A wavelet based sparse grid method for the electronic Schrödinger equation
A wavelet based sparse grid method for the electronic Schrödinger equation
dc.contributor.author | Griebel, Michael | |
dc.contributor.author | Hamaekers, Jan | |
dc.date.accessioned | 2024-08-26T14:59:22Z | |
dc.date.available | 2024-08-26T14:59:22Z | |
dc.date.issued | 05.2006 | |
dc.identifier.uri | https://hdl.handle.net/20.500.11811/11974 | |
dc.description.abstract | We present a direct discretization of the electronic Schrödinger equation. It is based on one-dimensional Meyer wavelets from which we build an anisotropic multiresolution analysis for general particle spaces by a tensor product construction. We restrict these spaces to the case of antisymmetric functions. To obtain finite-dimensional subspaces we first discuss semi-discretization with respect to the scale parameter by means of sparse grids which relies on mixed regularity and decay properties of the electronic wave functions. We then propose different techniques for a discretization with respect to the position parameter. Furthermore we present the results of our numerical experiments using this new generalized sparse grid methods for Schrödinger’s equation. | en |
dc.format.extent | 37 | |
dc.language.iso | eng | |
dc.relation.ispartofseries | INS Preprints ; 0603 | |
dc.rights | In Copyright | |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | |
dc.subject | Schrödinger equation | |
dc.subject | numerical approximation | |
dc.subject | sparse grid method | |
dc.subject | antisymmetric sparse grids | |
dc.subject.ddc | 510 Mathematik | |
dc.subject.ddc | 518 Numerische Analysis | |
dc.title | A wavelet based sparse grid method for the electronic Schrödinger equation | |
dc.type | Preprint | |
dc.publisher.name | Institut für Numerische Simulation (INS) | |
dc.publisher.location | Bonn | |
dc.rights.accessRights | openAccess | |
dc.relation.doi | https://doi.org/10.4171/022-3/71 | |
ulbbn.pubtype | Zweitveröffentlichung | |
dcterms.bibliographicCitation.url | https://ins.uni-bonn.de/publication/preprints |
Dateien zu dieser Ressource
Das Dokument erscheint in:
-
INS Preprints (153)