Zur Kurzanzeige

A wavelet based sparse grid method for the electronic Schrödinger equation

dc.contributor.authorGriebel, Michael
dc.contributor.authorHamaekers, Jan
dc.date.accessioned2024-08-26T14:59:22Z
dc.date.available2024-08-26T14:59:22Z
dc.date.issued05.2006
dc.identifier.urihttps://hdl.handle.net/20.500.11811/11974
dc.description.abstractWe present a direct discretization of the electronic Schrödinger equation. It is based on one-dimensional Meyer wavelets from which we build an anisotropic multiresolution analysis for general particle spaces by a tensor product construction. We restrict these spaces to the case of antisymmetric functions. To obtain finite-dimensional subspaces we first discuss semi-discretization with respect to the scale parameter by means of sparse grids which relies on mixed regularity and decay properties of the electronic wave functions. We then propose different techniques for a discretization with respect to the position parameter. Furthermore we present the results of our numerical experiments using this new generalized sparse grid methods for Schrödinger’s equation.en
dc.format.extent37
dc.language.isoeng
dc.relation.ispartofseriesINS Preprints ; 0603
dc.rightsIn Copyright
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectSchrödinger equation
dc.subjectnumerical approximation
dc.subjectsparse grid method
dc.subjectantisymmetric sparse grids
dc.subject.ddc510 Mathematik
dc.subject.ddc518 Numerische Analysis
dc.titleA wavelet based sparse grid method for the electronic Schrödinger equation
dc.typePreprint
dc.publisher.nameInstitut für Numerische Simulation (INS)
dc.publisher.locationBonn
dc.rights.accessRightsopenAccess
dc.relation.doihttps://doi.org/10.4171/022-3/71
ulbbn.pubtypeZweitveröffentlichung
dcterms.bibliographicCitation.urlhttps://ins.uni-bonn.de/publication/preprints


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige

Die folgenden Nutzungsbestimmungen sind mit dieser Ressource verbunden:

InCopyright