta, H. Sharma, and S. Kaur, “Malware Characterization Using Windows API Call Se-
quences,” in Proceedings of the 6th International Conference on Security, Privacy, and Applied
Cryptography Engineering (SPACE), 2016.

J. Kornblum, “Identifying Almost Identical Files using Context Triggered Piecewise Hashing,”
Digital Investigation: The International Journal of Digital Forensics & Incident Response, vol. 3,
2006.

B. Anderson, C. Storlie, and T. Lane, “Improving malware classification: bridging the static/-
dynamic gap,” in Proceedings of the 5th ACM Workshop on Artificial Intelligence and Security
(AlSec), 2012.

P. Shijo and B. Salim, “Integrated Static and Dynamic Analysis for Malware Detection,” in Pro-
ceedings of the 2nd International Conference on Information and Communication Technologies
(ICICT), 2014.

M. G. Schultz, E. Eskin, F. Zadok, and S. J. Stolfo, “Data mining methods for detection of new
malicious executables,” in Proceedings of the 22nd IEEE Symposium on Security and Privacy
(SE&P), 2001.

179

https://cuckoosandbox.org/

Bibliography

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

Y. Lu, S. Din, C. Zheng, and B. Gao, “Using multi-feature and classifier ensembles to improve
malwaredetection,” Journal of Chung Cheng Institute of Technology, vol. 39, 2010.

A. Sami, B. Yadegari, H. Rahimi, N. Peiravian, S. Hashemi, and A. Hamze, “Malware Detection
Based on Mining API Calls,” in Proceedings of the 25th ACM Symposium on Applied Computing
(SAC), 2010.

V. S. Sathyanarayan, P. Kohli, and B. Bruhadeshwar, “Signature Generation and Detection of
Malware Families,” in Proceedings of the 13th Australasian Conference on Information Security
and Privacy (ACISP), 2008.

E. Baranov, F. Biondi, O. Decourbe, T. Given-Wilson, A. Legay, C. Puodzius, J. Quilbeuf, and
S. Sebastio, “Efficient Extraction of Malware Signatures Through System Calls and Symbolic
Execution: An Experience Report.” preprint, 2018.

M. Alazab, S. Venkataraman, and P. Watters, “Towards Understanding Malware Behaviour by
the Extraction of API Calls,” in Proceedings of the 2nd Cybercrime and Trustworthy Computing
Workshop (CTC), 2010.

M. Alazab, S. Venkatraman, P. Watters, and M. Alazab, “Zero-Day Malware Detection Based on
Supervised Learning Algorithms of API Call Signatures,” in Proceedings of the 9th Australasian
Data Mining Conference (AusDM), 2011.

M. Z. Shafiq, S. M. Tabish, F. Mirza, and M. Farooq, “PE-Miner: Mining Structural Information
to Detect Malicious Executables in Realtime,” in Proceedings of the 12th International Symposium
on Recent Advances in Intrusion Detection (RAID), 2009.

P. Beaucamps, I. Gnaedig, and J.-Y. Marion, “Behavior abstraction in malware analysis,” in
Proceedings of the 10th International Conference on Runtime Verification (RV), 2010.

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J. Reddi, and
K. Hazelwood, “Pin: Building customized program analysis tools with dynamic instrumentation,”
ACM SIGPLAN Notices, vol. 40, 2005.

P. Beaucamps, I. Gnaedig, and J.-Y. Marion, “Abstraction-based malware analysis using rewriting
and model checking,” in Proceedings of the 17th European Symposium on Research in Computer
Security (ESORICS), 2012.

V. Zwanger and F. C. Freiling, “Kernel Mode API Spectroscopy for Incident Response and Digital
Forensics,” in Proceedings of the 2nd ACM SIGPLAN Program Protection and Reverse Engineering
Workshop (PPREW), 2013.

B. Caillat, B. Gilbert, R. A. Kemmerer, C. Kruegel, and G. Vigna, “Prison: Tracking Process In-
teractions to Contain Malware,” in Proceedings of the 7th International Symposium on Cyberspace
Safety and Security (CSS), 2015.

D. Kirat and G. Vigna, “MalGene: Automatic Extraction of Malware Analysis Evasion Signature,”
in Proceedings of the 22nd ACM Conference on Computer and Communications Security (CCS),
2015.

A. Mohaisen, O. Alrawi, and M. Mohaisen, “Amal: High-fidelity, behavior-based automated mal-
ware analysis and classification,” Computers and Security, 2015.

H. Tamada, K. Okamoto, M. Nakamura, A. Monden, and K. Matsumoto, “Design and Evaluation
of Dynamic Software Birthmarks Based on API Calls,” tech. rep., Nara Institute of Science and
Technology, 2007.

S. Choi, H. Park, H.-I. Lim, and T. Han, “A static birthmark of binary executables based on api
call structure,” in Proceedings of the 12th Annual Asian Computing Science Conference (ASIAN),
2007.

Q. Guan, Y. Tang, and X. Liu, “A Malware Homologous Analysis Method Based on Sequence of
System Function,” in Proceedings of the jth International Conference on Advanced Science and
Technology (AST), 2012.

180

Bibliography

[153]

[154]

[155]

[156]

[157]

[158]

[159)]
[160]
[161]
[162]
[163]
[164]
[165]
[166]

[167)

[168)

[169]

[170]

[171]

[172]

P. M. Comparetti, G. Salvaneschi, E. Kirda, C. Kolbitsch, C. Kruegel, and S. Zanero, “Identifying
Dormant Functionality in Malware Programs,” in Proceedings of the 31st IEEE Symposium on
Security and Privacy (S&P), 2010.

L. Guevara and D. Plohmann, “Semantic Exploration of Binaries,” 2014. Presenta-
tion given at Botconf: https://www.botconf.eu/wp-content/uploads/2014/12/2014-1.3-
Semantic-Exploration-of-Binaries.pdf [online; accessed April 2022].

K. Oosthoek and C. Doerr, “SoK: ATT&CK Techniques and Trends in Windows Malware,” in
Proceedings of the 15th International Conference on Security and Privacy in Communication Net-
works (SecureComm), 2019.

S. Biithlmann, “JoeBox Malware Analysis,” 2011. Website of JoeSecurity: https://www.
joesecurity.org/ [online; accessed April 2022].
W. Ballenthin, M. Raabe, and the FLARE Team, “capa: Automatically Identify Malware Capa-

bilities,” 2020. Blog post for FireEye: https://www.fireeye.com/blog/threat-research/2020/
07/capa-automatically-identify-malware-capabilities.html [online; accessed April 2022].

O. Alrawi, M. Tke, M. Pruett, R. P. Kasturi, S. Barua, T. Hirani, B. Hill, and B. Saltaformaggio,
“Forecasting Malware Capabilities From Cyber Attack Memory Images,” in Proceedings of the
30th USENIX Security Symposium (USENIX), 2021.

various, “Supply Chain Analysis: From Quartermaster to Sunshop,” tech. rep., FireEye, 2013.

S. Tomonaga, “Classifying Malware using Import API and Fuzzy Hashing — impfuzzy,” 2016. Blog
post for JPCERT/CC: https://blogs. jpcert.or.jp/en/2016/05/classifying-mal-a988.html
[online; accessed April 2022].

Free Software Foundation, “Manpage of OBJDUMP,” 1991. Website: https://linux.die.net/
man/1/objdump [online; accessed April 2022].

R. L. Sites, A. Chernoff, M. B. Kirk, M. P. Marks, and S. G. Robinson, “Binary Translation,”
Communications of the ACM, vol. 36, 1993.

C. Cifuentes and M. V. Emmerik, “UQBT: Adaptable Binary Translation at Low Cost,” Computer,
vol. 33, 2000.

C. Cifuentes and M. Van Emmerik, “Recovery of jump table case statements from binary code,”
Science of Computer Programming, vol. 40, 2001.

H. Theiling, “Extracting safe and precise control flow from binaries,” in Proceedings 7th Interna-
tional Conference on Real-Time Computing Systems and Applications (RTCSA), 2000.

B. Schwarz, S. Debray, and G. Andrews, “Disassembly of Executable Code Revisited,” in Proceed-
ings of the Ninth Working Conference on Reverse Engineering (WCRE), 2002.

C. Linn and S. Debray, “Obfuscation of Executable Code to Improve Resistance to Static Disas-
sembly,” in Proceedings of the 10th ACM Conference on Computer and Communications Security
(CCS), 2003.

B. D. Sutter, B. D. Bus, K. D. Bosschere, P. Keyngnaert, and B. Demoen, “On the Static Analysis
of Indirect Control Transfers in Binaries,” in Proceedings of the 6th International Conference on
Parallel and Distributed Processing Techniques and Applications (PDPTA), 2000.

X. Meng and B. P. Miller, “Binary Code is Not Easy,” in Proceedings of the 25th International
Symposium on Software Testing and Analysis (ISSTA), 2016.

A. Di Federico, M. Payer, and G. Agosta, “Rev.Ng: A Unified Binary Analysis Framework to
Recover CFGs and Function Boundaries,” in Proceedings of the 26th International Conference on
Compiler Construction (CC), 2017.

C. Pang, R. Yu, Y. Chen, E. Koskinen, G. Portokalidis, B. Mao, and J. Xu, “SoK: All You Ever
Wanted to Know About x86/x64 Binary Disassembly but Were Afraid to Ask,” in Proceedings of
the 42nd IEEE Symposium on Security and Privacy (S&P), 2021.

N. Rosenblum, X. Zhu, B. Miller, and K. Hunt, “Learning to Analyze Binary Computer Code,”
in Proceedings of the 23rd National Conference on Artificial Intelligence (AAAI), 2008.

181

https://www.botconf.eu/wp-content/uploads/2014/12/2014-1.3-Semantic-Exploration-of-Binaries.pdf
https://www.botconf.eu/wp-content/uploads/2014/12/2014-1.3-Semantic-Exploration-of-Binaries.pdf
https://www.joesecurity.org/
https://www.joesecurity.org/
https://www.fireeye.com/blog/threat-research/2020/07/capa-automatically-identify-malware-capabilities.html
https://www.fireeye.com/blog/threat-research/2020/07/capa-automatically-identify-malware-capabilities.html
https://blogs.jpcert.or.jp/en/2016/05/classifying-mal-a988.html
https://linux.die.net/man/1/objdump
https://linux.die.net/man/1/objdump

Bibliography

[173]

[174]

[175]

[176]

[177]

[178]
[179)]
[180]

[181]

[182]
[183]
[184]
[185]
[186]
[187]

[188]

[189)

[190]

[191]

[192]

B. Buck and J. K. Hollingsworth, “An API for Runtime Code Patching,” The International Journal
of High Performance Computing Applications, vol. 14, 2000.

R. Wartell, Y. Zhou, K. W. Hamlen, M. Kantarcioglu, and B. Thuraisingham, “Differentiating
Code from Data in X86 Binaries,” in Proceedings of the 2011 European Conference on Machine
Learning and Knowledge Discovery in Databases (ECML PKDD), 2011.

T. Bao, J. Burket, M. Woo, R. Turner, and D. Brumley, “BYTEWEIGHT: Learning to Recognize
Functions in Binary Code,” in Proceedings of the 23rd USENIX Security Symposium (USENIX),
2014.

E. C. R. Shin, D. Song, and R. Moazzezi, “Recognizing Functions in Binaries with Neural Net-
works,” in Proceedings of the 24th USENIX Security Symposium (USENIX), 2015.

K. Pei, J. Guan, D. W. King, J. Yang, and S. Jana, “XDA: Accurate, Robust Disassembly with
Transfer Learning,” in Proceedings of the 28th Annual Network € Distributed System Security
Conference (NDSS), 2021.

