A-posteriori reduced basis error-estimates for a semi-discrete in space quasilinear parabolic PDE
A-posteriori reduced basis error-estimates for a semi-discrete in space quasilinear parabolic PDE

| dc.contributor.author | Hoppe, Fabian | |
| dc.contributor.author | Neitzel, Ira | |
| dc.date.accessioned | 2024-08-08T12:38:05Z | |
| dc.date.available | 2024-08-08T12:38:05Z | |
| dc.date.issued | 12.2020 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.11811/11795 | |
| dc.description.abstract | We prove a-posteriori error-estimates for reduced-order modeling of quasilinear parabolic PDEs with non-monotone nonlinearity. We consider the solution of a semi-discrete in space equation as reference, and therefore incorporate reduced basis-, empirical interpolation-, and time-discretization-errors in our consideration. Numerical experiments illustrate our results. | en |
| dc.format.extent | 25 | |
| dc.language.iso | eng | |
| dc.relation.ispartofseries | INS Preprints ; 2005 | |
| dc.rights | In Copyright | |
| dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | |
| dc.subject | Quasilinear parabolic partial differential equation | |
| dc.subject | Reduced basis | |
| dc.subject | Proper Orthogonal Decomposition | |
| dc.subject | A-posteriori error | |
| dc.subject.ddc | 510 Mathematik | |
| dc.subject.ddc | 518 Numerische Analysis | |
| dc.title | A-posteriori reduced basis error-estimates for a semi-discrete in space quasilinear parabolic PDE | |
| dc.type | Preprint | |
| dc.publisher.name | Institut für Numerische Simulation (INS) | |
| dc.publisher.location | Bonn | |
| dc.rights.accessRights | openAccess | |
| dc.relation.doi | https://doi.org/10.1007/s10589-021-00299-y | |
| ulbbn.pubtype | Zweitveröffentlichung | |
| dcterms.bibliographicCitation.url | https://ins.uni-bonn.de/publication/preprints |
Files in this item
This item appears in the following Collection(s)
-
INS Preprints (153)




