On the stability of the Rayleigh-Ritz method for eigenvalues
On the stability of the Rayleigh-Ritz method for eigenvalues

dc.contributor.author | Gallistl, Dietmar | |
dc.contributor.author | Patrick, Huber | |
dc.contributor.author | Peterseim, Daniel | |
dc.date.accessioned | 2024-08-21T12:30:05Z | |
dc.date.available | 2024-08-21T12:30:05Z | |
dc.date.issued | 05.01.2017 | |
dc.identifier.uri | https://hdl.handle.net/20.500.11811/11905 | |
dc.description.abstract | This paper studies global stability properties of the Rayleigh-Ritz approximation of eigenvalues of the Laplace operator. The focus lies on the ratios ^λk/λk of the kth numerical eigenvalue ^λk and the kth exact eigenvalue λk. In the context of classical finite elements, the maximal ratio blows up with the polynomial degree. For B-splines of maximum smoothness, the ratios are uniformly bounded with respect to the degree except for a few instable numerical eigenvalues which are related to the presence of essential boundary conditions. These phenomena are linked to the inverse inequalities in the respective approximation spaces. | en |
dc.format.extent | 15 | |
dc.language.iso | eng | |
dc.relation.ispartofseries | INS Preprints ; 1527 | |
dc.rights | In Copyright | |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | |
dc.subject.ddc | 510 Mathematik | |
dc.subject.ddc | 518 Numerische Analysis | |
dc.title | On the stability of the Rayleigh-Ritz method for eigenvalues | |
dc.type | Preprint | |
dc.publisher.name | Institut für Numerische Simulation (INS) | |
dc.publisher.location | Bonn | |
dc.rights.accessRights | openAccess | |
dc.relation.doi | https://doi.org/10.1007/s00211-017-0876-8 | |
ulbbn.pubtype | Zweitveröffentlichung | |
dc.version | updatedVersion | |
dcterms.bibliographicCitation.url | https://ins.uni-bonn.de/publication/preprints |
Dateien zu dieser Ressource
Das Dokument erscheint in:
-
INS Preprints (153)