Variational multiscale stabilization and the exponential decay of fine-scale correctors
Variational multiscale stabilization and the exponential decay of fine-scale correctors

| dc.contributor.author | Peterseim, Daniel | |
| dc.date.accessioned | 2024-08-21T07:53:17Z | |
| dc.date.available | 2024-08-21T07:53:17Z | |
| dc.date.issued | 05.2015 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.11811/11889 | |
| dc.description.abstract | This paper reviews the variational multiscale stabilization of standard finite element methods for linear partial differential equations that exhibit multiscale features. The stabilization is of Petrov-Galerkin type with a standard finite element trial space and a problem-dependent test space based on pre-computed fine-scale correctors. The exponential decay of these correctors and their localisation to local cell problems is rigorously justified. The stabilization eliminates scale-dependent pre-asymptotic effects as they appear for standard finite element discretizations of highly oscillatory problems, e.g., the poor L2 approximation in homogenization problems or the pollution effect in high-frequency acoustic scattering. | en |
| dc.format.extent | 28 | |
| dc.language.iso | eng | |
| dc.relation.ispartofseries | INS Preprints ; 1509 | |
| dc.rights | In Copyright | |
| dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | |
| dc.subject | Test Space | |
| dc.subject | Standard Finite Element | |
| dc.subject | Galerkin Projection | |
| dc.subject | Corrector Problem | |
| dc.subject | Nodal Basis Function | |
| dc.subject.ddc | 510 Mathematik | |
| dc.subject.ddc | 518 Numerische Analysis | |
| dc.title | Variational multiscale stabilization and the exponential decay of fine-scale correctors | |
| dc.type | Preprint | |
| dc.publisher.name | Institut für Numerische Simulation (INS) | |
| dc.publisher.location | Bonn | |
| dc.rights.accessRights | openAccess | |
| dc.relation.doi | https://doi.org/10.1007/978-3-319-41640-3_11 | |
| ulbbn.pubtype | Zweitveröffentlichung | |
| dcterms.bibliographicCitation.url | https://ins.uni-bonn.de/publication/preprints |
Dateien zu dieser Ressource
Das Dokument erscheint in:
-
INS Preprints (153)




