3D Analysis-suitable T-splines: definition, linear independence and m-graded local refinement
3D Analysis-suitable T-splines: definition, linear independence and m-graded local refinement

dc.contributor.author | Morgenstern, Philipp | |
dc.date.accessioned | 2024-08-15T16:04:46Z | |
dc.date.available | 2024-08-15T16:04:46Z | |
dc.date.issued | 01.2016 | |
dc.identifier.uri | https://hdl.handle.net/20.500.11811/11871 | |
dc.description.abstract | This paper addresses the linear independence of T-splines in three space dimensions. We give an abstract definition of analysis-suitability, and prove that it is equivalent to dual-compatibility, wich guarantees linear independence of the T-spline blending functions. In addition, we present a local refinement algorithm that generates analysis-suitable meshes and has linear computational complexity in terms of the number of marked and generated mesh elements. | en |
dc.format.extent | 27 | |
dc.language.iso | eng | |
dc.relation.ispartofseries | INS Preprints ; 1508 | |
dc.rights | In Copyright | |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | |
dc.subject | Isogeometric Analysis | |
dc.subject | trivariate T-Splines | |
dc.subject | Analysis-Suitability | |
dc.subject | Dual-Compatibility | |
dc.subject | adaptive mesh refinement | |
dc.subject.ddc | 510 Mathematik | |
dc.subject.ddc | 518 Numerische Analysis | |
dc.title | 3D Analysis-suitable T-splines: definition, linear independence and m-graded local refinement | |
dc.type | Preprint | |
dc.publisher.name | Institut für Numerische Simulation | |
dc.publisher.location | Bonn | |
dc.rights.accessRights | openAccess | |
dc.relation.doi | https://doi.org/10.1137/15M102229X | |
ulbbn.pubtype | Zweitveröffentlichung | |
dcterms.bibliographicCitation.url | https://ins.uni-bonn.de/publication/preprints |
Files in this item
This item appears in the following Collection(s)
-
INS Preprints (153)