C. Kruegel, W. Robertson, F. Valeur, and G. Vigna, “Static Disassembly of Obfuscated Binaries,”
in Proceedings of the 13th USENIX Security Symposium (USENIX), 2004.

L. C. Harris and B. P. Miller, “Practical analysis of stripped binary code,” ACM SIGARCH
Computer Architecture News, vol. 33, 2005.

S. Wang, P. Wang, and D. Wu, “Reassembleable Disassembling,” in Proceedings of the 24th
USENIX Security Symposium (USENIX), 2015.

J. Caballero, N. Johnson, S. McCamant, and D. Song, “Binary Code Extraction and Interface
Identification for Security Applications,” in Proceedings of the 17th Annual Network € Distributed
System Security Conference (NDSS), 2010.

Z. L. Chua, S. Shen, P. Saxena, and Z. Liang, “Neural nets can learn function type signatures
from binaries,” in Proceedings of the 26th USENIX Security Symposium (USENIX), 2017.

7

B. S. Baker, U. Manber, and R. Muth, “Compressing differences of executable code,” in Proceedings
of the 1999 ACM SIGPLAN Workshop on Compiler Support for System Software (WCSSS), 1999.

Z. Wang, K. Pierce, and S. McFarling, “BMAT — A Binary Matching Tool for Stale Profile Prop-
agation,” The Journal of Instruction-level Parallelism, vol. 2, 2000.

E. Carrera and G. Erdélyi, “Digital genome mapping-advanced binary malware analysis,” in Pro-
ceedings of the 2004 VirusBulletin Conference (VB), 2004.

A. Schulman, “Finding binary clones with opstrings & function digests: Part II1,” Dr. Dobb’s
Journal, vol. 30, 2005.

C. Cohen and J. Havrilla, “Function Hashing for Malicious Code Analysis,” tech. rep., SEI, CMU,
2009.

M. R. Farhadi, B. C. M. Fung, P. Charland, and M. Debbabi, “BinClone: Detecting Code Clones
in Malware,” in Proceedings of the 8th IEEE International Conference on Software Security and
Reliability (SERE), 2014.

J. Jang, D. Brumley, and S. Venkataraman, “BitShred: Feature Hashing Malware for Scalable
Triage and Semantic Analysis,” in Proceedings of the 18th ACM Conference on Computer and
Communications Security (CCS), 2011.

M. E. Karim, A. Walenstein, A. Lakhotia, and L. Parida, “Malware phylogeny generation using
permutations of code,” Journal in Computer Virology, vol. 1, 2005.

A. Walenstein, M. Venable, M. Hayes, C. Thompson, and A. Lakhotia, “Exploiting Similarity Be-
tween Variants to Defeat Malware ” Vilo” Method for Comparing and Searching Binary Programs,”
in Proceedings of BlackHat DC, 2007.

A. Saedbjgrnsen, J. Willcock, T. Panas, D. Quinlan, and Z. Su, “Detecting Code Clones in Bi-
nary Executables,” in Proceedings of the 18th International Symposium on Software Testing and
Analysis (ISSTA), 2009.

182

Bibliography

193]

[194]

[195]

[196]

[197]

[198]

[199)]

[200]

[201]

[202]

[203]

[204]

[205]

[206]

207]

208

[209]

[210]

J. Upchurch and X. Zhou, “Malware provenance: code reuse detection in malicious software at
scale,” in Proceedings of the 11th International Conference on Malicious and Unwanted Software
(MALWARE), 2016.

G. Tahan, L. Rokach, and Y. Shahar, “Mal-ID: Automatic Malware Detection Using Common
Segment Analysis and Meta-Features,” The Journal of Machine Learning Research, 2012.

M. Hassen and P. K. Chan, “Scalable Function Call Graph-Based Malware Classification,” in Pro-
ceedings of the 7Tth ACM Conference on Data and Application Security and Privacy (CODASPY),
2017.

E. Raff and C. Nicholas, “Hash-Grams: Faster N-Gram Features for Classification and Malware
Detection,” in Proceedings of the 18th ACM Symposium on Document Engineering (DocEng), 2018.

D. Bruschi, L. Martignoni, and M. Monga, “Code normalization for self-mutating malware,” IEEE
Security and Privacy, vol. 5, 2007.

J. Miller, “Conceptual design, implementation and validation of signatures based on data of aree
analysis for the comparison of functional similarity of executable files available in binary form,”
diploma thesis, University of Rostock, Germany, 2008.

S. Eschweiler, K. Yakdan, and E. Gerhards-Padilla, “discovRE: Efficient Cross-Architecture Identi-
fication of Bugs in Binary Code,” in Proceedings of the 23rd Annual Network € Distributed System
Security Conference (NDSS), 2016.

H. Flake, “Structural Comparison of Executable Objects,” in Proceedings of the 1st Conference
on Detection of Intrusions and Malware and Vulnerability Assessment (DIMVA), 2004.

T. Dullien and R. Rolles, “Graph-based comparison of executable objects,” in Symposium sur la
sécurité des technologies de linformation et des communications (SSTIC), 2005.

C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna, “Polymorphic Worm Detection
Using Structural Information of Executables,” in Proceedings of the 9th International Symposium
on Recent Advances in Intrusion Detection (RAID), 2006.

S. Cesare, Y. Xiang, and W. Zhou, “Malwise — An Effective and Efficient Classification System
for Packed and Polymorphic Malware,” IEEE Transactions on Computers, vol. 62, 2013.

S. H. Ding, B. C. Fung, and P. Charland, “Kam1n0: MapReduce-Based Assembly Clone Search
for Reverse Engineering,” in Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD), 2016.

H. Huang, A. M. Youssef, and M. Debbabi, “BinSequence: Fast, Accurate and Scalable Binary
Code Reuse Detection,” in Proceedings of the 11th Asia Conference on Computer and Communi-
cations Security (AsiaCCS), 2017.

F. Leder, B. Steinbock, and P. Martini, “Classification and detection of metamorphic malware
using value set analysis,” in Proceedings of the 4th International Conference on Malicious and
Unwanted Software (MALWARE), 2009.

W. Jin, S. Chaki, C. Cohen, A. Gurfinkel, J. Havrilla, C. Hines, and P. Narasimhan, “Binary
Function Clustering Using Semantic Hashes,” in Proceedings of the 11th International Conference
on Machine Learning and Applications (ICMLA), 2012.

A. Broder, “On the Resemblance and Containment of Documents,” in Proceedings of the Com-
pression and Complezity of Sequences (SEQUENCES), 1997.

A. Lakhotia, M. D. Preda, and R. Giacobazzi, “Fast Location of Similar Code Fragments Using
Semantic ’Juice’,” in Proceedings of the 2nd ACM SIGPLAN Program Protection and Reverse
Engineering Workshop (PPREW), 2013.

M. Egele, M. Woo, P. Chapman, and D. Brumley, “Blanket Execution: Dynamic Similarity Testing
for Program Binaries and Components,” in Proceedings of the 23rd USENIX Security Symposium
(USENIX), 2014.

183

Bibliography

[211]

[212]

[213)]

[214]

[215]
[216]

[217]

[218]

[219]

[220]

[221]

[222]

[223]

[224]

[225]

[226]

[227]

[228]

J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and T. Holz, “Cross-Architecture Bug Search in
Binary Executables,” in Proceedings of the 86th IEEE Symposium on Security and Privacy (S€P),
2015.

W. M. Khoo, A. Mycroft, and R. Anderson, “Rendezvous: A search engine for binary code,” in
Proceedings of the 10th International Conference on Mining Software Repositories (MSR), 2013.

S. Alrabaee, P. Shirani, L. Wang, and M. Debbabi, “FOSSIL: A Resilient and Efficient System for
Identifying FOSS Functions in Malware Binaries,” ACM Transactions on Privacy and Security,
vol. 21, 2018.

T. Dullien, “Motivation and Overview for FunctionSimSearch,” 2018. Blog post: https:
//github.com/googleprojectzero/functionsimsearch/blob/master/doc/0l-motivation-and-
overview.md [online; accessed April 2022].

M. S. Charikar, “Similarity estimation techniques from rounding algorithms,” in Proceedings of
the 34th Annual ACM Symposium on Theory of Computing (STOC), 2002.

T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation of Word Representations in
Vector Space,” 2013. arXiv:1301.3781 [cs.CL].

Q. Feng, R. Zhou, C. Xu, Y. Cheng, B. Testa, and H. Yin, “Scalable Graph-Based Bug Search for
Firmware Images,” in Proceedings of the 23rd ACM Conference on Computer and Communications
Security (CCS), 2016.

X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song, “Neural Network-Based Graph Embedding
for Cross-Platform Binary Code Similarity Detection,” in Proceedings of the 24th ACM Conference
on Computer and Communications Security (CCS), 2017.

L. Massarelli, G. A. Di Luna, F. Petroni, R. Baldoni, and L. Querzoni, “SAFE: Self-Attentive
Function Embeddings for Binary Similarity,” in Proceedings of the 16th Conference on Detection
of Intrusions and Malware and Vulnerability Assessment (DIMVA), 2019.

S. H. H. Ding, B. C. M. Fung, and P. Charland, “Asm2Vec: Boosting Static Representation
Robustness for Binary Clone Search against Code Obfuscation and Compiler Optimization,” in
Proceedings of the 40th IEEE Symposium on Security and Privacy (S€P), 2019.

A. R. Bryant, Understanding How Reverse Engineers Make Sense of Programs from Assembly
Language Representations. PhD thesis, Air Force Institute of Technology, 2012.

D. Pucsek, J. Baldwin, L. MacLeod, C. Berg, Y. Coady, and M. Salois, “ICE: Binary Analysis
That You Can See,” in Proceedings of the 13th IEEFE Pacific Rim Conference on Communications,
Computers and Signal Processing (PACRIM), 2013.

J. Baldwin, Program Comprehension Support for Assembly Language: Assessing the Needs of
Specialized Groups. PhD thesis, University of Victoria, 2014.

J. Baldwin, C. A. Teh, E. Baniassad, D. Van Rooy, and Y. Coady, “Requirements for tools for
comprehending highly specialized assembly language code and how to elicit these requirements,”
Requirements Engineering, vol. 21, 2014.

C. Q. Nguyen and J. E. Goldman, “Malware Analysis Reverse Engineering (MARE) Method-
ology and Malware Defense (M.D.) Timeline,” in Proceedings of the 6th Annual Conference on
Information Security Curriculum Development (InfoSecCD), 2010.

J. Bermejo Higuera, C. Abad Aramburu, J.-R. Bermejo Higuera, M. A. Sicilia Urban, and J. A.
Sicilia Montalvo, “Systematic Approach to Malware Analysis (SAMA),” Applied Sciences, vol. 10,
2020.

E. Kim, S.-J. Park, D.-K. Chae, S. Choi, and S.-W. Kim, “A Human-in-the-Loop Approach to
Malware Author Classification,” in Proceedings of the 29th ACM International Conference on
Information and Knowledge Management (CIKM), 2020.

L. Obrst, P. Chase, and R. Markeloff, “Developing an ontology of the cyber security domain,” in
Proceedings of the 7th Conference on Semantic Technology for Intelligence, Defense, and Security
(STIDS), 2012.

184

https://github.com/googleprojectzero/functionsimsearch/blob/master/doc/01-motivation-and-overview.md
https://github.com/googleprojectzero/functionsimsearch/blob/master/doc/01-motivation-and-overview.md
https://github.com/googleprojectzero/functionsimsearch/blob/master/doc/01-motivation-and-overview.md

Bibliography

[229]

[230]

[231]

[232]

233

[234]
[235]
[236)

237]
[238]

[239]
240]

[241]

[242]
[243]

[244]

[245)

[246]
[247]

[248]

[249]

[250]

M. Praszmo, “Dissecting smokeloader,” 2018. Blog post for CERT.PL: https://cert.pl/en/
posts/2018/07/dissecting-smoke-loader/ [online; accessed April 2022].

A. Marzano, D. Alexander, O. Fonseca, E. Fazzion, C. Hoepers, K. Steding-Jessen, M. H. P. C.
Chaves, I. Cunha, D. Guedes, and W. Meira, “The Evolution of Bashlite and Mirai IoT Botnets,”
in Proceedings of the 28rd IEEE Symposium on Computers and Communications (ISCC), 2018.

O. Bergman, N. Gradovitch, J. Bar-Ilan, and R. Beyth-Marom, “Folder versus tag preference in
personal information management,” Journal of the American Society for Information Science and
Technology, vol. 64, 2013.

T. Bray, “The JavaScript Object Notation (JSON) Data Interchange Format.” RFC 7159, 2014.

W3C, “Extensible Markup Language (XML) 1.0 (Fifth Edition),” 2008. Website: https://www.
w3.org/TR/xml/.

StackOverflow, “Developer survey results 2018.”
A. F. Skulason and V. Bontchev, “A new virus naming convention,” in CARO meeting, 1991.

V. Bontchev, “Current status of the caro malware naming scheme,” Proceedings of the 2005 Virus-
Bulletin Conference (VB), 2005.

P. J. Leach, M. Mealling, and R. Salz, “A Universally Unique IDentifier (UUID) URN Namespace.”
RFC 4122, 2005.

VirusTotal, “VirusTotal Malware Intelligence Services.” Website: https://www.virustotal.com/
intelligence/ [online; accessed April 2022].

M. Stevens, “Fast Collision Attack on MD5,” TACR Cryptology ePrint Archive, vol. 2006, 2006.

M. Stevens, E. Bursztein, P. Karpman, A. Albertini, and Y. Markov, “The first collision for full
SHA-1,” in Proceedings of the 37th Annual International Cryptology Conference (CRYPTO), 2017.

M. Brengel and C. Rossow, “MemScrimper: Time- and Space-Efficient Storage of Malware Sand-
box Memory Dumps,” in Proceedings of the 15th Conference on Detection of Intrusions and Mal-
ware and Vulnerability Assessment (DIMVA), 2018.

J. Segura, “StatCounter Global Stats: Desktop Windows Version Market Share Worldwide,” 2021.
Website: http://gs.statcounter.com/ [online; accessed April 2022].

StackOverflow, “Developer Survey Results 2016,” 2016. Blog post: https://insights.
stackoverflow.com/survey/2016 [online; accessed April 2022].

D. Plohmann, “Knowledge Fragment: Hardening Win7 x64 on VirtualBox for Malware Anal-
ysis,” 2017. Blog post for ByteAtlas: http://byte-atlas.blogspot.de/2017/02/hardening-
vbox-win7x64.html [online; accessed April 2022].

T. Jenke, D. Plohmann, and E. Padilla, “RoAMer: The Robust Automated Malware Unpacker,” in
Proceedings of 14th International Conference on Malicious and Unwanted Software (MALWARE),
2019.

W. J. Liu, “Process Hacker,” 2019. SourceForge Entry: https://processhacker.sourceforge.
io/ [online; accessed April 2022].

Shadowserver, “The Shadowserver Foundation,” 2019. Wiki: https://www.shadowserver.org/
wiki/ [online; accessed April 2022].

S. Moore and E. Keen, “Gartner Forecasts Worldwide Information Security Spending to Exceed
$124 Billion in 2019,” 2018. Press Release: https://www.gartner.com/en/newsroom/press-
releases/2018-08-15-gartner-forecasts-worldwide-information-security-spending-to-
exceed-124-billion-in-2019 [online; accessed April 2022].

A. Albertini, “PE,” 2013. Github Repository: https://github.com/corkami/docs/blob/master/
PE/PE.md [online; accessed April 2022].

G. Szappanos, “PlugX - The Next Generation,” tech. rep., Sophos Labs, 2014.

185

https://cert.pl/en/posts/2018/07/dissecting-smoke-loader/
https://cert.pl/en/posts/2018/07/dissecting-smoke-loader/
https://www.w3.org/TR/xml/
https://www.w3.org/TR/xml/
https://www.virustotal.com/intelligence/
https://www.virustotal.com/intelligence/
http://gs.statcounter.com/
https://insights.stackoverflow.com/survey/2016
https://insights.stackoverflow.com/survey/2016
http://byte-atlas.blogspot.de/2017/02/hardening-vbox-win7x64.html
http://byte-atlas.blogspot.de/2017/02/hardening-vbox-win7x64.html
https://processhacker.sourceforge.io/
https://processhacker.sourceforge.io/
https://www.shadowserver.org/wiki/
https://www.shadowserver.org/wiki/
https://www.gartner.com/en/newsroom/press-releases/2018-08-15-gartner-forecasts-worldwide-information-security-spending-to-exceed-124-billion-in-2019
https://www.gartner.com/en/newsroom/press-releases/2018-08-15-gartner-forecasts-worldwide-information-security-spending-to-exceed-124-billion-in-2019
https://www.gartner.com/en/newsroom/press-releases/2018-08-15-gartner-forecasts-worldwide-information-security-spending-to-exceed-124-billion-in-2019
https://github.com/corkami/docs/blob/master/PE/PE.md
https://github.com/corkami/docs/blob/master/PE/PE.md

Bibliography

[251]

[252]

[253]
[254]

255

[256]

[257]

258
259]

260]

[261]

[262]

263

[264]

[265]

[266]

267]

268

269]

E. Carrera, “pefile,” 2007. Github Repository: https://github.com/erocarrera/pefile [online;
accessed April 2022].

Visgean, “Mirror of the zeus 2.0.8.9. source code,” 2013. Github Repository: https://github.com/
Visgean/Zeus/blob/c55a9fa8c8564ec196604a59111708£a8415£020/make/tools. inc. php#L695
[online; accessed April 2022].

roy g biv / defjam, “Heaven’s Gate: 64-bit code in 32-bit file,” Valhalla eZines, vol. 1, 2011.

ReWolf, “WOWG64Ext,” 2019. Github Repository: https://github.com/rwfpl/rewolf-wowb4ext
[online; accessed April 2022].

S. Eschweiler, “YANT: Yet Another Nymaim Talk,” 2017. Presentation given at Bot-
conf 2017: https://www.botconf.eu/wp-content/uploads/2017/12/2017-Eschweiler-YANT-
Yet-Another-Nymaim-Talk.pdf [online; accessed April 2022].

MITRE, “DLL Side-Loading,” 2019. MITRE ATT& CK Wiki: https://attack.mitre.org/
techniques/T1073/ [online; accessed April 2022].

A. Blaszczyk, “The not so boring land of Borland executables, part 1,7 2014.
Hexacorn Blog: http://www.hexacorn.com/blog/2014/12/05/the-not-so-boring-land-of-
borland-executables-part-1/ [online; accessed April 2022].

Horsicq, “Detect-It-Easy,” 2014. GitHub Repository: https://github.com/horsicq/Detect-It-
Easy/ [online; accessed April 2022].

M. Rullgard and C. Zoulas, “Magic Number Recognition Library,” 2018. Linux Manpage: http:
//man7 .org/linux/man-pages/man3/libmagic.3.html [online; accessed April 2022].

R. Chen, “Windows Confidential: Getting Out of DLL Hell,” 2007. MSDN Article: https://
docs.microsoft.com/en-us/previous-versions/technet-magazine/cc162526 (v=msdn.10) [on-
line; accessed April 2022].

K. Kahane, “Dynamically linking with MSVCRT.DLL using Visual C+4 2005,” 2007. Blog post:
https://kobyk.wordpress.com/2007/07/20/dynamically-1linking-with-msvcrtdll-using-
visual-c-2005/ [online; accessed April 2022].

Visual CPP Team, “/DYNAMICBASE and /NXCOMPAT,” 2009. Blog post: https://blogs.
msdn.microsoft.com/vcblog/2009/05/21/dynamicbase-and-nxcompat/ [online; accessed April
2022].

various, “Dynamic-Link Library Entry-Point Function,” 2021. MSDN Article: https://docs.
microsoft.com/en-us/windows/win32/d1lls/dynamic-1link-1library-entry-point-function
[online; accessed April 2022].

A. Shulmin, S. Yunakovsky, V. Berdnikov, and A. Dolgushev, “The Slingshot APT FAQ,” 2018.
Blog post: https://securelist.com/apt-slingshot/84312/ [online; accessed April 2022].

S. Miller, “Definitive Dossier of Devilish Debug Details — Part One: PDB Paths and Mal-
ware,” September 2019. Blog post for FireEye: https://www.mandiant.com/resources/
definitive-dossier-of-devilish-debug-details-part-one-pdb-paths-malware [online; ac-
cessed April 2022].

V. Zwanger, E. Gerhards-Padilla, and M. Meier, “Codescanner: Detecting (Hidden) x86/x64 code

in arbitrary files,” in Proceedings of the 9th International Conference on Malicious and Unwanted
Software (MALWARE), 2014.

GReAT, “OlympicDestroyer is here to trick the industry,” 2018. Blog post for Kaspersky Labs:
https://securelist.com/olympicdestroyer-is-here-to-trick-the-industry/84295/ [online;
accessed April 2022].

J. Lambert, “Incident Response Triangle: Timeliness, Depth, Accuracy,” 2019. Tweet: https:
//twitter.com/JohnLaTwC/status/1088126545825157120 [online; accessed April 2022].

D. Plohmann, “ApiScout,” 2017. Github Repository: https://github.com/danielplohmann/
apiscout [online; accessed April 2022].

186

https://github.com/erocarrera/pefile
https://github.com/Visgean/Zeus/blob/c55a9fa8c8564ec196604a59111708fa8415f020/make/tools.inc.php#L695
https://github.com/Visgean/Zeus/blob/c55a9fa8c8564ec196604a59111708fa8415f020/make/tools.inc.php#L695
https://github.com/rwfpl/rewolf-wow64ext
https://www.botconf.eu/wp-content/uploads/2017/12/2017-Eschweiler-YANT-Yet-Another-Nymaim-Talk.pdf
https://www.botconf.eu/wp-content/uploads/2017/12/2017-Eschweiler-YANT-Yet-Another-Nymaim-Talk.pdf
https://attack.mitre.org/techniques/T1073/
https://attack.mitre.org/techniques/T1073/
http://www.hexacorn.com/blog/2014/12/05/the-not-so-boring-land-of-borland-executables-part-1/
http://www.hexacorn.com/blog/2014/12/05/the-not-so-boring-land-of-borland-executables-part-1/
https://github.com/horsicq/Detect-It-Easy/
https://github.com/horsicq/Detect-It-Easy/
http://man7.org/linux/man-pages/man3/libmagic.3.html
http://man7.org/linux/man-pages/man3/libmagic.3.html
https://docs.microsoft.com/en-us/previous-versions/technet-magazine/cc162526(v=msdn.10)
https://docs.microsoft.com/en-us/previous-versions/technet-magazine/cc162526(v=msdn.10)
https://kobyk.wordpress.com/2007/07/20/dynamically-linking-with-msvcrtdll-using-visual-c-2005/
https://kobyk.wordpress.com/2007/07/20/dynamically-linking-with-msvcrtdll-using-visual-c-2005/
https://blogs.msdn.microsoft.com/vcblog/2009/05/21/dynamicbase-and-nxcompat/
https://blogs.msdn.microsoft.com/vcblog/2009/05/21/dynamicbase-and-nxcompat/
https://docs.microsoft.com/en-us/windows/win32/dlls/dynamic-link-library-entry-point-function
https://docs.microsoft.com/en-us/windows/win32/dlls/dynamic-link-library-entry-point-function
https://securelist.com/apt-slingshot/84312/
https://www.mandiant.com/resources/definitive-dossier-of-devilish-debug-details-part-one-pdb-paths-malware
https://www.mandiant.com/resources/definitive-dossier-of-devilish-debug-details-part-one-pdb-paths-malware
https://securelist.com/olympicdestroyer-is-here-to-trick-the-industry/84295/
https://twitter.com/JohnLaTwC/status/1088126545825157120
https://twitter.com/JohnLaTwC/status/1088126545825157120
https://github.com/danielplohmann/apiscout
https://github.com/danielplohmann/apiscout

Bibliography

270]
[271]

[272]

[273]

[274]
[275]
[276]

[277]
278

[279]

[280]
[281]

[282]

[283]

[284]

[285)

[286]

[287]

[288]

[289)]

[290]

G. Dabah, “Powerful disassembler library for x86/amd64,” 2010. Github Repository: https:
//github.com/gdabah/distorm [online; accessed April 2022].

