Zur Kurzanzeige

On the stability of the Rayleigh-Ritz method for eigenvalues

dc.contributor.authorGallistl, Dietmar
dc.contributor.authorPatrick, Huber
dc.contributor.authorPeterseim, Daniel
dc.date.accessioned2024-08-21T12:30:05Z
dc.date.available2024-08-21T12:30:05Z
dc.date.issued05.01.2017
dc.identifier.urihttps://hdl.handle.net/20.500.11811/11905
dc.description.abstractThis paper studies global stability properties of the Rayleigh-Ritz approximation of eigenvalues of the Laplace operator. The focus lies on the ratios k/λk of the kth numerical eigenvalue k and the kth exact eigenvalue λk. In the context of classical finite elements, the maximal ratio blows up with the polynomial degree. For B-splines of maximum smoothness, the ratios are uniformly bounded with respect to the degree except for a few instable numerical eigenvalues which are related to the presence of essential boundary conditions. These phenomena are linked to the inverse inequalities in the respective approximation spaces.en
dc.format.extent15
dc.language.isoeng
dc.relation.ispartofseriesINS Preprints ; 1527
dc.rightsIn Copyright
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subject.ddc510 Mathematik
dc.subject.ddc518 Numerische Analysis
dc.titleOn the stability of the Rayleigh-Ritz method for eigenvalues
dc.typePreprint
dc.publisher.nameInstitut für Numerische Simulation (INS)
dc.publisher.locationBonn
dc.rights.accessRightsopenAccess
dc.relation.doihttps://doi.org/10.1007/s00211-017-0876-8
ulbbn.pubtypeZweitveröffentlichung
dc.versionupdatedVersion
dcterms.bibliographicCitation.urlhttps://ins.uni-bonn.de/publication/preprints


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige

Die folgenden Nutzungsbestimmungen sind mit dieser Ressource verbunden:

InCopyright