Zur Kurzanzeige

Ultracold fermions in periodically-driven superlattices

dc.contributor.advisorKöhl, Michael
dc.contributor.authorKlemmer, Nick
dc.date.accessioned2025-03-05T13:06:44Z
dc.date.available2025-03-05T13:06:44Z
dc.date.issued05.03.2025
dc.identifier.urihttps://hdl.handle.net/20.500.11811/12878
dc.description.abstractThis thesis presents quantum simulation of strongly-correlated systems beyond standard Hubbard models, using ultracold fermionic potassium atoms in both static and periodically-driven optical superlattices. For this study, we utilize a three-dimensional optical lattice setup, controlling particle interactions via magnetic Feshbach resonances and tunneling between lattice sites through optical lattice intensity. High-resolution absorption imaging combined with radio-frequency spectroscopy distinguishes between singly and doubly occupied sites.
To enhance our systems capabilities beyond the standard Hubbard model, we extend the apparatus with an in-plane optical superlattice, creating a bi-chromatic structure by superposition of two optical lattices with commensurate lattice spacings. Using a phase locked loop with an environmental feed forward, we create an excellent phase stability of the superlattice exceeding 3 mrad. This precision allows us to explore both static and periodically-driven one-dimensional tight-binding models with strong interactions.
We characterize the static superlattice through radio-frequency spectroscopy and Rabi oscillations, and validate the experimental data against theoretical calculations. In a tilted superlattice configuration, we successfully prepare and detect repulsively bound atom pairs, representing a highly excited eigenstate of the system.
Furthermore, we demonstrate control over pair tunneling dynamics in a double-well potential using Floquet engineering, employing a low-noise periodic modulation of the optical superlattice tilt. Using an adiabatic band mapping technique, we directly observe the tunneling dynamics in the driven superlattice. We realize dynamic localization in quarter-filled wells and density-assisted tunneling up to the third harmonic order in half-filled wells. We observe a crossover from density-assited tunneling to dominant pair tunneling by tuning the effective interactions. Remarkably, the pair tunneling is not only enhanced relative to the suppressed single-particle tunneling but also exceeds the superexchange rate of a static double-well by more than a factor of two.
This opens the possibility to study many-body systems with dominant pair tunneling, that extend beyond the standard Hubbard model.
en
dc.language.isoeng
dc.rightsIn Copyright
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subject.ddc530 Physik
dc.titleUltracold fermions in periodically-driven superlattices
dc.typeDissertation oder Habilitation
dc.publisher.nameUniversitäts- und Landesbibliothek Bonn
dc.publisher.locationBonn
dc.rights.accessRightsopenAccess
dc.identifier.urnhttps://nbn-resolving.org/urn:nbn:de:hbz:5-81282
dc.relation.doihttps://doi.org/10.1103/PhysRevLett.133.253402
ulbbn.pubtypeErstveröffentlichung
ulbbnediss.affiliation.nameRheinische Friedrich-Wilhelms-Universität Bonn
ulbbnediss.affiliation.locationBonn
ulbbnediss.thesis.levelDissertation
ulbbnediss.dissID8128
ulbbnediss.date.accepted14.01.2025
ulbbnediss.instituteMathematisch-Naturwissenschaftliche Fakultät : Fachgruppe Physik/Astronomie / Physikalisches Institut (PI)
ulbbnediss.fakultaetMathematisch-Naturwissenschaftliche Fakultät
dc.contributor.coRefereeLinden, Stefan
ulbbnediss.contributor.orcidhttps://orcid.org/0009-0009-3938-2193


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige

Die folgenden Nutzungsbestimmungen sind mit dieser Ressource verbunden:

InCopyright