H. Saidi, P. Porras, and V. Yegneswaran, “Experiences in malware binary deobfuscation,” in
Proceedings of the 2010 VirusBulletin Conference (VB), 2010.

Trend Micro Forward-Looking Threat Research Team, “Dissecting PRILEX and CUTLET
MAKER ATM Malware Families,” 2017. Blog post: https://www.trendmicro.com/ru_
ru/research/17/1/dissecting-prilex-cutlet-maker-atm-malware-families.html [online; ac-
cessed April 2022].

various, “Conventions for Function Prototypes,” 2018. MSDN Article: https://msdn.microsoft.
com/en-us/library/windows/desktop/dd317766 (v=vs.85) .aspx [online; accessed April 2022].

A. Fog, “Calling Conventions,” tech. rep., Technical University of Denmark, 2004.
R. Rivest, “The MD5 Message-Digest Algorithm.” RFC 1321, 1992.

P. Rogaway and T. Shrimpton, “Cryptographic hash-function basics: Definitions, implications,
and separations for preimage resistance, second-preimage resistance, and collision resistance,” in
Proceedings of the 2004 International Workshop on Fast Software Encryption (FSE), 2004.

S. Josefsson, “The Basel6, Base32, and Base64 Data Encodings.” RFC 4648, 2006.

T. Tsukiyama, Y. Kondo, K. Kakuse, S. Saba, S. Ozaki, and K. Itoh, “Method and system for
data compression and restoration,” 1983. Patent: US4586027A.

S.-s. Choi, S.-h. Cha, and C. Tappert, “A survey of binary similarity and distance measures,”
Journal of Systemics, Cybernetics and Informatics, 2010.

P. Jaccard, “The Distribution of the Flora in the Alpine Zone,” New Phytologist, vol. 11, 1912.

T. T. Tanimoto, An elementary mathematical theory of classification and prediction. International
Business Machines Corporation New York, 1958.

C. Raiu, “Looking at Big Threats Using Code Similarity. Part 1,” 2020. Blog post for Kaspersky
Labs: https://securelist.com/big-threats-using-code-similarity-part-1/97239/ [online;
accessed April 2022].

M. Lindorfer, C. Kolbitsch, and P. M. Comparetti, “Detecting environment-sensitive malware,”

in Proceedings of the 14th International Symposium on Recent Advances in Intrusion Detection
(RAID), 2011.

M. Gorelik and R. Moshailov, “Fileless Malware: Attack Trend Exposed,” 2017. Analy-
sis Report for Morphisec: https://www.morphisec.com/hubfs/wp-content/uploads/2017/11/
Fileless-Malware_Attack-Trend-Exposed.pdf [online; accessed April 2022].

A. Doniec and M. Lechtik, “Funky Malware Formats,” 2019. Presentation at Kaspersky SAS:
https://speakerdeck.com/hshrzd/funky-malware-formats [online; accessed April 2022].

Kaspersky GReAT, “Shadowpad: popular server management software hit in supply chain at-
tack,” 2017. Analysis Report for Kaspersky Labs: https://media.kasperskycontenthub.com/wp-
content/uploads/sites/43/2017/08/07172148/ShadowPad_technical_description_PDF.pdf
[online; accessed April 2022).

I. Skochinsky, “Outline of Recursive Disassembly in IDA Pro,” 2012. Reddit Com-
ment: https://www.reddit.com/r/ReverseEngineering/comments/rtzb0/disassembling_in_
ida/c48tiuy/ [online; accessed April 2022].

I. Skochinsky, “Simplified Overview of how IDA Pro performs Recursive Disassembly,” 2013.
Stack Exchange Answer: http://reverseengineering.stackexchange.com/a/2349/1403 [online;
accessed April 2022].

pancake, “Analysis by Default,” 2015. Blog Post on radare2 code analysis modes: http://radare.
today/posts/analysis-by-default/ [online; accessed April 2022].

D. Plohmann, “SMDA,” 2018. Github Repository: https://github.com/danielplohmann/smda
[online; accessed April 2022].

187

https://github.com/gdabah/distorm
https://github.com/gdabah/distorm
https://www.trendmicro.com/ru_ru/research/17/l/dissecting-prilex-cutlet-maker-atm-malware-families.html
https://www.trendmicro.com/ru_ru/research/17/l/dissecting-prilex-cutlet-maker-atm-malware-families.html
https://msdn.microsoft.com/en-us/library/windows/desktop/dd317766(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd317766(v=vs.85).aspx
https://securelist.com/big-threats-using-code-similarity-part-1/97239/
https://www.morphisec.com/hubfs/wp-content/uploads/2017/11/Fileless-Malware_Attack-Trend-Exposed.pdf
https://www.morphisec.com/hubfs/wp-content/uploads/2017/11/Fileless-Malware_Attack-Trend-Exposed.pdf
https://speakerdeck.com/hshrzd/funky-malware-formats
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2017/08/07172148/ShadowPad_technical_description_PDF.pdf
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2017/08/07172148/ShadowPad_technical_description_PDF.pdf
https://www.reddit.com/r/ReverseEngineering/comments/rtzb0/disassembling_in_ida/c48tiuy/
https://www.reddit.com/r/ReverseEngineering/comments/rtzb0/disassembling_in_ida/c48tiuy/
http://reverseengineering.stackexchange.com/a/2349/1403
http://radare.today/posts/analysis-by-default/
http://radare.today/posts/analysis-by-default/
https://github.com/danielplohmann/smda

Bibliography

291]
292]
[293]
294]

[295]

296

[297]
298]
299
300]
[301]

[302]

303]
304]

305]

[306]

307]

308]
[309]
[310]

[311]
[312]

N. A. Quynh, “Capstone engine,” 2013. Github Repository: https://github.com/aquynh/
capstone [online; accessed April 2022].

R. Thomas, “Lief - library to instrument executable formats,” 2013. Github IO Project Page:
https://lief-project.github.io/ [online; accessed April 2022].

R. Chen, “A few stray notes on Windows patching and hot patching,” 2013. MSDN Article: https:
//devblogs.microsoft.com/oldnewthing/20130102-00/7p=5663 [online; accessed April 2022].

K. Frei, “X64 Unwind Information,” 2006. MSDN Article: https://docs.microsoft.com/de-
de/archive/blogs/freik/x64-unwind-information [online; accessed April 2022].

various, “Considerations for Writing Prolog/Epilog Code,” 2016. MSDN Article:
https://docs.microsoft.com/en-us/cpp/cpp/considerations-for-writing-prolog-epilog-
code?view=msvc-160 [online; accessed April 2022].

various, “/hotpatch (Create Hotpatchable Image),” 2018. MSDN Article: https:
//docs .microsoft.com/en-us/cpp/build/reference/hotpatch-create-hotpatchable-
image?view=msvc-160 [online; accessed April 2022].

C. Eagle, The IDA Pro Book: The Unofficial Guide to the World’s Most Popular Disassembler.
No Starch Press, 2011.

A. Lakhotia, E. U. Kumar, and M. Venable, “A Method for Detecting Obfuscated Calls in Malicious
Binaries,” IEEE Transactions on Software Engineering, vol. 31, 2005.

AMD Technology, “AMD64 Technology AMD64 Architecture Programmer’s Manual Volume 3:
General-Purpose and System Instructions Publication No. Revision Date,” 2012.

A. Fog, “The microarchitecture of Intel, AMD and VIA CPUs: An optimization guide for assembly
programmers and compiler makers,” Copenhagen University College of Engineering, 2012.

R. Chen, “A few stray notes on Windows patching and hot patching,” 2013. MSDN Article:
https://docs.microsoft.com/en-us/cpp/cpp/calling-conventions?view=msvc-160.

various, “/INCREMENTAL (Link Incrementally),” 2018. MSDN Article: https://docs.
microsoft.com/en-us/cpp/build/reference/incremental-link-incrementally?view=msvc-
160 [online; accessed April 2022].

J. Wang, H. T. Shen, J. Song, and J. Ji, “Hashing for similarity search: A survey,” 2014.
arXiv:1408.2927 [cs.DS].

M. Narayanan and R. Karp, “Gapped Local Similarity Search with Provable Guarantees,” in
Algorithms in Bioinformatics, 2004.

B. D. Ondov, T. J. Treangen, P. Melsted, A. B. Mallonee, N. H. Bergman, S. Koren, and A. M.
Phillippy, “Mash: fast genome and metagenome distance estimation using minhash,” Genome
Biology, vol. 17, 2016.

O. Chum, J. Philbin, and A. Zisserman, “Near duplicate image detection: min-hash and tf-idf
weighting,” in Proceedings of the British Machine Vision Conference (BMVC), 2008.

M. Henzinger, “Finding near-duplicate web pages: A large-scale evaluation of algorithms,” in Pro-
ceedings of the 29th Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval (SIGIR), 2006.

A. Shrivastava and P. Li, “In Defense of MinHash Over SimHash,” in Proceedings of the 17th
International Conference on Artificial Intelligence and Statistics (AISTATS), 2014.

D. Plohmann, “MCRIT,” 2021. Github Repository: https://github.com/danielplohmann/
mcrit.

O. Ertl, “SuperMinHash - A New Minwise Hashing Algorithm for Jaccard Similarity Estimation,”
2017. arXiv:1706.05698 [cs.DS].

A. Rajaraman and J. D. Ullman, Mining of Massive Datasets. Cambridge University Press, 2011.

P. Li and C. Kénig, “B-Bit Minwise Hashing,” in Proceedings of the 19th International Conference
on World Wide Web (WWW), 2010.

