Analysis of tensor approximation schemes for continuous functions
Analysis of tensor approximation schemes for continuous functions

dc.contributor.author | Michael Griebel | |
dc.contributor.author | Helmut Harbrecht | |
dc.date.accessioned | 2024-08-08T12:49:06Z | |
dc.date.available | 2024-08-08T12:49:06Z | |
dc.date.issued | 03.2019 | |
dc.identifier.uri | https://hdl.handle.net/20.500.11811/11804 | |
dc.description.abstract | In this article, we analyze tensor approximation schemes for continuous functions. We assume that the function to be approximated lies in an isotropic Sobolev space and discuss the cost when approximating this function in the continuous analogue of the Tucker tensor format or of the tensor train format. We especially show that the cost of both approximations are dimension-robust when the Sobolev space under consideration provides appropriate dimension weights. | en |
dc.format.extent | 24 | |
dc.language.iso | eng | |
dc.relation.ispartofseries | INS Preprints ; 1903 | |
dc.rights | In Copyright | |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | |
dc.subject | Tensor format | |
dc.subject | Approximation error | |
dc.subject | Rank complexity | |
dc.subject | Sobolev space with dimension weights | |
dc.subject.ddc | 510 Mathematik | |
dc.subject.ddc | 518 Numerische Analysis | |
dc.title | Analysis of tensor approximation schemes for continuous functions | |
dc.type | Preprint | |
dc.publisher.name | Institut für Numerische Simulation (INS) | |
dc.publisher.location | Bonn | |
dc.rights.accessRights | openAccess | |
dc.relation.doi | https://doi.org/10.1007/s10208-021-09544-6 | |
ulbbn.pubtype | Zweitveröffentlichung | |
dcterms.bibliographicCitation.url | https://ins.uni-bonn.de/publication/preprints |
Files in this item
This item appears in the following Collection(s)
-
INS Preprints (153)