Show simple item record

On the expected uniform error of Brownian motion approximated by the Lévy-Ciesielski construction

dc.contributor.authorBrown, Bruce
dc.contributor.authorGriebel, Michael
dc.contributor.authorKuo, Frances Y.
dc.contributor.authorSloan, Ian H.
dc.date.accessioned2024-05-29T12:30:04Z
dc.date.available2024-05-29T12:30:04Z
dc.date.issued04.2023
dc.identifier.urihttps://hdl.handle.net/20.500.11811/11576
dc.description.abstractIt is known that the Brownian bridge or Lévy-Ciesielski construction of Brownian paths almost surely converges uniformly to the true Brownian path. In the present article the focus is on the uniform error. In particular, we show constructively that at level N, at which there are d = 2^N points evaluated on the Brownian path, the uniform error and its square, and the uniform error of geometric Brownian motion, have upper bounds of order O ( (ln d / d)^(1/2) ), matching the known orders. We apply the results to an option pricing example.en
dc.format.extent14
dc.language.isoeng
dc.relation.ispartofseriesINS Preprints ; 2301
dc.rightsIn Copyright
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subject.ddc510 Mathematik
dc.subject.ddc518 Numerische Analysis
dc.titleOn the expected uniform error of Brownian motion approximated by the Lévy-Ciesielski construction
dc.typePreprint
dc.publisher.nameInstitut für Numerische Simulation
dc.publisher.locationBonn
dc.rights.accessRightsopenAccess
dc.relation.doihttps://doi.org/10.1017/S0004972723000850
ulbbn.pubtypeZweitveröffentlichung
dcterms.bibliographicCitation.urlhttps://ins.uni-bonn.de/publication/preprints


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

The following license files are associated with this item:

InCopyright