Zur Kurzanzeige

Advancing Computational Quantum Chemistry with Machine Learning

dc.contributor.advisorGrimme, Stefan
dc.contributor.authorHölzer, Christian
dc.date.accessioned2025-07-09T09:00:31Z
dc.date.available2025-07-09T09:00:31Z
dc.date.issued09.07.2025
dc.identifier.urihttps://hdl.handle.net/20.500.11811/13201
dc.description.abstractThis thesis focuses on advancing quantum chemistry using machine learning methods. For this purpose, a dataset for the lanthanoid elements is generated, conformer ranking is addressed leveraging novel machine learning architectures and the widely used extended tight-binding model is enhanced with automatic differentiation.
The LnQM dataset, a comprehensive benchmark of 17269 mono-lanthanoid complexes optimized at PBE0-D4/def2-SVP level, enables systematic evaluations of quantum chemical and machine learning methods across the lanthanoid series. It features geometric, energetic, molecular and electronic properties at ωB97M-V/def2-SVPD level, granting insights into lanthanoid chemistry and highlighting limitations of current atomic charge models.
The ConfRank ansatz improves conformer ranking through pairwise training of state-of-the-art machine learning models. Utilizing the DimeNet++ architecture, the accuracy of relative energy prediction on GMKTN55 conformational subsets is improved by 29% on average. Moreover, a considerable 100-fold computational speed-up compared to the currently used GFN2-xTB method is achieved using GPU infrastructure.
The dxTB model, a PyTorch implementation of GFN-xTB, demonstrates a novel integration of quantum chemical algorithms into machine learning frameworks. It allows for differentiation of any input parameters to arbitrary order, achieving similar runtimes as the original Fortran implementation, which in turn lacks automatic differentiation. Moreover, parameter optimization can now be conducted using backpropagation, harnessing the extensive existing machine learning infrastructure, opening up possibilities to investigate new functional forms of internal xTB procedures and to develop individual, problem-specific GFN parametrizations.
Together, these contributions chart new directions across different dimensions of computational research, ranging from data science aspects to model development. This thesis conduces to the ongoing advancement of machine learning in the domain of computational quantum chemistry and aims to offer a valuable contribution on the path to improved material sciences, healthcare and beyond.
en
dc.language.isoeng
dc.rightsIn Copyright
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subject.ddc540 Chemie
dc.titleAdvancing Computational Quantum Chemistry with Machine Learning
dc.typeDissertation oder Habilitation
dc.identifier.doihttps://doi.org/10.48565/bonndoc-598
dc.publisher.nameUniversitäts- und Landesbibliothek Bonn
dc.publisher.locationBonn
dc.rights.accessRightsopenAccess
dc.identifier.urnhttps://nbn-resolving.org/urn:nbn:de:hbz:5-83185
dc.relation.doihttps://doi.org/10.1021/acs.jcim.3c01832
dc.relation.doihttps://doi.org/10.1021/acs.jcim.4c01524
dc.relation.doihttps://doi.org/10.1063/5.0216715
ulbbn.pubtypeErstveröffentlichung
ulbbnediss.affiliation.nameRheinische Friedrich-Wilhelms-Universität Bonn
ulbbnediss.affiliation.locationBonn
ulbbnediss.thesis.levelDissertation
ulbbnediss.dissID8318
ulbbnediss.date.accepted05.06.2025
ulbbnediss.instituteMathematisch-Naturwissenschaftliche Fakultät : Fachgruppe Chemie / Institut für Physikalische und Theoretische Chemie
ulbbnediss.fakultaetMathematisch-Naturwissenschaftliche Fakultät
dc.contributor.coRefereeBredow, Thomas


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige

Die folgenden Nutzungsbestimmungen sind mit dieser Ressource verbunden:

InCopyright