188

https://github.com/aquynh/capstone
https://github.com/aquynh/capstone
https://lief-project.github.io/
https://devblogs.microsoft.com/oldnewthing/20130102-00/?p=5663
https://devblogs.microsoft.com/oldnewthing/20130102-00/?p=5663
https://docs.microsoft.com/de-de/archive/blogs/freik/x64-unwind-information
https://docs.microsoft.com/de-de/archive/blogs/freik/x64-unwind-information
https://docs.microsoft.com/en-us/cpp/cpp/considerations-for-writing-prolog-epilog-code?view=msvc-160
https://docs.microsoft.com/en-us/cpp/cpp/considerations-for-writing-prolog-epilog-code?view=msvc-160
https://docs.microsoft.com/en-us/cpp/build/reference/hotpatch-create-hotpatchable-image?view=msvc-160
https://docs.microsoft.com/en-us/cpp/build/reference/hotpatch-create-hotpatchable-image?view=msvc-160
https://docs.microsoft.com/en-us/cpp/build/reference/hotpatch-create-hotpatchable-image?view=msvc-160
https://docs.microsoft.com/en-us/cpp/cpp/calling-conventions?view=msvc-160
https://docs.microsoft.com/en-us/cpp/build/reference/incremental-link-incrementally?view=msvc-160
https://docs.microsoft.com/en-us/cpp/build/reference/incremental-link-incrementally?view=msvc-160
https://docs.microsoft.com/en-us/cpp/build/reference/incremental-link-incrementally?view=msvc-160
https://github.com/danielplohmann/mcrit
https://github.com/danielplohmann/mcrit

Bibliography

313]
314]
[315]
316]
317]
[318]
319]
320]

[321]

[322]

[323]

[324]

[325]
[326]
327]
[328]

329]

[330]

331]

332)

F. Adkins, L. Jones, M. Carlisle, and J. Upchurch, “Heuristic malware detection via basic block
comparison,” in Proceedings of the 8th International Conference on Malicious and Unwanted Soft-
ware (MALWARE), 2013.

P. A. Laplante, What Every Engineer Should Know about Software Engineering. CRC Press, 2007.

M. Oliver, “Shift Media Project,” 2002. Website of the Shift Media Project: https://
shiftmediaproject.github.io/ [online; accessed April 2022].

C. Spearman, “The proof and measurement of association between two things,” The American
Journal of Psychology, vol. 15, 1904.

K. Pearson, “Note on Regression and Inheritance in the Case of Two Parents,” Proceedings of the
Royal Society of London Series I, vol. 58, 1895.

C. D. Manning, P. Raghavan, and H. Schiitze, Introduction to Information Retrieval. Cambridge
University Press, 2008.

D. Plohmann, “Empty MSVC,” 2019. Github Repository: https://github.com/danielplohmann/
empty_msvc [online; accessed April 2022].

Microsoft, “Vcpkg: Overview,” 2019. Github Repository: https://github.com/microsoft/vcpkg
[online; accessed April 2022].

GReAT, “Red October. Detailed Malware Description 5. Second Stage of Attack,” 2013. Blog post
for Kaspersky Labs: https://securelist.com/red-october-detailed-malware-description-—
5-second-stage-of-attack/36879/ [online; accessed April 2022].

GReAT, “Lazarus Under The Hood,” 2017. Analysis Report by Kaspersky Labs:
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/03/07180231/
LazarusUnderTheHood_PDF_final_for_securelist.pdf [online; accessed April 2022].

various, “Optimizing C+4 Code : Dead Code Elimination,” 2013. Microsoft C++ Team Blog:
https://devblogs.microsoft.com/cppblog/optimizing-c-code-dead-code-elimination/ [on-
line; accessed April 2022].

various, “/Gy (Enable Function-Level Linking),” 2016. MSDN Article: https:
//docs .microsoft.com/en-us/cpp/build/reference/gy-enable-function-level-1linking?
redirectedfrom=MSDN&view=msvc-160 [online; accessed April 2022].

S. Zennou, S. K. Debray, T. Dullien, and A. Lakhotia, “Malware Analysis: From Large-Scale Data
Triage to Targeted Attack Recognition (Dagstuhl Seminar 17281),” Dagstuhl Reports, vol. 7, 2017.

L. Kessem, “Panda Banker,” 2016. Blog post for IBM X-Force: https://isc.sans.edu/forums/
diary/Kraken+Technical+Details+UPDATED+x3/4256/ [online; accessed April 2022].

B. Duncan, “Sage 2.0 Ransomware,” 2017. Blog post for SANS ISC: https://isc.sans.edu/
forums/diary/Sage+20+Ransomware/21959/ [online; accessed April 2022].

M. Kotowicz, “ISFB: Still Live and Kicking,” The Journal on Cybercrime € Digital Investigations,
vol. 2, 2016.

J. Rosenberg, “IcedID Banking Trojan Shares Code with Pony 2.0 Trojan,” 2017. Blog
post: https://www.intezer.com/blog/research/icedid-banking-trojan-shares-code-pony-
2-0-trojan/ [online; accessed April 2022].

C. Rossow, D. Andriesse, T. Werner, B. Stone-Gross, D. Plohmann, C. J. Dietrich, and H. Bos,
“SoK: P2PWNED — Modeling and Evaluating the Resilience of Peer-to-Peer Botnets,” in Pro-
ceedings of the 34th IEEE Symposium on Security and Privacy (S&P), 2013.

A. McNeil, “How did the WannaCry ransomworm spread?,” 2017. Blog post
for MalwareBytes: https://blog.malwarebytes.com/cybercrime/2017/05/how-did-wannacry-
ransomworm-spread/ [online; accessed April 2022].

N. Mehta, “Attribution hints for WannaCrypt,” 2017. Tweet: https://twitter.com/neelmehta/
status/864164081116225536 [online; accessed April 2022].

189

https://shiftmediaproject.github.io/
https://shiftmediaproject.github.io/
https://github.com/danielplohmann/empty_msvc
https://github.com/danielplohmann/empty_msvc
https://github.com/microsoft/vcpkg
https://securelist.com/red-october-detailed-malware-description-5-second-stage-of-attack/36879/
https://securelist.com/red-october-detailed-malware-description-5-second-stage-of-attack/36879/
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/03/07180231/LazarusUnderTheHood_PDF_final_for_securelist.pdf
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/03/07180231/LazarusUnderTheHood_PDF_final_for_securelist.pdf
https://devblogs.microsoft.com/cppblog/optimizing-c-code-dead-code-elimination/
https://docs.microsoft.com/en-us/cpp/build/reference/gy-enable-function-level-linking?redirectedfrom=MSDN&view=msvc-160
https://docs.microsoft.com/en-us/cpp/build/reference/gy-enable-function-level-linking?redirectedfrom=MSDN&view=msvc-160
https://docs.microsoft.com/en-us/cpp/build/reference/gy-enable-function-level-linking?redirectedfrom=MSDN&view=msvc-160
https://isc.sans.edu/forums/diary/Kraken+Technical+Details+UPDATED+x3/4256/
https://isc.sans.edu/forums/diary/Kraken+Technical+Details+UPDATED+x3/4256/
https://isc.sans.edu/forums/diary/Sage+20+Ransomware/21959/
https://isc.sans.edu/forums/diary/Sage+20+Ransomware/21959/
https://www.intezer.com/blog/research/icedid-banking-trojan-shares-code-pony-2-0-trojan/
https://www.intezer.com/blog/research/icedid-banking-trojan-shares-code-pony-2-0-trojan/
https://blog.malwarebytes.com/cybercrime/2017/05/how-did-wannacry-ransomworm-spread/
https://blog.malwarebytes.com/cybercrime/2017/05/how-did-wannacry-ransomworm-spread/
https://twitter.com/neelmehta/status/864164081116225536
https://twitter.com/neelmehta/status/864164081116225536

Bibliography

333]

334]

[335]

[336]

337]

338]

[339]

[340]

[341]
[342]
[343]
[344]
[345]
[346]

[347]

A. L. Johnson, “SWIFT attackers’ malware linked to more financial attacks ,” 2016.
Blog post for Symantec: https://community.broadcom.com/symantecenterprise/
communities/community-home/librarydocuments/viewdocument?DocumentKey=8aelff71-
€440-4b79-9943-199d0adb43fc&CommunityKey=1ecf5£55-9545-44d6-b0f4-4eda7£5f5e68&tab=
librarydocuments [online; accessed April 2022].

Threat Research and Interdiction Group, “Operation Blockbuster: Unraveling the Long Thread of
the Sony Attack,” 2016. Analysis Report: https://operationblockbuster.com/ [online; accessed
April 2022].

GReAT, “WannaCry and Lazarus Group — the missing link?,” 2017. Blog post for Kaspersky:
https://securelist.com/wannacry-and-lazarus-group-the-missing-1ink/78431/ [online; ac-
cessed April 2022].

Symantec Security Response, “What you need to know about the WannaCry Ransomware,” 2017.
Blog post for Symantec: https://symantec-enterprise-blogs.security.com/blogs/threat-
intelligence/wannacry-ransomware-attack [online; accessed April 2022].

Aquabox, “User Manual for Citadel Version 1.3.4.5,” 2012. Archived in Github Repos-
itory: https://github.com/malwares/Botnet/blob/master/Citadel’;201.3.4.5/Citadel’201.
3.4.5%20Botnet/Manual/Manual’20Citadel%20v%201.3.4.5.txt [online; accessed April 2022].

A. Luca and I. Raileanu, “Conference review: Botconf 2017,” 2017. Blog post for VirusBul-
letin: https://www.virusbulletin.com/blog/2017/12/conference-review-botconf-2017/ [on-
line; accessed April 2022].

T. Roccia, “The Hitchhiker guide to Incident Response and Threat Intelligence,” September 2019.
Presentation as part of the ENISA Summer School: https://nis-summer-school.enisa.europa.
eu/2019/presentations/Presentation_Thomas20Roccia.pdf [online; accessed April 2022].

J. Schmidt, “Orientierung im Security-Babylon,” 2020. Article for Heise Online: https:
//www.heise.de/hintergrund/Orientierung-im-Security-Babylon-4892855.html [online; ac-
cessed April 2022].

Luatrix, “OpenCTI Project Overview,” 2021. Website: https://www.opencti.io/ [online; ac-
cessed April 2022].

N. Adouani, T. Franco, and S. Kadhi, “TheHive Project Overview,” 2021. Website: https:
//thehive-project.org/ [online; accessed April 2022].

S. Wilson and S. Frankoff, “UNPACME Project Overview,” 2021. Website: https://www.unpac.
me/ [online; accessed April 2022].

R. Hiissy, “URLhaus Project Overview,” 2021. Website: https://urlhaus.abuse.ch/ [online;
accessed April 2022].

A. Borges, “Malwoverview Project Overview,” 2021. Github Repository: https://github.com/
alexandreborges/malwoverview [online; accessed April 2022].

Canadian Centre for Cyber Security, “AssemblyLine Project Overview,” 2021. Website: https:
//cyber.gc.ca/en/assemblyline [online; accessed April 2022].

Y. Aafer, W. Du, and H. Yin, “DroidAPIMiner: Mining API-Level Features for Robust Malware
Detection in Android,” in Proceedings of the 9th International Conference on Security and Privacy
in Communication Networks (SecureComm,), 2013.

