Zur Kurzanzeige

Quantum optimal transport for AF-C*-algebras

dc.contributor.advisorSturm, Karl-Theodor
dc.contributor.authorHornshaw, David Francis
dc.date.accessioned2025-02-14T10:32:29Z
dc.date.available2025-02-14T10:32:29Z
dc.date.issued14.02.2025
dc.identifier.urihttps://hdl.handle.net/20.500.11811/12814
dc.description.abstractWe introduce quantum optimal transport of states on tracial AF-C*-algebras to study non-spatial transport of quantum information, and view it as the pointwise case of a general parametrised one. We define quantum optimal transport distances as dynamic transport distances in a tracial but non-ergodic and infinite-dimensional quantum setting, called AF-C*-setting. We further extend foundational results of Carlen and Maas to the AF-C*-setting and develop a theory of quantum optimal transport yielding non-spatial lower Ricci bounds suitable for meaningful geometric analysis. Essential for our discussion is a coarse graining process arising from the underlying metric geometry as encoding scheme of the given tracial AF-C*-algebra. In the logarithmic mean setting, we apply the coarse graining process to show equivalence of the EVI_λ-gradient flow property for quantum relative entropy, its strong geodesic λ-convexity, a, possibly infinite-dimensional, Bakry-Émery condition, and a Hessian lower bound condition. We then define lower Ricci bounds of our quantum gradients using any one of said equivalent conditions, give sufficient conditions for lower Ricci bounds of direct sum quantum gradients and, assuming lower Ricci bounds, derive functional inequalities HWI_λ, MLSI_λ and TW_λ in the AF-C*-setting alongside their chain of implications. Fundamental example classes give quantum optimal transport of normal states on hyperfinite factors of type I and II with both non-negative and strictly positive lower Ricci bounds. An application is given by first and second quantisation of spectral triples.en
dc.language.isoeng
dc.rightsIn Copyright
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectNichtkommutative Geometrie
dc.subjectOperatoralgebren
dc.subjectOptimaler Transport
dc.subjectQuantenfeldtheorie
dc.subjectNoncommutative Geometry
dc.subjectOperator Algebras
dc.subjectOptimal Transport
dc.subjectQuantum Field Theory
dc.subject.ddc510 Mathematik
dc.titleQuantum optimal transport for AF-C*-algebras
dc.typeDissertation oder Habilitation
dc.identifier.doihttps://doi.org/10.48565/bonndoc-508
dc.publisher.nameUniversitäts- und Landesbibliothek Bonn
dc.publisher.locationBonn
dc.rights.accessRightsopenAccess
dc.identifier.urnhttps://nbn-resolving.org/urn:nbn:de:hbz:5-80580
dc.relation.doihttps://doi.org/10.48550/arXiv.1910.03312
ulbbn.pubtypeErstveröffentlichung
ulbbnediss.affiliation.nameRheinische Friedrich-Wilhelms-Universität Bonn
ulbbnediss.affiliation.locationBonn
ulbbnediss.thesis.levelDissertation
ulbbnediss.dissID8058
ulbbnediss.date.accepted16.12.2024
ulbbnediss.instituteMathematisch-Naturwissenschaftliche Fakultät : Fachgruppe Mathematik / Institut für angewandte Mathematik
ulbbnediss.fakultaetMathematisch-Naturwissenschaftliche Fakultät
dc.contributor.coRefereeErbar, Matthias
ulbbnediss.contributor.orcidhttps://orcid.org/0009-0006-4521-483X


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige

Die folgenden Nutzungsbestimmungen sind mit dieser Ressource verbunden:

InCopyright