Zur Kurzanzeige

Periplectic and Isomeric Lie superalgebras, KLR algebras and Categorification

dc.contributor.advisorStroppel, Catharina
dc.contributor.authorNehme, Jonas
dc.date.accessioned2025-10-29T13:11:36Z
dc.date.available2025-10-29T13:11:36Z
dc.date.issued29.10.2025
dc.identifier.urihttps://hdl.handle.net/20.500.11811/13605
dc.description.abstractWe explore the finite dimensional representation theory of the periplectic Lie superalgebra and the isomeric Lie superalgebr, focusing on explicit descriptions of their projective generators' endomorphism rings. Using Schur–Weyl duality and KLR algebras, we establish basis theorems for cyclotomic quotients and introduce diagrammatic algebras resembling Khovanov arc algebras to obtain explicit descriptions of the endomorphism ring of a projective generator. These algebras enable explicit descriptions of translation functors and their effects on special module classes such as projective, (co)standard and irreducible modules. We conclude with categorification results: the periplectic Lie Superalgebra connects to a Fock space of the quantum electrical algebra, while the isomeric Lie superaglebra categorifies a tensor product of type B spin representations.en
dc.language.isoeng
dc.rightsNamensnennung 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectLie Superalgebra
dc.subjectKategorifizierung
dc.subjectDiagrammatik
dc.subjectKLR Algebra
dc.subjectSchur–Weyl Dualität
dc.subjectLie superalgebra
dc.subjectCategorification
dc.subjectDiagrammatics
dc.subjectKLR algebras
dc.subjectSchur–Weyl duality
dc.subject.ddc510 Mathematik
dc.titlePeriplectic and Isomeric Lie superalgebras, KLR algebras and Categorification
dc.typeDissertation oder Habilitation
dc.publisher.nameUniversitäts- und Landesbibliothek Bonn
dc.publisher.locationBonn
dc.rights.accessRightsopenAccess
dc.identifier.urnhttps://nbn-resolving.org/urn:nbn:de:hbz:5-86152
ulbbn.pubtypeErstveröffentlichung
ulbbnediss.affiliation.nameRheinische Friedrich-Wilhelms-Universität Bonn
ulbbnediss.affiliation.locationBonn
ulbbnediss.thesis.levelDissertation
ulbbnediss.dissID8615
ulbbnediss.date.accepted23.10.2025
ulbbnediss.instituteMathematisch-Naturwissenschaftliche Fakultät : Fachgruppe Mathematik / Mathematisches Institut
ulbbnediss.fakultaetMathematisch-Naturwissenschaftliche Fakultät
dc.contributor.coRefereeSerganova, Vera
ulbbnediss.contributor.orcidhttps://orcid.org/0009-0004-7817-1704


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige

Die folgenden Nutzungsbestimmungen sind mit dieser Ressource verbunden:

Namensnennung 4.0 International