Zur Kurzanzeige

A new generation of patient-reported outcome measures with large language models

dc.contributor.authorTerheyden, Jan Henrik
dc.contributor.authorPielka, Maren
dc.contributor.authorSchneider, Tobias
dc.contributor.authorHolz, Frank G.
dc.contributor.authorSifa, Rafet
dc.date.accessioned2025-10-30T13:45:38Z
dc.date.available2025-10-30T13:45:38Z
dc.date.issued24.03.2025
dc.identifier.urihttps://hdl.handle.net/20.500.11811/13612
dc.description.abstractBackground Patient-reported outcome measures (PROMs) are cornerstones of patient-centered clinical medicine and reflect patients' abilities, difficulties, perceptions and behaviors. The highly structured questionnaire format of PROMs currently limits their real-world validity and acceptability to patients, which becomes increasingly relevant with the high clinical interest in PROM data. In this short commentary, we aim to demonstrate the potential use of large language models (LLMs) in the context of PROM data collection and interpretation.
Main body The popularization of LLMs enables the development of a new generation of PROMs generated and administered through digital technology that interact with patients and score their responses in real time based on artificial intelligence. LLM-PROMs will need to be developed with multi-stakeholder input and careful validation against established PROMs. LLM-PROMs could complement traditional PROMs particularly in real-world clinical applications.
Conclusion LLM-PROMs could allow quantifying patient-relevant dimensions based on less structured contents and foster the use of patient-reported data in digital, clinical applications of PROMs.
en
dc.format.extent5
dc.language.isoeng
dc.rightsNamensnennung 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectPatient-reported outcome measures
dc.subjectLarge Language models
dc.subjectGenerative artificial intelligence
dc.subjectDigital medicine
dc.subject.ddc610 Medizin, Gesundheit
dc.titleA new generation of patient-reported outcome measures with large language models
dc.typeWissenschaftlicher Artikel
dc.publisher.nameSpringerOpen
dc.publisher.locationLondon
dc.rights.accessRightsopenAccess
dcterms.bibliographicCitation.volume2025, vol. 9
dcterms.bibliographicCitation.issueiss. 34
dcterms.bibliographicCitation.pagestart1
dcterms.bibliographicCitation.pageend5
dc.relation.doihttps://doi.org/10.1186/S41687-025-00867-4
dcterms.bibliographicCitation.journaltitleJournal of patient-reported outcomes
ulbbn.pubtypeZweitveröffentlichung
dc.versionpublishedVersion
ulbbn.sponsorship.oaUnifundOA-Förderung Universität Bonn


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige

Die folgenden Nutzungsbestimmungen sind mit dieser Ressource verbunden:

Namensnennung 4.0 International