Show simple item record

A PEL type Igusa stack and the p-adic geometry of Shimrua varieties

dc.contributor.advisorScholze, Peter
dc.contributor.authorZhang, Mingjia
dc.date.accessioned2023-10-17T16:25:01Z
dc.date.available2023-10-17T16:25:01Z
dc.date.issued17.10.2023
dc.identifier.urihttps://hdl.handle.net/20.500.11811/11104
dc.description.abstractLet (G, X) be a PEL-Shimura datum of type AC in Kottwitz’s classification. Assume G_{Q_p} is unramified. We show in this thesis that the good reduction locus of the infinite p-level Shimura variety attached to this datum, considered as a diamond, can be described as the fiber product of a certain v-stack (which we call “Igusa stack”) with a Schubert cell of the corresponding B_{dR}^+-affine Grassmannian, over the stack of G_{Q_p}-torsors on the Fargues-Fontaine curve. We also construct a minimal compactification of the Igusa stack and show that this fiber product structure extends to the minimal compactification of the Shimura variety. When the Schubert cell of the affine Grassmannian is replaced by a bounded substack of mathcal{G}-shtukas, where mathcal{G} is a reductive model of G_{Q_p} over Z_p, we show that this fiber product recovers the integral model of the Shimura variety. This result on integral models, if specialized to a Newton polygon stratum, recovers the fiber product formula of Mantovan. Similar fiber product structures are conjectured by Scholze to exist on general Shimura varietiesen
dc.language.isoeng
dc.rightsIn Copyright
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectShimura Varietäten
dc.subjectShimura varieties
dc.subject.ddc510 Mathematik
dc.titleA PEL type Igusa stack and the p-adic geometry of Shimrua varieties
dc.typeDissertation oder Habilitation
dc.publisher.nameUniversitäts- und Landesbibliothek Bonn
dc.publisher.locationBonn
dc.rights.accessRightsopenAccess
dc.identifier.urnhttps://nbn-resolving.org/urn:nbn:de:hbz:5-72771
ulbbn.pubtypeErstveröffentlichung
ulbbnediss.affiliation.nameRheinische Friedrich-Wilhelms-Universität Bonn
ulbbnediss.affiliation.locationBonn
ulbbnediss.thesis.levelDissertation
ulbbnediss.dissID7277
ulbbnediss.date.accepted17.08.2023
ulbbnediss.instituteMathematisch-Naturwissenschaftliche Fakultät : Fachgruppe Mathematik / Mathematisches Institut
ulbbnediss.fakultaetMathematisch-Naturwissenschaftliche Fakultät
dc.contributor.coRefereeCaraiani, Ana


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

The following license files are associated with this item:

InCopyright