Zur Kurzanzeige

A Survey on Current Trends and Recent Advances in Text Anonymization

dc.contributor.authorDeußer, Tobias
dc.contributor.authorSparrenberg, Lorenz
dc.contributor.authorBerger, Armin
dc.contributor.authorHahnbück, Max
dc.contributor.authorBauckhage, Christian
dc.contributor.authorSifa, Rafet
dc.date.accessioned2025-12-03T14:12:19Z
dc.date.available2025-12-03T14:12:19Z
dc.date.issued10.2025
dc.identifier.urihttps://hdl.handle.net/20.500.11811/13719
dc.description.abstractThe proliferation of textual data containing sensitive personal information across various domains requires robust anonymization techniques to protect privacy and comply with regulations, while preserving data usability for diverse and crucial downstream tasks. This survey provides a comprehensive overview of current trends and recent advances in text anonymization techniques. We begin by discussing foundational approaches, primarily centered on Named Entity Recognition, before examining the transformative impact of Large Language Models, detailing their dual role as sophisticated anonymizers and potent de-anonymization threats. The survey further explores domain-specific challenges and tailored solutions in critical sectors such as healthcare, law, finance, and education. We investigate advanced methodologies incorporating formal privacy models and risk-aware frameworks, and address the specialized subfield of authorship anonymization. Additionally, we review evaluation frameworks, comprehensive metrics, benchmarks, and practical toolkits for real-world deployment of anonymization solutions. This review consolidates current knowledge, identifies emerging trends and persistent challenges, including the evolving privacy-utility trade-off, the need to address quasi-identifiers, and the implications of LLM capabilities, and aims to guide future research directions for both academics and practitioners in this field.en
dc.format.extent13
dc.language.isoeng
dc.rightsIn Copyright
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectAnonymization
dc.subjectLarge Language Models
dc.subjectNamed Entity Recognition
dc.subjectNatural Language Processing
dc.subjectPrivacy
dc.subjectTrustworthy Machine Learning
dc.subjectSurvey
dc.subject.ddc004 Informatik
dc.titleA Survey on Current Trends and Recent Advances in Text Anonymization
dc.typeKonferenzveröffentlichung
dc.identifier.doihttps://doi.org/10.48565/bonndoc-728
dc.publisher.nameIEEE, Institute of Electrical and Electronics Engineers
dc.publisher.locationNew York, NY
dc.rights.accessRightsopenAccess
dc.relation.doihttps://doi.org/10.1109/DSAA65442.2025.11247969
ulbbn.pubtypeZweitveröffentlichung
ulbbnediss.dissNotes.extern© 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
ulbbn.relation.conference2025 IEEE 12th International Conference on Data Science and Advanced Analytics (DSAA)


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige

Die folgenden Nutzungsbestimmungen sind mit dieser Ressource verbunden:

InCopyright