190

https://community.broadcom.com/symantecenterprise/communities/community-home/librarydocuments/viewdocument?DocumentKey=8ae1ff71-e440-4b79-9943-199d0adb43fc&CommunityKey=1ecf5f55-9545-44d6-b0f4-4e4a7f5f5e68&tab=librarydocuments
https://community.broadcom.com/symantecenterprise/communities/community-home/librarydocuments/viewdocument?DocumentKey=8ae1ff71-e440-4b79-9943-199d0adb43fc&CommunityKey=1ecf5f55-9545-44d6-b0f4-4e4a7f5f5e68&tab=librarydocuments
https://community.broadcom.com/symantecenterprise/communities/community-home/librarydocuments/viewdocument?DocumentKey=8ae1ff71-e440-4b79-9943-199d0adb43fc&CommunityKey=1ecf5f55-9545-44d6-b0f4-4e4a7f5f5e68&tab=librarydocuments
https://community.broadcom.com/symantecenterprise/communities/community-home/librarydocuments/viewdocument?DocumentKey=8ae1ff71-e440-4b79-9943-199d0adb43fc&CommunityKey=1ecf5f55-9545-44d6-b0f4-4e4a7f5f5e68&tab=librarydocuments
https://operationblockbuster.com/
https://securelist.com/wannacry-and-lazarus-group-the-missing-link/78431/
https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/wannacry-ransomware-attack
https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/wannacry-ransomware-attack
https://github.com/malwares/Botnet/blob/master/Citadel%201.3.4.5/Citadel%201.3.4.5%20Botnet/Manual/Manual%20Citadel%20v%201.3.4.5.txt
https://github.com/malwares/Botnet/blob/master/Citadel%201.3.4.5/Citadel%201.3.4.5%20Botnet/Manual/Manual%20Citadel%20v%201.3.4.5.txt
https://www.virusbulletin.com/blog/2017/12/conference-review-botconf-2017/
https://nis-summer-school.enisa.europa.eu/2019/presentations/Presentation_Thomas%20Roccia.pdf
https://nis-summer-school.enisa.europa.eu/2019/presentations/Presentation_Thomas%20Roccia.pdf
https://www.heise.de/hintergrund/Orientierung-im-Security-Babylon-4892855.html
https://www.heise.de/hintergrund/Orientierung-im-Security-Babylon-4892855.html
https://www.opencti.io/
https://thehive-project.org/
https://thehive-project.org/
https://www.unpac.me/
https://www.unpac.me/
https://urlhaus.abuse.ch/
https://github.com/alexandreborges/malwoverview
https://github.com/alexandreborges/malwoverview
https://cyber.gc.ca/en/assemblyline
https://cyber.gc.ca/en/assemblyline

Appendices

191

A. Windows Malware Families in Malpedia

In the following we provide a full listing of all 839 Windows malware families that have
one or more unpacked sample in the form of a memory dump available. Together, they
form the set of families used in the evaluations of Chapters 4, 5, and 6. For reference,

they are part of Malpedia Git commit 1639cad, created on January 3rd, 2019.

win.7ev3n win.9002 win.abaddon_pos win.abantes
win.abbath_banker win.acridrain win.acronym win.adam_locker
win.adkoob win.advisorsbot win.adylkuzz win.agent_ btz
win.agent_tesla win.alice_atm win.alina_pos win.allaple
win.alma_communicator win.alma_locker win.alpc_lpe win.alphabet_ransomware
win.alphalocker win.alphanc win.alreay win.alureon
win.amtsol win.andromeda win.anel win.antilam
win.apocalipto win.apocalypse_ransom | win.ardamax win.arefty
win.arik keylogger win.arkei_stealer win.ascentloader win.asprox
win.athenago win.ati_agent win.atmii win.atmitch
win.atmosphere win.atmspitter win.august_stealer win.aurora
win.avcrypt win.aveo win.avzhan win.ayegent
win.azorult win.babar win.babymetal win.backnet
win.backspace win.backswap win.badencript win.badflick
win.badnews win.bagle win.bahamut win.banatrix
win.bangat win.banjori win.bankshot win.bart
win.batchwiper win.batel win.bbsrat win.bedep
win.beendoor win.berbomthum win.bernhardpos win.betabot
win.biscuit win.bitsran win.bka_trojaner win.blackenergy
win.blackpos win.blackrevolution win.blackshades win.boaxxe
win.bohmini win.bolek win.bouncer win.bozok
win.brambul win.bravonc win.breakthrough loader | win.bredolab
win.brutpos win.bs2005 win.btcware win.buhtrap
win.bundestrojaner win.bunitu win.buterat win.buzus
win.byeby win.c0dOsoO win.cabart win.cadelspy
win.camubot win.cannon win.carbanak win.carberp
win.cardinal_rat win.carrotbat win.casper win.catchamas
win.ccleaner_backdoor win.centerpos win.cerber win.cerbuminer
win.chainshot win.chches win.cherry_picker win.chewbacca
win.chinad win.chir win.chthonic win.citadel
win.client maximus win.cloud_duke win.cmsbrute win.cmstar
win.coalabot win.cobalt_strike win.cobian_rat win.cobint
win.cobra win.cockblocker win.codekey win.cohhoc
win.coinminer win.colony win.combojack win.combos
win.comodosec win.computrace win.concealment_troy win.conficker
win.confucius win.contopee win.cookiebag win.corebot
win.coreshell win.cradlecore win.crashoverride win.credraptor
win.crenufs win.crimson win.crisis win.cryakl
win.crylocker win.crypmic win.cryptOlOcker win.crypto_fortress
win.crypto_ransomeware | win.cryptolocker win.cryptoluck win.cryptomix
win.cryptorium win.cryptoshield win.cryptoshuffler win.cryptowall
win.cryptxxxx win.csext win.cuegoe win.cueisfry
win.cutlet win.cutwail win.cyber_splitter win.cybergate

Table A.1.: List of Windows malware families used, Part I.

193

A. Windows Malware Families in Malpedia

win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.

win

win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.

cycbot
darkmegi
darksky
daserf
deltas
derusbi
diamondfox
dnspionage
downdelph
dreambot
dualtoy
duuzer
elirks
erebus
evilbunny
excalibur
fakerean
felismus
finallstspy
firecrypt
flusihoc
freenki
gamapos
gandcrab
gcman
getmypass
ghostnet
globeimposter
goggles
google drive_rat
gozi
grateful_pos
gsecdump
hamweq
havex_rat
heloag
herpes

.hikit

htbot
httpbrowser
ice_ix
idkey
invisimole
ispy_keylogger
jaff
jigsaw
jolob
karagany
kegotip
keymarble
killdisk
koadic
korlia
krbanker
kuaibu8
lambert
laziok
limitail
locky
lokipws
luzo
magniber
malumpos

win.
win.
win.
win.
.dented
win.
win.
win.
win.
win.
win.
.dyre
win.
win.
win.
win.

win

win

win

win

win

win

win.
win.
win.
win.
win.
win.

win

win.
win.
win.
win.
.isfb
win.
.jager_decryptor
. jimmy

win.
win.
win.
.keypass
.kins
.kokokrypt
win.
win.
win.
win.
.leash
win.
win.
win.
win.
.makadocs
.manamecrypt

win

win

win

win

win

win
win

dairy
darkmoon
darkstrat
datper

devils_rat
dimnie
dorkbot_ngrbot
downeks
dridex
dubrute

elise

eredel
evilgrab
exchange_tool

.faketc
win.
.findpos
win.
win.
win.
win.

felixroot

firemalv
fobber
friedex
gameover_dga

.gaudox
win.

gearinformer

.ghole
win.
win.
win.
win.

glasses
glooxmail
gold_dragon
goopic

.gpcode

gratem

hini

hancitor

hawkeye keylogger
herbst

hesperbot

.himan

htprat

httpdropper

icedid

imminent _monitor_rat

isr_stealer

jajsnicker
kardonloader
kelihos

kovter
krdownloader
kuluoz
lamdelin

listrix
locky_decryptor
lordix

lyposit

win

win

win

win

win

win

win

win

win

win

win

win

win
win
win

win.
win.
win.
win.

win.
win.
win.
win.
.fanny
win.

win.
win.
win.
win.
win.
win.

win.
win.
win.
win.
.leouncia
win.
win.
win.

danabot
darkpulsar
darktequila
ddkong

.deputydog
win.
win.
win.
win.
win.
win.

dexter
dircrypt
dorshel
downpaper
dropshot
dumador

.eda2_ransom

emdivi
eternal petya
evilpony
extreme_rat

feodo

.finfisher

flawedammyy
formbook
furtim
gameover_p2p
gauss

geodo

.ghost_admin
win.
win.
win.
win.

glassrat
glupteba
golroted
gootkit

.grabbot
win.
win.
win.
win.
win.
win.
.hlux
.htran
win.
win.
.infy
.ismagent
win.

gravity. rat
hacksfase
happy-locker
helauto
hermes
hi_zor_rat

hworm
icedid_downloader

isspace

.jaku
win.
win.
win.
win.
.khrat
win.

joanap
jripbot
kasperagent
keyboy

kleptoparasite_stealer

.konni

kpot_stealer
kronos
kurton
latentbot

litehttp
logedrut
luminosity_rat

.madmax
.makloader
.mangzamel

win.
win.
win.
win.

win

win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
.hiddentear
.homefry
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
win.
.kikothac
.k1lrd
.koobface
.kraken

win
win

win
win
win
win

win.
win.
win.
win.
win.
win.
win.
win.
win.
win.

darkcomet
darkshell
darktrack_rat
decebal

.deria_lock

dharma
dma_locker
doublepulsar
dramnudge
dtbackdoor
duqu

ehdevel
enfal
etumbot
evrial
fakedga
fast_pos
fileice_ransom
fireball
floki_bot
former first_rat
galaxyloader
gamotrol
gazer
getmail
ghost_rat
globe_ransom
godzilla_ loader
goodor
govrat
graftor
greenshaitan
hackspy
harnig
helminth
hermes_ransom

http_troy
hyperbro
icefog
innaput_rat
ismdoor
jackpos
jasus

joao
kagent
kazuar
keylogger_apt3

ks1l0t
kwampirs
lazarus
lethic
lock_pos
logpos
lurk
magala
maktub
manifestus

Table A.2.: List of Windows malware families used, Part II.

194

win.manitsme
win.matrix_ransom
win.mebromi
win.microcin
win.miniasp
win.misdat
win.mobi_rat
win.molerat_loader
win.morto
win.mpkbot
win.mutabaha
win.nabucur
win.narilam
win.nemim
win.nettraveler
win.new_ct
win.nexster_bot
win.nitol
win.nozelesn_decryptor
win.octopus
win.onekeylocker
win.oopsie
win.orcus_rat
win.owaauth
win.parasite_http
win.pgift
win.pirpi
win.playwork
win.plugx
win.pony
win.poweliks_dropper
win.predator
win.pss
win.putabmow
win.qaccel
win.qgtbot
win.radamant
win.ramdo
win.ransoc
win.rarstar
win.rdasrv
win.red_gambler
win.regin
win.rerdom
win.rifdoor
win.rockloader
win.rombertik
win.royal_dns
win.ruckguv
win.rustock
win.sality
win.satan
win.scote
win.sedreco
win.shadowpad
win.sharpknot
win.shujin
win.sierras
win.siluhdur
win.skarab_ransom
win.smac
win.sneepy
win.sobaken

win.mapiget
win.matryoshka_rat
win.mewsei
win.micropsia
win.mirage
win.misfox
win.mocton
win.monero_miner
win.mosquito
win.multigrain_pos
win.mykings_spreader
win.nagini
win.nautilus
win.neteagle
win.netwire
win.newcore_rat
win.nexus_logger
win.njrat
win.nymaim
win.oddjob
win.onhat
win.opachki
win.ordinypt
win.padcrypt
win.penco
win.phandoor
win.pittytiger_rat
win.plead
win.pngdowner
win.poohmilk
win.powerduke
win.prikormka
win.pteranodon
win.pvzout
win.qadars
win.quant_loader
win.radrat
win.ramnit
win.ransomlock
win.ratabankapos
win.reactorbot
win.redalpha
win.remcos
win.retefe
win.rikamanu
win.rofin
win.romeos
win.royalcli
win.rumish
win.sage_ransom
win.samsam
win.satana
win.screenlocker
win.seduploader
win.shakti
win.shelllocker
win.shurlOckr
win.siggen6
win.simda
win.skyplex
win.smokeloader
win.snifula
win.socks5_systemz

