Show simple item record

Stable multiscale Petrov-Galerkin finite element method for high frequency acoustic scattering

dc.contributor.authorGallistl, Dietmar
dc.contributor.authorPeterseim, Daniel
dc.date.accessioned2024-08-15T15:50:54Z
dc.date.available2024-08-15T15:50:54Z
dc.date.issued03.2015
dc.identifier.urihttps://hdl.handle.net/20.500.11811/11868
dc.description.abstractWe present and analyze a pollution-free Petrov-Galerkin multiscale finite element method for the Helmholtz problem with large wave number κ as a variant of [Peterseim, ArXiv:1411.1944, 2014]. We use standard continuous Q1 finite elements at a coarse discretization scale H as trial functions, whereas the test functions are computed as the solutions of local problems at a finer scale h. The diameter of the support of the test functions behaves like mH for some oversampling parameter m. Provided m is of the order of log(κ) and h is sufficiently small, the resulting method is stable and quasi-optimal in the regime where H is proportional to κ−1. In homogeneous (or more general periodic) media, the fine scale test functions depend only on local mesh-configurations. Therefore, the seemingly high cost for the computation of the test functions can be drastically reduced on structured meshes. We present numerical experiments in two and three space dimensions.en
dc.format.extent26
dc.language.isoeng
dc.relation.ispartofseriesINS Preprints ; 1504
dc.rightsIn Copyright
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectmultiscale method
dc.subjectpollution effect
dc.subjectwave propagation
dc.subjectHelmholtz problem
dc.subjectfinite element method
dc.subject.ddc510 Mathematik
dc.subject.ddc518 Numerische Analysis
dc.titleStable multiscale Petrov-Galerkin finite element method for high frequency acoustic scattering
dc.typePreprint
dc.publisher.nameInstitut für Numerische Simulation
dc.publisher.locationBonn
dc.rights.accessRightsopenAccess
dc.relation.doihttps://doi.org/10.1016/j.cma.2015.06.017
ulbbn.pubtypeZweitveröffentlichung
dcterms.bibliographicCitation.urlhttps://ins.uni-bonn.de/publication/preprints


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

The following license files are associated with this item:

InCopyright