Zur Kurzanzeige

Combinatorial aspects of bow varieties

dc.contributor.advisorStroppel, Catharina
dc.contributor.authorWehrhan, Till
dc.date.accessioned2025-01-08T09:56:47Z
dc.date.available2025-01-08T09:56:47Z
dc.date.issued08.01.2025
dc.identifier.urihttps://hdl.handle.net/20.500.11811/12694
dc.description.abstractFirst introduced by Cherkis in theoretical physics, bow varieties form a rich family of symplectic varieties generalizing Nakajima quiver varieties. An algebro-geometric definition was later given by Nakajima and Takayama via moduli spaces of quiver representations. The main goal of this thesis is to study the torus equivariant cohomology of bow varieties. Our study is motivated by classical Schubert calculus and lays the foundation for a Schubert calculus for bow varieties where the underlying quiver is of finite type A. The crucial main mathematical tool we use is the theory of stable envelopes of Maulik and Okounkov. We show that this theory applies to bow varieties and study it with the main focus on explicit calculations. As a main result of this thesis we generalize a fundamental ingredient of classical Schubert calculus to the world of bow varieties: The Chevalley--Monk formula. Our generalization of this formula characterizes the multiplication of tautological divisors with respect to the stable envelope basis.en
dc.language.isoeng
dc.rightsNamensnennung 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectGeometrische Darstellungstheorie
dc.subjectSchubertkalkül
dc.subject.ddc510 Mathematik
dc.titleCombinatorial aspects of bow varieties
dc.typeDissertation oder Habilitation
dc.publisher.nameUniversitäts- und Landesbibliothek Bonn
dc.publisher.locationBonn
dc.rights.accessRightsopenAccess
dc.identifier.urnhttps://nbn-resolving.org/urn:nbn:de:hbz:5-80241
ulbbn.pubtypeErstveröffentlichung
ulbbn.birthnameTill Wehrhan
ulbbnediss.affiliation.nameRheinische Friedrich-Wilhelms-Universität Bonn
ulbbnediss.affiliation.locationBonn
ulbbnediss.thesis.levelDissertation
ulbbnediss.dissID8024
ulbbnediss.date.accepted09.12.2024
ulbbnediss.instituteMathematisch-Naturwissenschaftliche Fakultät : Fachgruppe Mathematik / Mathematisches Institut
ulbbnediss.fakultaetMathematisch-Naturwissenschaftliche Fakultät
dc.contributor.coRefereeSchedler, Travis


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige

Die folgenden Nutzungsbestimmungen sind mit dieser Ressource verbunden:

Namensnennung 4.0 International