win.marap
win.matsnu
win.miancha
win.milkmaid
win.miragefox
win.miuref
win.moker
win.moonwind
win.moure
win.murkytop
win.mylobot
win.naikon
win.navrat
win.netrepser_keylogger
win.neutrino
win.newposthings
win.ngioweb
win.nocturnalstealer
win.nymaim2
win.odinaff
win.onionduke
win.opghoul
win.overlay rat
win.paladin
win.petrwrap
win.phorpiex
win.pkybot
win.ploutus_atm
win.poison_ivy
win.popcorn_time
win.powerpool
win.prilex
win.punkey_pos
win.pwnpos
win.qgakbot
win.quasar_rat
win.rakhni
win.ranbyus
win.rapid_ransom
win.rawpos
win.reaver
win.redleaves
win.remexi
win.revenge_rat
win.rincux
win.rokku
win.roopirs
win.rtm
win.runningrat
win.sakula._rat
win.sanny
win.sathurbot
win.seasalt
win.sendsafe
win.shapeshift
win.shifu
win.shylock
win.silence
win.sinowal
win.slave
win.smominru
win.snojan
win.socksbot

win.matrix_banker
win.mbrlock
win.micrass
win.mimikatz
win.mirai
win.mm_core
win.mokes
win.morphine
win.mozart
win.murofet
win.n40
win.nanocore
win.necurs
win.netsupportmanager_rat
win.neutrino_pos
win.newsreels
win.nitlove
win.nokki
win.oceansalt
win.oldbait
win.onliner
win.orcarat
win.ovidiystealer
win.pandabanker
win.petya
win.pipcreat
win.plaintee
win.ployx
win.polyglot_ransom
win.poscardstealer
win.powersniff
win.psix
win.pushdo
win.pykspa
win.qghost
win.r980
win.rambo
win.ranscam
win.rapid_stealer
win.rcs
win.red_alert
win.redyms
win.remsec_strider
win.rgdoor
win.rising_sun
win.rokrat
win.roseam
win.rtpos
win.rurktar
win.salgorea
win.sarhust
win.scanpos
win.sedll
win.serpico
win.shareip
win.shimrat
win.sidewinder
win.silon
win.sisfader
win.slingshot
win.snatch_loader
win.snslocker
win.solarbot

Table A.3.: List of Windows malware families used, Part III.

195

A. Windows Malware Families in Malpedia

win.sorgu win.soundbite win.spedear win.spora_ransom
win.spybot win.squirtdanger win.sslmm win.stabuniq
win.starcruft win.starsypound win.stegoloader win.stinger
win.stration win.stresspaint win.strongpity win.stuxnet
win.sunorcal win.suppobox win.swift win.sword
win.sykipot win.synccrypt win.synflooder win.synth_loader
win.sys10 win.sysget win.sysraw_stealer win.sysscan
win.tabmsgsql win.taidoor win.taleret win.tandfuy
win.tapaoux win.tarsip win.tdiscoverer win.telebot
win.tempedreve win.terminator_rat win.teslacrypt win.thanatos
win.thanatos_ransom win.threebyte win.thumbthief win.thunker
win.tidepool win.tinba win.tinyloader win.tinynuke
win.tinytyphon win.tinyzbot win.tiop win.tofsee
win.torrentlocker win.treasurehunter win.trickbot win.trochilus_rat
win.troldesh win.trump_ransom win.tsifiri win.turnedup
win.tyupkin win.uacme win.udpos win.uiwix

win.unidentified 001 win.unidentified_ 003 win.unidentified 006 win.unidentified 013
win.unidentified_020 win.unidentified_022 win.unidentified 023 win.unidentified 024
win.unidentified 029 win.unidentified_030 win.unidentified 031 win.unidentified 032
win.unidentified 033 win.unidentified_035 win.unidentified 037 win.unidentified 038
win.unidentified 039 win.unidentified_041 win.unidentified 042 win.unidentified 044
win.unidentified 045 win.unidentified_ 047 win.unidentified 048 win.unidentified 049
win.unidentified 051 win.unidentified_052 win.unidentified 053 win.unidentified 054

win.unlock92 win.upas win.upatre win.urausy
win.urlzone win.uroburos win.vawtrak win.velso
win.venus_locker win.vflooder win.virdetdoor win.virut
win.vmzeus win.vobfus win.volgmer win.vreikstadi
win.vskimmer win.w32times win.wannacryptor win.waterminer
win.waterspout win.webc2_adspace win.webc2_ausov win.webc2_ bolid
win.webc2_cson win.webc2_div win.webc2_greencat win.webc2_ head
win.webc2 kt3 win.webc2_gbp win.webc2_rave win.webc2_table
win.webc2_ugx win.webc2_yahoo win.webmonitor win.wellmess
win.winmm win.winsloader win.wipbot win.wmighost
win.wndtest win.wonknu win.woody win.woolger
win.xagent win.xbot_pos win.xbtl win.xpan
win.xpctra win.xsplus win.xtunnel win.xtunnel net
win.xxmm win.yahoyah win.yayih win.younglotus
win.yty win.zebrocy win.zedhou win.zeroaccess
win.zerot win.zeus win.zeus mailsniffer | win.zeus_openssl
win.zeus_sphinx win.zezin win.zhcat win.zhmimikatz
win.zloader win.zoxpng win.zyklon

Table A.4.: List of Windows malware families used, Part IV. Some unidentified families had been
identified over time, which results in gaps between their labels.

196

B. YARA rules used to detect MSVC and

zlib

rule detect_msvc {

}

meta:

author = "Daniel Plohmann"

description = "Detect presence of MSVC fragments via
strings:

// __except_handler4

$msvecrt_0 = { 33 CO 64 8B 0D
0C 39 51 08 75 05 B8 01 00
$msvecrt_1 = { 68 7?7 7?7 77 7?7
10 2B EO 53 56 57 Al }
$msvcrt_2 = { 55 8B EC 8B 45
??7 68 7?7 ?? 7?7 7?7 E8 77 77
$msvecrt_3 = { 83 C4 04 8B 55
50 68 7?7 7?7 77 77 68 7?7 77
// allshl
$msvecrt_4 = { 80 F9 40 73 15
D3 E2 C3 33 CO 33 D2 C3 }
// free(Block)
$msvcrt_5 = { 55 8B EC 51 89
04 00 }
// __allmul
$msvecrt_6 = { 8B 44 24 08 8B
10 00 53 F7 E1 8B D8 8B 44
10 00 }
// ___raise_securityfailure
$msvcrt_7 = { 55 8B EC FF 15
08 E8 77 7?7 77 77 83 3D 77
04 00 CO E8 77 77 77 77 b9
// __SEH_prolog
$msvcrt_8 = { 68 7?7 7?7 7?7 7?7
10 2B EO 53 56 57 8B 45 F8
45 FO 64 A3 00 00 00 00 C3
// alloca_probe
$msvcrt64_2 = { 48 83 EC 10
2B DO 4D OF 42 D3 65 4C
4D 8D 9B 00 FO FF FF 41
// __finally
$msvcrt64_3 = { 40 55 48 83
7?77 48 8B 14 CA E8 77 77
$msvcrt64_0 = { 48 83 EC 28
48 20 8D 81 EO FA 6C E6
28 C3 }
$msvcrt64_1 = { 48 8B 44 24
C7 05 77 7?7 77 77 01 00
6B CO 00 48 8D 0D 77 7?77

00 48 8B 0D

condition:
any of them

}

00
00
64

14
77

08
??

80

4D

4C
24

77
77
5D

64
89

4C
8B
Ccé

EC
77
48
83

40

00
77

00
00
FF

50
77

89
°?

F9

FC

24
08

77
77
c3

A1
65

89
1C
03

20
77
8B
F8

48

00
77

00
c3
35

8B
83
02
E8

20

8B

10
F7

77
77

00
E8

14
25
00

48
90
01
02

89
c7
48

00

00

4D
C4

8B
7

73

45

0B
64

7
00

00
50

24
10
4D

8B
48
81
76

05
05
c7

81

00

10
18

45
??

06

08

C8
24

6A
59

00
8B

4C
00
3B

EA
83
38
OF

77
77
04

197

79

00

51
5D

14
7

OF

50

8B
14

01
59

00
45

89
00
D3

48
Cc4
63
81

77
77
01

04

00

8B
Cc3

50
??

A5

E8

4C
03

A3
75

50
FC

5C
00
75

63
20
73
F9

77
77
02

77

8B

55

8B
83

c2

77

24
D8

??
08

8B

characteristic

77

44

0oC

4D
c4
D3

??

oC
8B

77
6A

44

77

24

52

10
18
EO

7

75
44

7
01

24

C7 45 FC

24
4D
FO

4D
5D
6D
00

77
77
00

08
3B

20
C3
EO
40

Cc7
01
00

4D
D3

48

75
99

05
00
00

77

10

8B

51
5D
Cc3

??

09
24

77
E8

10

75

89

45

8B

Cc3

8B

83

8B
08

E8
77

89

10

6C

08

DO

Cc4

44
F7

77
77

6C

FF FF FF

33
73

8B

iC
01

77
00
B8

DB
16

Cc1

83
74

77
00
08

functions"

8B

24

50

ocC

33

04

24
E1l

77
7

24
FF

51

10

68

52

Cco

8B

04
03

7
77

10
89

4C 8D 54

66

48

78
07

77
B8
00

41

8B

18
33

77
08
00

81

15

04
Cco

09
00
00

oC

8D

77

8B

80

E5

F7
D3

7
59

8D
45

8B

6C

7

45

E1l

5D

E1l
5B

FF
68

6C
F8

52

24

77

08

1F

Cc2

c2
c2

75
09

24
8D

24 18 4C

E2

77

75
48

04
00
48

00

77

16
83

00
00
6B

FO

77

8B
C4

co
48
co

B. YARA rules used to detect MSVC and zlib

rule detect_zlib {
meta:
author = "Daniel Plohmann"
description = "Detect presence of zlib characteristic functions and strings"
strings:
// inflate array A

0D
12
14
16
18
18
19
1A
1B
06
OA
ocC
ocC
oD
OE
OE
OF
OF
OF
17
19
1A
1B
icC
icC
icC
iD
iD

08
OB
ocC
0D
OE
OE
OE
OF
OF
14
18
1A
1A
1B
icC
1C
iD
iD
iD
OE
12
14
16
18
18
19

OE
12
14
16
18
18
19
1A
1B
06
0A
ocC
oC
0D
OE
OE
OF
OF
OF
17
19
1A
1B
1C
1C
1C
1D
1D

09
0B
ocC
0D
OE
OE
OE
OF
OF
14
18
1A
1A
1B
1C
1C
1D
1D
1D
OE
12
14
16
18
19
19

$values_0 = {

OE OE
12 12
14 15
16 16
18 18
19 19
19 19
1A 1A
1B 1B
07 07
OA OA
0C ocC
0C ocC
0D 0D
OE OE
OE OE
OF OF
OF OF
OF 00
17 17
19 19
1A 1A
1B 1B
1C 1C
1C 1C
1C 1C
iD 1D
iD 1D

09 09
0B OB
0C ocC
0D 0D
OE OE
OE OE
OE OE
OF OF
OF OF
15 15
18 18
1A 1A
1A 1A
1B 1B
1C 1C
1C 1C
iD 1D
iD 1D
1D 00
OE OE
12 12
15 15
16 16
18 18
19 19
19 19

00
OE
12
15
16
18
19
19
1A
1B
o7
0A
0oC
ocC
0D
OE
OE
OF
OF
00
17
19
1A
1B
icC
icC
1C
iD
iD

// inflate array
$values_1 = {

00
09
0B
0oC
0D
OE
OE
OE
OF
OF
15
18
1A
1A
1B
icC
1C
iD
iD
01
OF
12
15
16
18
19
19

01
OF
12
15
16
18
19
19
1A
1B
07
0A
oC
0D
0D
OE
OE
OF
OF
10
17
19
1A
1B
1C
1C
1C
1D
1D
B

01
09
0B
oC
0D
OE
OE
OE
OF
OF
15
18
1A
1B
1B
1iC
1C
iD
1D
02
OF
13
15
16
18
19
19

02
OF
13
15
16
18
19
19
1A
1B
08
0A
0oC
0D
0D
OE
OE
OF
OF
11
17
19
1A
1B
icC
icC
1D
iD
iD

02
09
0B
0ocC
0D
OE
OE
OE
OF
OF
16
18
1A
1B
1B
icC
1C
iD
iD
03
OF
13
15
16
18
19
1A

03
OF
13
15
16
18
19
1A
1A
1B
08
0A
oC
0D
0D
OE
OE
OF
OF
12
17
19
1A
1B
1iC
1C
1D
1D
1D

03
09
0B
oC
0D
OE
OE
OF
OF
OF
16
18
1A
1B
1B
1C
1iC
iD
1D
04
OF
13
15
17
18
19
1A

04
OF
13
15
17
18
19
1A
1A
1B
08
0A
0oC
0D
0D
OE
OE
OF
OF
12
18
19
1A
1B
1C
icC
1D
iD
1D

04
09
0B
0oC
0D
OE
OE
OF
OF
OF
16
18
1A
1B
1B
icC
1C
1D
iD
05
10
13
15
17
18
19
1A

05
10
13
15
17
18
19
1A
1A
1B
08
OA
oC
0D
oD
OE
OE
OF
OF
13
18
19
1A
1B
1C
1C
iD
1D
1D

04
0A
0B
oC
0D
OE
OE
OF
OF
OF
16
18
1A
1B
1B
1C
1iC
iD
1D
06
10
13
15
17
18
19
1A

06
10
13
15
17
18
19
1A
1A
1B
08
0A
ocC
0D
OE
OE
OE
OF
OF
13
18
19
1A
1B
1C
ic
1D
iD
1D

05
0A
0B
ocC
0D
OE
OE
OF
OF
OF
16
18
1A
1B
iC
icC
1iC
iD
iD
o7
10
13
15
17
18
19
1A

07
10
13
15
17
18
19
1A
1A
1B
08
0B
oC
0D
OE
OE
OE
OF
OF
14
18
19
1A
1B
1iC
1C
1D
1D
1D

05
0A
0B
oC
0D
OE
OE
OF
OF
OF
16
19
1A
1B
1iC
1C
1C
iD
1D
08
10
13
15
17
18
19
1A

08
10
13
15
17
18
19
1A
1B
1B
08
0B
ocC
0D
OE
OE
OE
OF
OF
14
18
19
1A
1B
1C
ic
1D
iD
1D

06
0A
0B
ocC
0D
OE
OE
OF
OF
OF
16
19
1A
1B
1C
icC
iC
1D
iD
08
10
13
15
17
18
19
1A

198

08
10
13
15
17
18
19
1A
1B
1B
08
0B
oC
0D
OE
OE
OE
OF
OF
14
18
1A
1A
1B
1iC
1C
1D
1D
1D

06
0A
0B
oC
0D
OE
OE
OF
OF
OF
16
19
1A
1B
1iC
1C
1C
iD
1D
09
10
14
15
17
18
19
1A

09
10
14
15
17
18
19
1A
1B
1B
09
0B
0ocC
0D
OE
OE
OE
OF
OF
14
18
1A
1A
1B
1C
ic
1D
iD
1D

06
0A
ocC
ocC
0D
OE
OE
OF
OF
OF
17
19
1A
1B
1C
1C
1C
1D
iD
09
10
14
15
17
18
19
1A

09
10
14
15
17
18
19
1A
1B
1B
09
0B
oC
0D
OE
OE
OE
OF
OF
15
18
1A
1A
1B
1iC
1C
iD
1D
1D

06
0A
0oC
oC
0D
OE
OE
OF
OF
OF
17
19
1A
1B
1iC
1C
1C
iD
1D
0A
10
14
15
17
18
19
1A

0A
10
14
15
17
18
19
1A
1B
1C
09
0B
0ocC
0D
OE
OE
OE
OF
OF
15
18
1A
1A
1B
1C
1C
1D
1D

07
0A
ocC
ocC
0D
OE
OE
OF
OF
OF
17
19
1A
1B
1C
1C
1C
1D
1D
0A
11
14
15
17
18
19
1A

0A
11
14
15
17
18
19
1A
1B
00
09
0B
oC
0D
OE
OE
OE
OF
OF
15
18
1A
1A
1B
iC
1C
iD
1D

07
0A
0oC
oC
0D
OE
OE
OF
OF
00
17
19
1A
1B
1iC
1C
1C
iD
1D
0B
11
14
15
17
18
19
1A

0B
11
14
15
17
18
19
1A
1B
01
09
0B
ocC
0D
OE
OE
OE
OF
OF
15
18
1A
1B
1B
1C
1C
1D
1D

07
0A
ocC
ocC
0D
OE
OE
OF
OF
00
17
19
1A
1B
1C
1C
1C
1D
1D
0B
11
14
16
17
18
19
1A

OB
11
14
16
17
18
19
1A
1B
02
09
0B
oC
0D
OE
OE
OE
OF
OF
16
18
1A
1B
1B
iC
1C
iD
1D

07
0A
0oC
0D
0D
OE
OE
OF
OF
10
17
19
1A
1B
1iC
1C
1iC
iD
1D
oC
11
14
16
17
18
19
1A

(¢
11
14
16
17
18
19
1A
1B
03
09
0B
ocC
0D
OE
OE
OF
OF
OF
16
18
1A
1B
1B
1C
1C
1D
1D

08
0A
ocC
0D
0D
OE
OE
OF
OF
11
17
19
1A
1B
1C
1C
1D
1D
1D
ocC
11
14
16
17
18
19
1A

oC
11
14
16
17
18
19
1A
1B
04
09
0B
oC
0D
OE
OE
OF
OF
OF
16
18
1A
1B
1B
icC
1C
iD
1D

08
0A
0oC
0D
0D
OE
OE
OF
OF
12
17
19
1A
1B
iC
1C
1D
iD
1D
ocC
11
14
16
17
18
19
1A

0oC
11
14
16
17
18
19
1A
1B
04
0A
0B
ocC
0D
OE
OE
OF
OF
OF
16
18
1A
1B
1B
1C
1C
1D
1D

08
0A
ocC
0D
0D
OE
OE
OF
OF
12
18
19
1A
1B
1C
1C
1D
1D
1D
ocC
11
14
16
17
18
19
1A

oC
11
14
16
17
18
19
1A
1B
05
0A
0B
oC
0D
OE
OE
OF
OF
OF
16
18
1A
1B
1iC
icC
1C
iD
1D

08
0A
0oC
0D
0D
OE
OE
OF
OF
13
18
19
1A
1B
1iC
1C
1D
iD
1D
0D
11
14
16
18
18
19
1A

0D
11
14
16
18
18
19
1A
1B
05
0A
0B
ocC
0D
OE
OE
OF
OF
OF
16
19
1A
1B
1C
1C
1C
1D
1D

08
0A
ocC
0D
OE
OE
OE
OF
OF
13
18
19
1A
1B
1C
1C
1D
1D
1D
0D
12
14
16
18
18
19
1A

oD
12
14
16
18
18
19
1A
1B
06
oA
0B
oC
0D
OE
OE
OF
OF
OF
16
19
1A
1B
1iC
icC
1cC
iD
1D

08
0B
0oC
0D
OE
OE
OE
OF
OF
14
18
19
1A
1B
iC
1cC
1D
iD
1D
0D
12
14
16
18
18
19
1A

0D
12
14
16
18
18
19
1A
1B
06
0A
0B
ocC
0D
OE
OE
OF
OF
OF
16
19
1A
1B
1C
1C
1C
1D
1D

08
0B
ocC
0D
OE
OE
OE
OF
OF
14
18
19
1A
1B
1C
1C
1D
1D
1D
0D
12
14
16
18
18
19
1A

}

1A 1A 1A 1A 1A 1A 1A 1A 1A 1A 1A 1B 1B 1B 1B 1B 1B 1B 1B 1B

1B 1B 1B 1B 1B 1B 1B 1B 1B 1B 1B 1B 1B 1B 1B 1C }
// characteristic strings
$version = "inflate 1.2."
$versionil = "inflate 1.1."
$versioni0 = "inflate 1.0."
// we did not find any inflate version below 1.0.4
$length = "incorrect length check"

condition:
any of them

199

1B 1B 1B 1B 1B 1B 1B

	Introduction
	Research Questions
	Contributions
	Thesis Outline

	Background
	Binary Code Analysis
	Compilation
	Structure of Windows Executable Programs
	Disassembly
	Code Similarity

	Malware
	Analysis of Malware
	Dynamic Analysis
	Static Analysis

	Summary

	Related Work
	Ground Truth for Malware Research
	Collections of Malware Samples
	Analysis of Antivirus Detection Labels
	Collections of Meta Data on Malware

	Windows API Usage Analysis of Malware
	WinAPI Usage Recovery and Deobfuscation
	Malware Detection and Classification by Analysis of WinAPI Usage

	Code Analysis
	Disassembly
	Code Similarity Analysis

	Malware Analysis Methodology and Workflows
	Summary

	Malpedia: A Representative Corpus for Malware Research
	Motivation and Contribution
	Requirements for a Malware Corpus focused on Static Analysis
	Definition of Requirements
	Review of Rossow's Prudent Practices
	Summary and Mapping to Prudent Practices

	The Malpedia Corpus
	Storage and Organization
	Environment Specification and Dumping Procedure
	Achieving Representativeness
	Data Set Status

	A Comparative Structural Analysis of Windows Malware
	Methodology
	Evaluation of Availability and Reliability of PE Header Information

	Summary

	Robust Recovery and Analysis of Windows API Usage
	Motivation and Contribution
	ApiScout: Recovery of Windows API Usage from Memory Dumps
	Methodology
	Inventarization of the Windows API
	Evaluation

	Analysis of Windows API Usage in Malware
	Data Set
	WinAPI Information Availability
	DLL and API Occurrence Frequency Analysis
	A Semantic Classification Scheme for WinAPI Functions

	ApiVectors: Storage and Comparison of WinAPI Usage Profiles
	Methodology
	Evaluation of ApiVector Parameterization
	Evaluation of Classification Performance

	Summary

	Code Recovery and Similarity Analysis
	Motivation and Contribution
	SMDA: Effective Code and Control Flow Recovery from Memory Dumps
	Methodology
	Evaluation

	MCRIT: MinHash-based Code Relationship Identification
	Methodology
	Evaluation

	Third-party Library Usage and Code Sharing in Windows Malware
	Data Sets
	Accuracy Verification
	Presence of Third-Party Libraries in Windows Malware
	Code Sharing in Windows Malware
	Case Studies for the Application of MCRIT

	Summary

	Summary and Outlook
	Summary of Contributions
	Conclusions
	Practical Impact
	Future Work

	Bibliography
	Appendices
	Windows Malware Families in Malpedia
	YARA rules used to detect MSVC and zlib

