Restriction norms for Siegel Modular Forms
Restriction norms for Siegel Modular Forms

| dc.contributor.advisor | Blomer, Valentin | |
| dc.contributor.author | Felber, Gilles | |
| dc.date.accessioned | 2024-10-11T11:12:08Z | |
| dc.date.available | 2024-10-11T11:12:08Z | |
| dc.date.issued | 11.10.2024 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.11811/12458 | |
| dc.description.abstract | We consider the L2-norm of Siegel modular forms when restricted to the imaginary axis in an average sense. We establish an asymptotic formula with a power-saving error for cusp forms of degrees 1 and 2 in the weight aspect. We also prove an asymptotic formula for cusp forms of degree 1 in the level aspect. The result are consistent with the Mass Equidistribution Conjecture for Siegel modular forms and the Lindelöf Hypothesis for some twisted Koecher-Maass series. Along the way, we perform a careful analysis of the Kitaoka formula of degree 2. Finally, we prove a non-trivial bound for symplectic Kloosterman sums appearing in the Kitaoka formula of degree 3. | en |
| dc.language.iso | eng | |
| dc.rights | Namensnennung 4.0 International | |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
| dc.subject | automorphe Form | |
| dc.subject | Restriktionsproblem | |
| dc.subject | Spurformeln | |
| dc.subject | quantum unique ergodicity | |
| dc.subject | Exponentialsumme | |
| dc.subject | automorphic form | |
| dc.subject | restriction problem | |
| dc.subject | trace formula | |
| dc.subject | quantum unique ergodicity | |
| dc.subject | exponential sum | |
| dc.subject.ddc | 510 Mathematik | |
| dc.title | Restriction norms for Siegel Modular Forms | |
| dc.type | Dissertation oder Habilitation | |
| dc.publisher.name | Universitäts- und Landesbibliothek Bonn | |
| dc.publisher.location | Bonn | |
| dc.rights.accessRights | openAccess | |
| dc.identifier.urn | https://nbn-resolving.org/urn:nbn:de:hbz:5-78843 | |
| dc.relation.arxiv | 2308.13493 | |
| ulbbn.pubtype | Erstveröffentlichung | |
| ulbbnediss.affiliation.name | Rheinische Friedrich-Wilhelms-Universität Bonn | |
| ulbbnediss.affiliation.location | Bonn | |
| ulbbnediss.thesis.level | Dissertation | |
| ulbbnediss.dissID | 7884 | |
| ulbbnediss.date.accepted | 15.08.2024 | |
| ulbbnediss.institute | Angegliederte Institute, verbundene wissenschaftliche Einrichtungen : Max-Planck-Institut für Mathematik | |
| ulbbnediss.fakultaet | Mathematisch-Naturwissenschaftliche Fakultät | |
| dc.contributor.coReferee | Fintzen, Jessica | |
| ulbbnediss.contributor.orcid | https://orcid.org/0009-0001-3275-1234 |
Dateien zu dieser Ressource
Das Dokument erscheint in:
-
E-Dissertationen (4442)




