Bastian Bohn; Michael Griebel; Jens Oettershagen: Optimally rotated coordinate systems for adaptive least-squares regression on sparse grids. In: INS Preprints, 1812.
Online-Ausgabe in bonndoc: https://hdl.handle.net/20.500.11811/11825
@unpublished{handle:20.500.11811/11825,
author = {{ } and { } and { }},
title = {Optimally rotated coordinate systems for adaptive least-squares regression on sparse grids},
publisher = {Institut für Numerische Simulation (INS)},
year = 2018,
month = feb,

INS Preprints},
volume = 1812,
note = {For low-dimensional data sets with a large amount of data points, standard kernel methods are usually not feasible for regression anymore. Besides simple linear models or involved heuristic deep learning models, grid-based discretizations of larger (kernel) model classes lead to algorithms, which naturally scale linearly in the amount of data points. For moderate-dimensional or high-dimensional regression tasks, these grid-based discretizations suffer from the curse of dimensionality. Here, sparse grid methods have proven to circumvent this problem to a large extent. In this context, space- and dimension-adaptive sparse grids, which can detect and exploit a given low effective dimensionality of nominally high-dimensional data, are particularly successful. They nevertheless rely on an axis-aligned structure of the solution and exhibit issues for data with predominantly skewed and rotated coordinates.
In this paper we propose a preprocessing approach for these adaptive sparse grid algorithms that determines an optimized, problem-dependent coordinate system and, thus, reduces the effective dimensionality of a given data set in the ANOVA sense. We provide numerical examples on synthetic data as well as real-world data to show how an adaptive sparse grid least squares algorithm benefits from our preprocessing method.},

url = {https://hdl.handle.net/20.500.11811/11825}
}

Die folgenden Nutzungsbestimmungen sind mit dieser Ressource verbunden:

InCopyright