Sinha, Pritam Bala: Functional analysis of microRNA-130b in bovine oocyte maturation and preimplantation embryo development. - Bonn, 2011. - Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn.
Online-Ausgabe in bonndoc: https://nbn-resolving.org/urn:nbn:de:hbz:5N-25929
@phdthesis{handle:20.500.11811/4742,
urn: https://nbn-resolving.org/urn:nbn:de:hbz:5N-25929,
author = {{Pritam Bala Sinha}},
title = {Functional analysis of microRNA-130b in bovine oocyte maturation and preimplantation embryo development},
school = {Rheinische Friedrich-Wilhelms-Universität Bonn},
year = 2011,
month = aug,

volume = 156,
note = {MicroRNAs (miRNAs) are well known to regulate the proteins involved in various biological processes including development. The expression pattern of miRNAs is believed to vary between immature and in vitro matured bovine oocytes. Among these, miR-130b was reported to upregulated in immatured compared to matured oocytes. However, its functional role in cell viability, proliferation or transcription during bovine oocyte maturation and preimplantation embryo development is not known. Therefore, this experiment was aimed to investigate the functional role of miR-130b in oocyte maturation and oocyte surrounding cells and its involvement in preimplantation embryo development. For this, the spatiotemporal expression pattern of miR-130 family was performed throughout the bovine preimplantation stage embryos. Accordingly, miR-130b was found to be highly expressed in cumulus and granulosa cells, immature oocyte, morula and blastocyst stage embryos. Once the expression pattern of miR-130b was evaluated, its target genes were in silico analyzed and experimentally validated. Accordingly, MSK1, SMAD5, MEOX2, DOC1R and EIF2C4 were found to be the real targets of miR-130b. To investigate the involvement of miR-130b during oocyte maturation, immatured oocytes were microinjected with pre-miR-130b (precursor) or sequence specific antisense (inhibitor) of miR-130b, while scramble miRNA injected and uninjected oocytes were used as controls. The maturational status of the oocytes and the level of miR-130b target genes expression were assessed 22 hours post microinjection. The result showed that the first polar body extrusion was 86.3, 73, 85 and 84.6% in oocytes injected with pre-miR-130b, anti-miR-130b, scramble and uninjected controls, respectively. Similarly, mitotic staining showed that majority of oocytes injected with anti-miR-130b remains arrested at the telephase I stage (22%) and significantly reduced to reach Metaphase II compared to other oocyte groups. In addition, the mitochondrial activity was higher in pre-mir-130b and lower in anti-miR-130b injected oocytes compared to scramble and uninjected oocytes. This was associated with the reduction of miR-130b and increase of its target genes SMAD5 and MSK1 expression. Furthermore, oocyte surrounding cells are required for oocyte maturation, the involvement of miR-130b in cumulus and granulosa cell proliferation, lactate production and cholesterol level was assessed after transfection of pre-miR-130b or anti-miR-130b in both cell types. The inhibition of miR-130b resulted in reduction of cell proliferation and lactate production. However, knockdown of miR-130b did not change the cholesterol level in the granulosa or cumulus cells.
Apart from oocyte maturation and oocyte companion cell function, the role of miR-130b was investigated during preimplantation embryo development by microinjecting zygotes with pre-miR-130b or anti-miR-130b. The result has shown that the first cleavage rate was unaffected by knockdown or ectopic expression of miR-130b, but the rate of morula and blastocyst were significantly reduced in anti-miR-130b injected zygotes. Therefore this study provides the significant evidence that miR-130b may be required during bovine oocyte in vitro maturation and granulosa cell proliferation, morula and blastocyst formation, further functional in depth studies are necessary to understand whether miR-130b is involved in bovine oocyte in vivo maturation or embryo implantation.},

url = {https://hdl.handle.net/20.500.11811/4742}
}

Die folgenden Nutzungsbestimmungen sind mit dieser Ressource verbunden:

InCopyright