Show simple item record

Convergence of the SQP method for quasilinear parabolic optimal control problems

dc.contributor.authorHoppe, Fabian
dc.contributor.authorNeitzel, Ira
dc.date.accessioned2024-08-08T12:42:59Z
dc.date.available2024-08-08T12:42:59Z
dc.date.issued11.2019
dc.identifier.urihttps://hdl.handle.net/20.500.11811/11800
dc.description.abstractBased on the theoretical framework recently proposed by Bonifacius and Neitzel (2018) we discuss the sequential quadratic programming (SQP) method for the numerical solution of an optimal control problem governed by a quasilinear parabolic partial differential equation. Following well-known techniques, convergence of the method in appropriate function spaces is proven under some common technical restrictions.
Particular attention is payed to how the second order sufficient conditions for the optimal control problem and the resulting L2-local quadratic growth condition influence the notion of “locality” in the SQP method. Further, a new regularity result for the adjoint state, which is required during the convergence analysis, is proven. Numerical examples illustrate the theoretical results.
en
dc.format.extent41
dc.language.isoeng
dc.relation.ispartofseriesINS Preprints ; 1907
dc.rightsIn Copyright
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectoptimal control
dc.subjectquasilinear parabolic partial differential equation
dc.subjectsequential quadratic programming
dc.subjectconvergence analysis
dc.subject.ddc510 Mathematik
dc.subject.ddc518 Numerische Analysis
dc.titleConvergence of the SQP method for quasilinear parabolic optimal control problems
dc.typePreprint
dc.publisher.nameInstitut für Numerische Simulation (INS)
dc.publisher.locationBonn
dc.rights.accessRightsopenAccess
dc.relation.doihttps://doi.org/10.1007/s11081-020-09547-2
ulbbn.pubtypeZweitveröffentlichung
dcterms.bibliographicCitation.urlhttps://ins.uni-bonn.de/publication/preprints


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

The following license files are associated with this item:

InCopyright