Show simple item record

Convergence of nonsmooth descent methods via Kurdyka–Lojasiewicz inequality on Riemannian manifolds

dc.contributor.authorHosseini, Seyedehsomayeh
dc.date.accessioned2024-08-21T12:18:27Z
dc.date.available2024-08-21T12:18:27Z
dc.date.issued11.2015
dc.identifier.urihttps://hdl.handle.net/20.500.11811/11902
dc.description.abstractWe develop a subgradient-oriented descent method in nonsmooth optimization on Riemannian manifolds and prove convergence of the method in the sense of subsequences for nonsmooth functions whose standard models are strict. Moreover, we present a nonsmooth version of the Kurdyka-Lojasiewicz inequality and show that a locally Lipschitz C-function defined on an analytic manifold satisfies this inequality. Finally, we prove that if the objective function satisfies the Kurdyka-Lojasiewicz inequality and its standard model is strict, then the sequence of iterates of the subgradient-oriented descent algorithm converges to a singular critical point.en
dc.format.extent17
dc.language.isoeng
dc.relation.ispartofseriesINS Preprints ; 1523
dc.rightsIn Copyright
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subject.ddc510 Mathematik
dc.subject.ddc518 Numerische Analysis
dc.titleConvergence of nonsmooth descent methods via Kurdyka–Lojasiewicz inequality on Riemannian manifolds
dc.typePreprint
dc.publisher.nameInstitut für Numerische Simulation (INS)
dc.publisher.locationBonn
dc.rights.accessRightsopenAccess
ulbbn.pubtypeZweitveröffentlichung
dcterms.bibliographicCitation.urlhttps://ins.uni-bonn.de/publication/preprints


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

The following license files are associated with this item:

InCopyright