Siegemund, Jan: Street Surfaces and Boundaries from Depth Image Sequences Using Probabilistic Models. - Bonn, 2013. - Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn.
Online-Ausgabe in bonndoc:
author = {{Jan Siegemund}},
title = {Street Surfaces and Boundaries from Depth Image Sequences Using Probabilistic Models},
school = {Rheinische Friedrich-Wilhelms-Universität Bonn},
year = 2013,
month = dec,

note = {This thesis presents an approach for the detection and reconstruction of street surfaces and boundaries from depth image sequences.
Active driver assistance systems which monitor and interpret the environment based on vehicle mounted sensors to support the driver embody a current research focus of the automotive industry. An essential task of these systems is the modeling of the vehicle's static environment. This comprises the determination of the vertical slope and curvature characteristics of the street surface as well as the robust detection of obstacles and, thus, the free drivable space (alias free-space). In this regard, obstacles of low height, e.g. curbs, are of special interest since they often embody the first geometric delimiter of the free-space.
The usage of depth images acquired from stereo camera systems becomes more important in this context due to the high data rate and affordable price of the sensor. However, recent approaches for object detection are often limited to the detection of objects which are distinctive in height, such as cars and guardrails, or explicitly address the detection of particular object classes. These approaches are usually based on extremely restrictive assumptions, such as planar street surfaces, in order to deal with the high measurement noise.
The main contribution of this thesis is the development, analysis and evaluation of an approach which detects the free-space in the immediate maneuvering area in front of the vehicle and explicitly models the free-space boundary by means of a spline curve. The approach considers in particular obstacles of low height (higher than 10 cm) without limitation on particular object classes. Furthermore, the approach has the ability to cope with various slope and curvature characteristics of the observed street surface and is able to reconstruct this surface by means of a flexible spline model.
In order to allow for robust results despite the flexibility of the model and the high measurement noise, the approach employs probabilistic models for the preprocessing of the depth map data as well as for the detection of the drivable free-space. An elevation model is computed from the depth map considering the paths of the optical rays and the uncertainty of the depth measurements. Based on this elevation model, an iterative two step approach is performed which determines the drivable free-space by means of a Markov Random Field and estimates the spline parameters of the free-space boundary curve and the street surface. Outliers in the elevation data are explicitly modeled.
The performance of the overall approach and the influence of key components are systematically evaluated within experiments on synthetic and real world test scenarios. The results demonstrate the ability of the approach to accurately model the boundary of the drivable free-space as well as the street surface even in complex scenarios with multiple obstacles or strong curvature of the street surface. The experiments further reveal the limitations of the approach, which are discussed in detail.},

url = {}

The following license files are associated with this item: