Show simple item record

On the convergence rate of sparse grid least squares regression

dc.contributor.authorBohn, Bastian
dc.date.accessioned2024-08-13T14:31:16Z
dc.date.available2024-08-13T14:31:16Z
dc.date.issued08.2017
dc.identifier.urihttps://hdl.handle.net/20.500.11811/11833
dc.description.abstractWhile sparse grid least squares regression algorithms have been frequently used to tackle Big Data problems with a huge number of input data in the last 15 years, a thorough theoretical analysis of stability properties, error decay behavior and appropriate couplings between the dataset size and the grid size has not been provided yet.
In this paper, we will present a framework which will allow us to close this gap and rigorously derive upper bounds on the expected error for sparse grid least squares regression. Furthermore, we will verify that our theoretical convergence results also match the observed rates in numerical experiments.
en
dc.format.extent23
dc.language.isoeng
dc.relation.ispartofseriesINS Preprints ; 1711
dc.rightsIn Copyright
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subject.ddc510 Mathematik
dc.subject.ddc518 Numerische Analysis
dc.titleOn the convergence rate of sparse grid least squares regression
dc.typePreprint
dc.publisher.nameInstitut für Numerische Simulation (INS)
dc.publisher.locationBonn
dc.rights.accessRightsopenAccess
dc.relation.doihttps://doi.org/10.1007/978-3-319-75426-0_2
ulbbn.pubtypeZweitveröffentlichung
dcterms.bibliographicCitation.urlhttps://ins.uni-bonn.de/publication/preprints


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

The following license files are associated with this item:

InCopyright