Show simple item record

Microscopic Theory of Photon Bose-Einstein Condensation

dc.contributor.advisorKroha, Johann
dc.contributor.authorKajan, Michael Rolf Otto
dc.date.accessioned2024-07-05T08:40:34Z
dc.date.available2024-07-05T08:40:34Z
dc.date.issued05.07.2024
dc.identifier.urihttps://hdl.handle.net/20.500.11811/11636
dc.description.abstractWe introduce a novel approach for analysing light-matter interactions within driven-dissipative environments. Our study centers on the interaction between dye molecule solutions and photonic cavity modes, mediated by Jaynes-Cummings coupling. These dye molecules exhibit discrete electronic and rovibrational energy levels, influenced by the surrounding thermal environment imposed by the solvent.
The principal contribution of this work lies in the development of a mapping that links the discrete-level structure of dye molecules to auxiliary bosons, subject to an additional operator constraint. This mapping facilitates the application of field theory methods, particularly leveraging the Schwinger-Keldysh formalism to address general non-equilibrium scenarios. Especially, this frame-work allows for the exact implementation of the operator constraint. It enables us to consider Markovian and non-Markovian baths coupled to the molecules. Including non-Markovian baths is of significant importance in achieving thermalisation beyond the occupation of levels and allowing to imprint the thermal fluctuation-dissipation relation onto the spectra.
The main goal of this work is to investigate the emergence of phase coherence in the photon field. Our method enables a unified treatment of photon field fluctuations and coherence dynamics, allowing the spontaneous breaking of the U (1) symmetry inherent in the Jaynes-Cummings interaction. The large dye reservoir is incorporated via a simplified Dynamical-Mean-Field Theory leveraging an expansion in the dye molecule density. We investigate the implications of broken U (1) symmetry in an open-driven context and validate the corresponding Ward identity in the phase of the Bose-Einstein condensate. This sheds light on the intricate interplay between coherence, fluctuations, and symmetry in light-matter coupled systems within driven-dissipative environments.
en
dc.language.isoeng
dc.rightsIn Copyright
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectNichtgleichgewichtsdynamik
dc.subjectOffene Quantensysteme
dc.subjectSchwinger-Keldysh-Formalismus
dc.subject2-PI Effektive Wirkungs
dc.subjectBose-Einstein Kondensation
dc.subjectHilfsteilchen
dc.subjectSpontane Symmetriebrechung
dc.subjectNon-equilibrium dynamics
dc.subjectopen quantum systems
dc.subject2-PI effective action
dc.subjectBose-Einstein condensation
dc.subjectauxiliary-particles
dc.subjectspontaneous symmetry breaking
dc.subject.ddc530 Physik
dc.titleMicroscopic Theory of Photon Bose-Einstein Condensation
dc.typeDissertation oder Habilitation
dc.publisher.nameUniversitäts- und Landesbibliothek Bonn
dc.publisher.locationBonn
dc.rights.accessRightsopenAccess
dc.identifier.urnhttps://nbn-resolving.org/urn:nbn:de:hbz:5-76809
ulbbn.pubtypeErstveröffentlichung
ulbbnediss.affiliation.nameRheinische Friedrich-Wilhelms-Universität Bonn
ulbbnediss.affiliation.locationBonn
ulbbnediss.thesis.levelDissertation
ulbbnediss.dissID7680
ulbbnediss.date.accepted22.05.2024
ulbbnediss.instituteMathematisch-Naturwissenschaftliche Fakultät : Fachgruppe Physik/Astronomie / Physikalisches Institut (PI)
ulbbnediss.fakultaetMathematisch-Naturwissenschaftliche Fakultät
dc.contributor.coRefereeKollath, Corinna


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

The following license files are associated with this item:

InCopyright