Zur Kurzanzeige

Suboptimal feedback control of PDEs by solving HJB equations on adaptive sparse grids

dc.contributor.authorGarcke, Jochen
dc.contributor.authorKröner, Axel
dc.date.accessioned2024-08-29T11:32:11Z
dc.date.available2024-08-29T11:32:11Z
dc.date.issued2015
dc.identifier.urihttps://hdl.handle.net/20.500.11811/11990
dc.description.abstractAn approach to solve finite time horizon suboptimal feedback control problems for partial differential equations is proposed by solving dynamic programming equations on adaptive sparse grids. A semi-discrete optimal control problem is introduced and the feedback control is derived from the corresponding value function. The value function can be characterized as the solution of an evolutionary Hamilton-Jacobi Bellman (HJB) equation which is defined over a state space whose dimension is equal to the dimension of the underlying semi-discrete system. Besides a low dimensional semi-discretization it is important to solve the HJB equation efficiently to address the curse of dimensionality. We propose to apply a semi-Lagrangian scheme using spatially adaptive sparse grids. Sparse grids allow the discretization of the value functions in (higher) space dimensions since the curse of dimensionality of full grid methods arises to a much smaller extent. For additional efficiency an adaptive grid refinement procedure is explored.
The approach is illustrated for the wave equation and an extension to equations of Schrödinger type is indicated. We present several numerical examples studying the effect the parameters characterizing the sparse grid have on the accuracy of the value function and the optimal trajectory. closed-loop suboptimal control of PDEs and HJB equations and sparse grids and curse of dimensionality.
en
dc.format.extent30
dc.language.isoeng
dc.relation.ispartofseriesINS Preprints ; 1518
dc.rightsIn Copyright
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectClosed-loop suboptimal control of PDEs
dc.subjectHJB equations
dc.subjectSparse grids
dc.subjectCurse of dimensionality
dc.subject.ddc510 Mathematik
dc.subject.ddc518 Numerische Analysis
dc.titleSuboptimal feedback control of PDEs by solving HJB equations on adaptive sparse grids
dc.typePreprint
dc.publisher.nameInstitut für Numerische Simulation (INS)
dc.publisher.locationBonn
dc.rights.accessRightsopenAccess
dc.relation.doihttps://doi.org/10.1007/s10915-016-0240-7
ulbbn.pubtypeZweitveröffentlichung
dcterms.bibliographicCitation.urlhttps://ins.uni-bonn.de/publication/preprints


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige

Die folgenden Nutzungsbestimmungen sind mit dieser Ressource verbunden:

InCopyright