Schwarz iterative methods: Infinite space splittings
Schwarz iterative methods: Infinite space splittings

dc.contributor.author | Griebel, Michael | |
dc.contributor.author | Oswald, Peter | |
dc.date.accessioned | 2024-08-23T06:57:53Z | |
dc.date.available | 2024-08-23T06:57:53Z | |
dc.date.issued | 12.2014 | |
dc.identifier.uri | https://hdl.handle.net/20.500.11811/11919 | |
dc.description.abstract | We prove the convergence of greedy and randomized versions of Schwarz iterative methods for solving linear elliptic variational problems based on infinite space splittings of a Hilbert space. For the greedy case, we show a squared error decay rate of O((m + 1)-1) for elements of an approximation space 𝒜1 related to the underlying splitting. For the randomized case, we show an expected squared error decay rate of O((m + 1)-1) on a class 𝒜π∞ ⊂ 𝒜1 depending on the probability distribution. | en |
dc.format.extent | 16 | |
dc.language.iso | eng | |
dc.relation.ispartofseries | INS Preprints ; 1413 | |
dc.rights | In Copyright | |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | |
dc.subject | infinite space splitting | |
dc.subject | subspace correction | |
dc.subject | multiplicative Schwarz | |
dc.subject | block coordinate descent | |
dc.subject | greedy | |
dc.subject | randomized | |
dc.subject | convergence rates | |
dc.subject.ddc | 510 Mathematik | |
dc.subject.ddc | 518 Numerische Analysis | |
dc.title | Schwarz iterative methods: Infinite space splittings | |
dc.type | Preprint | |
dc.publisher.name | Institut für Numerische Simulation (INS) | |
dc.publisher.location | Bonn | |
dc.rights.accessRights | openAccess | |
dc.relation.doi | https://doi.org/10.1007/s00365-015-9318-y | |
ulbbn.pubtype | Zweitveröffentlichung | |
dcterms.bibliographicCitation.url | https://ins.uni-bonn.de/publication/preprints |
Dateien zu dieser Ressource
Das Dokument erscheint in:
-
INS Preprints (153)