Zur Kurzanzeige

From the stellar IMF to large-scale structure formation: How the ΛCDM model is incompatible with observations over all probed astrophysical scales

dc.contributor.advisorKroupa, Pavel
dc.contributor.authorHaslbauer, Moritz
dc.date.accessioned2024-07-05T08:06:16Z
dc.date.available2024-10-07T22:00:17Z
dc.date.issued05.07.2024
dc.identifier.urihttps://hdl.handle.net/20.500.11811/11635
dc.description.abstractThis doctoral thesis investigates the current standard model of cosmology ($Lambda$ Cold Dark Matter – $Lambda$CDM – framework) by performing tests on different astrophysical scales which could indicate if the missing mass problem implies indeed the existence of cold dark matter (CDM) or rather emerges because of a breakdown of Newton's law of gravity.
In the local Universe, we showed that the Magellanic Clouds-Milky Way system and morphological distribution of galaxies suggest that dynamical friction on galactic scales is much less efficient than in the $Lambda$CDM framework. State-of-the art $Lambda$CDM simulations overproduce thick galaxies while the majority of observed massive galaxies are thin spirals pointing to a failure of hierarchical merger- driven galaxy evolution in which galaxies grow efficiently through mergers due to dynamical friction on CDM haloes.
On larger scales, we quantified that the observed Keenan-Barger-Cowie (KBC) void falsifies the $Lambda$CDM framework on co-moving radial distance scales of $approx300$ cMpc whereas the enhanced growth of structures in Milgromian dynamics (MOND) allows the formation of KBC-like voids from which induced large-scale matter bulk flows resolve the Hubble tension. The almost constant star formation history (SFH) of the majority of local galaxies challenges the traditional interpretation of the Lilly-Madau plot according to which the evolution of the star formation rate density over cosmic time represents the global SFH of the Universe. We argued that the peak of the Lilly-Madau plot at redshift $zapprox1.9$ may reflect the imprint of a large-scale overdensity rather than the cosmic noon.
In the early Universe, we showed that the spectroscopically confirmation of galaxies with derived stellar masses of $gtrsim 10^{9},M_{odot}$ for an invariant canonical stellar initial mass function (IMF) at $z gtrsim 10$ by the James Webb Space Telescope (JWST) would imply that the observed stellar mass buildup is inconsistent with the $Lambda$CDM framework. The JWST observations illustrate that testing cosmological models requires assumptions about the IMF. Therefore, we developed the photometric GalIMF code as a package of the publicly available chemical galaxy evolution code GalIMF to compute the photometric properties of galaxies for an invariant canonical but also varying galaxy- wide IMF.
In conclusion, the performed tests disprove the $Lambda$CDM framework over all probed scales ranging from galactic to large-scale structures. This established a consistent picture of the Universe in which dynamical friction on galactic scales is next to absent and structure formation is more enhanced than predicted by the $Lambda$CDM framework disfavoring the existence of CDM on galactic scales and pointing to a long-range correction of Newtonian gravity as provided by MOND. As the interpretation of photometric measurements depends on the properties of the IMF, galaxy evolution and cosmological models have to be considered in a more holistic picture by bridging stellar population of galaxies with cosmology.
en
dc.language.isoeng
dc.rightsIn Copyright
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subject.ddc520 Astronomie, Kartografie
dc.titleFrom the stellar IMF to large-scale structure formation: How the ΛCDM model is incompatible with observations over all probed astrophysical scales
dc.typeDissertation oder Habilitation
dc.publisher.nameUniversitäts- und Landesbibliothek Bonn
dc.publisher.locationBonn
dc.rights.accessRightsopenAccess
dc.identifier.urnhttps://nbn-resolving.org/urn:nbn:de:hbz:5-76696
dc.relation.doihttps://doi.org/10.1093/mnras/staa2348
dc.relation.doihttps://doi.org/10.3847/1538-4357/ac46ac
dc.relation.doihttps://doi.org/10.3847/2041-8213/ac9a50
dc.relation.doihttps://doi.org/10.1093/mnras/stad1986
dc.relation.doihttps://doi.org/10.3390/universe10100385
dc.relation.doihttps://doi.org/10.1051/0004-6361/202347928
ulbbn.pubtypeErstveröffentlichung
ulbbnediss.affiliation.nameRheinische Friedrich-Wilhelms-Universität Bonn
ulbbnediss.affiliation.locationBonn
ulbbnediss.thesis.levelDissertation
ulbbnediss.dissID7669
ulbbnediss.date.accepted22.05.2024
ulbbnediss.instituteMathematisch-Naturwissenschaftliche Fakultät : Fachgruppe Physik/Astronomie / Helmholtz-Institut für Strahlen- und Kernphysik (HISKP)
ulbbnediss.fakultaetMathematisch-Naturwissenschaftliche Fakultät
dc.contributor.coRefereeMenten, Karl
ulbbnediss.contributor.orcidhttps://orcid.org/0000-0002-5101-6366
ulbbnediss.date.embargoEndDate07.10.2024


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige

Die folgenden Nutzungsbestimmungen sind mit dieser Ressource verbunden:

InCopyright