Zur Kurzanzeige

Satellite remote sensing-based crop cover classification over Europe

accuracy of different methodological approaches

dc.contributor.authorDonmez, Elif
dc.contributor.authorHeckelei, Thomas
dc.contributor.authorStorm, Hugo
dc.date.accessioned2025-12-29T12:26:08Z
dc.date.available2025-12-29T12:26:08Z
dc.date.issued09.10.2025
dc.identifier.urihttps://hdl.handle.net/20.500.11811/13798
dc.description.abstractCrop maps play an important role in a variety of applications, from calculating crop areas and forecasting food production quantities to the analysis of agri-environmental interactions, highlighting the necessity of timely and accurate information on agricultural land use. The availability of remote sensing data has permitted numerous crop classification studies, which have investigated a variety of methods to improve classification performance, such as the selection of remote sensing sources, classification algorithms, and preprocessing methods. This paper compares these approaches with respect to classification accuracy in a European context. The study also investigates aspects such as classification level, study area division, and class granularity. The review shows that optical products provide more information for crop identification than radar products, however, combining optical data with radar backscatter increases accuracy. Classification accuracy benefits from specific features such as red-edge and spectral indices for optical products and Haralick textures for radar. Compared to traditional machine learning and distance-based classification methods, deep learning algorithms have been shown to achieve superior performance. Nevertheless, random forest's comparative accuracy at relatively low computational cost makes it a viable alternative for largescale applications. Finally, preprocessing methods and data on topography, climate, and crop growth patterns appear to improve accuracy.en
dc.format.extent45
dc.language.isoeng
dc.rightsNamensnennung 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectcrop mapping
dc.subjectclassification accuracy
dc.subjectsupervised classification
dc.subjectmeta-analysis
dc.subjectpreprocessing
dc.subjectpostprocessing
dc.subject.ddc620 Ingenieurwissenschaften und Maschinenbau
dc.subject.ddc630 Landwirtschaft, Veterinärmedizin
dc.titleSatellite remote sensing-based crop cover classification over Europe
dc.title.alternativeaccuracy of different methodological approaches
dc.typeWissenschaftlicher Artikel
dc.publisher.nameRoutledge, Taylor & Francis Group
dc.publisher.locationLondon
dc.rights.accessRightsopenAccess
dcterms.bibliographicCitation.volume2025, vol. 46
dcterms.bibliographicCitation.issueiss. 21
dcterms.bibliographicCitation.pagestart8251
dcterms.bibliographicCitation.pageend8294
dc.relation.doihttps://doi.org/10.1080/01431161.2025.2565837
dcterms.bibliographicCitation.journaltitleInternational journal of remote sensing
ulbbn.pubtypeZweitveröffentlichung
dc.versionpublishedVersion
ulbbn.sponsorship.oaUnifundOA-Förderung Universität Bonn


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige

Die folgenden Nutzungsbestimmungen sind mit dieser Ressource verbunden:

Namensnennung 4.0 International