Zur Kurzanzeige

Scalable Methods and Algorithms for Detecting Specific DNA Changes in Clinical Patients and Offspring of Radar-Exposed Personnel
A transgenerational biomarker of paternal exposure to ionizing radiation

dc.contributor.advisorKrawitz, Peter
dc.contributor.authorBrand, Fabian
dc.date.accessioned2025-04-17T13:48:21Z
dc.date.available2025-04-17T13:48:21Z
dc.date.issued17.04.2025
dc.identifier.urihttps://hdl.handle.net/20.500.11811/13009
dc.description.abstractThe abundance of Whole genome sequencing (WGS) data now enables research into more complex phenotypes and into effects of Ionizing radiation (IR) on human DNA. We used WGS data to contribute to four advances: 1. Finding a novel disease-causing variant for Koolen-de Vries syndrome; 2. Detecting mutational signatures in error-prone sequencing data; 3. Establishing a transgenerational biomarker for paternal exposure to IR; and 4. assessing Covid-19 host genetics. To ascertain potential transgenerational effects of IR exposure, we recruited a cohort comprised of 110 offspring of radar personnel of both German armies and accessed two more cohorts, one cohort of 130 offspring of liquidators and inhabitants of the town of Pripyat that were exposed to IR following the nuclear accident in 1986 (CRU cohort), and a large control cohort featuring 1214 offspring of non-exposed parents (Inova). We analyzed all data for the Radarstudy and Covid-19 data using newly developed WGS data analysis pipelines. Previous works suggested clustered de novo mutations (cDNMs), which are defined as two or more de novo mutations (DNMs) within 20 bp as potential signature of paternal IR exposure. To optimize the detection accuracy of DNMs and cDNMs, we used data from validation experiments to create a custom DNM and cDNM calling algorithm based on DeepTrio. We showed that deep-learning approaches based on DeepTrio can be trained with low data requirements. Our DNM detection model achieved a sensitivity of 95.7 % and a precision of 89.6 %. More complex mutational signatures, like cDNMs, can be detected with a precision of 76.9 % at 100 % sensitivity. Using newly developed analysis pipelines for WGS data, we detected a 4.7k bp deletion in KANSL1, that was found to be causing the patient phenotype, and provided insights into Covid-19 host genetics by elucidating correlations of variation and disease progression. When analyzing the three large WGS cohorts, we found that cDNMs were increased in children born to parents that were irradiated prior to conception. We observed 2.65 cDNMs per offspring on average in the CRUcohort, 1.48 in the Radar cohort and 0.88 in the Inova cohort (p < 0.005). Further statistical models indicated that this increase in cDNMs scales with the paternal exposure to IR (p < 0.001). These results leave little doubt that cDNMs represent a transgenerational biomarker of paternal IR exposure.en
dc.language.isoeng
dc.rightsNamensnennung-Nicht-kommerziell 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subjectGenetik
dc.subjectde novo Mutation
dc.subjectMutationscluster
dc.subjectIonisierende Strahlung
dc.subjectMutationsdetektion
dc.subjectGenomics
dc.subjectcDNM
dc.subjectIonizing radiation
dc.subjectVariant Calling
dc.subject.ddc570 Biowissenschaften, Biologie
dc.titleScalable Methods and Algorithms for Detecting Specific DNA Changes in Clinical Patients and Offspring of Radar-Exposed Personnel
dc.title.alternativeA transgenerational biomarker of paternal exposure to ionizing radiation
dc.typeDissertation oder Habilitation
dc.publisher.nameUniversitäts- und Landesbibliothek Bonn
dc.publisher.locationBonn
dc.rights.accessRightsopenAccess
dc.identifier.urnhttps://nbn-resolving.org/urn:nbn:de:hbz:5-82457
dc.relation.doihttps://doi.org/10.1002/humu.24467
dc.relation.doihttps://doi.org/10.1093/nargab/lqae013
dc.relation.doihttps://doi.org/10.1101/2023.11.20.23298689
dc.relation.doihttps://doi.org/10.1371/journal.ppat.1012786
ulbbn.pubtypeErstveröffentlichung
ulbbnediss.affiliation.nameRheinische Friedrich-Wilhelms-Universität Bonn
ulbbnediss.affiliation.locationBonn
ulbbnediss.thesis.levelDissertation
ulbbnediss.dissID8245
ulbbnediss.date.accepted08.04.2025
ulbbnediss.instituteMedizinische Fakultät / Institute : Institut für Genomische Statistik und Bioinformatik (IGSB)
ulbbnediss.fakultaetMedizinische Fakultät
dc.contributor.coRefereeGilissen, Christian
ulbbnediss.contributor.orcidhttps://orcid.org/0000-0003-1885-7021


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige

Die folgenden Nutzungsbestimmungen sind mit dieser Ressource verbunden:

Namensnennung-Nicht-kommerziell 4.0 International